
UC Irvine
UC Irvine Previously Published Works

Title
Determining the direction of prediction of the association between parasympathetic 
dysregulation and exhaustion symptoms

Permalink
https://escholarship.org/uc/item/5rn9d5qb

Journal
Scientific Reports, 12(1)

ISSN
2045-2322

Authors
Wekenborg, Magdalena K
Schwerdtfeger, Andreas
Rothe, Nicole
et al.

Publication Date
2022

DOI
10.1038/s41598-022-14743-4

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rn9d5qb
https://escholarship.org/uc/item/5rn9d5qb#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10648  | https://doi.org/10.1038/s41598-022-14743-4

www.nature.com/scientificreports

Determining the direction 
of prediction of the association 
between parasympathetic 
dysregulation and exhaustion 
symptoms
Magdalena K. Wekenborg1,2*, Andreas Schwerdtfeger3, Nicole Rothe1, Marlene Penz4, 
Andreas Walther5, Clemens Kirschbaum1, Julian F. Thayer6, Ralf A. Wittling7 & 
LaBarron K. Hill8

Stress-related exhaustion symptoms have a high prevalence which is only likely to increase further 
in the near future. Understanding the physiological underpinnings of exhaustion has important 
implications for accurate diagnosis and the development of effective prevention and intervention 
programs. Given its integrative role in stress-regulation, the parasympathetic branch of the autonomic 
nervous systems has been a valid starting point in the exploration of the physiological mechanisms 
behind exhaustion. The aim of the present study was to examine the directionality and specificity of 
the association between exhaustion symptoms and vagally-mediated heart rate variability (vmHRV), 
a relatively pure measure of parasympathetic tone. Exhaustion symptoms and vmHRV were measured 
at four annually assessment waves (2015–2018) of the Dresden Burnout Study. A total sample of 
N = 378 participants who attended at least two of the four annual biomarker measurements were 
included in the present analyses. Cross-lagged multi-level panel modelling adjusting for various 
covariates (e.g., age, sex, BMI) revealed that vmHRV was meaningfully predictive of exhaustion 
symptoms and not vice versa. In addition, these effects were specific for exhaustion symptoms as no 
effect was shown for the other burnout sub-dimensions, or for depressive symptoms. Our findings 
indicate a clear link between exhaustion symptoms and vmHRV which may hold great potential for 
both enhancing the diagnosis and treatment of exhaustion symptoms.

Exhaustion symptoms, defined as the depletion of energetic resources as a result of prolonged exposure to chronic 
stress1, exhibit a high prevalence worldwide2–4. This trend is especially alarming given the severe repercussions of 
exhaustion symptoms for the individual (i.e., enhanced all-cause mortality5), as well as its considerable financial 
burden for society due to exhaustion associated work-disability6 and future hospital admissions7. Exhaustion 
symptoms have been most extensively studied within the theoretical framework of burnout. Most researchers 
in the field, as well as the ICD-118 characterize burnout based on the definition introduced by Maslach, et al.9. 
Maslach, et al.9 defined burnout as a consequence of chronic stress with its core symptom exhaustion, accom-
panied by cynicism (i.e., a negative attitude towards clients and co-workers), and reduced personal accomplish-
ment (i.e., reduced perceived productivity). The severe consequences underscore the substantial importance of 
studying plausible psychophysiological pathways of exhaustion symptoms for two main goals: (1) identifying 
biomarkers that might improve early diagnosis of exhaustion symptoms, and (2) developing effective prevention 
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and treatment strategies based on a more profound understanding of the link between chronic stress exposure 
and the development of exhaustion symptoms.

As detailed in the model of neurovisceral integration, the appraisal of acute stress causes, via direct influence 
of cortical and limbic circuits on the autonomic nervous system (ANS), a temporal dominance of the sympathetic 
nervous system (SNS) over the parasympathetic nervous system (PNS), which is, at least from an evolutionary 
perspective, adaptive as it provides energy mobilization to overcome (i.e., evaluate, fight, flee) inciting environ-
mental challenge. However, in case of enduring experiences of stress (i.e., chronic stress) this initially adaptive 
dynamic shifts to an established state of dysregulation, wherein the SNS influence is continuously dominant and 
PNS activity is diminished and/or ineffective, which poses excessive energy demands on the body10. Importantly, 
PNS activity can be indexed by vagally-mediated heart rate variability (vmHRV). HRV is thereby defined as dif-
ferences in the time intervals between sequential heart beats, which result from the interplay of the SNS and the 
PNS. Due to differences in neurotransmitter signalling, only the PNS (via the vagus nerve) is able to modulate 
the heart rate on a time scale of milliseconds11–13, making high-frequency changes in HRV a relatively pure 
measure of vagal function.

Over time, this PNS dysregulation results in energy depletion, making it impossible for the individual to meet 
environmental demands14. And indeed, previous findings indicate that chronic stress leads to vagal withdrawal 
as indexed by reduced vmHRV15.

We were the first to explicitly show that the exhaustion dimension of burnout is most reliably associated with 
a dysregulation of PNS16,17, which is in line with previous studies outside the burnout framework18,19. There is, 
however, a lack of studies investigating the causal direction between exhaustion symptoms and vmHRV. Most 
prior studies on burnout symptoms and vagal function were cross-sectional, limiting their ability to assess 
the temporal association20,21. Our findings indicate a bidirectional relationship, as both exhaustion symptoms 
predicted low vmHRV, and low vmHRV predicted enhanced exhaustion symptoms over a 1-year period17. The 
only other two studies examining the longitudinal associations of burnout symptoms and vmHRV of which the 
authors are aware, were both conducted in Chinese patients after acute coronary syndrome22,23. Zhang et al.22 
and Shi et al.23 could demonstrate that burnout symptoms, operationalized using the Copenhagen Burnout 
Inventory24, a measure with an explicit focus on the exhaustion dimension of burnout, predicted reduced vmHRV 
over a 1-year period. Since burnout symptoms were assessed at baseline only, no conclusion can be made about 
the directionality of their association. In addition, longer time periods are needed to draw firm conclusions 
about directionality, as to the authors knowledge all previous longitudinal studies are limited to a 1-year period.

In summary, there are indications of exhaustion-associated modulations in vagal function but studies inves-
tigating the causal link are lacking. In addition, there is some uncertainty regarding the specificity of exhaustion-
associated modulations in vmHRV with respect to other dimensions of burnout as well as depressive symptoms. 
Previous research has primarily focused on associations between low vmHRV and diagnostic categories (i.e., 
depressed vs. not depressed), or examined composite symptom scores. This research yielded inconclusive results 
(review25,26). Previous work from our group indicates that exhaustion symptoms are the predominant driver of the 
association with reduced vagal function irrespective of the specific classification/diagnostic category employed 
(i.e., depression vs. burnout)16. This is consistent with other previous work demonstrating that somatic, but not 
cognitive-affective symptoms are mainly responsible for associations between depression and vmHRV26. Fol-
lowing this line of reasoning, the observation of significant associations of vmHRV with burnout or depression 
may depend largely on the chosen operationalization.

Utilizing data collected across the four annual biomarker sampling points of the Dresden Burnout Study 
(2015–2018), the present study further investigated the directionality and specificity of the association between 
exhaustion symptoms and vmHRV. We employ a multilevel cross-lagged panel design27 which maximizes the 
utility of our large sample size and extensive observation period. Based on previous findings16,17, we hypothesized 
that the cross-temporal association between vmHRV and exhaustion symptoms would be distinct from the other 
burnout sub-dimensions, as well as depressive symptoms. No hypothesis was made regarding the directionality 
of this association.

Methods
Study population.  The present study included participants from the ongoing Dresden Burnout Study. 
Recruitment strategies and design of the Dresden Burnout Study are described in detail elsewhere28. Briefly, the 
Dresden Burnout Study is a large-scale longitudinal study designed to systematically assess health-related risk 
and protective factors of burnout symptoms. Participants were recruited from across Germany via public media, 
as well as via the civil register of the city of Dresden. In order to ensure a heterogeneous sample composition, 
the only inclusion criteria were an age between 18 and 68 years, as well as German language skills. The Dresden 
Burnout Study includes an online assessment of a range of demographic, psychological, and general health 
related factors via the official study homepage (www.​dresd​ner-​burno​ut-​studie.​de). In addition, since its start in 
2015, participants with residence in Dresden and within a 60 km radius around the city are annually invited for 
biomarker sampling including the collection of heart rate data as well as blood and hair samples.

The present study included those participants with complete heart rate data and relevant sociodemographic 
and health related factors for at least two of the four biomarker sampling points between 2015 and 2018 result-
ing in a sample of N = 392. After exclusion of outliers (n = 5 individuals with vmHRV values M < 3SD; n = 5 
individuals with BMI > 45), a final sample of N = 378 participants were included in the present analyses. Detailed 
sample characteristics of those individuals included in the present analyses at each biomarker sampling point 
are depicted in Table 1.

http://www.dresdner-burnout-studie.de
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HRV, as well as questionnaire data collected at the first and the second biomarker sampling points has already 
been published10,11. HRV data collected at the third and fourth biomarker sampling point has never been pub-
lished before.

All participants gave written informed consent. The Dresden Burnout Study has been developed in accord-
ance with the Declaration of Helsinki, and has been approved by the local ethics committee of the Technical 
University Dresden. All participants received a monetary reward of 15 € per biomarker sampling time point.

Protocol.  Each biomarker sampling point followed a standardized procedure which is described below. 
Within one week before the biomarker sampling, participants completed an online questionnaire via the study 
homepage, assessing burnout and depressive symptoms, as well as sociodemographic and health related factors. 
Laboratory sessions lasted approximately 50 min and were conducted between 7 a.m. and 7 p.m. (for economic 
reasons, ECG data could not be collected from participants at the same time of day at each measurement point). 
Participants were told to refrain from drinking alcohol and caffeine, smoking, and strenuous physical activity 
during the day of the laboratory sessions. On arrival, participants read and signed informed-consent forms and 
were provided with a heart rate device which they wore during the whole biomarker sampling procedure as 
follows: blood draw, hair sample collection, and a 335-s heart rate recording in a seated position (resting condi-
tion) with spontaneous breathing. Heart rate recording was initiated following an approximately 60-s stabiliza-
tion period on a seated position. During this stabilization period, participants were instructed to remain seated 
quietly for the next six minutes, as unnecessary movement can distort the heart rate. In order to avoid possible 
further distortions of vmHRV29, no instructions for cognitive-demanding tasks were given.

A seated resting condition seems especially suited to examine burnout associated changes in autonomic 
function as this experimental setting has previously been shown to enable assessment of HRV as a trait-like 
marker of vagal function30.

Self‑report measures.  The following covariates that have previously been shown to influence cardiac vagal 
tone were assessed: age, sex, alcohol consumption (yes/no), smoking (yes/no), physician diagnosed cardiovas-
cular disease (hypertension and/or cardiac arrhythmias; yes/no) via self-report. Body mass index (BMI) was 
calculated based on participants’ self-reported weight and height.

For consideration within the scope of sensitivity analyses, cardiovascular risk factors (also via self-report) 
were assessed (i.e., diabetes [yes/no], high cholesterol [yes/no]).

Exhaustion symptoms were measured using the emotional exhaustion sub-scale German version (MBI-GS-
D31) of the Maslach Burnout Inventory General Survey (MBI-GS1). In order to be able to explore the role of 
overall burnout symptoms, as well as the other two subscales from the MBI (i.e., cynicism, reduced personal 
accomplishment), participants rated all 16 items of the MBI on a seven-point Likert scale (0 = never; 6 = daily). All 

Table 1.   Sample characteristics for those individuals included in the present analyses (Unless otherwise stated, 
number in brackets are standard deviations). BMI body mass index, Cardiovascular Disease self-reported 
hypertension and/or cardiac arrhythmias, HF-HRV high frequency heart rate variability, MBI Maslach Burnout 
Inventory, PHQ-9 Patient Health Questionnaire sum-score, PHQ-9 cog Patient Health Questionnaire 9—
cognitive factor, PHQ-9 som Patient Health Questionnaire 9—somatic factor, RMSSD root mean square of 
successive difference between heart beats, ys number of participants who answered the respective question 
with yes.

Biomarker sampling 1 (Sept.–
Oct. 2015)

Biomarker sampling 2 (Oct. 
2016–Feb. 2017)

Biomarker sampling 3 (Oct.–
Dec. 2017)

Biomarker sampling 4 (Oct.–
Dec. 2018)

n 391 471 401 469

Age (years) 41.79 (11.17) 40.57 (12.02) 42.95 (11.68) 43.15 (11.68)

Sex (female) 259 (66.2%) 321 (68.2%) 290 (72.3%) 330 (70.4%)

Health related variables

BMI (kg/m2) 25.25 (4.54) 24.53 (4.39) 25.58 (4.87) 25.62 (4.90)

Smokers (ys) 49 (12.5%) 68 (14.4%) 55 (13.7%) 59 (12.6%)

Alcohol consumption (ys) 341 (87.2%) 430 (91.3%) 367 (91.5%) 429 (91.5%)

Cardiovascular disease (ys) 79 (20.2%) 76 (16.1%) 74 (18.5%) 89 (19.0%)

MBI total score 2.19 (1.16) 2.14 (1.07) 2.19 (1.10) 2.21 (1.11)

Emotional exhaustion 2.79 (1.56) 2.75 (1.50) 2.83 (1.48) 2.85 (1.50)

Cynicism 1.98 (1.50) 2.00 (1.39) 2.04 (1.49) 2.06 (1.45)

Reduced personal accomplishment 1.61 (1.12) 1.48 (0.97) 1.48 (1.03) 1.50 (0.97)

PHQ-9 total score 8.17 (5.20) 7.83 (5.20) 7.65 (4.88) 7.52 (5.01)

PHQ-9 cog 3.98 (2.95) 3.69 (2.88) 3.61 (2.76) 3.50 (2.75)

PHQ-9 som 4.19 (2.62) 4.14 (2.71) 4.04 (2.50) 4.02 (2.65)

RMSSD 35.32 (21.84) 38.25 (22.83) 36.42 (23.58) 38.75 (23.57)

HF-HRV 517.18 (841.82) 563.33 (806.62) 531.15 (849.30) 604.62 (913.12)
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MBI sub-scales showed good reliabilities over the four measurement time points indicated by Cronbach’s Alpha 
values between 0.84 and 0.92 (emotional exhaustion: 0.92; cynicism: 0.84–0.87; reduced personal accomplish-
ment: 0.84–0.86). The weighted MBI total score (0.4 × EE + 0.3 × cynicism + 0.3 × reduced personal accomplish-
ment) was calculated as suggested by Kalimo et al.32. The MBI total score and its three subscales were considered 
as continuous variables and, due to high intercorrelations, analysed separately.

Depressive symptoms were assessed with the German version (PHQ9-D33) of the Patient Health Question-
naire (PHQ-934). The PHQ-9 consists of nine items which are scored on a 4-point ranking scale (0 = not at all; 
3 = nearly all day). The items quantify the frequency of each of the nine diagnostic criteria for a depressive 
disorder over the last two weeks of the Diagnostic and Statistical Manual of Mental Disorders35 and can be 
summed up to a continuous variable (PHQ-9 sum score), with higher scores representing higher severity of 
depressive symptoms. As previous research indicates a special role for somatic depressive symptoms compared 
to cognitive depressive symptoms16,26, separate somatic and cognitive symptom scores were derived within the 
PHQ-9. Accordingly to De Jonge et al.36 the items assessing exhaustion, sleeping problems, changes in appetite, 
and psychomotor agitation were summed to form the PHQ-9 somatic factor (Cronbach’s Alpha for the four 
measurement time points: 0.74–0.77), whereas the items lack of interest, depressed mood, negative feelings about 
self, concentration problems, and suicidal intention were subsumed in the PHQ-9 cognitive factor (Cronbach’s 
Alpha for the four measurement time points: 0.79–0.82).

VmHRV measurements.  Inter-beat intervals (IBI) were assessed using a wireless chest transmitter and 
a wrist monitor recorder (Polar RS800CX system; Polar Electro OY, Kempele, Finland) with a sampling fre-
quency of 1000 Hz throughout the biomarker sampling procedure. Of the complete IBI timeline of the respec-
tive sampling point, only a 335-s period (about 5.5 min) of the seated resting condition was analyzed in the 
present study to capture an index of tonic vmHRV. IBIs were available for: (1) n = 434 invidiuals at T1 (Sept.–Oct. 
2015) n = 434); (2) n = 527 invidividuals at T2 (Oct. 2016–Feb. 2017); n = 438 individuals at T3 (Oct.–Dec. 2017); 
n = 511 at T4 (Oct.–Dec. 2018).

The data of each sampling point were then transferred to the Polar Precision Performance Software (Polar 
Electro OY, Kempele, Finland) and exported as the raw IBI data for further analysis. The ECG raw data were 
artefact corrected and the most frequently used primarily vmHRV measures (i.e., the time-domiane measure 
root mean sum of squares of successive differences [RMSSD]; frequency-domain measure high-frequeny HRV 
[HF-HRV; frequency band, 0.15–0.4 Hz]) were calculated by a third party, namely the NEUROCOR Ltd. & 
Co. KG (Trier, Germany), according to the guidelines of the Task Force37 using the NEUROCOR precision 
HRV-Algorithm. More precisely, first, detection of R-spikes was performed using a modified Pan-Thompkins-
Algorithm. Second, milliseconds based RR intervals of the segment were articact checked automatically by the 
„NEUROCOR precisionHRV-Algorithm “-based on the European Patent “EP2745770B1 Method and device 
for determining the variability of a creature’s heart rate”. During the correction process the RR data was seg-
mented in continuous intervals of 335 s. Milliseconds based RR intervals of the segment were artifact checked 
automatically. The algorithm marks all RR intervals outside physiological limits or values that are not suitable 
for a HRV analysis. This includes RR intervals < 400 ms, RR intervals > 2000 ms and RR intervals whose moving 
average over 5 intervals exceeds an age-dependent threshold. In addition, RR intervals are marked which are 
recognized as statistical outliers. The correction of the artifacts takes place without a violation of the alignment 
of the phases and without a change of the total signal time. To this the affected areas are not cut out, but replaced 
by spline interpolated RR times of the same length. For larger artifact phases, the distribution of the RR times is 
adapted to the RR time dynamics before and after the defect. The number of RR intervals replaced was counted 
and converted to a percentage based on the total number of all heartbeats per 335 s segment. Only segments with 
an artifact load ≤ 5% were included in the calculation of the HRV analysis. This criterion was met for: (1) n = 413 
invidiuals at T1 (Sept.–Oct. 2015); (2) n = 503 invidividuals at T2 (Oct. 2016–Feb. 2017); n = 423 individuals at 
T3 (Oct.–Dec. 2017); n = 497 at T4 (Oct.–Dec. 2018). Third, HRV measures were calculated. RMSSD was used to 
operationalize vmHRV because it is an approved short-term measure of HRV reflecting vagal cardiac influence 
and its robustness against breathing patterns37,38. RMSSD values at rest were not normally distributed; thus, log 
transformations were applied to reduce skewness. To examine potential differences between different vmHRV 
operationalizations, we conducted the main analyses with lnRMSSD and lnHF-HRV (also log-transformed due 
to skeweness).

Statistical analyses.  We used multilevel cross-lagged panel models to assess bidirectional pathways link-
ing vmHRV and exhaustion symptoms across time. Such analyses allow for a clear investigation of the direction-
ality of associations between constructs by allowing for the simultaneous estimation of relations whereby each 
variable at the first measurement time point is allowed to predict variables at the next measurement time point 
(cross-lagged component). These relations are also estimated while controlling for the longitudinal stability of 
each construct (autoregressive component) and calculating the residualized covariance, so that results reflect the 
effects of each construct measured at the first time point on increases or decreases in other constructs relative to 
the baseline level, thereby controlling for the other paths. The parameters in all models were estimated using the 
robust maximum-likelihood estimation method. Models were calculated using Bayesian modelling with non-
informative priors. Models were calculated with random slopes (measurement time) and random intercepts for 
each participant.

Available data from all four biomarker sampling points were included in the analyses. Since not all study 
participants took part in all measurement time points, only the available time intervals between the measure-
ment time points served as the basis for the analyses. Therefore, the longest time lag included in the analyses 
was three years, the shortest one year.
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Our primary analysis focused on exhaustion symptoms longitudinally predicting vmHRV and conversely 
(vmHRV longitudinally predicting exhaustion symptoms). The comparison of the magnitude of the associations 
between these two pathways provides information on the temporal sequence, or directionality, between the two 
variables. More precisely, autoregressive and cross-lagged paths were modelled for exhaustion symptoms and 
lnRMSSD. In addition, age, sex, BMI, the PHQ-9 somatic and cognitive factors, as well as smoking, alcohol 
consumption, and self-reported cardiovascular disease at the respective measurement time point were entered 
into the model as covariates. In order to ensure a comprehensive assessment of vmHRV, we conducted the same 
multilevel cross-lagged panel model for lnHF-HRV too.

In a second step, we evaluated the specificity of potentially revealed associations with lnRMSSD with respect 
to burnout symptoms by running the same multilevel cross-lagged panel models, but replacing exhaustion 
symptoms with the respective burnout score. Thereby, the MBI total score, cynicism and reduced personal 
accomplishment were examined separately in order to avoid problems with multicollinearity, and to reduce 
model complexity. Each of these models included lnRMSSD as the corresponding core variable, and age, sex, 
BMI, the PHQ-9 somatic and cognitive factors, smoking, alcohol consumption, and cardiovascular disease at 
the respective measurement time point as covariates.

In a third step, in order to examine the specificity of exhaustion associated modulations in vmHRV with 
respect to depressive symptoms, two separate multilevel cross-lagged panel models were calculated for the PHQ-9 
cognitive factor and the PHQ-9 somatic factor. As the results were virtually identical for the PHQ-9 total score 
and its sub-scores, results for the PHQ-9 total score are not depicted here. The different PHQ-9 scores were 
examined separately in in order to avoid problems with multicollinearity, and to reduce model complexity. Each 
of these models included lnRMSSD as the corresponding core variable, and age, sex, BMI, the PHQ-9 somatic 
and cognitive factor, smoking, alcohol consumption, and cardiovascular diseases at the respective measurement 
time point as covariates.

Additionally, sensitivity analyses were performed, which included all cardiovascular diseases (i.e., hyperten-
sion, cardiac arrhythmias) and cardiovascular risk factors (i.e., diabetes, high cholesterol) within the multilevel 
cross-lagged panel models described in the steps one to three.

All statistical analyses were conducted using R39 package brms (Version: 2.15.0) using non-informative priors. 
Parameters of multilevel cross-lagged panel models were considered meaningful (i.e., the revealed effect is reli-
able), if the associated CI does not contain zero.

Results
We tested the magnitude and directionality of the association between exhaustion symptoms and lnRMSSD via 
a multilevel cross-lagged panel model with covariates. Results are depicted in Table 2 and Fig. 1. We found that 
higher lnRMSSD meaningfully predicted lower exhaustion symptoms (b = − 0.16; 95% CI [− 0.29, − 0.04]). In 
contrast, the converse longitudinal association (lower exhaustion symptoms predicting higher lnRMSSD) was 
not meaningful (b = − 0.03; 95% CI [− 0.06, 0.00]), indicating an uni-directional association between lnRMSSD 
to exhaustion symptoms. The results were virtually identical for lnHF-HRV (Table 3): Mirroring the results of 
lnRMSSD, higher lnHF-HRV also meaningfully predicted lower exhaustion symptoms (b = − 0.06; 95% CI [− 0.12, 
− 0.00]). Also in line with the results for lnRMSSD, exhaustion symptoms did not meaningfully predict lnHF-
HRV (b = − 0.06; 95% CI [− 0.12, 0.01]), emphasizing the importance of vmHRV predicting exhaustion symptoms.

Table 2.   Path coefficients of cross-lagged panel models on exhaustion symptoms and lnRMSSD with 
covariates. Sex is coded 0 = male, 1 = female; BMI = body mass index; Cardiovascular Disease = self-reported 
hypertension and/or cardiac arrhythmias; CI = confidence interval; PHQ-9 cog = Patient Health Questionnaire 
9—cognitive factor; PHQ-9 som = Patient Health Questionnaire 9—somatic factor; lnRMSSD = root mean 
square of successive difference between heart beats, logarithmized; T1 = first attended measurement time point; 
T2 = measurement time point with the largest time-lag to T1. *CI does not include zero.

lnRMSSD–Exhaustion model

lnRMSSD Exhaustion

Estimate CI Estimate CI

Stability paths (T1–T2) 0.59* 0.52, 0.65 0.48* 0.42, 0.53

Cross-lagged effects (T1–T2)
Exhaustion → lnRMSSD lnRMSSD → Exhaustion

− 0.03 − 0.06, 0.00 − 0.16* − 0.29, − 0.04

Effects of covariates (T1)

Sex 0.02 − 0.05, 0.10 < 0.01 − 0.14, 0.14

Age − 0.01* − 0.01, − 0.01 < 0.01 − 0.00, 0.01

BMI < 0.01 − 0.01, 0.00 < 0.01 − 0.02, 0.01

PHQ-9 som 0.01 − 0.01, 0.03 0.10* 0.07, 0.14

PHQ-9 cog − 0.02 − 0.03, 0.00 0.15* 0.12, 0.19

Smoking − 0.12* − 0.22, − 0.02 0.17 − 0.03, 0.37

Alcohol consumption − 0.01 − 0.13, 0.11 0.07 − 0.16, 0.30

Cardiovascular disease < 0.01 − 0.10, − 0.10 − 0.06 − 0.25, 0.12
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Specificity of the revealed effects with respect to other burnout symptoms.  Results of multi-
level cross-lagged panel models on the association between lnRMSSD and other burnout symptoms support the 
specificity of the revealed effects for exhaustion symptoms as none of the other burnout scores (MBI total score, 
cynicism, reduced personal accomplishment) exhibited meaningful paths with lnRMSSD (Table 4).

Specificity of the effects with respect to depressive symptoms.  Results of multilevel cross-lagged 
panel models on the association between lnRMSSD and the two depressive symptom factors (i.e., PHQ-9 somatic 
factor; PHQ-9 cognitive factor) are depicted in Table 5. Analyses revealed no meaningful cross-lagged paths 
between the two depressive symptom factors with lnRMSSD, indicating exhaustion-specificity with respect to 
depressive symptoms.

Figure 1.   Cross-lagged associations between exhaustion symptoms and vagally-mediated heart rate variability. 
Illustration of the cross-lagged association between exhaustion symptoms and (A) RMSSD (root mean square 
of successive difference between heart beats, logarithmized), as well as (B) HF-HRV (high frequency heart rate 
variability, logarithmized), adjusted for sex, age, Body Mass Index, Patient Health Questionnaire 9—cognitive 
factor, Patient Health Questionnaire 9—somatic factor, smoking, alcohol consumption, and cardiovascular 
diseases. The numbers indicate unstandardized effect estimates which refer to logarithmized vmHRV values. 
T1 = first attended measurement time point; T2 = measurement time point with the largest time-lag to T1. *CI 
does not include zero.

Table 3.   Path coefficients of cross-lagged panel models on exhaustion symptoms and lnHF-HRV with 
covariates. Sex is coded 0 = male, 1 = female; BMI = body mass index; Cardiovascular Disease = self-reported 
hypertension and/or cardiac arrhythmias; CI = confidence interval; lnHF-HRV = high frequency heart rate 
variability, logarithmized; PHQ-9 cog = Patient Health Questionnaire 9—cognitive factor; PHQ-9 som = Patient 
Health Questionnaire 9—somatic factor; T1 = first attended measurement time point; T2 = measurement time 
point with the largest time-lag to T1. *CI does not include zero.

lnHF-HRV–Exhaustion model

lnHF-HRV Exhaustion

Estimate CI Estimate CI

Stability paths (T1–T2) 0.56* 0.50, 0.63 0.48* 0.42, 0.53

Cross-lagged effects (T1–T2)
Exhaustion → lnHF-HRV lnHF-HRV → Exhaustion

− 0.06 − 0.12, 0.01 − 0.06* − 0.12, − 0.00

Effects of covariates (T1)

Sex 0.20* 0.03, 0.37 < 0.01 − 0.15, 0.15

Age − 0.02* − 0.03, − 0.02 < 0.01 − 0.00, 0.01

BMI < 0.01 − 0.02, 0.01 < 0.01 − 0.02, 0.01

PHQ-9 som 0.02 − 0.02, 0.07 0.10* 0.07, 0.14

PHQ-9 cog − 0.05* − 0.09, − 0.00 0.15* 0.12, 0.19

Smoking − 0.17 − 0.40, 0.06 0.17 − 0.04, 0.37

Alcohol consumption − 0.08 − 0.36, 0.20 0.07 − 0.15, 0.29

Cardiovascular disease − 0.02 − 0.24, 0.18 − 0.05 − 0.23, 0.13
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Table 4.   Path coefficients of cross-lagged panel models on burnout scores and lnRMSSD with covariates. Sex 
is coded 0 = male, 1 = female; BMI = body mass index; Cardiovascular Disease = self-reported hypertension 
and/or cardiac arrhythmias; CI = confidence interval; CY = Maslach Burnout Inventory – cynicism sub 
score; MBI = Maslach Burnout Inventory GS – total score; Per = Maslach Burnout Inventory – reduced 
personal accomplishment sub score; PHQ-9 cog = Patient Health Questionnaire 9—cognitive factor; PHQ-9 
som = Patient Health Questionnaire 9—somatic factor; lnRMSSD = root mean square of successive difference 
between heart beats, logarithmized; T1 = first attended measurement time point; T2 = measurement time point 
with the largest time-lag to T1. *CI does not include zero.

lnRMSSD–MBI model lnRMSSD–CY model lnRMSSD–PEr model

lnRMSSD MBI lnRMSSD CY lnRMSSD PEr

Estimate CI Estimate CI Estimate CI Estimate CI Estimate CI Estimate CI

Stability 
paths (T1–
T2)

0.60* 0.53, 0.66 0.53* 0.47, 0.58 0.60* 0.53, 0.66 0.52* 0.46, 0.58 0.60* 0.53, 0.66 0.51* 0.45, 0.57

Cross-
lagged 
effects (T1–
T2)

MBI → lnRMSSD lnRMSSD → MBI CY → lnRMSSD lnRMSSD → CY Per → lnRMSSD lnRMSSD → Per

− 0.01 − 0.05, 0.03 − 0.08 − 0.16, 0.00 0.01 − 0.02, 0.03 − 0.10 − 0.24, 0.05 0.02 − 0.02, 0.05 0.03 − 0.08, 0.13

Effects of covariates (T1)

Sex 0.02 − 0.06, 0.10 − 0.04 − 0.14, 0.06 0.02 − 0.06, 0.10 − 0.09 − 0.26, 0.09 0.02 − 0.06, 0.09 − 0.02 − 0.15, 0.10

Age − 0.01* − 0.01, 
− 0.01 < 0.01 − 0.00, 0.01 − 0.01* − 0.01, 

− 0.01  < 0.01 − 0.01, 0.01 − 0.01* − 0.01, 
− 0.01 < 0.01 − 0.00, 0.01

BMI < 0.01 − 0.01, 0.00 < 0.01 − 0.01, 0.01 < 0.01 − 0.01, 0.00 0.02 − 0.00, 0.03 < 0.01 − 0.01, 0.01 − 0.01 − 0.02, 0.00

PHQ-9 som 0.01 − 0.01, 0.03 0.04* 0.02, 0.07 0.01 − 0.01, 0.03 0.01 − 0.03, 0.06 0.01 − 0.01, 0.03 0.01 − 0.03, 0.04

PHQ-9 cog − 0.02* − 0.04, 
− 0.00 0.13* 0.11, 0.16 − 0.02* − 0.04, 

− 0.01 0.16* 0.12, 0.20 − 0.02* − 0.04, 
− 0.01 0.09* 0.06, 0.12

Smoking − 0.12* − 0.22, 
− 0.01 0.11 − 0.03, 0.24 − 0.12* − 0.22, 

− 0.02 0.08 − 0.15, 0.32 − 0.12* − 0.22, 
− 0.01 0.05 − 0.10, 0.22

Alcohol 
consump-
tion

< 0.01 − − 0.13, 
0.12 0.06 − 0.09, 0.22 < 0.01 − 0.12, 0.11 0.11 − 0.17, 0.38 < 0.01 − 0.12, 0.12 < 0.01 − 0.19, 0.20

Cardiovas-
cular disease < 0.01 − 0.09, 0.10 − 0.01 − 0.14, 0.12 0.01 − 0.09, 0.10 − 0.04 − 0.27, 0.18 0.01 − 0.10, 0.10 0.07 − 0.09, 0.22

Table 5.   Path coefficients of cross-lagged panel models on PHQ-9 factors and lnRMSSD with covariates. Sex is 
coded 0 = male, 1 = female; BMI = body mass index; Cardiovascular Disease = self-reported hypertension and/or 
cardiac arrhythmias; CI = confidence interval; PHQ-9 cog = Patient Health Questionnaire 9—cognitive factor; 
PHQ-9 som = Patient Health Questionnaire 9—somatic factor; lnRMSSD = root mean square of successive 
difference between heart beats, logarithmized; T1 = first attended measurement time point; T2 = measurement 
time point with the largest time-lag to T1. *CI does not include zero.

RMSSD-PHQ-9 som model RMSSD-PHQ-9 cog model

lnRMSSD PHQ-9 som lnRMSSD PHQ-9 cog

Estimate CI Estimate CI Estimate CI Estimate CI

Stability paths 
(T1–T2) 0.60* 0.53, 0.66 0.62* 0.56, 0.68 0.60* 0.53, 0.66 0.67* 0.61, 0.72

Cross-lagged effects 
(T1–T2)

PHQ-9 som → lnRMSSD lnRMSSD → PHQ-9 som PHQ-9 cog → lnRMSSD lnRMSSD → PHQ-9 cog

− 0.01 − 0.02, 0.01 − 0.19 − 0.49, 0.09 − 0.01 − 0.02, 0.01 0.01 − 0.27, 0.30

Effects of covariates (T1)

Sex 0.03 − 0.05, 0.11 0.09 − 0.23, 0.42 0.03 − 0.05, 0.10 − 0.11 − 0.44, 0.22

Age − 0.01* − 0.01, − 0.01 − 0.01 − 0.02, 0.01 − 0.01* − 0.01, − 0.01 − 0.02* − 0.03, − 0.00

BMI < 0.01 − 0.01, 0.00 0.02 − 0.02, 0.06 < 0.01 − 0.01, 0.00 0.03 − 0.01, 0.06

Smoking − 0.13* − 0.23, − 0.02 − 0.06 − 0.50, 0.37 − 0.13* − 0.23, − 0.03 0.17 − 0.28, 0.62

Alcohol consumption < 0.01 − 0.12, 0.12 − 0.65* − 1.16, − 0.14 < 0.01 − 0.12, 0.11 − 0.19 − 0.73, 0.36

Cardiovascular 
disease < 0.01 − 0.09, 0.10 − 0.06 − 0.49, 0.35 < 0.01 − 0.10, 0.10 0.15 − 0.28, 0.58
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Sensitivity analyses.  In order to further examine the role of cardiovascular disease and risk factors within 
the models described above (i.e., hypertension, cardiac arrhythmias, high cholesterol, diabetes) all models were 
additionally conducted including these variables as covariates. Detailed description of the results of these sen-
sitivity analyses are depicted in the appendix (Supplementary Tables 1–4). Shortly summarized, the previously 
revealed results were robust with respect to lnRMSSD, as higher lnRMSSD still predicted lower exhaustion 
symptoms after inclusion of the cardiovascular risk factors (b = − 0.15; 95% CI [− 0.28, − 0.02]), whereby the con-
verse longitudinal association was meaningful, too (b = − 0.03; 95% CI [− 0.06, − 0.00]; Supplementary Table 1). 
In contrast, no meaningful results were revealed for lnHF-HRV within these models: neither did lnHF-HRV 
meaningfully predict lower exhaustion symptoms (b = − 0.06; 95% CI [− 0.12, 0.01]), nor did exhaustion symp-
toms meaningfully predict lnHF-HRV (b = − 0.06; 95% CI [− 0.12, 0.00]; Supplementary Table 2).

No differences in results were revealed with respect to the other burnout (Supplementary Table 3) and depres-
sive symptoms (Supplementary Table 4).

Discussion
Exhaustion symptoms and their potentially severe repercussions for the individual and society have grown in 
relevance as a consequence of increased chronic stress levels at work and beyond40. This development underlines 
the importance of understanding the psychophysiological aetiology of exhaustion in order to develop powerful 
prevention and intervention programs.

Our study is the first to seemingly confirm the directionality of the association between exhaustion symp-
toms and reduced vagal function, operationalized by vmHRV measures from four annual waves of the Dresden 
Burnout Study. Notably, our findings indicate that in participants with multiple observations during the four 
annual waves of the Dresden Burnout Study, higher vmHRV predicts reduced exhaustion symptoms, and that this 
association is not recursive. In addition, our study provides evidence on the specificity of this relation, as neither 
of the other burnout dimensions (i.e., cynicism, reduced personal accomplishment) nor depressive symptoms 
showed comparable cross-temporal associations with vmHRV.

Our finding on the unidirectional association between vmHRV and exhaustion symptoms expands pre-
vious cross-sectional findings of a negative association between these two constructs within the burnout 
framework16, and beyond18,19. The finding that vmHRV predicted exhaustion symptoms, and not vice versa, 
contradicts the existing longitudinal studies of this association. Our own previous research indicated a bidi-
rectional relationship17, whereas Zhang et al.22 and Shi et al.23 showed that vmHRV was predicted by a burnout 
measure with an explicit focus on exhaustion symptoms. Several explanations for these divergent findings are 
plausible. First, as Zhang et al.22 and Shi et al.23 did not assess vmHRV at baseline, they were unable to test the 
reverse directionality. In addition, all three studies only examined a 1-year time-interval. A major strength of 
the present study is the inclusion of exhaustion and ANS data spanning three years which enables a more spe-
cific disentangling of causal mechanisms. Another advantage of the present study is the usage of a multilevel 
cross-lagged panel design (an especially robust statistical tool which uses all available data and observations and 
accounts for random effects), which strengthens the validity and reliability of the observed results as compared 
to hierarchical regression analyses17 and generalized estimating equations22,23.

Our findings are in line with the predictions of the neurovisceral integration model10, which proposes that 
autonomic dysregulation, and impaired vagal functioning in particular, is a key pathway linking chronic stress 
to exhaustion symptoms41. Our finding of enhanced vmHRV causally predicting reduced exhaustion symptoms 
adds important further insights to the validity of the model, as it provides empirical evidence for the theoreti-
cal assumption that ANS balance constitutes a relevant psychophysiological resource, which could dampen the 
effects of prolonged or recurrent stress on the organism’s health42. VmHRV has been suggested as an indicator 
of brain–heart communication10, making reductions in vmHRV a relevant biological pathway through which 
prolonged or recurrent stress leads to organism exhaustion and eventual disease10.

Future studies are needed that focus on refining our understanding of potential moderators and mediators 
within this proposed model. For instance, we have shown that chronic stress and burnout symptoms alter the 
appraisal of environmental stressors43,44 revealing the plausibility of positive feedback loops within the pro-
posed model which deserve further examination. In addition, longitudinal designs on possible pathways from 
exhaustion symptoms caused by PNS dysregulation to metabolic risk factors and later health outcomes (i.e., 
cardiovascular disease, diabetes and obesity) are needed, as they could shed light on the mechanisms behind 
the well-established associations between exhaustion symptoms and the leading cause of death worldwide: 
cardiovascular diseases45.

The finding of a physiological process preceding psychological symptoms suggests its potential usage as a 
diagnostic biomarker. A diagnostic biomarker can be understood as early detectable biological changes that are 
indicative of a particular pathogenic process46. Diagnostic biomarkers are of special relevance for psychiatry, as 
they could improve precise diagnoses, which are generally based solely on behavioural symptoms and signs47. In 
addition, biomarkers could signal the pending development of a disorder before major symptoms emerge, poten-
tially lengthening the window of time for prevention47. Besides its temporal precedence, a certain specificity of an 
indicator of a physiological process for the respective psychological symptom has to be proven before it could be 
used as a diagnostic biomarker. In general, vmHRV has been associated with a wide range of psychopathologi-
cal syndromes leading to its characterization as a transdiagnostic biomarker of psychopathology48. While this 
conceptualization challenges the usage of vmHRV as a specific biomarker for exhaustion symptoms, exhaustion 
could be conceptualized as a transdiagnostic symptom itself, as it constitutes a core element of very different 
psychopathologies (e.g., present in burnout, depression, chronic fatigue). In such a case, the required specific-
ity of vmHRV would not have to be proven for a certain diagnostic category, but rather for a certain symptom.
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Our present findings confirm the predominant role of exhaustion symptoms for the association with vmHRV 
with respect to other burnout dimensions and depressive symptoms. Correspondingly, neither cynicism nor 
reduced personal accomplishment was predicted by vmHRV. This is consistent with our previous work16, as 
well as previous research demonstrating that associations with vmHRV were especially strong when burnout 
measures with a focus on exhaustion were employed22,23. From an aetiological standpoint these observations 
suggest potential differences in the pathogenic mechanisms of the three burnout dimensions. From a methodo-
logical point of view, the present findings further challenge the validity of the common practice of combining 
the three burnout dimensions into a single variable, an approach which has previously been criticized49. Our 
findings indicate that combining these very heterogeneous constructs in one sum score might mask important 
associations with psychophysiological, and potentially, clinically-relevant variables.

The question regarding whether or not burnout and depressive symptoms are distinct entities is one of the 
most debated topics since the introduction of the modern burnout concept in the 1970s (review50). Undeniably, 
burnout and depression share chronic stress as a common etiological factor, as well as overlap in symptoms. 
However, previously made claims of a complete isomorphism of the two concepts is challenged by differences 
in their symptomatic core features. Depression is characterized by depressed mood, anhedonia, and feelings 
of hopelessness and guilt30 whereas the core components of burnout are, following the definition of the World 
Health Organization within the International Classification of Diseases (11th Revision8), exhaustion, cynicism 
and reduced personal accomplishment. Moreover, factor analytic studies demonstrated that burnout symptoms 
can be psychometrically distinguished from depressive symptoms51,52.

Our findings offer insights to this debate, by supporting preliminary evidence that biological differences 
might help to characterize overlap and differences between the two concepts53. In contrast to the conclusion 
of recent arguments that there is no conclusive evidence that differences in HRV are able to differentiate burn-
out and depressive symptoms53 we could show that exhaustion symptoms are predicted by vmHRV even with 
depressive symptoms included as a covariate. Additionally, in separate analyses depressive symptoms were not 
predicted by vmHRV when exhaustion symptoms were covaried. These findings contradict prior arguments 
that relations between burnout symptoms and ANS functioning are mainly driven by depressive symptoms. 
In contrast, our results suggest that vmHRV is neither a burnout nor depression specific marker but instead is 
indicative of exhaustion.

Further clarification of the role of exhaustion in linking and/or distinguishing burnout and depressive symp-
toms is essential, especially with respect to (pharmacological) treatment. On the one hand, there have been 
warnings that the usage of labels (i.e., burnout, exhaustion), which have not been empirically validated, increases 
the risk of under- or inappropriate diagnosis and treatment of depressive episodes50,54 with potentially severe 
consequences (i.e., increased risk of suicide). On the other hand, treating exhaustion symptoms with therapeutic 
approaches common to depression55, namely antidepressants might also have serious health consequences. Keep-
ing in mind our finding of significantly reduced vmHRV in individuals with exhaustion symptoms, as well as the 
predictive value of a hypoactive vagus for CVD risk and mortality56 the findings of a meta-analysis that especially 
tricyclic antidepressants (TCA; e.g., amitriptyline, imipramine, and nortriptyline) significantly reduced para-
sympathetic tone presumably because of anticholinergic effects26, indicates that administering antidepressants to 
individuals with mainly exhaustion symptoms may pose a considerable risk to the cardiovascular system. Based 
on these findings, health care providers should be cautious with both, the re-labelling of depression, and the pre-
scription of TCA for individuals with a predominant exhaustion symptomatology independent of the respective 
diagnostic framework (i.e., burnout, depression), until methodologically-sound prospective large-scale studies 
have clarified the role of exhaustion symptoms for the conceptual overlap of burnout and depressive symptoms.

There are some limitations to the present research. First, we employed only self-report measures to assess 
psychological and health-related factors. Therefore, in the present study burnout and depression are not clinically 
confirmed diagnoses, but reflect psychometrically-determined symptom scores. In our sample, the mean values 
of burnout and depressive symptoms were higher than in other studies that relied on more or less representa-
tive samples57,58. Therefore, in addition to general problems of self- report measures (e.g., social desirability59), 
further measurement bias has to be considered, as variability in the presence and intensity of current depressive 
and burnout symptoms might have influenced the frequency of endorsing particular items. Second, even though 
we adjusted for a wide range of potential confounding variables we cannot rule out that other variables and 
conditions (e.g., previous illnesses, physical activity, medication intake, measurement timing) might have also 
influenced the revealed effects. Our additionally conducted sensitivity analyses further underline the importance 
of considering additional covariates, whereby larger samples are necessary for this. With our sample size, it seems 
unclear whether the deviations found between main analyses and sensitivity analyses reflect actual effects of these 
covariates or are the result of too little power due to the inclusion of too many covariates relative to the sample 
size. Third, the indicative power of our effects are limited to basal vagal tone, as vmHRV was recorded only during 
a resting state. We and others have focused primarily on resting state vmHRV as previous longitudinal research 
clearly supports the reliability of short basal/resting measures (r ≈ 0.60)60,61 whereas stress-related HRV has been 
shown to exhibit modest to low temporal stability (i.e., r = 0.20–30)62.

Our study is also characterized by several strengths. Notably, we employed a robust analytic methodology 
which has several important advantages compared to traditional multiple regression techniques, foremost by 
maximising the utility of our large sample size by avoiding its reduction due to missing data at single time points. 
In addition, ours is the first study relating exhaustion and vagal function to cover such an extensive observa-
tion period. As such, the present results extend and clarify our and other previous observations indicating the 
importance of prospective studies with a sufficiently long measurement period. Lastly, by analysing RMSSD and 
HF-HRV in parallel, we were able to provide an internal replication of the results, which further supports the 
robustness of the revealed effects.
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In conclusion, this is the first study to provide evidence that resting vmHRV is predictive of exhaustion symp-
toms up to a three-year period in a large, heterogeneous sample. Although replication and additional research are 
needed, our findings may have crucial implications in the context of growing evidence that increased exhaustion 
symptoms are a long-term consequence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) 
infections63, as well as the astonishing increase in chronic work stress, exhaustion and burnout among healthcare 
providers and others frontline workers during the SARS-CoV-2 pandemic64,65. Notably, previous research has 
shown that hypoactive vagal function is modifiable through smoking cessation66, increasing physical activity67, 
and reducing obesity68. Thus, our finding of enhanced vmHRV causally predicting reductions in exhaustion 
symptoms underlines the potential utility of such approaches in exhaustion prevention and treatment.

Data availability
The data that support the findings of this study are available from the corresponding author, [M.K.W.], upon 
reasonable request.
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