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Next-generation applications in mobile, automotive, internet of things, robotic, artificial

intelligence, etc. domains require the development and integration of advanced systems-on-chip

(SOCs) that deliver ever-higher performance with much lower power. Thus, Moore’s Law con-

tinues to be necessary, and innovations are needed beyond this law to help manage performance,

power, area and cost (PPAC) for integrated-circuit (IC) design. Among the steps in the typical IC

design flow, physical design implementation critically impacts PPAC. However, in concert with

continuation of the Moore’s Law trajectory, IC physical design encounters new challenges such

as patterning restrictions due to manufacturing limits, severe process variation, and escalating in-

terconnect RC delay. This thesis presents techniques to mitigate these challenges, grouped into

three main thrusts: (i) manufacturing-aware design methodologies, (ii) process-aware design

methodologies, and (iii) interconnect-aware design methodologies.
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Multiple-patterning techniques play a key role in the quest to print ever-smaller features

for continued technology scaling in advanced nodes. However, the use of multiple-patterning

significantly raises the number of extra steps for patterning as well as layout constraints needed

for patternability; this causes an explosion of design rules and a loss of achievable layout den-

sity. To manage the onslaught of complex design rules arising from multiple-patterning, the

manufacturing-aware design methodologies thrust of this thesis proposes approaches to opti-

mize 2D block mask layout for minimum timing degradation, perform detailed placement to fix

complex front-end-of-line (FEOL) design rule violations, and evaluate complex back-end-of-line

(BEOL) design rule impact.

Design variability due to manufacturing process variations has significant impact on the

quality and yield of modern IC designs. Escalating process variation with new device architec-

tures and manufacturing techniques (e.g., FinFET, multiple-patterning, etc.) required for node

scaling results in the rapid increase of pessimism and overdesign. To mitigate the impact of

severe process variation, the process-aware design methodologies thrust of this thesis presents

approaches to optimize top-level clock tree for OCV minimization, reduce skew variation in the

clock network, and perform partitioning in 3DIC that leverages a priori knowledge of inter-die

variation.

In advanced technology nodes, interconnect RC delay becomes more and more domi-

nant. The continuous rapid increase of interconnect RC leads to not only performance loss from

interconnect delay increase, but circuit power and area degradation as well, due to exponential

increase in the number of buffers and drivers. To mitigate the escalating interconnect RC de-

lay, the interconnect-aware design methodologies thrust of this thesis proposes approaches to

co-optimize wirelength and pathlength in routing, studies optimal wirelength-skew tradeoff and

remaining suboptimality in interconnect tree constructions, and performs optimal generalized

H-tree construction with buffering.
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Chapter 1

Introduction

Over the past decades, “Moore’s Law” has become well-understood as an indicator of

successful advancement along the semiconductor industry roadmap. The consistent delivery of

node-to-node density scaling has been a key enabler of market success and ever-deeper societal

impact of integrated circuit-based products. However, due to the slowdown of density scaling,

the semiconductor industry today faces two severe crises in IC design. The first crisis is cost:

design in advanced nodes is too expensive. Figure 1.1 shows design cost and transistor count

trends. The shortage of cost scaling makes designers unable to access the benefits of new tech-

nologies.

Figure 1.1: Design cost and transistor count trends [140].
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The second crisis is quality: current IC design flows do not extract sufficient benefit

(power, performance, area, cost, etc.) from new technology nodes. The 2013 ITRS roadmap [206]

highlighted that even with continued (at least through the year 2013) “available” Moore’s-Law

density scaling (i.e., geometric pitch scaling) of 2× per technology node, the “realized” tran-

sistor density scaling in actual products has slowed down to around 1.6× per technology node

since 2008 (see Figure 1.2). The design capability gap between “available” density scaling and

“realizable” density scaling is caused by the failure to address new challenges – notably, growing

limitations of manufacturing, increased process variations, and escalating interconnect RC delay

– that arise in advanced nodes.

Figure 1.2: Design Capability Gap [102].

Despite the cost and quality crises facing IC design, next-generation applications in mo-

bile, automotive, internet of things, robotic, artificial intelligence, etc. domains all require ad-

vanced SOCs that deliver ever-higher performance with much lower power. Thus, Moore’s Law

continues to be necessary, and innovations are needed beyond this law to help manage perfor-

mance, power, area and cost (PPAC) for IC design. Among the several steps in today’s typical

IC design flow, physical design implementation has critical impacts on PPAC, and this thesis

proposes several innovative physical design methodologies to achieve better design quality.

1.1 Challenges in Physical Design

Inevitably, continuation of the Moore’s-Law scaling trajectory brings new challenges to

IC physical design. Key challenges may be categorized as being within the contexts of (i) pat-

terning, (ii) interconnect, (iii) transistor, (iv) process variation and (v) reliability. Figure 1.3

shows a roadmap of future technology. Notably, many innovations are essential in patterning,

interconnect and transistor technologies, which implies that these three fields are the main bot-

tlenecks for continued process node scaling.
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Figure 1.3: Roadmap of future technology [193].

The history of timing signoff shown in Figure 1.4 [101] provides additional perspective

on how new issues or methodologies arise as process geometries continue to be scaled down. In

particular, there has been a clear, node-to-node evolution of methodologies used to model pro-

cess variation. For example, multi-corner-multi-mode (MCMM) is proposed at 65nm, advanced

OCV is proposed at 45nm, and LVF is proposed at 20nm. This indicates that new models are

frequently required to capture process variation with sufficient accuracy. Further, several issues

regarding reliability have become first-class concerns for IC product design, such as electromi-

gration (EM), bias temperature instability (BTI), dynamic IR drop, etc.

Figure 1.4: History of timing signoff [101].
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Among the five categories of challenges mentioned above, this thesis focuses on three

major challenges, namely, (i) limitation of manufacturing, (ii) severe process variation and (iii)

escalating interconnect RC delay. The following subsections describe each challenge in detail.

1.1.1 Limitation of Manufacturing

As the semiconductor industry continues to follow Moore’s Law, the need to print ever-

smaller features continues. In the past, patterning resolution had been successfully scaled down

by reducing the wavelength of the light source of the lithography equipment. This reached

its limit for high-volume production with ArF (193nm) about a decade ago. That same light

source has been continuously used since the 65nm technology node, with various innovative

lithography technologies (immersion lithography, resolution enhancement techniques, multiple-

patterning technology, etc.) helping to overcome inherent ArF resolution limits. Even as extreme

ultraviolet (EUV) lithography with 13.5nm wavelength reaches mass production in foundry

7nm and 5nm processes, resolution enhancement and multiple-patterning techniques are still

required for continuation of the patterning roadmap.

Notably, multiple-patterning lithography has played a key role in the successful contin-

uation of Moore’s Law scaling. However, the multiple-patterning technique causes two critical

side effects. The first side effect is manufacturing cost: multiple-patterning escalates manu-

facturing cost (see Figure 1.5), due to the extra process steps required to do multiple masking,

etching, etc.

Figure 1.5: Wafer price trend [215].
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The second side effect is design rule explosion: complex patterning steps, along with

resolution enhancements and interactions between multiple mask layouts used to print a given

layer, add a significant number of complex front-end-of-line (FEOL) and back-end-of-line (BEOL)

design rules that have a high impact on design PPAC. Figure 1.6 shows how the number of de-

sign rules has grown rapidly along with process node scaling. The increase of the number of

design rules in advanced nodes is clearly far beyond the historical growth trend. Moreover, new

design rules are more complicated, such that design rule violations can cause other violations,

leading to a string of problems that can limit yield and affect reliability. With this in mind, it

is critical to understand design rules in physical design optimization. Powerful design method-

ology that effectively honors advanced-node design rules can achieve significant benefits: (i)

cost reduction with less Engineering Change Order (ECO) fixing; (ii) yield improvement due to

robust patterning; etc.

Figure 1.6: Design rules and operations explosion [214].

1.1.2 Severe Process Variation

Design variability due to process variations significantly impacts the quality and yield

of advanced-node IC designs. It comes as no surprise that FEOL and BEOL process variations,

along with multiple corners for voltages and temperatures (corresponding to the wide range of
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Figure 1.7: Timing corner explosion [101].

operating conditions and functional modes that modern SOCs must serve), result in corner ex-

plosion (Figure 1.7). The proliferation of design signoff corners has a multiplicative effect, e.g.,

when there are 3 FEOL corners, 5 BEOL corners, 2 temperatures and 3 voltages, 90 simulations

(i.e, 90 = 3 x 5 x 2 x 3) are required for complete coverage. Further, the corner explosion is

escalated by the rise of FEOL and BEOL layers including multiple-patterning layers. With such

corner explosion, timing closure becomes harder and harder, resulting in the increase of design

turnaround time (TAT) with more ECO fixing and cost. Thus, minimum selection of corners for

full coverage has been a key to reduce TAT in the design closure and signoff stages of physical

implementation.

Challenges to physical design and further scaling benefits arise not only from corner

explosion, but also from the increased design margin needed to model severe variability that is

due to new techniques (e.g., FinFET device architectures, multiple-patterning lithography, etc.)

used for node scaling. The growth of design margins results in a rapid increase of pessimism and

overdesign (Figure 1.8). In this regime, with a given set of signoff corners, fixing timing issues

at one corner often leads to violations at other corners, and such “ping-pong” effect is mainly

caused by delay variation of datapaths and clockpaths across corners. Such timing violations

across corners are typically reduced by (hold and/or setup) buffer insertion, Vth-swapping and

gate sizing on datapaths at later design stages, which can lead to potential costs of area, power

and design TAT.
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Figure 1.8: Cost of design margin.

Recently, three-dimensional IC (3DIC) technologies have emerged as a prominent op-

tion for “More-than-Moore” integration strategy, since 3DIC can provide substantial wirelength

reduction and performance improvement along with a massive amount of bandwidth. However,

3DIC technologies add another dimension of variability (i.e., inter-die variation), which should

be managed by physical design methodologies.

1.1.3 Escalating Interconnect RC Delay

In advanced technology nodes, the interconnect RC delay becomes more and more dom-

inant. Reasons for this include: (i) the resistance of Cu interconnect has increased dramatically

in sub-100nm nodes due to grain boundary and trench liner effects [98] and (ii) the scaling of ef-

fective dielectric constant has slowed in recent years, resulting in severely increased interconnect

capacitance [206] and diminished performance benefits at new nodes.

Figure 1.9: Interconnect RC increase as technology nodes scale down [44].
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Figure 1.9 illustrates the escalating interconnect RC delay with node scaling, in which

the gap between transistor and interconnect delays grows approximately 10× for every two tech-

nology nodes. The continuous rapid increase of interconnect RC leads to not only performance

loss from interconnect delay increase, but circuit power and area degradation as well, due to the

exponential increase in buffer and driver counts. With the continued performance divergence

between transistors and interconnects, designs have become interconnect-limited.

1.2 This Thesis

To compensate for the design capability gap with technology scaling and to address

the above-noted major challenges in physical design, this thesis proposes a number of innovative

physical design methodologies. The physical design methodologies in this thesis can be grouped

into three main thrusts (see Figure 1.10):

• Manufacturing-aware design methodologies;

• Process-aware design methodologies; and

• Interconnect-aware design methodologies.

Figure 1.10: Scope and organization of this thesis.

To manage the explosion of complex design rules, e.g., with more pervasive use of

multiple-patterning, the manufacturing-aware design methodologies thrust of this thesis pro-

poses approaches to optimize 2D block mask layout for minimum timing degradation, perform
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detailed placement to fix complex FEOL design rule violations, and evaluate complex BEOL

design rule impact.

To mitigate the impact of severe process variation, the process-aware design methodolo-

gies thrust of this thesis presents approaches to optimize top-level clock tree for OCV minimiza-

tion, reduce skew variation in the clock network, and perform partitioning in 3DIC that leverages

knowledge of inter-die variation.

To mitigate the impacts of escalating interconnect RC delays, the interconnect-aware

design methodologies thrust of this thesis proposes approaches to co-optimize wirelength and

pathlength in routing, evaluate optimal wirelength-skew tradeoff and remaining suboptimality

in interconnect tree constructions, and perform optimal generalized H-tree construction with

buffering.

The remainder of this thesis is organized as follows.

• Chapter 2 presents three distinct studies in the context of manufacturability and new de-

sign rules. First, we address the timing-aware optimization of 2D block mask layouts

under various sets of mask rules that are derived from mask patterning technology options

(e.g, 193i, 193d) for foundry 7nm / 5nm (N7 / N5) BEOL. Our central contribution is

a mixed integer linear programming (MILP) optimization that minimizes timing impact

due to dummy metal segments while satisfying block mask rules and metal density con-

straints. Second, we propose a mixed integer-linear programming (MILP)-based placer,

called DFPlacer, for final-phase design rule violation (DRV) fixing. DFPlacer finds DRV-

free or near-DRV-free solutions considering various complex layout constraints including

minimum implant width, drain-drain abutment, and oxide diffusion jogs. Third, we study

the impacts of patterning technology choices and associated design rules on physical im-

plementation density, with respect to cost-optimal design rule-correct detailed routing. A

key contribution is an integer linear programming (ILP)-based optimal router (OptRouter)

which considers complex design rules that arise in sub-20nm process technologies. Using

OptRouter, we assess wirelength and via count impacts of various design rules (implic-

itly, patterning technology choices) by analyzing optimal routing solutions of clips (i.e.,

switchbox instances) extracted from post-detailed route layouts in an advanced technol-

ogy.

• Chapter 3 presents several distinct process-aware design methodologies. First, we present

a new clock tree synthesis (CTS) methodology that optimizes clock logic cell placements

and buffer insertions in the top level of a clock tree. Balancing the clock trees of mul-
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tiple clocks is challenging because timing constraints depend on clock periods, as well

as on the corresponding process, voltage and temperature (PVT) corners used for design

signoff. Our work formulates the top-level clock tree optimization problem as a linear

program that minimizes a weighted sum of timing slacks, clock uncertainty and wire-

length. Second, we propose a novel framework encompassing both global and local clock

network optimizations to minimize the sum of skew variations across different PVT cor-

ners between all sequentially adjacent sink pairs. The global optimization uses linear

programming to guide buffer insertion, buffer removal and routing detours. The local op-

timization is based on machine learning-based predictors of latency change; these are used

for iterative optimization with tree surgery, buffer sizing and buffer displacement opera-

tors. Third, we study performance improvements of 3DIC implementation that leverage a

priori knowledge of mix-and-match die stacking during manufacturing. We propose parti-

tioning methodologies to partition timing-critical paths across tiers to explicitly optimize

the signed-off timing across the reduced set of corner combinations that can be produced

by the stacked-die manufacturing. These include both an ILP-based methodology and a

heuristic with novel maximum-cut partitioning, solved by semidefinite programming, and

a signoff timing-aware Fiduccia-Mattheyses optimization. We also extend two existing

3DIC implementation flows to incorporate mix-and-match-aware partitioning and signoff,

demonstrating the simplicity of adopting our techniques.

• Chapter 4 presents three distinct techniques for interconnect optimization. First, we pro-

pose a new PD-II construction which directly improves both wirelength and pathlength

upon the original tree constructed by the Prim-Dijkstra (PD) method. The PD-II approach

achieves improvement for both objectives, making it a clear win over PD for virtually

zero additional runtime cost. PD-II is a spanning tree algorithm (which is useful for seed-

ing global routing); however, since Steiner trees are needed for timing estimation, this

work also includes a post-processing algorithm called DAS to convert PD-II trees into

balanced Steiner trees. Second, we formulate the minimum-cost bounded skew spanning

and Steiner tree problems as flow-based integer linear programs, and give the first-ever

study of optimal cost-skew tradeoffs. We also assess the “suboptimality gap” seen in the

leading heuristics (notably, Bounded-Skew DME (BST-DME), Steiner shallow-light tree

(SALT), and Prim-Dijkstra (PD)) that are currently available for trading off cost and skew.

Third, we study the concept of a generalized H-tree – a topologically balanced tree with

an arbitrary sequence of branching factors – and propose a dynamic programming-based
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method to determine optimal clock power, skew and latency, in the space of generalized H-

tree solutions. Our method co-optimizes clock tree topology and buffering along branches

according to fitted electrical models. We further propose a balanced K-means clustering

and a linear programming-guided buffer placement approach to embed the generalized H-

tree with respect to a given sink placement. We validate our solutions in commercial clock

tree synthesis tool flows, in a commercial foundry’s 28LP technology.

• Chapter 5 summarizes the contributions of this thesis toward new physical design method-

ologies in advanced nodes.
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Chapter 2

Manufacturing-Aware Design

Methodologies

Continued technology scaling with more pervasive use of multi-patterning has led to

complex design rules and increased difficulty of maintaining high layout densities. Intuitively,

emerging design rules such as block and cut mask rules, minimum implant width, unidirectional

patterning, increased via spacing, etc. will decrease achievable density of the final place-and-

route solution, worsening die area and product cost.

This chapter presents three distinct studies in the context of manufacturability and new

design rules. First, we address the timing-aware optimization of 2D block mask layouts under

various sets of mask rules that are derived from mask patterning technology options (e.g., 193i,

193d) for foundry 7nm / 5nm (N7 / N5) BEOL. Our central contribution is a mixed integer linear

programming (MILP) optimization that minimizes timing impact due to dummy metal segments

while satisfying block mask rules and metal density constraints. We also propose a distributed

optimization flow to improve the scalability. With our optimizer, we recover up to 84% of the

worst negative slack (WNS) impact from dummy segments, with up to 64% dummy removal

rate. We further extend our MILP to a co-optimization of cut and block masks. Our work gives

new insights into fundamental limits of benefit from emerging cut and block mask technology

options. Second, we develop a mixed integer-linear programming (MILP)-based placer, called

DFPlacer, for final-phase design rule violation (DRV) fixing. DFPlacer finds (near-)DRV-free

solutions considering various complex layout constraints including minimum implant width,

drain-drain abutment, and oxide diffusion jogs. To overcome the runtime limitation of MILP-

based approaches, we implement a distributable optimization strategy based on partitioning of
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the block layout into windows of cells that can be independently legalized. Using layouts in an

abstracted 7nm library, we find that DFPlacer fixes 99% of DRVs on average with minimal im-

pacts on area and timing. We also study an area-DRV tradeoff between two types of standard-cell

library strategies, namely, with and without dummy poly gates. Third, we study the impacts of

patterning technology choices and associated design rules on physical implementation density,

with respect to cost-optimal design rule-correct detailed routing. A key contribution is an Integer

Linear Programming (ILP)-based optimal router (OptRouter) which considers complex design

rules that arise in sub-20nm process technologies. Using OptRouter, we assess wirelength and

via count impacts of various design rules (implicitly, patterning technology choices) by analyz-

ing optimal routing solutions of clips (i.e., switchbox instances) extracted from post-detailed

route layouts in an advanced technology.

2.1 MILP-Based Optimization of 2D Block Masks

for Timing-Aware Dummy Segment Removal

in Self-Aligned Multiple Patterning Layouts

Self-aligned multiple patterning (SAMP), due to its low overlay error, has emerged as

the leading option for 1D gridded back-end-of-line (BEOL) layers in sub-14nm nodes. To form

actual routing patterns from a uniform “sea of wires”, keep1 or block2 approaches can be used.

The work of [66] demonstrates that mask shapes used to keep signal wire segments (M2 pitch

= 32nm [150][171]) are not patternable with single-exposure lithography, even if we assume

aggressive optical proximity correction (OPC). To address this problem, the block approach is

used, wherein both 1D cut masks and 2D block masks are required. 1D cut masks are needed for

line-end cutting or realization of space between routing segments, resulting in end-of-line (EOL)

extensions and non-functional (i.e. dummy fill) patterns.3

Despite previous works [47][50][80][195] proposing cut mask optimizations to mini-

mize the EOL extension, such effects as increased capacitance, degraded timing and power are

inevitable due to dummy fill patterns. Therefore, extra 2D block masks can be used to remove

dummy fill patterns. However, using only 2D block masks cannot realize line ends due to

required complex shapes, particularly with metal pitch ≤ 32nm in N7 / N5 node, which is our
1Keep refers to a mask to keep signal wire segments.
2Block refers to a mask to erase dummy wire segments.
3In terms of layout patterns, cut mask and block mask would act the same since both masks remove unnecessary

metal patterns. Indeed, the terms cut and block are used interchangeably in many previous works. In this section, we
use the term cut mask to refer to a 1D shaped mask, and the term block mask to refer to a 2D shaped mask.
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focus in this section. [66] shows that 2D block mask shapes fail to realize ≤ 80nm tip-to-tip

spacing between line ends while a 1D cut mask strategy can realize 56nm tip-to-tip spacing.

Thus, 1D cut masks are needed to define clean line ends with small tip-to-tip spacing. In this

section, we assume that the cut mask is used to define EOL, and the block mask is used to remove

dummy fill patterns or define EOL with a margin.

Figure 2.1 illustrates 1D SAMP patterning with cut and block masks. For a given post-

route layout, a “sea of wires” is generated and line ends are defined by a cut mask, as shown

in Figures 2.1(a) and (b). After the cut process, Figure 2.1(c) shows one EOL extension and

three non-functional dummy segments. 2D block mask application is shown in Figure 2.1(d),

and Figure 2.1(e) shows the final layout with one EOL extension and one dummy segment.

Compared to the layout in Figure 2.1(c), (e) is superior with smaller capacitance, lower power,

and better timing, due to fewer dummy segments.

Figure 2.1: SAMP process: (a) post-route layout; (b) cut mask application; (c) layout after cut
mask application; (d) block mask application; and (e) final layout after block mask application.

For printability, 2D block masks must satisfy given design rules from a particular pat-

terning technology. Possible patterning technology options include single-exposure (SE) 193i,

SE 193d, and EUV. Except in the case of EUV, the critical dimension (CD) for block mask

shapes is ∼ 2× larger than the minimum pitch of 1D SAMP BEOL process. Thus, it is not

possible to cover all dummy segments using one block mask. For example, in Figure 2.1(e),

the two dummy segments in the final layout cannot be removed because of (i) the minimum

spacing constraint between individual block mask shapes; and (ii) the L-shape constraint. The

first main contribution of this section is that we formulate and optimally solve for 2D block

mask shapes based on realistic design rules of SE 193i and SE 193d patterning technology

from industry [204], and with support for a “selective”4 variant of block-mask patterning

technology.
4I.e., a block mask approach that selectively removes metal lines according to the colors of metal. See Sec-

tion 2.1.1 for the detailed description.

14



In advanced nodes, minimum metal density is crucial to chemical-mechanical polishing

(CMP) [70]. In 1D SAMP manufacturing process, metal fills are generated intrinsically by

the “sea-of-wires” with cut process, and partially removed by the block mask, as opposed to

a dedicated post-routing metal fill process in the traditional physical design flow. Thus, block

mask optimization must be metal density-aware.5 Another contribution of this section is that we

consider the local minimum metal density constraint.

From a performance perspective, maximizing the block mask usage (dummy removal)

is not equivalent to minimizing timing impact of dummy fill patterns. In our preliminary study,

a timing-oblivious block mask optimization that simply maximizes dummy removal (design:

CORTEX M0) can only recover 14% of the WNS degradation caused by non-functional dummy

fill patterns. At the same time, timing-aware block mask optimization can run much faster than

timing-oblivious optimization since we do not need to optimize non-functional dummy fills.

Further, given minimum metal density constraints, smart dummy removal method is required to

maximize timing recovery. Thus, it is important to capture timing impact of dummy segments in

block mask optimization. The second main contribution of this section is that we incorporate

into our optimization a timing model to evaluate dummy fill performance impact. Together

with our first main contribution, this enables quantified assessment of performance benefits

from selective block mask technology.

Lastly, we extend our MILP to a co-optimization of cut and block masks, opening up a

broader solution space. Compared to a sequential cut [80] and block mask optimization, where

line-end realization is performed with cut mask only, a cut and block mask co-optimization seeks

to use both cut and block masks for realization of line ends: the block mask can complement the

cut mask when a cut-only solution may result in excessive EOL extensions.

To summarize, in this section we propose an MILP-based optimization for 2D block

mask with timing-aware dummy segment removal, while satisfying a given set of block mask

rules (including for selective block mask technology) and metal density constraints. We further

provide what we believe to be the first co-optimization of cut and block mask patterns. Our key

contributions are as follows.

• To our knowledge, our work is the first to optimize 2D block mask layout considering

realistic block mask rules, timing impact of dummy fills and metal density constraints.

• We develop a timing model to evaluate performance impact on a per-segment basis.
5Regarding the feasibility of the final pattern after dummy removal in terms of lithography, we note that [66]

validates the cut and block mask approach with lithography simulation. We also note that CMP effects from pattern
density occur at relatively large length scales compared to feature and pitch dimensions in N7/N5 Mx layer.
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• We develop a co-optimization of cut and block mask layout.

• We study the impacts of timing-awareness and patterning technology on optimization out-

comes, and we furthermore quantify the power and timing benefits of the “selective” ap-

proach.

• Our MILP formulation gives new insights into fundamental limits of benefit from emerg-

ing (cut and) block mask technology options.

In the remainder of this section, Section 2.1.1 provides background of cut and block

mask technology, as well as related work. In Section 2.1.2, we describe our MILP-based opti-

mization of 2D block masks and our cut and block mask co-optimization. We also explain our

model to capture the timing impact of dummy segments. We describe our conflict list generation

techniques, distributed optimization strategy and overall flow in Section 2.1.3. Section 2.1.4

provides experimental results and analysis. We give conclusions and future research directions

in Section 2.1.5.

2.1.1 Background

In this section, we first describe block mask rules and the “selective” block approach.

We then review cut mask rules, the selective cut approach, and LELE cuts. Last, we review

relevant related works.

Figure 2.2: Block mask rules: (a) minimum width and length rules; (b) minimum overlap rule;
(c) minimum U-shape rule; and (d) minimum L-shape rule.
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Block Mask Rules / Selectivity

Block mask rules constrain each individual shape on the block mask, as well as sets of

adjacent block mask shapes. A set of essential rules for block mask shapes is shown in Fig-

ure 2.2. For each rectilinear block mask shape, Figure 2.2(a) illustrates minimum width, mini-

mum length, and minimum spacing constraints. For a given rectilinear shape, we use “length”

to refer to the extent (length) of edges along the direction of metal lines, and “width” refer to

the length of edges perpendicular to the direction of metal lines. When two rectilinear shapes

abut each other but are not perfectly aligned, as shown in Figure 2.2(b), a minimum overlap

rule applies. Figures 2.2(c) and (d) illustrate U-shape and L-shape constraints. Table 2.1 shows

preliminary block mask rule sets (R1 - R8) for 193i and 193d patterning technologies.6

A selective block approach [122] allows removal of some, but not all, segments covered

by the block mask. More precisely, similar to multiple patterning technology, the selective block

approach selectively removes dummy segments according to the color of the wire segment.

There are two methodologies that realize selectivity for block mask: (i) order selectivity and

(ii) material selectivity. In [122], the selective blocks for metal color A and metal color B are

processed sequentially. In other words, the block A for metal color A is processed right after

the patterning of metal color A; then, metal B is patterned followed by block color B. Given

the process order, block A only blocks metal A, and block B only blocks metal B, due to the

order in which the process is assembled. By contrast, the material selectivity-based approach

[82] is particularly applied to SADP/SAQP, where there are two types of wires that are created

by mandrel and gap. Figure 2.3 illustrates the process of the material selectivity-based approach

for SAQP. In this SAQP process, spacer-is-dielectric is assumed. After 1st and 2nd spacers are

generated, the region between spacers is filled with material A. Then, two types of block masks

are introduced: one for material A, and the other for 1st spacers. The two block masks are used

to perform the etch process which is selective to material A or to 1st spacer.7 The final metal

patterns are shown in blue color.

Figure 2.4 illustrates the difference between the selective block and non-selective block

approaches. The red (resp. green) block mask in Figure 2.4(a) (resp. (b)) removes red (resp.
6We use the term “preliminary” since plan-of-record patterning strategies for mass production at N7 / N5 did

not yet exist at the time this research was performed. Values in Table 2.1 are from our collaborators at a leading
technology development center / consortium.

7Indeed, there are 3 colors where each color defines the first spacer, the second spacer and the gap. However,
after the second spacer formation, the first spacer is already excavated on the hardmask, and there are only the second
spacer and gap as the two materials. Thus, the same color contrast that is used in SADP (e.g., two colors) can be used
in SAQP as well.
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Figure 2.3: Illustration of the material selectivity-based block approach.

green) dummy segments, but acts as transparent to green (resp. red) segments. Note that without

selectivity, the gray block mask shape becomes complex (Figure 2.4(c)) and may not be pat-

ternable with single-exposure (SE) in 193i/193d. Since the color of wire segments is assigned

alternatively track by track, selective block mask applies separately to odd and even tracks. With

selectivity, as shown in Figures 2.4(a) and (b), block mask shapes can extend to non-target tracks,

which is equivalent to doubling the metal pitch.

Table 2.1: Preliminary cut and block mask rules.

Rule Notation Meaning
Values (nm)

193i 193d

R1 Wmin minimum width 60 120

R2 Smin minimum spacing 240 480

R3 Lmin minimum length 120 240

R4 Omin minimum overlap 240 480

R5 Wmin,U minimum width (U-shape) 120 240

R6 Wmin,L minimum width (L-shape) 60 120

R7 Cmin minimum cut spacing 80 N/A

R8 Cw cut width 20 N/A
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Figure 2.4: Comparison between selective block and non-selective block: (a) selective block
mask in red removes only red segments; (b) selective block mask in green removes only green
segments; and (c) a complex non-selective block mask is required to remove the same dummy

segments.

Cut Mask Rules / Selectivity / LELE cut

Cut mask rules constrain shapes on the cut mask. As in [47][50][66][80][195], we as-

sume that cut mask shapes are unit-size rectangular cuts, with width equal to the cut width. A

cut mask must satisfy a minimum cut spacing constraint, which is the center-to-center distance

between two disjoint cuts. Two cuts are exempt from the minimum cut spacing rule if they abut

and are fully aligned. For two aligned merged cuts, the minimum spacing rule is applied between

each pair of unit-size cuts so that the edge-to-edge distance is always guaranteed to be above a

lower bound, as shown in Figure 2.5. Table 2.1 shows preliminary cut mask rule sets (R7, R8)

for 193i patterning technologies.

Similar to selective block, the selective cut approach realizes EOL only for the corre-

sponding color of wire segments. As another option, the non-selective LELE cut approach uses

two cut masks to realize EOL, regardless of the color of wire segments. Minimum cut spac-

ing is checked within each cut mask, because two cut masks do not interfere with each other.

Figures 2.6(a) and (b) illustrate the selective cut and LELE cut approaches, respectively. In Fig-

ure 2.6(a), similar to selective block, cuts can extend to non-target tracks while not affecting

segments of a different color. Thus, two green (resp. two red) cuts are aligned and there is

no need to check minimum cut spacing since the colors of the cuts are different. Figure 2.6(b)

shows LELE cuts. A minimum cut spacing rule is enforced separately for two green (resp. two

red) cuts.
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Figure 2.5: Cut mask rules: minimum spacing.

Figure 2.6: Comparison between selective cuts and non-selective LELE cuts. (a) Selective cut
mask in red (resp. green) realizes EOL only for red (resp. green) segments, and is transparent to

green (resp. red) segments. (b) Non-selective LELE cuts realize EOL for both colors.

Related Works

While selective block mask is a very recent concept [122], we may classify related works

into three categories: (i) 1D cut mask optimization, (ii) 2D block mask optimization, (iii) 1D cut

mask-aware routing optimization and (iv) 2D block mask-aware routing optimization.

1D cut mask optimization. Zhang et al. [196] propose a shortest-path algorithm to

resolve lithography hotspots in cut masks. Du et al. [50] propose an integer linear program to

minimize total end-of-line (EOL) extension. Ding et al. [47] subsequently extend the method-

ology in [50] to reduce the runtime. Han et al. [80] extend the MILP formulation in [47] and

propose co-optimization of cut mask layout, dummy fill and timing. Their objective incorporates

awareness of design timing in minimizing a weighted sum of EOL extensions, with weights de-

termined by a grouping of timing slacks. [80] also proposes a post-MILP optimization that

iteratively removes dummy segments near timing-critical nets while satisfying density and uni-

formity constraints. However, 2D block mask optimization is not supported, and the grouping-

based weights that are employed to achieve a timing-aware optimization may not be accurate.

2D block mask optimization. Zhang et al. [195] propose a constrained shortest-path

algorithm to improve the printability of 2D block masks. Printability is assumed to be a function

of the number of polygon edges in the block mask. The authors of [195] show a tradeoff between

printability and wirelength increase, albeit without any hard design rule constraints. Ding et

al. [47] propose an integer linear program formulation, with support of limited design rules. By
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contrast, our formulation supports flexible design rules, and we use recent, realistic design rules

from collaborators from a leading technology consortium. We also incorporate a more accurate

model to minimize timing impact of dummy fill patterns.

1D cut mask-aware routing optimization.8 Su and Chang [174] propose a nanowire-

aware router considering cut mask complexity. They first estimate the line-end probability cost

for each global routing tile based on a pre-evaluation of line-end counts using minimum spanning

trees. They then perform global routing while minimizing the routing bends and considering

hotspots with respect to the line-end costs. After that, force-driven layer and track assignments

are performed. At this stage, an attractive force is established for wires that can share a cut. The

authors of [174] also suggest detailed routing with a cost function that considers cut sharing and

EOL extension.

2D block mask-aware routing optimization. Fang [56] proposes an ILP-based wire

planning approach that considers block masks. The proposed ILP minimizes the generation of

single track/wire segments during track routing. She then performs detailed routing, which is

based on A∗ search routing with block mask-aware routing costs.

2.1.2 MILP-based 2D Block Mask Optimization

We now present our problem statement, our MILP formulation, as well as the timing

model used for each of our two optimizations: (1) 2D block mask optimization, and (2) cut and

block mask co-optimization.

Problem Statement

2D block mask optimization. Given a post-route layout with EOL extensions and legal

EOL cuts, timing information, minimum metal density constraint, and technology options (i.e.,

block mask rules, selectivity), perform 2D block mask optimization considering block mask

rules and metal density constraints, such that timing impact of dummy segments is minimized.

Cut and block mask co-optimization. Given a post-route layout, timing information,

minimum metal density constraint, and technology options (i.e., cut mask rules, block mask

rules, selectivity), perform co-optimization of cut and block masks considering cut mask rules,

block mask rules, and metal density constraints, such that EOL of signal segments is realized by

cut or block mask, and the timing impact of EOL extension and dummy segments is minimized.
8The co-optimization with routing is beyond the scope of our present work. We understand that a co-optimization

of routing, cut and block mask should result in the best performance. However, integration of a custom router and
a commercial tool flow with full N7 / N5 design rule support is extremely hard (and, not accessible to us); “hacks”
possible for us in the academic setting usually result in degraded performance.
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MILP Formulation for Block Mask Optimization

We now formulate the MILP problem for the block mask optimization problem. Ta-

ble 2.2 shows notations that we use in our formulation.

Table 2.2: Notations. The notations from the twelfth row to the eighteenth row (i.e., beginning
with cfi,j) are used for cut and block co-optimization.

Notation Meaning

vi,j (0-1) indicator of whether the block candidate j

of shape i is used

tki,j delay increase due to dummy segments for net k

if vi,j = 0

li original dummy segment length of shape i

ri,j removed dummy segment length if vi,j = 1

L total length of signal wires

Kp set of nets in path p

Bq,a(Bq,b) qth set of typeA (typeB) conflicting block candidates

dmin minimum metal density constraint

sp initial timing slack of path p

mp timing degradation of path p

cfi,j (0-1) indicator of whether cut candidate j of shape i

is on cut mask f

ci,j (0-1) indicator of whether the cut candidate j

of shape i is used

Cq,a(Cq,b) qth set of typeA (typeB) conflicting cut candidates

jl (jr) location of left (right) edge of cut or block candidate j

ei,xl
(0-1) indicator of whether location x is the left (right) edge

(ei,xr ) of any selected cut or block candidate of shape i

e′i,xl
(0-1) indicator of whether location x

(e′i,xr
) is the leftmost (resp. rightmost) of shape i

t′ki,xl
delay increase due to EOL extension for net k if e′i,xl

= 1

(t′ki,xr
) (resp. if e′i,xr

= 1)

Block candidates. We begin by describing how a block mask layout is represented

within our MILP formulation. In the block mask layout, we create a dedicated rectangular shape

for every dummy wire segment between signal segments. Figure 2.7 shows an example with
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three dummy wire segments, covered by three rectangular block mask shapes in the block mask

layout. The final block mask layout may vary from the ones shown in Figure 2.7 since each

shape may change according to the selected block candidates. We define block candidates as

subsegments of a rectangular block mask shape for a dummy segment. We provide several block

candidates for each rectangular shape. We do this by slicing each rectangular shape according to

a user-specified input length (120nm, in all results reported below) into several subsegments that

define block candidates.9 Because block mask cannot realize EOL with small tip-to-tip spacing,

for leftmost (or rightmost) block candidates, we add “EOL margin” between the boundary of

candidates and the signal EOL. The EOL margin is illustrated in Figure 2.9(a).

Figure 2.7 illustrates four block candidates v2,1, v2,2, v2,3, v2,4 for Shape 2. The block

candidates are indexed in ascending (resp. descending) order of x coordinate. The final block

mask layout for Shape 2 is determined by selected block candidates. The height of the shape

is determined by the metal pitch, as shown in Figure 2.7. For the “selective” block approach,

shapes can extend to the non-target tracks, equivalent to doubling the metal pitch. The following

MILP optimally selects block candidates of each rectangular shape, while satisfying block mask

rules.

Figure 2.7: Shapes and block candidates for Shape 2.
9We note that there is a tradeoff between solution quality and runtime depending on the user-specified input length,

which determines fine-grained or coarse-grained block candidate generation. Experimental results for various block
candidate lengths are reported in Section 2.1.4.
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Minimize:
∑

p

mp (2.1)

Subject to: ∑
(i,j)∈Bq,a

(i′,j′)∈Bq,b

vi,j + (1− vi′,j′) < |Bq,a|+ |Bq,b|, ∀q (2.2)

L+
∑

i

(li −
∑

j

ri,j · vi,j) ≥ dmin (2.3)

∑
k∈Kp

∑
i,j

tki,j · (1− vi,j) ≤ sp +mp, ∀p (2.4)

mp ≥ 0, ∀p (2.5)

The objective is to minimize the total timing degradation arising from the final dummy

fill patterns for timing-critical paths. We extract (setup) timing-critical paths using Cadence Tem-

pus Timing Signoff Solution v15.2 [200] (dummy segments and EOL extensions do not worsen

hold, as we do not touch the clock distribution). A path is considered to be timing-critical if its

slack is less than a prescribed threshold for timing-criticality.10 For path p, the timing degra-

dation mp is defined as the delay increase dp (induced by dummy fills that affect path p) that

exceeds the initial timing slack sp, i.e., mp = max(dp − sp, 0).11 In this way, we only count

timing degradation that causes a negative timing slack. The value mp is calculated from the sum

of delay increases along path p, subtracted by the initial timing slack sp.

Constraints for block mask rule violation. Constraint (2.2) prevents block mask rule

violations. Given a set of close-by block candidates from neighboring shapes, we enumerate

conflict sets where selection (removal) of each block candidate in any given conflict set form a

violating block shape. In Constraint (2.2), Bq,a (resp.Bq,b) represents conflict set q, which stores

a (minimal) set of block candidates that cannot be “selected” (resp. “removed”) simultaneously.

More specifically, we define typeA candidates such that the inclusion of the candidates forms

the violating shape, and store the candidates in Bq,a. Similarly, we define typeB candidates such

that the exclusion of the candidates forms the violating shape, and store the candidates in Bq,b.

10We use +200ps as the threshold for timing-criticality in our experiments. The numbers of timing-critical paths
for initial implementations are 8K, 0.9K and 18K for CORTEX M0, AES and JPEG, respectively.

11For example, if sp = 10ps, and dp = 5ps, then mp = 0. If sp = − 10ps, and dp = 5ps, then
mp = 15ps. Constraints (2.4) and (2.5) enforce mp = max(dp − sp, 0). We note that we do not optimize for the
timing degradation within positive slacks. However, our formulation can be easily adapted by designers to preserve a
given amount of positive slack (i.e., timing guardband) by decreasing sp.

24



We create a constraint to forbid each block mask pattern that forms a block mask rule violation.

Figure 2.8 illustrates an example minimum width U-shape block mask rule violation on the

right boundary of v3,1. The figure shows typeA and typeB candidates that define a violating U-

shape, with don’t-care candidates that do not directly contribute to the formation of the U-shape

violation. In this example, we prevent the U-shape rule violation with the following constraint:

v2,1 + v2,2 + (1− v3,1) + v3,2 + v4,2 + v4,3 < 6 (2.6)

In Constraint (2.6), if any candidate in the typeA candidate set (e.g., v2,1, v2,2, v3,2,

v4,2, v4,3) is zero or any candidate in the typeB candidate set (e.g., v3,1) is one, the violating U-

shape does not exist anymore. In this case, the constraint is automatically satisfied. We note that

we only enumerate “minimal” sets of typeA and typeB candidates. For example, the inclusion

of candidates v1,1, v1,2 and v4,1 in addition to the typeA set above (and with the exclusion

of the typeB set) forms an additional violating U-shape. However, this case is forbidden by

Constraint (2.6). Thus, v1,1, v1,2 and v4,1 are don’t-care candidates. In light of this, we find

that for the block mask rules that we have studied, relevant combinations will exist within very

small neighborhoods of any given block candidates. Thus, the complexity of enumeration of

block candidate combinations to determine sets B is in practice linear in the number of block

candidates (shapes).12

Figure 2.8: Illustration of a U-shape block mask rule violation.

Constraints for local minimum metal density. Constraint (2.3) enforces the local min-

imum metal density. We obtain the total signal wire length L from the routed layout. Variable li,j

is the removed dummy segment length if vi,j = 1 for shape i.
∑

i li −
∑

j ri,j · vi,j calculates

the total dummy wire segment length. ri,j is the length of block candidate vi,j . The minimum

metal density is enforced locally within each clip; this is described in Section 2.1.3 below.
12In our experiments, the total runtimes of conflict lists generation for CORTEX M0 and JPEG are 36 and 184

seconds, respectively. The number of segments (shapes) in JPEG is 257K, and the number of shapes in CORTEX M0
is 63K.
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Constraints for timing-critical paths. Constraint (2.4) upper-bounds the timing degra-

dation for timing-critical paths. Variable tki,j is the delay increase for net k caused by the remain-

ing dummy segment if vi,j = 0. We sum up the delay increase of every stage (gate and wire)

on timing-critical path p and force this sum to be smaller than sp + mp. The initial path slack

sp is calculated from an initial design with no dummy segments. For each timing-critical path

p, mp = 0 indicates that the delay increase is not larger than the initial path slack sp and thus

design WNS will not worsen;13 otherwise, mp > 0. Note that we minimize mp for all timing

critical paths p by the objective. Constraint (2.5) limits mp to be a non-negative number. We

also note that Constraint (2.5) is necessary to optimize WNS as well as TNS. If we do not have

such a constraint, the algorithm might keep removing dummy segments that are associated with

“less” timing critical paths instead of focusing on the most timing critical path. For example, let

us suppose that there are two paths with slacks s1 = 10 and s2 = 0. With Constraint (2.5),

we optimize m2 rather than m1 since constraints for m2 is tighter (i.e., the second path is more

critical), and it is not necessary to optimize m1 until the lower bound of m1 becomes negative in

Constraint (2.4). However, if we allow m1 to be negative, the algorithm could trade off m2 for a

negative m1 to minimize the sum of m1 and m2.

Figure 2.9: Cut and block mask co-optimization: (a) block candidates; (b) cut candidates; and
(c) a possible final layout.

13Here, we assume the initial “WNS” is negative. For designs with positive WNS (i.e., worst slack), we can easily
shift the “zero slack” threshold to establish a guardband that preserves the worst slack of the original design. (See
also Footnote 11 above.)

26



MILP Formulation for Cut and Block Mask Co-Optimization

We extend the MILP in Section 2.1.2 by providing cut candidates. Figure 2.9 illustrates

block and cut candidates with one possible final layout after cut and block mask application.

Figures 2.9(a) and (b) show block candidates and cut candidates, respectively. We note that the

leftmost block candidate v1,1 is generated considering a given “EOL margin” to allow block

mask to realize the EOL of signal wire segment. We use 10nm as the EOL margin in our

experiments. To realize the EOL of the signal wire next to the block mask, we must select at

least one cut or block candidate from among the cut and block candidates. Figure 2.9(c) shows

the final layout when v1,3 and c1,2 are selected as the final block and cut candidate solutions,

respectively.14

We now formulate the MILP problem for the cut and block mask co-optimization. Ta-

ble 2.2 shows notations that we use in our formulation. Analogous to the block mask MILP in

Section 2.1.2, the objective is to minimize the total timing degradation arising from EOL ex-

tensions and final dummy fill patterns for timing-critical paths. sp and mp are calculated in the

same way as in Section 2.1.2; however, for the delay increase dp, we now consider the impact

from both the EOL extensions as well as the dummy fills that affect path p.

We now describe constraints in our cut and block mask co-optimization with the excep-

tion of the minimum metal density and timing constraints since these two constraints are the

same as in the block mask optimization in Section 2.1.2.

Constraints for LELE cuts. In the case of non-selective LELE cuts, Constraint (2.8)

enforces cut uniqueness. Binary variable cfi,j indicates whether the cut candidate j for shape i

on cut mask f is selected, as shown in Constraint (2.8). For non-selective LELE, we assume that

two cut masks are available, i.e., f = 1, 2. For the selective cut approach, we assume only one

cut mask is available, i.e., f = 1.

Constraints for cut and block mask rule violation. Constraints (2.10) and (2.11)

prevent cut and block mask rule violations. Constraint (2.10) is the same as Constraint (2.2) in

block mask optimization. Similar to Constraint (2.10) for block candidates, we enumerate sets

of conflicting cut candidates and prevent them from co-existing with Constraint (2.11).

Constraints for EOL realization. Constraint (2.9) enforces EOL realization. We use

index i′ to indicate a shape which is the only existing shape between any two horizontally adja-

cent signal segments. In other words, shape i′ is a dummy shape that connects two neighboring
14We note that a block candidate cannot replace a cut candidate due to the larger EOL margin for block mask

shapes. I.e., cut (resp. block) candidates cannot be replaced by block (resp. cut) candidates even though they might
share their locations.
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signal segments, and must be split by cut of block to realize the EOL of the two signal segments.

Thus, we enforce that at least one cut or block exists for shape i′.

Minimize:
∑

p

mp (2.7)

Subject to: ∑
f

cfi,j = ci,jl
, ∀i, j (2.8)

∑
j

vi′,j +
∑

j

ci′,j≥1, ∀i′ (2.9)

∑
(i,j)∈Bq,a

(i′,j′)∈Bq,b

vi,j + (1− vi′,j′) < |Bq,a|+ |Bq,b|, ∀q (2.10)

∑
(i,j)∈Cq,a

(i′,j′)∈Cq,b

ci,j + (1− ci′,j′) < |Cq,a|+ |Cq,b|, ∀q (2.11)

ei,xl(xr) ≥ vi,j , if jl(jr) = x, ∀i (2.12)

ei,xl(xr) ≥ ci,j , if jl(jr) = x, ∀i (2.13)

ei,xl(xr) ≤ vi,j + ci,j′

if jl(jr) = x, j′l(j
′
r) = x, ∀i (2.14)

ei,xl
−

∑
x′<x

ei,x′
l
− e′i,xl

≤ 0,

ei,xr −
∑
x′>x

ei,x′
r
− e′i,xr ≤ 0, ∀i, ∀x (2.15)

e′i,xl
≤ ei,xl

, e′i,xr ≤ ei,xr , ∀i (2.16)∑
xl

e′i,xl
≤ 1,

∑
xr

e′i,xr ≤ 1, ∀i (2.17)

L+
∑

i

(li −
∑

j

ri,j · vi,j) ≥ dmin (2.18)

∑
k∈Kp

(
∑
i,j

tki,j · (1− vi,j) +
∑
i,xl

t′
k
i,xl
· e′i,xl

+
∑
i,xr

t′
k
i,xr
· e′i,xr

) ≤ sp +mp, ∀p (2.19)

mp ≥ 0, ∀p (2.20)
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Constraints for EOL definition. Constraints (2.12) - (2.14) find the leftmost (resp.

rightmost) edge for shape i from a selected cut or block candidate, since this candidate deter-

mines EOL for the signal wire segment on its left (resp. right). Binary variable ei,xl
(resp. ei,xr )

indicates whether location x is the left (resp. right) edge of any selected cut or block candidates

for shape i. Constraints (2.15) - (2.17) describe the methodology to find the leftmost (resp.

rightmost) selected cut or block candidate. Constraints (2.15) - (2.16) ensure that e′i,xl(xr) = 1

if ei,xl(xr) = 1 and x is the location of leftmost (rightmost) edge for shape i. Otherwise,

e′i,xl(xr) = 0 is forced by checking whether e variables that are associated with x′ are equal

to one, where x′ < x (x′ > x) for e′i,xl
(e′i,xr

) in Constraint (2.15). Figure 2.10 demonstrates

variable e′. In the figure, we assume that c1,1 = 1 and v1,3 = 1. e variables are computed

in Constraints (2.21) by Constraints (2.12) - (2.14). Constraints (2.22) - (2.24) correspond to

Constraint (2.15). Constraint (2.25) corresponds to Constraint (2.17). As a result, e′1,2l
becomes

equal to one, which indicates that location x = 2 is the EOL, as shown in Figure 2.10.

Figure 2.10: Illustration of binary variable e′: cut candidate c1,1 and block candidate v1,3 are
selected.

e1,1l
= 0; e1,2l

= 1; e1,3l
= 1 (2.21)

e1,1l
− e′1,1l

≤ 0 (2.22)

e1,2l
− e1,1l

− e′1,2l
≤ 0 (2.23)

e1,3l
− e1,1l

− e1,2l
− e′1,3l

≤ 0 (2.24)

e′1,1l
+ e′1,2l

+ e′1,3l
≤ 1 (2.25)

Timing Model for Dummy Wire Segments

Dummy wire segments cause net capacitance increase (∆capacitance), and hence gate

and wire delay increase. This timing impact of dummy wire segments should be minimized

so that the performance and robustness of designs with dummy wire segments can be consis-

tent with (or, better than) designers’ expectations at signoff. We now describe how we model
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∆capacitance, along with resulting changes to gate and wire delays, to capture timing impact of

dummy wire segments in our optimization flow.

Capacitance model. To model the timing impact of floating dummy wire segments,

we first characterize capacitance increase of signal nets due to neighboring dummy segments.

Fill-aware capacitance extraction must comprehend various situations (e.g., upper / lower layers,

types of neighboring wire segments of the dummy / signal wires) [70][110]. However, to obtain

linear expressions that we can incorporate into our MILP formulation, we study the impact

of a dummy wire segment on capacitance of a signal wire in five simplified situations (cases)

according to the distance between a signal wire and a dummy segment: (i) one track away (the

dummy segment is on a neighboring track of the signal segment); (ii) two tracks away; (iii)

three tracks away; (iv) four tracks away; and (v) more than four tracks away. For each case, we

experiment with different parallel run lengths of the dummy wire segment to a signal wire, and

measure the capacitance of the signal wire to extract the coefficients. We use Cadence Innovus

Implementation System v15.2 [198] for parasitic RC extraction with Cadence Quantus Extraction

Solution v15.2 [199] techfiles provided by our collaborators at a leading technology consortium.

Table 2.3 shows normalized capacitance increase per unit length for (grounded) EOL extension,

and cases (i) - (iv) for (floating) dummy segments from Section 2.1.2.

Table 2.3: Normalized capacitance increase for (grounded) EOL extension and (floating)
dummy fill, using a Cadence Innovus-based extraction flow provided by our collaborators at a

leading technology consortium.

Case EOL (i) (ii) (iii) (iv)

∆cap 1270 342 53 5 1

y = 22.478x + 0.0454
R² = 0.9994

0.130

0.135

0.140

0.145

0.150

0.155

0.0038 0.004 0.0042 0.0044 0.0046 0.0048 0.005

G
at
e 
de

la
y 
(n
s)

Net capacitance (pF)

Figure 2.11: Gate delay vs. net capacitance for a specific gate instance.
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Gate and wire delay model. We use linear gate and wire delay models. The linear

delay models are fast and easy to incorporate into an MILP formulation. Also, for the very

small ∆capacitance values caused by dummy wire segments, linear delay modeling shows good

accuracy. We use Cadence Tempus Timing Signoff Solution v15.2 [200] to extract delays for

each gate and net given extracted SPEF files of (i) layout design with dummy wire segments for

only clock nets, and (ii) layout design with dummy wire segments for all nets. We then use the

linear delay model to extract coefficients. Timing coefficient extraction is performed for each

gate instance and driving net.15 Figure 2.11 shows an example of extracted coefficients (i.e.,

determining a linear equation for gate delay vs. capacitance) of a specific gate instance.

Validation of our timing model. We validate our timing model by comparing with

timing results obtained from Cadence Tempus Timing Signoff Solution v15.2 [200]. We report

stage and timing path delays calculated based on our model (and, which are used in our ILP

formulation) and compare them with timing results from Tempus. We observe that estimated

values and golden values from Tempus are quite similar, as shown in Figure 2.12. The maximum

errors are -4ps and -23ps (a negative value means optimistic) for stage delay and path delay,

respectively. To compensate the errors, we add timing margin of 50ps in our ILP formulation

for all studies reported below.

2.1.3 Overall Flow

We now describe the overall flow of our optimizations, including conflict list enumera-

tion and distributed optimization.

Conflict List Enumeration

Minimum spacing violation. Algorithm 1 describes the enumeration for minimum

spacing constraint. For each pair of block candidates (vi,j ,vi′,j′) within minimum spacing, we

add the candidate pair to Bq,a (Line 3). They are typeA candidates, where the inclusion of each

candidate (on the block mask) results in a violation (see Section 2.1.2). We then enumerate all

block candidates that are located between vi,j and vi′,j′ and add them to Bq,b (Lines 4-6). These

candidates are typeB candidates, where the exclusion of each candidate ensures that the candi-
15We note that for different instances of the same library cell (master), the coefficients are not the same since the

instances’ output nets have different load capacitances according to the circuit structure. We do not separately model
slew (transition time) changes that are due to the ∆capacitance changes. This is because (i) we already achieve
high accuracy by modeling each gate and net separately, and (ii) fill-induced slew changes are very small, since the
associated capacitance and delay changes are small. Our implementation takes 20 minutes to extract coefficients for
every gate in the JPEG testcase, using a single thread.
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Figure 2.12: Comparison of timing results from Tempus (Golden) and our estimation
(Estimated). (a) Path delay and (b) stage delay comparisons. The maximum errors are -4ps and

-23ps for stage delay and path delay, respectively.

Algorithm 1 Enumeration for minimum spacing constraint.
1: for each block candidate pair (vi,j , vi′,j′ ) ∈ V do
2: if S(vi,j , vi′,j′) < Smin then
3: Bq,a ← {vi,j , vi,j};
4: for each block candidate vk,l located between vi,j and vi′,j′ do
5: Bq,b ← Bq,b ∪ {vk,l};
6: end for
7: q ← q + 1;
8: end if
9: end for

date pair (vi,j ,vi′,j′) is separated. Figure 2.13 shows horizontal and vertical minimum spacing

violations. For the (v1,1,v4,1) pair, let us assume that the vertical spacing between v1,1 and v4,1 is

less than the minimum spacing. Then, Bq,a = {v1,1, v4,1}, and Bq,b = {v2,1, v3,1}, since v2,1

and v3,1 are located between v1,1 and v4,1. As an another example, for the (v1,1,v1,3) pair, let

us assume that the horizontal spacing between v1,1 and v1,3 is less than the minimum spacing.

Then, Bq,a = {v1,1, v1,3}, and Bq,b = {v1,2}.
Other design rules. The enumeration of conflict lists for other rules can be applied

similarly by collecting all typeA and typeB candidates.

Distributed Optimization

The most critical limitation of the MILP-based approach in practice is runtime. To

achieve a scalable approach, we adopt the distributable optimization approach that has been

previously proposed by Han et al. in [80].
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Figure 2.13: Illustration of conflict list enumeration for minimum spacing constraint, showing
horizontally and vertically conflicting pairs.

We first partition the layout into small clips and optimize in four iterations. In each

iteration, we select clips that are not adjacent to each other and optimize the clips in parallel.

For example, we optimize all clips in the following sequence in our four iterations: (i) clips in

odd rows and odd columns in the first iteration; (ii) clips in odd rows and even columns in the

second iteration; (iii) clips in even rows and odd columns in the third iteration; and (iv) clips in

even rows and even columns in the fourth iteration. With this approach, as shown in Figure 2.14,

the target clips (yellow) do not share their boundaries with each other. Thus, each target clip

can be optimized without creating any interference between clips. After each iteration, we save

block/cut solutions for optimized clips. The solutions are used in the following iterations as

boundary conditions. In our implementation, we set the clip size to be 8×8µm2 and the

boundary width to be 0.6µm. The local minimum metal density constraint is enforced within

each clip. Note that with this approach, speedup is effectively linear in compute resources. We

report the results of our scalability test in Section 2.1.4.

(a) First iteration (b) Second iteration

Target clip for the current optimization
Untouched clip
Optimized clip in previous iterations

(c) Third iteration (d) Fourth iteration
Figure 2.14: Distributed optimization: (a) - (d) respectively illustrate the first, second, third and

fourth iteration in our approach. Since target clips (yellow) for an iteration do not share their
boundaries with each other, each target is independently optimizable.
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Overall Optimization Flow

Figure 2.15 shows our overall optimization flow. We start from a routed design and

candidate block (and cut) shapes that cover dummy segments. We then optimize in four iterations

per metal layer. In each iteration, we optimize small clips that are independently optimizable in

parallel. In an iteration, we (i) generate block (and cut) candidates for each shape, (ii) generate

sets of conflict candidates with our block (and cut) mask rule checker, and (iii) formulate and

solve our MILP with pre-characterized timing coefficients and local minimum metal density

constraints. After four iterations, we obtain the optimized block/cut mask layout and perform

timing/power/capacitance evaluations with Cadence Innovus Implementation System v15.2 [198]

and Cadence Tempus Timing Signoff Solution v15.2 [200].

Routed layout

Optimization 
for each clip

Solve multiple 
clips in parallel

Optimized layout

Distributed Optimization

Block/cut mask optimization (for a layer)

List block (and cut) candidates

Generate block (and cut) 
conflict list

- Timing slacks
- Density constraints

ILP solver
(CPLEX)

ILP
formulation

Four iterations

Figure 2.15: Overall optimization flow.

2.1.4 Experimental Setup and Results

Experimental Setup

We implement our optimizations in C++ with OpenAccess 2.2.6 [217] to support

LEF/DEF [209], and with CPLEX 12.5.1 [203] as our MILP solver.16 We evaluate our approach

using two design blocks (AES and JPEG) from OpenCores [212], and an Arm CORTEX M0 Core
16We use one thread for each CPLEX instance. Based on our experiments, solving multiple MILP instances in

a serial fashion with CPLEX parallel optimization takes longer time than solving multiple MILP instances together
with a single thread for each instance. For JPEG design with the same total 24 threads, the runtime with CPLEX
parallel optimization is 9010 sec, but the runtime with our optimization method is 4146 sec.
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without memories. We synthesize the designs with Synopsys Design Compiler vH-2013.03-SP3

[218] from RTL netlists and then perform placement and routing with Cadence Innovus Imple-

mentation System v15.2 [198] using an IMEC N7 (i.e., 7nm foundry node) library [204]. All

experiments are performed with 24 threads on a 2.6GHz Intel Xeon dual-CPU server. (As noted

above, runtimes will generally see linear speedup with added compute resources.)

Design of Experiments

We perform three types of experiments: ExptA studies the tradeoff between solution

quality and runtime. ExptB studies 2D block mask optimization. And ExptC studies cut and

block mask co-optimization. In ExptA, we apply our optimizer to layouts with various numbers

of dummy segments and clip sizes to show the tradeoff between solution quality and runtime.

(We use the results to determine the best setting for input parameters.) For ExptB on 2D block

mask optimization, we use a cut mask-aware post-route layout with EOL extension already de-

fined by a commercial tool. For ExptC on cut and block co-optimization, we perform cut and

block optimization to define EOL and dummy removal using our software. We describe details

of our design of experiments as follows.17

• ExptA-1: Sensitivity study on the effect of block candidates. We trade off dummy removal

rate and runtime for different block candidate lengths. We vary the block candidate length

from 40nm (1.2X minimum metal pitch) to 160nm (5X minimum metal pitch) in steps of

20nm.

• ExptA-2: Sensitivity study on the effect of clip size. We trade off dummy removal rate

and runtime for different clip sizes. We vary the clip sizes from 2µm × 2µm to 10µm

× 10µm. In both experiments A-1 and A-2, we use non-timing-aware (i.e., “timing-

oblivious”) optimization, which is achieved by simply maximizing the removal of dummy

fill.18

17We note that it is hard to make an apples-to-apples comparison between our work and previous works since
the objectives of our work and previous works are fundamentally different. The algorithms proposed in previous
works are dedicated to solving the problem formulations posed in those works; they are difficult to extend and adapt
to handle our complex design rules. For example, the work [195] simply minimizes the number of edges of each
polygon of block mask patterns, and is not based on explicit design rules. Additionally, timing constraints are not
considered. Similarly, the work [196] applies very limited and simple design rules, which gives a very different
context from the detailed rules (obtained from our collaborators at a large industry consortium) that we use in our
work.

18Specifically, the non-timing-aware objective is to minimize
P

i (li −
P

j ri,j · vi,j), with notations as defined
in Table 2.2. In other words, the objective is to minimize ∆area of final block mask shapes, compared to a block
mask layout covering all dummy segments. Note that we disable timing-awareness by removing Constraint (2.4) in
Section 2.1.2.
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• ExptB-1: Comparison of timing-aware and non-timing-aware optimizations.

• ExptB-2: Comparison of the performance impact of 193i and 193d block mask rules

(summarized in Table 2.1). We use a loose 20% minimum metal density constraint to

demonstrate the upper bound of performance impact from patterning technology.

• ExptB-3: Comparison of the performance difference with selective and non-selective

block approaches. We again use a loose 20% minimum metal density constraint to demon-

strate the upper bound of performance impact from patterning technology.

• ExptB-4: Comparison of the impact of metal density constraints. We study 20%, 30%

and 40% minimum metal densities.19

• ExptC-1: Comparison of cut and block mask co-optimization to a sequential cut and

block mask optimization. A cut mask only optimization is enabled without generating

block shape candidates.

• ExptC-2: Comparison of selective cut and LELE cut approach.

The testcases are summarized in Table 2.4. Table 2.5 summarizes parameter settings for

each type of experiment.

Table 2.4: Summary of testcases.

Expt type Design #Inst. #Nets

A, B CORTEX M0 11194 11457

B
AES 10010 10066

JPEG 52753 52778

C

CORTEX M0 9884 9951

AES 13381 13656

JPEG 54012 54155

19Without block mask, a SADP/SAQP-based uni-directional design implies ∼50% metal density, assuming metal
width equal to spacing.
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Table 2.5: Parameter settings for the experiments.

ExptA

Expt
Timing/

Layers
Clip Block candidate

non-timing width (µm) length (nm)

A-1 non-timing M3 2 60 - 160

A-2 non-timing M3 2 - 10 120

Default setup

design = CORTEX M0

density LB = 0%

non-selective block mask

ExptB

Expt
Timing/ 193i/ selective/ Density

non-timing 193d non-selective LB (%)

B-1 both 193i selective 40

B-2 timing both selective 20

B-3 timing 193i both 20

B-4 timing 193i selective 20, 30, 40

Default setup

design = CORTEX M0, AES, JPEG

layers = M2, M3, M4, M5

clip size = 4µm × 4µm

block candidate length = 120nm

ExptC

Expt
co-optimization/ selective/

sequential LELE cut

C-1 both selective cut

C-2 co-optimization both

Default setup

design = CORTEX M0, AES, JPEG

layers = M2, M3, M4, M5

clip size = 4µm × 4µm

block candidate length = 120nm

density LB = 20%

193i mask, selective block mask

Experimental Results

Table 2.7 shows the experimental results of ExptB and ExptC. For ExptB, the Timing

Impact Recovery column shows timing improvements. The timing impact recovery is measured
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in ns against a design with no dummy segments removed (worst case). The percentage shown

indicates how closely our optimizations can approach a design that assumes all dummy segments

are removed (best, or ideal, case).20 The best and worst cases serve as extreme, baseline data

points for ExptB. Table 2.6 shows WNS, total negative slack (TNS) and switching power (Psw)

of the best and worst cases, At the worst case, WNS (resp. TNS) degradation is up to 0.114ns

(resp. 47.853ns) for testcase JPEG. The switching power is increased by up to 3.4%. Dummy

removal rate is calculated as the removed dummy segment length over the sum of removed and

remaining dummy segment length.

Table 2.6: Timing and switching power of best and worst cases for ExptA. The units are ns, ns
and µW for WNS, TNS and Psw, respectively.

Design
Best case Worst case

WNS TNS Psw WNS TNS Psw

CORTEX M0 -0.030 -1.737 4.06 -0.092 -23.86 4.17

AES -0.037 -1.417 10.77 -0.069 -5.827 11.08

JPEG -0.047 -9.583 39.18 -0.161 -57.436 40.53

ExptA-1: Sensitivity study on the effect of block candidates. Figure 2.16(a) shows

dummy removal rate and runtime results for various block candidate lengths. In the range of

60nm to 160nm, we see that the block candidate length does not significantly affect the dummy

removal rate. However, the runtime increases proportionally to the block candidate length.

ExptA-2: Sensitivity study on the effect of clip size. Figure 2.16(b) shows dummy

removal rate and runtime results for various clip sizes. In the range of 2µm to 10µm, we see

that the clip size does not significantly affect the dummy removal rate. However, the runtime

increases as the clip size increases.

ExptB-1: Comparison of timing-aware and non-timing-aware optimizations. We

observe that non-timing-aware optimization results in higher dummy removal rates than timing-

aware. However, timing-aware optimizations shows better timing impact recovery. Averaged

over all three designs, timing-aware optimization recovers 57% (resp. 69%) of ∆WNS (resp.

∆TNS), compared to 32% (resp. 35%) recovered by non-timing-aware optimization. The results

demonstrate that our timing-aware optimization helps recover timing with less dummy removal.

We also see that the runtime of timing-aware optimization is 76% smaller on average than non-

timing-aware.
20For example, if WNS is 0.000ns (resp. -0.100ns) for the best (resp. worst) case, and we achieve -0.030ns in

WNS after block mask optimization, we recover 0.070ns in WNS, with a recovery percentage of 70%.
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Figure 2.16: Sensitivity study results: sensitivity of dummy removal rate to (a) block candidate

length and (b) clip size.

ExptB-2: Comparison of 193i and 193d selective block mask rules. This experiment

shows the impact of patterning options. On average, application of 193i selective block mask

recovers 75% (resp. 81%) of ∆WNS (resp. ∆TNS), while application of 193d selective block

mask recovers 36% (resp. 48%) of ∆WNS (resp. ∆TNS). For switching power, application of

193i selective block mask recovers 53%, compared to 27% for 193d, on average. For dummy

removal rate, 193i selective block mask improves by up to 43% over 193d (JPEG, metal layer

M4, 62% vs. 19%), with an average improvement of 21%.

ExptB-3: Comparison of selective and non-selective approaches. The selective block

mask approach affords better control of dummy removal, since the minimum width of a block

mask shape for a dummy segment is twice as large in the selective block mask case as in the

non-selective block mask case. This results in much greater overlay margin in the selective

block mask case. The results show that the selective block mask approach recovers by up to

84% and on average 75% of ∆WNS, while the non-selective block mask approach recovers up

to 39% and 25% on average of ∆WNS. For ∆TNS, the selective block mask approach recovers

up to 86%, and 81% on average; the non-selective block mask approach recovers up to 42% and

33% on average. Regarding ∆Psw, the average recovery rates are 53% and 18% for selective
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and non-selective mask approaches, respectively. The timing and power benefits of the selective

block approach come from high dummy removal rates; we see that the dummy removal rates are

larger for the selective block approach in all designs.

Table 2.7: Overall experimental results. Values in parentheses denote percentage improvements
(reductions) with respect to the worst case as described in Table 2.6. Note that ExptA and

ExptB use cut-aware (from commercial tool) and cut-unaware post-route layout, respectively.

Experiment Design Option
Timing Impact Recovery (ns)

∆ Psw (µW )
Dummy removal rate (%)

Runtime (s)
∆WNS ∆TNS M2 M3 M4 M5

B-1

CORTEX M0
Timing-aware 0.035 (56%) 17.307 (78%) -0.041 (36%) 24 32 31 22 823

Non-timing-aware 0.022 (35%) 8.945 (40%) -0.039 (34%) 59 36 33 27 4451

AES
Timing-aware 0.014 (43%) 2.516 (57%) -0.129 (42%) 30 40 38 29 716

Non-timing-aware 0.010 (31%) 1.569 (35%) -0.116 (37%) 60 43 41 30 4231

JPEG
Timing-aware 0.080 (70%) 34.194 (71%) -0.458 (33%) 28 29 26 15 4150

Non-timing-aware 0.033 (28%) 14.401 (30%) -0.372 (27%) 56 29 27 23 11773

B-2

CORTEX M0
193i 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956

193d 0.035 (56%) 13.097 (59%) -0.034 (30%) 6 23 31 25 1963

AES
193i 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643

193d 0.008 (25%) 1.755 (39%) -0.095 (30%) 6 21 30 42 1307

JPEG
193i 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146

193d 0.030 (26%) 21.143 (44%) -0.247 (18%) 4 16 19 10 6751

B-3

CORTEX M0
Selective 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956

Non-selective 0.024 (38%) 9.280 (41%) -0.023 (20%) 12 17 21 14 2992

AES
Selective 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643

Non-selective 0.007 (21%) 1.414 (32%) -0.076 (24%) 12 21 26 29 1319

JPEG
Selective 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146

Non-selective 0.018 (15%) 11.390 (23%) -0.121 (8%) 7 8 10 5 6347

B-4

CORTEX M0

Density LB 20% 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956

Density LB 30% 0.041 (66%) 17.577 (79%) -0.054 (48%) 24 37 41 28 1005

Density LB 40% 0.035 (56%) 17.307 (78%) -0.041 (36%) 24 32 31 22 823

AES

Density LB 20% 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643

Density LB 30% 0.025 (78%) 3.487 (79%) -0.169 (55%) 31 46 51 49 748

Density LB 40% 0.014 (43%) 2.516 (57%) -0.129 (42%) 30 40 38 29 716

JPEG

Density LB 20% 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146

Density LB 30% 0.092 (80%) 39.868 (83%) -0.702 (52%) 22 56 51 27 4375

Density LB 40% 0.080 (70%) 34.194 (71%) -0.458 (33%) 28 29 26 15 4150

Experiment Design Option
Timing (ns)

Psw (µW )
Removal rate (%)

Runtime (s)
WNS TNS M2 M3 M4 M5

C-1
CORTEX M0

Co-optimization -0.139 -39.844 3.537 29 36 30 24 1947

Sequential -0.284 -136.515 3.815 12 21 18 20 1748

AES

Co-optimization -0.107 -21.567 18.685 29 37 35 24 1691

Sequential -0.132 -34.452 20.103 13 12 17 21 1460

JPEG

Co-optimization -0.014 -0.071 74.609 20 18 14 9 8015

Sequential -0.042 -0.404 70.772 9 12 12 11 8972

C-2
CORTEX M0

LELE cut -0.139 -39.844 3.537 29 36 30 24 1947

Selective cut -0.103 -20.482 3.475 35 37 28 20 1180

AES

LELE cut -0.107 -21.567 18.685 29 37 35 24 1691

Selective cut -0.08 -17.515 18.341 32 37 33 22 1165

JPEG

LELE cut -0.014 -0.071 74.609 20 18 14 9 8015

Selective cut -0.067 -1.293 74.669 18 18 10 7 5730
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ExptB-4: Comparison of different metal density constraints. As metal density lower

bounds increase, dummy segment removal becomes more restricted. We observe that the dummy

removal rates drop by up to 36% (JPEG, M4, 51% vs. 26%) with higher density constraints.

With respect to timing and power, our experimental results show the expected tradeoff between

timing/power and density constraints. We see that with higher density constraints, as dummy

removal is more restricted, the final timing and power outcomes worsen.21 The average percent-

age recovery of ∆WNS is 75% (resp. 75%, 57%) for a density lower bound of 20% (resp. 30%,

40%). The average percentage recovery of ∆TNS is 81% (resp. 81%, 69%) for a density lower

bound of 20% (resp. 30%, 40%). And, the recovery of Psw impact is 53% (resp. 52%, 38%)

on average for a density constraint of 20% (resp. 30%, 40%). For CORTEX M0, we see that the

dummy removal rate for M4 and M5 at 20% density is slightly lower than at 30% density. This

is because different density constraints lead to different solutions for each iteration (clip), and

our timing-aware optimization does not target maximum dummy removal rate.

C-1: Comparison of co-optimization and sequential optimization. We observe that

WNS from co-optimization shows up to 0.146ns improvement compared to WNS from se-

quential optimization. For TNS, we observe 96.671ns (71%) improvement for CORTEX M0,

12.885ns (37%) for AES, and 0.333ns (82%) for JPEG. We also achieve improved (reduced)

switching power with our co-optimization. This is because in the sequential approach, the

EOL of all signal wire segments must be defined using only cut masks, which increases EOL

extensions. On the other hand, the co-optimization approach has more flexibility with cut and

block masks for the EOL realization of signal wire segments. Thus, better timing and power are

achieved with smaller EOL extensions. For dummy removal rate, we also observe higher re-

moval rate for the co-optimization, indicating that our co-optimization enables a broader solution

space than the sequential cut and block approach. We emphasize to the reader that the “removal

rate” for ExptC is different from “dummy removal rate” in ExptB. Removal rate is calculated

as the quotient of (removed dummy segment length) divided by (sum of EOL extension length,

removed dummy segment length, and remaining dummy segment length), since EOL extension

is generated in ExptB.

C-2: Comparison of selective cut approach and LELE cuts. Our results indicate that

the selective cut approach achieves up to 36ps better WNS compared to the LELE cut approach

for CORTEX M0 and AES. This is because selective cuts can be merged when they are aligned
21We see that for CORTEX M0, this trend is reversed between the 20% and 30% density lower bounds. The reason

might be that the 20% and 30% density lower bounds are already too loose for this design, such that the lower bounds
do not constrain dummy removal. Similarly, we do not see much difference in timing and power for the AES design.
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on non-adjacent tracks that are adjacent in the given color (e.g., cuts on first and third tracks)

although signal segments exist in between, while LELE cuts in the same color will violate the

minimum spacing rule. However, for JPEG, the LELE cut approach shows better WNS. We

believe that the results can be highly dependent on the routing pattern (e.g., if we have more

alignment opportunity on neighboring tracks, LELE could align more cuts with the same color

cut). Therefore, it is very important for the router to understand the patterning technology for

the cut. Power and TNS follow the trend of WNS.

Figure 2.17: Layouts of M4 layer before and after dummy fill removal: (a) initial layout with
dummy fill; (b) layout covered by the selective block mask (red); (c) layout covered by the

selective block mask (blue); and (d) layout after timing-aware dummy fill removal with
optimized selective block masks.

2.1.5 Conclusion

In this section, we first present a scalable MILP-based optimization of 2D block masks

that considers block mask rules, minimum metal density constraints, and timing impact of

dummy fills. We further propose an improved timing impact model for use in our MILP for-

mulation. A distributed optimization flow enables application of the MILP-based optimization

to large design layouts. We evaluate our approach across timing-awareness, different pattern-

ing technologies, and different minimum metal density constraints. Our study shows up to 84%

∆WNS recovery and 85% ∆TNS recovery, and up to 56% ∆switching power recovery, along

with up to 62% dummy removal rate. We believe that our enablement of a timing-aware opti-

mization shows promising product-level benefits from use of 2D block masks, and furthermore

sheds light on the merits of various block mask optimization objectives. We have furthermore

studied the co-optimization of cut and block masks. Our cut and block co-optimization opens up

a broader solution space, with more flexibility in EOL realization and attendant design quality

benefits.
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2.2 Scalable Detailed Placement Legalization

for Complex Sub-14nm Constraints

Continued technology scaling to the foundry 10nm node (42nm minimum metal pitch,

36nm fin pitch) and below leads to more constraints in physical implementation. Not only do

new metal-layer (back end of line, or BEOL) ground rules arise from multi-patterning tech-

niques, but rules for device layers (front end of line, or FEOL) also become considerably more

complex and restricted. For example, at the foundry 10nm node (henceforth referred to as N10),

there are minimum width and area constraints for implant regions, as well as notch and jog width

constraints for oxide diffusion (OD) regions. In older technology nodes, such layer rules were

fairly benign: while of concern to the library cell designer, once the library cells were correctly

designed, design rule violations (DRVs) could not occur during placement due to the correctness

by construction of any non-overlapping cell placement.

Unfortunately, correctness by construction no longer holds for detailed placement at

N10 and below. Cell sizes and minimum metal pitches have continued shrinking to stay on

the Moore’s Law density curve. However, patterning resolution in device (FEOL) layers has

not kept pace due to challenges in device definition (e.g., ion implant) or lithographic variation

(e.g., corner rounding). Thus, placing several ‘legal’ standard-cell layouts next to each other

may cause violations of FEOL layer rules such as minimum implant width or area [103] rules.

Such violations could in theory be prevented with larger cell area budgets (similar in spirit to

how BEOL colorability, especially on the M1 layer, can be preserved) that permit correct-by-

construction (or, more precisely, “composable-by-construction”) cell layout styles. However,

this runs counter to a core purpose of shrinking to the next node, and reduces the return on

investment from enabling that node. Our present work proposes a new, final phase of detailed

cell placement that can potentially maintain placement legality in the face of new N10 FEOL

rules – without loss of density, routability or performance metrics.

2.2.1 N10 FEOL and Cell Placement Constraints

Figure 2.18 illustrates the layout of an inverter cell in the N10 node. The figure shows

two fins each for PMOS and NMOS.22 Source nodes of PMOS and NMOS are connected to

M2 power/ground rails with M1. The input A is connected to the PMOS and NMOS gates

using middle-of-line (MOL), a complementary metal layer below M1 that is used for intra-cell
22A more typical library in N10 might have 9-track (M2 tracks) cell height, and three fins each for PMOS and

NMOS, with a gear ratio of M2:fin pitch anywhere from 7:6 to 4:3.
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routing. The output Y is connected to the drain nodes of PMOS and NMOS. The FEOL layers

which affect legal placement (i.e., in the context of other cells’ placements) include implant

layer, OD layer and poly, as follows.

• Implant layers, which indicate regions for ion implantation, decide the threshold (Vth) of

transistors. Regions of the implant layer are typically aligned to the boundaries of standard

cells.

• Oxide diffusion (OD) defines the active region of transistors.

• Dummy poly gates are inserted at the (vertical) standard cell boundaries to avoid edge

device variability.

M2 Power/ground
Cell boundary, implant region

Oxide diffusion (OD)

Poly

M1

Fin

Middle of line
A Y

Figure 2.18: Illustration of inverter cell layout in N10 node.

Minimum implant width (IW) constraints. Minimum implant width (IW) constraints

induce placement illegalities due to both inter- and intra-row IW violations, as shown in Fig-

ure 2.19(a). Below, we refer to the inter-row IW violation as being of type IW1. We refer to the

intra-row IW violation as being of type IW2. An example of IW1 is shown in the figure, where

two same-Vth cells are misaligned vertically and thus result in a narrow, “staircase” implant layer

shape. IW2 occurs when a narrow cell is sandwiched between different-Vth cells, which results

in a narrow implant region. Interestingly, the IW rules cause interactions between placement

and sizing optimizations (e.g., Vth-swapping) that compromise the notion of, e.g., “post-route

leakage optimization”. This interaction has been recently studied in [103].

Minimum OD jog length (OW) constraints. Standard cells can have different oxide

diffusion (OD) region heights according to functionality, drive strength, etc. When cells with

different OD heights abut, OD jogs can result as shown in Figure 2.19(b). This is forbidden

in N10 and below due to lithographic corner rounding and the consequent device performance

variability, e.g., under misalignment. In N10, a minimum OD jog length rule is violated if the jog
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length is less than a given minimum value. Introducing sufficient spacing between the violating

cells can cure the OD jog violation.

H HL

H L

L

H

H

IW2

IW1
(a) (b)

OD

Cell boundary

Figure 2.19: (a) Examples of minimum implant width violations [209]. (b) The design rule for
OD jogs.

Cell boundary
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(b)
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Figure 2.20: (a) Drain-drain abutment violation with an example standard cell layout. (b) Use
of dummy poly gates in the library design style can avoid DDA violation in a

correct-by-construction manner.

Drain-drain abutment (DDA) constraints. Dummy poly gates create extra dummy

transistors connected to logic transistors within standard cells. The dummy transistors can induce

leakage power and logic failure if they are not fully turned off. Hence, gate and source nodes of

dummy transistors must be tied off to power/ground rails; in particular, if two drain nodes are

abutted, an extra dummy poly gate is needed to create an additional source node to be tied up

with power/ground rails. The recent work of Du and Wong [49] studies cell instance flipping as

a way of mitigating this issue in detailed placement. Figure 2.20(a) depicts the DDA problem.
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The leftmost diagram shows an example inverter layout, and the middle and right diagrams

respectively show DDA and no-DDA cases. To avoid the DDA problem, we can consider two

approaches [2]: (i) a smart detailed placement with comprehension of DDA; and (ii) standard

cells with embedded dummy poly gates as shown in Figure 2.20(b). With approach (ii), the width

overhead for each cell is one poly pitch. (We study the area-DRV tradeoff between approaches

(i) and (ii) in Section 2.2.4 below.)

This Section

As noted above, [103] and [49] have respectively made initial studies of IW- and DDA-

induced placement issues. However, to our knowledge, there is no existing work that addresses

all the issues above simultaneously in detailed placement. Popular techniques used for conven-

tional placement legalization, including graph-based, dynamic programming-based, etc. meth-

ods, appear ill-suited to handling of complex FEOL layer rules at N10 and below. For example,

previous techniques have focused on removing overlaps between cells while maintaining the

ordering of cells within a row, while minimizing half-perimeter wirelength or placement pertur-

bation. Such previous works are largely single-row-based, and are applied row by row. Thus,

they do not capture inter-row constraints such as IW1 that arise in N10. Furthermore, a number

of implicit assumptions made by placement legalizers are broken when placement correctness by

construction no longer holds, e.g., when more than two cells can interact and create DRVs. This

challenges the use of dynamic programming frameworks, since decomposition into independent

placement subproblems is no longer obvious. Finally, filler cell insertion has not previously been

a concern of placement legalizers, but in N10 the filler cells can cause additional implant layer

rule violations.

In this section, we propose a mixed integer-linear programming (MILP)-based place-

ment legalization that considers complex N10 FEOL-layer design rules including minimum im-

plant width, minimum oxide diffusion jogs and drain-drain abutment. We also propose a dis-

tributable optimization approach based on partitioning a given placement into many windows of

cells, with each window being independently optimizable. The main contributions of our work

are summarized as follows.

• We formulate as an MILP a placement problem that addresses new DRVs caused by com-

plex N10 design rules. In contrast to previous approaches, our formulation captures new

inter-row violation types. We further implement our solution approach in a prototype tool,

DFPlacer.
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• DFPlacer handles whitespace in the problem formulation and determines filler cell inser-

tions to solve implant width constraint violations.

• We propose a distributable optimization based on partitioning of an input placement into

windows of cells, and demonstrate that our optimization is scalable via this mechanism.

• We implement our proposed methods in C++ with OpenAccess 2.2.43 [217] and incorpo-

rate them into a commercial tool-based placement and routing (P&R) flow for evaluation.

• A further study provides insight into timing and area impacts of the dummy poly gate

library cell strategy, using two kinds of libraries: (i) standard cells with dummy poly gates

(drain-drain abutment violation-free) and (ii) standard cells without dummy poly gates.

The remainder of this section is organized as follows. In Section 2.2.2, we review rele-

vant prior work. To address N10 rules, we formulate an MILP in Section 2.2.3 and describe our

distributable optimization strategy in Section 2.2.3. Section 2.2.4 provides experimental results

and analysis. We give conclusions and future research directions in Section 2.2.5.

2.2.2 Related Work

We now summarize relevant previous works on detailed placement and placement legal-

ization.

Dynamic programming-based approaches. Dynamic programming (DP), typically

for a single cell row, has been used by a number of authors. Kahng et al. [107] use DP to legalize

placement of a single row with various minimization objectives: total perturbation, maximum

perturbation, and wirelength. A shortest-path algorithm is applied to a directed acyclic graph

constructed from the input ordering of cells. Gupta et al. [71] perform detailed placement op-

timization to enable sub-resolution assist feature insertion for improved manufacturability. A

DP-based single row placement achieves this assist-feature correctness (AFCorr) while mini-

mizing (timing criticality-weighted) perturbations of cell locations. Subsequent work addresses

a 2D formulation that considers both horizontal and vertical interactions between adjacent cells

[72]. The 2D AFCorr approach uses DP in which vertical and horizontal costs are calculated

with restricted perturbations. Hur and Lillis [94] propose optimal interleaving for intra-row op-

timization in detailed placement. Their work splits the cells of a single row into two groups with

a given window size, and the two sequences are optimally interleaved via DP while preserv-

ing the initial relative ordering of cells in each group. At the global placement level, cells are

assigned to bins and optimized via relaxation-based local search.
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Integer Linear Programming (ILP)-based approaches. Another important class of

previous methods is based on integer linear programming. Ramachandaran et al. [155] apply

branch-and-price for improved scaling of the placement optimization. Li and Koh [125] propose

ILP-based detailed placement approaches using placement site variables. Dantzig-Wolfe de-

composition is applied to improve scalability, and single-cell-placement (SCP) variables enable

grouping and mapping of placement site variables into patterns. The extension [126] supports

mixed-size circuits and improves runtime by bounding solution spaces. In our present work, we

begin with the MILP model of [125] [126], extending it to provide the first-ever comprehen-

sive support (to our knowledge) of N10-relevant design rules such as minimum implant width,

diffusion jogs and drain-drain abutment.

N10 design rules-aware placement. Du and Wong [49] address the abutment of source

and drain in FinFET-based cell placement (i.e., for the foundry 14nm node onward), where the

DDA constraint becomes prominent. The authors use cell flipping and adjacent-cell swapping as

underlying operations for detailed placement perturbation that minimizes drain-drain abutments.

As in [107], the authors of [49] apply a shortest-path algorithm with their proposed graph model,

in which each operation and the violations are modeled as nodes and node/edge costs, respec-

tively. However, the approach only swaps and flips cells within a single row, and does not handle

interactions between placement rows. Hence, the optimization is made with respect to a highly

restricted portion of the overall detailed placement solution space. Moreover, DDA-related op-

timization cannot be performed in isolation at the N10 node: many other neighborhood-related

constraints (e.g., constraints for implant and oxide diffusion (OD) layers) have interactions with,

and constrain, the drain-drain abutment solution. In our present work, we handle neighborhood-

related constraints along with drain-drain abutment, with a larger solution space that includes

multiple rows.

2.2.3 Our Approach

Problem Formulation

We now formulate a MILP for our detailed placement problem to address N10-related

design rules including IW, DDA and OW in Section 2.2.1. Our notation is described in Table 2.8.
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Table 2.8: Notations.

Notation Meaning

C,R,Q sets of cells, rows, columns

fc a binary indicator of whether cell c is flipped

x(y)c,init initial x (y) coordinate of cell c

scrq a binary indicator of whether cell c occupies site (r, q)

Kc a set of candidate states of cell c

λk
c a binary indicator of the kth candidate state for cell c

xk
c , y

k
c x and y coordinates corresponding to λk

c

fk
c fc corresponding to λk

c

sk
crq scrq corresponding to λk

c

mrq inter-row variable for IW1

hrq intra-row variable for IW2

W minimum implant width (unit: site)

Minimize:
∑
c∈C

(|xc − xc,init|+ |yc − yc,init|) (2.26)

Subject to: ∑
k∈Kc

λk
c = 1, ∀c ∈ C, λk

c ∈ {0, 1} (2.27)

fc =
∑

k∈Kc

fk
c λ

k
c (2.28)

xc =
∑

k∈Kc

xk
cλ

k
c , yc =

∑
k∈Kc

yk
cλ

k
c , ∀c ∈ C (2.29)

scrq =
∑

k∈Kc

sk
crqλ

k
c , ∀c ∈ C (2.30)

∑
c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (2.31)

For a given input layout, our objective is to minimize the sum of cell displacements

while achieving a legal placement with respect to given N10 design rules. We assume a given

perturbation range for each cell g (g.l, g.r, g.t and g.b are the maximum allowed displacements

of the cell in the left, right, top and bottom directions, respectively); a cell cannot move beyond

its given perturbation range. Thus, we have a limited number of possible states (locations and

orientations) within g, for each cell. To represent each candidate state for a cell, we adopt the

single-cell-placement (SCP) model of [126]. The binary SCP variable λk
c represents a candidate

state k for a cell c. The variable λk
c is associated with the location and orientation of cell c,

49



e.g., xk
c , yk

c , and fk
c , which are pre-defined values. Also, sk

crq, where r ∈ |R| and q ∈ |Q|, is

pre-defined for λk
c .

From Constraint (2.27), exactly one state is chosen for cell c among multiple candidate

states λk
c , k ∈ Kc; this determines the location and orientation of c. Constraints (2.28), (2.29)

and (2.30) determine the final x, y of cell c and scrq for r ∈ |R|, q ∈ |Q| from a selected

candidate site for cell c. To ensure a legal placement (no overlap), Constraint (2.31) forces a site

at (r, q) to be occupied by at most one cell. In addition to the basic formulation, we add extra

constraints to address OW, DDA, IW1 and IW2 rules, as follows.

OW and DDA constraints. To handle OW and DDA constraints, we pre-characterize

all adjacency conditions which violate OW and/or DDA for each library cell pair. We note that

our pre-characterization considers the orientations of cells (i.e., the adjacency conditions change

depending on the orientations of cells). We then generate a set P of forbidden pairs of λk
c . Based

on P , we formulate Constraint (2.32) for every forbidden pair (λi
c1 , λ

j
c2).

λi
c1 + λj

c2 ≤ 1 where c1, c2 ∈ C, (λi
c1 , λ

j
c2) ∈ P (2.32)

IW1 and IW2 constraints. IW1 violations occur across rows when vertically-adjacent

same-Vth layers form a narrow staircase shape with width less than the minimum implant width

(see Figure 2.19(a)). To handle IW1, we define a 0-1 inter-row variable, mrq, that indicates

whether the site at (r, q) (row r and column q) and the site at (r + 1, q) have the same Vth

(mrq = 1) or not (mrq = 0). Figure 2.21(a) illustrates the mrq variables and IW1 constraints.

As shown in the figure, if a 0-1 sequence of m values is found (e.g., m12,m13), the implant

region has a staircase shape, and hence (W − 1) consecutive m variables must be one. Thus, we

formulate constraints that, ifmr(q−1) = 0 andmrq = 1, force at leastW consecutive inter-row

variables mrq = . . . = mr(q+W−1) = 1, so as to satisfy IW1 (e.g., m13,m14,m15 = 1

where W = 3, in Figure 2.21(a)).

IW2 violations occur when small-width cells are sandwiched in between different-Vth

cells in the same row. Similar to how we handle IW1, we define a 0-1 intra-row variable, hrq,

that indicates whether the site at (r, q) and the site at (r, q+1) have the same Vth (hrq = 1) or not

(hrq = 0), as shown in Figure 2.21(b). If hrq = 0, i.e., sites (r, q) and (r, q+ 1) have different

Vth, we force (W − 1) consecutive binary variables hr(q+1) = . . . = hr(q+W−1) = 1, so as

to have at least W consecutive same-Vth sites. Figure 2.21(b) shows the case when hrq = 0,

where r = 1, q = 2, W = 3.
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m11=0 m12=0 m13=1 m14=1 m15=1 m16=0 m17=0

W = 3
h11=1 h12=0 h13=1 h14=1 h15=0 h16=1

W = 3

(a) (b)
Figure 2.21: (a) Inter-row variable mrq for IW1. (b) Intra-row variable hrq for IW2. The color

(gray and white) of regions indicates Vth.

The generalized constraints for IW1 and IW2 are as follows:

mr0 = 0, hr0 = 0 1 ≤ r < |R| (2.33)

mrq + (1−mr(q+1)) + yr(q+2) ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R| (2.34)

yrq ≤ mr(q+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1 (2.35)

hrq + zrq ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R| (2.36)

zrq ≤ hr(q+1+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1 (2.37)

• Constraint (2.33) initializes the leftmost m and h variables where q = 0.

• Constraint (2.34) detects the condition of mrq = 0 and mr(q+1) = 1, and forces

yr(q+2) = 1.

• When yr(q+2) = 1, Constraint (2.35) forces (W − 1) consecutive binary variables

mr(q+2) = . . . = mr(q+2−(W−2)) = 1.

• Constraint (2.36) detects the condition of hrq = 0 and forces zrq = 1.

• When zrq = 1, Constraint (2.37) forces (W − 1) consecutive binary variables

hr(q+1) = . . . = hr(q+(W−1)) = 1.
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We now describe our method of obtaining inter- and intra-row variables (mrq and hrq).

We first set the Vth of cell c as the binary vector ~kc. The length of ~kc is determined by

dlog2(nVth
+ 1)e where nVth

is the number of available Vth options. For example, if we have

three Vth options, then ~kc is {k1
c k

2
c}. Concretely, the binary vectors {0 1}, {1 0} and {1 1} rep-

resent HVT, NVT and LVT, respectively. We then define the Vth variable ~vrq as a binary vector

variable {v1
rq v

2
rq} indicating the Vth of the site (r, q). Given that mrq = 1 if ~vrq = ~v(r+1)q,

we add the following constraint to obtain mrq:

mrq = (v1
rq ⊕ v1

(r+1)q) + (v2
rq ⊕ v2

(r+1)q) (2.38)

Constraint (2.38) is rewritten in our MILP formulation, using binary variables u1, u2 and mrq,

as follows:

mrq +mrq ≤ 1;

mrq ≤ u1 + u2; mrq ≥ u1; mrq ≥ u2;

u1 ≤ v1
rq + v1

(r+1)q; u1 ≥ v1
rq − v1

(r+1)q;

u1 ≥ v1
(r+1)q − v

1
rq; u1 ≤ 2− v1

rq − v1
(r+1)q

u2 ≤ v2
rq + v2

(r+1)q; u2 ≥ v2
rq − v2

(r+1)q;

u2 ≥ v2
(r+1)q − v

2
rq; u2 ≤ 2− v2

rq − v2
(r+1)q (2.39)

Similarly, hrq can be formulated as follows:

hrq = (v1
rq ⊕ v1

r(q+1)) + (v2
rq ⊕ v2

r(q+1)) (2.40)

We also consider whitespace (empty sites), which can be filled with filler cells. We have

the freedom to choose Vth of filler cells to satisfy IW1 and IW2 constraints. To exploit this

flexibility, we define a binary vector variable ~erq = {e1rqe
2
rq} which indicates Vth of the site at

(r, q). From variables ~kc, scrq and ~erq, the binary vector variable ~vrq is defined as follows:

~vrq =
∑
c∈C

~kc · scrq + ~erq (2.41)
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Thus, ~vrq is determined by either
∑

c∈C
~kc ·scrq or ~erq. We add a constraint below for ~erq:

e1rq ≤ 1−
∑
c∈C

scrq; e2rq ≤ 1−
∑
c∈C

scrq (2.42)

Constraint (2.42) states that if a site is occupied by any cell, ~erq = 0. Then, Constraint (2.41)

becomes independent of ~erq. Otherwise, Constraint (2.41) becomes ~vrq = ~erq.

Analysis of the number of variables and constraints. The number of variables and

constraints depends on the number of sites in a target window (|R| · |Q|), the number of instances

(|C|) and the size of the perturbation range (g.size = (g.l + g.r) · (g.t+ g.b)).

• The number of variables scrq is |C| · |R| · |Q|.

• The number of variables xc, yc is (each) |C|; the number of variables xk
c , y

k
c , λ

k
c is (each)

g.size · |C|.

• The number of inter-/intra-row variables m, h is (each) |R| · |Q|.

• The number of variables v and e is (each) n · |R| · |Q|, where n is dlog2(nVth
+ 1)e.

• The numbers of Constraints (2.27), (2.29), (2.30) and (2.31) are |C|, |C|, |C| · |R| · |Q|
and |R| · |Q|, respectively.

• The number of Constraint (2.32) is g.size · |C|2.

• The number of Constraints (2.34), (2.35), (2.36) and (2.37) is (each) |R| · |Q|.

Overall Flow

We implement our flow in C++ with OpenAccess 2.2.43 [217] to support LEF/DEF

[209], and with CPLEX 12.5.1 [203] as our MILP solver. Figure 2.22 shows the overall flow

of our tool, which we call DFPlacer. DFPlacer has two optimization stages: global and local

optimization. In the global optimization, we split the given routed layout T uniformly into a set

of windows D and optimize each of the windows d ∈ D in parallel. We use a fixed boundary

margin b for each window to enable independent optimization among windows. In the local

optimization, we generate a new window for each remaining violation γ ∈ Γ such that the
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Figure 2.22: Overall flow of detailed placement legalization.

violation is located at the center of the window. We then remove overlapping windows so that

no window affects another. With the new set of windows D′, we optimize each window d′ ∈ D′

again in parallel. The output cell location solution is saved in DEF file format, which can be fed

into a commercial P&R tool. We perform ECO routing with the solution and finally obtain a

new layout Topt with number of violations |Γ| less than the given target number δ.

Algorithm 2 gives further details of our optimization flow. In Lines 2-6, the global

optimization phase solves D in parallel with a small perturbation range g (e.g., g.l = 4,

g.r = 4, g.t = 1 and g.b = 1 sites) of cells. This distributable method overcomes the runtime

limitation of MILP-based approaches and fixes more than 90% of initial |Γ| (see Figure 2.24).

In Line 3, we first partition a given routed T into D, and we solve each d ∈ D in parallel using

OpenMP [213] in Line 4. We set a window width z.w as 47 sites, and a window height z.h as

nine cell rows in our experiments.23 When running optimizations for the windows in parallel,

we set the vertical (resp. horizontal) boundary margin b.v (resp. b.h) so that the solution of one

window can be isolated from the solutions of neighbor windows. We set b.v as the minimum

implant width W and b.h as two cell row heights. Figure 2.23 shows the boundary margin in

green color. We then update the MILP solutions to the layout T .
23Window size affects the tradeoff between the number of remaining violations |Γ| after global optimization and

the runtime of global optimization. Our studies of different window sizes (i.e., z.w ranging from 40 sites to 55 sites
and z.h ranging from five cell row heights to 11 cell row heights) find that for a sample design (JPEG) a width of 47
sites and a height of nine cell row heights empirically achieves a good outcome (< 10% of initial |Γ|) with relatively
small runtime (< 30 min). We therefore use this window size in all of our reported experiments.
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Algorithm 2 Overall flow of DFPlacer.

Procedure DFPlacer(T,U, z, b, g, δ)
Input : Layout T , set of design rule constraints U , window size z, boundary margin b, perturbation
range g, target number of DRVs δ
Output : Layout Topt with |Γ| < δ

1: // Global optimization
2: for i = 1 to 3 do
3: A set of windows D ← Partition(T, i, z, b, g);
4: Solve all MILP instances for windows D in parallel;
5: Update MILP solutions to T ;
6: end for
7: // Local optimization
8: Γ ← getDRV (T,U);
9: while |Γ| < δ do

10: D ← ∅;
11: for all γ ∈ Γ do
12: d ← MakeNewWindows(T, γ, z, b, g);
13: D ← D ∪ d;
14: end for
15: D′ ← NonOverlapWindows(D)
16: Solve all MILP instances for windows D′ in parallel;
17: Update MILP solutions to T ;
18: Γ ← getDRV (T,U);
19: if |Γ| is the same as |Γ| in the previous iteration then
20: IncreaseWindow(z);
21: IncreasePerturb(g);
22: end if
23: end while
24: Topt ← T ;
25: return Topt;
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Figure 2.23: Partitioning of layout for parallel global optimization.

Since the fixed boundary cells corresponding to b of the first iteration can contain DRVs

which are not fixed in the first iteration, we perform a second iteration with a new partitioning

that is shifted by half of z.w and z.h in the x- and y-directions, respectively; these are shown

in yellow color in Figure 2.23. We then partition the current T into a new D and solve the

corresponding MILP instances to fix the violations Γ remaining from the first iteration. We then

update the MILP solutions to T . Even after the first and second iterations, DRVs could still exist

in the intersections of the fixed boundary regions (red color in Figure 2.23). To fix the Γ in the

uncovered intersection region, we perform a third iteration that has new partitioning lines shifted

by a quarter of z.w and z.h in x-direction and y-direction. Note that a quarter of z.w and of

z.h should respectively be larger than or equal to b.v and b.h. This ensures that the windows of

the third iteration contain the uncovered regions, such that the fixed boundary region of the third

iteration is not overlapped with the uncovered intersection region.

The small window size and perturbation range used in global optimization restricts the

solution space, potentially leading to infeasible solutions for certain windows. To fix the re-

maining Γ, we perform the local optimization in Lines 8-24. For each DRV, the function

MakeNewWindows() creates a new window whose center is the DRV point. In Line 15,

NonOverlapWindows() picks a set of disjoint windows D′ to process in parallel. We then

update the solutions to the current T and check the remaining Γ (Lines 16-17). In Lines 19-22,

if the current |Γ| is the same as the |Γ| of the previous iteration, we increase z.w by 10 sites and

z.h by one cell height. For perturbation range, we increase g.l, g.r, g.t and g.b by 2, 2, 1 and 1

sites, respectively. When the current |Γ| is less than the target number of DRVs δ, we save the

current T as Topt and terminate the optimization. In our experiment, we set δ as 1% of initial

|Γ|.
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2.2.4 Experimental Setup and Results

Experimental Setup

We evaluate DFPlacer using two open-source designs (AES *, JPEG *) [212], an Arm

CORTEX M0 without memories (CORTEX M0 *) and a 3×CORTEX M0 without memories

(CORTEX M0×3 *). We synthesize these testcases from RTL, and perform P&R with an ab-

stracted 7nm dual Vth library. Our RTL-to-layout flow uses Synopsys Design Compiler vH-

2013.03-SP3 [218] and Cadence Encounter Digital Implementation System v13.1 [198] for logic

synthesis and P&R, respectively. All experiments are performed with 40 threads on a 2.6GHz

Intel Xeon E5-2690 dual-CPU server. In principle, the number of threads could be as large as

the number of layout windows.
Table 2.9: Summary of testcases.

Design #Inst
LVT Util. WL Area WSS WHS

(%) (%) (µm) (µm2) (ps) (ps)

CORTEX M0 nd 8260 52 77 114685 7668 38 0

AES nd 12147 54 78 142294 8894 90 0

CORTEX M0×3 nd 27248 56 80 392540 24463 126 0

JPEG nd 47948 51 77 694624 49629 12 0

CORTEX M0 d 8238 51 77 116866 8668 93 1

AES d 12491 54 80 150632 10596 58 0

CORTEX M0×3 d 26690 55 79 409579 27400 107 0

JPEG d 48317 52 77 764738 55824 13 0

Libraries and design rules. We use a prototype 7nm standard-cell library from a lead-

ing IP provider. Since our design enablement for the 7nm technology is missing detailed BEOL

technology information such as RC values and BEOL stack options, we scale the library to use

a 28nm BEOL stack, following the methodology described in [78]. The site width and height

are 0.136µm and 0.9µm; these values correspond to placement site and cell row height param-

eters of the 28nm enablement. For design rules, we set the OW, IW1 and IW2 rules as four site

widths. To check for DDA and OW violations, we pre-characterize all pairs of standard cells

in the 7nm library. The library has 62 standard cells and the total number of pairs is 15376 (=

62×62×2×2), including cell flipping. For the standard cells without dummy poly gate, 7172

pairs out of the 15376 pairs violate the DDA constraint, and these pairs require at least one site

space. Similarly, with the 4 site widths for OW, 280 out of the 15376 pairs violate the OW

constraint, and such pairs also require one site space.24

24Based on our OW rule and library, all pairs of standard cells that violate OW constraints require only one site
space. However, depending on the OW rule and library, some pairs of standard cells could require two or more site
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Tradeoff between area/wirelength and DRVs. Table 2.9 shows the testcases used in

our experiments. LVT, WSS, WHS and WL respectively indicate the portion of LVT cells, the

worst setup and hold slacks, and wirelength. We assign Vth to cells uniformly to create more

IW1 and IW2 violations. We use two kinds of libraries: (i) without dummy poly gates (CWOD)

and (ii) with dummy poly gates (CWD). CWD is designed with dummy poly gates inserted to

avoid interactions between cells which create DDA violations. For the CWD library, cell width is

increased by one poly pitch compared to the CWOD library. The suffixes * d and * nd indicate

that the designs are implemented with CWD and CWOD libraries, respectively. The same initial

netlists are used for both * d and * nd. While comparing * d and * nd designs, we observe that

the average wirelength and area overhead of designs implemented using libraries with dummy

poly gates are 7% and 14%, respectively. In terms of DRVs, * nd testcases have 134%∼176%

more initial DRVs as reported in the second and fourth columns of Table 2.10.

Experimental Results

Table 2.10: Results with #violations, worst setup slack, worst hold slack, ∆wirelength,
maximum ∆cell location, average ∆cell location, #changed cells and runtime.

Design
IW #Vio. DDA/OW #Vio. WSS (ps) WHS (ps)

∆WL (%)
Max. ∆loc. Avg. ∆loc.

#Changed cells (%)
CPU total (sec)

Init Final Init Final Init Final Init Final (µm) (µm) Global Total

CORTEX M0 nd 926 11 1611 14 38 83 0 0 2.79 2.89 0.56 4489 (54%) 768 2820

AES nd 1771 16 1900 18 90 71 0 -1 3.42 2.89 0.52 5939 (49%) 787 2992

CORTEX M0×3 nd 3514 17 4230 48 126 113 0 0 2.90 3.02 0.51 12752 (47%) 957 6897

JPEG nd 4056 29 12024 135 12 22 0 0 2.30 8.99 0.70 24169 (50%) 1788 11983

CORTEX M0 d 988 10 0 0 93 85 1 0 3.04 2.89 0.57 2996 (36%) 161 434

AES d 1566 11 0 0 58 80 0 0 3.10 2.89 0.54 3852 (31%) 425 1207

CORTEX M0×3 d 2810 27 0 0 107 105 0 -2 2.14 2.89 0.58 9340 (35%) 517 1336

JPEG d 6296 43 0 0 13 81 0 0 -0.57 3.02 0.49 12244 (27%) 954 1401

Table 2.10 summarizes the number of DRVs, the worst setup slack, worst hold slack,

∆wirelength, maximum ∆location, average ∆location, the number of moved cells and runtime.

Our DFPlacer fixes more than 99% of initial violations in runtime that is reasonable for practical

contexts. From a timing perspective, ∆WSS (i.e., final WSS − init WSS) ranges from -19ps to

68ps, but all final designs have no negative WSS. Similar to WSS, ∆WHS ranges from -2ps to

0ps. The timing impact is small since most of the cells are moved within a given small pertur-

bation range. Some cells can be moved more than 20 sites (i.e., 0.136 × 20 = 2.72µm) from

their initial locations due to the accumulated displacement in the iterative local optimization.

spaces.
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However, those cells are less likely to be in the most critical path, which is how the WSS or

WHS would worsen. Also, the positive ∆WSS implies that there is room to improve timing, and

that we could potentially co-optimize the timing along with DRV fixing in detailed placement

legalization. This is a direction of ongoing work.

On the other hand, DFPlacer increases wirelength by up to 3%. The accumulated dis-

placements of cells and the limited pin access for the standard cells in N10 could be causes of

this wirelength increase. Between * nd and * d testcases, the ∆WL% of * nd cases is similar

or slightly larger. We believe that this is because IW violations are harder to fix compared to the

OW and DDA violations, since the constraints are more complex. The rate at which the number

of IW violations reduces is slower than that for OW and DDA violations. Also, since the CWD

library cells are larger than the CWOD library cells, the displacement of cells in * d cases might

have more impact on the wirelength increase. Therefore, % WL increase of * d cases is smaller

in general, but not necessarily always less than that of corresponding * nd cases.

Columns Max. ∆loc. and Avg. ∆loc. show maximum and average cell displacement,

respectively. We observe that the average cell displacement for all designs is up to 0.70µm,

which is ∼5 sites’ width. The maximum displacement is up to 8.99µm for JPEG nd. For other

designs, the maximum displacement is similar to the half-perimeter of the perturbation range

used in the global optimization (2.888 = 0.9 · 2 + 0.136 · 8 microns).

When we compare the results of designs with CWOD and CWD, we see a tradeoff

between area and the number of DRVs (and runtime). We observe that the area overhead of

using cells with dummy poly gate is 14% on average (up to 19%). However, the number of

DRVs decreases by 61% on average (up to 64%). This affects the runtime of detailed placement

legalization.

Figure 2.24 shows the remaining number of DRVs (%) versus runtime (sec). Each

dot stands for an iteration of the optimization, and the third iteration points are marked with

diamond-shaped markers. During the global optimization, which includes first, second and third

iterations, the remaining violations drop quickly;∼90% of DRVs are fixed in most of the designs

during the global optimization. The runtime of the global optimization phase still increases

with the problem size. However, with added computing resources to run windows of cells in

parallel, the runtime can be further reduced. After the third iteration, when entering into local

optimizations, the rate of decrease of the number of DRVs becomes much lower, implying that

DFPlacer spends considerable time to fix the last few DRVs. This is because these last DRVs

cannot be solved with small window sizes and perturbation ranges in the global optimization;
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thus, DFPlacer tries to resolve them in the local optimization by increasing window sizes and

perturbation ranges. The poor scaling of MILP solution versus instance size leads to the observed

runtimes.

Figures 2.25(a) and 2.25(b) respectively show layout snapshots from the pre- and post-

detailed placement legalization phases. In Figure 2.25(a), we highlight the cells that violate

OW (green color), DDA (light green color), IW1 (yellow color) and IW2 (brown color) rules.

Figure 2.25(b) shows the displacement of corresponding cells in post-detailed placement legal-

ization. We observe that our DFPlacer fixes the DDA violation by flipping one of the violating

cells; the IW1, IW2 and OW violations are all resolved by moving the violating cells or their

neighbor cells within and/or across rows.
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Figure 2.24: Remaining violations vs. runtime. Each dot indicates an iteration; after the third
iteration, local optimization is performed. The diamond-shaped markers represent

third-iteration points.
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Figure 2.25: (a) Layout with DRVs before optimization. (b) Layout without DRVs after
optimization.

2.2.5 Conclusion

In this section, we have proposed a scalable detailed placement legalization flow for

complex FEOL constraints arising at the N10 foundry node. These include drain-drain abut-

ment, minimum implant width, and minimum OD jogging rules. Given initial (timing-driven)

placements, ourDFPlacer fixes 99% of DRVs with 3% increase in wirelength and minimal im-

pact on timing. We feel that our use case of fixing all but a few tens of violations, with a highly

parallelizable two-iteration strategy, is a good practical tradeoff between runtime complexity

and DRV fixing. Further, the level of DRV fixing achieved by DFPlacer is encouraging, given

that our default experimental configuration makes no attempt at “correctness by construction”.

Using OpenMP, we confirm that our flow is scalable via a distributed optimization strategy. Ad-

ditionally, we study an area-DRV tradeoff between two types of standard-cell library strategies,

namely, with and without dummy poly gates.

Our future work includes (i) timing and wirelength-driven placement legalization, which

we believe can be enabled by more compact optimization formulations along with a more re-

stricted perturbation range for each cell; (ii) a “smart ECO” method for the few DRVs that

remain after global placement legalization; and (iii) further investigation of the scalability of

our partitioning-based distributed optimization approach. Finally, we believe that our present

placement-centered work may converge with such recent routing-centered works as [78], lead-

ing eventually to an “optimal detailed P&R” that can shield physical design teams from impacts

of increasing ground rule complexity at N10 and beyond.
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2.3 Evaluation of BEOL Design Rule Impacts

Using an Optimal ILP-based Detailed Router

To scale semiconductor process nodes below the resolution limits of 193i optical lithog-

raphy, multi-patterning techniques (e.g., litho-etch-litho-etch (LELE) and self-aligned double

and quadruple patterning (SADP, SAQP) [127] have already been widely used in production.

Multi-patterning is expected to be the basis of mainstream process offerings through the foundry

10nm and even 7nm nodes, and will persist even with deployment of extreme ultraviolet (EUV)

lithography [208]. Although multi-patterning techniques are key enablers for advanced sub-

20nm process technologies, they can induce highly complex design rules which challenge both

IC physical design tools and the development (and enablement) of IC physical implementation

methodology. Tight design rules (e.g., via placement restrictions, unidirectional routing on Mx

layers, etc.) lead to design wirelength and density overheads, to the point where benefits from

technology scaling reduce or even disappear altogether. Assessing the real value of a prospective

future technology is also difficult in FinFET nodes, where higher drive strengths enable smaller

standard-cell footprints that further challenge pin access and routability [3].

Given the above considerations, as well as the enormous cost of technology development

and design enablement for a new process node, it is critical for the industry to be able to assess

the impact of design rules (implicitly, patterning technology choices) on physical implementation

metrics. Such assessments should be made as early as possible, to permit correct choices among

various technology options and to enable design-technology co-optimization. Unfortunately,

there are two basic reasons why process technology developers cannot easily evaluate impacts

of complex design rules on chip implementation metrics. First, EDA vendors often require

prolonged, close co-development with customers to correctly support new advanced design rules.

While the latest Library Exchange Format standard (LEF5.8) [209] supports advanced design

rule descriptions, even for the rapidly approaching foundry 10nm node there is varying (and

contradictory) support across the EDA industry today [163, 149]. Thus, it is practically difficult

to study new “future” design rules with current EDA tools. Second, EDA tools apply many

heuristics to perform efficient large-scale layout optimizations. This clouds evaluations of how

new patterning technologies or design rules impact chip implementation metrics. In other words,

the “chicken-egg” relationship between current EDA algorithms that are optimized for current

design enablements (design rules, cell libraries, etc.) makes it difficult to assess true impacts

of future design enablements. Wherever possible, we would like to reduce the “chicken-egg”

obstacles to design rule and patterning technology assessment.
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In this section, we provide a framework for evaluating how prospective sub-20nm de-

sign rules – as well as back-end-of-line (BEOL) stack choices – will affect chip implementation

metrics such as density or wirelength. Our framework is based on optimal detailed routing

that is correct with respect to advanced design rules. We describe OptRouter, an ILP-based

optimal detailed router which considers various design rules and technology options especially

for the coming 10nm/7nm process nodes. OptRouter computes optimal routing solutions for

small switchboxes (approximately the size of a single gcell [104], similar to the recent work

of [96]), and has the ability to consider routing direction (unidirectional or bidirectional), de-

sign rules induced by advanced patterning technology (e.g., SADP), via adjacency restrictions,

and pin shapes. Our studies combine realistic testcases in multiple technologies (including test-

cases synthesized with a prototype 7nm cell library from a leading commercial IP provider)

with cost-optimal detailed routing. It is this combination that enables new, quantitative assess-

ment of design rule impact on detailed routing metrics. The key contributions of our work are

summarized as follows.

• We formulate as an integer linear program (ILP) a minimum-cost switchbox routing prob-

lem that arises in advanced technology nodes (corresponding to clips from standard-cell

place-and-route instances). In contrast to previous approaches, our formulation captures

multi-pin net routing (i.e., Steiner routing), via shapes, via adjacency restrictions, pin

shapes, layer uni-/bi-directionality, and SADP constraints that occur with sub-20nm pat-

terning.

• We develop OptRouter, which extracts layout clips from place-and-route solutions and

uses ILOG CPLEX v12.5.1 [203] to solve the corresponding ILP instances. The cor-

rectness and capability of OptRouter are validated against commercial router results with

foundry 28nm 8- and 12-track and 7nm 9-track libraries.

• We apply OptRouter within a novel methodology to quantify and rank impacts of com-

plex sub-20nm design rules on layout metrics (wirelength, vias, and routability). Our

testbed notably includes a prototype 7nm PDK from a leading IP provider, as well as the

aforementioned 28nm foundry libraries.

• Our comparisons of different design rules’ impacts can potentially guide patterning tech-

nology choices and other basic design-technology co-optimization decisions.

In the remainder of this section, Section 2.3.1 briefly reviews relevant previous works,

with an emphasis on the seminal recent work of Jia et al. [96]. In Section 2.3.2, we explain our
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ILP formulation of multi-pin net routing with the consideration of various cell library and routing

strategies (e.g., pin shapes and via shapes) and routing rules (e.g., via adjacency restrictions and

SADP-specific rules) Section 2.3.3 describes our empirical studies: experimental questions, de-

sign of experiments, result and discussion. We offer conclusions and ongoing research directions

in Section 2.3.4.

2.3.1 Related Work

Relevant previous works are found in two areas: (1) design rule evaluation frameworks,

and (2) ILP-based global and detailed routers.

Design rule evaluation. The work of [73] exemplifies efforts to connect layout ground

rules with layout area, electrical variability, and parametric yield implications. Specifically, the

authors of [73] study the effect of a line-end extension rule on logic standard cell and SRAM

bitcell layout area, and on leakage variability and parametric yield. Ghaida and Gupta [65]

propose DRE, a platform that comprehensively connects design rule alternatives to the auto-

mated synthesis of standard-cell library cells, and then to the power-performance-area envelope

of standard-cell based layouts of small blocks. Subsequently, [64] extends the DRE approach

to chip-level analyses. Badr et al. [16] suggest a pattern matching-based design rule evaluation

method, which is then applied to checking of routing within standard cells. A fundamental dis-

tinction between these previous works and our present work is that we provide a new capability

to assess design rule and patterning technology choices with cost-optimal detailed routing.

ILP-based routers. ILP has been widely used for optimization problems due to its sim-

plicity along with its ability to find optimal solutions up to some limit of tractable instance com-

plexity. A number of works adopt ILP for global routing, often starting from a multi-commodity

flow perspective. The early work of Carden and Cheng [25] uses column-generating techniques

within a multi-commodity flow based global router. Cho et al. [35] propose a global router based

on box expansion and progressive ILP. After decomposing nets into two-pin nets, ILP is used to

choose a routing between two L-shaped candidate routings for each two-pin net within a box.

The approach iteratively expands the box and solves new nets within the expanded new box,

using progressive ILP and maze routing. Similarly, Hu et al. [92] use ILP for global routing;

they enumerate two path candidates to connect two-pin nets after initial routing, and an ILP is

formulated to select the better path between the two candidates.

An important recent work is that of Jia et al. [96], which proposes a detailed router

based on multi-commodity flow. The authors of [96] formulate an ILP for detailed routing with

all nets being two-pin nets. Pin shapes and basic design rules (side-to-side, tip-to-tip, cut-to-
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cut) are considered. The proposed methods are demonstrated to reduce the number of Design

Rule Check (DRC) violations in a 45nm technology without wirelength or via overheads. A

fundamental distinction between the work of Jia et al. [96] and our present work is that [96],

while using ILP, does not guarantee optimal routing since multi-pin nets are not handled in the

formulation. Further, only basic design rules are considered. In particular, the ability to compute

minimum-cost optimal routing solutions with SADP-specific rules and via shapes is unique to

our present work.

2.3.2 Optimal Routing Formulation

We now describe our ILP-based formulation of the detailed routing problem for a netlist

of multi-pin nets, with consideration of via adjacency restrictions, unidirectional routing, SADP-

aware line end rules, pin shapes, and via shapes. Like previous works, our development adopts

the well-known paradigm of multi-commodity flow. Table 2.11 gives the notations that we use.

Table 2.11: Notations.

Notation Meaning

N set of multi-pin nets

nk kth multi-pin net

sk source of nk

Tk set of sinks of nk

tk,i ith sink of nk

G(V,A) routing graph

V set of vertices (of the routing graph)

vi a vertex with the location (xi, yi, zi)

A set of directed arcs

ai,j a directed arc from vi to vj

eki,j 0-1 indicator whether ai,j is used in the routing of nk

cki,j cost for ai,j in the routing of nk

fk
i,j flow variable for ai,j in the routing of nk

pk
r,i(p

k
l,i) 0-1 indicator whether there are the flows connected to vi

coming from right (left) side, in the routing of nk

General Routing Problem Formulation

We use a routing graphG = (V,A) to represent available routing resources, e.g., metal

tracks on multiple layers, and inter-layer vias. Each vertex vi ∈ V is associated with variables
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that represent coordinates in the three-dimensional routing resources: horizontal metal track xi,

vertical metal track yi and metal layer zi. A directed arc ai,j , where xj = xi, yj = yi and

zj = zi ± 1, represents a via. We solve the optimization:

Minimize:
∑

nk∈N

∑
ai,j∈A

cki,j · eki,j

Subject to:∑
nk∈N

(eki,j + ekj,i) ≤ 1 ai,j , aj,i ∈ A (2.43)

eki,j ≥
fk

i,j

|Tk|
ai,j ∈ A,nk ∈ N (2.44)

eki,j ≤ fk
i,j ai,j ∈ A,nk ∈ N (2.45)

∑
vj :ai,j∈A

fk
i,j −

∑
vj :aj,i∈A

fk
j,i =


|Tk| if vi = sk, nk ∈ N

−1 else if vi ∈ Tk, nk ∈ N

0 otherwise

(2.46)

The objective is to minimize the weighted sum of eki,j , i.e., weighted total wirelength

and the number of vias. Constraint (2.43) ensures that each arc is used by only one net. Con-

straints (2.44) and (2.45) pertain to the binary variable eki,j , which indicates whether there is a

flow through ei,j . Constraint (2.46) ensures source-sink connectivities (flow conservation). The

first and second terms respectively represent the sum of the flows exiting vi (outflows of vi) and

the sum of the flows entering vi (inflows of vi). For any internal node that is not a source or a

sink, the sum of the node’s outflows must equal to the sum of the node’s inflows. For a source

sk, the sum of outflows of sk must be |Tk| (the number of sinks) since there must be |Tk| flows

which connect between sk and |Tk| number of sinks in nk, and the sum of inflows of sk must be

zero. On the other hand, for a sink vi ∈ Tk, the sum of inflows must be one since a flow coming

from sk must reach each sink, and the sum of outflows must be zero.

Figure 2.26 shows a two-net example consisting of a three-pin net (n1) and a two-pin

net (n2), along with its solution. Net n1 has a source v1 and two sinks, v3 and v4. Net n2 has

a source v5 and a sink, v6. According to Constraint (2.46), for n1, the sum of outflows of the

source node v1 = 2 (|T1|) and the sum of inflows of sink nodes v3 and v4 = − 1. Similarly,

for n2, the sum of outflows of v5 = 1 and the sum of inflows of v6 = 1. For all other

vertices, the sum of outflows is equal to the sum of inflows so that flows are conserved for each

net. According to Constraint (2.43), e11,2, e12,3 = 1, which connects between v1 and v3, since
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f1
1,2, f1

2,3 are non-zero values. Constraint (2.43) forces e21,2, e22,1, e12,1 to be zero so that the edge

between v1 and v2 can be reserved only for n1.

v1

v3

v4

v5

v6
Sources

Sinks

Steiner pointv2

2 1

1
1

Figure 2.26: Example showing multi-pin nets and the routing solution.

Routing Rule Formulation

Via restrictions. As noted in [127], placement of vias next to each other is not allowed

in advanced nodes. That is, as via pitches are larger (e.g., by a
√

2 factor) than metal pitches,

placement of a via at a particular location blocks horizontally and vertically adjacent locations,

and sometimes diagonally adjacent locations as well.

We use the following constraint so that any neighbor vertical arcs ai′,j′ of a vertical

arc ai,j can be blocked if there is a via between vi and vj , where xi′ = xj′ = xi ± 1,

yi′ = yj′ = yi ± 1, zi′ = zi and zj′ = zj .

eki,j + ekj,i + eki′,j′ + ekj′,i′ ≤ 1 ∀ ai′,j′

In our study below, we consider two types of restrictions: (i) blocking of orthogonally

adjacent locations (N, E, S, W neighbors), and (ii) blocking of both orthogonally and diagonally

(NE, NW, SE, SW) adjacent locations.

Unidirectional routing. Patterning with severe restriction, as with one-pitch/one-

orientation metal layers, is used because of better robustness, scalability and manufacturability

– as well as fewer masking steps – compared to a standard LELE-patterned bidirectional metal

layer. We trivially restrict routing on a given layer to be unidirectional by removing arcs that are

not in the preferred direction. (See also our discussion of SADP constraints, below.)

Pin shape. In the above example of Figure 2.26, we assume that each source or sink

has a single fixed location. However, in actual routing, a pin has multiple access points, which
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means that the source or sink locations ultimately used in the routing solution can vary. Multiple

access points for source and sink are captured by creating a supersource or supersink which is

connected to all available access points in the corresponding pin. We note that the supersource

and supersink are virtual vertices, which are not actually located but which nonetheless have

flows. We also observe that each access point for source or sink becomes an internal node.25

Via shape. To trade off between manufacturability and routability, various via types

with square or rectangular shapes may be instantiated. Some vias shapes, e.g., 2×2 size, are too

large to be modeled as a single vertex in our routing graph. We model a via’s shape by creating

a representative vertex which is connected to all the vertices that belong to a via, according to

that via’s footprints on lower and upper layers.26

v1
s

t
Upper layer

Lower layer

vv

e1

e2

v1 v2

v3 v4

v5
v6

v7 v8

(a) (b)
Figure 2.27: Via shape. (a) 2× 2 square via. (b) 2× 1 bar via.

Figure 2.27(a) shows a via and its vertices in a routing graph. vv is a square via with

size 2 × 2 (with respect to the number of metal tracks). With the flow conservation constraint

(Constraint (2.45)), once a flow (routing) enters vv, the flow goes through one of four vertices in

the upper layer. Note that for each via type, vertices are created for all possible locations where

the via can be placed. For example, if a 2× 2 size square via type is added to the routing graph

with three layers and 15× 15 tracks (15× 15× 3), we will create 392 (14× 14× 2 = (15−
25Pin shape is important in assessment of routing costs, e.g., smaller pin geometries with fewer access

points in advanced FinFET nodes are a major challenge to detailed routing. In 7.5T or 7.25T library cells
in FinFET nodes, power/ground rails, fin connections and other aspects of standard cell architectures must
reconcile with pin shapes (access points). Strict tip-to-tip spacing (more than one contacted poly pitch
(pin pitch)), diagonal via placement restriction as discussed above, and wider power rails also decrease
the number of access points to a cell and potentially cause unroutability [128]. We study interactions of
smaller pin shapes in 7nm (Figure 2.34(c)) and routing rules in Section 2.3.3.

26Doubled or redundant vias are also modelable with small modification of via shape formulation.

68



1)× (15−1)× (3−1)) vertices for the square via at all possible locations. Further, note that we

use lower cost values for larger via shapes so that the optimization selects as many larger vias as

possible to achieve better manufacturability.

In addition to the basic formulation with Constraints (2.43)–(2.45), vertices used by a

via must be blocked and not be used by other nets. For example, in Figure 2.27(a), as v7 is

selected by e2, all the gray edges connected to other vertices used by the via (v5, v6, v8) must

be disabled for other nets. A generalized formulation is given in Constraint (2.47) where i′ are

the vertices that are not used for the routing but are within the used via shape, and j′ are the

neighbor vertices of i′:∑
nk∈N

(ekv,i + eki,v) +
∑

nk′∈N,vi′ ,vj′ :ai′,v ,aj′,i′∈A

(ek
′

i′,j′ + ek
′

j′,i′) ≤ 1

where ai,v ∈ A, k′ 6= k, i′ 6= i (2.47)

Thus, Constraint (2.47) prevents any other nets from using the vertices i′ or the edges connected

to i′. Figure 2.27(b) shows an example of 2 × 1 size bar via shape. Vertices s and t are source

and sink, respectively. The red lines are selected as routing from s to t. The gray dots in

Figure 2.27(b) are disabled for other nets by Constraint (2.47), so that there is no overlap between

the bar via and other nets.

SADP-aware rules. Xu et al. [192] propose SADP-specific design rules. Figure 2.28(a)

illustrates how the end of line (EOL) of a wire segment is the key parameter to check with such

rules.

݈1

݈3

݈2

݈4

(a) (b)

Via

൏ ݈2

Figure 2.28: (a) SADP-specific design rules and (b) example showing that via location does
not provide enough information to distinguish the upper and lower cases, i.e., to check

SADP-aware rules.
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In our ILP formulation, we use via locations to check the locations of EOL, but this is

not enough to differentiate the two cases in Figure 2.28(b), where the upper case is an illegal

routing while the lower case is legal with the same via placements. Therefore, binary variables

pk
r,i, p

k
l,i that indicate whether there are flows connected to a vertex vi that come from right or

left direction, respectively, are defined for a net nk to represent the directions of the EOL. Note

that there are only two directions, since we assume unidirectional routing.

vi

vt

vb

vr

vl

Via

pkr,i = 1 pkl,i = 1

(b)(a)
Figure 2.29: An example of a routing graph. (a) The p variable of a vertex vi is determined by

flow variables of edges with vertex vi’s neighbor vertices vt, vb, vl, vr. (b) Wire segment
geometries that respectively result when pk

r,i = 1 and pk
l,i = 1.

Figure 2.29(a) shows a vertex vi and its top, bottom, left, right neighbor vertices (vt, vb,

vl, vr) in a routing graph, and Figure 2.29(b) enumerates the cases when each p variable = 1.

For the left EOL at (xi, yi, zi) in Figure 2.29(a), where pk
r,i = 1, the right edge (ekr,i) connected

to vi must be used in routing and the left edge (ekl,i) connected to vi must not be used. By

Constraint (2.46), the expression ekr,i &&¬ekl,i is equal to the right-hand side of Constraint (2.49).

The right EOL (pk
l,i = 1) is formulated in the same manner, i.e., as Constraint (2.48).

pk
l,i = (ekl,i ∗ eki,t)||(ekl,i ∗ eki,b)||(eki,l ∗ ekt,i)||(eki,l ∗ ekb,i) (2.48)

pk
r,i = (ekr,i ∗ eki,t)||(ekr,i ∗ eki,b)||(eki,r ∗ ekt,i)||(eki,r ∗ ekb,i) (2.49)

As all the variables are binary, we can convert the quadratic constraints in Constraint (2.48) and

(2.49) to linear constraints by using a simple technique as shown in (2.50). The (a ≤ b) && (a ≤
c) condition ensures that a is zero when either b or c is zero. The condition (a ≥ b + c − 1)

makes a = 1 when both b and c are one.
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a = b ∗ c ⇐⇒ (a ≤ b) && (a ≤ c) && (a ≥ b+ c− 1) (2.50)

We then convert the Constraint (2.48) to a set of linear constraints as shown in Constraint (2.51).

pk
l,i ≥ pk

l,i,1 ; pk
l,i ≥ pk

l,i,2 ; pk
l,i ≥ pk

l,i,3 ; pk
l,i ≥ pk

l,i,4

pk
l,i ≤ pk

l,i,1 + pk
l,i,2 + pk

l,i,3 + pk
l,i,4

(pk
l,i,1 ≤ ekl,i) && (pk

l,i,1 ≤ eki,t) && (pk
l,i,1 ≥ ekl,i + eki,t − 1)

(pk
l,i,2 ≤ ekl,i) && (pk

l,i,2 ≤ eki,b) && (pk
l,i,2 ≥ ekl,i + eki,b − 1)

(pk
l,i,3 ≤ eki,l) && (pk

l,i,3 ≤ ekt,i) && (pk
l,i,3 ≥ eki,l + ekt,i − 1)

(pk
l,i,4 ≤ eki,l) && (pk

l,i,4 ≤ ekb,i) && (pk
l,i,4 ≥ eki,l + ekb,i − 1) (2.51)

Here, pk
∗,∗ is a net-specific variable. As SADP rules must be checked over all nets, we define

global p variables as follows:

pl,i =
∑

nk∈K

pk
l,i, pr,i =

∑
nk∈K

pk
r,i (2.52)

Figure 2.30 shows how the p variables can be used to formulate SADP-aware rules for

ILP. Figure 2.30(a) shows a wire segment, of which the EOL is located at vertex vi with the wire

coming from the right side; (b) and (c) show forbidden via locations for the other wire segments.

The constraints shown in Figures 2.30(b) and (c) are formulated as Constraints (2.53) and (2.54),

respectively.
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vi vi vi

pr,i = 1 pr,i = 1

vj1
vj2

vj3

vj4

vj5

vj1

vj2

vj3

vj6

vj7

pr,i + pl,j2 ≤1 pr,i + pr,j6 ≤1

(a) (b) (c)
Figure 2.30: (a) A wire segment, of which the EOL is located at vertex vi with the wire

coming from the right side. (b) Forbidden via locations for other wire segments with pl,j = 1.
(c) Forbidden via locations for other wire segments with pr,j = 1.

(pr,i + pl,j1 ≤ 1) && (pr,i + pl,j2 ≤ 1) && (pr,i + pl,j3 ≤ 1)

&& (pr,i + pl,j4 ≤ 1) && (pr,i + pl,j5 ≤ 1) (2.53)

(pr,i + pr,j1 ≤ 1) && (pr,i + pr,j2 ≤ 1) && (pr,i + pr,j3 ≤ 1)

&& (pr,i + pr,j6 ≤ 1) && (pr,i + pr,j7 ≤ 1) (2.54)

2.3.3 Empirical Studies

Our empirical studies seek to answer two basic questions:

• What are the design costs of various BEOL rules with respect to wirelength, # vias, and

routability metrics?

• How much do impacts of design rules vary across different technologies and different-

track cell architectures?

Overall flow of BEOL rule evaluation. We implement our experimental testbed in

C++ code, with interface to support LEF/DEF [209] implemented via the OpenAccess 2.6 [217]

API. We use CPLEX 12.5.1 [203] as our ILP solver. Figure 2.31 shows our overall BEOL rule

evaluation flow. From a routed design, all possible routing clips are extracted, and evaluated

according to our pin cost metric. The clips with highest pin cost are selected, and each clip (=

switchbox instance) is converted to a routing graph based on available metal tracks, and then to
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a corresponding ILP instance, for each routing rule configuration that we study. Our OptRouter

then obtains optimal routing solutions by solving the ILP. From the solution, we report out

wirelength, number of vias, and feasibility (routability) for each given clip with each given rule

configuration. For the experiments that we report here, routing cost in the ILP is defined as

wirelength + 4× number of vias. We have separately observed that the ILP sensibly handles

alternative routing cost definitions with different weighting of via count.

OptRouter

Various routing options
‐ Via pitches
‐ DP rules
‐ Allowed via shapes

Routing
Clips

Routing
Clips

Routing Rules 
Options 1, 2, ..
Routing Rules 
Options 1, 2, ..

Result of 
Option1

Selected routing clips 
based on pin cost 
metric [17]

Result of 
Option2

Result of 
OptionN

Result = {Wirelength; Feasibility; #Via; …}

Generate 
Routing Graphs

ILP 
Formulation

ILP Solver 
(CPLEX)

Figure 2.31: Overall flow of BEOL rule evaluation.

Physical implementation with advanced technology. We verify our methods using the

open-source AES design [212] and an Arm CORTEX M0, implemented with three different tech-

nologies and standard-cell libraries: 8-track in 28nm FDSOI (N28-8T), 12-track in 28nm FD-

SOI (N28-12T), and 9-track in 7nm (N7-9T). We use Synopsys Design Compiler vH-2013.03-

SP3 [218] for synthesis and Cadence Encounter Digital Implementation System v13.1 [198] for

P&R. We implement each design multiple times, with a range of final utilizations. Table 2.12

summarizes benchmark design information.

For 7nm technology, we use 7nm standard-cell libraries (P&R, layout and timing views)

from a leading IP provider; metal pitches on layers M1 to M6 and layers M7 to M8 are 40nm

and 80nm, respectively. In this technology, our design enablement is missing detailed BEOL

technology information such as RC values and BEOL stack options. Thus, to obtain timing-

closed P&R results we scale up the geometries of the 7nm 9-track cells by 2.5× in the vertical
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Table 2.12: Summary of testcases.

Tech. Design Period (ns) #Inst. Util. (%)

N28-12T

AES 1.2 13.5–14K 89–94

CORTEX M0 2.2 9.2K 90–96

N28-8T

AES 2 12–12.7K 89–95

CORTEX M0 2.5 9.3–9.5K 90–95

N7-9T

AES 0.6 13–15K 93–97

CORTEX M0 1.2 9.7–11.4K 92–95

dimension (i.e., by the ratio of 1× metal pitch in 28nm horizontal layers (100nm) to 1× metal

pitch in 7nm horizontal layers (40nm)). Then, the scaled 7nm cells fit into the 28nm BEOL

stack with the same number of horizontal metal tracks, for which we use 100nm metal pitch in

horizontal layers. To scale the widths of the 7nm standard cells, we scale by the ratio of the

28nm placement grid (vertical metal layer pitch of 136nm) to that of the 7nm placement grid

(vertical metal layer pitch of 54nm), which is ∼2.5. We further adjust pin locations so that pins

are on-grid, since simple scaling results in off-grid pins which affect routability.27 To derive the

missing 7nm wire RC information from 28nm RC values, we scale up R by 15× for 7nm wire

R, and use the same wire C value. This follows methodology of, e.g., [28] to account for the

rapid increase of resistivity in advanced nodes. Then, since we are using the scaled geometries

to mimic a 7nm P&R flow, R and C per unit length are scaled down (in the P&R tool) by 2.5×.

The end result is that 7nm R and C per unit length (RN7, CN7) are obtained from 28nm R and

C per unit length (RN28, CN28) as RN7 = 6×RN28 and CN7 = CN28/2.5.

Extraction of routing clips. We use 1µm× 1µm routing clips extracted from the routed

designs as input instances; these correspond to 7 vertical routing tracks × 10 horizontal routing

tracks, with eight metal layers, for OptRouter. Figure 2.32 shows example routing clips extracted

from layouts with (a) N28-12T cells, (b) N28-8T cells, and (c) N7-9T cells.28

We select “difficult-to-route” clips based on pin cost metrics of Taghavi et al. [178],

specifically, a pin existence cost (PEC), a pin-area cost (PAC =
∑PEC

i=1 22−area(pi)

θ ) and a

27In greater detail: the 28nm and 7nm placement grids are 136nm and 54nm, respectively, with ratio
between the two being ∼2.519. It is not possible to obtain integer cell widths by simply scaling with this
number. Thus, we scale up the 7nm cells by 2.5 so that all cell widths are a multiple of 135nm. We then
increase each cell width by scaled cell width /135 in order to make it a multiple of 136nm, which is the
foundry 28nm placement grid. Since scaling by 2.5× results in a pin pitch of 135nm, which is off-grid
with respect to a 136nm grid, we perform a scripted movement of pin locations so that all pins are again
on-grid (the pin x locations should be multiples of 136nm).

28By comparison, the recent work of [96] uses 1.26µm × 1.26µm clips in a 45nm technology; these
correspond to 9 vertical routing tracks × 9 horizontal routing tracks.
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(c)(a) (b)

Figure 2.32: Routing clips from (a) N28-12T, (b) N28-9T and (c) N7-9T. Standard cell
boundaries and power/ground rail are highlighted with white lines and yellow dashed lines,

respectively.

pin-spacing cost (PRC =
∑PEC−1

i = 1

∑PEC
j = i+1 22−

spacing(pi,pj)

3θ ). We use PEC+PAC+PRC

as the pin cost for a routing clip, with θ = 500 to obtain a reasonable range of costs.

We calculate the pin cost for every routing clip in the routed testcases listed in Table 2.12

(∼10K clips per testcase). Figure 2.33 shows the top-100 pin cost ranges for several versions of

AES and CORTEX M0 design implementations in N7-9T with different utilizations. The utiliza-

tions of AES v1, AES v2 and AES v3 are 93%, 95% and 97% respectively, and the utilizations of

CORTEX M0 v1, CORTEX M0 v2 and CORTEX M0 v3 are 92%, 94% and 95%29. We observe

that pin cost distributions do not change significantly with different utilizations, and that pin

cost distributions are not design-specific: ranges of top-100 pin costs of both designs are similar

(AES: 33∼42, CORTEX M0: 30∼41). Thus, in each technology we select top-100 clips from

across all design implementations, according to the pin cost metric.

Design of Experiments

We evaluate various BEOL design rule configurations, each of which is a combination

of via restrictions and mix of LELE/SADP BEOL layers. (All routing layers are unidirectional

in our study.) Table 2.13 shows the BEOL design rule configurations, denoted as RULE1 -

RULE11, used in the experiments. We test three via restriction cases (0 neighbors blocked; 4

neighbors blocked; and 8 neighbors blocked) and five LELE/SADP layer combinations (M2-M8

LELE layers (No SADP); M2-M8 SADP layers (SADP ≥ M2); M2 LELE + M3-M8 SADP
29We use high utilizations to obtain designs that are “difficult-to-route” and sensitive to design rules

due to routing congestion.
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(a) (b)

Figure 2.33: Pin cost distributions (per the PEC + PAC + PRC metrics in [178]) of (a) AES and
(b) CORTEX M0 with different utilizations.

layers (SADP ≥M3); M2-M3 LELE + M4-M8 SADP layers (SADP ≥M4); and M2-M4 LELE

+ M5-M8 SADP (SADP ≥M5)). Via restrictions are applied to the V12 through V78 layers.

We select the top 100 routing clips according to pin costs across all designs in Table 2.12,

for each of the three combinations of technology node and cell height, as discussed above. We

then run OptRouter on each of the 100 routing clips to evaluate the impact of each given routing

rule configuration. We obtain the ∆cost of each rule configuration, relative to the routing cost of

RULE1 (no constraints).30 In the present study, we do not use M1 as a routing resource.

Table 2.13: BEOL design rule configurations.

Name SADP rules Blocked via sites

RULE1 No SADP
0 neighbors blocked

RULE2, 3, 4, 5 SADP ≥ {M2, M3, M4, M5}

RULE6 No SADP
4 neighbors blocked

RULE7, 8 SADP ≥ {M2, M3}

RULE9 No SADP
8 neighbors blocked

RULE10, 11 SADP ≥ {M2, M3}

We have evaluated all of RULE1 to RULE11 for the N28-12T and N28-8T technologies.

However, we do not test RULE2, RULE7, and RULE9 to RULE11 for N7-9T since the smaller
30Our separate studies support the claimed optimality of OptRouter. We have compared the results

of OptRouter and those of the commercial routing tool, and have found that OptRouter always achieves
non-positive ∆cost with respect to the commercial tool’s solution. Indeed, the average ∆cost of -10∼-15,
relative to an average routing cost of∼380, suggests the potential for using OptRouter for detailed routing
improvement.
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pin shapes in the 7nm standard cells do not permit the diagonal (adjacency in) via placement

which is required for these rules. Figures 2.34(a), (b) and (c) show pin shapes in a NAND2X1

cell in N28-12T, N28-8T and N7-9T, respectively. In Figure 2.34(c), the input pin shapes have

only two access points and the two pins are close to each other. With eight via sites blocked, it

is impossible to connect to the two input pins without violations.

(c)

VDD

VSS

AB
Y

(a) (b)

A

B

Z

A

B

Z

VDD

GND

VDD

GND

Figure 2.34: Pin shapes in NAND2X1: (a) N28-12T, (b) N28-8T and (c) scaled N7-9T.

Experimental Results and Discussion

Figures 2.35(a), (b) and (c) respectively show sorted ∆cost per clip of each RULE, in

N28-12T, N28-8T and N7-9T cell-based designs. The ∆ is relative to costs with RULE1 (i.e., the

minimum achievable routing cost with eight unidirectional LELE layers and no via restrictions).

For unroutable clips, we arbitrarily set ∆cost = 500 for convenience of plot generation.

In N28-12T (Figure 2.35(a)), we observe that SADP rules for upper metal layers above

M3 do not significantly affect routing costs. Two kinds of via restrictions (4 or 8 neighbors

blocked) show similar routing costs, suggesting that the orthogonal via restriction (4 neighbors

blocked) is dominant. When SADP rules are applied (RULE4, RULE7, RULE2), routing costs

vary across routing clips. By comparing the “crossing” traces for RULE2 and RULE6, we see

that routing costs are higher with SADP layers than with via restriction rules, but that in terms

of absolute feasibility, the via restriction appears to result in fewer feasible routings.

With N28-8T (Figure 2.35(b)), in contrast to the N28-12T case, there is higher sensitivity

of ∆cost to the number of SADP layers: we see a clear increasing cost trend across RULE2

through RULE5. With respect to via restriction, for the 8 LELE layer (no SADP) cases, having

4 and 8 neighbors blocked yields different pin cost distributions (RULE6 vs. RULE9), i.e.,
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Figure 2.35: ∆cost with different RULE* in (a) N28-12T, (b) N28-8T and (c) N7-9T.

the orthogonal via restriction is less dominant in this particular context. However, when via

restriction is combined with SADP layers, the two forms of via restriction again show similar

results (RULE7 vs. RULE10, RULE8 vs. RULE11).

With N7-9T (Figure 2.35(c)), SADP routing rules have less cost impact on layers above

M4, as RULE4, RULE5 and RULE6 show similar ∆cost distributions. When M3 is made into an

SADP layer (RULE3), the vertical line (i.e., the clip index at which sorted ∆cost goes to infinity

(infeasible solution)) shifts left significantly. When the 4-neighbors via restriction is added to

RULE3 (i.e., in RULE8), the vertical line shifts again. (RULE3, RULE4, RULE5, RULE6 and

RULE8 respectively have 26, 14, 11, 13 and 39 infeasible clips out of 100.)

From the preceding discussions, we may tentatively form two general observations. (1)

First, the via restriction and SADP routing rules show different trends, i.e., effects on the ∆cost

profile. Moreover, the sensitivities of ∆cost to design rules and routing options vary with tech-

nology. For example, when SADP rules are applied to upper metal layers in N28-12T or N7-9T,

the routing costs do not change significantly, which we interpret to mean that SADP rules do not

affect routability significantly for these clips. This is different from what we observe in N28-8T.

(2) Second, for design rules that are applied to upper metal layers (>M3), almost half of routing

clips show zero ∆cost. This could imply that the pin cost metric of [178] cannot, by itself, ac-

curately quantify the difficulty. In other words, there is a gap between pin accessibility metrics

such as [178] and our switchbox-centric evaluation of routability.

Analysis of the number of variables and constraints. The number of directed arcs

(|A|), the number of vertices (|V |) and the number of nets (|N |) determine the number of vari-

ables and constraints in the ILP. Without via restrictions and SADP rules (no restriction), the

number of variables is O(|A| · |N |). With Constraints (2.43)–(2.46), the number of constraints

is O((|V | + 3 · |A|) · |N |). Regarding via restriction, when α neighbor sites are blocked, the
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number of variable is the same as the basic case (no restriction), and the number of constraints

is O(α · |V | + (|V | + 3 · |A|) · |N |). With the SADP routing rules, the number of variables is

O((10·|V | + |A|)·|N |) because of the additional binary indicator (p); the number of constraints

is O((34 · |V | + 3 · |A|) · |N | + 10 · |V |). Regarding via shapes, when a β size of via shape is

considered, the number of variables is O((β · |V | + |A|) · |N |) due to the creation of additional

via edges, and the number of constraints is O(β2 · |V | · |N | + (β · |V | + 3 · |A|) · |N |).

2.3.4 Conclusion

In this section, we have studied impacts of patterning technology choices and design

rules on physical implementation metrics, with respect to cost-optimal design rule-correct de-

tailed routing. We describe OptRouter, an ILP-based optimal detailed router that correctly

handles multi-pin nets and various sub-20nm routing challenges including via restrictions, via

shapes, and SADP patterning rules. OptRouter enables design rule evaluation using “difficult”

routing clips (switchboxes) selected according to a pin cost metric. We study ∆cost distributions

for different design rules, relative to a RULE1 where all layers are LELE and there are no via

restrictions. From the results, we observe that the sensitivities of ∆cost to design rules and rout-

ing options vary with technology. Also, we observe that there is a gap between pin accessibility

metrics such as [178] and our switchbox-centric evaluation of routability.

Future work includes speedup of OptRouter to gain insights into physical implementa-

tion impacts at larger granularity (switchbox size). Currently, OptRouter average runtime for a

7 track × 10 track switchbox (1.0× 1.0µm2 layout area in 28nm) is 1047 sec (single-threaded)

with SADP and via restriction rules. Without such rules (as in [96]), average runtime is 842

sec.31 As noted above, our results give insight into the degree of suboptimality in current rout-

ing tools, and open up the possibility of (massively distributed) local improvement of detailed

routing solutions. Also, for better quantification of “difficult-to-route” clips, development of a

metric beyond [178] to estimate routability in sub-20nm nodes will be an important aspect of

our future work.
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Chapter 3

Process-Aware Design Methodologies

This chapter presents several distinct process-aware design methodologies, which in-

cludes OCV-aware top-level clock tree optimization, the mitigation of clock skew variation and

die-to-die variation-aware partitioning in 3DIC. First, we present a new CTS methodology that

optimizes clock logic cell placements and buffer insertions in the top level of a clock tree. Bal-

ancing the clock trees of multiple clocks is challenging because timing constraints depend on

clock periods, and on the process, voltage and temperature (PVT) corners. In this study, we

formulate the top-level clock tree optimization problem as a linear program that minimizes a

weighted sum of timing slacks, clock uncertainty and wirelength. Experimental results in a com-

mercial 28nm FDSOI technology show that our method can improve post-CTS worst negative

slack across all modes/corners by up to 320ps compared to a leading commercial provider’s CTS

flow. Second, we propose a novel framework encompassing both global and local clock network

optimizations to minimize the sum of skew variations across different PVT corners between

all sequentially adjacent sink pairs. The global optimization uses linear programming to guide

buffer insertion, buffer removal and routing detours. The local optimization is based on machine

learning-based predictors of latency change; these are used for iterative optimization with tree

surgery, buffer sizing and buffer displacement operators. Our optimization achieves up to 22%

total skew variation reduction across multiple testcases implemented in foundry 28nm technol-

ogy, as compared to a best-practices CTS solution using a leading commercial tool. Third, we

study performance improvements of 3DIC implementation that leverage knowledge of mix-and-

match die stacking during manufacturing. We propose partitioning methodologies to partition

timing-critical paths across tiers to explicitly optimize the signed-off timing across the reduced

set of corner combinations that can be produced by the stacked-die manufacturing. These include
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both an ILP-based methodology and a heuristic with novel maximum-cut partitioning, solved by

semidefinite programming, and a signoff timing-aware FM optimization. We also extend two

existing 3DIC implementation flows to incorporate mix-and-match-aware partitioning and sig-

noff, demonstrating the simplicity of adopting our techniques. Experimental results show that

our optimization flow achieves up to 16% timing improvement as compared to the existing 3DIC

implementation flow in the context of mix-and-match die stacking.

3.1 OCV-Aware Top-Level Clock Tree Optimization

In a modern SOC, clock logic cells (CLCs), such as clock gating cells (CGCs), multi-

plexers (MUXes) and dividers (DIVs), are required in the clock tree to achieve different perfor-

mance and power saving requirements. To enable multi-mode operation and dynamic voltage

frequency scaling (DVFS), large numbers of clocks are generated to drive flip-flops (FFs) in an

SOC.32 Balancing the clock trees of multiple clocks is challenging because timing constraints

depend on clock periods, and on the process, voltage and temperature (PVT) corners. Further-

more, as on-chip variation (OCV) increases, clock uncertainties (derates) on the launch and

capture paths can increase. Clock tree synthesis (CTS) must find optimal branching points in the

clock tree to minimize clock uncertainties due to OCV on non-common paths [60][152][156].

Figure 3.1 (left) illustrates the clock balancing problem due to CLCs in a clock tree and the

impact due to OCV. Due to the CLCs, the clock arrival times at flip-flop groups are skewed.

Moreover, the clock tree splits near the clock source; this leads to long non-common paths be-

tween the flip-flop groups. As shown in Figure 3.1 (right), we can insert buffers to balance the

clock, and optimize placement of the CLCs to reduce the non-common paths.

3.1.1 Motivation and Related Work

Given a clock tree, we represent the top-level clock tree as a hypergraph,

Gtop(Vtop, Etop), in which Vtop is a set of CLCs and the transitive fanin cells of the CLCs.

Etop is a set of nets that connect the cells in Vtop. Figure 3.2 shows a top-level clock tree with

a CLC and three bottom-level buffered clock trees. In most cases, sophisticated EDA tools and

CTS algorithms are able to achieve good solutions for the bottom-level clock trees. However,

achieving a good solution for the top-level clock tree can be problematic when there are critical

paths across the flip-flop groups between different bottom-level clock trees. The requirements
32Both synchronous and asynchronous clocks can exist in an SOC. Our work focuses on balancing synchronous

clocks in an SOC.
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Figure 3.1: Clock tree synthesis problems.

to balance the top-level clock are not obvious due to the complex structure of the tree (see Fig-

ure 3.6). Fixing the critical paths across the FF groups can be difficult at the bottom-level clock

trees due to tight timing constraints among FFs within the same group. To optimize timing across

flip-flop groups, we propose to balance the top-level clock tree while preserving the bottom-

level clock trees. For example, in Figure 3.2, if we increase the delay d(1, 2) on the net between

pins 1 and 2 from 2ns to 4ns, we can change the skew between flip-flop groups 1 and 2 from

2ns to 0ns, thereby meeting the timing target of critical path A which has a clock period of 3ns.

Note that varying the delay on the top-level clock tree does not affect critical path B (but, the

OCV derating on a longer top-level path will be larger), which has both its launch and capture

FFs in the same group. Therefore, we only need to consider the requirements to balance clock

across flip-flop groups, thereby simplifying the top-level clock tree optimization problem. Since

problems arise in the top-level tree due to CLCs, our work focuses on optimizing the placement

of CLCs and insertion of buffers in the top-level clock tree.

Related Work

Rajaram and Pan [152] propose CTS algorithms to optimize the chip-level clock tree

across different PVT corners. They use quadratic programming to reallocate clock pins of IP

blocks to reduce non-common paths in the chip-level clock tree. After clock pins are reallocated,

buffers are inserted up to each pin, and subtrees are merged recursively in the same manner as

the deferred-merge embedding (DME) algorithm [29]. The algorithm only inserts buffers that

minimize the difference in clock latency among subtrees across PVT corners. Although the chip-

level CTS work in [152] accounts for delay variation across PVT corners and timing penalty on

non-common paths, it does not consider CLCs, timing between flip-flop groups, or wirelength,

all of which make CTS a challenging task. As illustrated in Figure 3.1, the placement of CLCs

should also be considered during CTS as it can significantly affect the non-common paths in
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the tree. Other works [187][182] seek to minimize the effect of OCV during CTS, but do not

address the issues of CTS with CLCs across multi-corner and multi-mode (MCMM) scenarios.

Lung et al. [133] propose a linear programming (LP) based clock skew optimization [59] which

accounts for delay variation across PVT corners. They also present a method to map the required

delays obtained from the LP to actual circuits. While mapping delays, they use updated timing

information to dynamically adjust buffer delays. Although this section addresses the MCMM

clock skew minimization problem, it does not consider the effects of non-common paths and

CLC placement. There are many previous works on buffer insertion for CTS (e.g., [8][31]), but

they do not consider clock trees with CLCs which have different timing requirements depending

on the operating modes and flip-flop groups. Papa et al. [145] minimize worst negative slack

(WNS) at a single PVT corner by optimizing the placement and buffering of datapaths. They do

not consider multiple PVT corners and they do not balance the top-level clock trees.
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3.1.2 Our Approach

To address the top-level CTS problem mentioned above, we propose a new CTS flow

that accounts for the effects of CLCs as well as delay variations due to MCMM and OCV.

The basic idea of our approach is to automatically identify the requirements to balance clocks

based on the timing critical paths and use them to drive the CTS. The flow shown in Figure 3.3

starts with a placed design and performs conventional CTS to obtain a clock tree. We then

extract the top-level clock tree (see Algorithm 3) and remove buffers in the top-level clock tree.
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Within the remaining (bottom-level) clock trees, we extract timing-critical FF-to-FF paths to

identify the timing requirements for clock balancing. Based on these requirements, we construct

a linear program (LP) to optimize the placement of CLCs and the delay on nets (achieved by

inserting buffers) in the top-level clock tree. Unlike the routing algorithm proposed by Oh et

al. [139] which minimizes the total wirelength of a routing tree, we include CLCs and Steiner

point locations as variables in the LP, so that the LP-based optimization can account for the cost

of non-common paths. With the physical locations of CLCs and Steiner points of the routes, we

insert buffers in the top-level clock tree, legalize the placement and route the clock tree. The

advantages of our methodology are as follows.

• Preserving the bottom-level clock trees affords more accurate timing information for the

top-level clock tree optimization.33

• Since the top-level clock tree has many fewer instances, we can perform runtime-intensive

optimizations which cannot be practically applied to the bottom-level clock tree.

• Introducing our new top-level clock tree placement optimization enables fixing of subopti-

mal CLC placements which have already been determined during the preceding placement

stage.

• Buffer insertion and CLC placement optimization can achieve reductions of non-common

path timing penalties, which are not achievable using local/incremental optimizations.

The key contributions of our work are summarized as follows.

• We propose a new automated clock tree synthesis methodology that optimizes the CLC

placements and buffer insertion in the top-level clock tree.

• We propose an LP-based clock tree optimization method which accounts for routing re-

sources (i.e., wirelength), circuit timing and the impact of non-common paths.

• Our method improves WNS by up to 320ps, and reduce the top-level clock wirelength by

up to 50% compared to a default CTS flow.

• As part of our validation process, we develop generators for testcases that represent clock

tree structures typically found in high-speed IPs (e.g., graphics accelerators) and real-

world SOCs.

In the remainder of this section, Section 3.1.3 describes our top-level clock tree opti-

mization methodology. Section 3.1.4 describes experimental setup and our experimental results.

In Section 3.1.5, we summarize our work and outline directions for future research.
33In this section, we optimize only the top-level clock tree. Joint optimization of the top- and bottom-level trees is

a direction of ongoing work.
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3.1.3 Clock Tree Optimization

We now explain the top-level clock tree optimization problem and our approach. In

the following, we use condition, k, to denote that a timing value is specific to a PVT corner,

clock group and timing analysis type (setup or hold). For example, with two PVT corners, two

operating modes, two clock groups and two timing analysis types, k will range from 1, 2, ..., 16.

Problem Statement

Formally, the top-level CTS problem is defined as follows.

Objective: Minimize the weighted sum of (i) worst negative slack, (ii) total negative slack

(TNS), (iii) clock uncertainty and (iv) wirelength of a clock tree [152].

Input: Placed design; list of CLCs; timing constraints (SDC).

Output: An optimized placement of CLCs and clock buffers, clock routing of the top-level

clock tree.

We model the cost of clock uncertainty Zk(a, b) on a critical path between flip-flops a

and b as the sum of delays of the non-common launch and capture clock paths in the critical

path. The non-common path delays are normalized to the clock period (CP) of the path using

factor αk.
Zk(a, b) = αk{

∑
i∈ha,j∈hb

dk(i, j)−
∑

i,j∈(ha∩hb)

2dk(i, j)}

αk = 1/CP at condition k

(3.1)

where ha denotes a launch/capture path from a clock source to FF a, and dk(i, j) is the delay

between pin i and j.

Our Approach

We formulate the top-level clock tree balancing problem as a linear program by assum-

ing that we can vary (i) the delay dref (i, j) from an output pin i to its fanout input pin j at a

reference condition;34 (ii) locations of CLCs; and (iii) Steiner points in the clock net (for a given

topology). Although wire delay is normally nonlinear with respect to wirelength, we approxi-

mate dref (i, j) as a linear function of distance between pin i and j assuming buffer insertion (as

noted in, e.g., [145], the delay of a net with uniformly spaced buffers is linearly proportional to

the number of stages).35

34The reference condition is {SS process corner, 0.85V, 125◦C}.
35A buffered net has relatively linear delay vs. distance even in advanced technology nodes. For example, the stage

delay in a uniformly buffered-chain is almost the same except for the first few stages. Adding an additional stage will
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The main objective of the LP is to minimize the weighted sum of worst negative slack

Swns, the total negative slack Stns, non-common paths, Zk(a, b), and total wirelength U(i, j).36

Note that we weight the Zk(a, b) proportional to its original negative slack (i.e., 1 − s0k(a, b))
such that the LP focuses on reducing the non-common path delay on timing paths. The critical

paths and their original slacks s0k(a, b) are extracted after the buffer removal step in Figure 3.3

by performing static timing analysis (STA).

To represent negative slack sk
′(a, b) in the LP, we use Constraints (3.3) and (3.4) such

that sk
′(a, b) = 0 when sk(a, b) > 0. Swns and Stns are defined in Constraints (3.5) and (3.6),

respectively. Since circuit designers may treat hold and setup slacks differently, we use a weight

γk ≥ 0 to set the ratio of importance (i.e., normalization ratio) of setup and hold slacks. The

value of γk can be different for hold or setup analysis, as indicated by the condition k. We

represent the timing slacks sk(a, b) for each timing-critical path between flip-flops a and b as a

function of the original slack, original clock skew λk(a, b), and the clock arrival times (tref (a))

in Constraint (3.7). Because delay and slack vary according to PVT corners and timing analysis

type, we normalize the slacks across different conditions to a reference corner by using scaling

factors ηk, following the approach in [133]. ζ = 1 if the path is a setup-critical path and ζ = −1

if the path is a hold-critical path. tref (a) is the sum of delays along the path ha (Constraint

(3.8)).

increase the delay by a fixed amount. To account for the non-linearity within a single stage delay, our buffer insertion
algorithm detour wires to match the required delay obtained from our LP.

36Our objective function is different from [152]. They do not consider wirelength and the timing between flip-flop
groups.
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Objective:

Minimize −wwns · Swns − wtns · Stns + wwl ·
∑

e(i,j)∈Etop

U(i, j)

+wncp ·
∑
k,a,b

(1− s0k(a, b)) · Zk(a, b) + wdis ·
∑

i

M(i, i0) (3.2)

Subject to:

sk
′(a, b) ≤ αk · sk(a, b), ∀a, b, k (3.3)

sk
′(a, b) ≤ 0, ∀a, b, k (3.4)

Swns ≤ γk · sk
′(a, b),∀a, b, k (3.5)

Stns =
∑

a,b,k
γk · sk

′(a, b) (3.6)

ηk · sk(a, b) = ηk · (so
k(a, b)− λk(a, b)) + ζ(tref (a)− tref (b)) (3.7)

tref (a) =
∑

i,j∈ha

dref (i, j) (3.8)

dref (i, j) ≥ βref · U(i, j) (3.9)

Zk(a, b) = αk{
∑

i∈ha,j∈hb

dk(i, j)−
∑

i,j∈(ha∩hb)

2dk(i, j)} (3.10)

M(i, j) = mx(i, j) +my(i, j) (3.11)

mx(i, j) ≥ (px(j)− px(i)),mx(i, j) ≥ 0 (3.12)

my(i, j) ≥ (py(j)− py(i)),my(i, j) ≥ 0 (3.13)

M(i, i0) = mx(i, i0) +my(i, i0) (3.14)

mx(i, i0) ≥ (px(i)− px(i0)),mx(i, i0) ≥ 0 (3.15)

my(i, i0) ≥ (py(i)− py(i0)),my(i, i0) ≥ 0 (3.16)

0 ≤ p{x,y}(i) ≤ F{x,y} (3.17)

The values of λk(a, b) and the cell delays in dref (i, j) are constants in the LP, and are

extracted from STA reports after the buffer removal step in our flow. In Constraint (3.9), we

model the delay dref (i, j) between pins i and j as a linear function of the Manhattan distance

U(i, j) between the pins. βref is a conversion factor to convert the Manhattan distance to delay

at the reference condition. We obtain the value of βref using the optimal repeater length method

in [17]. The value of βref is 30ps per 100µm for a X8 buffer in the 28nm foundry FDSOI

standard cell library that we use in our experiments. We calculate Zk(a, b) in Constraint (3.10).

The Manhattan distances are calculated by using Constraints (3.11)–(3.13). The location of a pin

i is specified by variables px(i) and py(i), which represent the x and y coordinates of the pin. The
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Figure 3.4: Normalized (a) setup WNS and (b) hold WNS obtained by solving the LP for
different γk and wwns/wtns.

bounds for px(i) and py(i) are specified in Constraint (3.17). Fx and Fy are the upper bounds

for the pin coordinates along the x and y axes, i.e., the dimensions of the design’s floorplan.

To avoid unnecessary cell displacements, we add a displacement cost M(i, i0) in the

objective function [145]. The displacement cost is defined as the sum of Manhattan distances be-

tween the original cell locations ([px(i0), py(i0)]) and their corresponding cell locations ([px(i),

py(i)]) after optimization. M(i, i0) is calculated using Constraints (3.14)–(3.16). Since the dis-

placement cost will force the LP to “pull” the cells to their original locations, we use a very small

weighting factor (wdis = 0.001) as the cell displacement cost. We apply uniform weights for

TNS and non-common path delays, i.e., wtns = 1, wncp = 1. Since the typical values of total

wirelength in a top-level clock tree is much larger than the timing slacks we set wwl = 0.001

such that the cost in the LP is not dominated by the wirelength.

Figures 3.4(a) and 3.4(b) respectively show the setup and hold WNS (both normalized

to their corresponding clock periods) obtained by solving the LP for different values of γk. As

we sweep γk from 1 to 10, the setup WNS obtained from the LP improves but the hold WNS

worsens. When we sweep the wwns/wtns ratio, the setup and hold WNS are not affected when

γk ≤ 3. However, when γk > 3, the cost in the LP is dominated by the setup WNS and

increasing the wwns/wtns ratio will improve the setup WNS. Since the hold time violations

are relatively easy to fix by inserting buffers, we prioritize setup slacks when we select the γk

and wwns/wtns weight ratios. In our experiments, we use γk = 5 and wwns/wtns = 2000

because we experimentally observe that by increasing γk further does not improve the setup

WNS but makes hold WNS worse (black arrow in Figure 3.4(b)). We use the same values of

the weighting factors across all testcases. It is also possible to apply different combinations of

values of weighting factors, run the flows in parallel, and choose the best CTS solution.
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Implementation Heuristics

Given a design with an initial clock tree, G(V,E), and a subset of vertices VCLC ⊆ V

corresponding to CLCs, we extract the top-level clock net using Algorithm 3.37 First, we create

a list Vtop of all transitive fanin cells of the CLCs. In Lines 2–4, we remove all the clock routes

connected to the fanin cells. In Lines 5–12, we check each cell in Vtop, remove all the buffers

and reconnect the nets accordingly.

Algorithm 3 Extract top-level clock tree.
Procedure Extract top()
Input : G(V,E), VCLC

Output: G(Vtop, Etop)
1: Vtop ← transitive fanins of all v ∈ VCLC ;
2: for all e(u, v) ∈ E; u, v ∈ Vtop do
3: Remove clock routing for e(u, v);
4: end for
5: Etop ← ∅
6: for v ∈ Vtop do
7: if v is a buffer then
8: (v.parent).children← v.children;
9: Vtop ← Vtop \ {v};

10: Etop ← Etop ∪ {e(v.parent, v.children)};
11: end if
12: end for
13: Return G(Vtop, Etop);

In the top-level clock balancing problem, the LP optimizes the delays from an output

pin to input pins in every net. For nets with more than one fanout, we modify the net into a

binary tree by inserting Steiner points. The purpose of this step is to include the locations of

the Steiner points as variables in the LP so as to optimize the non-common paths. Given a net,

Gnet(V,E), and its driving pin, vr, we apply Algorithm 4 to obtain a binary tree. In Lines 8–16,

we find the pin pair that minimize the metric ∆L′ which is defined as the sum of the difference

in sink latency38 and the delay due to the Manhattan distance between these pins.39 In Lines

17–25, we merge the pin pair that has minimum ∆L′ by creating a new Steiner point. We define

the x and y coordinates of the new Steiner point as the average of the x and y coordinates of

the merged pins (Lines 21–22). The sink latency of the Steiner point is defined as the maximum

sink latency of the merged pins (Line 20). The procedure split net() is invoked repeatedly until

all driving pins have a single connection (to a Steiner point). Figure 3.5 illustrates our Steiner

point insertion algorithm. In the first iteration, we merge pins j2 and j3 because they have the
37We obtain VCLC by assuming all CLCs are in the top-level clock tree.
38The sink latency L(u) of a pin u is the maximum latency from u to any flip-flop in the transitive fanout of u.
39We convert the Manhattan distance to delay by a conversion factor βk at the reference condition.
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smallest ∆L and Manhattan distance. Pins j2 and j3 are then connected to Steiner point j2′ (red

square). The location of j2′ is defined by the average of the x and y coordinates of pins j2 and j3.

In the second iteration, we merge pins j1 with j2′ because they have a smaller ∆L′ even though

the Manhattan distance between pins j1 and j2′ is larger than the Manhattan distance between

pins j4 and j2′ . In the last iteration, we merge j4 and j1′ . Note that our algorithm selects the

pins to merge based on the sum of Manhattan distance and the difference in sink latency. This

is different from the algorithm in [52] which selects the pins based on Manhattan distance only.

For example, the algorithm in [52] will merge j2 and j3, followed by j4 and j1. As shown in

Figure 3.5 (the upper-right clock tree), the algorithm in [52] will lead to a clock tree that will

require more buffers to be inserted (red arrows) to balance the clock latencies (green arrows)

compared to the tree produced by our algorithm (the lower-right clock tree).

Algorithm 4 Create Steiner points.
Procedure split net()
Input : Gnet(V,E), vr ∈ V
Output: G′

net(V
′, E′)

1: V ′ ← V ;
2: if (|vr.child| < 2) then
3: E′ ← E;
4: else
5: E′ ← ∅;
6: while (|vr.child| ≥ 2) do
7: min ∆L′ ←∞;
8: for (u1, u2 ∈ vr.child) do
9: ∆L(u1, u2)← |u1.L− u2.L|;

10: ∆L′(u1, u2)← βk ·M(u1, u2) + ∆L(u1, u2);
11: if (∆L′(u1, u2) ≤ min ∆L′) then
12: umin1 ← u1;
13: umin2 ← u2;
14: min ∆L′ ← ∆L′(u1, u2);
15: end if
16: end for
17: Create a new Steiner point u′ 6∈ V ;
18: vr.child← vr.child \ {umin1, umin2};
19: u′.child← {umin1, umin2};
20: u′.L← max(umin1.L, umin2.L);
21: px(u′)← (px(umin1) + px(umin2))/2;
22: py(u′)← (py(umin1) + py(umin2))/2;
23: vr.child← vr.child ∪ {u′};
24: V ′ ← V ′ ∪ {u′};
25: E′ ← E′ ∪ {e(u′, umin1), e(u′, umin2)};
26: end while
27: E′ ← E′ ∪ {e(vr, u

′)};
28: end if
29: Return G′

net(V
′, E′);
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Figure 3.5: Steiner point creation. In each iteration, we find a pair of pins (black circles) or
Steiner points with the minimum ∆L′ (sum of scaled Manhattan distance and difference in sink

latency) and connect them to a new Steiner point (red square).

By solving the LP, we obtain cell locations, clock routes (Steiner point locations) and

net delays in the top-level clock tree. Next, we insert buffers in the top-level clock tree to guide

clock routing and control clock skews. For each two-pin net in the optimized top-level clock

tree, we insert buffers according to the steps described in Algorithm 5. In Line 1, we initialize

the variable n, which indicates the number of inserted buffers, to 1. In Lines 2–14, we calculate

the number of buffers required to meet the delay target as a function of net delays and buffer

delays. Mbuf is the minimum required spacing between two buffers.40 The while loop exits

when the sum of net and buffer delays (dest) exceeds the required delay between the pins i and

j (dreq). In Lines 15–21, we calculate the minimum wirelength required to insert n buffers. If

this wirelength is less than or equal to the Manhattan distance between pins i and j, M(i, j), we

place the buffers in an L-shaped (y-axis first, followed by x-axis) manner. Otherwise, we place

the buffers in a U-shaped manner because total wirelength is > M(i, j). U-shaped placement is

the general case, and L-shaped is a special case of U-shape when total wirelength is ≤M(i, j).

3.1.4 Experimental Setup and Results

To test the effectiveness of our methodology, we require testcases with complex top-

level clock trees. Since existing benchmarks [113][205] typically lack complex top-level clock

trees, we generate testcases based on common clock tree structures typically found in high-speed
40We use Mbuf = 5µm in our experiments.

92



Algorithm 5 Insert buffers.
Procedure insert buffers()
Input : pins i and j, dreq(i, j)
Output: inserted buffers

1: n← 1;
// calculate number of buffers to meet required delay

2: while (1) do
3: l←M(i, j)/(n+ 1);
4: if (l < Mbuf ) then
5: l←Mbuf ;
6: end if
7: dest ← (n+ 1)× dw(l) + (n− 1)× dg(cin buf + cw(l)) + dg(cin(j) + cw(l));
8: if (dest > dreq(i, j)) then
9: n← n− 1;

10: break;
11: else
12: n← n+ 1;
13: end if
14: end while
15: if (n > 0) then
16: if (Mbuf × n > M(i, j)) then
17: Detour wire and place n buffers in U-shape;
18: else
19: Place n buffers in L-shape;
20: end if
21: end if

SOCs and IPs [22][164]. The clock structures of our testcases are shown in Figures 3.6(a)–(f).

We use dual-Vt 28nm foundry FDSOI libraries and implement each testcase at two operating

modes – {1.25GHz at 0.95V } and {1.667GHz at 1.20V }. We perform placement and routing

(P&R) using a commercial tool and use Synopsys PrimeTime vH-2013.06-SP2 [221] for timing

analysis. Table 3.1 shows the timing analysis parameters in our experiments.

Testcase Description and Generation

Testcases from Tsay [186], Kahng and Tsao [113] and ISPD-2009/2010 [205] CNS

contest benchmarks lack CLCs and are insufficient to create complex top-level clock hierarchies.

Kahng et al. [105] improve CTS testcases by adding CLCs (Figures 3(a) and 3(b) in [105]) but

two key elements ignored: (1) combinational logic between flip-flop groups and hence critical

paths between flip-flop groups; and (2) multiple clock sources. The CTS problem becomes

difficult when synchronous and asynchronous clocks need to be balanced across multiple flip-

flop groups. We improve over [105] by (1) adding combinational logic with varying number

of stages between flip-flop groups, (2) adding multiple synchronous and asynchronous clocks,
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Figure 3.6: Clock structures of our testcases.
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Table 3.1: Timing analysis setup.

Parameter Value

PVT corner for setup analysis at the 1.250GHz mode SS, 0.85V , 125◦C

PVT corner for hold analysis at the 1.250GHz mode FF, 1.05V , 125◦C

PVT corner for setup analysis at the 1.667GHz mode SS, 1.10V , 125◦C

PVT corner for hold analysis at the 1.667GHz mode FF, 1.30V , 125◦C

Clock uncertainty 0.15 × clock period

Maximum transition for clock paths 0.055ns

Maximum transition for data paths 0.125 × clock period

Timing derate on net delay (early/late) 0.90 / 1.19

Timing derate on cell delay (early/late) 0.90 / 1.05

Timing derate on cell check (early/late) 1.10 / 1.10

(3) using CLCs at different hierarchies to make the clock balancing problem very complex, (4)

creating multiple top-level clock hierarchies, and (5) performing CTS with MCMM and OCV

constraints.

Figures 3.6(a)–(f) show the six testcases T1–T6 used in our experiments. These testcases

use three clock sources typically seen in SOC designs [22] and can have large fanouts (e.g.,

> 1000 flip-flops). The clock source m clk is from the crystal oscillator, clk is the output of a

PLL and scan clk is the test clock. Clock sources m clk and clk are used to implement low-power

modes of operation, such as DVFS. The testcases use three kinds of dividers (DIV2, DIV4, DIV8

in figures), a glitch-free clock MUX, and integrated clock gating cells (CGCs) as CLCs. Outputs

of all dividers are sources of generated clocks; the generated clocks typically drive flip-flops for

debug/tracing, IO and other peripheral logic.

To implement variable stages of combinational logic, we use NetGen [222] and vary

#stages from 15 to 30. To model different critical paths, we connect flip-flips across groups

as well as within the same group using these logic stages. To obtain floorplan dimensions that

resemble SOCs, we use multiple instantiations of an interface logic module (ILM) of the JPEG

design from OpenCores [212]. We create a netlist with the top module 5×JPEG, in which we

instantiate the JPEG design five times, perform SP&R and generate an ILM. Note that in this

section, we do not optimize the bottom-level clock tree. Therefore, instantiation of the same

5×JPEG multiple times (instead of using different modules) does not change the outcome of

our experiments. We connect multiple instances of the ILM using combinational logic stages.

For all CLCs, we implement custom netlists in the 28nm foundry FDSOI technology, and group

flip-flops within the CLCs into their own skew groups so that these flip-flops do not affect global
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skew and latencies. The path latencies of flip-flop groups are controlled by changing timing

constraints and the number of stages of combinational logic between the groups. To allow a

blockage-free placement region for the CLCs, we place ILM blocks (hard macros for the CTS

tools) in an L-shaped manner along the periphery of the core as shown in Figure 3.7(a).

All testcases contain bidirectional paths, i.e., both launch and capture flip-flops appear

in flip-flop groups that are driven by the fastest clock and other slower clocks. In addition, the

fastest clock drives around 90% of the flip-flops that do not belong to the ILMs. Table 3.2 shows

#CLCs, #cells, the flip-flops not in ILM, flip-flops in the ILM, flip-flops at the ILM boundary,

and the area of each testcase (design in table). Testcases T2, T3 and T6 contain critical paths

between flip-flops from two different clocks, one with large latency and the other with small

latency. The CTS problem is complicated by the need to balance skew between these FF groups.

Testcases T1–T4 contain multiple generated clocks and reconvergent paths between these clocks.

These testcases make the CTS problem complex because skew needs to be balanced between fast

and slow clocks. In testcases T3–T5, the control signals of CGCs are generated by clk, which

makes the latency of the signal to the enable pin of the CGCs very critical. Besides balancing

skews, CTS also needs to balance the critical path delays of the enable signal to the CGCs along

with the clock latency. To report timing paths across clocks accurately, we set the path multiplier

in the Synopsys Design Constraint (SDC) [18] file for paths between all clocks.

Table 3.2: Summary of testcases.

Design #CLCs #Cells
#Flip-flops Area

6∈ ILM ∈ ILM Boundary (mm2)

T1 17 1.93M 10K 202.7K 1.7K 3.75×3.00

T2 12 1.93M 10K 202.7K 1.7K 3.75×3.00

T3 18 1.93M 12K 202.7K 1.7K 3.75×3.00

T4 24 1.93M 12K 202.7K 1.7K 3.75×3.00

T5 18 1.93M 8K 202.7K 1.7K 3.75×3.00

T6 13 1.92M 7K 202.7K 1.7K 3.75×3.00

Experimental Results

Table 3.3 summarizes the key metrics of the clock tree before (I = Initial, produced by

a commercial tool) and after (O = Optimized) applying our top-level clock tree optimization.

Rows 1–14 in Table 3.3 show the results at the post-CTS stage, while Rows 15-28 show the

results at the end of the implementation flow (after datapath routing).41

41We apply the default clock tree optimization, routing and design optimization commands in the EDA tool after
CTS. We do not compare our work with previous work as their algorithms cannot be applied to our testcases.
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Post-CTS stage. Our optimization flow reduces the total wirelength of the top-level

clock tree by 53% to 68% across all six testcases. Figure 3.7 shows that wirelength reduces

because our flow clusters the CLCs such that the clock tree does not split near the clock entry

points. The large wirelength reduction suggests that the initial CLC placements by EDA tools

may not be aware of the CTS requirements. The smaller wirelength enables the optimized clock

tree to also reduce the number of buffers. In testcases T4 and T5, the number of buffers is

larger, as our optimization flow inserts more buffers in the clock tree to improve timing slack.

To estimate switching power, we extract gate and wire capacitances of the top-level clock tree.

Rows 5–6 in Table 3.3 show that our flow can reduce the switching power in the top-level clock

tree by 12% to 40% for all testcases, including testcases T4 and T5, where the number of buffers

increases.

(a) Initial clock tree. (b) Optimized clock tree.

Figure 3.7: (a) Initial and (b) optimized clock trees for testcase T6. Wiring of the top-level
clock trees is shown in black. Our flow splits common paths farther from the clock root

compared to the initial clock tree. As a result, the total wirelength in the top-level clock tree is
reduced from 45mm to 22mm.

Our flow also improves the setup WNS and TNS by up to 550ps and 255ns, respectively

(Rows 7–10). Hold WNS and TNS are also improved except for testcase T6, in which the hold

WNS and TNS worsen by 110ps and 780ps, respectively (Rows 11–14). Our optimization flow

can worsen hold WNS and TNS because we focus on improving the setup slacks (γk = 5). The

tradeoff between setup and hold slacks is based on the following assumptions: (1) hold time

violations are easier to fix in post-CTS implementation stages and (2) some of the hold time

violations are fixed by the increased wire delays in the routing stage.

In Rows 30–34 of Table 3.3, we report runtimes of the main procedures in our optimiza-
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tion flow. We spend most of the time to extract timing information and to formulate the LP.42

CLC placement, buffer insertion, legalization and routing only take 10 minutes in total because

there are not many cells in the top-level clock tree. The total runtime is 135 minutes on average.

Testcase T3 has a higher runtime because it has more timing-critical paths than other testcases

(Row 29).

Post-datapath routing stage. To study the benefits of our optimization flow, we also

compare the post-routing results between the initial and the optimized clock trees. The results in

Table 3.3 show that all designs with the optimized clock tree have the same or improved setup

WNS compared to the designs with the initial clock tree (Rows 21–24). The improvement in

setup WNS at the post-routing stage is up to 320ps. Although some testcases with the optimized

clock tree have worse hold slacks (i.e., testcases T4, T5 and T6), the differences are less than

100ps. The results in Rows 15–16 show that our optimization flow reduces the total wirelength

by 38% to 51% across all six testcases. The improvements are smaller as compared to the post-

CTS stage because the total wirelength of the initial and optimized clock trees both increase at

the post-routing stage due to wiring of the signal nets. Total number of buffers and switching

power at the post-routing stage are similar to values seen at the post-CTS stage.

3.1.5 Conclusion

Designing a balanced top-level clock tree with multiple clock sources is very complex as

we need to consider MCMM, OCV and timing constraints across flip-flop groups. We develop

a CTS methodology that optimizes CLC placement and buffer insertion, and that minimizes

non-common paths between flip-flop groups. We formulate the top-level CTS problem as the

minimization of a weighted sum of WNS, TNS, clock uncertainty due to OCV and wirelength.

We solve this problem using LP and develop heuristic flows to insert Steiner points and buffers,

which are required elements of a top-level CTS solution. We also develop generators for test-

cases that resemble clock tree structures typically found in high-speed SOCs. We validate our

optimization flow on testcases from our generators and achieve up to 51% reduction in wire-

length for the top-level clock tree, and 320ps improvement in WNS, compared to a leading

commercial CTS tool. Our future work includes (i) handling obstacles, (ii) accounting for op-

timal buffering solutions, (iii) creating testcases to capture other important SOC elements such

as memory controller and multimedia blocks, and (iv) joint optimization of the top- and bottom-

level clock trees.

42Solving the LP takes less than 30 sec.
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Table 3.3: Post-CTS results. I: Initial, O: Optimized.

Testcase: T1 T2 T3 T4 T5 T6

Post-CTS

1 Top-level I (µm) 18086 19261 41476 38830 34009 36052

2 wirelength O (µm) 8442 8614 13193 14389 14186 15104

3 Total-level I 163 210 361 298 322 253

4 buffers O 152 167 242 301 421 226

5 Switching I (µW ) 875 1018 1639 1515 1557 1315

6 power O (µW ) 590 692 969 1210 1360 987

7 Worst I (ns) -0.05 -0.10 -0.37 -0.65 -0.55 -0.32

8 setup WNS O (ns) -0.04 0.00 -0.36 -0.55 0.00 -0.20

9 Total I (ns) -0.41 -0.25 -48.47 -1034.38 -8.39 -40.56

10 setup TNS O (ns) -0.17 0.00 -45.47 -779.46 0.00 -12.78

11 Worst I (ns) 0.00 0.00 -0.40 -0.04 0.00 -0.04

12 hold WNS O (ns) 0.00 0.00 -0.40 -0.01 0.00 -0.15

13 Total I (ns) 0.00 0.00 -130.12 -0.21 0.00 -0.09

14 hold TNS O (ns) 0.00 0.00 -128.23 -0.05 0.00 -0.87

Post-datapath routing

15 Top-level I (µm) 26261 30779 58223 50432 48761 44794

16 wirelength O (µm) 15750 19097 33982 27342 28570 22051

17 Total-level I 163 215 357 300 322 252

18 buffers O 152 170 248 306 427 226

19 Switching I (µW ) 885 1100 1748 1592 1616 1337

20 power O (µW ) 638 729 1042 1220 1374 968

21 Worst I (ns) -0.03 0.00 -0.05 -0.58 -0.32 -0.19

22 setup WNS O (ns) 0.00 0.00 0.00 -0.46 0.00 -0.18

23 Total I (ns) -0.05 0.00 -0.06 -883.50 -3.03 -10.81

24 setup TNS O (ns) 0.00 0.00 0.00 -609.28 0.00 -1.10

25 Worst I (ns) 0.00 0.00 -0.37 -0.04 0.00 0.00

26 hold WNS O (ns) 0.00 0.00 -0.10 -0.11 -0.04 -0.05

27 Total I (ns) 0.00 0.00 -19.82 -0.14 0.00 0.00

28 hold TNS O (ns) 0.00 0.00 -5.46 -0.78 -0.08 -0.33

29 Total timing paths in LP 16K 20K 72K 40K 28K 11K

Runtime (minutes)

30 Extract timing 45 37 176 71 71 25

31 Formulate LP 36 26 165 51 36 9

32 Place & legalization 8 4 6 5 6 5

33 Clock routing 7 4 5 4 5 5

34 Total 96 71 352 131 118 44
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3.2 A Global-Local Optimization Framework for Simultaneous

Multi-Mode Multi-Corner Clock Skew Variation Reduction

Modern SOCs typically exploit complex operating scenarios to maximize performance

and reduce power consumption. For instance, techniques such as dynamic voltage and frequency

scaling (DVFS), split rail power supply, etc. are widely applied in SOC designs to meet perfor-

mance and power targets. However, these techniques increase the number of modes and corners

used for timing closure, which will in turn lead to increased datapath delay variation and clock

skew variation across corners. Such large timing variations increase area and power overheads,

as well as design turnaround time (TAT) due to a “ping-pong” effect whereby fixing timing is-

sues at one corner leads to violations at other corners. To solve this issue, we can minimize either

datapath delay variation or clock skew variation across corners. Given that datapath optimization

is a local optimization and is usually applied after the clock network optimization, what datapath

delay variation minimization can accomplish is limited. In other words, datapath optimizations

are practically less impactful than minimizing clock skew variations in most cases. This is why

clock network optimization is a key first step during the physical implementation flow for timing

closure. Further, clock skew variation can be achieved via both global and local optimizations of

the clock network. Therefore, minimizing clock skew variation across corners is more effective

for multi-corner timing closure. In this section, we minimize clock skew variation.

Moreover, timing violations due to clock skew variation across corners are typically

reduced by (hold and/or setup) buffer insertion, Vth-swapping and gate sizing on datapaths at

later design stages. Thus, clock skew variation between each pair of sequentially adjacent sinks

can lead to potential costs of area, power and design TAT. We therefore minimize the sum of

skew variations between all sink pairs to minimize the overall physical implementation costs

(e.g., in area, power, TAT).

Although many commercial EDA tools are capable of multi-mode multi-corner clock

network synthesis [176][220], our optimization framework can be applied as an incremental op-

timization for further reduction of skew variations in light of our robust interface to commercial

P&R and STA tools. Moreover, experimental results show that our proposed optimization is

able to achieve significant skew variation reduction on clock networks that have been synthe-

sized with a leading commercial tool.

Contributions of our work are as follows.

1. We are the first in the literature to study the problem of minimizing the sum of clock skew

variations across multiple PVT corners.
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2. We propose a novel global-local framework for clock network optimizations to minimize

the sum, over all pairs of PVT corners, of skew variation between all sequentially adjacent

pairs.

3. We demonstrate that machine learning-based predictors of latency change can provide

accurate guidance on the best moves to test during local optimization for minimization of

skew variation across corners.

4. Our optimization framework has a robust interface to leading commercial P&R and STA

tools and production PDKs/libraries, and can be generalized to other clock network opti-

mization problems.

5. We achieve up to 22% reduction in the sum of skew variations of clock trees in testcases

that reflect high-speed application processor and memory controller blocks.

3.2.1 Related Work

We classify previous works on clock skew optimization as (i) works that target skew

and/or delay optimization at single or multiple corners and (ii) works that optimize skew varia-

tion across multiple PVT corners.

Several previous works optimize skew at one or more PVT corners, but do not address

skew variation across corners. Cao et al. [24] minimize the worst skew in a clock tree by parti-

tioning the tree into different skew groups. The authors then greedily minimize the worst skew in

each skew group to minimize overall local skew. Cho et al. [34] perform clock tree optimization

that is temperature-aware. The authors modify the deferred merge embedding (DME) algorithm

to include merging diamonds for consideration of temperature variations to guide clock skew and

wirelength minimization. Lung et al. [133] perform multi-mode multi-corner (MMMC) clock

skew optimization by minimizing the worst skew across all corners. They propose a methodol-

ogy to determine the delay correlation factor for clock buffers at 130nm, 90nm and 65nm and

conclude that the correlation across corners is linear. However, such an assumption might not

be valid at 28nm and below. Lung et al. [134] perform chip-level as well as module-level clock

skew optimizations with multiple voltage modes. The authors use power-mode-aware buffers

for chip-level clock tree optimization. For the module-level optimization, they only consider the

worst voltage corner.

Relatively fewer works exist that optimize skew variation across multiple PVT corners.

Restle et al. [159] propose a two-dimensional nontree structure. They divide the nontree struc-
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ture into two levels – leaf level (close to clock sinks) and top level (close to clock source). The

top level is the same as the traditional clock tree structure, but the leaf level is a mesh structure

such that each sink is connected to the nearest point on the mesh. Although this is a very ef-

fective way to minimize skew variation across corners, the mesh structure consumes enormous

wire resources and power. Su and Sapatnekar [175] use mesh structures for the top-level tree

which consumes less wire resource and power as compared to [159]. However, this consumes

59%-168% more wire resource than a tree structure. Further, the authors do not optimize skew

variation which still exists in the bottom-level subtrees. Rajaram et al. [151][153] propose a non-

tree construction method to insert crosslinks43 in a clock tree by estimating subtree delays using

Elmore delay model. The authors verify their method with SPICE-based Monte Carlo simula-

tions and report skew variability reduction. However, the approach consumes excess additional

wire and power due to crosslink insertions. Mittal and Koh [137] propose a greedy method to

insert crosslinks to reduce skew variation.

To our knowledge, there has been no systematic framework for minimization of clock

skew variation (across multiple signoff corners) for clock trees. Our work exploits both global

and local iterative optimizations to minimize skew variations across different PVT corners which

is very important for high-speed processor and multimedia blocks that operate at multiple modes

and corners. Further, instead of minimizing the maximum skew or skew variation, we minimize

the sum of skew variations over all sink pairs, which will reduce the potential costs of gate sizing

and buffer insertion for multi-corner timing closure.

3.2.2 Problem Formulation

The notations we use in this section are given in Table 3.4.

For a corner pair (ck, ck′), we define the normalized skew variation between sink pair

(fi, fi′) as

v
ck,ck′
i,i′ = |αk · skewck

i,i′ − αk′ · skewck′
i,i′ | (3.18)

where skew (skewck
i,i′) is defined as the latency difference between capture and launch clock

paths at ck. We emphasize that our optimization is local skew-aware, so that we only optimize

skews between launch-capture sink pairs that have valid datapaths in between them (i.e., we

avoid the pessimism that would result from use of global skew in the formulation). αk is the

normalization factor at corner ck with respect to the nominal corner. Note that αk is an input

parameter and can be determined by technology information (e.g., ratio between buffer delays at
43A crosslink is an additional wire between any two nodes of a given clock tree.
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Table 3.4: Notations.

Term Meaning

ck operating corner, (0 ≤ k ≤ K; c0 is the nominal corner)

αk normalization factor of corner ck with respect to c0

fi sink (e.g., flip-flop) in clock tree, (1 ≤ i ≤ N )

Pi clock path from clock source to fi

skewck
i,i′ clock skew between sink pair (fi, fi′) at corner ck

sj arc (i.e., tree segment without branching) in clock tree, (1 ≤ j ≤M )

Dck
j original arc delay at corner ck

∆ck
j delay change of arc sj at corner ck from optimization

Dck
max maximum latency of a clock path at corner ck

v
ck,ck′
i,i′ normalized skew variation across corner pair (ck, ck′) between (fi, fi′)

Vi,i′ worst normalized skew variation across all corner pairs between (fi, fi′)

ck and c0), clock tree properties (e.g., Vth and sizes of buffers in the tree), etc. Further, one can

define specific αk values for each sink pair. In our work, we define αk as the average skew ratio

between c0 and ck over all sink pairs.

We further define the maximum skew variation across corners, for each sink pair

(fi, fi′) as
Vi,i′ = max

∀(ck,ck′ )
v

ck,ck′
i,i′ (3.19)

Based on the above, we address the following problem formulation:

Skew variation reduction problem. Given a routed clock tree, minimize the sum over all sink

pairs of the maximum normalized skew variation across all corners.

Minimize
∑

∀(fi,fi′ )

Vi,i′ (3.20)

3.2.3 Optimization Framework

Figure 3.8 illustrates our optimization framework. We perform global and local opti-

mizations to reduce skew variations. The global optimization constructs a linear program (LP)

and uses it to guide buffer insertion, buffer removal, and routing detours. Local optimization is

based on a machine learning-based predictor of latency changes. It iteratively minimizes skew

variation via tree surgery (i.e., driver reassignment), buffer sizing, and buffer displacement. The

iterative optimization continues until there is no further improvement or other stopping condition

is reached.
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Figure 3.8: Overview of our optimization framework.

Global Optimization

We construct a linear program (LP) to reduce the sum of skew variations between all

sink pairs in a clock tree. Based on the LP solution, we determine the desired delay changes

of arcs at all corners and perform buffer insertion and removal, as well as routing detour, to

accomplish the desired delay changes. We determine number of buffers, buffer size and length

of routing detour based on lookup tables. However, the achievable delay values are discrete due

to the limited number of buffer sizes. Further, placement legalization and routing congestion

also lead to discrepancy between desired delay and actual delay after ECOs in the P&R tool.

Therefore, to minimize the sum of skew variations as well as to increase the likelihood that

the solution is practically implementable, we formulate the LP such that it minimizes the total

amount of delay changes with respect to an upper bound on sum of skew variations. As a result,

we implicitly minimize the number of ECO changes. We then sweep this upper bound to search

for the achievable solution with minimum sum of skew variations. The objective function is:

Minimize
∑

1≤j≤M, 0≤k≤K

|∆ck
j | (3.21)
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where ∆ck
j is the latency change on arc sj at corner ck.44 The upper bound U on the sum of skew

variations is specified as ∑
(fi,fi′ )

Vi,i′ ≤ U (3.22)

where Vi,i′ is the maximum normalized skew variation for the sink pair (fi, fi′) over all corner
pairs (ck, ck′), and is calculated based on the following constraint.

Vi,i′ ≥αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′ )−
∑

sj∈Pi

(Dck
j + ∆ck

j )

−αk′ · (
∑

sj′∈Pi′

(Dck′
j′ + ∆ck′

j′ )−
∑

sj∈Pi

(Dck′
j + ∆ck′

j ))

Vi,i′ ≥αk′ · (
∑

sj′∈Pi′

(Dck′
j′ + ∆ck′

j′ )−
∑

sj∈Pi

(Dck′
j + ∆ck′

j ))

−αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′ )−
∑

sj∈Pi

(Dck
j + ∆ck

j )) (3.23)

We further constrain the optimization such that the solution returned does not degrade (i) local

skew at any corner, nor (ii) the skew variation between corner pairs (ck, c0), for all arcs on clock

paths at all non-nominal corners ck.

∑
sj′∈Pi′

(Dck

j′ + ∆ck

j′ )−
∑

sj∈Pi

(Dck
j + ∆ck

j ) ≤ |
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j |

∑
sj∈Pi

(Dck
j + ∆ck

j )−
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′ ) ≤ |
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j | (3.24)

αk·(
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′ )−
∑

sj∈Pi

(Dck
j + ∆ck

j ))

−
∑

sj′∈Pi′

(Dc0
j′ + ∆c0

j′ )−
∑

sj∈Pi

(Dc0
j + ∆c0

j )

≤|αk · (
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j )− (

∑
sj′∈Pi′

Dc0
j′ −

∑
sj∈Pi

Dc0
j )|

∑
sj′∈Pi′

(Dc0
j′ + ∆c0

j′ )−
∑

sj∈Pi

(Dc0
j + ∆c0

j )

−αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′ )−
∑

sj∈Pi

(Dck
j + ∆ck

j ))

≤|αk · (
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j )− (

∑
sj′∈Pi′

Dc0
j′ −

∑
sj∈Pi

Dc0
j )| (3.25)

44We formulate ∆
ck
j as positive and negative components to handle the absolute values in our formulation.
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We also bound the maximum latency for each clock path as follows.∑
sj∈Pi

(Dck
j + ∆ck

j ) ≤ Dmax (3.26)

For each arc, we specify the upper and lower bounds on the latency change. The lower bound

Dck
min j is determined by the delay with optimal buffer insertion, without any routing detour. The

upper bound of delay change is defined as β times of the original arc delay, in which β can be

selected empirically (we assume β = 1.2 in this section).

Dck
min j ≤ D

ck
j + ∆ck

j ≤ β ·D
ck
j

(3.27)

To increase the likelihood that the LP solution is practically implementable, we charac-

terize lookup tables at each corner for stage delays of inverter pairs45 with various gate sizes and

routed wirelengths between consecutive inverters. We define the stage delay between inverter

pairs as the sum of gate delays of the two inverters in a pair and the delays of their fanout nets

(Figure 3.10). Based on the characterized lookup tables, we observe that for a given stage delay

per unit distance at c0 (i.e., the ratio between stage delay and routed wirelength for an inverter

pair), the stage delay ratios between pairs of corners are limited by the buffer insertion solutions

in lookup tables. Figure 3.9 shows the stage delay ratios between pairs of corners (c0, c1) and

(c0, c2), respectively. In the plot, each circle represents an inverter pair with a particular gate size,

routed wirelength between consecutive inverters, input slew and load capacitance. We use poly-

nomial fit to determine upper (W ck,ck′
max ) and lower (W ck,ck′

min ) bounds of delay ratios for each pair

of corners, which are shown as the red curves. Any delay ratio larger (smaller) than the upper

(lower) bound is not achievable with available buffer insertion solutions in lookup tables. Fur-

thermore, we assume that the delay per unit distance of an arc does not vary significantly in our

optimization due to Constraints (3.24)–(3.27). Thus, we use delay per unit distance of an arc in

the original clock tree to estimate upper and lower bounds of delay ratios (W ck,ck′
min,max), and apply

these bounds in Constraint (3.28) to avoid LP solutions that are not practically implementable

by ECOs.

W
ck,ck′
min ≤

Dck
j + ∆ck

j

D
ck′
j + ∆ck′

j

≤W ck,ck′
max (3.28)

Complexity analysis. The LP formulation (Constraints (3.21)–(3.28)) has O(M · K)

variables to indicate delay change on each arc at each corner (∆ck
j ); there are also O(N2) (i.e.,

45In this section, we assume that the buffers used to construct the clock tree are comprised of inverter pairs. But,
our methodologies apply to clock trees with both inverting and non-inverting buffers.
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Figure 3.9: Delay ratios between (c1, c0) and (c2, c0), respectively. c0 = (SS, 0.9V , -25◦C,
Cmax), c1 = (SS, 0.75V , -25◦C, Cmax) and c2 = (FF, 1.1V , 125◦C, Cmin).

the number of sink pairs) variables to indicate the maximum normalized skew variation across

all corner pairs between each sink pair (Vi,i′). There are C(K, 2) constraints to force Vi,i′ to be

no less than the maximum normalized skew variation between each sink pair (Constraint (3.23));

(4 · K) constraints to prevent local skew and skew variation degradations (Constraints (3.24)–

(3.25)); N constraints to specify the maximum latency (Constraint (3.26)); (2 ·M) constraints to

bound arc delay changes (Constraint (3.27)); andC(K, 2) constraints to enhance ECO feasibility

(Constraint (3.28)).

ECO implementation. We apply ECO changes to accomplish the desired arc delays

at each corner, which are determined by LP solution. Given that the buffer insertion problem

is NP-complete [172], although we apply several techniques to enhance ECO feasibility, the LP

formulation still cannot guarantee an optimal solution that is practically implementable. Thus,

our target is to minimize the discrepancy between the desired delays in the LP solution and

those that actually result from ECOs. In our ECO implementation, we first remove all original

inverter pairs on the arc. We then determine the solution (i.e., gate size and routed wirelengths

between consecutive inverters) of inverter pair insertion based on the characterized lookup tables

with stage delays. Note that in this section, we always use one gate size, and uniformly place

inverter pairs, for each individual arc. We place inverter pairs in a “U” shape when routing

detour is required. The lookup table contains stage delays with five inverter sizes and routed

wirelengths between consecutive inverters varying from 10µm to 200µmwith a step size of 5µm

across different corners. Since these lookup tables are technology-dependent, we only perform

the characterization once per technology. More specifically, we have two lookup tables: (i)
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LUTdetail is characterized with different input slew and fanout load capacitance, and is applied

for the first and last inverter pairs of a given arc, and (ii) LUTuniform is characterized based on

average stage delay of inverter pairs in an arc, and is applied for the inverter pairs in the middle

of an arc (Figure 3.10).

Figure 3.10: LUTdetail is characterized with various input slews and fanout load capacitances;
LUTuniform contains average stage delay with particular gate size and routed wirelengths

between consecutive inverters.

Algorithm 6 describes the flow to select solutions for inverter pair insertions. For each

combination of gate size and routed wirelength between consecutive inverters, we estimate a

range of desired number of inverter pairs (i.e., [max(uest−2, 0), uest +2]) based on the average

stage delay in LUTuniform at corner c0 (Lines 5-6). Dck
LP is the required arc delay at corner ck

in the LP solution. We then assess error for each potential solution (i.e., a combination of gate

size, routed wirelength between consecutive inverters and number of inverter pairs) and select

the solution with minimum error (Lines 7-16). We use p and q to respectively index the gate

size and the routed wirelength between consecutive inverters. Dck
est is the estimated delay using

LUTs. Last, we implement ECO changes based on the selected solution (Lines 19 and 21).

Local Optimization

We apply local iterative optimization to further minimize the sum of skew variations

across corners. More specifically, we consider three types of local moves, which are illustrated in

Figures 3.11(b)–(d) and in Table 3.5 – Type (I) buffer sizing and/or buffer displacement, Type (II)

displacement of a buffer and gate sizing on one of its child buffers, and Type (III) tree surgery

(i.e., reassignment of a (child) node to a different (parent) driver). However, performance of such

iterative optimization is usually limited by its large turnaround time. For instance, each local

move requires placement legalization, ECO routing, parasitic extraction, and timing analysis in

the golden timer.46 Given such large turnaround time, it is practically impossible to explore

all possible local moves for a given design. Therefore, a fast and accurate model to predict
46In our experiments, the runtime for each local move on a testcase with 1.79M instances and 270K flip-flops,

using one thread per analysis corner on a 2.5GHz Intel Xeon server, is around 70 minutes (i.e., 30 minutes for ECO
and parasitic extraction, and 40 minutes for timing analysis).
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Algorithm 6 LP-guided ECO flow.

1: for all sj to be optimized do
2: Remove current inverter pairs on sj

3: errmin ← +∞; sol← ∅
4: for p := 1 to Nsize, q := 1 to NWL do
5: uest ← round(Dck

LP /d(LUTuniform)ck
p,q)

6: for u := max(uest − 2, 0) to uest + 2 do
7: err ← 0
8: for k := 0 to K do
9: err ← err + |Dck

est −D
ck

LP |
10: end for
11: for all corner pair (ck, ck′ ) do
12: err ← err + |(Dck

est −D
ck′
est)− (Dck

LP −D
ck′
LP )|

13: end for
14: if err < errmin then
15: errmin ← err; sol← (p, q, u)
16: end if
17: end for
18: end for
19: Perform ECO inverter pair insertion based on sol
20: end for
21: Legalize all inserted inverters and perform ECO routing

the impact of local moves is necessary. Previous work [81] has demonstrated that machine

learning-based models are quite accurate for delay and slew estimation. In our work, we apply a

two-stage machine learning-based model for prediction of arc delay changes with local moves.

The overarching goal is to be able to accurately predict delta-latency, i.e., the change in post-

ECO routing source-sink delays that results from a given buffer’s resizing and/or placement

perturbation.

Machine learning-based model. To predict the impact of a local move, we first es-

timate new routing pattern (if the move contains displacement or tree surgery) by constructing

two types of trees – FLUTE [37] tree and single-trunk Steiner tree. We approximate wire delays

correspondingly using Elmore delay and D2M [6] models. We then update the delay and output

slew of the driver based on the estimated wire capacitance and update pin capacitance (if the

move sizes the child node) by performing interpolation in the Liberty table. Last, we perform

slew propagation using PERI [116] and update gate delays one and two stages downstream based

on Liberty tables.47 However, as observed in [81], the interpolated delay values do not always

match those from the golden timer’s analysis. Further, the estimated routing pattern as well as

wire delay can have discrepancy with respect to the commercial router’s actual ECO solution.
47Our analyses show that the delay and slew change of buffers beyond two stages is < 1ps, so we do not update

timings of buffers beyond two stages downstream.

109



Figure 3.11: Local optimization moves used in our flow. (a) Initial subtree; (b) sizing and/or
displacement; (c) displacement and sizing of child node; and (d) tree surgery, i.e., driver

reassignment.

We therefore construct machine learning-based models to minimize such discrepancy.

We use Artificial Neural Networks (ANN) [84], Support Vector Machines (SVM) with a Radial

Basis Function (RBF) kernel [84], and Hybrid Surrogate Modeling (HSM) [106].48 In addition

to the estimated delays based on {FLUTE tree, single-trunk Steiner tree} × {Elmore delay,

D2M}, the input parameters to the machine learning-based model also include the number of

fanout cells, as well as the area and aspect ratio of the bounding box which contains driving pin

and fanout cells. To generate training data, we construct artificial testcases (i.e., clock trees) that

resemble real designs with fanout ranging from 1-5 (20-40 for last-stage buffers) and bounding

box area and aspect ratio of the driven pins ranging from 1000µm2 to 8000µm2 and from 0.5

to 1, respectively. We then place fanout cells or sinks randomly within the bounding box. We

generate 150 artificial testcases and perform 450 moves on average to each testcase (the runtime

for one testcase is ∼1 hour). Note that we only construct one model for each corner, and that

this model is applied to all designs.

We create one delta-latency model for each corner used in our experiments. Figure

3.12(a) shows the predicted vs. actual latencies that we compute from the predicted delta laten-

cies by our model at corner c3 in Table 3.6. Figure 3.12(b) shows the corresponding histogram
48Further details of the applied machine-learning techniques that we use may be found in [84] and [106].
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Figure 3.12: Examples of (a) predicted vs. actual latencies and (b) percentage error histograms
from our model for the c3 corner in Table 3.6.

of percentage errors. Across all the corners, our modeling error is 2.8% on average. The abso-

lute of maximum and minimum errors are 21.98% and 16.21% respectively. The modeling for

each corner using the artificial testcases is a one-time effort. On a 2.5GHz Intel Xeon server,

the time to train a model for each corner is around 5 hours with four threads. Models for each

corner can be trained in parallel, e.g., on a server with 24 threads, we can train six models in

5 hours. Our models generalize to different testcases because (i) our training dataset gener-

ated from the artificial testcases span ranges of parameters that are typically seen in clock trees

in SOC application processors and memory controllers, and (ii) we prevent overfitting by per-

forming cross-validation. Our experimental results indicate that our models are generalizable

and accurate when applied to “unseen” testcases during the model training phase. Figure 3.2.3

shows the accuracy comparison between our learning-based model and analytical models. We

observe that with fewer attempts, our learning-based model is able to identify the best move for

more buffers.

Iterative optimization flow. Based on our model, we perform iterative local optimiza-

tion flow illustrated in Algorithm 7. We first enumerate all candidate local moves and generate

the input data to our model (Line 1). The moves we consider in this section are shown in Ta-

ble 3.5. We predict the delta-latency resulting from each move based on our model (Line 2). We

then estimate the skew variation reductions based on the predicted latency changes. Our exper-

imental results show that we are able to evaluate the impacts of more than 160K moves at three

corners in 17 minutes on a 2.5GHz Intel Xeon server with 15 threads. We sort the candidate

moves in decreasing order of their predicted skew variation reductions, and pick the top R (i.e.,
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Figure 3.13: Accuracy comparison between our learning-based model and analytical models.
An attempt is an ECO. There are 114 buffers, and each buffer has 45 candidate moves. In one
attempt, the learning-based model (resp. analytical models) can identify best moves for 40%

(resp. up to 20%) of the buffers.

R = 5 in this section) moves to implement in R individual threads (Line 3). Last, we perform

timing analysis using the golden timer to assess the actual skew variation changes (Line 4). If

there is skew variation reduction, we update the database with the minimum skew variation so-

lution. Otherwise, we implement the next R moves (Lines 5-9). The iteration terminates when

there is no move showing skew variation reduction according to our predictor.

Algorithm 7 Iterative optimization flow.

1: Enumerate all candidate moves and generate input data to model
2: Predict delta-latency and skew variation reductions
3: Implement R moves with maximum predicted skew variation reductions using R threads
4: Assess actual skew variation reductions with the golden timer
5: if there is skew variation reduction then
6: Update database with the minimum skew variation solution
7: else
8: Implement the next R moves and go to Line 4
9: end if

Table 3.5: Candidate moves in our optimization.

Type Candidate moves

I displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

II
displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

on one child node

III
reassign to a new driver (i) at the same level as current driver, and (ii) within

bounding box of 50µm × 50µm
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3.2.4 Experimental Setup and Results

Our experiments are implemented in foundry 28nm LP technology. We construct the

original clock tree and perform ECO optimizations using Synopsys IC Compiler vI-2013.12-

SP1 [220]. We use Synopsys PrimeTime vH-2013.06-SP3 [221] and Synopsys PrimeTime-PX

vH-2013.06-SP3 PT-PX [221] for timing and power analyses, respectively. We construct the

machine learning-based model using MATLAB vR2013a [210]. The optimization flow is imple-

mented using C++ and Tcl scripts.

Testcase Description

We develop two classes of testcase generators to validate our proposed optimization

framework. Class CLS1 corresponds to clock networks typically observed in high-speed ap-

plication processors and graphics processors. Class CLS2 corresponds to clock networks in

memory controllers, which are typically used in SOCs to interface SOC components with

DRAM/eDRAM. We implement our testcases at 28nm LP technology. The corners used in

our experiments are shown in Table 3.6. We use the testcase generation methodology described

in [26], and the top-level structures of the testcases T1 and T2 in [26]. We modify the floorplan

and clock tree synthesis flow to develop two variants of CLS1, CLS1v1 and CLS1v2. Each of

CLS1v1 and CLS1v2 contains four identical 650µm × 650µm interface logic modules (ILMs)

to resemble four cores of an application processor. These are floorplanned in a rectangular block

such that the utilization of standard cells is ∼60% before placement.49 Figure 3.14(a) shows the

floorplan of CLS1v1. We implement the CLS1 class testcases at corners c0, c1 and c3 as shown

in Table 3.7. Corners c0 and c1 are setup-critical, and c3 is hold-critical. Table 3.7 summarizes

various post-synthesis metrics of these testcases.

Table 3.6: Description of corners.

Corner Process Voltage Temperature Back-end-of-line

c0 SS 0.90V -25◦C Cmax

c1 SS 0.75V -25◦C Cmax

c2 FF 1.10V 125◦C Cmin

c3 FF 1.32V 125◦C Cmin

49We understand from our industry collaborators that best-practices flows for high-speed and memory controller
blocks start with 50%–60% utilization before placement [165].
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Figure 3.14: Floorplans of (a) CLS1v1 and (b) CLS2v1. In yellow are routed clock nets.
Table 3.7: Summary of testcases.

Testcase #Cells #Flip-flops Area Util Corners

CLS1v1 0.4M 36K 3.3mm2 62% c0, c1, c3

CLS1v2 0.4M 35K 3.4mm2 60% c0, c1, c3

CLS2v1 1.79M 270K 4.5mm2 58% c0, c1, c2

We also study a testcase CLS2v1 of class memory controller, which is new as compared

to [26]. Table 3.7 summarizes the post-synthesis metrics of this testcase, and Figure 3.14(b)

shows its floorplan. We use the methodology described in [26] to generate random logic and con-

nect this logic to flip-flops; this includes datapaths across different clock groups. The memory

controller is floorplanned in an L-shaped block with the controller at the center and the interface

logic in each of the top and bottom arms of the L-shape. The interface logic has data and control

signals across memory, processor and other blocks. The control signals are generated within the

controller, and the flip-flops in the interface logic and controller are separated by large distances

(e.g., ∼1mm). The large distance between sequentially adjacent sinks leads to large clock skew,

which the commercial tool tries to balance by inserting buffers. However, these clock buffers

lead to skew variations across corners. We implement the CLS2v1 testcase at corners c0, c1 and

c2 as shown in Table 3.7, where c0 and c1 are setup-critical and c2 is hold-critical.

For implementations of all our testcases, we follow a production methodology [165].

We set the skew target as 0ps in the CTS tools, as our studies (with skew targets ranging from

0ps to 250ps, in steps of 50ps) indicate that a target skew of 0ps steers the tool to deliver the

smallest skew at each corner. We perform clock tree optimizations with both multi-corner multi-

mode (MCMM) scenario as well as multi-corner single-mode (MCSM) scenario at each mode.

We then select the optimized clock tree solution with minimum skew variation as the input to

our optimization.
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Results

Table 3.8 shows the experimental results,50 where variation, skew, #cells, power and

area are respectively the sum of normalized skew variations over union of top 10K critical sink

pairs (in terms of setup and hold timing slacks) at each corner,51 local skew at each corner, total

number of clock cells, clock tree power and total area of clock cells. In the experiments, we

apply three optimization flows to each of the testcases: (i) global is the global optimization flow,

(ii) local is the local iterative optimization flow, and (iii) global-local performs global and local

optimizations in sequence. The global (local) optimization alone achieves up to 16% (5%) re-

duction on the sum of skew variations. Since local moves affect only a subset of sink pairs, they

have smaller impact than that of the global optimization. By combining the two optimizations,

we reduce the sum of skew variations by 22% with negligible area and power overhead. The

results also show no degradation of local skews. Further, we observe that the local iterative opti-

mization reduces skew variations more when applied after the global optimization, as compared

to a standalone local skew optimization (e.g., for CLS1v1, local optimization achieves 13nsmore

reduction with a prior global optimization, as compared to the standalone local optimization).

Table 3.8: Experimental results.

Testcase Flow
Variation [norm] Skew (ps)

#Cells
Power Area

(ns) c0 c1 c2,3 (mW ) (µm2)

CLS1v1

orig 512 [1.00] 214 530 226 2515 0.355 3615

global 431 [0.84] 179 395 188 2553 0.356 3705

local 493 [0.96] 214 529 223 2515 0.355 3621

global-local 399 [0.78] 175 387 188 2553 0.356 3706

CLS1v2

orig 585 [1.00] 272 594 259 2762 0.369 3968

global 518 [0.89] 269 575 235 2762 0.369 3975

local 557 [0.95] 258 545 259 2762 0.369 3970

global-local 510 [0.87] 265 564 235 2762 0.369 3975

CLS2v1

orig 972 [1.00] 179 192 282 5568 0.865 8556

global 888 [0.91] 175 192 232 5574 0.866 8577

local 926 [0.95] 180 190 282 5568 0.865 8556

global-local 841 [0.87] 176 192 232 5574 0.866 8557

50Our optimization does not create any maximum transition or maximum capacitance violations.
51The number of optimized sink pairs for CLS1v1, CLS1v2 and CLS2v2 are respectively 15012, 14671 and 15142.
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Figure 3.15 shows the skew variation reduction during the local iterative optimization.

We observe that tree surgeries (type-I moves) are more effective than sizing and displacement

moves (type-II and type-III moves), and are applied by our model in the early iterations. For

CLS1v1, we also show the results with 10 random moves (dots in black), where the gap between

random move and our optimization is 15ns. This validates the benefits of our delta-latency

model. The runtimes per iteration (with 15 threads) are 60 min, 80 min and 200 min for

testcases CLS1v1, CLS1v2 and CLS2v1, respectively.

Figure 3.15: Sum of skew variations decreases during the local iterative optimization. In blue
are type-I moves, in red are type-II moves, and in green are type-III moves.

Figure 3.16: Distribution of skew ratios between (c1, c0) and (c3, c0) of (a) original clock tree,
and (b) optimized clock tree for CLS1v1.
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Figure 3.16 shows the distributions of skew ratios between corner pairs (c1, c0) and (c3,

c0), over sink pairs, of the initial clock tree and the optimized clock tree. We observe that our

optimization significantly reduces the variation and range of skew ratios between corner pairs.

3.2.5 Conclusion

In this section, we propose the first framework to minimize the sum of skew variations

over all sequentially adjacent sink pairs, using both global and local optimizations. Our exper-

imental results show that the proposed flow achieves up to 22% reduction of the sum of skew

variations for testcases implemented in foundry 28nm technology, as compared to a leading

commercial tool. In the global optimization, our LP formulation comprehends the ECO feasibil-

ity based on characterized lookup tables of stage delays. In the local optimization, we demon-

strate that machine learning-based predictors of latency changes can provide accurate estimation

of local move impacts.

Our future works include: (i) study of the resultant power and area benefits of reduced

skew variation; (ii) development of models to predict a buffer location for minimum skew over a

continuous range of possible buffer locations; (iii) explorations, motivated by our current results,

of new library cells whose delay and slew are less sensitive to corner variation so as to enable

fine-grained ECOs based on our LP solutions; and (iv) investigation of whether a worse initial

start point (clock network with large skew variations) can enable us to achieve smaller skew

variation across corners using our optimization flow.
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3.3 Improved Performance of 3DIC Implementations Through

Inherent Awareness of Mix-and-Match Die Stacking

Small footprint and high transistor density in three-dimensional integrated circuits

(3DICs) make 3D logic-logic integration an important future lever for cost and density scaling.

Specific to 3DICs, a number of works [27][57][63][99] have pointed out that “mix-and-match”

of multiple stacked die, according to binning information, can improve overall product yield.52

Without loss of generality, assuming that dies are classified into two process bins, SS and FF,

the example in Figure 3.17 (where SS-SS, SS-FF and FF-SS respectively indicate SS Tier 0 +

SS Tier 1, SS Tier 0 + FF Tier 1 and FF Tier 0 + SS Tier 1) shows that mix-and-match die

stacking can offer 75ps timing improvement for a small 28nm FDSOI block as compared to the

conventional worst-case analysis.53 However, in the previous works each of the stacked die is

independently designed, that is, there is no holistic “design for eventual stacking” of any of the

die.

Figure 3.17: Worst negative slack (WNS) of design AES [212] in 28FDSOI technology. Clock
period = 1.2ns. The AES implementation was simply bipartitioned for minimum net cut using

MLPart [23][211].

Separately, many works [43][90][97][124][144][181] have suggested approaches for

partitioning of logic into multiple die, e.g., to obtain the wirelength (hence, power and delay)
52The mix-and-match stacking optimization is also applicable to wafer-to-wafer bonding integration where SS

wafers are integrated with FF wafers, and to monolithic 3D integration with adaptive adjustment of the top-tier
process according to the bottom-tier process condition. For simplicity, we use “(die) stacking” to refer collectively to
these multiple contexts.

53In the following discussions and our experiments, we assume that dies are classified into two process bins, SS
and FF. However, given matched pairs of process bins based on die-level and/or wafer-level stacking optimization,
our approaches can be extended to scenarios with > 2 process bins, e.g., additional combinations can be { SS Tier 0
+ TT Tier 1, TT Tier 0 + SS Tier 1, FF Tier 0 + TT Tier 1, TT Tier 0 + FF Tier 1, TT Tier 0 + TT Tier 1 } when we
also consider the TT process bin.
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savings implied by implementing a 1 × 1 die area into two stacked 0.7 × 0.7 dies. However,

the signoff criteria used to implement such a multi-die solution must necessarily validate timing

correctness for all combinations of process conditions on the multiple die – e.g., the four com-

binations { SS Tier 0 + SS Tier 1, SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1, FF Tier 0 + FF

Tier 1 }.54 Satisfying this combinatorial number of signoff constraints induces area and power

overheads as a result of the sizing and buffering operations needed to close timing.

To our knowledge, no previous work has examined the fundamental issue of design

partitioning and signoff specifically for mix-and-match die stacking. In particular, if we know a

priori that, say, SS Tier 0 and SS Tier 1 die will never be stacked together, or that FF Tier 0 and

FF Tier 1 die will never be stacked together, this changes our signoff criteria. Even more, this

a priori knowledge allows us to partition timing-critical paths across tiers to explicitly optimize

the design’s performance in the regime of mix-and-match stacking. The simple example in

Figure 3.18 (where we assume that SS Tier 0 + FF Tier 1 and FF Tier 0 + SS Tier 1 are utilized

for die stacking, the partitioning solution indicated by the blue dotted line has the maximum

timing slack, while the partitioning solution indicated by the red solid line has the minimum

timing slack) illustrates how the partitioning solution can impact design signoff timing in the

regime of mix-and-match stacking.

Figure 3.18: Partitioning solutions affect a design’s performance in the regime of
mix-and-match stacking.

In this section, we propose partitioning methodologies and signoff flows that are aware

of mix-and-match die stacking to improve design timing (i.e., to improve worst negative slack

(WNS)). However, 3D partitioning for mix-and-match die stacking is nontrivial. First, the opti-

mal cut locations on one timing path might conflict with those on other timing paths. Thus, the

partitioning optimization must trade off timing optimizations among timing paths. This can be

quite challenging in a design with a large number of potentially critical paths and shared logic
54Here, a tier refers to one stacked die in a 3DIC. In a two-tier 3DIC, Tier 0 is the bottom tier and Tier 1 is the top

tier.

119



cones among multiple pairs of timing startpoints-endpoints. Further, the partitioning optimiza-

tion must comprehend the timing impact of vertical interconnects or VIs (i.e., the vertical elec-

trical connections (vias) between tiers, such as through-silicon vias), and can no longer “freely”

partition a timing path into segments. In addition, delay variations across different process con-

ditions can be different for cells of different types (e.g., INV, NAND or NOR), sizes and Vth

flavors. Last, asymmetric distribution of process bins (e.g., 3σ FF + 2σ SS) as discussed in [101]

will also increase the difficulty of the partitioning optimization. Figure 3.19 shows a simple ex-

ample with different optimal partitioning solutions that respectively minimize (a) delay of path

A-C, (b) delay of path B-C, and (c) the worst case over the two paths. Moreover, the optimal

partitioning solution changes with increased VI delay impact, as shown in Figure 3.19(d). In

Figure 3.19, the red bars are VIs. We further assume the same stage delay (30ps at SS, 10ps

at FF) for every stage in the two paths, and that the timing analysis is aware of mix-and-match

stacking (i.e., { SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) and assumes ideal clock.

Our contributions in this section are as follows.

• We are the first to study design-stage optimization specifically for mix-and-match die

stacking.

• We develop partitioning methodologies that are inherently aware of mix-and-match die

stacking. Our approaches achieve up to 16% timing improvement as compared to a min-

cut based partitioning approach.

• We extend the existing 3DIC implementation flows to incorporate mix-and-match-

stacking-aware partitioning and signoff, demonstrating the simplicity of adopting our tech-

niques.

3.3.1 Related Work

We classify related works into two categories: (i) mix-and-match die stacking optimiza-

tion and (ii) 3D netlist partitioning.

Mix-and-match optimization. Several works propose approaches for mix-and-match

die stacking optimization. Ferri et al. [57] propose methodologies to benefit from the flexibility

of die-to-die and/or die-to-wafer 3D integration with awareness of the inter-die process varia-

tion. Their optimization improves performance and parametric yield of 3DICs with one CPU

die and one L2 cache die. Garg et al. [63] formulate mathematical programs to improve the
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Figure 3.19: Area-balanced partitioning solutions on path A-C (26 stages) and path B-C (30
stages) which respectively minimize (a) delay of path A-C (DAC), (b) delay of path B-C

(DBC), (c) worst-case delay over the two paths, and (d) worst-case delay over the two paths
with large VI delay impact (dV I ).

performance yield of 3DICs via mix-and-match die stacking. Chan et al. [27] propose an in-

teger linear programming-based method as well as a heuristic method to optimize reliability of

3DICs (i.e., to improve the mean time to failure). To avoid the large runtime of thermal sim-

ulation, Juan et al. [99] develop a learning-based model for temperature prediction in 3DICs.

Based on the model, they perform thermal-aware matching and stacking of dies to improve

thermal yield. These optimization approaches operate at die level or wafer level (essentially,

post-manufacturing). By contrast, our work addresses design-stage optimization and signoff for

mix-and-match die stacking.
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3D netlist partitioning. As mentioned above, quite a few works study 3D partition-

ing. Li et al. [124] use a simulated annealing engine to partition blocks across tiers during

the floorplanning stage to minimize wirelength. Several works cast 3D partitioning as a form

of standard hypergraph partitioning. Thorolfsson et al. [181] use hMetis [115] to partition the

design into balanced halves while minimizing the number of cuts. A multilevel partitioning

methodology is proposed in [90], which first applies Hyperedge Coarsening (HEC) techniques

to coarsen the netlist, then performs an FM-like K-way partitioning procedure to partition the

netlist such that the number of VIs is minimized. An integer linear programming for 3D par-

titioning is formulated in [97], where the objective is to reduce the number of VIs subject to

area balancing constraints. Partitioning methodologies based on an initial 2D implementation

solution are also proposed in previous literatures. Cong et al. [43] assign cells to tiers through

folding-based transformations of an initial 2D placement solution. Based on a 2D implemen-

tation solution with scaled dimension (i.e., 0.7×), Panth et al. [144] perform routability-driven

partitioning to minimize the overall routing overflow; this can mitigate routing congestion and

help minimize wirelength. Compared to these works, our work is again distinguished by being

the first to inherently comprehend mix-and-match die stacking integration. In particular, un-

like previous works, our partitioning methods directly maximize the design’s timing slack in the

mix-and-match regime.

3.3.2 Problem Formulation

We formulate the partitioning problem for mix-and-match die stacking as follows.

Given: post-synthesis netlist, Liberty files according to various process bins, vertical intercon-

nect (VI) parasitics, timing constraints and area balancing criteria,

Perform: 3D partitioning to determine the tier index for each cell, such that the worst timing

slack is maximized in the context of mix-and-match die stacking.55

In the next section, we describe an ILP-based partitioning methodology which is able to

achieve near-optimal solutions. Section 3.3.4 then proposes a heuristic partitioning methodology

in which we (i) perform maximum-cut partitioning on the subgraph of the sequential graph that

is induced by timing-critical pairs of startpoints and endpoints, then (ii) apply a signoff timing-

aware FM optimization for further slack improvement.
55In this section, we only consider partitioning into two-tier 3DICs. But, our formulation generalizes easily to

larger numbers of tiers.
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3.3.3 ILP-Based Partitioning Methodology

We now formulate an integer linear program (ILP) to partition the netlist into two tiers

such that the worst timing slack, over the corner combinations that can be formed by mix-and-

match stacking, is maximized. Table 3.9 summarizes our notations.

Table 3.9: Notations.

Term Meaning

αj process condition (corner), (1 ≤ j ≤ J)

P set of timing paths

pk kth timing path (pk ∈ P )

C set of cells

ci ith cell (ci ∈ C)

ai area of cell ci

yi binary indicator whether cell ci is on Tier 0 (yi = 0) or on Tier 1 (yi = 1)

βi,i′ binary indicator whether a cut (VI) exists between adjacent cells ci and ci′ ,

(βi′,i) where cell ci is on Tier 0 (Tier 1) while cell ci′ is on Tier 1 (Tier 0).

dj
i stage delay of cell ci and its fanout wire at αj

Dk maximum delay of path pk over all pairs of process corners

Dmax maximum delay over all paths among all pairs of process corners

dV I delay impact of VI insertion

θ area balancing criterion
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Minimize Dmax

Subject to

βi,i′ ≥ yi′ − yi ∀ adjacent cells ci, ci′ ∈ C (3.29)

βi′,i ≥ yi − yi′ ∀ adjacent cells ci, ci′ ∈ C (3.30)

βi,i′ + βi′,i ≤ 1 ∀ adjacent cells ci, ci′ ∈ C (3.31)∑
ci∈pk

(dj
i · (1− yi) + dj′

i · yi) +
∑

adjacent ci,ci′∈pk

(∆j,j′

i′ · βi,i′ + ∆j′,j
i′ · βi′,i)

+
∑

adjacent ci,ci′∈pk

(βi,i′ + βi′,i) · dV I ≤ Dk ∀(αj , αj′), pk ∈ P (3.32)

Dk ≤ Dmax ∀pk ∈ P (3.33)∑
ci∈C

ai · yi −
∑
ci∈C

ai · (1− yi) ≤ θ ·
∑
ci∈C

ai (3.34)

∑
ci∈C

ai · (1− yi)−
∑
ci∈C

ai · yi ≤ θ ·
∑
ci∈C

ai (3.35)

Our objective is to minimize the maximum path delay Dmax over all paths pk ∈ P ,

across all relevant pairs of process corners in the context of mix-and-match die stacking. yi is a

binary indicator of cell ci’s tier assignment, with yi = 0 (resp. yi = 1) indicating that ci is on Tier

0 (resp. Tier 1). For any pair of adjacent cells ci and ci′ , we use Constraints (3.29) and (3.30)

to force either βi,i′ or βi′,i to be one when cells ci and ci′ are on different tiers. In other words,

βi,i′ and βi′,i are indicators of a cut (or VI) such that βi′,i = 1 (resp. βi,i; = 1) when ci is on

Tier 0 (resp. Tier 1) while ci′ is on Tier 1 (resp. Tier 0). Therefore, βi,i′ and βi′,i are mutually

exclusive.

Constraint (3.32) defines the maximum delay Dk for each path pk ∈ P among all pairs

of process corners with mix-and-match stacking. The first term on the left-hand side of Con-

straint (3.32) is the sum of stage delays along path pk. We extract stage delays at a particular

corner αj based on the timing analysis assuming all cells are at αj . However, such an assump-

tion can lead to an inaccurate stage delay estimation because cells of different process corners

output different slews, which affect the delays of downstream cells. For example, our assump-

tion can be pessimistic for a cell at SS when its driver is at FF. This is because to estimate the

stage delay at SS, our timing analysis assumes all cells (including its driver) are at SS, which re-

sults in pessimistic input slew estimation. To compensate for such inaccuracy, we pre-calculate
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the delta stage delays (that is, the second term) between the case where the driver cell ci and

driven cell ci′ are at different process corners (i.e., ci is at αj , and ci′ is at αj′) versus the case

where the ci and ci′ are at the same process corner.56 We denote such delta stage delays as

∆j,j′

i′ . Incorporating the second term, i.e., the sum of delta stage delays along path pk, enables

us to achieve a more accurate delay estimation.57 The third term on the left-hand side of Con-

straint (3.32) accounts for VI delay impact along the path. Note that VI insertion at the output

pin of a small-size cell can have quite large delay impact. However, such delay impact will be

addressed with sizing/Vth-swapping optimization during the P&R (placement and routing) flow.

Since no sizing/Vth-swapping optimization is involved during the partitioning stage, to avoid

pessimism in estimation of VI delay impact, we simply use a constant value to estimate the de-

lay impact of one VI insertion. In Constraint (3.33), we obtain the maximum delay Dmax over

all paths pk ∈ P . Last, our formulation satisfies area balancing criteria which are indicated by θ

in Constraints (3.34) and (3.35). We set θ as 5% in our experiments.

3.3.4 Heuristic Partitioning Methodology

Although the ILP-based methodology can achieve near-optimal partitioning solutions,

its runtime can be large. Moreover, it is practically impossible to extract all timing paths for a

large design.58 We therefore propose a timing-aware FM partitioning methodology with better

scalability. Our heuristic partitioning methodology contains two optimization stages – (i) the

global optimization performs maximum cut on the timing-critical sequential graph (i.e., a par-

tial sequential graph which contains only startpoints and endpoints of timing-critical paths) and

(ii) the incremental optimization performs timing-aware multi-phase Fiduccia-Mattheyses (FM)

optimization to achieve the final partitioning solution. Unlike previous works which minimize

the number of cuts [115] or the number of paths passing across different partitions [114], we di-

rectly target the timing slack improvement during our partitioning optimization. Our objective is

to minimize the maximum path delay (i.e., maximize the worst timing slack) for mix-and-match

die stacking. Further, we show that a maximum-cut partitioning is more suitable than the tra-

ditional minimum-cut partitioning for 3DICs in the mix-and-match regime. To our knowledge,
56Our separate study shows that delay impact caused by cells more than one stage upstream of the current cell is

negligible (i.e., < 2ps). We therefore only consider the slew change due to current cell’s direct fanins.
57We note that since the partitioning optimization is performed before placement and routing, the wire delay and

accurate wire load information are not available, which might lead to suboptimality in the partitioning solution.
58Slight suboptimality of the ILP comes from the estimations of stage delay and delay impact of VI insertions,

which are inputs to the ILP. The runtime to extract timing path information and solve the ILP can be even larger if
there are more process bins, which makes the ILP-based methodology infeasible. The runtime of the ILP on AES
(with 11K instances and 254K timing paths) is > 24 hours.
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few if any previous works have applied a semidefinite program-based maximum cut optimiza-

tion [67] to VLSI design.

Maximum-Cut Partitioning on Timing-Critical Sequential Graph

We first study the tradeoff between delay impact of VI insertions versus timing im-

provement from mix-and-match stacking. Without loss of generality, we assume a die stacking

of { SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }. We denote the path delay of path pk at SS

(resp. FF) as DSS
k (resp. DFF

k ), and the total number of stages along pk as lk. Approximating

the path delay as a linear function of the stage number and assuming that there are l′k stages on

Tier 0, the corresponding path delay without considering delay impact of VI insertion can be

estimated as

l′k ·
DSS

k

lk
+ (lk − l′k) · D

FF
k

lk
(3.36)

l′k ·
DFF

k

lk
+ (lk − l′k) · D

SS
k

lk
(3.37)

where (3.36) assumes the stacking of SS Tier 0 + FF Tier 1, and (3.37) assumes the stacking of

FF Tier 0 + SS Tier 1. Maximizing the minimum value between (3.36) and (3.37) corresponds to

having (3.36) = (3.37) and l′k = lk/2. We therefore estimate the timing improvement from mix-

and-match stacking over the worst-case analysis (i.e., SS Tier 0 + SS Tier 1) as (DSS
k −DFF

k )/2.

Furthermore, we denote the worst slack of pk among combinations of process conditions (i.e.,

{ SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) as sk, and denote the delay increase due

to an inserted VI as dV I . Based on the above, we classify timing paths of a design into three

categories:

1. Type I: Timing non-critical paths (sk ≥ sth);

2. Type II: Timing-critical paths without tolerance of VI insertion (sk < sth &&
DSS

k −DFF
k

2 ≤ dV I + sgb);

3. Type III: Timing-critical paths with tolerance of VI insertions (sk < sth && DSS
k −DFF

k
2 >

dV I + sgb);

Here, sth is the threshold of timing slack to define the timing-critical paths (i.e., sth =

10% of clock period); and sgb is the slack guardband to evaluate tradeoff between delay impact

of VI insertions versus timing improvement from mix-and-match stacking.59 We note that when
59The value of sth needs to be empirically determined such that timing-critical paths are optimized. However,

a too-large value of sth can result in a large number of VI insertions and large runtime for timing analysis. Slack
guardband sgb is a flat timing margin, where the timing improvement from mix-and-match must exceed the VI delay
impact by more than sgb.

126



the delay of a VI insertion is so large that most of the timing-critical paths are Type-II paths, the

timing benefits from mix-and-match die stacking will be limited.

Our optimization focuses on timing-critical paths (i.e., Type-II and Type-III paths). Our

optimization ensures that startpoint and endpoint of a Type-II path are assigned to the same tier.

Further, our optimization maximizes the number of Type-III paths being cut, so as to improve the

potential timing benefits from mix-and-match die stacking. The procedure of our optimization

is described in Algorithm 8. To construct the sequential graph, each startpoint or endpoint (e.g.,

register, PI or PO) becomes one vertex, and a directed edge is inserted between two vertices if

there exists a (combinational) timing path between the vertices when they are taken as startpoint

and endpoint. Note that in this optimization we only consider the maximum-delay path between

any startpoint-endpoint pair. We use the algorithm in [67] for our maximum-cut optimization,

in which the maximum-cut problem is relaxed to a semidefinite program (SDP). The SDP so-

lution is then randomly rounded to achieve a partitioning solution. We use SDPA [216] as our

semidefinite programming solver.

Algorithm 8 Partitioning of the sequential graph.

1: Extract restricted sequential graph G0 that contains only Type-II and Type-III paths.
2: Collapse vertices connected with Type-II paths (edges) into one vertex to obtain a new graph G1.
3: Perform maximum cut on G1.

Figure 3.20: Example of maximum-cut partitioning of the sequential graph. Types of paths are
shown in edge labels. The dotted line indicates the final maximum-cut solution. We assume the

same weight for all edges.

Figure 3.20 illustrates Algorithm 8 with an example consisting of five vertices and eight

edges. The figure shows each updated graph, and the dotted line indicates the final maximum-cut

solution.
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Timing-Aware Multi-Phase FM Partitioning

Based on the maximum-cut partitioning solution of a timing-critical sequential graph,

we fix the tier assignments of flip-flops and then perform timing-aware multi-phase partition-

ing to achieve the final partitioning solution. At each phase of our optimization, we perform

optimizations in parallel with multiple threads. Optimization in each thread first clusters cells

such that the size of the cluster is within a given range (i.e., [Nlb, Nub]). Based on the clustered

netlist, each thread then performs Fiduccia-Mattheyses (FM) optimization [58] to improve the

partitioning solution in terms of the worst timing slack in the context of mix-and-match stacking.

We vary the range of cluster sizes across different threads during our optimization. At the end

of each phase, we select the partitioning solution with the maximum timing slack as the input to

the next phase.

In our FM optimization, the gain function of a cluster u is defined as

gain(u) =
∆slack(u)

slack(u)−WNS
(3.38)

where slack(u) is the worst slack of cluster u; ∆slack(u) is the slack change when moving u

across tiers; and WNS is the worst negative slack of the entire design.

Clustering cells at each phase before the FM optimization not only reduces the runtime

of FM optimization but more importantly also improves the solution quality. Figure 3.21 shows

an example in which moving one cell with negative gain can eventually lead to slack improve-

ment after moving its neighbor cells, where we assume that the difference between cell delays

at SS and FF is 30ps, delay impact due to VI insertion is 50ps, and all cells along the path (only

a segment of five cells is shown) are initially on Tier 0. We also assume that a stacking of SS

Tier 0 + FF Tier 1 is applied. In the example, although moving one cell across tiers degrades

the slack of the path due to VI insertions, moving its neighbor cells compensates for the delay

impact of VI insertions and eventually improves the path timing for mix-and-match stacking.

However, during the FM optimization, it is difficult and expensive (in terms of runtime) to “fore-

see” such slack benefits. In other words, to evaluate the gain function of one cell including its

future impact, one must consider a large number of potential moves of its neighbor cells. The

number of potential future move sequences can be large if only moving multiple stages of cells

can compensate for the delay impact of VI insertions.60 We therefore cluster cells such that tim-

ing improvement from moving a cluster can compensate for the delay impact of VI insertions.

Further, since the goal of clustering and partitioning is to balance cell delays across tiers along
60We are aware of “lookahead” approaches, such as gain vectors, CLIP/CDIP and LIFO gain buckets,

etc. [51][77][120]. However, these are cut-centric and not path-aware, hence inapplicable to our current problem.
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each timing path, the desired cluster size highly depends on number of stages along the paths,

fanout number at each stage, and netlist topology. Given that the number of stages along the path

is limited by timing constraints, along with the maximum fanout constraint, a too-large cluster

size might not help to balance delays across tiers along a timing path. We empirically set the

cluster size to be no larger than 120 in our experiments.

Figure 3.21: Example to optimize a cell with a negative gain value. (a) Initial path with zero
slack. (b) Moving one cell to Tier 1 degrades the slack by 70ps due to VI insertions. (c) Further

optimization on the shown segment improves the slack by 50ps.

Algorithm 9 shows our clustering procedure. We first sort all cells in increasing order of

their slacks (Line 1). We use topological order to break ties. We then select an unclustered cell

from the ordered list as the starting point for clustering (Line 2). Based on the selected cell, we

evaluate its slack changes due to moves (i.e., tier re-assignment) on its neighbor cells. If slack

improves, we add the corresponding neighbor cell into the cluster (i.e., u), and further consider

moves on neighbor cells of the new added cell (Lines 7-11, 15). However, when no move with

slack improvement is available, we select the neighbor cell corresponding to the move with

the minimum slack degradation and add it to the cluster (Lines 17-22, 27-30). The clustering

procedure terminates when the cluster size meets the required range (i.e., [Nlb, Nub]) or there is

no unclustered neighbor cell (Lines 12-14, 24-26).

Note that each cluster contains cells originally belonging to the same tier. The slack of

a cluster (i.e., slack(u)) is defined as the worst slack of cells within the cluster. Further, the esti-

mation of slack({c, u}) comprehends mix-and-match stacking (i.e., worst case over SS Tier 0 +

FF Tier 1 and FF Tier 0 + SS Tier 1). Moreover, our timing analysis takes into account the delay

impact of VI insertions (Figure 3.22 shows one example). Assuming that the incremental timing

analysis is performed in constant time,61 the runtime complexity of our clustering algorithm is

O(|C|3).
61In incremental timing analysis, we propagate slew and update cell delay through interpolation in Liberty lookup

tables. Starting from the moved cell, we traverse the timing graph both forwards and backwards until there is no
slack change. Given the maximum fanout constraints (e.g., 20) and limited number of stages to which “ripple effects”
propagate (e.g., ∼2-3 stages at most), in practice there is a constant bound on the number of cells updated during the
incremental timing analysis.
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Algorithm 9 Clustering.
1: cell list← sort all cells in increasing order of their slacks
2: for all c ∈ cell list that is not clustered do
3: queue.push front(c); u← ∅ // initialize cluster u
4: while |u| < Nub do
5: s′ ← −∞; c′ ← ∅; queue′ ← ∅
6: while |queue| > 0 do
7: c← queue.pop front()
8: su ← slack(u); sc ← slack(c)
9: move c to a different tier; incremental timing analysis

10: if |u| == 0 || slack(u) ≥ su && slack(c) ≥ sc then
11: u← u ∪ {c}
12: if |u| ≥ Nub then
13: break
14: end if
15: queue.push back(neighbors of c that are not clustered)
16: else
17: if Min(slack(c), slack(u)) > s′ then
18: s′ ← min(slack(c), slack(u)); c′ ← c
19: end if
20: queue′.push back(c)
21: recover c to its original tier; incremental timing analysis
22: end if
23: end while
24: if |u| ≥ Nub || |queue′| == 0 then
25: break
26: end if
27: move c′ to a different tier; incremental timing analysis
28: u← u ∪ {c′}
29: queue.push back(neighbors of c′ that is not clustered)
30: queue.push back(queue′); queue′ ← ∅
31: end while
32: end for

Figure 3.22: Example of VI insertion/removal due to cell movement across tiers. Shaded cells
are on Tier 1 and the others are on Tier 0.

In each run of FM optimization, we iteratively select the cluster with the maximum gain

value and move it across tiers. We lock the clusters (cells) that have been moved. After each

move, we perform incremental timing analysis and update the gain values of the neighboring

clusters of which the worst slack is changed. We empirically observe that the slack improvement
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at the later stages of an FM run is small (e.g., shown in Figure 3.23, where cluster size ranges are

[60, 70], [30, 40] and [15, 20] and each phase contains two runs of FM optimization shown as

red and blue curves). Therefore, we terminate each FM iteration when 25% of clusters have been

moved. Given that the initial partitioning solution is not area-balanced, in the first FM iteration

we terminate the optimization when the area balancing criterion is met. Figure 3.23 shows an

example of our FM optimization on design AES. The optimization has three phases, where each

phase contains two runs of FM optimization. We observe that the worst slack improves from

-200ps to -14ps in this example with ∼3000 moves.

Figure 3.23: An example of our multi-phase FM optimization. Design: AES. Technology:
28FDSOI. WNS improves from -200ps to -14ps. Runtime = 565 seconds on a 2.5GHz Intel

Xeon server.

3.3.5 Experimental Setup and Results

Experimental Setup

Our partitioning methodologies for mix-and-match stacking are implemented in C++.

We use CPLEX v12.5 [203] as our ILP solver and SDPA [216] as our semidefinite programming

solver. Our SP&R (synthesis, placement and routing) flow uses Synopsys Design Compiler vH-

2013.03-SP3 [218], Cadence Encounter Digital Implementation System v12.0 [198], Synopsys

PrimeTime vH-2013.06-SP2 [221] for logic synthesis, P&R, and timing and power analyses,

respectively. Similarly to [143], we stitch SPEF files of Tier 0 and Tier 1, with annotated VI

parasitics for timing and power analyses.

We use six open-source designs (DMA, USB, AES, MPEG, JPEG, VGA) [212] and an

Arm CORTEX M0 in our experiments. These testcases are generated with foundry 28nm FDSOI

12-track, dual-Vth libraries. We use a BEOL stack of six metal layers for routing.
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Table 3.10: Summary of testcases.

Design #Instances Clock period (ns)

DMA ∼2K 0.6

USB ∼4K 0.8

CORTEX M0 ∼9K 1.2

AES ∼11K 1.1

MPEG ∼13K 1.2

JPEG ∼36K 1.4

VGA ∼73K 1.0

We conduct three experiments to evaluate the performance of our partitioning method-

ologies. (i) We validate the solution quality of our heuristic partitioning optimization by compar-

ing its solutions with those of the ILP-based method. Due to poor scalability of the ILP-based

method, we perform experiments on two small testcases (DMA and USB). (ii) We assess the

benefit from our heuristic partitioning method within a brute-force 3DIC implementation flow,

which we refer to as GT2012 [100]. (iii) We further assess the benefit from our partitioning

method within a state-of-the-art 3DIC implementation flow (Shrunk2D) [143]. In our experi-

ments, we perform three-phase optimization; each phase contains two FM runs. The ranges we

use for cluster sizes are [100, 120], [80, 90], [60, 70], [40, 50], [20, 30], [10, 20]. Thus, our

optimization uses six threads.

3DIC Implementation Flows

Based on the conventional 2D implementation (P&R) flow, we study the GT2012 3DIC

implementation as shown in Algorithm 10.62 We first partition the netlist into two tiers (Line 1).

After the partitioning, we place cells on Tier 0, and determine the VI locations based on that

placement (Lines 2-3). With the fixed VI locations, we perform placement optimization on Tier

0 and Tier 1 separately (Line 4). We then insert a VI as the clock port on Tier 1. The clock VI

location on Tier 1 is close to the clock port location on Tier 0 to minimize the cross-tier clock

skew. We perform clock tree synthesis (CTS) on Tier 0 and Tier 1 separately (Lines 6-7). Last,

we perform routing and routing optimization on each tier (Line 9). Note that we perform 3D

timing analysis and update timing constraints for each tier after placement and CTS.

We also use the 3DIC implementation flow in [143] to validate our partitioning method.

The flow first performs 2D implementation with scaled (i.e., 0.7×) cell sizes and floorplan.
62This 3DIC flow is similar to early flows that we have seen used, e.g., at U.S. Department of Energy laboratories.
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Algorithm 10 GT2012 3DIC implementation flow.

1: Netlist partitioning (MLPart [211] or our partitioning method);
2: Initial placement on Tier 0;
3: VI insertion based on placement of Tier 0;
4: Placement optimization on Tier 0 and Tier 1;
5: Timing constraint update;
6: VI insertion for clock port on Tier 1;
7: Clock tree synthesis (CTS) on Tier 0 and Tier 1;
8: Timing constraints update;
9: Routing and routing optimization on Tier 0 and Tier 1;

Based on the shrunk 2D implementation, it partitions cells into two tiers. It further modifies

the technology files so that BEOL stacks of two tiers (each has six layers) are connected as one

(12-layer) BEOL stack and performs routing on both tiers to determine VI locations. Last, it

performs routing and routing optimization on each tier separately. In the flow, all the clock cells

are forced to be on Tier 0. Following [143], we refer to this flow as the Shrunk2D flow.

To be aware of mix-and-match die stacking, we extend both flows to perform a multi-

view optimization after the netlist is partitioned, such that the die stacking of { SS Tier 0 + FF

Tier 1, FF Tier 0 + SS Tier 1 } is captured during the P&R optimization. In addition, we assume

face-to-face (F2F) die stacking in both flows.63

Experimental Results

Calibration of heuristic partitioning. We calibrate our heuristic partitioning method

by comparing its solutions to those of the ILP-based method. We perform experiments on de-

signs DMA and USB. We vary the VI insertion delay impact from 10ps to 50ps. We also assume

different combinations of process conditions (i.e., { 3σ SS + 3σ FF, 2σ SS + 3σ FF, 3σ SS +

2σ FF }). Comparison results in Figure 3.24 show that except for one outlier, the timing slack

resulted from our heuristic method is always within 30ps difference compared to the solution of

the ILP-based method, where the ILP-based solution is considered to be very close to the optimal

solution. This confirms that our heuristic method is able to comprehend asymmetric distribution

of process bins and VI delay impact. The outlier occurs with the setup of large VI delay impact,

where the problem becomes more challenging.

63To maximize the timing benefit from mix-and-match die stacking, large number of VIs will be inserted. On
the other hand, VI insertions will have area impact in a face-to-back stacking-based implementation. We therefore
assume F2F stacking. We also note that F2F stacking and monolithic 3D integration are more preferable in the regime
of mix-and-match die stacking due to their small VI area impact.
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Table 3.11: Validation of our partitioning methodology on GT2012 and Shrunk2D flows.

Design Flow
WNS TNS Area Power

#Instances
Wirelength

#VIs
Utilization

(ps) (ns) (µm2) (mW ) (µm) (bottom / top)

CORTEX M0

GT2012 (orig) -178 -56.735 8451 6.701 8816 116966 304 77% / 69%

GT2012 (opt) -23 -0.173 8448 6.210 8780 136631 2744 70% / 76%

Shrunk2D (orig) -89 -11.040 9697 6.499 9855 83462 3715 83% / 86%

Shrunk2D (opt) -13 -0.080 10106 6.985 9982 93495 4490 86% / 90%

AES

GT2012 (orig) -181 -26.113 8536 10.700 10964 129896 250 74% / 70%

GT2012 (opt) -8 -0.012 8554 9.351 10947 156716 4417 65% / 79%

Shrunk2D (orig) -4 0.000 9621 10.600 11302 113209 4787 78% / 81%

Shrunk2D (opt) 56 0.000 9611 10.200 11356 116816 6304 75% / 83%

MPEG

GT2012 (orig) -68 -2.043 18089 13.900 13152 227734 307 69% / 73%

GT2012 (opt) 73 0.000 18125 14.100 13185 321866 4674 74% / 67%

Shrunk2D (orig) 20 0.000 18620 14.800 13275 158386 4741 72% / 74%

Shrunk2D (opt) 79 0.000 18691 15.400 13279 174804 7727 77% / 70%

JPEG

GT2012 (orig) -155 -7.094 44758 32.100 36521 703770 1159 69% / 72%

GT2012 (opt) -52 -0.462 45094 31.800 36631 1007156 12571 76% / 67%

Shrunk2D (orig) -115 -1.760 54457 42.900 52824 520123 14075 85% / 88%

Shrunk2D (opt) -82 -1.210 54637 43.000 52947 562430 20635 88% / 85%

VGA

GT2012 (orig) -244 -6.213 100143 113.300 72682 2201814 1546 76% / 70%

GT2012 (opt) -80 -0.251 102683 117.200 72731 3667133 15353 70% / 80%

Shrunk2D (orig) -47 -0.270 104525 90.000 73950 904742 27780 76% / 77%

Shrunk2D (opt) 11 0.000 104008 86.800 74051 929942 35908 79% / 73%

Validation of our method on GT2012 flow. Table 3.11 shows the timing quality, total

cell area, power, gate count, wirelength, number of VIs and post-routing utilization of implemen-

tations using the GT2012 flow and the GT2012 flow with our heuristic partitioning method. Note

that the reported timing and power are the worst cases between SS Tier 0 + FF Tier 1 and FF Tier

0 + SS Tier 1. We observe that our partitioning approach leads to up to 16% timing improvement

(i.e., on designs AES and VGA) compared to the GT2012 flow, which uses conventional min-cut

partitioning [23][211], while achieving similar area and power. This is a significant improve-

ment, considering that even 20% improvement in performance per new technology generation is

now quite difficult to achieve. The larger wirelength is because of additional wires routed to the

increased number of VIs.

Validation of our method on Shrunk2D flow. Table 3.11 shows design metrics of

implementations using the original Shrunk2D flow [143] and its extension with our partitioning

method. We observe that the extended flow with our partitioning approach achieves up to 7%

timing improvement (i.e., on design CORTEX M0) with similar area, power and wirelength.

Note that to maintain the solution of the 2D implementation in the scaled floorplan, we include
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Figure 3.24: Comparison of solution qualities between the ILP-based method (which is
near-optimal) and the heuristic method.

additional bin-based area balancing constraints such that we uniformly divide the core area into

N × N bins and set area balancing criteria for each bin during the FM optimization. We use

three bin sizes in our optimizations – 20µm× 20µm, 30µm× 30µm and 50µm× 50µm – and

report the result with the maximum timing slack.

3.3.6 Conclusion

In this section, we study design-stage optimization for mix-and-match die stacking. Our

motivating insight is that a priori knowledge of mix-and-match 3DIC integration should in-

fluence multi-die partitioning optimization and signoff. We propose an ILP-based partition-

ing methodology and a heuristic partitioning methodology that performs maximum cut on the

timing-critical sequential graph followed by an iterative multi-phase FM optimization. We val-

idate our partitioning optimization on two 3DIC implementation flows, each of which we have
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extended to be aware of mix-and-match die stacking. Our optimization leads to up to 16% timing

improvement, as compared to a flow with min-cut based partitioning solution, when measured by

RC extraction and signoff timing at the post-routing stage. Our study also indicates that a gate-

level 3D integration has more flexibility and thus larger timing benefits in the mix-and-match

regime as compared to a block-level integration. Our ongoing works include (i) integration of

design-stage optimization and die- and/or wafer-level optimization for mix-and-match die stack-

ing; (ii) clock tree synthesis for mix-and-match stacking; (iii) including BEOL variation in our

optimization; (iv) a new abstraction model for slack improvement with mix-and-match stacking,

for faster calculation of gain functions in FM optimization; and (v) more general formulations

of die-level mix-and-match optimizations. We will also seek to develop more detailed cost mod-

eling for multi-die integration – e.g., to understand how testability or other considerations might

affect our study and/or its conclusions.
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Chapter 4

Interconnect-Aware Design

Methodologies

As interconnect geometry has shrunk in advanced technology nodes, the rapid increase

of interconnect RC leads to not only performance loss from interconnect delay increase, but

circuit power and area degradation as well. This chapter presents three distinct techniques for

interconnect optimization. First, we propose a new PD-II construction which directly improves

both wirelength and pathlength upon the original tree constructed by Prim-Dijkstra (PD) method.

The PD-II approach achieves improvement for both objectives, making it a clear win over PD

for virtually zero additional runtime cost. PD-II is a spanning tree algorithm (which is use-

ful for seeding global routing); however, since Steiner trees are needed for timing estimation,

this section also includes a post-processing algorithm called DAS to convert PD-II trees into

balanced Steiner trees. Experimental results demonstrate that this construction outperforms the

recent state-of-the-art academic tool, SALT [33], for high-fanout nets, achieving up to 36.46%

PL improvement with similar WL on average for 20K nets of size ≥ 32 terminals from DAC

2012 contest benchmark designs [189]. Second, we formulate the minimum-cost bounded skew

spanning and Steiner tree problems as flow-based integer linear programs, and give the first-ever

study of optimal cost-skew tradeoffs. We also assess heuristics (notably, Bounded-Skew DME

(BST-DME), Steiner shallow-light tree (SALT), and Prim-Dijkstra (PD)) that are currently avail-

able for trading off cost and skew. Experimental results demonstrate that BST-DME has subop-

timality ∼ 10% in cost at iso-skew and ∼ 50% in skew at iso-cost. In addition, SALT and PD

shows suboptimality in terms of skew by up to ∼ 3×. Third, we study the concept of a gen-

eralized H-tree – a topologically balanced tree with an arbitrary sequence of branching factors
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– and propose a dynamic programming-based method to determine optimal clock power, skew

and latency, in the space of generalized H-tree solutions. Our method co-optimizes clock tree

topology and buffering along branches according to fitted electrical models. We further propose

a balanced K-means clustering and a linear programming-guided buffer placement approach to

embed the generalized H-tree with respect to a given sink placement. We validate our solutions

in commercial clock tree synthesis tool flows, in a commercial foundry’s 28LP technology. The

results show up to 30% clock power reduction while achieving similar skew and maximum la-

tency as CTS solutions from recent versions of leading commercial place-and-route tools. Our

proposed approach also achieves up to 56% clock power reduction while achieving similar skew

and maximum latency as compared to CTS solutions from a state-of-the-art academic tool.

4.1 Prim-Dijkstra Revisited: Achieving Superior Timing-driven

Routing Trees

In recent technology nodes, wire capacitance has become a key challenge to design

closure, and this problem only worsens with each successive technology node [207]. Today, a

digital implementation flow cannot simply use minimum wirelength (WL) trees for routing esti-

mates in placement and optimization, nor can they be used for timing-driven routing of critical

nets. Routing an advanced-node design with minimum WL trees leads to untenable source-to-

sink distances, yielding high delays for many nets. On the other hand, one cannot afford to use

a shortest path tree which achieves optimal source-to-sink pathlength (PL) for each sink, due

to the increased WL which degrades dynamic power and worsens routing congestion. For these

reasons, timing-driven tree construction that trades off WL and PL becomes a critical technology

for modern designs.

The Prim-Dijkstra (PD) [9] construction is generally regarded as the best available

spanning tree algorithm for achieving this tradeoff and has the additional advantage of simplic-

ity [4].64 This algorithm has been used for over 20 years to construct high-performance routing

trees in leading semiconductor design methodologies and electronic design automation (EDA)

tools, as can be seen by related patents assigned to IBM, Synopsys, Cadence and other entities

([86][21][87][62][61][167] [10] [7]). Further, the authors of [11] performed an evaluation that

compared PD to other spanning tree constructions such as BRBC [40], KRY [119], etc. in 2006;
64For global routing, spanning trees are often preferred to Steiner trees since global routing commonly decomposes

multi-fanout nets into two-pin nets. A spanning tree provides the router with an obvious decomposition. However,
Steiner trees are not well-suited for this because the Steiner points become unnecessary constraints that restrict the
freedom of the router to resolve congestion.
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they concluded that PD obtained the best tradeoff between WL and PL. That paper [11] argues

that the PD wirelength cost is minimal enough to be practically free. However, this claim is now

suspect because today’s designs are significantly more power-sensitive than a decade ago: now,

a 1% reduction in power is viewed as a big win for today’s design teams performing physical

implementation. Consequently, even a small WL saving with similar timing can have a high

impact on value. A deeper discussion of prior art is given in Section 4.1.1.

The PD construction balances between WL and source-to-sink PL by blending the Prim

and Dijkstra spanning tree constructions [148][46] via a weighting factor α. When α = 0, PD

is identical to Prim’s algorithm [148] and constructs a minimum spanning tree (MST). As α

increases, PD constructs a tree with higher WL but better PL; when α = 1, PD is identical

to Dijkstra’s algorithm [46] and constructs a shortest-path tree (SPT). PD begins with a tree

consisting just the source node, then iteratively adds the edge eij that minimizes dij + α · li,
where node vi is in the current tree and vj is not in the current tree, dij is the distance between

nodes vi and vj , and li is the PL from the source to vi in the current tree.

Figure 4.1: An example instance showing suboptimality of PD. The red node is the source. (a)
shows the MST obtained when α = 0.2, (b) shows the SPT obtained when α = 0.8, and (c)

shows the solution when α = 0.4. The tradeoff in (c) is clearly suboptimal in both WL and PL,
as compared to (d).
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One problem with the PD algorithm is that it greedily adds edges, which becomes prob-

lematic with higher fanout trees. Once an edge is added, it is never removed from the final

solution, making it impossible for PD to recover from a potentially poor choice. This can lead

to trees that are suboptimal in both WL and maximum PL. Figure 4.1 shows such an example.

When α is small (0.2), PD obtains the MST solution (a) with WL = 150 and PL = 130. When

α is large (0.8), PD obtains the SPT solution (b) withWL = 240 and PL = 80. However, when

α = 0.4, PD obtains the solution (c) with suboptimal values of both WL and PL (WL = 190 and

PL = 120). This solution (c) is inferior for both objectives than the solution (d) withWL = 160

and PL = 90. Thus, α = 0.4 generates a poor solution for both WL and PL.

This section makes the following contributions:

• To fix the shortcomings in PD, one needs to directly optimize PL in the tree construction,

which requires a new problem formulation. We propose incorporating total detour cost,

the amount of suboptimal PL for each node, into the tradeoff. The correct formulation of

the objective is paramount since it drives any optimization which follows. This section

seeks to optimize the detour cost to all sinks instead of just the worst one, as proposed in

prior works [33].

• Next, a new algorithm, which we call PD-II, is proposed. The idea is to recover the tree,

that has any edges poorly chosen by PD, using an iterative improvement method according

to the proposed objective function.

• Since Steiner trees are most commonly useful for timing prediction and physical syn-

thesis, an algorithm for converting balanced spanning trees into balanced Steiner trees

is proposed. The resulting Detour-Aware Steinerization (DAS) algorithm optimizes both

WL and detour cost to achieve a tree with similar properties to those obtained by the PD-II

spanning tree algorithm.

• Finally, three sets of experiments are presented. The first shows that PD-II is able to

meaningfully shift the Pareto curve obtained by the PD algorithm, obtaining up to 18%

improvement in PL for the same WL. The second experiment demonstrates the value of

the DAS algorithm versus more standard Steinerization methods. The third experiment

shows that the proposed Steiner construction outperforms those of SALT [33] for medium-

and high-fanout nets, a recent state-of-the-art academic tool, achieving up to 36.48% PL

improvement for similar WL.
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The remainder of this section is organized as follows. Section 4.1.1 briefly reviews

related works in the areas of spanning and Steiner tree constructions. Section 4.1.2 presents the

proposed problem formulation that incorporates both WL and detour cost. Section 4.1.3 presents

the PD-II heuristic for spanning tree optimization, and Section 4.1.4 presents the DAS heuristic

for Steiner tree optimization. Section 4.1.5 reports our experimental results, and Section 4.1.6

concludes the section.

4.1.1 Related Work

There is a rich history on spanning tree and Steiner tree constructions. Many focus

on minimizing WL or minimizing the longest PL. (Our present work studies constructions that

consider both metrics.)

Spanning tree constructions. As discussed previously, the Prim and Dijkstra construc-

tions achieve optimal WL and PL, respectively. Spanning tree algorithms that optimize both are

called shallow-light constructions [40][117]; they seek to optimize WL and PL simultaneously

to within constant factors of optimal. Shallow-light constructions have in many ways been a

“holy grail” in VLSI CAD literature for over 25 years. The PD algorithm is “shallow-light in

practice”, but no such formal property has ever been established [9]. Cong et al. [41] give the

Bounded Prim (BPRIM) extension of Prim’s MST algorithm [148], which produces trees with

low average WL and bounded PLs, but possibly unbounded WL. The BRBC algorithm of Cong

et al. [40] produces a tree that has WL no greater than 1 + 2/ε times that of an MST, and radius

no greater than 1 + ε times that of an SPT. Khuller et al. [117] contemporaneously develop a

method similar to BRBC.

Minimum WL heuristic Steiner tree constructions. Several works describe heuris-

tic algorithms for Steiner tree constructions with minimized WL. Kahng and Robins [108] give

the iterated 1-Steiner (I1-S) heuristic which greedily constructs a Steiner tree through iterative

Steiner point insertion, resulting in trees with close to optimal WL. Ho et al. [89] propose an algo-

rithm (HVW) to optimally edge-overlap separable MSTs to obtain Steiner trees, while Borah et

al. [20] present a greedy heuristic (BOI) to convert spanning trees to RSMTs with performance

similar to the I1-S heuristic. Chu and Wong [38] propose FLUTE which uses pre-computed

look-up tables for Steiner construction to find solutions more efficiently than the prior art.

Rectilinear Steiner arborescence (RSA) constructions. The NP-complete [173] recti-

linear Steiner arborescence (RSA) problem seeks to find a minimum-WL tree in the Manhattan

plane that achieves optimal PL for every sink. Rao et al. [158] present the first heuristic for the
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RSA problem. Cong et al. [42] address the construction of RSAs with the A-tree algorithm,

while Kahng and Robins [109] give a simple adaptation of their Iterated 1-Steiner algorithm to

the RSA problem.

Steiner constructions that optimize WL and PL. Recently, Scheifele [169] has pro-

posed a method to construct Steiner trees for which Elmore delays are bounded. Given an

RMST solution (i.e., FLUTE), [169] iteratively finds the vertex that breaks its ε-based met-

ric, and reroutes the vertex to the source via a shortest path, which indirectly balances between

RMST and RSA. On the other hand, Elkin and Solomon [54] propose a more direct shallow-light

Steiner tree construction method (ES). The main idea is to identify breakpoints and reconnect

those breakpoints to the root directly by a Steiner SPT so that there is no detour from the root to

the breakpoints. The authors of [54] build a Hamiltonian path and check the accumulated dis-

tance along the Hamiltonian path to find proper breakpoints, such that the final Steiner tree meets

the given shallowness and lightness criteria. Recently, Chen et al. [33] present SALT, which fur-

ther improves the ES method [54]. The key contributions are (i) tighter criteria to identify break-

points, and (ii) using an MST instead of a Hamiltonian path. With some post-processing such as

L-shape flipping, the method shows superior tradeoffs between pathlength and wirelength com-

pared to any state-of-the-art spanning/Steiner tree construction methods. Comparisons to the

method of [33] are included in Section 4.1.5 below.

4.1.2 Problem Formulation

A signal net V = {v0, v1, ..., vn−1} is a set of n terminals, with v0 as the source and the

remaining terminals as sinks. We define the underlying routing graph to be a connected weighted

graph G = (V,E), where each edge eij ∈ E has a cost dij . We are concerned with the case

where G is a complete graph with each eij having cost equal to the Manhattan distance dij . A

routing tree T = (V,E′) is a spanning subgraph of G with |E′| = n − 1.65 Given a routing

tree T , the cost of the unique v0 − vi path in T is li, the radius of T is r(T ) = max1≤i≤n−1li,

and the wirelength (WL) of T is WT =
∑

eij∈T dij . All notations used in our work are listed in

Table 4.1.

Initially, the tree consists only of v0. The PD algorithm iteratively adds edge eij and

sink vi to T , where vi and vj are chosen to minimize

65Our use of G and T pertains to the spanning tree context. In the rectilinear Steiner tree context, the underlying
routing graph would be the Hanan grid [83], and a Steiner routing tree would be a spanning tree over {V ∪S}, where
S is a set of Steiner points taken from the Hanan grid. For simplicity, as long as meanings are obvious, we will use
terms from the spanning tree context in the Steiner tree context as well.
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Table 4.1: Notations.

Notation Meaning

V signal net, V = {v0, v1, .... vn−1} having n− 1 sinks

G routing graph in the spanning tree context

T routing tree, which is a spanning subgraph of G

v0 source node of the signal net V , which is the root of T

eij edge from node vi to vj

par(vi) parent node of vi

lj cost of the unique v0 to vj path in a tree, v0, vj ∈ T

dij cost of the edge eij

mij Manhattan distance from node vi to vj

WT total wirelength of a tree

Qi detour cost of node vi, Qi = li −mi0

QT detour cost of a tree, =
∑

n−1 (Qi)

C weighted cost of a tree, = α ·QT + (1− α) ·WT

∆Ce,e′
the change in the weighted cost that results from

removing edge e and adding e′, used in PD-II

α weighting factor used in PD and PD-II

D flipping distance used in PD-II

PT sum of pathlengths of a tree, =
∑

n−1 (lj)

(α · lj) + dij s.t. vj ∈ T, vi ∈ V − T (4.1)

The PD algorithm can result in trees with either large WL or PL, as shown in Fig-

ure 4.1. To alleviate this issue, conventional shallow-light tree constructions [40][41][33] focus

on bounding the shallowness and lightness to optimize the tree cost. Lightness η means that the

WL of a tree is at most η times of the MST WL. A tree has shallowness ζ if PL to each sink

in the tree is at most ζ times the source-to-sink Manhattan distance (MD). However, shallow-

ness alone does not adequately represent the quality of a routing tree. Figure 4.2 shows two

examples that have the same shallowness and lightness. It is clear that Figure 4.2(b) is prefer-

able to Figure 4.2(a) since the left sinks have shorter PLs, but shallowness does not capture the

difference.

With the above in mind, we define a new detour cost metric as follows. Detour cost Qi

of a sink vi is the difference between PL from v0 to vi in T and the Manhattan distance from v0
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Figure 4.2: Two routing trees that have the same lightness and shallowness.

to vi. The detour cost of the tree T , denoted by QT , is the sum of the detour cost values of all

the sinks in the tree, i.e., QT =
∑

1≤i≤n−1 Qi. Since PD iteratively adds edges and nodes to

the growing tree, if a sink vj close to the source incurs high detour, then all downstream sinks

(descendants of vj) will also have high detour and hence long PL. We therefore propose the

following formulation to capture the problem of simultaneously reducing WL and detour cost of

a spanning tree:

Simultaneous WL and detour cost reduction (SWDCR) problem. Given a spanning

tree T = (V,E), minimize the weighted sum of WL and detour cost of the tree.

Minimize α ·
∑

Qi + (1− α) ·WT (4.2)

where 0 ≤ α ≤ 1. We present a heuristic algorithm PD-II in Section 4.1.3 for tackling

the SWDCR problem.

Once the spanning tree construction is converted into a Steiner tree, there is a change

in the tree topology. We propose and address the following formulation to further optimize the

detour cost of a Steiner tree:

Detour cost reduction in Steiner trees (DCRST) problem. Given a Steiner tree, min-

imize the tree detour cost.

Minimize QT

s.t. WT,new ≤ WT,init

QT,init ≥ QT,new

(4.3)

To address the DCRST problem, we present our algorithm DAS below in Section 4.1.4.

4.1.3 The PD-II Spanning Tree Construction

This section presents the PD-II algorithm that performs iterative edge-swapping which

simultaneously improves the detour cost and WL. The key idea of the PD-II algorithm is to start
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with a spanning tree and swap edges to improve the tradeoff between detour cost and WL. The

algorithm can take any spanning tree as input, but it makes sense to start with the PD solution

since it should already be relatively strong for both objectives. We note that while PD can be

quite slow for higher-fanout nets, it can be sped up significantly by using a sparsified nearest-

neighbor graph instead of the complete graph.

We initially populate the neighbors of each node using the following method. We say

that vi is a neighbor of vj if the smallest bounding box containing vi and vj contains no other

nodes. The worst-case number of neighbor nodes for each node is Θ(n). For example, every

red point in Figure 4.3 is a neighbor of every green point, and vice versa. However, Naamad

et al. [138] show that the expected number of maximal empty boxes amidst n random points in

a plane is bounded above by O(n log n), so it is reasonable to expect the average number of

neighbors per node to be O(log n).

Figure 4.3: Example showing Θ(n2) asymptotic worst-case complexity of the number of
neighbor relationships. Each green node is a neighbor to each red node.

Analysis of random placements of net sinks show this to be true. The number of neigh-

bors for 100K random point sets of size 16, 32, and 64 yields an average number of neighbors

per node of 6.3, 8.7 and 11.3, respectively. Real placements should generally have even fewer

neighbors, since cells tend to align horizontally or vertically. For the testcases described in Sec-

tion 4.1.5, the average number of neighbors is 2.58, 4.27, 6.15 and 8.24 for small, medium,

large and huge nets, respectively. Hence, in practice, runtime complexity of iterating through the

neighbors of a node has logarithmic complexity.

An O(n log n) runtime complexity can be obtained for PD using a binary heap imple-

mentation and an adaptation of Scheffer’s MST code [168][69]. Since PD solutions are generally

good, though sometimes suboptimal, it makes sense to post-process the PD solution to obtain a

better one. The key technique for PD-II is edge flipping, whereby one edge is removed from the

original tree and replaced with a new edge. Figure 4.4(a) shows an example tree, represented as a

DAG, representing a topological ordering starting at the source. Figure 4.4(b) shows an example

transform in which one edge is removed and replaced with a new red edge, thereby obtaining
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a different tree. Note that one of the directed edges in the new (rooted) tree is reversed from

its previous orientation in order to maintain a well-formed rooted tree. This approach recalls

the iterative improvement operation used in BOI [20], but the application of flipping is more

restricted to focus on WL vs. PL improvements.

Figure 4.4: Illustration of PD-II edge flipping.

For each edge pair, we define the flip cost as the cost associated with edge flipping, i.e.,

the cost of removing edge eij and adding edge ei′j′ . Flip cost ∆Ce,e′ = α · (QTi′j′ − QTij ) +

(1 − α) · (di′j′ − dij), where α is a weighting factor;66 QTij and QTi′j′ are the detour costs of

the trees before and after edge flipping, respectively; and dij and di′j′ are the lengths of edges

being removed and inserted, respectively.

Pseudocode for PD-II, Algorithm 11 is given below. Essentially, PD-II takes an input

tree and searches for edge flips that improve flip cost.67 If the flip cost improves, the swap is

taken. Considering all pairs of possible swaps could be expensive, so we define the flipping

distance D to be equal to the number of edges in the DAG that require a change in direction to

preserve topological ordering, i.e., rooted orientation. For the swap in Figure 4.4, D = 1. In

practice, usingD > 1 has little benefit (but more runtime) compared toD = 1, so we useD = 1

for all experiments.

Line 3 of Algorithm 11 initializes the best flip cost to zero. Line 5 computes the set

of candidate edges Ee that can be flipped with edge e, as restricted by the flipping distance D.
66The parameter α can be determined by the timing constraints. If a net is critical, a higher value of α can be used

to achieve lower delays, but if arcs through the net have positive slacks, α can be small to save wirelength. Hence, α
allows topology optimization and can be chosen to best satisfy the design specifications on a per-net basis.

67Flipping cannot be added into the original PD cost function since the flip cost objective cannot be correctly
computed until an entire tree is constructed. Hence, we propose PD-II as a post-processing algorithm which improves
a given spanning tree.
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Algorithm 11 Algorithm PD-II.
Input: Spanning tree Tin = (V,Ein), with Ein ⊆ E
Output: Spanning tree Tout = (V,Eout), with Eout ⊆ E

1: Initialize Tout ← Tin

2: repeat
3: Initialize largest detour cost reduction, ∆Cbest ← 0
4: for all e ∈ Eout do
5: Ee ← candidateEdges(e, D)
6: for all e′ ∈ Ee do
7: ∆Ce,e′ ← flipCost(e, e′)
8: if ∆Ce,e′ < ∆Cbest then
9: ∆Cbest ← Ce,e′

10: ebest ← e ; e′best ← e′

11: end if
12: end for
13: end for
14: if ∆Cbest < 0 then
15: Remove ebest, insert e′best and change direction of associate edges
16: end if
17: until ∆Cbest == 0

For each candidate edge e′ ∈ Ee, we calculate the flip cost for the edge pair (e, e′) and find

the edge pair (ebest,e′best) with lowest flip cost in Lines 6-12. These edges are swapped if the

lowest flip cost is less than zero (Lines 14-16). The algorithm continues until no more flip-cost

improvement is obtained (Line 17).

The number of candidates for edge flipping can be very large whenD is unbounded. The

worst-case number of edges is (n/2)2, giving Algorithm PD-II a worst-case time complexity of

O(n3), where n is the number of sinks. However, with the distance restriction, the complexity

reduces to O(D · n2), and in practice it converges rapidly. To show this, we take two large

blocks from an industrial design and run a production Steiner package on an Intel Xeon 2.7GHz

machine (CPU E5-2680), using RHEL5. The first design has 1.9 million datapath nets, and the

total runtime for the Steiner package which uses PD for its spanning tree construction requires

59.3 seconds. Adding PD-II to the Steiner package increases the runtime to 62.7 seconds, for a

net penalty of 3.4 seconds. The second design with 4.0M datapath nets requires 124.0 seconds

for running the default Steiner package. Adding PD-II to the Steiner package increases the

runtime from 124.0 seconds to 125.8 seconds, for a net penalty of 1.8 seconds. Consequently, the

runtime cost of using PD-II is negligible, averaging less than one additional second of runtime

per million nets.
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4.1.4 The Detour-Aware Steinerization Algorithm (DAS)

For global routing, spanning tree constructions such as PD-II are sometimes preferred to

Steiner trees since global routing commonly decomposes multi-pin nets into two-pin nets. How-

ever, for timing estimation, congestion prediction, or general physical synthesis optimization, a

Steiner tree is required since spanning trees will have too much WL. The previous spanning tree

formulation can easily be extended to Steiner trees; the definitions of WL and PL do not change.

However, since finding the minimum wirelength Steiner is NP-complete, FLUTE WL is used as

a proxy for minimum Steiner tree cost.

To transform a spanning tree into a Steiner tree, the linear-time algorithm of [89] is

invoked. It maximizes edge-overlaps in the spanning tree by creating a Steiner node. We call

the algorithm HVW after the algorithm’s creators: Ho, Vijayan, and Wong. HVW traverses the

tree from the leafs and iteratively maximize overlaps with the currently visited edge and its

immediate children edges. However, this basic construction can be inefficient both in terms of

WL and PL. Hence a new Steinerization algorithm, called DAS for Detour-Aware Steinerization

is proposed below.

DAS has two phases of optimization (Algorithm 12). The first phase seeks to reduce

WL while minimizing the detour cost penalty (Lines 1-14). This phase does a bottom-up tree

traversal and makes edge swaps which reduce WL. For each edge eji in the Steiner tree, the edge

eji is removed from the tree and replaced with eki where vk is a nearest neighbor of vi if the WL

improves and the PL is not overly degraded. (i.e., pi ≤ 0.5 · pmax
T ).

After the first phase, since PL (or detour cost) is not targeted, there still may be room to

improve for that dimension. Hence, a second phase (Lines 15-29) seeks to optimize detour cost

QT without degrading WL. This second phase performs a top-down tree traversal to minimize

QT . This is because the detour cost Qi to a node vi affects not only the PL to the node, but also

the PL to the downstream nodes of vi. Thus, more opportunity for large QT reductions exists in

the edges near the source v0. For each edge eji in the Steiner tree, the edge eji is removed and

replaced with eki, where vk is the possible parent among the nearest neighbors of vi, to reduce

QT without degrading WL. This process is repeated for all the nodes in the tree with non-zero

detour cost.

Algorithm DAS has a worst-case time complexity of O(n2). However, with the spar-

sified nearest neighbor graph implementation described in Section 4.1.3, DAS runs much faster

than O(n2) and is closer to O(n log n) in practice. For 100K nets, DAS runs in 0.86 seconds for

16-terminal nets, 1.71 seconds for 32-terminal nets and 4.83 seconds for 64-terminal nets.
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Algorithm 12 The Detour-Aware Steinerization Algorithm (DAS).
Input: Steiner tree TSt,in

Output: Improved Steiner tree TSt,out

1: //First phase: wire recovery at the cost of small additional PL
2: pmax

T ← maximum PL of the Steiner tree
3: Do Breadth-First Search (BFS) from the leaf node
4: for all vi do
5: vj ← par(vi) ; dji ← edge length to vi;
6: oji ← overlap length with other edges to vi

7: ∆dji ← dji − oji

8: for all vk in {all neighbors of vi} do
9: ∆dki ← dki − oji; pi ← PL to node vi

10: if (∆dki < ∆dji && (pi ≤ 0.5 · pmax
T ) then

11: Disconnect vi to vj and reconnect vi to vk

12: end if
13: end for
14: end for
15: //Second phase: detour cost reduction with bounded WL
16: WT,init ← Init. Steiner tree WL; QT,init ← Init. Steiner tree detour cost
17: Do Breadth-First Search (BFS) from the source node
18: for all vi do
19: vj ← par(vi); dji ← Initial edge length to vi

20: for all vk in {all neighbors of vi} do
21: eki ← Edge from vk to vi; dki ← Edge length from vk to vi

22: WT,new ←WT,init + dki − dji

23: QT,new ← detour cost tree with edge eki

24: if (WT,new ≤WT,init) && (QT,new < QT,init) then
25: Disconnect vi to vj and reconnect vi to vk

26: WT,init ←WT,new; QT,init ← QT,new

27: end if
28: end for
29: end for

4.1.5 Experimental Setup and Results

Experimental Setup

The algorithms described above are implemented in C++. The following experiments

are performed on a 2.7 GHz Intel Xeon server with 8 threads. Testcases are generated from the

DAC 2012 contest benchmarks [189], with pin locations for each net are extracted from ePlace

placement solutions [132]. Since finding a solution with optimal WL and PL is trivial for two-

and three-pin nets, our experiments focus on nets with fanout larger than two. The roughly 749K

total nets are divided into four groups (small, medium, large, huge) by their terminal count, as

shown in Table 4.2.

While our algorithms optimize QT , QT itself does not adequately capture the quality

of the tree. Instead, results are reported based on two normalized metrics, WTnorm (normalized
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Table 4.2: Net statistics for superblue benchmark designs.

Small Medium Large Huge

|V | 4− 7 8− 15 16− 31 32+

#Nets 533029 128463 46486 20853

WL) and PTnorm (normalized PL). WTnorm is defined as the ratio of the tree WL to the MST

WL for spanning trees. PTnorm is defined as the ratio of sum of PLs of each node in the tree

to the sum of Manhattan distances from source to each node. The optimal value any tree could

have for either metric is one, which makes the corresponding Pareto curve more intuitive.

Experiment I - Spanning Tree Results

In the following results, PD and PD-II refer respectively to the spanning trees con-

structed using the PD and PD-II algorithms. Figure 4.5 shows normalized WL and PL tradeoff

curves for PD and PD-II, for the 46486 large nets. Each point in the curves represents the aver-

age (WTnorm, PTnorm) over all the nets for a particular value of α. We sweep α from 0.05 to

0.95, in steps of 0.05, to obtain both the PD and PD-II curves. We observe that the blue PD-II

Pareto curve is clearly better than the red PD curve.

Figure 4.5: WL and PL tradeoff for various α.

The Pareto curve makes the improvement trend clear, but makes it difficult to measure

the degree of improvement of PD-II. To compare the two algorithms more robustly, we analyze

the results in the following way; (1) select different percentages of permissible WL degradation
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with respect to MST WL (i.e., WL thresholds = 1%, 2%, 4%, 7%, 10% and 15%), and (2) for

each net, find the minimum PTnorm solution that meets the WL threshold across all solutions

with different α. The results are averaged across all the nets and summarized in Table 4.3. Each

entry in the table corresponds to the normalized PL PTnorm. To find the percentage improve-

ment, one is subtracted from each value, since 1.0 is a lower bound. For example, a reduction

from 1.15 to 1.12 results in an improvement of 20%, i.e., (1− (1.12−1.0)/(1.15−1.0)) ·100%.

We observe the following:

• PD-II gives better results than PD for all classes of nets. This makes sense since it strictly

improves upon an existing PD solution.

• Small nets obtain relatively small improvement, ranging from 0.26% to 1.63%; however,

huge nets show significant improvements, ranging from 4.91% to 18.87%. Trends for

medium and large nets lie in between. This is because the detour cost is close to optimal

for smaller nets, but is much larger for bigger nets. For example, with a 1% WL threshold,

the average normalized PL for PD-II is 1.097 for small nets but 1.376 for large nets.

• When the WL threshold is tight (such as 1% or 2%), the improvement of PD-II is much

smaller as compared to looser constraints of 10% or 15%. This makes sense because

a looser constraint gives the algorithms more freedom to reduce PL. A threshold of 1%

means the topology cannot deviate much from the minimum-length spanning tree.
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Table 4.3: Comparisons of the best PTnorm for PD and PD-II across different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

Small

PD 1.0972 1.0927 1.0819 1.0680 1.0569 1.0427

PD-II 1.0970 1.0923 1.0812 1.0672 1.0561 1.0420

Imp. (%) 0.26 0.42 0.78 1.15 1.36 1.63

Medium

PD 1.1888 1.1746 1.1483 1.1189 1.0974 1.0723

PD-II 1.1870 1.1706 1.1423 1.1122 1.0909 1.0668

Imp. (%) 0.93 2.33 4.07 5.66 6.62 7.68

Large

PD 1.2981 1.2698 1.2216 1.1723 1.1390 1.1006

PD-II 1.2895 1.2545 1.2025 1.1533 1.1219 1.0870

Imp. (%) 2.89 5.66 8.64 11.00 12.32 13.52

Huge

PD 1.3952 1.3550 1.2873 1.2210 1.1777 1.1302

PD-II 1.3758 1.3238 1.2526 1.1876 1.1488 1.1056

Imp. (%) 4.91 8.79 12.06 15.14 16.27 18.87

Experiment II - Steiner Tree Results

Our next experiments compare (PD + HVW + DAS) and a baseline flow (PD + HVW)

to show the value of DAS. HVW refers to the Steiner tree obtained after performing edge-

overlapping as described by Ho et al. [89], and DAS refers to the Steiner tree after applying

DAS algorithm to the HVW tree. Figure 4.6 shows the normalized WL and PL tradeoff compar-

ison for the two flows for the set of large nets. Steiner tree WTnorm is defined as the ratio of

total WL of the tree to the FLUTE WL68 [38] and PTnorm is defined as the ratio of sum of PLs

of all sinks in the tree to the sum of source-to-sink Manhattan distances. Each point in the curve

represents the average (WTnorm, PTnorm) over all nets, for a particular value of α. It is clear

that DAS adds significant value to the Steiner construction, pushing its Pareto curve further left

and down compared to the one from the baseline.

Similarly to Table 4.3, Table 4.4 shows normalized PL across a range of permissible WL

degradations for HVW versus HVW+DAS. We observe the following:

• DAS always obtains better results than HVW. Again, this makes sense since DAS starts

with an HVW solution and further refines it to improve both WL and PL.

• Improvements for DAS can be quite significant, ranging from 8.36% to 83.67%.
68FLUTE constructs optimal RSMTs for nets with terminal sizes up to 9, and near-optimal RSMTs for nets with

higher terminal counts.
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• DAS improves results more significantly for smaller fanout nets than for larger ones. This

may suggest there is still further room for improvement in Steinerization.

• Larger WL thresholds correspond to larger normalized PL improvements, which again is

likely due to more freedom for the algorithm to find a solution that reduces detour cost.

Figure 4.6: WL and PL tradeoff for Steiner tree constructions.

Table 4.4: Comparisons of the best PTnorm for (1) PD + HVW and (2) PD + HVW + DAS
across different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

Small

(1) 1.0233 1.0241 1.0250 1.0249 1.0236 1.0202

(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) 46.14 52.31 61.15 70.85 77.30 83.67

Medium

(1) 1.0786 1.0821 1.0828 1.0757 1.0649 1.0489

(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) 15.43 23.30 35.78 49.07 57.24 65.58

Large

(1) 1.1637 1.1644 1.1547 1.1275 1.1026 1.0728

(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 12.01 18.07 29.73 40.36 46.08 50.93

Huge

(1) 1.2278 1.2091 1.1606 1.1107 1.0812 1.0538

(2) 1.228 1.209 1.161 1.111 1.081 1.054

Imp. (%) 8.36 15.14 27.82 36.36 39.74 41.69
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Experiment III - Comparison with SALT [33]

Our final set of experiments compares the best combined flow (PD-II + HVW + DAS)

with the results from the state-of-the-art academic Steiner tree construction, SALT [33]. SALT

uses FLUTE [38] to generate its initial input and improves the initial construction to reduce PL.

For nets with less than 10 terminals, FLUTE produces the optimal WL and may also produce

excellent or even optimal PL, in which case running SALT is not even necessary. Hence, the

cases for which FLUTE produces excellent PL are in some sense uninteresting. If FLUTE

produces a good tradeoff curve, then SALT simply returns the FLUTE solution. Our approach

can do something similar using the following simple metaheuristic: (1) run both FLUTE and

(PD-II + HVW + DAS) in parallel; (2) if FLUTE is better than (PD-II + HVW + DAS) for both WL

and PL, return the FLUTE solution, else return the (PD-II + HVW + DAS) solution. Essentially,

the metaheuristic returns a solution identical to SALT’s when the FLUTE solution is dominant.

Note that for large and huge nets, the FLUTE solution almost never is dominant.

Figure 4.7 shows normalized WL and PL tradeoff curves for the metaheuristic flow and

SALT for (a) small, (b) medium, (c) large and (d) huge nets. For small nets, SALT actually

achieves better solutions than the metaheuristic until the normalized WL is about 2.3% higher

than optimal.69 However, for medium, large and huge nets, the Pareto curve for the metaheuris-

tic outperforms the one from SALT, especially as nets increase in size. For huge nets, SALT

achievesWTnorm = 1.0370, PTnorm = 1.141 for ε = 1.281, which is its knee point in the trade-

off curve. The knee point in the metaheuristic’s tradeoff curve corresponds to WTnorm = 1.024

and PTnorm = 1.121 at α = 0.35, which achieves 35.13% WL and 14.18% PL improvements

compared to SALT at its ε = 1.281.

Since SALT optimizes shallowness and not detour cost, Figure 4.8 presents the same

set of data but using SALT’s proposed metrics. SALT dominates our method according to the

shallowness metric. Thus, SALT is superior with respect to its proposed metric, while PD-II +

HVW + DAS is superior with respect to its metric.

Finally, Table 4.5 compares our best recipe to SALT using the same methodology as

Tables 4.3 and 4.4. Note that we use FLUTE WL as a lower bound. We observe the following:

• For small nets, and WL thresholds below 10%, SALT outperforms the proposed approach.

SALT is also better on medium nets with WL thresholds below 2%. This makes sense

since trees in this space will closely resemble FLUTE constructions. SALT starts with
69For {small, medium, large, huge} nets, FLUTE results for {55.6, 7.9, 0.03, 0}% of nets have smaller WL and

PL than our results. As expected, FLUTE results are dominant for small nets, but our algorithm gives better PL for
large and huge nets.
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a FLUTE construction and iteratively improves it, so in the space where FLUTE obtains

good trees for WL and PL, such an approach outperforms the algorithm proposed in this

section. Note that the magnitude of the improvement is still small. For example, for small

nets and a 1% threshold, SALT is 0.99% away from the optimal normalized path length,

while our approach is 1.26% away.

• For large and huge nets, and for medium nets with thresholds larger than 2%, the proposed

approach performs better, reaching a peak of 36.46% improvement for huge nets with a

10% threshold. This is the domain for which the optimal tradeoff can be considerably

different from FLUTE. These arguably form the class of more interesting instances where

the tradeoff between WL and PL becomes increasingly important.

• As WL threshold increases, the improvement of our approach vs. SALT improves too,

especially around the 7% and 10% WL threshold ranges. However, for large and huge

nets the improvement is somewhat less at the 15% threshold.

Table 4.5: Comparisons of the best PTnorm for (1) SALT and (2) PD-II + HVW + DAS across
different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

Small

(1) 1.0099 1.0093 1.0082 1.0067 1.0053 1.0036

(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) -27.29 -23.85 -17.98 -8.80 -0.86 7.90

Medium

(1) 1.0652 1.0619 1.0547 1.0435 1.0337 1.0213

(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) -1.95 -1.66 2.76 11.32 17.63 21.15

Large

(1) 1.1564 1.1475 1.1261 1.0961 1.0720 1.0432

(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 7.91 8.66 13.77 20.92 23.09 17.31

Huge

(1) 1.2744 1.2574 1.2205 1.1688 1.1277 1.0763

(2) 1.2278 1.2090 1.1606 1.1107 1.0811 1.0536

Imp. (%) 17.01 18.79 27.18 34.44 36.46 29.71

Runtime. For the benchmarks studied, SALT’s total runtime is 2762 seconds. By con-

trast, the PD-II + HVW + DAS algorithms, as implemented and optimized within a commercial

EDA tool’s code base, take 361 seconds in total. Thus, PD-II today runs more than 7 times faster

than SALT.
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Delay. Below, we show the impact of WL and PL improvement on delay. We estimate

delays of nets produced by our algorithms and by SALT, based on the Elmore delay model

with resistance of 37.318Ω per micron of wire, capacitance of 0.228fF per micron of wire, and

0.67fF pin capacitance per sink. For the solutions produced by our approach and SALT with

WL threshold 2%, we calculate the sum of all sink delays for each net, and the average of this

sum across all nets. For {small, medium, large, huge} nets, the average sum of sink delays from

PD-II is lower than the average sum of sink delays from SALT by {-0.0005, 0.24, 1.54, 5.62}%.

As seen with the WL and PL comparison, our algorithm has slightly larger delays for small nets

and smaller delays for higher-fanout nets.

In summary, while our approach does not uniformly outperform SALT, it does provide

a superior tradeoff for the most interesting class of nets that are far from optimal in terms of PL

and WL.70

4.1.6 Conclusion

This section shows that the classic PD spanning tree algorithm that balances between

Prim’s and Dijkstra’s algorithm can have a bad tradeoff that ends up with both WL and PL being

highly suboptimal. A new spanning tree heuristic PD-II is demonstrated to significantly improve

both WL and total detour cost compared to PD. Further, this section extends the construction to

Steiner tree with the DAS algorithm that directly improves trees according to both objectives. The

algorithms are shown to be fast and practical. They are also suitable for integration into existing

commercial routers, and can be applied in conjunction with any existing spanning and Steiner

tree constructions for simultaneous WL and PL improvements. Compared to the recent SALT

algorithm, our construction generates clear improvements according to the proposed metrics,

especially for medium-size and larger nets. Future research includes (i) revisiting the still-open

question of worst-case detour from a PD construction; (ii) learning-based estimation of the best

α for any given instance (i.e., set of pin locations of a signal net); and (iii) extending the detour

cost objective to encompass sink criticality, “global” radius, and other additional criteria.

70The PD-II algorithm has been released as part of a leading commercial tool, with demonstrated improvements of
timing and wirelength.
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Figure 4.7: Normalized WL and PL for our metaheuristic and SALT on nets with |V | = (a) 4
to 7, (b) 8 to 15, (c) 16 to 31, and (d) 32+.

Figure 4.8: Average shallowness and lightness for our metaheuristic and SALT on nets with
|V | = (a) 4 to 7, (b) 8 to 15, (c) 16 to 31, and (d) 32+.
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4.2 A Study of Optimal Cost-Skew Tradeoff and Remaining

Suboptimality in Interconnect Tree Constructions

The difficulty of scaling integrated-circuit power efficiency, performance, area and cost

(PPAC) in advanced technology nodes has been well-documented [207]. With the lack of new

back-end-of-line interconnect materials, and consequent poor scaling of wire resistance and ca-

pacitance, there is increased pressure to improve the quality of interconnect layout. The recent

paper of Alpert et al. [5] notes the power-sensitivity of modern (mobile, IoT, etc.) designs: “a

1% reduction in power is viewed as a big win for ... physical implementation”, and “even a

small WL savings with similar timing can have a high impact on value”. In other words, there is

renewed focus on the cost of interconnect trees in advanced VLSI.

Clock distribution has long been a crucial aspect of IC physical implementation since it

strongly affects both power and performance. Clock routing brings together both cost and skew

criteria: the cost-skew tradeoff [39] is particularly important in buffered clock tree construction,

where clock subnets with ∼20 fanouts are a “sweet spot” for balancing of on-chip variation-

aware analysis, skew, power and other factors. Future growth in the number of fanouts per clock

buffer is unlikely, as fanout is limited by poor scaling of drive strengths relative to intercon-

nect parasitics, increased use of multi-bit flip-flops to reduce clock wirelength and power, and

increasing number of clocks in complex, low-power SOCs.71

Over the past decades, a number of works have studied the bounded-skew routing tree

problem:

Bounded-skew routing tree (BST) problem. Given a set of terminals (points in the

Manhattan plane) P = {p1, p2, . . . , pn} with p1 being the designated root (source) terminal,

along with a skew bound B, construct a tree T with minimum cost c(T ) that contains all

points of P and with root-terminal pathlength skew ≤ B, i.e., |dT (1, i) − dT (1, j)| ≤ B, for

2 ≤ i < j ≤ n.

Here, the cost of an edge in T is its Manhattan length. The cost c(T ) of the tree T is the

sum of its edge costs, and dT (1, i) denotes the sum of edge costs along the unique path in T from

p1 to pi. The BST problem may be formulated in either the spanning or the Steiner contexts;

we denote these respectively as the BSSpanT and the BSSteinT problems. Figure 4.9 illustrates
71A recent keynote address of TI’s Anthony Hill [88] cites an IOT design with 200K instances, 200 distinct source

clocks, an average of 12 clocks per register, and 1200 total clock domains.
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the BST problem as well as the different nature of the BSSpanT and BSSteinT problems. Fig-

ure 4.9(a) shows the distribution of terminals for an example with n = 8. Figure 4.9(b) shows

cost-skew tradeoff for this instance. Note that when B =∞, the BSSpanT problem is the same

as the rectilinear minimum spanning tree problem, and the BSSteinT problem is the same as the

rectilinear Steiner minimum tree problem. Further, whenB = 0 the BSSteinT problem becomes

the exact zero-skew clock tree (ZST) problem studied in [19] [29] and many subsequent works.

The unknown that we study in this section is the tradeoff between these extreme solutions.

Figure 4.9: Illustration of the bounded-skew spanning and Steiner tree problems. (a)
Distribution of terminals for an example with n = 8. (b) Minimum achievable BSSteinT cost
decreases as the skew bound B increases. For the same instance and the same values of B, a

BSSpanT may not always exist.

The VLSI CAD literature of the 1990s developed constructions for bounded-skew clock

and Steiner routing trees [39][93] [112]. Additionally, cost-radius tradeoff methods such as

shallow-light trees [40][117] (see also [41][119] [53] [54]) or Prim-Dijkstra trees [5][9] were

applied in the bounded-skew context, since bounding the radius of a tree trivially also bounds the

skew of a tree. During the 2000s, the discrete algorithms community addressed bounded-skew

tree construction in works such as [30][194]. In recent advanced nodes, where both performance

and power are critical to IC products, there is now intense focus on the challenge of minimizing

clock distribution wirelength while controlling skew.

Our present work revisits the bounded-skew routing tree problem – in both the span-

ning tree and Steiner tree contexts – with an aim to determine “how much is left on the table”.

While VLSI interconnect trees are ultimately realized as Steiner trees, the spanning formulation

is of distinct interest. Footnote 1 of [5] observes that “For global routing, spanning trees are often

preferred to Steiner trees since global routing commonly decomposes multi-fanout nets into two-
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pin nets. A spanning tree provides the router with an obvious decomposition. However, Steiner

trees are not well-suited for this because the Steiner points become unnecessary constraints that

restrict the freedom of the router to resolve congestion.” Indeed, the spanning and Steiner for-

mulations have different “behaviors”: Elkin and Solomon [54] show that Steiner shallow-light

trees can be exponentially lighter than their spanning counterparts (recall also Figure 4.9).

The key contributions of this section are as follows.

• We formulate the minimum-cost bounded skew spanning and Steiner tree problems as

flow-based integer linear programs and give the first-ever study of optimal cost-skew trade-

offs.

• We evaluate the heuristics (Bounded-Skew DME and Prim-Dijkstra variants) that are cur-

rently the best available methods for trading off cost and skew, and quantify remaining

suboptimality.

In the following, Section 4.2.1 summarizes related work on cost-delay tradeoffs and

bounded-skew tree constructions. Section 4.2.2 describes flow-based ILP formulations for the

spanning and Steiner BST problems. Section 4.2.3 experimentally demonstrates a surprisingly

substantial “gap” between existing heuristic tree constructions and optimum bounded-skew trees.

We conclude in Section 4.2.4 with ongoing and future directions.

4.2.1 Related Work

Many spanning and Steiner tree heuristics have been proposed for VLSI routing appli-

cations. These heuristics typically optimize or trade off the fundamental objectives of tree cost,

delay and skew [109]. Types of tree constructions for VLSI that are related to our present work

can be classified into three main categories: cost-delay tradeoffs, bounded-skew constructions,

and optimal (integer programming-based) constructions.

Cost-delay tradeoffs have most famously been achieved by shallow-light constructions,

which optimize cost (wirelength) and radius (maximum source-sink pathlength) simultaneously

to within constant factors of optimal. For example, the BRBC algorithm [40] produces a tree

that has wirelength no greater than 1 + 2/ε times that of a minimum spanning tree (MST), and

radius no greater than 1+ε times that of a shortest-paths tree (SPT). Over the ensuing 25+ years,

numerous works ranging from [117] to [54][33] have continued to improve the basic approach.

The SALT method of [33] is the most recent and strongest work in the shallow-light literature,

incorporating additional techniques such as post-processing via edge flipping [89]. The Prim-
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Djkstra algorithm [9] achieves in practice a high-quality tradeoff between tree cost and maximum

source-terminal pathlength (i.e., radius), but has no provable shallow-light property. The very

recent work of [5] improves the original Prim-Dijkstra method with topology and edge-flipping

optimizations, and can produce tree solutions superior to [33]. Additional work has studied the

rectilinear Steiner arborescence (RSA) problem, which seeks to find a minimum-cost tree that

achieves optimal source-sink delay at every sink, i.e., a minimum-cost shortest-paths Steiner

tree. Rao et al. [158] and Cong et al. [42] give heuristics for the RSA problem, which is known

to be NP-complete [173]; an implementation of the A-Tree method of [42] is available at [85].

Bounded-skew tree (BST) constructions originally arose as extensions of deferred-

merge embedding (DME) based zero-skew tree (ZST) constructions [19][29][111]. Notably,

[39][93][112] all extend the DME algorithm to achieve BST routing. With a skew bound of

B = 0, the BST problem reduces to the ZST problem. When B = ∞, the BST problem re-

duces to the rectilinear Steiner minimum tree (RSMT) problem. Tsao and Koh [185] improve the

DME algorithm’s bottom-up merging step to construct trees subject to general skew constraints.

Empirical results show improvements over BST-DME with certain skew constraints. In the dis-

crete algorithms literature, works of Charikar et al. [30] and of Zelikovsky and Mandoiu [194]

propose ZST and BST heuristics with constant-factor error bounds; the latter work gives a re-

alizable ZST construction based on the “rooted-Kruskal” approach which guarantees rectilinear

BST cost within 9 times of optimal. Rajaram et al. [151] apply bounded-skew tree construction

within low-cost (cross-link insertion-based) nontree routing. Below, we study cost-skew tradeoff

performance of an updated version [180] of the open-source BST-DME implementation of Tsao

[184].

A number of optimal tree constructions have been proposed as well. The well-known

FLUTE method of Chu and Wong [38] uses topology pruning and look-up tables to find RSMT

solutions extremely efficiently; FLUTE solutions are optimal for instances with up to ∼9 pins.

The well-known GeoSteiner code of Warme et al. [202] can solve the RSMT problem optimally

for instances with thousands of points. The work of Peyer et al. [147] exemplifies the use of

integer linear programming (ILP) to solve the Steiner tree problem via the flow-based directed

Steiner tree framework. Single-commodity and multi-commodity flow-based ILPs have been

also used by Han et al. [78] to assess back-end-of-line design rule impacts on local routability,

and by Jia et al. [96] within a detailed router. Aneja [14] applies a set-covering ILP to the con-

struction of Steiner trees given a prescribed set of Steiner points. A “row generation” technique

prevents an exponential number of constraints from arising. Oh et al. [139] use linear program-
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ming to find Steiner routing trees with upper-and lower-bounded path delays within a prescribed

topology; a method similar to BST-DME is used to embed the Steiner points in the Manhattan

plane. No previous work that we are aware of optimally solves either the spanning or the Steiner

form of the bounded-skew tree problem. Below, we experimentally study a flow-based ILP that

solves both the spanning and Steiner BST formulations.

4.2.2 Flow-based ILP Formulation

We now formulate an ILP that can be generally applied to both the BSSpanT and

BSSteinT problems. In this section, we first introduce our bounded-skew tree routing formu-

lation. Second, we then explain constraints that detect and block any cycles, such that the ILP

outputs a well-formed tree as its solution. Third, additional constraints to improve runtime are

explained. Table 4.6 lists the notations that we use.

Table 4.6: Notations.

Notation Meaning

pi ith point (pi ∈ P , p1 is a root point)

vi ith vertex (vi ∈ V, P ⊆ V )

ejk a directed edge from vertex vj to vertex vk (ejk ∈ E)

λjk 0-1 indicator of whether ejk is in a tree T

cjk cost of edge ejk

f i
jk 0-1 indicator of whether the flow to pi goes through ejk

di
j pathlength at vj along unique v1-pi path

mij Manhattan distance from vi to vj

B skew bound

L lower bound on pathlength from source v1

Bounded-Skew Tree Routing

Given a set of terminals P , specified as (x, y) points in the Manhattan plane with x, y

integers, we create a graph G = (V,E) whose vertex set V contains P as well as additional

points S (i.e., V = P ∪ S). (Thus, each point in P is identified with some vertex in V .) For

the BSSpanT problem, S is empty and E consists of all |P | · (|P | − 1) possible directed edges

between pairs of terminals. Thus, G = (V,E) is a complete graph in the BSSpanT problem. For

the BSSteinT problem, S is a set of non-terminal points in a half-integer grid of P , andE is a set

of directed edges between any neighboring vertices. Each vertex has up to four outgoing and four
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incoming edges to/from neighbor vertices in the east, west, north and south directions. The half-

integer grid consists of all points in the bounding box of P for which both x and y coordinates

are multiples of 1/2. By convention, we assume that (i) v1 = p1 is the root (i.e., source) terminal,

(ii) {v2, v3, ..., v|P |} = {p2, p3, ..., p|P |} are the leaf (i.e., sink) terminals, and (iii) other vertices

{v|P |+1, ...v|V |} are additional non-terminal vertices. We formulate the following integer linear

program:

Minimize:
∑
j,k

λjk · cjk

Subject to:

λjk ≥ f i
jk ∀pi ∈ P, ejk ∈ E (4.4)

∑
j

f i
jk −

∑
j

f i
kj =


1 if vk = v1,∀vj ∈ V, pi ∈ P, i 6= 1

−1 else if vk = vi

0 otherwise

(4.5)

∑
j,k

cjk · f i
jk ≥ L ∀pi ∈ P, i 6= 1 (4.6)

∑
j,k

cjk · f i
jk ≤ L+B ∀pi ∈ P, i 6= 1 (4.7)

Our objective is to minimize total cost, while satisfying a given skew bound B. We

consider each path from p1 to pi as a separate flow. λjk is a global binary variable that indicates

whether any flow goes through an edge ejk in the tree solution T . Constraint (4.4) forces λjk = 1

when a flow exists in ejk.

Flow conservation. Constraints (4.5) are for flow conservation. (A unit of flow from

source v1 to sink vi will traverse a path from p1 to pi.) These constraints enforce that (i) there

is one net outgoing unit of flow at a vertex vk that is the vertex identified with the root terminal

p1; (ii) there is one net incoming unit of flow at a vertex vk that is the vertex identified with the

leaf terminal pi, and (iii) otherwise, the sum of incoming and outgoing flow at vertex vk must

be zero. Since each flow for each path is considered exclusively, for the flow to the terminal pi,

other terminals’ vertices (i.e., v2, ..., v|P | except for vi) are not considered as leaf terminals.
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Skew bound constraints. Given L and B, Constraints (4.6) and (4.7) respectively

bound the minimum and maximum pathlengths for all source-to-sink paths. However, with these

constraints only, invalid solutions that contain cycles could arise. Next, we add more constraints

to block the formation of cycles.

Figure 4.10: Example solution with a cycle on the lower-left corner. Red dot is a root and blue
dots are leaf terminals.

Cycle Correction

Figure 4.10 shows an example solution with a cycle. This solution satisfies the above

flow conservation constraints since the sum of incoming and outgoing flows are the same for

each vertex in the cycle. This happens when the cost of creating the cycle is less than the cost

of detouring to leaf terminals (that are close to the root) in order to satisfy a given skew bound.

To prevent the cycle, we define a new di
j variable that represents the pathlength from p1 to vj for

path pi. The di
j should satisfy Constraint (4.8):


di

j = 0 if vj = v1,∀ pi ∈ P, i 6= 1

di
j ≥ L else if vj = vi,∀ pi ∈ P, i 6= 1

di
j ≤ L+B otherwise ∀ pi ∈ P, i 6= 1

(4.8)

In other words, the pathlength from the root to any vertex vj must lie between prescribed mini-

mum and maximum pathlength bounds. To compute di
j , we add the following constraints.

di
j + U · (1− f i

kj) ≥ di
k + ckj ∀vj , vk ∈ V, j 6= k, pi ∈ P (4.9)

di
j − U · (1− f i

kj) ≤ di
k + ckj ∀vj , vk ∈ V, j 6= k, pi ∈ P (4.10)
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When f i
kj = 1, di

j should be equal to di
k. Otherwise, these constraints are always met with a

large constant value U . With these constraints, di
j becomes infinite if there is a cycle.

Constraints for Runtime Improvement

It is well known that the chief drawback of using ILP is long, poorly-scaling runtime. We

add further constraints to predetermine some variables according to what we might know before

we run the ILP instance. The idea is to find flow variables that cannot exist, or combinations of

variables that cannot coexist. This reduces the solution space for an ILP solver to explore.

if m1j +mji > L+B ∀vj ∈ V, j 6= 1, ..., |P |, pi ∈ P

f i
jk = 0, f i

kj = 0 ∀ejk ∈ E, ekj ∈ E (4.11)

For any non-terminal vertex vj , if the sum of Manhattan length from root terminal p1

to vj and from vj to leaf terminal pi is larger than the upper bound on pathlength L + B, all

incoming and outgoing flows for pi going through vj should be zero.

Similarly, we can consider two non-terminal vertices vj and vj′ :

if m1j +mjj′ +mj′i > L+B

&& m1j′ +mj′j +mji > L+B

f i
jk + f i

j′k′ = 1, f i
kj + f i

j′k′ = 1, ∀ejk ∈ E, ekj ∈ E (4.12)

f i
jk + f i

k′j′ = 1, f i
kj + f i

k′j′ = 1, ∀ej′k′ ∈ E, ek′j′ ∈ E (4.13)

For any two non-terminal vertices vj and vj′ , if the sum of Manhattan lengths from p1 going

through vj and vj′ to terminal pi is larger than the pathlength upper bound, then any com-

binations of incoming and outgoing flows going through vj and vj′ cannot coexist. Our ILP

implementation applies such additional constraints to reduce ILP solver runtime.
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Analysis of the Number of Variables and Constraints

The number of variables and constraints depends on the number of edges (|E|), vertices

(|V |) and points (|P |).

• The number of variables λjk is |E|.

• The number of variables f i
jk is |E| · |P |.

• The number of variables di
j is |V | · |P |.

• The number of Constraints (4.4) is |E| · |P |.

• The numbers of Constraints (4.5), (4.8), (4.9), (4.10) are |V | · |P |.

• The numbers of Constraints (4.6) and (4.7) are (each) |P |.

Figure 4.11: Illustration of cost-skew tradeoff: (a) cost-skew tradeoff curve for one 14-terminal
instance, and (b)-(f) cost-skew tradeoff curves for all 8-, 10-, 12-, 14- and 16-terminal

instances, respectively.
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4.2.3 Experimental Setup and Results

Experimental Setup

We implement our tool in C++ and use CPLEX v12.6 [203] as our ILP solver. The

following experiments are performed on a 2.7 GHz Intel Xeon server with 32 threads.

Even with the additional constraints for runtime improvement, our flow-based ILP for

Steiner tree only works for a limited condition (i.e., |P | ≤∼16, |V | ≤∼140, |E| ≤∼550). Under

this condition, we generate 50 testcases for each |P | = {8, 10, 12, 14, 16}. The terminals of each

testcase are randomly distributed.

For the generated testcases, we run our flow-based ILP for Steiner tree, and obtain cost-

skew tradeoff curves. For each instance, we run ILP with four different skew bounds = M ·
{0.3, 0.5, 0.7, ∞}, where M is the maximum source-to-sink Manhattan length. We do not run

our ILP with skew boundB = 0 due to the long runtime. We also set L = M −B for a givenB.

When a fixed L is used, our ILP Steiner tree solution could end up with a suboptimal solution.

The impact of a fixed L on suboptimality is discussed in Experimental Results below.

We also run several academic tools for evaluation; BST-DME [184], SALT [33] and

PD [9]. For each tool, we sweep input parameters to obtain several solutions.

Experimental Results

Study of cost-skew tradeoff. We normalize the costs (resp. skews) of academic tools’

solutions as well as our ILP-based spanning tree solutions by the minimum cost (resp. skew)

achieved from ILP-based Steiner tree for each testcase. Figure 4.11(a) shows the results for one

14-terminal instance. Each data point is mapped to a solution from the corresponding tool. This

figure clearly shows that our ILP-based Steiner tree solutions are dominating the other tools’

solutions on both skew and cost. Some solutions from BST-DME achieve slightly better skew

than our minimum skew from ILP-based Steiner tree solutions. This is because we do not have

a run with B = 0. Figure 4.12 shows the plots of ILP-based Steiner tree solutions for this

14-terminal instance.

For a more comprehensive study across different instances, we propose the following

way for comparison. (1) For each tool, we select three representative solutions: the minimum-

skew solution, the minimum-cost solution and a “median” solution in between. (2) We then

compute the average normalized cost (resp. skew) for the same set of solutions (e.g., minimum

skew solutions) for all 50 instances.
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Figures 4.11(b)-(f) show the cost-skew tradeoff curves for all |P | = {8, 10, 12, 14, 16},
respectively. From these figures, we observe that:

• ILP-based Steiner tree dominates all other tools in terms of both cost and skew across all

terminal nets.

• Compared to the Steiner tradeoff curve, BST-DME is ∼ 10% suboptimal in cost at iso-

skew and ∼ 50% suboptimal in skew at iso-cost. Solutions for different terminal nets

show a similar trend.

• Both SALT and PD mostly generate large skew solutions, with up to ∼ 3× suboptimality.

This suggests that optimizing shallowness only, without awareness of skew, is insufficient

to find solutions with good skew.

• In general, ILP-based spanning tree solutions have larger skew and cost than the ones

from SALT and BST-DME. However, as the number of terminals increases, it generates

comparable or better cost and skew solutions than SALT and BST-DME. This implies that

the optimal spanning tree solutions could be good candidates for high-fanout nets.

Runtime. ILP for spanning tree runs very fast. Average runtime is 0.32 second and

maximum runtime is 4 seconds. On the other hand, ILP for Steiner tree uses the half-integer

grid to ensure that optimal solutions. Thus, as we increase the number of terminals, the number

of vertices and edges increase and runtime goes up quickly. Runtime also increases as the skew

bound is tightened. Table 4.7 shows the average runtime for different |P | and skew bound.

Table 4.7: Average ILP runtime for Steiner tree.

Skew bound |P | = 8 |P | = 10 |P | = 12 |P | = 14 |P | = 16

Unbounded 0.33 0.50 0.68 1.04 0.78

0.7 ·M 2.89 5.22 41.24 130.08 58.53

0.5 ·M 13.20 74.98 364.03 1522.25 892.50

0.3 ·M 320.77 662.01 2593.59 4664.06 3477.73

Possible suboptimality with fixed L. Due to runtime scaling and available computa-

tional resource, we have used a fixed L (computed as M − B; see Experimental Setup above)

in our reported results for ILP-based bounded-skew Steiner trees. However, a fixed L can cause

small suboptimality in the solutions. To study the impact of L on suboptimality, we select 10

sample instances (two instances from each testset with a given number of terminals) and vary
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L from M − B to M . We then compare the best cost found to the cost obtained using a fixed

L = M − B. We find that one out of 10 nets is suboptimal due to the fixed L and the subopti-

mality is 2.8%.

Figure 4.12: Illustration of ILP-based Steiner tree solutions for a 14-terminal instance with (a)
B = inf , (b) B = 0.7 ·M , (c) B = 0.5 ·M and (d) B = 0.3 ·M .

4.2.4 Conclusion

In this section, we empirically study the minimum-cost bounded skew spanning and

Steiner tree problems. We formulate and apply a flow-based ILP to find optimal cost-skew

tradeoffs for generated testcases with number of terminals from 8 to 16. Based on the optimal

cost-skew tradeoffs, we find significant remaining suboptimality of several state-of-art academic

tools: (1) BST-DME, (2) SALT and (3) Prim-Dijkstra. Across our testcases, BST-DME has

suboptimality ∼ 10% in cost at iso-skew, and ∼ 50% in skew at iso-cost. In addition, SALT and

PD show suboptimality in terms of skew by up to ∼ 3×. This degree of suboptimality is very

different from the near-optimality in practice of heuristics for the RSMT problem (e.g., FLUTE,

1-Steiner, etc.). Thus, our study motivates renewed attention to the cost-skew tradeoff.

Our future work includes (1) further scalability study and improvement of the flow-

based ILP formulation; (2) extensions of our suboptimality study to the cost-radius tradeoff

and well-studied variants (sink-specific radius bounds, critical-sink trees, required arrival time

(RAT) trees, etc.), and (3) benchmark suite generation with known optimal solutions to various

formulations.
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4.3 Optimal Generalized H-Tree Topology and Buffering for

High-Performance and Low-Power Clock Distribution

Physical implementation of clock distribution networks is increasingly critical to the

success of high-performance, low-power IC product designs. Clock distribution takes up sub-

stantial routing and buffering resources as well as a significant portion of overall power con-

sumption [146]. Power dissipation in the clock network has often been estimated to be one third

of total IC power dissipation [131], or even half the total power in some designs. Further, the

quality (skew and latency) of clock delivery strongly determines achievable performance of the

design, particularly in advanced nodes. Skew is well known to affect datapath area and power,

as well as the design schedule needed to achieve timing closure [45][153][159][170][175][190].

Maximum clock latency is another key metric of the clock distribution network in advanced

nodes since skews are magnified by on-chip variation (OCV) deratings [26].

Figure 4.13: 8-level GH-tree with branching pattern (4, 2, 2, 2, 4, 2, 2, 2).

As reviewed below, there are several methods of clock distribution. Tree-based con-

structions are still dominant, and remain the default of commercial clock tree synthesis (CTS)

tools. To reduce skew and increase robustness (e.g., in light of manufacturing variability or reli-

ability mechanisms), mesh and other non-tree topologies (e.g., trees + cross-link insertion) have

been used. Such non-tree methods typically have large overheads in terms of power, area, wire-

length and signoff analysis complexity. Thus, clock trees are still of interest and great practical

relevance for reasons of cost efficiency, flexibility and design flow complexity. Increasingly,

structured approaches to clock tree design are seen in practice, since these offer benefits of pre-

dictability in the resource-versus-skew tradeoff, particularly in the upper levels of clock trees.
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As a special case of structured clock trees, the highly regular, recursive H-tree embed-

ding of a complete binary tree [17] offers minimum skew, but at the cost of larger wirelength

and potentially larger clock power and latency. “Fishbone” clock tree topologies (e.g., [13]) with

spines and ribs can be more cost-efficient in terms of latency, wirelength, area and clock power

– but incur varying propagation delays (that is, of the clock signal to branching points along a

given spine) which cause skew. To explore the tradeoff among skew, latency and (clock power,

clock buffer area) cost, this section proposes the concept of a generalized H-tree (GH-tree),

which is a balanced tree topology with arbitrary branching factor at each level. (Like the H-tree,

the GH-tree is a multi-level topology; like the fishbone, it can have branching factor greater than

two.) Figure 4.13 shows a GH-tree with depth P = 8 and branching factors (4, 2, 2, 2, 4, 2, 2,

2) at levels p = 1, 2, ..., 8. In the example, we assume there are 1024 (= 4 · 2 · 2 · 2 · 4 · 2 · 2 · 2)

nodes (sinks) uniformly placed in the region. If the root of the tree is at the region center, each

root-to-leaf path will contain horizontal segments of lengths 3·W
4 , W

8 , 3·W
32 and W

64 , in that order.

The lengths of the successive vertical segments in each root-leaf path are H
2 , H

4 , H
8 and H

16 . We

note that in our proposed GH-tree, we do not necessarily insert a buffer at each branching point.

Further, we allow buffering that is internal to a given branch, that is, at any location along wiring

of that given branch.

In this section, we study potential benefits of the generalized H-tree for low-power, low-

skew, and low-latency clock distribution. We propose a dynamic programming (DP) algorithm

that efficiently finds an optimal72 GH-tree with minimum clock power for given latency and

skew targets. This optimization uses calibrated clock buffer library and interconnect timing and

power models, and co-optimizes the clock tree topology along with the buffering along branches.

Furthermore, we also propose a clustering and linear programming-based heuristic to embed the

GH-tree with respect to a given placement of clock sinks. Finally, our embedding of the GH-tree

is blockage-aware. In a 28LP testbed with multi-corner timing constraints, our embedded GH-

tree solutions provide significant clock power benefits (iso-skew and -latency) in comparison to

commercial CTS solutions from the place-and-route tools of two leading EDA vendors as well

as a state-of-the-art academic CTS tool. Our contributions are summarized as follows.

• We propose the concept of a generalized H-tree, which is a balanced tree topology that

can have an arbitrary sequence of branching factors.

• We propose a DP-based method to co-optimize clock tree topology and buffering to
72We note that our claim of an optimal clock tree solution is in the regime of generalized H-tree solutions (i.e.,

the continuum between H-tree and spine). We do not claim that our optimal GH-tree is a globally optimal clock tree
solution.
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achieve an optimal GH-tree solution with respect to the tradeoffs among skew, latency

and clock power.

• We propose a balanced K-means clustering and linear programming-based buffer place-

ment to embed our GH-tree solution with respect to any given sink placement.

• We validate our GH-tree optimization based on sink placements from a leading commer-

cial place-and-route (P&R) tool, which include testcases with high floorplan aspect ratio

and existence of blockages.

• Our methodology and optimizations can easily be integrated with commercial P&R tools.

Our experimental results in a foundry 28LP technology with multi-corner testcases show

up to 30% clock power reductions compared to current CTS tool solutions from two lead-

ing EDA vendors and up to 56% clock power reduction compared to a state-of-the-art

academic solution [118].

• Our optimizer is open-sourced as TritonCTS in GitHub (https://github.com/abk-

openroad/TritonCTS).

4.3.1 Motivation and Related Work

In this section, we first review previous works on clock distribution, categorizing them

as: (i) non-tree methods and (ii) tree-based methods. We then provide a motivating analysis of

the GH-tree solution space.

Non-tree methods. Mesh topologies are commonly understood to provide robustness

and small skew. Many works, such as [75][76][160][161], propose clock mesh designs for high-

performance circuits that require robust clock networks. To reduce the cost (e.g., wirelength,

power), hybrid clock distribution methods integrating both mesh and tree topologies have been

proposed [159][175]. Several works [55][91][153][162] propose to insert cross-links for min-

imization of clock skew, based on an initial clock tree solution, with small power overhead.

Rajaram et al. [153] propose an algorithm to recursively merge subtrees with backward slew

propagation. Ewetz and Koh [55] propose systematic cross-link insertion methods to improve

the robustness of a clock tree while minimizing its overheads. They propose a vertex reduc-

tion method to reduce the amount of redundancy in their non-tree structures. Although non-tree

methods reduce clock skew and enhance robustness of clock networks, their intrinsic redundancy

incurs additional cost (e.g., wirelength, power, effort of verification) as compared to tree-based
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methods. Furthermore, non-tree clock distribution topologies such as meshes lack flexibility and

tunability; this can block, e.g., useful skew optimizations.

Dolev et al. [48] propose a hexagonal grid-based clock topology (HEX), consisting of a

hexagonal grid with intermediate nodes that control the clock signals in the grid and supply the

clock signals to nearby functional units. Abdelhadi et al. [1] propose an algorithm to construct a

variation-tolerant hybrid clock network based on a combination of non-uniform meshes and un-

buffered trees. Their method selectively reduces clock skew variations on critical timing paths.

Zhou et al. [197] propose an algorithm to determine tapping points for local buffers that drive a

clock mesh with non-uniform load distribution in a tree-driven grid clock network. Their algo-

rithm first calculates load for each node, then clusters the nodes. Tapping points are determined

for each cluster based on the minimum and maximum latencies.

Recently, Y. Kim and T. Kim [118] have proposed a synthesis algorithm for clock spine

networks that effectively optimizes the tradeoff between clock resource and variation tolerance.

The key idea of their algorithm is to treat the clock spine allocation and placement problem as

a slicing floorplan optimization problem. Clock tree solutions from the CTS algorithm of [118]

are compared to our GH-tree solutions in Section 4.3.3.

Tree-based methods. Due to their cost efficiency, clock tree-based methods have been

commonly used for clock distribution in low-power designs. Early works [39][29][111][185]

propose clock tree constructions based on linear or Elmore delay models to minimize wirelength

for a given skew target. However, delay and power impacts of buffers are ignored in these works.

Approaches in [31][74][130][135][154][157][183][190] comprehend buffering impact and co-

optimize clock tree construction (i.e., tree topology) with buffering. Vittal and Marek-Sadowska

[190] give an early algorithm that co-optimizes tree topology and buffer insertion. Mehta et

al. [135] propose a clustering algorithm to obtain approximately load-balanced clusters and

construct clock trees so as to minimize skew. These previous approaches typically construct the

clock tree in a bottom-up way with a greedy algorithm, and do not explore the skew vs. cost

tradeoff. Furthermore, few works adapt their tree construction approaches to, and validate their

solution quality with, commercial P&R tools and realistic design blocks. Other works [26][79]

are ECO-based incremental optimizations based on an initial clock tree solution generated by

commercial P&R tools. The objective functions of these works differ from ours. Chan et al. [26]

minimize skew at the top-level, whereas Han et al. [79] minimize skew variation across corners.

A motivating analysis. To motivate our main studies below, we briefly illustrate the

tradeoffs among clock tree wirelength, global skew and maximum clock latency seen across GH-

173



tree topologies with various branching patterns. Before doing so, we summarize in Table 4.8 the

terminology and notation used in the remaining discussion.

Table 4.8: Notations.

Term Meaning

r (R) clock tree (set of clock trees)

ω (Ω) global clock skew (maximum global skew constraint)

t (T ) clock latency (maximum clock latency constraint)

γ (Γ) clock slew (maximum clock slew constraint)

C maximum load capacitance constraint

L clock tree wirelength

O set of placement blockages

w (W ) width (width of given layout region)

h (H) height (height of given layout region)

n (N) number of sink regions (required number of sink regions)

p (P ) level index [p = 1 for clock source] (depth of clock tree)

bp branching factor at level p in clock tree

B branching patterns (i.e., sequences of branching factors {b1, b2, ..., bP })

uk kth sink cluster (uk ∈ U )

si ith sink (si ∈ S)

dk,i Manhattan distance between sink si and root of cluster uk

ηk,i binary indicator of whether sink si belongs to cluster uk

ψllx,lly,urx,ury
j,q binary indicator whether jth buffer is located outside the corresponding boundaries of qth blockage

ci clock pin capacitance of sink si

xi (yi) x-coordinate (y-coordinate) of sink si

((xll
k , y

ll
k ), (xur

k , y
ur
k )) bounding box of sink cluster uk

Given layout region area W × H , we analyze the wirelength of a GH-tree with branch-

ing pattern (b1, b2, b3, ..., bP ). We assume that (i) at any level, the region area is uniformly split

into sink regions (i.e., regions that contain downstream sinks) according to the branching factor;

(ii) the root of a sink region is located at the center of the sink region; (iii) branching factor bp

at any level p is always an even number; and (iv) the GH-tree always starts with a horizontal

segment at the top level. Based on these assumptions, the wirelength of a horizontal (vertical)

wire segment wp (hp) at level p is calculated as73

wp =
bp − 1

Π(p+1)/2
i=1 b2i−1

·W , hp =
bp − 1

Πp/2
i=1b2i

·H (4.14)

73Note that (p+1)/2 in Equation (4.14) is always an integer since we create horizontal segments (wp) and vertical
segments (hp) in alternation, and always start with a horizontal segment from the top. Thus, all horizontal segments
are created when p is an odd number.
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The total wirelength is calculated as

L =
dP

2
e∑

k=1

[
b2k−1 − 1
b2k−1

k−1∏
i=1

b2i] ·W +
bP

2
c∑

k=1

[
b2k − 1
b2k

k∏
i=1

b2i−1] ·H (4.15)

Assuming a linear wire delay model and ignoring buffering, we derive the maximum

and minimum (linear-delay) clock latency from clock source to any sink as

tmax =
1
2
· [

dP
2
e∑

k=1

(
b2k−1 − 1
Πk

i=1b2i−1
) ·W +

bP
2
c∑

k=1

(
b2k − 1
Πk

i=1b2i
) ·H] (4.16)

tmin =
1
2
· [

dP
2
e∑

k=1

(
1

Πk
i=1b2i−1

) ·W +
bP

2
c∑

k=1

(
1

Πk
i=1b2i

) ·H] (4.17)

The maximum global skew ω is then defined as the difference between tmax and tmin.

ω =
1
2
· [

dP
2
e∑

k=1

(
b2k−1 − 2
Πk

i=1b2i−1
) ·W +

bP
2
c∑

k=1

(
b2k − 2
Πk

i=1b2i
) ·H] (4.18)

Figures 4.14(a) and 4.14(b) respectively show skew-wirelength and latency-wirelength

tradeoffs in GH-trees with various branching patterns. We calculate skew and latency based on a

linear delay model74 according to Equations (4.16) and (4.18). The figures also show the Pareto

frontier of non-dominated points of each tradeoff. Figures 4.14(c) and 4.14(d) respectively show

skew-power and latency-power tradeoffs of buffered GH-trees with various branching patterns,

as reported by a commercial static timing analysis tool with foundry 28LP technology and library

models. The Pareto frontier of each tradeoff is shown as the black curve. We observe from

the figures that different branching patterns lead to wide-ranging skew-power and/or latency-
74The linear wire delay model approximates clock latency with relatively low accuracy. However, we give this

motivating analysis using the simple linear delay model to more intuitively illustrate the tradeoff among clock power,
skew and latency with different GH-tree topologies. Below, we apply comprehensive buffer and wire delay modeling
in our optimization to demonstrate the benefits of our proposed approach.
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power tradeoffs. In this section, we explore branching patterns via dynamic programming to

optimize tradeoffs among skew, latency and power. Figure 4.14(c) shows that with the same

branching pattern (e.g., (10, 4, 2, 12)), different buffering solutions can lead to more than 20%

skew difference with similar clock power. We therefore perform co-optimization of tree topology

(i.e., branching pattern) and buffering to minimize clock power, skew and latency.

Figure 4.14: Study of motivating tradeoffs. (a) Linear delay skew vs. WL and (b) linear delay
latency vs. WL with different branching patterns. (c) Skew vs. clock power and (d) maximum
latency vs. clock power, in buffered GH-trees for a testcase with 17K sinks and region area =

380µm × 380µm.

4.3.2 Our Approach

We now describe our problem formulation and our approach. Based on the motivating

examples shown in Figure 4.14, we construct GH-trees to explore the tradeoff among skew,

latency and clock power. Our construction comprehends the delay and power impact of buffer

insertion, sink placement and multiple constraints (e.g., maximum transition time and maximum
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load capacitance). More specifically, we address the following GH-tree construction problem:

Given: a placement solution (i.e., a layout region W × H and placement of sinks), number of

sink regions N such that each region contains < 40 sinks, timing library of clock buffers (.lib),

maximum clock skew constraint Ω, maximum clock latency constraint T , maximum transition

time constraint Γ (i.e., at both sinks and clock buffer input pins), and maximum load capacitance

constraint C.

Perform: GH-tree construction with co-optimization of the clock tree topology (i.e., branching

patterns) and buffering to minimize clock power, subject to the given constraints.

Figure 4.15 shows our overall GH-tree construction flow. An instance consists of a

post-placement layout, the number of sink regions, and constraints, along with pre-characterized

technology- and library-specific lookup tables (LUTs) containing power and delay information

of candidate buffering solutions (i.e., segment length and buffer sizes). We perform the GH-tree

construction primarily through two main steps: (i) according to the total sink capacitance and

layout region area and aspect ratio, we first formulate a dynamic programming problem to co-

optimize branching pattern and buffering; and (ii) we then perform balanced K-means clustering

and formulate an integer linear programming problem to determine clock buffer placement (i.e.,

to embed our generalized GH-tree structure into the given sink placement). We note that the

key step is the first step (i.e., DP-based co-optimization of clock topology and buffering) that

systematically explores the continuum between H-tree and spine to achieve an optimal tradeoff

among clock power, skew and latency (within this regime). Last, we realize our GH-tree solution

in a commercial P&R tool and report metrics (e.g., skew, latency, power, etc.) to assess solution

quality.

Although our approach systematically optimizes the tradeoff among clock power, la-

tency and skew in the GH-tree regime, our method has two limitations that we highlight. First,

we do not co-optimize tree topology and buffering together with sink placement, due to large

runtime complexity. Second, our approach does not consider clock gating cells in a clock tree.

Therefore, an improved resolution of the “chicken-and-egg” loop between (i) placement of roots

of sink regions and (ii) top-level tree topology optimization, as well as consideration of clock

gating cells during the optimization, remain as open research directions.

LUT Characterization

We characterize LUTs based on simulations using Synopsys PrimeTime [221] as inputs

for our DP-based optimization. These LUTs contain power, input capacitance, slew propagation,

177



Figure 4.15: Overall flow of GH-tree construction.

and delay information of buffered and unbuffered wire segments. We use four types of buffers

(X50, X67, X100, X134 from the 28LP libraries). In this technology, the gate area of a X134

buffer is ∼7× the gate area of a minimum-size (X2) buffer. We also use “ganged buffers”

(i.e., two, four or six X134 buffers with shorted inputs and shorted outputs) to achieve higher

driving strengths. We create wire segments of lengths 15µm, 30µm, 45µm, 60µm, 75µm, and

90µm.75 Along these wire segments, we enumerate all possible buffering solutions with the

minimum granularity of 15µm (i.e., the minimum distance between two buffers is 15µm).

The granularity of LUTs (e.g., number of buffer candidates, minimum wire segment

length) will determine the tradeoff between optimization runtime and solution quality. In this

section, we empirically select the granularity of our LUTs to achieve improved solution quality

compared to two commercial tools, while using comparable runtime. For example, with a 45µm

segment length, a minimum buffering distance of 15µm and seven buffer sizes, there are 83 (i.e.,
75We use LUTs based on multiple short wire segments to estimate the delay and slew propagation of a long

wire segment. Since we match the output load, input capacitance as well as output and input slew values of two
consecutive short segments to form a long segment, the estimation error is negligible. The small estimation error
comes from discreteness of capacitance and slew values.
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no buffer or exactly one of the seven buffer sizes, at each of the three buffering locations) distinct

buffering solutions. Note that our LUTs include unbuffered solutions, i.e., pure-wire solutions.

We consider both 1W1S (single-width, single-spacing) and 2W2S (double-width,

double-spacing – which we understand to be the common non-default routing rule (NDR) for

clock distribution) wire segments in our characterization. We vary the input slew from 5ps to

60ps in steps of 5ps and we vary output load from 1fF to 150fF in steps of 1fF from 1fF

to 5fF , and in steps of 5fF from 5fF to 150fF . For each 3-tuple of (distance, input slew,

output load) we obtain the buffering solution (including input capacitance) and the output slew.

From the large number of possible solutions, we prune solutions as follows. For each (distance,

input capacitance, output slew, output load) 4-tuple, we select three delay values at the 10th, 50th

and 90th percentiles of the delay range, and then select the minimum-power solution for each

of these three delay values. Figure 4.16 shows an example of our pruning on LUTs, in which

we select minimum-power solutions with different output load values. Red (resp. blue) dots are

the buffering solutions with output load = 75fF (resp. 35fF ). Cross (x) points are the selected

buffering solutions. In practice, we have found that this pruning reduces the number of buffering

solutions by ∼94% at the cost of only ∼5% solution quality (i.e., in terms of skew or latency)

loss.

Figure 4.16: Example of pruning for buffering solutions with distance = 45µm and output
slew = 35ps.
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DP-Based Co-optimization of Clock Topology and Buffering

Based on the characterized LUTs, we determine the optimal branching pattern along

with the buffering solution for GH-tree using dynamic programming (DP). Other inputs to our

optimization are layout region, placement of sinks, the number of sink regions, and the maximum

skew and maximum latency constraints. A sink region typically contains < 40 sinks in our

optimization. Our objective is to minimize the clock power while satisfying the given maximum

skew and maximum latency constraints. As discussed, in this step, we assume that the sink

regions are induced from a uniform placement of sinks, and that branching points are always

located at the center of the corresponding sink region. We understand that the sink regions are

typically not uniform for a real placement solution. However, due to high runtime complexity,

it is practically infeasible for our current approach to consider sink placement during our DP-

based optimization. We therefore assume uniform sink regions during our DP-based GH-tree

construction. We then embed our DP-based solution (without solution quality degradation) into

the given (real) sink placement based on sink clustering and branching point displacement. We

formulate our DP in a high-dimensional solution space with seven dimensions (i.e., with respect

to seven essential parameters of a clock tree optimization) and construct our GH-tree in a bottom-

up way. The seven dimensions are {clock tree depth (P ), region area (width (w) and height (h)),

number of sink regions (n), maximum and minimum clock latencies (tmax and tmin), and input

capacitance (i.e., the load capacitance seen from the root)}.
Algorithm 13 describes our optimization procedure; see also the illustration in Fig-

ure 4.17. We first construct GH-trees for the base case, that is, trees with depth = 1 over all

different region areas (i.e., w×h) and numbers of sink regions (i.e., n) (Line 1). As an example,

Figure 4.17 shows the solutions at level p (i.e., subtree with depth = 1) with different region areas

(i.e., 5× 5 (red), 10× 10 (green) and 15× 15 (purple)). Procedure build base trees(w, h, n, ∅)
constructs GH-trees with depths of one (i.e., spines with different buffering solutions) within

a w × h region and with a branching factor of bp. Following [179], we use the term spine to

denote one horizontal or vertical wire segment in the clock tree. Note that at the bottom level,

bp = n. As illustrated in Figure 4.17, we optimize the buffering solution along the spine based on

characterized LUTs. Optimization of each tree segment along the spine generates a minimum-

power Pareto surface in the high-dimensional space indexed by the LUT input parameters (e.g.,

maximum and minimum latencies, and input capacitance). The optimization eventually results

in multiple subtree solutions. We store these subtree solutions in a set R indexed by tree depth,

region area, number of sink regions, maximum and minimum clock latencies, and input capaci-
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tance. In other words, R is a set of subtree solutions along with their depth, region area, number

of sink regions, clock latency, input capacitance and power information corresponding to the

minimum-power Pareto surface.

Figure 4.17: Co-optimization of GH-tree topology and buffering. The example illustrates
construction of trees with depth = 2 and eight sink regions, based on subtrees with depth = 1

and two sink regions.

Next, we recursively search for the optimal (i.e., minimum-power) GH-tree solutions

with depth P > 1, region area w × h, and number of sink regions n. We increase P by one per

iteration during the optimization, until P = Pmax (Lines 2–20). The maximum depth Pmax for

a given N is estimated based on the conventional H-tree (which has branching factor of two for

all levels), i.e., Pmax = dlog2Ne. For each depth P , we perform buffering optimization along

the tree segments at the topmost level, based on the stored subtree solutions at depth (P − 1).

In other words, we use existing solutions (i.e., subtree solutions from R) and add one more

(topmost) level with optimized buffering to construct a new tree with depth increased by one.

Figure 4.17 illustrates how our optimizer constructs solutions at level (p− 1) (i.e., subtrees with

depth = 2) based on the solutions at level p (i.e., subtrees with depth = 1). In this example,

solutions for region area 20 × 5 (resp. 40 × 10) at level (p − 1) are constructed based on four

instantiated solutions for region area 5× 5 (resp. 10× 10) at level p.
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Algorithm 13 DP-based GH-tree construction.

1: R← build base trees(w, h, n, ∅), ∀ w, h, n
s.t. 0 < w ≤W, 0 < h ≤ H, 2 ≤ n ≤ N, n is an even number

2: for P := 2 to Pmax do
3: for w := 0 to W do
4: for h := 0 to H do
5: for n := 2 to (N · w · h)/(W ·H) do
6: R← retrieve subtrees(Pl, wl, hl, nl)
7: for all (rl) ∈ R do
8: r ← build tree(w, h, n, rl)
9: r′ ← retrieve tree(R,P,w, h, n, r.tmax, r.tmin)

10: if r′ = null then
11: R← R ∪ {r}
12: else if r.power < r′.power then
13: remove r′ from R
14: R← R ∪ {r}
15: end if
16: end for
17: end for
18: end for
19: end for
20: end for
21: ropt.power ←∞
22: for all r′ ∈ R s.t. r′.w = W, r′.h = H, r′.n ≥ N do
23: if r′.tmax − r′.tmin ≤ Ω && r′.tmax ≤ T && r′.power < ropt.power then
24: ropt ← r′

25: end if
26: end for
27: return ropt

For each (P , w, h, n) tuple, we construct our optimization solutions based on the set of

all stored subtrees (rl) (from R) that satisfy

Pl = P − 1; wl = h; hl = w/bt; nl = n/bt (4.19)

where Pl is the depth of rl; w×h is the dimension of the layout region; wl×hl is the dimension

of a sink region (i.e., layout region for subtree rl); bt is the branching factor at the topmost level

of the current tree; and nl is the number of sink regions of rl. Lines 3-4 and Line 5 respectively

enumerate possible dimensions and numbers of sink regions for subtree solutions. In Line 6 of

Algorithm 13, we find all subtree solutions, which we have optimized in previous iterations, with

branching factor bt such that 2 ≤ bt ≤ n/2.

Procedure build tree(w, h, n, rl) then builds trees r with depth = P , using copies of

the collected subtrees rl ∈ R (which have depth = (P − 1)) as its lower-level subtrees (Line 8).
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In other words, we build the tree segment with optimized buffering at the topmost level, and at

each sink of the topmost segment, we use (i.e., instantiate) the same subtree rl to build lower

levels of the tree r. To reduce the runtime complexity, our current approach assumes that at any

level, the subtrees are identical. As shown in Section 4.3.3 below, this does not preclude strong

final solution quality. Among all the constructed trees with depth = P and the same maximum

and minimum latency, we select the solution with minimum power and add it to the solution

set R (Lines 7–16). Procedure retrieve tree(R,P,w, h, n, r.tmax, r.tmin) in Line 9 retrieves a

previously stored solution r′ from the set R that satisfies the conditions depth = P , width = w,

height = h and number of sink regions = n, and has maximum and minimum latencies equal to

specified tmax and tmin, where t is clock latency. Finally, we select the solution with minimum

power that satisfies the maximum skew constraint (Ω) and the maximum latency constraint (T )

from set R with number of sinks N and region area W ×H (Lines 21–27).

We note that the slews are propagated from top to bottom in a tree. However, our opti-

mization performs bottom-to-top GH-tree construction. We propagate slew bottom-up to accu-

rately capture the slew degradation and avoid maximum transition violations. We first assume

several slew values (e.g., 25ps, 30ps, 35ps, 40ps) at the root of each sink region. For each of

the assumed slew values, we propagate slew bottom-up, based on LUTs (note that our LUTs

contain output and input slews for each buffering and/or wiring solution). During the DP-based

optimization, we only select solutions which ensure that slew values throughout the slew propa-

gation are always within the range of [5ps, 60ps], where 60ps is the maximum slew constraint

in our experiments, and 5ps is the minimum achievable slew in practice in our experiments. We

also note that buffer locations are determined by the selected LUT solution with bottom-up slew

propagation. Thus, buffers are not necessarily inserted in all branching points.

The runtime complexity of proposed algorithm isO(Pmax · W ·H
wint·hint

·N2 · γmax

γint
), where

wint, hint and γint are respectively the minimum distance and timing intervals for discretization

of the original continuous solution space to formulate the dynamic programming; γmax is the

specified maximum clock latency constraint. We set wint, hint < 5µm and γint = 1ps in our

experiments. To reduce the runtime, we apply the following pruning techniques.

• Pruning with number of leaf regions. For a given sub-region of size w × h we prune

solutions with number of leaf regions greater than N ·w·h
W ·H .

• Pruning with skew/latency constraints. We prune solutions that have skew larger than

the maximum skew constraint or maximum latency larger than the latency upper bound.
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• Pruning with maximum fanout constraint. We prune solutions that have branching

factor larger than the maximum fanout constraint.76

Figure 4.18: Runtime of our DP-based optimization method with and without pruning
techniques across different numbers of sink regions.

Figure 4.18 shows DP-based optimization runtime with the number of sink regions rang-

ing from 200 to 4000, where each sink region contains ∼25 flip-flops. The maximum skew

constraint used in the experiment is 30ps. Results show that with pruning, the DP-based opti-

mization can optimize a design with more than 4K sink regions (or 100K flip-flops) within six

hours. Assuming that the flip-flop count to total instance count ratio is typically 10% to 25%,

our approach can optimize a design with 1M instances within six hours. Our studies show that

runtime and memory usage increase significantly if we do not apply the proposed pruning tech-

niques, due to the large number of intermediate solutions (such that we are not able to optimize

beyond a design with 1K sink regions due to excessive memory usage). Moreover, we observe

same solution quality between the runs with and without pruning.

Embedding of GH-Tree Into a Sink Placement

The clock tree topology and buffering solution from our DP-based optimization assumes

a uniform sink (region) distribution (whereby branching points are at the centers of regions).

However, given a (realistic) non-uniform sink (flip-flop) placement, we must cluster flip-flops

with balanced load across different clusters to avoid skew and latency increase. In other words,

we should assign clusters of flip-flops to sinks of the GH-tree, based on the actual sink flip-

flop placement. To adapt our optimized GH-tree to the given sink (i.e., flip-flop) placement,
76In our experiments, we set the maximum fanout constraint to 40 based on guidance from an industrial collabora-

tor [95].
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we perform a balanced K-means clustering of sinks and adapt buffer placements based on the

clustering solution.77 We note that our approach is different from conventional top-down clock

tree construction methods (e.g., Planar-DME [111]), in that (i) we embed an optimized clock

tree topology with buffering solutions to a layout region with given sink placements, and (ii) we

balance load capacitance among sink regions. By maintaining the distances between consecutive

branching points and buffers at each clock level as well as balancing the load capacitance among

sink regions, we preserve the solution quality (i.e., skew and latency) of the GH-tree solution

obtained by the DP-based optimization. Furthermore, we understand that the optimal GH-tree

topology and buffering solution can vary across different sink placements. With this in mind,

we keep the best M solutions from our DP-based optimization and select the minimum-power

solution for the given (actual) sink placement as our final solution. Based on our preliminary

experiments, we empirically useM = 5 to generate the results reported below, where increasing

M beyond 5 will not improve the solution quality significantly.

The remainder of this subsection describes two mathematical programs (ILPs) that per-

form sink clustering (i.e., to assign flip-flops to sinks of the constructed GH-tree) and place

buffers of our GH-tree (one example is shown in Figure 4.19). The two ILPs respectively act

at global and local clustering, as we describe below. We perform the clustering and branching

point placement top-down, level-by-level. Our clustering optimization balances the load capaci-

tance across different clusters (each cluster is assigned to a sink of our GH-tree) to minimize the

discrepancy between our DP solution (which assumes a uniform sink placement) and the final

solution (with the given actual sink placement). Note that this implies that we must consider

wire capacitance at the bottom-most level, where the routing is achieved by a commercial P&R

tool.78 However, any constructive approach to this wire capacitance estimation is inaccurate and

can dramatically increase runtime complexity during top-level optimization where each branch-

ing point can have many sink flip-flops. We therefore divide the GH-tree into global and local

clustering, based on the total number of downstream sinks (i.e., flip-flops), and only consider

wire capacitance during local clustering.

Algorithm 14 describes our clustering procedure. For each level p, we iteratively apply

either global or local clustering followed by LP-based branching point and clock buffer place-

ment. Starting from level 1 (the topmost level) of the tree, we cluster sinks based on initial loca-

tions of the branching points (i.e., the light blue dots in the top-left figure of Figure 4.19, which
77Conventional K-means clock tree synthesis [45] cannot be applied to our problem as it does not comprehend the

load capacitance balancing criterion.
78Different routing tools can have different clock routing solutions for the bottom-level clock tree. However, the

difference is very small. Based on our experimental results, skew from bottom-level clock routing is < 1ps.
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Figure 4.19: Example of sink clustering and clock buffer placement. In this example, we only
show the local clustering for the leftmost branch of the first-level clock tree.

are at the centers of uniform sink regions) of the DP-based GH-tree solution (Algorithm 13).

The number of global clusters is the same as the number of branching points. For an example in

Figure 4.19, since p = 1 and b1 = 4, our ILP will generate four global clusters that have similar

load capacitance. We then formulate an LP to determine the exact branching point locations

as well as buffer locations in each global cluster. When the number of sinks in each cluster is

smaller than a threshold value (i.e., |S|/|U | < Qth), we apply our ILP-based local clustering,

and refine the branching point locations in each local cluster using our LP. Note that the “K” in

the K-means clustering is determined by the number of branching points in the GH-tree.

ILP formulation for global clustering. We pre-calculate distance dk,i between the

branching point of cluster uk and the sink si within the bounding box of the region that will be

clustered. The initial locations of branching points are assumed to be at the centers of uniformly-

sized regions corresponding to the branching factor. The blue dots in the top-left figure of Fig-

ure 4.19 show an example of initial branching point locations when the branching factor b1 = 4.
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Algorithm 14 Embedding of GH-Tree into a sink placement.

1: for p := 1 to P do
2: if |S|/|U | ≤ Qth then
3: global clustering()
4: else if r.power < r′.power then
5: local clustering()
6: end if
7: branching point and buffer placement()
8: end for

Minimize:
∑
si∈S

di + α · dmax

Subject to: ∑
uk∈U

ηk,i = 1 ∀si ∈ S (4.20)

di =
∑

uk∈U

dk,i · ηk,i ∀si ∈ S (4.21)

dmax ≥ di ∀si ∈ S (4.22)

Cpin · (1−∆) ≤
∑
si∈S

ci · ηk,i ≤ Cpin · (1 + ∆)

∀uk ∈ U (4.23)

We define di as the distance between the sink si and the branching point of the cluster

that includes the sink si; dmax denotes the maximum distance among the distances di; and α

is a weighting factor.79 Our objective is to minimize the sum of all distances di and weighted

dmax. Constraint (4.20) ensures that each sink can only belong to exactly one cluster. In Con-

straints (4.21) and (4.22), we obtain di for each sink and dmax, respectively. Constraint (4.23)

ensures that the total pin capacitance of each cluster satisfies specified lower and upper bounds.

The lower and upper bound capacitances are determined by Cpin, which is estimated as the total

pin capacitance covered by the current region divided by the number of clusters, along with the

margin ∆. Since the capacitance cannot be always balanced between clusters, we add margin ∆

to ensure that there is a feasible solution of the ILP.

79Based on our preliminary studies, we empirically use α = 8 in our experiments.
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ILP formulation for local clustering. Although the ILP for global clustering finds a

balanced pin capacitance solution over all sink regions, it ignores wire capacitance. Therefore,

we formulate a second ILP and apply it to local clusters that have smaller regions.

Minimize:
∑
si∈S

di +
∑

uk∈U

α

|U |
· (xur

k − xll
k + yur

k − yll
k )

Subject to:

xur
k ≥ xi · ηk,i ∀si ∈ S, uk ∈ U (4.24)

yur
k ≥ yi · ηk,i ∀si ∈ S, uk ∈ U (4.25)

xll
k ≤ xi + λ · (1− ηk,i) ∀si ∈ S, uk ∈ U (4.26)

yll
k ≤ yi + λ · (1− ηk,i) ∀si ∈ S, uk ∈ U (4.27)

Cpin+wire · (1−∆) ≤∑
si∈S

(ci + ζ) · ηk,i + β · (xur
k − xll

k + yur
k − yll

k ) (4.28)

Cpin+wire · (1 + ∆) ≥∑
si∈S

(ci + ζ) · ηk,i + β · (xur
k − xll

k + yur
k − yll

k ) (4.29)

+ Constraints (4.20) and (4.21)

The objective of this second ILP is to minimize the sum of all distances di, of which the

definition is the same as above, plus the weighted sum of half-perimeter wirelength (HPWL) of

all clusters’ bounding boxes. We use HPWL and the number of sinks within a cluster to model

the wire capacitance of the sink region. In Constraints (4.24)–(4.27), we obtain the lower-left

and upper-right corner locations of each cluster’s bounding box. λ is a large positive integer.

Constraints (4.28) and (4.29) ensure that total (i.e., pin and wire) capacitance of each cluster

satisfy given lower and upper bounds. ζ and β are respectively coefficients for the number of

sinks and the cluster’s bounding box HPWL in our linear wire capacitance estimation model.80

80We determine ζ and β by fitting a linear model to wire capacitances extracted for all our testcases. We perform
least-squares regression as follows: wire capacitance = ζ· #sinks + β· HPWL. In our 28nm foundry enablement,
ζ = 0.28 and β = 2.93.
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LP formulation for branching point location. Based on the two ILPs described

above, we obtain the clustering solution at a given clock level. However, the initial assumption

of branching locations to be at the center of a region may cause large skew if the sinks within a

cluster are placed non-uniformly. To address this issue, we formulate a linear program (LP) to

place each branching point close to the weighted center of each cluster, as follows.

Minimize: d∆
max

Subject to:

|xb
k+1 − xb

k|+ |yb
k+1 − yb

k| = db (4.30)

x∆
k + xb

k − xw
k ≥ 0, x∆

k − xb
k + xw

k ≥ 0 (4.31)

y∆
k + yb

k − yw
k ≥ 0, y∆

k − yb
k + yw

k ≥ 0 (4.32)

x∆
max ≥ x∆

k , y
∆
max ≥ y∆

k (4.33)

d∆
max = x∆

max + y∆
max (4.34)

Here, xb
k and yb

k denote the x-/y-coordinates of the kth branching point, and xw
k and

yw
k denote the x-/y-coordinates of the weighted center of the kth cluster.81 The objective is

to minimize the sum of the maximum x- and y-distances between any branching point and its

corresponding weighted center. Constraint (4.30) ensures a fixed distance db between any two

consecutive branching points. In Constraints (4.31) and (4.32), variables x∆
k and y∆

k respectively

denote the x- and y-distances between the branching point and the weighted center of the kth

cluster. We then obtain the sum of the maximum x- and y-distances from Constraints (4.33)

and (4.34).

Placement blockage. We further show a simple extension of our LP formulation to an

ILP formulation to comprehend blockage-aware buffer placement. In this extension, we adjust

buffer placement to address the existence of blockages. A caveat is that this method may not

work well for designs with a large number of blockages and/or a complex floorplan, since our

DP-based tree topology and buffering solutions are not aware of blockages. We assume that

there are O rectangular blockages. The index of a blockage is denoted by q. Each blockage

is defined by its lower-left corner (xll
q , yll

q ) and upper-right corner (xur
q , yur

q ). When there are

placement blockages in the floorplan, we define the following constraints.
81We calculate the x- and y-coordinates of each weighted center as the respective means of all x- and y-coordinates

of placed sinks in the corresponding cluster.
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ψllx
j,q = 1⇔ xf

j < xll
q

ψurx
j,q = 1⇔ xf

j > xur
q

ψlly
j,q = 1⇔ yf

j < yll
q

ψury
j,q = 1⇔ yf

j > yur
q

ψllx
j,q + ψurx

j,q + ψlly
j,q + ψury

j,q ≥ 1

(4.35)

Here, (xf
j , y

f
j ) is the location of the jth buffer at a given clock level. ψ{llx,lly,urx,ury}

j,q

are binary indicator variables which indicate whether the jth buffer is located outside the cor-

responding boundaries of the blockages. The last inequality in Constraints (4.35) defines the

constraint that at least one of the indicator variables must be true. Satisfying this constraint

implies that the jth buffer is not in the bounding box of the qth blockage. Note that with the

Constraints (4.35), the problem becomes an integer linear program (ILP).

4.3.3 Experimental Setup and Results

We conduct our experiments in a commercial foundry’s 28nm LP technology, with a

dual-Vt, 12-track standard-cell library. The input placement solutions (including clock sink

placements) are generated using Cadence Innovus Implementation System v15.2 [198]. Our

optimization flow is implemented using C++ and Tcl scripts. We use CPLEX v12.6 [203] as

both ILP solver and LP solver, along with OpenMP [213] to enable multi-threaded execution.

We execute all our experiments by using up to 40 threads on a 2.6GHz Intel Xeon E5-2690

server. We construct reference clock tree solutions using the latest releases available to us of two

leading-edge commercial P&R tools (i.e., Tool1 and Tool2) as well as a state-of-the-art academic

tool [118], and report attributes of solutions from these tools along with those of our GH-tree

solutions.82

We evaluate our optimizer using four designs: JPEG from OpenCores [212], and B19,

VGA and LEON3MP from the ISPD-2012 contest [141]. We use the real design (JPEG) and the

testcases from the ISPD-2012 contest (B19, VGA, LEON3MP) since they contain datapaths (in

contrast to testcases from the ISPD-2010 contest, which do not contain datapath information),

thus enabling comparison versus commercial tools. We synthesize these testcases using Synop-

sys Design Compiler H-2013.03-SP3 [218]. Table 4.9 summarizes the instance count, number

of clock sinks, placement utilization and timing constraints for our testcases. To study the im-
82The tool flows used in our work are based on latest versions of leading commercial EDA tools available through

the respective vendors’ university programs. More specific identification of tools and vendors is not permitted by the
vendors.
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pact of maximum skew and latency constraints on power, we run our optimizer with different

maximum skew and latency constraints and collect discrete solution points showing skew-power

and latency-power tradeoff. We obtain reference clock solutions with multi-corner multi-mode

(MCMM) optimization; we define our mode and corner settings in Table 4.10. We also ap-

ply late and early deratings of 1.1 and 0.9 to model OCV effects. We use Synopsys HSPICE

G-2012.06-SP1 [219] to perform timing and power analysis.

Table 4.9: Summary of testcases.

Testcases #Instances #Flip-flops Utilization (%)
Max transition time Max capacitance

(ps) (fF )

B19 39788 3086 73 60 80

JPEG 46937 4712 73 60 80

VGA 66226 17057 76 60 80

LEON3MP 463104 108817 74 60 80

VGA blockage 65891 17057 61 60 80

VGV high AR 65124 17057 75 60 80

Table 4.10: MCMM settings and clock periods (ns) for our testcases.

C1 = {SS, 0.9V , -40◦C} C2 = {FF, 1.1V , -40◦C}

B19 1.5 1.0

JPEG 1.2 1.0

VGA 1.4 1.0

LEON3MP 1.6 1.0

VGA blockage 1.4 1.0

VGA high AR 1.4 1.0

Comparison with Trees from State-of-the-art CTS

Figure 4.20 and Figure 4.21 respectively compare skew and clock power, and maximum

latency and clock power, of GH-tree solutions to those from the two commercial tools and one

academic flow [118]. Table 4.11 compares #buffers, buffer area, max (insertion) delay across

corners, and wirelength among clock tree solutions as well as optimization runtime. All flows

use the same sink placement solution as input. We apply the same setups (i.e., clock buffer cells

(X50, X67, X100, X134 and ganged buffers), BEOL layers (M3 and M4), maximum transition

constraints (60ps)) to our GH-tree construction and to both commercial and academic tool flows.
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We sweep the maximum skew and maximum latency constraints on the four designs for the GH-

tree constructions. Blue curves in the figures are skew-power and latency-power Pareto curves

of our GH-tree solutions.83

Figure 4.20: Power and skew comparisons among GH-tree, Tool1, Tool2 and [118] for four
testcases.

Figure 4.21: Power and maximum latency comparisons among GH-tree, Tool1, Tool2 and
[118] for four testcases.

83We estimate the Pareto curve based on discrete solution points due to limited computing resources. In addition,
since the tradeoff between skew/max latency versus clock power is monotone, we feel that three solution points can
provide a useful estimation of the tradeoff.
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Overall analysis. Our results show that our GH-tree solutions achieve significant clock

power reduction with similar or reduced skew and latency values as compared to the solutions

from both commercial and academic tools. We also include the conventional “strict” H-tree

solution as a comparison. Note that we use the same methodology to determine the buffer lo-

cations and sizes in “strict” H-tree and GH-tree constructions. In other words, it is unnecessary

to add a buffer at each branching point. For example, we achieve power reductions of 30% on

B19 and 20% on LEON3MP in Table 4.11 compared to commercial tools’ results. Moreover,

we observe that due to the symmetric topology of our GH-tree, our GH-tree solution is typically

more robust against skew variation across different corners as compared to the clock trees from

other tools. As an example, skew of the clock tree solution from Tool2 increases by 137% on de-

sign VGA blockage between two corners; by contrast, our solutions generally have similar skew

values across corners. The conventional (“strict”) H-tree achieves the minimum clock skew but

at the cost of larger power, buffer area and wirelength. As an example, for LEON3MP, H-tree

has depth P = 12, but GH-tree has P = 10 (i.e., branching factor = (2, 2, 2, 2, 2, 4, 4, 2, 2,

2)). The shallower depth of GH-tree significantly reduces the number of buffers and wirelength.

We also validate our GH-tree optimization on design VGA with high floorplan aspect ratio and

existence of placement blockages (shown in Figure 4.27), where we observe similar clock power

and latency, but larger skew, compared to the case without blockage and high floorplan aspect

ratio. Compared to the results of [118], our GH-tree achieves much smaller power (i.e., up to

55% on B19) and skew, but at the cost of larger maximum latency.

Power analysis. We also observe that our GH-tree solutions have smaller number of

buffers and clock wirelength as compared to solutions from commercial and academic tools.

Figure 4.22 further shows a histogram of clock buffer power (i.e., sum of internal, leakage and

dynamic power) values of our GH-tree versus corresponding values from a commercial tool’s

solution. We observe that our DP-based optimization, which can select its buffering solution

“optimally” based on the characterized LUTs, achieves smaller buffer power values for most

of the clock buffers. In other words, our GH-tree optimization is able to achieve optimized

load capacitance of buffers as well as slew propagation for reduced clock power. The power

information from our LUTs enables power-awareness in our DP-based GH-tree construction.

Runtime analysis. Results in Table 4.11 show that although the naive worst-case time

complexity of our (DP- and ILP-based) optimization is high (cf. the nested for loops in Algo-

rithm 13), the pruning techniques and empirically selected granularity of our LUTs (e.g., 15µm

for distance, 5ps for slew, and 5fF for capacitance) make the runtime of our optimization com-
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Figure 4.22: Distribution of clock buffer power values from GH-tree and commercial tool
solutions. Design: VGA.

parable to those of commercial tools. The large runtime of design LEON3MP mainly comes

from bottom-level tree construction (∼40 minutes) and ECO routing according to our GH-tree

solution using OpenAccess [217] (∼15 minutes). The actual GH-tree construction runtime (i.e.,

DP + ILP runtime) for design LEON3MP is only∼25 minutes. We understand that such runtime

is very acceptable in light of the potential clock power benefits from our approach.

Robustness analysis. We further perform Monte Carlo simulation on our GH-tree

solution and those from commercial tools, and compare the resultant variation in clock skew and

power. Figure 4.23 shows that our GH-tree solution exhibits relatively smaller variation in clock

skew (i.e., ∼35ps) compared to commercial tools’ solutions (i.e., ∼40ps). Furthermore, all of

Tool1, Tool2 and GH-tree solutions have small power variation.

Impact of NDR. We now summarize observed impacts of non-default rules (NDRs)

on clock tree solution quality. We generate GH-trees with various NDR options: (i) 1W1S

only, (ii) 2W2S only, and (iii) the combination of 1W1S and 2W2S. We set the maximum skew

constraint to 200ps and compare Pareto curves of the latency versus clock power tradeoffs.

Figure 4.24 shows the comparison for the JPEG testcase at 28LP technology. Due to better slew

propagation, solutions with 2W2S have fewer clock buffers as compared to the 1W1S solutions
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(i.e., the average numbers of clock buffers are respectively 83 and 111 in 2W2S- and 1W1S-only

solutions). Further, solutions that permit either 1W1S or 2W2S at each level (of clock subnets)

are able to achieve a better tradeoff between latency and power.

Table 4.11: Comparison between clock tree solutions from [118], Tool1 and Tool2 versus our
GH-trees. Technology: 28LP.

Testcase Flow

Corner = C1 Corner = C2

#Buffers
Buf area Clk WL Runtime

Max laten. Skew Clk power Max laten. Skew Clk power

(ps) (ps) (mW ) (ps) (ps) (mW ) (µm2) (mm) (min)

B19

Tool1 150 17 3.8 110 27 9.3 104 227 15688 15

Tool2 222 29 3.4 129 5 8.3 84 245 12996 11

[118] (min pwr) 111 40 5.6 63 40 12.1 211 338 N/A N/A

[118] (min skew) 125 36 6.0 78 38 13.0 228 413 N/A N/A

GH-tree 170 12.5 2.6 116 25.8 6.4 41 106 12242 15

H-tree 166 7 3.1 106 11 7.6 147 227 13941 16

JPEG

Tool1 196 26 6.9 131 26 16.8 160 345 20967 16

Tool2 236 34 6.2 141 18 15.2 120 352 18432 14

[118] (min pwr) 179 65 9.2 103 73 19.7 340 651 N/A N/A

[118] (min skew) 155 30 9.4 92 36 20.4 353 676 N/A N/A

GH-tree 201 19 5.9 129 17 14.5 147 296 20009 17

H-tree 229 12 6.6 150 16 16.3 169 456 20064 14

VGA

Tool1 260 36 20.7 152 7 55.3 464 1119 57678 16

Tool2 314 28 18.0 201 11 48.5 369 1047 56305 22

[118] (min pwr) 171 52 24.0 114 73 52.1 911 1651 N/A N/A

[118] (min skew) 171 52 24.0 114 73 52.1 911 1651 N/A N/A

GH-tree 238 19 17.4 174 41 44.2 331 1036 57404 21

H-tree 253 16 20.4 162 19 55.0 597 1682 62957 16

LEON3MP

Tool1 426 63 109.5 276 25 195.9 2661 6654 369737 54

Tool2 633 34 102.5 421 58 184.2 2509 7225 367854 37

[118] (min pwr) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

[118] (min skew) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GH-tree 415 24 87.2 285 35 157.3 1331 4154 374568 101

H-tree 415 22 96.0 287 24 173.0 2399 6741 393582 99

VGA blockage

Tool1 245 23 21.3 174 36 56.7 475 1148 66323 14

Tool2 347 57 17.6 212 24 47.5 401 1127 64640 24

[118] (min pwr) 298 133 29.9 208 145 54.5 1118 2154 N/A N/A

[118] (min skew) 252 86 34.4 157 93 74.3 1291 2387 N/A N/A

GH-tree 239 36 16.9 163 31 45.4 293 815 68635 19

H-tree 282 22 20.8 174 21 56.0 599 1685 72636 16

VGA high AR

Tool1 231 19 20.5 164 27 54.7 456 1094 59506 14

Tool2 325 33 18.5 211 43 49.8 395 1120 58114 21

[118] (min pwr) 161 28 25.1 105 74 54.5 956 1679 N/A N/A

[118] (min pwr) 161 28 25.1 157 93 54.5 956 1679 N/A N/A

GH-tree 265 33 17.5 187 30 47.3 299 1039 57855 21

H-tree 271 15 20.4 169 12 54.8 661 1669 65181 22
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Figure 4.23: Clock skew and power comparison among GH-tree, Tool1 and Tool2 through
Monte Carlo simulation. Design: VGA.

Figure 4.24: GH-tree optimization with various NDR options.

Study of “Skew Budgeting” across Clock Levels

How to optimally budget skew across clock tree levels has been an open problem for over

two decades. Interestingly, our DP approach may provide new insights into how to budget skew

for minimum clock power. To study the skew budgeting across clock levels, we run our optimizer

multiple times with target skews from 5ps to 40ps in steps of 5ps on testcase VGA. In each run,

we find the minimum-power GH-tree solution that satisfies the given target skew. Figure 4.25
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shows the normalized skew at each clock level of the minimum-power GH-tree solutions across

different target skews . When the skew constraint is tight (i.e., ≤ 15ps), most of the skew occurs

in the bottom levels (i.e., levels 5, 6 and 7) of the clock tree. However, when the skew constraint

is relaxed (i.e., ≥ 20ps), most of the skew occurs in the top levels (i.e., levels 1 and 2) of the

clock tree. We show the normalized clock power for each target skew at the top of each bar

in Figure 4.25. For example, minimum-power GH-tree solution for target skew 30ps consumes

74% power of minimum-power GH-tree solution for target skew 5ps. To achieve ∼26% clock

power reduction by changing target skew from 5ps to 30ps, the clock tree must have ∼80% of

the skew in levels 1 and 2. We emphasize that, as noted above, in our GH-tree a level does not

necessarily imply the insertion of a buffer. In other words, a higher number of levels does not

necessarily result in larger latency. Rather, we observe from our GH-tree solutions (which are on

Pareto frontiers with respect to tradeoffs among skew, latency and clock power) that skew and

latency are typically correlated with each other.

Figure 4.25: Skew budgeting, normalized clock power and the number of levels (depth) of the
clock tree for different target skews. Nearly 80% of skew occurs in the bottom levels of the tree
when the target skew is ≤ 15ps, but this shifts to the top levels of the tree when the target skew

is ≥ 20ps.
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Figure 4.26: Layout example of GH-tree on VGA. In red is clock routing of the top four levels
in the GH-tree with branching pattern (4, 4, 2, 6). The left figure shows clock routing (top and

bottom levels) and the right figure shows the sink clustering solution.

Figure 4.27: Layout example of GH-tree on VGA blockage. In red is clock routing of the top
six levels in the GH-tree with branching pattern (2, 2, 2, 2, 2, 4). The left figure shows clock

routing (top and bottom levels) and the right figure shows the sink clustering solution.

4.3.4 Conclusion

In this section, we propose the concept of a generalized H-tree, which is a balanced tree

topology with an arbitrary sequence of branching factors at each level. Our DP-based method

provides an optimal GH-tree that has minimum clock power for a given skew and maximum

latency targets. Our DP solutions are constructed using clock buffers (with ganging) along with
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interconnect timing and power models from a 28LP foundry design enablement; we co-optimize

the clock tree topology along with the buffering along branches. We furthermore propose a

clustering- and linear programming-based heuristic to embed the GH-tree with respect to the

given placement of clock sinks. We validate our solutions in commercial P&R tool flows in a

28LP foundry technology. The results show up to 30% clock power reduction while achieving

similar skew and latency as CTS solutions from recent versions of leading commercial P&R

tools. Our proposed approach also achieves up to 56% clock power reduction compared to

a state-of-the-art academic tool [118]. Compared to “strict” H-tree, our results achieve better

tradeoffs such that power is significantly reduced at the cost of small skew increase. Our ongo-

ing and future work includes (i) co-optimization of sink placement and clock tree construction;

(ii) budgeting of skew and latency across levels; (iii) application of useful skew in GH-tree;

(iv) application of GH-tree construction in hierarchical designs (that require hierarchical CTS);

(v) co-optimization of datapath placement and GH-tree construction; (vi) clock gate- and logic

cells-aware GH-tree construction; and (vii) blockage-aware DP-based clock tree topology and

buffering.
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Chapter 5

Conclusion

This thesis has presented novel physical design optimization methodologies to resolve

critical challenges faced by today’s complex SOC design teams. The proposed methods compen-

sate the slowdown of density scaling and the existing “design capability gap” with better design

techniques and more accurate modeling.

Chapter 2 presents three distinct studies in the context of manufacturability and new

design rules. (1) The chapter first presents a scalable MILP-based optimization of 2D block

masks that considers block mask rules, minimum metal density constraints, and timing impact

of dummy fills. Further, an improved timing impact model is proposed for use in our MILP for-

mulation. A distributed optimization flow enables application of the MILP-based optimization

to large design layouts. We evaluate our approach across timing-awareness, different patterning

technologies, and different minimum metal density constraints. This study shows up to 84%

∆WNS recovery and 85% ∆TNS recovery, and up to 56% ∆switching power recovery, along

with up to 62% dummy removal rate. This enablement of a timing-aware optimization shows

promising product-level benefits from use of 2D block masks, and further sheds light on the

merits of various block mask optimization objectives. We furthermore study the co-optimization

of cut and block masks. Our cut and block co-optimization opens up a broader solution space,

with more flexibility in EOL realization and attendant design quality benefits. (2) Chapter 2 also

proposes a scalable detailed placement legalization flow for complex FEOL constraints arising at

the N10 foundry node. These include drain-drain abutment, minimum implant width, and mini-

mum OD jogging rules. Given initial (timing-driven) placements, our DFPlacer fixes 99% of

DRVs with 3% increase in wirelength and minimal impact on timing. We feel that our use case

of fixing all but a few tens of violations, with a highly parallelizable two-iteration strategy, is a
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good practical tradeoff between runtime complexity and DRV fixing. Further, the level of DRV

fixing achieved by DFPlacer is encouraging, given that our default experimental configuration

makes no attempt at “correctness by construction”. Using OpenMP, this flow is scalable via a

distributed optimization strategy. Additionally, our study shows an area-DRV tradeoff between

two types of standard-cell library strategies, namely, with and without dummy poly gates. (3)

Last, Chapter 2 studies impacts of patterning technology choices and design rules on physical

implementation metrics, with respect to cost-optimal design rule-correct detailed routing. We de-

scribe OptRouter, an ILP-based optimal detailed router that correctly handles multi-pin nets and

various sub-20nm routing challenges including via restrictions, via shapes, and SADP pattern-

ing rules. OptRouter enables design rule evaluation using “difficult” routing clips (switchboxes)

selected according to a pin cost metric. We study ∆cost distributions for different design rules,

relative to a RULE1 where all layers are LELE and there are no via restrictions. From the re-

sults, we observe that the sensitivities of ∆cost to design rules and routing options vary with

technology. Also, we observe that there is a gap between pin accessibility metrics such as [178]

and our switchbox-centric evaluation of routability.

Chapter 3 presents several process-aware distinct design methodologies, which mitigate

clock skew variation, die-to-die variation in 3DIC. (1) The chapter first presents a CTS method-

ology that optimizes CLC placement and buffer insertion, and that minimizes non-common paths

between FF groups. We formulate the top-level CTS problem as the minimization of a weighted

sum of WNS, TNS, clock uncertainty due to OCV, and wirelength. We solve this problem using

LP and develop heuristic flows to insert Steiner points and buffers, which are required elements

of a top-level CTS solution. We also develop generators for testcases that resemble clock tree

structures typically found in high-speed SOCs. We validate our optimization flow on testcases

from our generators and achieve up to 51% reduction in wirelength for the top-level clock tree,

and 320ps improvement in WNS, compared to a leading commercial CTS tool. (2) Chapter 3

also proposes the first framework to minimize the sum of skew variations over all sequentially

adjacent sink pairs, using both global and local optimizations. Our experimental results show

that the proposed flow achieves up to 22% reduction of the sum of skew variations for test-

cases implemented in foundry 28nm technology, as compared to a leading commercial tool. In

the global optimization, our LP formulation comprehends the ECO feasibility based on charac-

terized lookup tables of stage delays. In the local optimization, we demonstrate that machine

learning-based predictors of latency changes can provide accurate estimation of local move im-

pacts. (3) Last, Chapter 3 proposes design-stage optimization for mix-and-match die stacking.
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Our motivating insight is that a priori knowledge of mix-and-match 3DIC integration should

influence multi-die partitioning optimization and signoff. We propose an ILP-based partition-

ing methodology and a heuristic partitioning methodology that performs maximum cut on the

timing-critical sequential graph, followed by an iterative multi-phase FM optimization. We val-

idate our partitioning optimization on two 3DIC implementation flows, each of which we have

extended to be aware of mix-and-match die stacking. Our optimization shows up to 16% timing

improvement, as compared to a flow based on min-cut based partitioning, when measured by RC

extraction and signoff timing at the post-routing stage. Our study also indicates that a gate-level

3D integration has more flexibility and thus larger timing benefits in the mix-and-match regime

as compared to a block-level integration.

Chapter 4 presents three distinct techniques for interconnect optimization. (1) The chap-

ter first proposes a new spanning tree heuristic PD-II, which is demonstrated to significantly

improve both WL and total detour cost compared to PD. Further, this work extends the con-

struction to the Steiner tree regime, via the DAS algorithm that directly improves trees according

to both the WL and detour cost objectives. The algorithms are shown to be fast and practical.

They are also suitable for integration into existing commercial routers, and can be applied in

conjunction with any existing spanning and Steiner tree constructions for simultaneous WL and

PL improvements. Compared to the recent SALT algorithm, our construction generates clear

improvements according to the proposed metrics, especially for medium-size and larger nets.

(2) Chapter 4 also studies the minimum-cost bounded skew spanning and Steiner tree problems.

We formulate and apply a flow-based ILP to find optimal cost-skew tradeoffs for generated test-

cases with number of terminals from 8 to 16. Based on the optimal cost-skew tradeoffs, we

find significant remaining suboptimality of several state-of-art academic tools: (1) BST-DME,

(2) SALT and (3) Prim-Dijkstra. Across our testcases, BST-DME has suboptimality ∼ 10% in

cost at iso-skew, and ∼ 50% in skew at iso-cost. In addition, SALT and PD show suboptimality

in terms of skew by up to ∼ 3×. This degree of suboptimality is very different from the near-

optimality in practice of heuristics for the RSMT problem (e.g., FLUTE, 1-Steiner, etc.). Thus,

our study motivates renewed attention to the cost-skew tradeoff. (3) Last, Chapter 4 proposes the

concept of a generalized H-tree, which is a balanced tree topology with an arbitrary sequence

of branching factors at each level. Our DP-based method provides an optimal GH-tree that has

minimum clock power for a given skew and maximum latency targets. Our DP solutions are

constructed using clock buffers (with ganging) along with interconnect timing and power mod-

els that are pre-chracterized from the foundry design enablement. We co-optimize the clock tree
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topology along with the buffering along branches. We furthermore propose a clustering- and

linear programming-based heuristic to embed the GH-tree with respect to the given placement

of clock sinks. We validate our solutions in commercial P&R tool flows in a 28LP foundry tech-

nology. The results show up to 30% clock power reduction while achieving similar skew and

latency as CTS solutions from recent versions of leading commercial P&R tools. Our proposed

approach also achieves up to 56% clock power reduction compared to a state-of-the-art academic

tool [118]. Compared to “strict” H-tree, our results achieve improved tradeoffs such that power

is significantly reduced at the cost of small skew increase.
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