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ABSTRACT OF THE DISSERTATION

Modeling, Simulation, and High-Performance Implementation of High-Dimensional
Micro-Macro Biophysical Models

by

Steven Cook

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2017

Dr. Tamar Shinar, Chairperson

Gliding assays, reduced in vitro model systems where motor proteins adsorbed onto a pla-

nar substrate bind to and move laments, exhibit large-scale dynamic patterns like coherent

swarming motion and density waves. These systems are sensitive to microscopic behavior

such as the motor protein binding and unbinding dynamics, which take place on a faster

timescale than the direct and uid-mediated lament interactions. A micro-macro multiscale

modeling and simulation framework for gliding assays is developed, allowing for detailed

microscopic motor modeling as well as both steric and hydrodynamic interactions between

laments. A scalable hybrid CPU and multi-GPU implementation alleviates the cost asso-

ciated with tracking the high-dimensional microstructure, achieving performance over 500

times greater than a single-threaded implementation.
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Chapter 1

Introduction

This thesis is concerned with the development of a modeling and simulation frame-

work for gliding motility assays of filaments and bound motor proteins. Of interest in the

study of such assays is the relationship between their complex emergent macroscale behavior

(vortex lattices, density waves, spatiotemporally persistent clumps) and the underlying mi-

croscopic interactions (direct, motor-mediated, and hydrodynamic) between the constituent

filaments and motor proteins. A broader impact of understanding such systems is shedding

new light on the organizational principles of the mitotic spindle, a dynamic yet persistent

network of filaments and motors. In addition to being vital to the cell lifecycle, mitotic

spindles are a prominent anti-cancer target. A useful review of the relevant field of active

matter physics is found in [43], and details of the mechanics of the underlying motor proteins

and filaments can be found in [28].

Direct simulation of such systems and their interactions grows infeasible at larger

scales. This work instead uses a micro-macro approach, in which kinetic theory is used to
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describe the configuration of the microstructural elements (motor proteins and filaments) as

a density function, and this density is then coupled to the macroscopic fluid equations via

extra stress terms. These methods enable detailed modeling of the microscopic interactions,

and thus provide a valuable tool for testing hypotheses regarding the aforementioned rela-

tionship between macroscale and microscale phenomena. This microscopic fidelity comes

at the expense of tracking the microstructural density, the dimensionality of which grows

with the degrees of freedom of the microstructure. To overcome this computational chal-

lenge, a variety of algorithmic and modeling approaches are used to develop a hybrid CPU

and multi-GPU implementation. The interested reader is referred to [31] for a review of

micro-macro modeling.

The thesis is structured as follows. Chapter 2 details the development and imple-

mentation of the initial model. Chapter 3 expands the modeling and simulation framework

with an additional motor behavior model, steric interactions, a passive filament advection

velocity to overcome resolution limitations, and a more general three-dimensional fluid grid.

Chapter 4 features a holistic restructuring of the algorithm and dataflow that breaks de-

pendencies and parallelizes the system for multi-GPU. Chapter 5 summarizes findings and

outlines limitations and directions for future investigation.
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Chapter 2

Dimensional reduction of a

multiscale continuum model of

microtubule gliding assays

Microtubule gliding assays, in which molecular motors anchored to a plate drive

the gliding motion of filaments in a quasi-two-dimensional fluid layer, have been shown to

organize into a variety of large-scale patterns. We derive a fully three-dimensional multi-

scale coarse-grained model of a gliding assay including the evolution of densities of rigid

filaments, bound motors, and free motors, coupled to fluid equations. Our model combines

continuum theories of polymeric liquids with the force spreading approach of the immersed

boundary method. We use dimensional and asymptotic analysis to derive a reduced two-

dimensional model and show that, to leading order, the filaments evolve in a plane, similar

to what is experimentally observed. We simulate our model numerically with a GPU-based
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implementation and observe the same qualitative behavior as in experimental work.

2.1 Introduction

Active gels form the basic structural network of the cell and can be synthesized

by mixing cytoskeletal filaments and small motor proteins. In such mixtures, the collective

behavior is driven by the microscopic ATPase-generated motion of the motor proteins along

the filaments. A molecular motor typically consists of a tail, a flexible stalk, and a head with

two binding sites. Through the hydrolysis of ATP at the binding sites, the motor grabs,

pulls and releases the filament yielding a processive directional motion and generating forces

inside the cell. Molecular motors have been the subject of many experimental [16, 14, 26, 28,

22, 10] and theoretical [44, 35, 33] studies, which have resulted in a broader understanding

of the molecular stepping mechanism and the collaboration of many motors when carrying

cargo along filamentous tracks. On a larger scale, mixtures of cytoskeletal filaments and

small motor proteins have been shown to self-organize into a variety of macroscopic patterns

from asters to vortices to swarms [47, 50, 61]. We study gliding assays, where single motors

are adsorbed onto a substrate and filaments, stabilized so that their lengths are fixed, glide

over them in a quasi-two-dimensional fluid layer (Fig. 3.1). This reduced system, where

filaments do not crosslink, is used to study gliding velocities of microtubules and motor

directionality [55] and has been observed to form large-scale patterns [61].

Systems of fluids, filaments, and motors are inherently multiscale in space and

time, making them a challenge to accurately model. Moreover, [67] showed that the macro-

scopic behavior of these active mixtures is sensitive to the microscopic model. A variety
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of theoretical models attempt to bridge the understanding of the microscopic mechanisms

with the emergent macroscopic phenomena. One computationally intensive approach is

to model collections of explicitly represented filaments and motors without coarse-graining

[46, 50, 48]. In contrast, other modeling standpoints rely on a generic hydrodynamic theory

that is inherently macroscopic [40, 58, 37, 38, 21]. Considering gliding assays specifically,

[36, 32] developed a Langevin dynamics model coupling the dynamics of the filament, the

dynamics of the motor head and the elasticity of the motor stalks. Other approaches have

exhibited pattern formation through phenomenological particle-based steric interactions

[61, 65], while [21] demonstrated the importance of hydrodynamic effects in the collective

behavior of large-scale systems of filaments. A final set of approaches starts with a sim-

plified microscopic model and coarse-grains the system via a priori closure approximations

to attain a macroscopic description [67, 42]. We take such an approach while additionally

considering fluctuations in motor and filament densities, the background flow, and the in-

teractions of the immersed structure and the fluid. This allows us to directly incorporate

knowledge of the microscale mechanisms while maintaining the efficiency of coarse-grained

approaches over particle-based approaches in simulating hydrodynamic interactions.

As a first step towards a multiscale model of gliding assays, we develop a three-

dimensional model, including hydrodynamics effects via the coupling of the filaments and

the fluid, but assume a dilute suspension of filaments thus neglecting steric effects. In

contrast to previous modeling approaches, we do not assume that the filaments move in a

two-dimensional plane, but instead we show that this results from an asymptotic analysis

and Hele-Shaw reduction of the fluid-coupled continuum model. Furthermore, our modeling
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approach couples the microscale modeling of the attachment and detachment of molecular

motors to the mesoscale motion of the filaments, and finally to the macroscale fluid motion.

This explicit coupling is obtained by combining continuum theories of polymeric liquids

[5] with the force spreading approach of the immersed boundary method [53]. There are

three components of our continuum model: a filament conservation equation, conservation

equations for bound and free motors, and fluid equations. These coupled equations evolve

on three length scales: L, the length of the side of the cover slip, l, the length of the filament,

and Lm, the length of the motor stalk. We assume that Lm � H = εL � L, where H is

the distance between the cover slip and the plate.

The remainder of the paper is organized as follows. In Section 4.2, we derive the full

three-dimensional continuum model focusing on the fluid coupling. Next, in Section 3.2.3,

we nondimensionalize the model and neglect small terms. In Section 2.4, we obtain reduced

two-dimensional gap-averaged equations through an asymptotic analysis and depth averag-

ing, and we show that in this reduced formulation the filaments move in a two-dimensional

plane parallel to the bottom plate. Section 2.5 is devoted to the numerical implementation,

which is spectral for the fluid equations and second-order in time and space for the evolu-

tion equations. Difficulties resulting from the high dimensionality are resolved by exploiting

data sparsity and using GPU parallelism. Finally, Section 2.6 illustrates the reduced model

and numerical implementation for a set of parameters chosen to be experimentally relevant.

In this case, our simulation shows the emergence of ordered subregions of filaments and

motors as observed experimentally. We end with a short conclusion in Section 2.7.
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2.2 Model

In a gliding assay, motor protein tails are anchored to a horizontal plate while their

heads are free to bind and pull filaments suspended in a liquid. Figure 3.1 illustrates the

experimental setup. Since there are no free motor complexes in suspension and a motor can

only attach to a single filament, there is no cross-linking of filaments via motor complexes.

In Table 3.2, we summarize the physical parameters relevant for the gliding assay geometry,

Figure 2.1: Microtubule gliding assay setup. Motor protein (black) tails are anchored to a
fixed plate, while their heads bind and pull microtubule filaments (green) suspended in a
liquid.

based on values reported in the literature.

2.2.1 Filament conservation equation

For a dilute suspension of filaments, we denote by Ψ(x,p, t) the three-dimensional

probability density function of the filament center-of-mass position x and orientation p with

|p| = 1. Here, we parametrize a rigid, fixed length filament by x+sp, where s ∈ [−l, l] is the

arc length parameter and we neglect bending, growth or shrinkage of filaments. The total

number of filaments N =
∫∫

Ψ(x,p, t)dxdp is conserved and the Smoluchowski equation or

7



the conservation of mass in probability for Ψ is [4, 3, 11]

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0. (2.1a)

To close Eq. (2.1a), we use equations for the x,p dynamics derived from slender-body theory

as in [57, 56] for active swimmers

ẋ2 = u2(x)−Dt,||∇x2 ln Ψ (2.1b)

ż = w(x)−Dt,⊥∂z ln Ψ (2.1c)

ṗ = (I− pp)∇xu(x)p−Dr∇p ln Ψ. (2.1d)

Here ∇p = (I− pp)∂p is the gradient on the unit sphere, u = (u2, w) is the fluid velocity,

and the subscript 2 denotes the in-plane coordinates x, y. To obtain Eq. (2.1b)-(2.1d), we

assumed that the background flow u is linear along the slender and rigid filaments. Thus u

can be written as u(x + sp) = u(x) + s∇u(x)p. While in the theory of active swimmers, a

swimming velocity appears in Eq. (2.1b), in our model the motor force acts directly on the

fluid and indirectly on the filaments as they move passively with the fluid. This is similar

to the approach taken in the immersed boundary method, which was originially developed

for flexible passive fibers and membranes immersed in fluids [53]. In our case, the filaments

are rigid, resulting in an additional stress on the fluid due to the filaments’ resistance to

deformation. We discuss this term in Section 2.2.2. In the present model, we do not

include thermal fluctuations, instead we consider generalized diffusive terms intended to

phenomenologically model small-scale effects due to the surrounding fluid [56]. Dt,||, Dt,⊥

and Dr are the in-plane translational, out-of-plane translational, and rotational diffusion

coefficients, respectively. Physically, if Dt,|| = Dt,⊥ = Dr = 0, Eq. (2.1b) says that the
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center-of-mass passively follows the background velocity u(x) and Eq. (2.1d) says that the

rate of change in orientation is given by ∇u(x)p. The projection operator (I − pp) in

Eq. (2.1d) ensures that the length of the filament is constant, i.e. |p| = 1 or p · ṗ = 0.

2.2.2 Fluid equations

Using the characteristic numbers given in Table 3.2 for the fluid velocity and

characteristic length yields a small Reynolds number and hence the convective acceleration

is negligible. Furthermore, the frequency parameter given by the time scale of the molecular

force is small compared to the Reynolds number and inertia is negligible. Thus, the fluid

equations are the incompressible Stokes equations with extra stress and an external force:

−µ∆xu(x, t) +∇xq(x, t) = ∇x · σp(x) + fm(x, t), ∇x · u = 0. (2.2)

Here, fm is the force density due to the motors acting at x on the immersed filaments, q

is the pressure, and σp is the extra stress arising from the microstructure [4]. For passive

filaments, σp can be decomposed into two contributions: σp = σp
B + σp

F [15]. σp
B arises

from Brownian rotations and is modeled as σp
B = 3kTD, where D =

∫
Ψ (pp− I/3) dp.

This term is small relative to the motor-based force [6] and we neglect it. σp
F represents

the resistance of the filaments to deformation and is modeled as σp
F = σfS : E, where

S =
∫

Ψ (pppp− Ipp/3) dp, E =
(
∇xu +∇xuT

)
/2 is the rate-of-strain tensor, and σf =

l3/(3c) is a coefficient depending on the aspect ratio r of the filament (c = log(2/r)/(4πµ) >

0). The boundary conditions are doubly periodic in x, y and no-slip at z = ±H/2.
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2.2.3 Bound and free motor equations

A motor that walks in a direction p under a load F will step with a speed V given

by the single motor load-velocity relationship [26]. Here, the load on the motor is the force

exerted on the motor head due to the motor’s intrinsic motion. Since we do not model

that length scale directly, we make the simplifying assumption that the motor is subject

to a load of one half of its stall force and walks at one half of its maximum velocity giving

the simplified equation F = −Fstp/2. The motor force, F, gives the force magnitude and

direction generated by a motor with tail at r0 and head on the filament at r1 = y + sp.

The motor-based force density at a spatial point x is then

fm(x, t) = −Fst

2

∫∫∫∫
pδ(y + sp− x)Ψ(y,p, t)Mb(s, r0|y,p)ds dr0 dy dp. (2.3)

The convolution with the δ−Dirac function converts from the center-of-mass-based de-

scription of Ψ to the spatial description of the force density. Here, Mb(s, r0|x,p; t) is

the conditional probability density of bound motors with tail r0 on the plate and head

at s on the given filament x,p. The total number of bound motors is given by Nb =∫∫∫∫
MbΨds dr0 dx dp. We also introduce Mf(r0, t), the density function of motors with

tail at r0 and free head. The total number of free motors is Nf =
∫
Mfdr0. In the entire

system, the total number of motors Nm = Nf +Nb is conserved.

In general, the free and bound motor populations evolve according to a reaction-

diffusion-advection equation. In a gliding assay, motor tails are fixed to a plate and cannot

diffuse or advect with the flow. Hence, we consider only the conversion between the free and

bound populations, and the advection and procession of the bound motor heads. Further,

we assume that if a motor is close enough to the filament, it can bind to the filament with
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an attachment rate per filament kon and that a head can detach with a detachment rate koff.

We derive the evolution equation for Mb by considering the conservation law for MbΨ,

which evolves as

∂t(MbΨ) +
Vmax

2
∂s(MbΨ) +∇x · (ẋMbΨ) +∇p · (ṗMbΨ)

=
kon

2l
∫∫
Brc

Ψdpdx
MfΨ1Brc − koffMbΨ.

(2.4)

Here 1Brc is the characteristic function on the ball Brc of (capture) radius rc centered

at the attachment point r1. The three advection terms on the left hand side express the

procession of the motor along the filament with speed V = Vmax/2 and the motion of the

motor-filament complex with the background flow. The source term on the right hand

side express the attachment of a free motor at s to the filament x,p, where the factor

2l
∫∫
Brc

Ψdpdx measures the approximate available length of filaments in Brc . Since we are

not tracking the position of the head r1, then, for a given filament x,p, a head attaches

at s with uniform probability in Brc . The sink term represents the detachment of a bound

motor. Using Eq. (2.1a) to eliminate Ψ, Eq. (3.10) becomes

∂tMb +
Vmax

2
∂sMb + ẋ · ∇xMb + ṗ · ∇pMb

=
kon

2l
∫∫
Brc

Ψdpdx
Mf1Brc − koffMb.

(2.5a)

We impose an additional condition on detachment. In particular, a head detaches if the

motor reaches the end of the filament (i.e. |s| > l). We also note that a motor should detach

if the motor force exceeds a threshold. Since we assume a constant motor force, we do not

encounter this case.

Finally, since the total number of motors Nm is conserved, we define the free motor
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density Mf implicitly as

Mf =M−
∫∫∫

Mb ds dx dp, (2.5b)

where M is the total density of motors with tails at r0.

2.3 Nondimensionalized Equations

In order to simplify the model described in Section 4.2, we start by nondimension-

alizing the equations and determining characteristic scales.

2.3.1 Fluid equations

We first nondimensionalize the incompressible Stokes equations (3.13). Let the

characteristic length be L in the x and y directions and H = εL in the z direction (ε� 1),

the characteristic velocity be U in the x and y directions and W in the z direction, and the

characteristic fluid time scale be T = L/U . Since the flow time scale in the z-direction is the

same as in the x, y plane, we must have W = εU . We denote with primes nondimensional

quantities. Substituting the corresponding equations, we note that the nondimensional

gradient of u is

∇xu =
U

L

 ∇x′2u′2 1
ε∂z′u

′
2

ε∇x′2w
′T ∂z′w

′

 :=
1

T
∇x′u′. (2.6)

From equation (2.6), it follows that the extra stress due to the resistance to deformation σp
F

has the form σfn/T ≈ 10−4 for the dilute microtubule suspensions considered here, so we

neglect it. The pressure and force density are nondimesionalized with characteristic pressure

Q and force density F . Denoting the components of the force density fm = (fm,2, h) =
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F (f ′m,2, h
′) and neglecting the extra stress contributions, the Stokes equations (3.13) become

∇x′2u
′
2 + ∂z′w

′ = 0 (2.7a)

−∆x′2
u′2 −

1

ε2
∂z′z′u

′
2 +

LQ

µU
∇x′2q

′ =
FL2

µU
f ′m,2 (2.7b)

−∆x′2
w′ − 1

ε2
∂z′z′w

′ +
LQ

ε2µU
∂z′q

′ =
FL2

εµU
h′. (2.7c)

2.3.2 Filament equations

We nondimensionalize the filament equation (2.1) with the same scales as the fluid

equations and we nondimensionalize Ψ by the total concentration of filaments n = N/(εL3),

setting nΨ′(x′,p, t′) = Ψ(Lx′2, εLz,p, T t
′). We find

∂t′Ψ
′ +∇x′ · (̊x′Ψ′) +∇p · (p̊Ψ′) = 0, (2.8a)

x̊′2 = u′2 −
Dt,||T

L2
∇x′2 ln Ψ′, z̊′ = w′ −

Dt,⊥T

ε2L2
∂z′ ln Ψ′ (2.8b)

p̊ = (I− pp)∇x′u′p−DrT∇p ln Ψ′, (2.8c)

where ·̊ indicates the time derivative with respect to t′ and ∇x′u′ refers to the tensor given

explicitly in Eq. (2.6).

2.3.3 Bound and free motor equations

Since the motors evolve on a smaller scale than the fluid, we introduce new char-

acteristic scales. We take the filament half-length l as the length scale for motor evolution.

We also define a new time scale, τ = l/Vmax. We denote with stars the new nondimen-

sional quantities and keep the prime notation for quantities that depend on both scales. We
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choose to nondimensionalize the density of bound and free motors to the fraction of bound,

Nb/Nm, and free Nf/Nm motors respectively. In other words, we set

Mb(s, r0|x,p; t) =
Nm

NL2l
M′b(ls∗, Lr′0|Lx′2, εLz

′,p; τt∗),

Mf(r0, t) =
Nm

L2
M′f(Lr0, τ t

∗).

Substituting the appropriate definitions into Eqs. (2.5), the nondimensional evolution equa-

tion for M′b and M′f are

∂t∗M′b +
1

2
∂s′(M′b) +

τ

T
x̊′ · ∇x′M′b +

τ

T
p̊ · ∇pM′b

=
k′on∫∫

Br′c
Ψ′dx′dp

M′f1Br′c − k
′
offM′b

(2.9a)

M′f =M′ −
∫∫∫

M′bΨ′ds′ dx′ dp, (2.9b)

with k′on = konτ/2, k′off = koffτ , Br′c is the nondimensional capture ball andM = Nm/(L
2)M′.

Finally, nondimensionalizing the force density (3.15) and integrating over yz, we have

fm(x, t) = F f ′m(Lx′2, εLxz, T t
′)

= −FstNm

2εL3

∫∫∫∫
pδ

(
y′2 +

l sinφ

L
s∗p2 − x′2

)
Ψ′
(

y′2, x
′
z +

l

εL
cosφ,p, t′

)
Mb

(
s∗, r′0|y′2, x′z +

l

εL
cosφ,p; t∗

)
ds∗dr′0dy

′
2dp,

(2.10)

where (φ, θ) are the polar and azimuthal angles, respectively and p2 = (cos θ, sin θ). The

above equation yields the characteristic force F = F0/ε with F0 = FstNm/L
3.

2.4 Two-dimensional Reduction

In this section, we reduce the spatial dimension of our system of equations by

performing an asymptotic analysis of the fluid equations in ε� 1. For clarity of exposition,
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in the remainder of the paper we drop the primes, replace the open circles with dots and

s∗ by s.

2.4.1 Fluid equations

We reduce the fluid equations following the standard Hele-Shaw approach [34].

For the solution to the leading order equation in Eq. (2.7b) to be nontrivial, the pressure

term and/or the forcing term have to balance the last viscous term. If the forcing term is

not one of the dominating terms, then the fluid equations reduce to those of a Newtonian

Hele-Shaw cell and are not driven by the motor forces, in contrast to the gliding assay.

Therefore, using the characteristic force derived at the end of Section 3.2.3, we have

FL2

µU
=
F0L

2

εµU
= O

(
1

ε2

)
.

From the above relationship to be asymptotically valid, we have U = O(ε) and we set

U = εU0. From the definition of the characteristic time, we have T = L/U = T0/ε with

T0 = L/U0.

We now discuss the order of the pressure term. If the pressure term is of lower order

than the force term, then there are two cases to consider: Q = O(1) and Q = O(εm) with

m ≥ 1. In the latter case, the only leading order term in the z-momentum equation (2.7c)

is the force term which is therefore unbalanced and this case is impossible. In the first

case, the pressure term balances the force term in the z-momentum equation (2.7c). But,

since the pressure term drops out of the x, y-momentum equations (2.7b), the continuity

equation (2.7a) cannot be satisfied without imposing a condition on the forcing term and
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this case is also impossible. Therefore, we have

LQ

µU
=

LQ

εµU0
= O

(
1

ε2

)
as well. Consequently, Q scales like 1/ε and we set Q = Q0/ε. As a result from the previous

the discussion, the leading order terms in Eqs. (2.7) are O(1) in Eq. (2.7a), O(1/ε2) in

Eq. (2.7b), and O(1/ε4) in Eq. (2.7c).

Next, we perform the asymptotic analysis and consider the leading order terms in

the momentum equations (2.7b). Setting A0 = LQ0/(µU0) and B0 = F0L
2/(µU0), we have

for the leading O(1/ε2) terms

−∂zzu2 +A0∇2q = B0fm,2. (2.11)

In the z-momentum equation (2.7c), the pressure term is the only leading O(1/ε4) term

and Eq. (2.7c) reduces to ∂zq = 0, which implies that q is independent of z, in other words

q(x2, z) = q(x2). Integrating Eq. (2.11) twice with respect to z we find

−u2(x2, z) + α0z + α1 = −A0

2
z2∇2q(x2) +B0I(z),

where I(z) =
∫ z
−1/2

∫ z′
−1/2 fm,2(x2, z

′′)dz′′dz′. Using the no-slip boundary conditions at z =

±1/2, we obtain the constants of integration

α0 = B0I(1/2), and α1 = −A0

8
∇2q(x2) +

B0

2
I(1/2).

Because ε � 1, we now define a gap-averaged velocity ū2(x2) =
∫

u2(x2, z)dz.

Averaging the continuity equation (2.7a) over the gap and using the no-slip boundary

conditions yields

∇2 · ū2 = 0. (2.12a)
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Further, substituting the values of the integration constants and integrating we obtain the

gap-averaged two-dimensional velocity field ū2(x2) driven by the x, y-component of the force

density fm,2

ū2(x2) = −A0

12
∇2q(x2) +

B0

2
I
(

1

2

)
−B0

∫
I(z)dz. (2.12b)

Equations (2.12) are the gap-averaged two-dimensional forced Stokes equations. These

equations are very similar to those obtained for non-Newtonian Hele-Shaw flows [34]. We

also remark that the integral operator and its mean can be expressed as moments of the

force density by reversing the order of integration

I(1/2) =

∫ (
1

2
− z
)

fm,2(x2, z)dz, and

∫
I(z)dz =

1

2

∫ (
1

2
− z
)2

fm,2(x2, z)dz.

2.4.2 Filament equations

To reduce the evolution equations for the distribution functions Ψ we again rely

on leading order analysis and depth-averaging. Since the diffusion terms represent phe-

nomenologically observed small-scale motions, the diffusion constants are chosen so that

these terms are of comparable magnitude with the other terms in Eq. (2.8b)-(2.8c). Inte-

grating Eq. (2.8a) over the gap yields

∂t

(∫
Ψdz

)
+∇x,2 ·

(∫
ẋ2Ψdz

)
+ (żΨ)

∣∣∣∣1/2
−1/2

+∇p ·
(∫

ṗΨdz

)
= 0. (2.13)

In order to express the previous equation in terms of the gap-averaged distribution of

filaments Ψ̄, we will make use of the general closure approximation

∫
f(z)Ψdz = f̄Ψ̄,

for any function f(z). For a velocity field u that is approximately parabolic in z, the

accuracy of this approximation will depend on the maximum value of ψzz in the gap. This
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approximation may degrade if all the filaments are bound, as all the filaments will then be

within a ∼50nm band relative to the ∼100µm gap. However, this is not the case in general.

With this closure approximation and the no-slip boundary conditions, Eq. (2.13) becomes

∂tΨ̄ +∇x,2 ·
(

˙̄x2Ψ̄
)

+∇p ·
(∫

ṗΨdz

)
= 0 with ˙̄x2 = ū2 −

D0
t,||T0

L2
∇x,2 ln Ψ̄, (2.14)

where Dt,|| = D0
t,||ε. Next, we reduce the rotational flux to two dimensions. To do so, we

denote the unit vectors in spherical coordinates by φ̂ and θ̂. Then, expressing ṗ in spherical

coordinates as ṗ = φ̇φ̂ + sinφθ̇θ̂, taking the dot product of Eq. (2.8c) with θ̂ and φ̂, and

defining Dr = D0
r ε, we arrive at

θ̇ sinφ = θ̂
T∇xup− D0

rT0

sinφ
∂θ ln Ψ and φ̇ = φ̂

T∇xup−D0
rT0∂φ ln Ψ. (2.15)

Recalling the form of ∇xu in Eq. (2.6), we let p = (sinφp2, cosφ), θ̂ = (p⊥2 , 0), and

φ̂ = (cosφp2,− sinφ) with p⊥2 = (− sin θ, cos θ). The leading order term in Eq. (2.15) is of

order 1/ε and carrying out the matrix multiplications, we obtain

cosφ
(
p⊥T2 ∂zu2

)
= 0, and cos2 φ

(
pT2 ∂zu2

)
= 0.

The only non-trivial solution to the previous equations is cosφ = 0, that is φ = π
2 . In other

words, to leading order the filaments lie in a horizontal plane, which has been observed ex-

perimentally [61]. In this case, ∇p ·(
∫

ṗΨ) = ∂θ(
∫
θ̇Ψ) and θ̇ = p⊥T2 ∇x,2u2p2−D0

rT0∂θ ln Ψ,

which allows us to reduce the last term in Eq. (2.14) to a single θ derivative. Combining ev-

erything and applying the closure approximation on the velocity gradient tensor, we arrive

at the two-dimensional gap-averaged filament evolution equation

∂tΨ̄ +∇x,2 · ( ˙̄x2Ψ̄) + ∂θ(
˙̄θΨ̄) = 0 (2.16a)

˙̄x2 = ū2 −
D0

t,||T0

L2
∇2 ln Ψ̄, ˙̄θ = p⊥T2 ∇x,2ū2p2 −D0

rT0∂θ ln Ψ̄. (2.16b)
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2.4.3 Bound and free motor equations

Since T = T0/ε, the last two advective terms on the left of Eq. (2.9a) scale like ε

and they can be neglected. Further, because no other term in Eq. (2.9a) depends on ε, the

O(1) leading order equation for Mb is

∂t∗Mb +
1

2
∂sMb =

kon∫∫
Brc

Ψdxdθ
Mf1Brc − koffMb, (2.17)

Integrating over z and using the closure approximation, we obtain the gap-averaged equation

for the density of bound and free motors

∂t∗M̄b +
1

2
∂s(M̄b) =

kon∫∫
B Ψ̄dx2dθ

Mf1B − koffM̄b, (2.18a)

Mf =M−
∫∫∫

M̄bΨ̄ds dx2 dθ. (2.18b)

Here B is the two-dimensional projection of Brc .

Next, we reduce the motor force density (2.10). Integrating over z, using the

closure approximation, and φ = π/2, we obtain the gap-averaged force density

f̄m(x2, t) = −1

2

∫∫∫∫
p2δ

(
y2 +

l

L
sp2 − x2

)
Ψ̄(y2, θ, t)M̄b(s, r0|y2, θ)ds dr0 dy2 dθ.

(2.19)

The closure approximation and Eq. (2.19) allow us to solve for the constants

of integration in Eq. (2.12b): I(1/2) = f̄m,2/2 and
∫
I(z)dz = f̄m,2/6. Plugging these

expressions into Eq. (2.12b) yields the final fluid gap-averaged fluid equations

∇x,2 · ū2(x2) = 0 (2.20a)

ū2(x2) = −A0

12
∇2q(x2) +

B0

12
f̄m(x2, t). (2.20b)
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This concludes the model reduction to a system of equations depending on the

two-dimensional configuration variables r0,x2 and one-dimensional configuration variables

s, θ. Table 3.1 summarizes the two-dimensional model equations. For simplicity, we drop

the subscript 2 and bars in the notation and let Dt,|| = D0
t,||T

0/L2 and Dr = D0
rT .

2.5 Numerical method

In this section, we discuss the discretization of the nondimensionalized equations

summarized in Table 3.1 and the development of a stable algorithm. First, we note that

Mb is high dimensional, with six variables in 2D. However, since a head detaches if the

elongation of the motor’s stalk exceeds a certain threshold, Mb is sparse in the x − r0

hyperplane, hence we store a small x2-grid, whose size depends on (l/L), around each r0.

At t = 0, we initialize the filament distribution Ψ, the motor distribution M,

and the bound motor distribution Mb. The free motor distribution can then be computed

with (M2) and the fluid equations (U1)-(U2) solved (see below). The algorithm steps and

substeps to advance from time tn to time tn+1 are described next. Since τ < T , we denote

by k the time index on which Mb is solved.

1. Compute Ψn+1 by solving (F1) together with (F2). We use second-order Crank-

Nicolson for the diffusion terms, and Adams Bashforth 2 with an adaptive timestep for

the time discretization of the advection terms. The advection terms are discretized in

space using a high-resolution total variation diminishing upwind scheme with superbee

flux limiter [13].
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2. Compute Mk+1
b by evaluating (M2) and solving (M1). The integrals in (M2) are

evaluated using the midpoint rule using data at time n. We again use upwinding

with superbee flux limiter for the advection terms, and Adams Bashforth 2 with an

adaptive timestep for the time discretization. We repeat this process until Mn+1
b is

obtained.

3. Compute the force density fn+1
m from (U2) using Mn+1

b and Ψn+1. The integrals are

evaluated using the midpoint rule and an approximate Dirac delta function, for which

we use a hat function spanning two grid cells in each direction. This approximation

is C0 and satisfies a first moment condition, resulting in conservation of angular mo-

mentum. For a discussion of the implications of different choices of numerical delta

functions, see [53].

4. Solve (U1) spectrally for un+1. Because of the periodic boundary conditions, we

transform (U1) in Fourier space (k wave vector):

ûk = −A0

12
ikp̂+

B0

12
f̂mk

k · ûk = 0.

Taking the dot product with k, the pressure can be eliminated yielding
ûk = B0

12

(
I− kkT

k2

)
f̂mk

if k = ‖k‖ 6= 0

û0 = B0
12 f̂m0 if k = 0

. (2.21)

We remark that the constants A0 and Q0 drop out and Eq. (2.21) depends on B0 only.

At this stage, we also compute the rate-of-strain tensor spectrally.

The two most time-intensive portions of the algorithm are the bound motor density

evolution and the motor force calculation. For feasibility, we implemented these using
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Nvidia’s CUDA C language and ran them on Nvidia Tesla GPU accelerators obtaining

speedup factors of nearly 50 for all parameters tested. Since there is no interaction between

motors in neighboring ro cells, we update each r0 cell independently.

2.6 Results

We illustrate the behavior of the system with two examples, using the parameters

L = 125µm, l = 1µm, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106, kon = 1s−1, koff = 0.5s−1.

Here we demonstrate that the proposed model captures qualitative features of microtubule

gliding assays.

First, we consider a clump of locally aligned filaments in the center of the domain

with an initially uniform bound motor density. The initial alignment drives the fluid mo-

tion, and consequently the filaments, in that direction. The clump advects and diffuses

through the domain as illustrated in Fig. 2.2 (see supplementary movie S1). This motion is

qualitatively similar to the moving clusters observed in [61]. The resulting disturbance in

the velocity field propagates out from the leading edge of the clump in a wave-like motion.

Eventually, diffusion causes the filament density to relax to the uniform isotropic density

and the velocity field to decay to zero. We set the dimensionless diffusion parameters to

Dt,|| = 2.5 · 10−3 and Dr = 2.5 · 10−5.

Second, we consider the experimentally motivated example of a gliding assay of

non-localized filaments and motors (Fig. 2.3 and supplementary movies S2-S6). If the initial

density of filaments is uniform, our model does not generate disturbance flows different than
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Figure 2.2: Evolution of the velocity field and filament density for a clump of locally aligned
filaments with uniform bound motor density, depicted at t = 0s, t = 50s, and t = 150s.
The parameters are L = 125µm, l = 1µm, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106,
kon = 0.5s−1, koff = 0.5s−1. The dimensionless diffusion parameters to Dt,|| = 2.5 ·10−3 and
Dr = 2.5 · 10−5.

the imposed mean flow. Therefore, the filament density is perturbed away from uniformity

in both space and orientation with

1

a

8∑
i,j=1

εij cos(πix+ ξij) cos(πjy + ξij)Pij(θ), (2.22)

where εij is a uniform random number in [−.01, .01], ξij is a uniform random number in

[0, 2π], a is a normalization constant and Pij(θ) are third order polynomials in cos(θ) and

sin(θ) with random coefficients in [−1, 1] as in [56].

The typical state of the system is illustrated in Fig. 2.3 at times t = 0, 10, 20 min.

The first row depicts the evolution of the velocity and vorticity fields (supplementary movie

S2), and in the second row, tracer particles highlight fluid mixing (supplementary movie

S3). After the transient velocity field disappears, the flow organizes into distinct subregions

separated by boundaries of non-zero vorticity. These subregions span tens of microns,

compared with the filament length of 1 micron, and can persist for several minutes. The

third row shows the spatial filament density defined as

Ψspatial(x, t) =

∫
Ψ(x, θ, t)dθ (2.23)
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(supplementary movie S4). As t increases, the filaments form varying patterns, concen-

trating into bands at flow subregion boundaries and clumps in flow subregion interiors.

These filament concentration patterns largely mantain their structure as they traverse the

domain following the flow field. Some regions collide resulting in the formation of larger

fronts or bands, while others break apart. The concentrated regions contain more than

twice the number of filaments as the sparse regions. Such migrating cohesive structures

have been observed in experiment [61, 65]. The fourth row depicts the filament orientation

field (supplementary movie S5). We compute the orientation matrix

N(x, t) =

∫
ppTΨ(x, θ, t)dθ∫

Ψ(x, θ, t)dθ
(2.24)

and draw its eigenvectors scaled by their associated eigenvalues. We remark that Ψ main-

tains antipodal symmetry, i.e Ψ(x, θ, t) = Ψ(x, θ + π, t), because Eqs. (2.16a)-(2.16b) are

invariant under this transformation. The two-dimensional nematic order parameter is

S(x, t) =

∫ (
2(p · n)2 − 1

)
Ψ(x, θ, t)dθ∫

Ψ(x, θ, t)dθ
, (2.25)

where n is the eigenvector associated with the largest eigenvalue of N. We observe in-

creased local nematic order at the boundaries of the flow subregions, where filaments tend

to align tangentially to the boundaries, while the interiors of the flow subregions contain

areas of both high and low nematic order. Finally, the fifth row depicts the bound motor

concentration with tail at r0

Mtail
b (r0, t) =

∫∫∫
Mb(s, r0, t|x, θ)Ψ(x, θ, t)dsdxdθ (2.26)

(supplementary movie S6). Our simulation shows a strong positive correlation between high

bound motor density and high filament concentration. We note that motors are not directly
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advected by the flow, as their tails are fixed to the substrate. Instead, the bound motor

concentration increases as more filaments become available to bind to.

2.7 Conclusions

Starting from conservation equations, we developed a multiscale model describing

the complex interplay between molecular motors, filaments, and fluid in a gliding assay. Our

asymptotic and dimensional analysis agrees with experimental results [61] and shows that,

for a small channel height, the filaments evolve in a two-dimensional plane parallel to the

bottom plate upon which molecular motors are anchored. The coupling between the motors,

filaments, and surrounding fluid is achieved by directly spreading the motor force onto the

fluid and passively advecting the filaments with the local fluid velocity. As a result, the

depth-averaged fluid equations ressemble the non-Newtonian Hele Shaw equations. In the

present model, we only consider a dilute suspension of filaments and therefore neglect effects

due to steric interactions between filaments. The only interactions considered are therefore

purely hydrodynamic interactions between the fluid and the filaments. Nevertheless, our

simulations show behavior that is qualitatively similar to that seen in [61]. We observe

swirls, moving high-density fronts, and cluster movements.

An in-depth study of the parameter set should reveal the transition between dif-

ferent states as described in [36, 32, 59]. While our model and numerical experiments

demonstrate the importance of hydrodynamic interactions, they do not address the relative

importance of steric and hydrodynamic interactions for pattern formation in gliding assays.

To be able to ascertain the role of both effects as well as observe additional patterns, the
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density of filaments must be increased. As a result, the continuum model should be ex-

tended to include both steric interactions between the filaments and σp
F , the extra stress

due to the filament resistance to deformation [15, 11].
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Parameter Symbol Value or Range Source

Motor attachment rate kon

.005− .05s−1 (sp)

.04− 50s−1 (sp)

50s−1

[58]

[46]

[66]

Motor detachment rate koff

.083− .167s−1

.005− .05s−1 (sp)

.04− 50s−1 (sp)

.5s−1

[27]

[58]

[46]

[66]

Motor maximum speed Vmax

500− 750nm/s

1µm/s (sp)

[27]

[46, 32, 58]

Motor stall force Fstall 0.5− 2pN

5pN

[46]

[32]

Motor length (fully stretched) Lm 50nm [32]

Motor capture radius rc 10− 22nm [32]

Chamber length L 5− 18mm

3-15mm

[27]

[45]

Chamber height H 110µm

100µm

[27]

[45]

Filament length l

.7− 7µm

50µm

1µm

[27]

[30]

[32]

Fluid viscosity µ 0.5pNs/µm2 [32]

Fluid velocity U 10µm/s [65]

Table 2.1: List of relevant physical parameters and their values as reported in the literature.
(sp) denotes simulation parameters used in the referenced source.
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Model equations

Filaments ∂tΨ +∇x · (ẋΨ) + ∂θ(θ̇Ψ) = 0

ẋ = u−Dt,||∇x ln Ψ, θ̇ = pT⊥∇xup−Dr∂θ ln Ψ

(F1)

(F2)

Motors ∂t∗Mb + 1
2
∂sMb = kon∫∫

B Ψdx2dθ
Mf1B − koffMb

Mf =M−
∫∫∫
MbΨds dy dθ

(M1)

(M2)

Fluid u = −A0
12
∇2q + B0

12
fm, ∇ · u = 0

fm = − 1
2

∫∫∫
p δ(y + l

L
sp− x)ΨMbds dr0 dy dθ

(U1)

(U2)

Table 2.2: Summary of the two-dimensional, gap-averaged, nondimensional model equa-
tions for the evolution of the filament distribution Ψ(x, θ, t), bound motor distribution
Mb(r0, s|x, θ; t), free motor distribution Mf(r0) and fluid u(x) in a motility assay.
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Figure 2.3: Emergence of ordered subregions in the filament-motor-fluid system, depicted
at t = 0 (first column), t = 10 min (second column), and t = 20 min (third column). First
row: u(x, t), with vorticity plotted in color (units of s−1). As the simulation proceeds,
the fluid subregions form vorticity bands at their boundaries with zero vorticity in their
interiors. Second row: tracer particles show fluid mixing. Third row: Ψspatial(x, t) in µm−2

defined in Eq. (2.23). Fourth row: eigenvectors of N(x, t) (red lines) and S(x, t) (green
field) given in Eqs. (3.52)-(2.25). Fifth row: Mtail

b (r0, t) in µm−2 defined in Eq. (3.51). At
t = 0, the density of filaments is perturbed in space and orientation according to Eq. (3.53),
while the bound motor density is uniform. The parameters are L = 125µm, l = 1µm,
µ = 0.12pNs/µm2, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106, kon = 1s−1, koff = 0.5s−1,Dt,|| =
0µm2s−1, Dr = 0s−1.

29



Chapter 3

A Micro-Macro Framework for

Analyzing Steric and

Hydrodynamic Interactions in

Gliding Assays

Macroscopic flows of filament-motor mixtures, driven by the hydrolysis of ATP, are

important to many cellular processes such as cytoplasmic streaming in Drosophila oocytes

and cortical flow in the first cell division of C. elegans. Gliding assays, reduced in vitro

model systems where motor proteins adsorbed onto a planar substrate bind to and move

filaments, recreate large-scale dynamic patterns like coherent swarming motion and density

waves. These systems are sensitive to the microscopic behavior such as the motor protein

binding and unbinding dynamics, which take place on a faster timescale than the direct and
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fluid-mediated filament interactions. In this work, we present a multiscale modeling and

simulation framework for gliding assays that allows detailed microscopic motor modeling as

well as both steric and hydrodynamic interactions between filaments. Our model is based

on continuum kinetic theory, and our implementation utilizes CPU and GPU parallelism

to track the sparse but high-dimensional state space arising from the microscopic motor

protein configurations. We find that steric interactions play a role in the formation of spa-

tiotemporally coherent flow structures, and qualitatively reproduce experimentally observed

behaviors including filament crossover and alignment, and clump formation, merging, and

splitting.

3.1 Introduction

Actin and tubulin filaments working in concert with motor proteins play a central

role in cell functions including mitosis and pronuclear centering [64]. Gliding assays, in which

stabilized filaments are propelled by anchored motor proteins powered by the hydrolysis of

ATP in a thin quasi-two-dimensional chamber, are commonly used to study the behavior of

these cellular components in vitro (Figure 3.1). Large-scale pattern formation is observed in

such experiments, including clump formation, merging, and splitting, and density waves [61],

and the emergence of a lattice of microtubule vortices [65].

The physics of the filament-motor-fluid system are inherently multiscale in space

and time, with nanoscale motors with fast binding/unbinding kinetics coupled to microscale

filaments interacting in a macroscopic fluid domain. These systems have been studied with

a variety of theoretical and computational approaches. Models that track explicit repre-
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sentations of filaments with Langevin dynamics underscore the sensitivity of the system to

the motor behavior; [36, 32] included a load-dependent force-velocity relationship of motor

proteins in a gliding assay and found that the motor activity increases nematic ordering,

and [46, 50, 48] found that the time spent by individual motors at the end of a microtubule

before falling off plays a central role in the emergence of coherent structures. These mod-

els neglect fluid-mediated filament-filament interactions, and are therefore not suitable to

address such behaviors. Moreover, the computations have scaled to only hundreds of fila-

ments, while many systems of interest such as a mitotic spindle are estimated to have tens

or hundreds of thousands of filaments. A model based on macroscopic configuration fields,

and thus more suitable to a large system and large length and time scales, was proposed

by [39]. This was expanded upon by [60] in a hydrodynamic theory incorporating explicit

tracking of bound and unbound motor populations. Both [60, 39] rely on phenomenologi-

cally motivated constitutive equations in the model derivation and neglect filament density

fluctuations. Another class of modeling approaches starts with a microscopic model and

coarse-grains the system to attain a macroscopic description [42, 67, 1]. For example, [42]

assume a constant motor density and demonstrate that inhomogeneities in motor stepping

rate are necessary to drive bundle formations, and [67], without considering fluctuations in

motors or filament densities, show that the order of the isotropic-nematic transition depends

on the force-dependent motor detachment. However, both of [67, 1] neglect fluid-mediated

filament-filament interactions, although they could be coupled to the fluid equation using

a configurational average of an expression involving the distribution function to include

the contribution of the particles to the fluid stress [11, 5]. This approach has been widely
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applied to nanorods [69], and more recently to active gels [41] and to suspensions of active

swimmers [57, 56], and was used in our previous work [24]. Such methods have the benefit

of flexibly allowing detailed microscopic modeling. However, it is not always possible to

avoid tracking the microscopic variables, which can incur significant computational cost.

As shown experimentally by, among others, [61, 32, 65], the filament density and

steric interactions play a critical role in the formation of coherent structures. In this paper

we consider dense suspensions of filaments, and build upon our previous model [24] to

include steric interactions between filaments. A widespread model of steric interaction is the

excluded volume potential [11]. This model, widely used in liquid crystal theory [69, 42], has

been adapted to active suspensions of self-propelled pushers and pullers in three dimensions

[15]. The latter includes a rotational steric alignment term, but neglects the linear steric

contribution which can prevent unphysical “piling up” amongst the microtubules in a gliding

assay. We follow this approach to modeling steric interactions, including both rotational

and linear steric interaction terms.

Characterizing the interplay of steric versus hydrodynamic effects requires an ex-

ploration of different filament densities and motor systems. At a microtubule density of

.05µm−2, Sumino et al. [65] are able to model their experimentally observed vortex lat-

tice with a phenomenological agent-based method neglecting hydrodynamics. In contrast,

at actomyosin surface densities ranging between 2µm−2 to 21µm−2, Schaller et al. [61]

demonstrate filament clump and density wave persistence and scale that cannot be ex-

plained through purely steric interactions. Additionally, Schaller et al. [62] demonstrate

evidence of hydrodynamic effects in the formation of depletion layers between clump-clump
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or clump-wall collisions that cause reorientation before physical contact. The particulars of

the microscopic motors may also significantly influence the collective motion. For example,

[65] reports that using kinesin motor proteins instead of dynein results in a higher rate of

microtubule crossover events, limiting steric interactions and preventing the formation of

the vortex lattice. The importance of fluid effects can also be seen further in the theoretical

study of filaments in a quasi-two-dimensional chamber [21].

In this work, we present a novel micro-macro model and computational framework

to simulate both steric and hydrodynamic interactions in a microtubule gliding assay. Our

new framework supports different motor protein activity models, as well as the option to

treat the filaments as self-propelled. Rather than use phenomenological steric interaction

rules, we model fluid stresses due to microtubule inextensibility, rotational and translational

steric interactions, and self-propulsion if applicable.

We base our approach on our previous work [24], where we developed a continuum

model coupling the motion of the fluid to the motion of the motors and microtubules. In

that work, we used closure approximations to reduce the fluid equations to depth-averaged

two-dimensional equations, and restricted ourselves to the dilute limit, ignoring steric in-

teractions. Here, we solve the fluid equations in three dimensions and avoid making closure

approximations. As in [24], we track distributions of microtubules and kinesin motor pro-

teins, with behavior governed by conservation equations.

The paper is organized as follows. Our framework is presented in Section 3.2, the

implementation and numerical methods are presented in Section 3.3, simulation results are

presented in Section 4.4, and we conclude in Section 4.5.
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3.2 Modeling framework

This section reviews the setup of a gliding motility assay, describes our continuous represen-

tation, and details the individual components of our modeling framework. Two distributions

are tracked: one for the microtubules, and one for the bound motors. Each distribution

satisfies a conservation equation. We present one such equation for the microtubule distri-

bution taking into account hydrodynamic and steric effects, and two for the bound motor

distribution. Bulk fluid forces and steric stresses are calculated from the bound motor

proteins and the microtubule distribution respectively, and included in the fluid equations.

3.2.1 Microscale model

Figure 3.1 illustrates the experimental setup. A microtubule gliding assay consists of two

plates separated by a small distance. A fluid fills the gap, with fluid flow characterized by

low Reynolds number. Motor proteins (kinesin in our case) are anchored to the bottom

plate with their heads free to bind to microtubules, walk along them, and detach. The

microtubules, in turn, glide along the motor protein heads, effectively constrained within

a single plane. They are stabilized to prevent growth or depolymerization, and have an

orientation defined in terms of a plus and minus end. Upon binding, kinesin motor proteins

walk towards the plus end of the microtubule, propelling the microtubule in the direction

of its minus end. We assume ATP saturation so the motor proteins are continuously active.

We refer the reader to [24] for a list of values of physical parameters found in the literature.
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Figure 3.1: Microtubule gliding assay setup. Motor protein (black) tails are anchored to a
fixed plate, while their heads bind and pull microtubules (green).

Microtubule distribution

In this model, we assume that the microtubules of length 2l and diameter b are

inextensible and rigid, an appropriate approximation for microtubules of l ≤ 2µm [63]. We

describe the microtubules by the position of their center-of-mass x and a vector p pointed

towards their plus end. Let Ψ(x,p, t) be the microtubule distribution function. Ψ evolves

according to the Smoluchowski equation (see also [25, 24])

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0 (3.1)

ẋ2 = −Vspp2 + u2(x)−∇x2Ut −Dt,||∇x2 ln Ψ, (3.2)

ż = w(x)− ∂zUt −Dt,⊥∂z ln Ψ (3.3)

ṗ = (I− pp)∇xu(x)p−∇pUr −Dr∇p ln Ψ. (3.4)

Here the subscript 2 denotes the in-plane x, y components and derivatives with respect to

these variables. The first two and last terms in the equations for ẋ = (ẋ2 ż)
T and ṗ are

similar to those of the active bacteria swimming model of [56]. Vsp is a propulsion speed,

analogous to the self-propulsion term in active swimmer models. In our model, motor forces

spread to the fluid grid (described below) can only be resolved on the scale of the fluid grid.
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We allow a phenomenological self-propulsion velocity to compensate for this reduction in

resolution of microtubule motion. Since microtubules do not propel themselves through the

fluid as a bacteria does [62], but are propelled by motors distributed along the filament, the

resulting force should act like a monopole (see Eqs. (3.15)-(3.16)), similar to sedimenting

particles [12]. Therefore, we include both a self-propulsion velocity and a passive force in

our model. Furthermore, u(x) = (u2(x)w(x))T is the velocity of the surrounding fluid at

x with which the microtubules are advected. Because the kinesin motors walk towards the

plus end, i.e. in the direction of p, the microtubule will move in the direction −p2 in the

plane of motion where it is restricted to leading order as shown in [24]. Dt,||, Dt,⊥ and Dr are

the translational and rotational diffusion coefficients, respectively. Because of the channel

geometry and the experimental observation that microtubules move in a z-plane, we expect

Dt,⊥, the diffusion in the z direction, to be smaller than the in-plane diffusion Dt,||. We use

zero diffusion in all of our examples. We do not include thermal fluctuations in the present

model. The third term in ẋ2 and ṗ and the second term in ż describes the effect of steric

interactions through a translational and rotational potential, Ut/r, respectively. We model

the steric potential using the Maier-Saupe potential Kt/r(p,p
′) = −U0

t/r(p · p
′)2 with

Ut/r(x,p, t) =

∫
Ψ(x,p′, t)Kt/r(p,p

′)dp′.

The above form of Ur is identical to the one proposed by [15] for active suspension, but

we also keep the translational steric potential Ut from [42, 2] to prevent interpenetration

in the plane of the microtubules. Neglecting this term was less consequential for [15] as

their model is three-dimensional; our two-dimensional rod reduction below (Section 3.2.2)

leads to a more highly constrained geometry where this term is important. With this term
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included, we see behavior closer to the experiments of Schaller et al. [62] where clumps grow

in extent rather than increasingly concentrating into a small area. We refer the reader to

[2] for details on how the translational term arises in the Smoluchowski equation for the

microtubule density. With the previous definitions of the steric potential the translational

and rotational fluxes become

ẋ2 = −Vspp2 + u2(x) + U0
t,‖pp : ∇2D(x, t)−Dt,||∇2 ln Ψ (3.5)

ż = w(x) + U0
t,⊥pp : ∂zD(x, t)−Dt,⊥∂z ln Ψ (3.6)

ṗ = (I− pp)(∇xu(x) + 2U0
rD(x, t))p−Dr∇p ln Ψ, (3.7)

where D(x, t) =
∫

Ψ(x,p, t)ppdp is the second moment of Ψ with respect to p. The total

number of microtubules is given by N =
∫∫

Ψdxdp.

Motor distributions

In general, the free and bound motor populations evolve according to a reaction-

diffusion-advection equation. In a gliding assay, motor tails are fixed to a plate and cannot

diffuse or advect with the flow. Hence, we consider only the conversion between the free

and bound populations, and the advection and procession of the bound motor heads. We

represent the free motor density asMf (r0), the density of motors with free heads and tails

anchored at position r0. We do not track the position of free motor heads. We represent

the bound motor density per microtubule as Mb(r0, s|(x,p), t), with r0 the position where

the motor tail is anchored, x, s,p the center of mass, arclength parameter, and orientation

of the microtubule the motor head is bound to, and t the time. The notation |(x,p) denotes

that the probability is conditional on the distribution of microtubules Ψ(x,p, t). Finally,
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we let M(r0) be the total (bound + free) motor density at r0. We define the free motor

density Mf as

Mf (r0, t) =M(r0)−
∫∫∫

Mb(r0, s|(x,p), t)Ψ(x,p, t)ds dx dp, (3.8)

that is, for every motor with tail anchored at r0 the head is either free or bound. The total

number of bound motors is given by Nb =
∫∫∫∫

MbΨdr0dxdpds. In the entire system, the

total number of motors Nm = Nf +Nb is constant.

Figure 3.2: Set Brc(r0) of micro-
tubule segments accessible to motor
head for motor tail anchored at r0

in solid green (illustrated in 2D for
clarity).

The possible configurations of bound motor

heads face constraints. First, a head detaches if it

walks off the plus end of the microtubule (|s| > l).

Second, the motor head detaches due to stretching

of the motor stalk, which happens beyond a critical

distance rc. We do not model the spring force of the

motor stalk extension. We enforce these two con-

straints by requiring that Mb is zero when |s| > l

and by takingMb to be zero when |x+sp−r0| ≥ rc.

Equivalently, the second condition says that for a given tail r0 there is only a small subset

of x + sp available for attachment. This crucial locality restriction effectively reduces the

dimensionality ofMb. We represent the allowable local configurations as a ball of radius rc

illustrated in Figure 3.2,

Brc(r0) = {(x′, s′,p′) : |x′ + s′p′ − r0| < rc}. (3.9)

We consider two equations for the bound motor distribution. The first, hereafter

referred to as the “evolved” model, tracks Mb through the evolution of a full conserva-
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tion equation. It models motor head stepping along microtubules as well as attachment

proportional to the available number and length of microtubules and detachment. Since

motors bind and unbind quickly relative to the speed of the microtubules, this conservation

equation has its own smaller timescale. The second model, hereafter referred to as the “sim-

plified” model, assumes that motors bind to any reachable position s along a microtubule

with equal probability, and that the distribution of bound motorsMbΨ with tails anchored

at r0 is proportional to the density of microtubules to bind to up until all available motors

are bound. The fidelity of the smaller timescale behavior from the evolved motor model

is lost. Instead of solving a conservation equation at a separate timescale, Mb is updated

from Ψ on its timescale.

In the evolved motor model, following [49], the number of binding events per second

is proportional to the local density of free motors times the available length of microtubules

(as an approximation for the available binding sites) with the constant of proportionality,

denoted by kon, that has units of µm2s−1. Defining B̄(r0) =
∫∫∫

Brc
ΨMbdsdxdp, then

B̄(r0) represents the number of bound motors in Brc per unit area. Since B̄ and Mf have

units of number per unit area (and not per unit volume), we divide kon by the capture

radius rc to obtain a constant of proportionality that has units of µm s−1, before repeating

the argument of [49] for B̄. In order to convert from a number per area to a number, we

multiply B̄(r0)by the area of the disk Drc of radius rc centered at r0. Therefore, after

dividing through by |Drc | and neglecting advection terms, we have a relationship of the

form

∂tB̄ = −koffB̄ +
kon

rc|Drc |
Mf

∫∫∫
Brc

Ψdxdpds,
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where the integral of Ψ over Brc represents the total length of available microtubules and

koff (units of s−1) is the detachment rate. Setting kon = kon/(rc|Drc |) with units of (µms)−1

and including advection terms, the conservation equation for MbΨ is

∂t(MbΨ) + ∂s(VmMbΨ) +∇x · (ẋMbΨ) +∇p · (ṗMbΨ)

= konΨMf1Brc (r0) − koffMbΨ.

(3.10)

Here 1Brc (r0) is the indicator function for Brc(r0). The flux terms on the left hand side

express the procession of the motor along the microtubule with speed Vm and the motion of

the motor-microtubule complex with the background flow. The source terms on the right

hand side express the attachment of a free motor at s to the microtubule x,p at a rate per

length kon, and the detachment of a bound motor at a rate koff. Using Eq. (3.1) to eliminate

Ψ, Eq. (3.10) simplifies to

[∂tMb + ∂s(VmMb) + ẋ · ∇xMb + ṗ · ∇pMb] Ψ = konMfΨ1Brc − koffMbΨ. (3.11)

We note that if Ψ 6= 0 for all (x,p, t) we can divide by Ψ, but we will refrain from doing so

until Section 3.2.2.

In this paper, we also consider a simplified heuristic motor model where all motor

heads are located in the same plane at height z0 and the number of bound motors is

proportional to the number of microtubules available within the binding range. Therefore,

we let Mb be the piecewise function

Mb(r0, s|(x,p), t) =


0 if |x + sp− r0| ≥ rc

min

(
C, M(r0)∫∫∫

Brc
Ψdxdpds

)
if |x + sp− r0| < rc

. (3.12)

In the above, the cutoff constant C has the same units as Mb. The second term in the

minimum effectively caps Mb so that
∫∫∫

Brc
MbΨdxdsdp ≤M, the total available motors
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at r0. Above the threshold value C, all local motor heads are bound. As C increases, so do

the number of bound motors at r0 for a fixed value of
∫∫∫

Brc
Ψdxdsdp, so larger C values

decrease the minimum rod density needed to bind all local motors.

Fluid

The bulk fluid motion is described by the incompressible Stokes equations for

low Reynolds number flows with suspended microtubule and motor microstructure. As is

customary [4], the total stress in the fluid can be divided into a Newtonian stress and an

extra stress arising from the microstructure, leading to

−µ∇2
xu(x) +∇xq(x) = ∇x · σp(x) + fm(x), ∇x · u(x) = 0. (3.13)

In the above, q is the pressure, µ is the dynamic viscosity, σp is the extra stress, and fm is

the force density due to the motors acting at x on the immersed microtubules. We take the

fluid domain to be doubly periodic in x, y with no-slip conditions at the plate z = −H/2

and at the cover slip z = H/2.

We define the extra stress as σp = σf + σt similar to [15], where σf arises from

microtubule inextensibility and σt arises from steric interaction. These extra stresses are

σf = σfS : E, σt = −σt[D ·D− S : D], (3.14)

where E(x, t) = 1
2

(
∇u +∇uT

)
is the rate-of-strain tensor and S is the fourth order mo-

ment of Ψ, S(x, t) =
∫

Ψppppdp. The coefficients are σf = πµ4l3/3 ln(2r) and σt =

πµ8l3U0
r /3 ln(2r), which can be derived using slender body theory, with r the microtubule

aspect ratio and l the microtubule half-length [15, 56]. While the derivation in [15, 56] is

for rods in free space, and our model has walls in the z dimension, our two-dimensional
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reduction below (Section 3.2.2) restricts these stress terms to the x, y plane, for which we

use periodic boundary conditions. Therefore we do not derive these coefficients for the case

of a nearby boundary. We remark that steric interaction in space does not lead to extra

stress terms in the slender body framework as the resulting force is constant along the

microtubule.

In this model, we apply the force spreading approach of the immersed boundary

method (see [53]) to our polymeric fluid to obtain the motor force [5]

fm(x, t) =

∫∫∫∫
F(y, s,p, r0)δ(y+sp−x)Ψ(y,p, t)Mb(r0, s|(y,p), t)ds dr0 dy dp, (3.15)

where F is the force associated with a single motor. Further, we note that the convolution

with the δ−Dirac function converts from the center-of-mass based description of Ψ to the

spatial description of the force density. The force generated by all bound motor heads acting

at y + sp is spread to x by integrating over all possible motor configurations with head at

y + sp. In general motor stepping speed is load-dependent [26]. However, here we assume

that the motor is stepping at a constant speed Vm, where its max stepping speed is Vmax,

and thus exerts a constant force of magnitude Fst(1− Vm
Vmax

) in −p, with Fst the motor stall

force. This gives the simplified expression for the motor force

F(y, s,p, r0) = F(p) = −Fst

(
1− Vm

Vmax

)
p. (3.16)

3.2.2 Two-dimensional reduction

In [24] we showed that to leading order the microtubule orientations are restricted to the

x, y-plane. Moreover, experiments have shown that the microtubules and bound motor
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heads are concentrated about a two-dimensional plane of motion [54]. Taking advantage of

this fact obviates the need to track Ψ and Mb in the z-dimension, which provides critical

memory and computation savings when storing and solving for the two distributions. We

also restrict the forcing term in the fluid equations to be localized to that plane.

Microtubule distribution

The microtubules are centered around a plane z = z0, where z0 is about the length

of the motor protein, above the bottom plate

Ψ(x,p, t) = Ψz0(x2,p, t)δa(z − z0). (3.17)

Here δa is a smooth delta function, chosen to be

δa(z − z0) =


1
2a(1 + cos(π(z−z0)

a )) |z − z0| ≤ a

0 |z − z0| > a

. (3.18)

We remark that to prevent the presence of microtubules or motors at the top or bottom

plates of the assay, we further require that z0− a > −H
2 and z0 + a < H

2 . We also introduce

the notation Ai =
∫
δia(z − z0)dz to denote the moments of δa. By construction, we have

A1 = 1, A2 = 3/(4a) and A3 = 5/(6a). Next, the microtubules are constrained to the plane

given the geometry of the assay, so p = (cos θ, sin θ, 0)T . Defining p2 = (cos θ, sin θ)T , we

have the decomposition Ψz0(x2,p, t) = Ψz0(x2,p2, t).

Using Eq. (3.17), the microtubule reduction proceeds by integrating Eq. (3.1) with

respect to z. We use a bar to denote the integral over z of a quantity weighted by the smooth

delta function, for example ū(x2) =
∫

u(x2, z)δa(z)dz. Plugging Eq. (3.17) into Eqs. (3.1)

and (3.5)-(3.7), integrating over z, and using the facts that ∇p = p⊥2 ∂θ and that both w
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and δa vanish at the top and bottom plate, we obtain

∂tΨz0 +∇2 · (ẋ2Ψz0) + ∂θ(
˙̄θΨz0) = 0, (3.19)

where we have defined the quantities ẋ2 and ˙̄θ as

ẋ2 = −Vspp2 + ū2 +A2U
0
t,‖p2p2 : ∇2D2,z0 −Dt,||∇2 ln Ψz0 (3.20)

˙̄θ = (∇2ū2 + 2U0
rA2D2,z0) : p⊥2 p2 −Dr∂θ ln Ψz0 . (3.21)

Bound motor distribution

We make the same assumptions for the bound motor distribution, since the bound

motor heads must be in plane with the microtubules they are bound to and write Mb

analogously to (3.17) as

Mb(r0, s|(x,p), t) =Mb,z0(s, r0|x2, θ, t)δa(z − z0). (3.22)

To derive a reduced equation for the evolved bound motor distribution, we plug in the

assumptions (3.22) and (3.17) into equation (3.11), integrate with respect to z and divide

by Ψz0 . Noting that the set Brc(r0) can be approximated as

Brc(r0) ≈
{

(x, s,p) : (x2, s,p2) ∈ Drc(r0) and − H

2
≤ z ≤ −H

2
+ drc(x2, s, θ)

}
,

where Drc(r0) = {(x2, s, θ) : |x2 + sp2 − r0| < rc} is the disk of capture radius rc and

drc(x2, s, θ) =
√
r2
c − |x2 + sp2 − r0|2, we find

∂t(Mb,z0) + ∂s(VmMb,z0) + ˙̃x2 · ∇2Mb,z0 −
˙̃
ζMb,z0 +

˙̃
θ∂θMb,z0

= −koffMb,z0 +
kon

A2
MfB21Drc .

(3.23)
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In (3.23), we defined the tilde quantities similarly to the bar quantities in (3.20)-(3.21), but

with respect to δ2
a as opposed to δa. We have

˙̃x2 = −Vspp2 +
1

A2
ũ2 +

A3

A2
U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0 (3.24)

˙̃
ζ =

1

2A2
∂̃zw −

B1

A2
U0
t,⊥p2p2 : D2,z0 (3.25)

˙̃
θ =

(
1

A2
∇2ũ2 + 2U0

r

A3

A2
D2,z0

)
: p⊥2 p2 −Dr∂θ ln Ψz0 . (3.26)

The constants B1 and B2 are

B1 =
1

2

∫
δ2
a(z − z0)∂zzδa(z − z0)dz = − π2

4a4
B2 =

∫ −H
2

+drc (x2,s,θ)

−H/2
δa(z − z0)dz.

While the quantity B2 is a function of x2, s, θ, plugging Eq. (3.18) for δa into B2, integrating

and using a Taylor series expansion of sine, yield 0 ≤ B2 ≤ rc/a. Therefore, for the

remainder of this paper, we let B2 = rc/a.

Following the same steps for the simplified motor model, we have

Mb,z0(r0, s|(x2, θ), t) =


0 if (x2, s, θ) /∈ Drc

H min

(
C, M(r0)∫∫∫

Drc
Ψz0dx2dθds

)
if (x2, s, θ) ∈ Drc

. (3.27)

Fluid

While we do not average the fluid equations over z, some of the stress and force

components are zero as a result of the two-dimensional reduction of Mb and Ψ. As the

stresses are defined in terms of moments of Ψ with respect to p, the implications of Eq. (3.17)

for the stress tensors in (3.14) are

σf = σfSz0(x2, t) : E(x, t)δa(z − z0) (3.28)

σt = −σt (Dz0(x2, t) ·Dz0(x2, t)− Sz0(x2, t) : Dz0(x2, t)) δ
2
a(z − z0), (3.29)
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where we defined

Dz0(x2, t) =

∫
Ψz0(x2, θ, t)ppdθ and Sz0(x2, t) =

∫
Ψz0(x2, θ, t)ppppdθ.

We note that the third row and column of σf,σt are identically zero because the z-

component of p is zero. Therefore, we use the subscript 2 to denote the upper 2x2 block of

each tensor, such as D2,z0 . Since the motor force F(p) in Eq. (3.16) is in the direction −p,

the z-component of fm is zero. As a result, the fluid equations (3.13) take the form

−µ∇2
2u2(x)− µ∂zzu2(x) +∇2q(x) = ∇2 · σp

2(x) + f2(x) (3.30)

−µ∇2
2w(x)− µ∂zzw(x) + ∂zq(x) = 0 (3.31)

∇2 · u2(x) + ∂zw(x) = 0 (3.32)

with

f2(x) = −Fst

(
1− Vm

Vmax

)
δa(z − z0)2

∫∫∫∫
p2δ(y2 + sp2 − x2)Ψz0Mb,z0dsdr0dy2dθ.

3.2.3 Nondimensionalization

In this section, we nondimensionalize the set of reduced equations introduced in

Section 3.2.2. To do so, we first introduce the characteristic scales. Let the characteristic

length be L in the x, y dimensions and H = εL in the z dimension (ε � 1), let the

characteristic velocity be U in the x, y dimensions and W in the z dimension, and let the

characteristic fluid timescale be T = L/U . We set

x2 = Lx′, z = εLz′ = Hz′, u2 = Uu′2, w = Ww′, t = Tt′,

where ′ denotes dimensionless quantities. By a similarity argument, we have that W = εU .
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Since the motors evolve on a smaller scale than the fluid, we introduce new char-

acteristic scales. We take the microtubule half-length l as the length scale, the motor speed

Vm as the velocity scale for motor evolution, and obtain a new timescale, τ = l/Vm. We set

s = ls′, V = VmV
′, t = τt∗.

Microtubule distribution

To nondimensionalize Ψ we recall that it integrates to N , the number of micro-

tubules. Furthermore, since the smooth delta function satisfies
∫
δa(z−z0)dz = 1, we define

Ψ′z0 as

Ψz0(x2, θ, t) =
N

L2
Ψ′z0(x′2, θ, t

′) (3.33)

so that
∫∫

Ψ′z0dx
′
2dθ = 1. Alternatively, if we introduce the nondimensional smooth delta

function δ′a′(z
′ − z′0) as δa(z − z0) = 1

H δ
′
a′(z

′ − z′0) with a′ = a/H to mimic the behavior

of a Dirac delta function, then we have for the full nondimensional density of microtubules

Ψ′(x′,p, t′) = Ψ′z0(x′2, θ, t
′)δ′a′(z

′ − z′0) and
∫∫∫

Ψ′dx′dp = 1. The microtubule evolution

equation (3.19) is nondimensionalized on the same scale as the fluid equations. Therefore,

plugging the definition of the rescaled quantities into Eqs. (3.19), (3.20) and (3.21) yields

∂t′Ψ
′
z0 +∇′2 · ( ˙̄x′2Ψ′z0) + ∂θ(

˙̄θ′Ψ′z0) = 0 (3.34)

ẋ
′
2 = −V ′spp2 + ū′2 +A′2U

0′

t,‖p2p2 : ∇′2D′2,z0 −D′t,||∇
′
2 ln Ψ′z0 (3.35)

˙̄θ′ = (∇′2ū′2 +A′2U
0′
r D′2,z0) : p⊥2 p2 −D′r∂θ ln Ψ′z0 (3.36)

with constants D′t,|| =
Dt,||T

L2 , D′r = DrT , U0′
r = 2U0

rNT
HL2 , U0′

t =
U0
t,‖NT

HL4 , V ′sp =
Vsp

U , and A′2 =∫
δ
′2
a′(z

′ − z′0)dz′ = HA2. We let Ũ0
t,‖ = A′2U

0′

t,‖ to simplify notation. The nondimensional
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form of the moment tensors are

S′z0 =
N

L2
Sz0 , Dz0 =

N

L2
D′z0 .

Motor distributions

We nondimensionalize the bound motor distribution Mb so that it integrates to

the ratio of bound to total motors:

∫∫∫∫
M′bΨ′ds′ dr′0 dx′ dp =

Nb

Nm
and

∫∫∫∫
M′b,z0Ψz′0

ds′dr′0dx
′
2dθ =

Nb

Nm
.

Recalling that
∫∫∫∫

MbΨds dr0 dx dp = Nb, plugging in the two-dimensional reductions

(3.17) and (3.22) and comparing to the above, we obtain

Mb,z0(s, r0|(x2, θ), t) =
NmH

lL2NA′2
M′b,z0(s′, r′0|(x′2, θ), t∗) (3.37)

and similarly for the full nondimensional distribution

M′b(s, r0|(x,p), t∗) =
1

A′2
M′b,z0(s, r0|(x2, θ), t

∗)δ′a′(z
′ − z′0).

We rescale the distribution of free motors to the fraction of free motors, setting Mf =

Nm
L2 Mf and M = Nm

L2 M′ to obtain

M′f (r′0, t
∗) =M′(r′0)−

∫∫∫
M′b,z0Ψ′z0 ds

′ dx′2 dθ. (3.38)

Using these definitions and the second set of nondimensional variables, we have

∂t∗M′b,z0 + ∂s′M′b,z0 +
τ

T
˙̃
x′2 · ∇2′M′b,z0 −

τ

T
˙̃
ζM′b,z0 +

τ

T
˙̃
θ∂θM′b,z0

= −k′offM′b,z0 + k′onM′f1Dr′c ,
(3.39)
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together with the dimensionless fluxes

˙̃
x′2 = −V ′spp2 +

1

A′2
ũ′2 +

A′3
A′2
U0′

t,‖p2p2 : ∇2D
′
2,z0 −D

′
t,‖∇

′
2 ln Ψ′z0

˙̃
ζ ′ =

1

2A′2
∂̃z′w′ −

B′1U
0′
t,⊥

A′2
p2p2 : D′2,z0

˙̃
θ =

(
1

A′2
∇′2ũ′2 +

A′3
A′2
U0′
r D′2,z0

)
: p⊥2 p2 −D′r∂θ ln Ψ′z0

and constants A′3 = H2A3, U0
t,⊥ =

U0
t,⊥NT

H3L2 , B′1 = H4B1, k′off = koffτ , k′on = konτ lNrc/a. We

note that the dot in the above equations refers to a time derivative with respect to t∗. For

completeness, we write the definition of the dimensionless disk of radius r′c centered at r′0

as

Dr′c(r
′
0) =

{
(x′2, s

′, θ) :

∣∣∣∣x′2 +
l

L
s′p2 − r′0

∣∣∣∣2 ≤ l2

L2
r′2c

}
.

As the bound motor density timescale is approximately a thousand times smaller than the

microtubule timescale, we drop most of the terms with τ
T in Eq. (3.39), except the terms

involving the steric parameters U0′

t,‖ and U0′
r as their product with τ/T could end up being

order one. We drop the term with U0′
t,⊥, since our assumptions that the motion of the

microtubule is constrained to a plane makes it a small number. Eliminating these terms we

have

∂t∗M′b,z0 + ∂s′M′b,z0 +
A′3
A′2

τ

T
U0′

t,‖p2p2 : ∇′2D′2,z0 · ∇2′M′b,z0

+
A′3
A′2

τ

T
U0′
r D′2,z0 : p⊥2 p2∂θM′b,z0 = −k′offM′b,z0 + k′onM′f1Dr′c .

(3.40)

Again, for simplicity, we introduce Ũ0
t,‖ = A′3τU

0′

t,‖/(A
′
2T ) and Ũ0

r = A′3τU
0′
r /(A

′
2T ).

For the simplified motor model, it is straightforward to see that the nondimensional
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version of Eq. (3.27) is

M′b,z0(r′0, s
′|(x′2, θ), t∗) =


0 if (x′2, s

′, θ) /∈ D′r′c

min

(
C ′,

M′(r′0)∫∫∫
D′
r′c

Ψ′
z′0
dx′2dθds

′

)
if (x′2, s

′, θ) ∈ D′r′c

, (3.41)

where C ′ is an independent problem specific parameter.

Fluid

To nondimensionalize the bulk fluid equations, we first rescale the extra stresses

as

σf = σ′fS
′
z0(x2, t) : E′(x, t)δ′a(z − z0) (3.42)

σt = −σ′t
(
D′z0(x2, t) ·D′z0(x2, t)− S′z0(x2, t) : D′z0(x2, t)

)
δ′2a (z − z0), (3.43)

and E(x, t) = 1
T E′, where E′ is dimensionless rate-of-strain tensor. Here, we note that the

dimensionless gradient of the velocity field has the form

∇′u′(x, t) =

 ∇′2u2
′ 1

ε∂z′u
′
2

ε(∇′2w′)T ∂z′w
′

 .

In Eqs. (3.42)-(3.43) the constants are σ′f =
σfN

THL2 , and σ′t = σtN2

H2L4 . Plugging in Eq. (3.33)

for Ψ and Eq. (3.37) for Mb into the force density (3.15), changing variables and setting

F = Fst

(
1− Vm

Vmax

)
Nm

L2HA′2
, we obtain f2(x, t) = −F f ′2(x′, t′) where

f ′2(x′, t′) = δ
′2
a′(z

′ − z′0)

∫∫∫∫
p2δ

(
y′2 +

l

L
s′p2 − x′2

)
Ψ′z0M

′
b,z0ds

′dr′0 dy
′
2 dθ.

Finally, we plug the nondimensional stresses and forces into the incompressible

reduced Stokes equation (3.30)-(3.32) and we let the characteristic pressure be P0 to find
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(ε = H/L)

−∇′22 u′2 −
1

ε2
∂z′z′u

′
2 + P ′0∇′2q′ = F ′f ′2 + σ̃f∇′2 · σf’ − σ̃t∇′2 · σt’ (3.44)

−∇′22 w′ −
1

ε2
∂z′z′w

′ + P ′0∂z′q
′ = 0 (3.45)

∇′2 · u′2 + ∂z′w
′ = 0. (3.46)

In the above, the constants are P ′0 = P0L
µU , F ′ = FL2

µU , σ̃f = L
µU σ

′
f , and σ̃t = L

µU σ
′
t. In the

remainder of this paper and the supplemental movies, we drop all prime, star, tilde and

bar notation and numerically solve the complete set of nondimensional equations which are

summarized in Table 3.1. For reference, Table 3.2 lists all parameters and variables used in

the model.

3.3 Implementation

In this section, we discuss the discretization of the nondimensionalized equations summa-

rized in Table 3.1 and the development of a stable algorithm. Because Ψz0 andMb,z0 evolve

on two different timescales, we discretize Ψz0 at time tn, n = 0, . . . , NT with adaptive time

step dt and Mb,z0 at time tm, m = 0, . . . , NT∗ with smaller adaptive time step dt∗ such

that tn ≤ tm ≤ tn+1. After initializing Ψz0 and Mb,z0 , we calculate the initial time step dt

and, if the evolved motor model is being used, the initial time step dt∗ as well. The motor

forces and steric stresses are computed next, and used to solve the fluid equations. The

new fluid velocities are used to update Ψz0 to time t + dt, and finally Mb,z0 is updated to

time t + dt based on the updated Ψz0 . New time steps are computed, and the simulation
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continues. The procedure is summarized in algorithm 3 and details are given below. Our

numerical scheme is similar to that of our previous scheme in [24]. The primary differences

are that the fluid equations are now solved in three dimensions, and that extra stress terms

resulting from the steric interactions are included.

To compute the time step dt, we calculate the maximum of the angular and linear

advection velocities in Eq. (3.33) and adjust the time step according to the CFL condition.

To find the small time step forMb, we limit the fraction of available motors that can bind or

unbind in any given time step. To calculate dt∗, we compare the change due to s-advection

with the greatest change due to binding and unbinding, and use the more restrictive of the

two to clamp dt∗.

3.3.1 Microtubule density

We discretize Ψz0(x2, θ) over the domain (x2, θ) ∈ [−1, 1]2 × [0, 2π] at the plane

of motion z = z0 with a triply periodic grid of size Nx × Ny × Nθ, with Nx = Ny. The

advection terms in (MT1) (Table 3.1) are discretized spatially with an upwinding scheme

and Superbee flux limiter [13]. The equation (MT1) is integrated in time using second order

Adams-Bashforth for the advective terms and Crank-Nicolson for the diffusive terms. The

resulting system of equations for Ψz0 is solved using the Conjugate Gradient method with

Incomplete Cholesky factorization used as a preconditioner.
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Algorithm 1 Numerical evolution scheme for the coupled microtubule density, motor pro-
tein distribution, and fluid velocity equations.

Initialize Ψz0 and Mb,z0 .

Precompute LU -decomposition of semi-spectral matrices for all frequency pairs.

while t < tend do

Compute adaptive dt.

Compute Ψz0(t+ dt) by solving (MT1)-(MT3) using second order Crank-Nicolson for

the diffusive terms and Adams-Bashforth 2 for the advection terms.

if (using EM) then

set t∗end = t+ dt.

while t∗ < t∗end do

Compute adaptive dt∗.

Compute Mb,z0(t∗ + dt∗) by solving (EM) with Adams-Bashforth 2.

Update Mf from Mb,z0 with (MF).

end while

else if (using simplified motor model) then

Solve (SM)

Update Mf from Mb,z0 with (MF).

end if

Calculate extra stresses.

Calculate motor force (F1) using trapezoidal rule and a local grid.

Solve semi-spectral (U1)-(U3).

end while
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3.3.2 Motor distributions

To advance Mb,z0 forward in time according to the evolved motor model (EM) in

Table 3.1, two-step Adams-Bashforth with variable time step dt∗ is used to discretize the

s-advection term and the binding and unbinding terms. We clampMb,z0(r0, s|x2, θ) so that∫∫∫
Mb,z0Ψz0 ds dx2 dθ ≤M(r0).

The bound motor densityMb,z0 is high-dimensional as it tracks motor tail position,

the filament arclength parameter, and the center of mass and orientation of the filament

the bound motor head is attached to. However, since a head detaches if the elongation of

the motor stalk exceeds a certain threshold, Mb,z0 can be computed and stored sparsely in

a local grid around r0. The specific condition x2 + l
Lsp2− r0 ≤ rc allows further pruning of

this localized configuration space. In our formulation, the activity of the motors anchored

at r0 is independent of motors anchored elsewhere. In discrete form each cell y stores

the local grid over x, θ, s for bound motors whose tails are anchored anywhere within the

boundaries of cell y. Each cell’s motor distribution is updated in parallel. Mb,z0 is stored

as a two-dimensional array over r0, each containing an unrolled flat array for x2, s, θ. We

solve the evolved motor density equation on the GPU, where each r0 is updated in SIMD

fashion by several threads. Another advantage to this layout is that Mb,z0 independent

outermost two-dimensional array can be split up and sent to multiple GPUs, or solved in

batches on a single GPU if the shared memory is exceeded. As grid resolution increases,

the three copies of Mb,z0 at the current and two previous times required by the two-step

Adams-Bashforth time integration scheme may not all fit onto the GPU on-board memory

simultaneously and instead need to be solved a few rows at a time.
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Since we do not track free motor heads, we can discretize the distribution of free

motors Mf and total motors M over a uniform grid of size Nx ×Ny. Updating Mf from

M and Mb,z0 is straightforward and parallelizable over x2 by evaluating the discretized

form of (MF) in Table 3.1.

3.3.3 Fluid

We discretize the domain into Nx×Ny ×Nz grid cells, where Nx = Ny, and solve

for the fluid state at each discrete time tn. u2 and q are sampled at cell centers, while w

is sampled at the z faces. As we have periodic boundary conditions in the x2−plane, we

use a semi-spectral approach and take the Fourier transform in x2 of (U1)-(U3), giving for

each frequency pair k = (kx ky)
T

(|k|2 − 1

ε2
∂zz)û

n
2 + iP0q̂

nk = F f̂n2 + iσf σ̂f
n
k + iσtσ̂t

n
k (3.47)

(|k|2 − 1

ε2
∂zz)ŵ

n + P0∂z q̂
n = 0 (3.48)

ik · ûn2 + ∂zŵ
n = 0. (3.49)

Equations (3.47)-(3.49) yield an independent (4Nz − 1)× (4Nz − 1) linear system for each

frequency pair. This formulation is computationally advantageous for several reasons. First,

the equations for each k can be solved independently, allowing simple parallelization. Sec-

ond, the coefficient matrix of each linear system is constant in time, and an LU-factorization

for each can be precomputed and stored. We can reasonably store Nx × Ny
2 separate

(4Nz − 1) × (4Nz − 1) matrices, and use them to solve for multiple right-hand sides. The

FFTW library [18] is used with precomputed transformation mappings to efficiently perform

the FFT and inverse FFT.
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As the microtubules are concentrated around the z = z0 plane, it is desirable to

have more accuracy there and the thin δa-width region around it than in the distant assay

regions above and below it. Given the aforementioned scaling of each frequency pair fluid

solve matrix with N2
z , we use a nonuniform grid with variable spacing in the z dimension.

We store û2, and q̂ at the z−cell centers, and ŵ at the z−cell faces. A schematic of the

z-grid is shown in Figure 3.3.

Figure 3.3: Schematic of the nonuniform staggered grid in z used to store the spectral values
of û, ŵ, p̂.

To compute second derivatives with respect to z at a z−cell j, we construct a fourth

order Lagrange interpolating polynomial using zj−2, zj−1, zj , zj+1, zj+2, and differentiate

twice. Near the boundaries, we use boundary data and the no slip boundary condition

for the extreme samples and drop to third order interpolation for the bottom-most and

top-most equations. For first derivatives at a z−face j + 1/2, we construct a third order

Lagrange interpolating polynomial using zj−1, zj , zj+1, zj+2, and differentiate once. Near

the boundaries, we use the nearest four samples to construct the interpolating polynomial.
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We find that our semi-spectral fluid solver is second-order accurate.

The motor force calculation is the single most computationally intense portion of

the algorithm because the force spreading dictates that nearby forces be calculated in order

to determine the total force at x. In terms of implementation, this effectively increases the

already high dimensionality of the bound motor distribution, whether it is approximated

with the simple motor model or the evolved motor model. To account for the motor force’s

highly parallel but computationally intensive nature, it is calculated on a GPU using a

similar scheme to the bound motor solve described above. A speedup of roughly forty times

is observed versus a single-core implementation.

Computation of the stress tensors is straightforward and parallelizable. σf depends

on the rate-of-strain tensor E, which we have only for the previous time step since we

compute the extra stresses before the fluid solve. We therefore linearly extrapolate E at

the new time t+ dt using the current and previous values, as in [15].

3.4 Results

In this section, we present results for various experiments with the following

parameters held constant: 2µm-length microtubules, kon = 25, koff = .1, Ut = −.01,

125× 125µm2 assay, Nm = 3× 106 motors, Vmax = 1µms−1, and N = 22300 microtubules.

Our nonuniform z-grid has 30 evenly sized fine z-cells covering the range {−.5,−.4}, with

z0 = −h
2 + .05 = −.45 in the middle. Above z = −.4, the height of each cell doubles

consecutively until the cell size is sixteen times greater than the fine z-cells at the bottom.

Our final 3D grid dimensions are 128× 128× 49, with 32 cells in s and θ, at which we find
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the qualitative features to be well-resolved.

In the figures, we plot the nondimensionalized spatial microtubule distribution

Ψspatial,z0(x2, t) =

∫
Ψz0(x2, θ, t)dθ (3.50)

with color ranging from white (low) to blue (high). We plot the nondimensional spatial

bound motor distribution

Mb,spatial,z0(r0, t) =

∫∫∫
Mb,z0(s, r0, t|x2, θ)Ψz0(x2, θ, t)dsdx2dθ (3.51)

with color ranging from tan (low) to red (high). The colorbars are annotated with the

corresponding percentage of the total available motors in the bound configuration, at the

low and high ranges of each normalization. Finally, we compute the orientation matrix

N(x2, t) =

∫
p2p

T
2 Ψz0(x2, θ, t)dθ∫

Ψz0(x2, θ, t)dθ
(3.52)

and draw its eigenvectors in red scaled by their associated eigenvalues. When present,

velocity vectors (black) and orientation eigenvectors are plotted for every fifth cell for clarity.

3.4.1 Evolved motor model

Single clump. We first examine the processive behavior of a clump of aligned filaments as

the steric alignment parameter is varied between Ur = 0 and .01. We present results for

Ur = 0, .01 and the evolved motor model in Figure 3.4. We observe that as Ur increases

to .01 the clump better maintains its shape, whereas at Ur = 0 microtubules become

concentrated along the leading edge of the clump, which assumes a widening crescent-like

shape. The bottom row of Figure 3.5 shows the microtubule orientation field at the final
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frame displayed in the upper rows with Ur = 0 (left) and Ur = .01 (right). For higher

values of Ur, the microtubule orientation field is uniformly aligned. For smaller values of

Ur, the microtubule orientation field at the clump’s leading edge becomes tangential to the

leading edge, as the rods rotate to avoid compression or extension by the steep velocity

gradient, clearly visible in the Ur = 0 case. For Ur = .01, the steric resistance to rotate

relative to neighboring microtubules counteracts this effect and the orientation field remains

more uniform. In vitro experiments have shown shape persistence in aligned clumps [62],

qualitatively similar to the Ur = .01 case.

Figure 3.4: Single aligned microtubule clump simulation with evolved motor model. Bound
motor protein density visualized with gradient from tan (low) to red (high). Fluid velocity
plotted as a black arrow every 5th cell. First row: Ur = 0. Second row: Ur = .01. Images
are at times t=0, 15, 30, and 45 sec.

Colliding clumps. We examined the behavior of colliding clumps for three values

of the steric alignment parameter Ur = 0, .001, .01 and both head-on and perpendicular

collisions. When clumps collide, the behavior depends on the angle between the microtubule

orientations of the clumps.
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Figure 3.5: Single aligned microtubule clump simulation with evolved motor model. Mi-
crotubule density visualized with gradient from white (low) to blue (high). Microtubule
orientation eigenvectors plotted as red vectors every 5th cell. Simulation shown at time
t=45 sec for Ur = 0 (left) and Ur = .01 (right).

A nearly perpendicular collision as in Figure 3.6 results in the clumps merging

and moving as a single clump for all Ur tested. While the Ur term drives local alignment,

alignment also occurs in the Ur = 0 case as follows. When the self-propulsion velocity is

zero, microtubules move passively with the flow. As motor forces act directly on the fluid,

motor forces acting in opposite directions cancel out. This cancellation occurs in the ex-

ample depicted in Figure 3.6, where the resultant force points in the average direction of

the colliding microtubule orientations, in this case, upwards. These two mechanisms give

different qualitative results as illustrated in Figure 3.6. In the Ur = 0 case (third row),

the microtubule distribution remains isotropic as long as local fluid flow remains negligible,

whereas in the Ur = .01 case (fourth row), we observe steric alignment of the microtubules

throughout the entire domain. Higher Ur results in steeper gradients in microtubule orien-

tation and density at the midline. The higher concentration in turn leads to stronger motor

forces and higher fluid velocities. These Ur-dependent collision phenomena are observed

wherever two regions of dense microtubules collide.
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Figure 3.6: Nearly perpendicular microtubule clumps driven by the evolved motor model
colliding. First row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third row:
Ur = 0 orientation field. Fourth row: Ur = .01 orientation field. Images are at times t=0,
45, 90, and 180 sec.

In the case of two clumps with antiparallel orientations colliding close to head-on

(Figure 3.7, supplemental movie 1 first example), significant differences are observed for

Ur = 0 versus Ur = .01. In the Ur = 0 case, the motor forces drive an extensional fluid flow

on either side of the collision centerline, creating two clumps moving in opposite directions.

In the case Ur = .01, the steric force prevents alignment with the extensional flow and the

microtubules of each clump slide past each other. As a result of slight differences in the
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original clump position, the clumps break down after collision, and smaller clumps pass

through each other and continue along the initial clump trajectories. The orientation field

(Figure 3.7, fourth row) shows that the microtubules do not rotate during the initial collision

and aftermath.

Figure 3.7: Antiparallel microtubule clumps driven by the evolved motor model colliding.
First row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third row: Ur = 0
orientation field. Fourth row: Ur = .01 orientation field. Images are at times t=0, 90, 180,
and 270 sec. See supplemental movie 1 first example.

Vortex Lattice. To test our model’s ability to reproduce characteristics of the lat-

tice of vortices observed in [65], we simulate four overlapping rings of microtubules oriented

63



in clockwise fashion as shown in Figure 3.8 and the first example in supplemental movie

2. In the overlapping regions, the microtubules from adjacent rings are oriented opposite

each other. We observe extensional flow in the dense overlapping regions combined with

counterclockwise rotation driven by the initial orientations. With Ur = 0 the rotational

flow develops four vortices rotating clockwise centered about the spaces between the initial

four vortices. The new vortices contract then expand outward until they develop overlap-

ping regions moving in opposite directions, similar to the initial condition. The process

repeats itself; extensional flow and rotation forms again in the overlapping regions, lead-

ing to the formation of four vortices rotating counterclockwise at the original four vortex

locations. Due to diffusion, the maximum concentration and hence velocity decreases on

average throughout the process. Due to symmetry breaking, the transition from vortices

with overlapping regions to new vortices with overlapping regions and opposite rotation

repeats a few times at most, depending on parameters, until the original structure is lost.

Increasing Ur from 0 to .01 increases the maximum microtubule density and flow velocity

and gives steeper gradients in microtubule concentration and orientation, as seen in previ-

ous examples. It also affects the degree to which the initial dense overlapping regions break

down with the rotational forcing from the motor proteins. In particular, for Ur = .01 (Fig-

ure 3.8, second and fourth rows), the dense overlapping regions extend but do not separate

and thus preserve much of the original four vortex structure. With the inclusion of the

steric interaction term, our results are more consistent with the experiments of [65], which

demonstrate a temporally persistent lattice of vortices.

Perturbation. We perturb a uniform isotropic microtubule density in both space
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Figure 3.8: Vortex lattice experiment with evolved motor model. First row: Ur = 0 velocity
field. Second row: Ur = .01 velocity field. Third row: Ur = 0 orientation field. Fourth row:
Ur = .01 orientation field. Images are at times t=0, 240, 480, and 720 sec. See supplemental
movie 2 first example.

and orientation by adding

1

a

8∑
i,j=1

εij cos(πix+ ξij) cos(πjy + ξij)Pij(θ), (3.53)

where εij is a uniform random number in [−.001, .001], ξij is a uniform random number in

[0, 2π], a is a normalization constant and Pij(θ) are third order polynomials in cos(θ) and

sin(θ) with random coefficients in [−1, 1]. The Ur = 0 case results in a spatiotemporally

stable Ψz0 density (Figure 3.9, supplemental movie 3). In the Ur = .01 case, continuous
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narrow tracks of stationary microtubules form and remain stable.

Figure 3.9: Perturbation in x and θ giving rise to stationary concentrated pattern with
Ur = .01 for evolved motor model. First three images: evolution of microtubule density in
time. Fourth image: magnified section of final top row image with orientation eigenvectors
in red. The microtubule density concentrates along steep gradients in the microtubule
orientation field. Images are at times t=0, 75, and 113 sec. See supplemental movie 3.

3.4.2 Evolved motor model with self-propulsion

Colliding clumps. We repeat the antiparallel colliding clumps experiment with the addition

of a phenomenological self-propulsion velocity Vsp (Eq. (3.2), (MT2)) in Figure 3.10 and

the second two examples in supplemental movie 1. In the case of Vsp = 0, illustrated in

Figure 3.7, the clumps break up as they collide. At Vsp = 1 and Ur = .01, the clumps pass

through each other largely intact. For Vsp = 1 and Ur = 0, we see a combination of both

effects, with some passthrough and some spreading of microtubules with the extensional

flow formed in the collision. In general, varying the value of Vsp between 0 and 1 leads

to a corresponding combination of the extreme Vsp = 0 and Vsp = 1 behaviors. The

experiments of [62] demonstrate a combination of passthrough and breakup when clumps

collide. Experiments of the behaviors of microtubules undergoing collisions [65] show that

colliding microtubules can merge and realign or pass through depending on the angle of
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collision. With the addition of a self-propulsion term, our numerical experiments reproduce

such behaviors.

Figure 3.10: Colliding clump experiment with added self-propulsion velocity. First row:
Ur = 0 and Vsp = .1. Second row: Ur = .01 and Vsp = .1. Third row: Ur = 0 and Vsp = 1.
Fourth row: Ur = .01 and Vsp = 1. Images are at times t=0, 105, 210, 315 sec in rows one
and two, and at t=0, 24, 48, 72 sec in rows three and four. See second and third examples
in supplemental movie 1.

Vortex rings. We repeat the four ring vortex experiment with the addition of a

self-propulsion velocity Vsp (Figure 3.11, second and third examples in supplemental movie

2). With Vsp = .1 and Ur = 0, depicted in the first row, motor forces at the overlapping re-

67



gions of the initial rings create a shear flow that separates these regions and, in conjunction

with the self-propulsion, creates counterclockwise vortices at the separatrix between clock-

wise vortices as seen in the second image of the first row. This separates the dense bands

of microtubules into two connected bands that translate and rotate away from each other,

eventually meeting other bands at the centers of the original rings in a cross-like pattern

(third image). The microtubules gather at the centers of the crosses, then reverse direc-

tion and expand outward in a nonsymmetric way (fourth image), similar to the switching

behaviors observed when the experiment is run without self-propulsion (Figure 3.8). With

Vsp = .1 and Ur = .01, depicted in the second row, the steric alignment prevents the shear

flow from separating the initial overlapping regions, and the self-propulsion drives antipar-

allel sliding that stretches the dense microtubule regions into long cohesive bands (second

image, second row). The bands break down into smaller clumps (third image), but the

steric alignment term keeps the new clumps following the paths of the initial bands, which

roughly correspond with the initial four vortex structure (fourth image) as observed with-

out self-propulsion (Figure 3.8). Increasing the self-propulsion velocity to Vsp = 1 causes

the self-propulsion to dominate the effects of the motor forces, so microtubule passthrough

(with alignment if Ur > 0) becomes dominant. With Ur = 0 (third row), switching events

occur continuously and the four quadrants of the assay are symmetric. We observe that

with Ur = .01, passthrough rapidly breaks up the ring structure (fourth row). As a result,

no switching events occur.

Perturbation We repeat the perturbation experiment with the addition of a self-

propulsion velocity Vsp (Figure 3.12, second and third examples in supplemental movie 3).
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At Vsp = 1 or .1 and Ur = 0 the clumps translate but simply pass through one another

without increasing in density or aligning. With Vsp = .1 and Ur = .01 (first row), we get

fast translational microtubule bands as opposed to the stationary continuous tracks in the

Vsp = 0 case shown in Figure 3.9. At Vsp = 1 and Ur = .01 (second row), the bands form

faster and are denser than in the Vsp = .1 case.

3.4.3 Simplified motor model

Vortex rings. For the parameters, experiments, and timescales presented here, the dif-

ferences in density and feature shape and location are observed between the microtubule

distribution fields generated by the simplified and evolved motor models are minor. One

notable exception is that in the vortex ring experiment, the evolved motor model drives

clockwise rotation in the four central clumps whereas the simplified motor model drives

counterclockwise rotation (Figure 3.13). This effect is due to a slight difference in the mo-

tor force pattern around each clump. On timescales longer than those presented in this

work, simulations may eventually show significant divergence.

Colliding clumps. Results from the antiparallel colliding clump simulation driven

by the simplified motor model are presented in Figure 3.14 (supplemental movie 4) for

values of the parameter C = 10, 50, 250. Increasing C not only increases the fluid velocities

in the simulation by increasing value of Mb,spatial,z0 for a given Ψz0 , but also changes the

flow features that emerge over time. We observe that for the highest tested value C = 250,

any cell with a Ψspatial,z0 value over a threshold results in fully bound motors, exercising the
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second argument to the minimum function in the definition of the simplified motor model

(SM). Therefore two cells with distinct Ψspatial,z0 values above the threshold will produce

motor forces of equal magnitude, changing the emergent behavior within the assay.

Perturbation with and without motor-based fluid forces. In Figure 3.15 (supplemen-

tal movie 5), we repeat the perturbation experiment with self-propulsion in the presence

and absence of the hydrodynamic forces generated by the motor proteins. This allows us to

test the observation of [62] that the stability and size of the observed filament patterns de-

pend on long-range hydrodynamic interactions. Consistent with [62], we observe larger flow

structures forming in a shorter amount of time in the presence of the fluid flows driven by

the motor proteins. We used the simplified motor model, C = 100, Ur = .01, and Vsp = .1.

3.5 Conclusions

We have developed a modeling and simulation framework coupling multiple mi-

croscopic models of propulsion to macroscopic steric and hydrodynamic interactions in a

quasi-two-dimensional assay. Populations of bound and free motor proteins and micro-

tubules are represented as continuum distributions. The framework facilitates study of the

relative effects of hydrodynamic and steric interactions on emergent phenomena. Stress

tensors arising from rotational and translational steric interactions and self-propulsion are

supported in addition to body forces from active motor proteins. Experimentation is needed

to empirically determine the steric interaction parameters Ur and Ux. We avoid closure ap-

proximations in the z dimension, and high precision around a z-plane of interest is achieved
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without incurring significant computational overhead. Results demonstrate our framework’s

ability to replicate some of the behavior of individual and colliding clumps of filaments in-

cluding crossovers, alignment, merging, and splitting [61], and support observations of [62]

regarding hydrodynamic effects.

We present two motor protein models, the evolved motor model which incorpo-

rates motor head procession and binding/unbinding dynamics, and the simplified motor

model which determines the bound motor distribution instantaneously as a function of the

microtubule distribution, and therefore eliminates the high-dimensional and computation-

ally expensive motor evolution at the smaller timescale t∗. While the different models may

yield visually similar motor distributions, they can result in qualitatively different dynam-

ics as illustrated in Figure 3.13. Additional motor models could be investigated within our

framework, for example, models accounting for cooperativity or competition between motor

proteins.

One limitation of our model is the way we model the motor stalk force. The motor

stalk force has a component parallel to the filament, perpendicular to the filament and in the

x, y-plane, and in the z-direction. The component parallel to the filament is equivalent to

the motor force we apply. We ignore the perpendicular component in the x, y-plane, which

would act to translate and re-orient the filament to align the filament director with the

in-plane motor stalk force. We also ignore the component in the z-direction, which would

act to move filaments in the z direction, since we phenomenologically model the filament

distribution in the z-direction. In future work it would be interesting to refine our motor

model to capture the second component of the force as well.
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Our model applies to a microtubule gliding assay, where the motors generate force

monopoles. If multi-headed motor complexes bind two filaments, this leads to force dipoles

as in [19]. While our framework could be extended to such cases, in practice this leads to

a very high-dimensional motor complex state space which may require additional work to

make feasible.

Motor forces on the fluid compose flow features in the microtubule density by

advecting all local microtubules with the same velocity. Even without any steric interaction

terms, two colliding clumps will proceed in a direction roughly equal to the average of their

orientations. However, the motor forces acting on the fluid are prone to cancellation in

isotropic or anti-aligned microtubule configurations. Combining either motor model with a

self-propulsion term in the microtubule advective flux provides a mechanism for anti-parallel

sliding resulting in persistent motion of the microtubules. Addition of the self-propulsion

term enables the passthrough of colliding clumps, consistent with the simulations of [61].
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Model Summary

Microtubules

∂tΨz0 +∇2 · (ẋ2Ψz0) + ∂θ(θ̇Ψz0) = 0

ẋ2 = −Vspp2 + u2 + U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0

θ̇ = ∇2u2 + U0
rD2,z0 : p⊥2 p2 −Dr∂θ ln Ψz0

(MT1)

(MT2)

(MT1)

Motors

∂tMb,z0 + ∂sMb,z0 + U0
t,‖p2p2 : ∇2D2,z0 · ∇2Mb,z0

+U0
rD2,z0 : p⊥2 p2∂θMb,z0 = −koffMb,z0 + konMf1Drc

Mb,z0 =


0 if |x2 + l

Lsp2 − r0| ≥ rc

min

(
C, M(r0)∫∫∫

Drc
Ψz0dx2dp2ds

)
if |x2 + l

Lsp2 − r0| < rc

Mf =M−
∫∫∫

MbΨz0 ds dx2 dθ

(EM)

(SM)

(MF)

Fluid

−∇2
2u2 − 1

ε2
∂zzu2 + P0∇2q = σf∇2 · σf − σt∇2 · σt + F f2

−∇2
2w − 1

ε2
∂zzw + P0∂zq = 0

∇2 · u2 + ∂zw = 0

(U1)

(U2)

(U3)

Force

f2 = Fδ2
a(z − z0)

∫∫∫∫
p2δ(y2 + l

Lsp2 − x2)Ψz0Mb,z0 ds dr0 dy2 dθ (F1)

Table 3.1: Summary of the nondimensionalized model equations for the evolution of micro-
tubules, motors and fluid in a gliding assay. The primes and nondimensionalizing constants
have been dropped for simplicity.
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Model Parameters and Variables

Ψ microtubule density

x,p three-dimensional position and orientation

θ in-plane orientation angle

ẋ, ṗ microtubule linear and angular velocity

Vsp microtubule self-propulsion velocity

N total number of microtubules

σf,σt,σp microtubule inextensibility stress, steric interaction stress, and combined total stress

σf , σt inextensibility and steric interaction stress coefficients

u, q, µ fluid velocity, pressure, and viscosity

Ut, Ur translational and rotational steric potentials

Kt,Kr Maier-Saupe translational and rotational steric potentials

Dt,⊥, Dt,||, Dr linear perpendicular diffusion, linear parallel diffusion, and rotational diffusion

D,S second and fourth moments of Ψ with respect to p

E rate-of-strain tensor

M,Mf ,Mb total motor density, free motor density, and bound motor density per microtubule

rc motor protein capture radius

r0 motor protein tail position

z0 height above bottom of assay at which microtubules and bound motor protein heads are
centered

Brc(r0) allowable configurations x,p, s of bound motors in a ball of radius rc around r0

Dr′c(r
′
0) dimensionless disk of radius r′c centered at r′0

kon, koff motor protein binding and unbinding rates

C simplified motor model binding coefficient

δ, δa Dirac delta and smooth Dirac delta function

f bound motor force on fluid

F force associated with a single motor

Fst motor protein stall force magnitude

L,H,U, P0, T macroscopic characteristic scales: assay length and height, fluid velocity, pressure, and time

ε ratio between assay height and length (H = εL)

l, Vm, τ microscopic characteristic scales: microtubule half-length, motor stepping speed, and motor
evolution time

Table 3.2: Model parameters and variables.
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Figure 3.11: Vortex ring experiment with added self-propulsion velocity. Images are illus-
trative of behavior and thus are not necessarily taken at the same simulation time between
rows. First row: Ur = 0 and Vsp = .1. Second row: Ur = .01 and Vsp = .1. Third row:
Ur = 0 and Vsp = 1. Fourth row: Ur = .01 and Vsp = 1. Images are at times t=0, 225,
450, 675 sec in rows one and two, and at t=0, 60, 120, 180 sec in rows three and four. See
second and third examples in supplemental movie 2.
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Figure 3.12: Perturbation experiment with added self-propulsion velocity. First row: Ur =
.01 and Vsp = .1. Second row: Ur = .01 and Vsp = 1. Images are at times t=0, 105, 210,
315 sec. See second and third examples in supplemental movie 3.

Figure 3.13: Magnified view of vortex ring experiment with evolved motor model (top row)
and simplified motor model (bottom row), Ur = 0 and Vsp = 0. A counter-clockwise velocity
field forms with the evolved motor model, whereas a clockwise velocity field forms with the
simplified motor model. Images are at times t=150, 300, 450, 600 sec.
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Figure 3.14: Antiparallel colliding clump experiment with simplified motor model, Ur = .001
and Vsp = 0. First row: C = 10. Second row: C = 50. Third row: C = 250. First row
images are at times t=0, 300, 600, 900 sec. Second row images are at times t=0, 21, 42, 63
sec. Third row images are at times t=0, 15, 30, 45 sec. See supplemental movie 4.

Figure 3.15: Perturbation experiment with (first row) and without (second row) motor-
based fluid forces, showing faster formation of larger-scale features in the former case. First
row images are at times t=150, 300, 450, 600 sec. Second row images are at times t=300,
600, 900, 1200 sec. See supplemental movie 5.
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Chapter 4

Enabling Simulation of

High-Dimensional Micro-Macro

Biophysical Models through

Hybrid CPU and Multi-GPU

Parallelism

Micro-macro models provide a powerful tool to study the relationship between

microscale mechanisms and emergent macroscopic behavior. However, the detailed micro-

scopic modeling may require tracking and evolving a high-dimensional configuration space

at high computational cost. In this work, we present a parallel algorithm for simulation

a high-dimensional micro-macro model of a gliding motility assay. We utilize a holistic
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approach aligning the data residency and simulation scales with the hybrid CPU and multi-

GPU hardware. With a combination of algorithmic modifications, GPU optimizations, and

scaling to multiple GPUs, we achieve speedup factors of up to 27 over our previous hybrid

CPU-GPU implementation and up to 540 over our single-threaded implementation. This

approach enables micro-macro simulations of higher complexity and resolution than would

otherwise be feasible.

4.1 Introduction

Active gels exhibit macroscopic flow structures driven by the detailed microscopic

interactions of constituent elements. Pronuclear centering and migration and cytoplasmic

streaming are two such examples, both being critical cellular processes driven by filament-

motor mixtures. Reduced-component studies have found these systems to be highly sensitive

to the microscopic interactions between motors and filaments; for instance, the detachment

time of a motor protein at a filament end affects whether filaments form networks of asters

or vortices [46, 50, 48]. Additionally, the tens-of-nanometers sized motor proteins bind,

walk along, and detach from micrometer-length filaments on a faster timescale than the

filament network evolution. Simulating even a millimeter-sized system with such disparate

length and time scales and sensitivity to detailed interactions thus poses a challenging

computational problem. Tracking interacting Lagrangian particles can become infeasible

with large quantities of microstructural elements.

A promising approach lies in micro-macro methods, which couple a kinetic theory

model of the microstructure (here, the configuration of the motors and filaments in the
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active gel) to the macroscale continuum mechanical representation of a viscoelastic fluid

[31]. Kinetic theory models have been applied in the study of biological active matter [25],

self-propelled particles [56], and networks of neurons [7]. They enable detailed microscale

modeling that would otherwise be lost via closure approximations in macroscopic modeling

approaches, and are particularly useful at scales where tracking individual particles and their

interactions would be prohibitive. Compared to purely macroscopic methods, micro-macro

methods are more computationally demanding, as they require evolving the microstructure

density in a potentially high-dimensional configuration space.

[24] and [8] developed a micro-macro model for a gliding motility assay, consisting

of immersed rigid filaments that glide along motor proteins anchored to the substrate of

a chamber immersed in viscous fluid. This model includes hydrodynamic and steric inter-

actions between the filaments. A high-dimensional kinetic theory describes the evolution

of the filaments and motors. To make this model computationally feasible, parts of the

microscale computation were ported to the GPU using Nvidia’s CUDA C language [52].

In this work, we enable faster and significantly more detailed simulations through holistic

restructuring of this algorithm, aligning the computation and data flow with the under-

lying heterogenous computational resources. Moreover, these changes facilitate scaling to

multiple GPUs across separate machines with MPI. We further utilize a variety of CPU

and GPU optimizations. Our work expands the range of micro-macro models which can be

simulated by direct solution of the kinetic theory and coupling equations to models with

higher dimensional configuration spaces, at higher resolutions [31]. To our knowledge, [24]

is the first GPU-accelerated micro-macro kinetic theory-based simulation. [24] achieved up
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to 20x speedups over a single-threaded CPU implementation, while the algorithm presented

here achieves a further 27x speedup over [24] and [8]. Key to our approach is moving the

microscopic scale and related tasks, which are smaller scale in both space and time, to the

GPU and limiting CPU-GPU communications to the longer timescale of the filaments and

fluid. Such holistic approaches are recommended to achieve scalability in heterogeneous

environments [51], [20]. We note that our method does not suffer from common GPU sim-

ulation challenges encountered in various other approaches such as building adjacency lists

[29], reordering storage based on cell location [70], dynamic, irregular data accesses [71],

thread divergence [17], or neighbor exchanges of halo regions.

The paper is organized as follows. A description of the model and implementa-

tion is presented in Section 4.2, algorithmic, data flow, GPU, and MPI modifications are

discussed in Section 4.3, results are discussed in Section 4.4, and we conclude in Section 4.5.

4.2 Motility Assay model

Figure 4.1: Gliding motility assay. Motor proteins (black) anchored to the substrate bind
to filaments (green), walk along them and exert forces, then detach.

Figure 4.1 illustrates a gliding motility assay. The geometry consists of top and
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bottom plates separated by a narrow vertical gap, which is filled with a viscous fluid con-

taining ATP fuel. At the bottom plate, motor protein tails are anchored to a substrate.

The motor protein heads diffuse in solution, tethered to their tail by a flexible stalk. When

a filament enters the capture radius of a motor protein head, the head may bind to the fila-

ment. As the bound motor head walks toward the filament plus end, it exerts force, causing

the filament to glide in the opposite direction, until the motor head detaches. When many

filaments are present, the underlying microscopic mechanism coupled with hydrodynamic

and steric interactions give rise to a variety of emergent macroscopic behaviors such as a

lattice of vortices [65]. Through our modeling and simulation, we aim to better understand

the relationship between the microscale interactions and the macroscopic phenomena. Re-

lated problems of emergent self-organization from simple interactions include flocking and

swarming of birds, fish, and bacteria.

The model equations are presented in simplified, nondimensionalized form in Ta-

ble 4.1. The filament density is parameterized by center-of-mass location x, orientation p,

and time t as Ψ(x,p, t).

The configuration space of bound motors is higher dimensional, as we need to

track the center-of-mass position x and orientation p of the filament a bound motor with

tail anchored at r0 is bound to, along with its arclength parameter along that filament s.

This yields the high-dimensional density Mb(r0,x,p, s, t) of bound motors

per filament, illustrated in the figure to the right. A key observation is that

motors with tail anchored at position r0 on the assay substrate can only

bind to filament sections that are within the capture radius of the motor
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stalk rc. This greatly reduces the feasible configurations a motor protein head may be bound

in, and obviates the need to track configurations |x + sp− r0| > rc. We denote by Brc(r0)

all feasible x,p, s configurations such that |x + sp − r0| ≤ rc. We do not track unbound

(free) motor heads, only their tail position r0, so the density of free motors Mf (r0, t) is

two-dimensional. We model the filament and bound motor protein densities as distributed

by a smooth Dirac delta function in z about a plane a small distance z0 above the bottom

plate, i.e., Ψ(x, . . .) = Ψz0(x2, . . .)δ(z) and Mb(r0,x, · · · ) = Mb,z0(r0,x2, · · · )δ(z) . We

thus evolve the lower-dimensional Mb,z0 and Ψz0 in our simulation. We drop the z0 from

Ψ and Mb in the remainder of the paper for brevity.

We represent the fluid velocity in three dimensions, with periodic boundary con-

ditions in the x and y dimensions and no-slip conditions in the z dimension at the top and

bottom plates. The system evolves on two timescales; the motors bind to, walk along, and

unbind from the filaments on a faster timescale than the filaments and fluid evolve. Bound

motor heads generate forces that are spread onto the fluid in an immersed boundary method

fashion [53]. Together with stress terms arising from filament inextensibility and steric in-

teractions [15], the motor forces (Eq. (4.10)) couple the densities Ψ and Mb to the fluid

velocity (Eq. (4.7)). The x and y dimensions are discretized over a regular square grid, and

the z dimension is discretized over an adaptive grid that is finely resolved around z = z0 near

the bottom plate and becomes coarser moving toward the upper plate. Allowable filament

orientations are constrained to the (x, y) plane, so we can represent p = (cos θ, sin θ, 0)T .

Orientation θ and arclength parameter s are discretized uniformly with the same resolution.

Algorithm 2 summarizes the process for evolving the filaments, motor proteins,
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and fluid velocity as in [24], [8]. First, we compute the adaptive time steps based on their

stability conditions, with outer time step dt restricted by the advective fluxes in Eq. (4.1),

and the inner time step dt∗ restricted by the motor speed and binding/unbinding rates

in Eq. (4.4). Next, Ψ(t + dt) is solved using Crank-Nicolson for the diffusive terms and

Adams-Bashforth 2 with upwinding for the advective terms (line 4). The bound motor

density evolution routine in lines 7-9 performs the motor protein advection (bound mo-

tor heads walking along the filaments toward their plus-ends) and applies a Superbee flux

limiter, as well as simulates the binding and unbinding of free and bound motor proteins

respectively. After every configuration of Mb(r0x, θ, s, t) for a particular r0 has been up-

dated, the integral Mb,coarse(r0, t) =
∫∫∫
Mb(r0,x, θ, s, t)Ψ(x, θ, t)dxdθds is calculated at

the same r0 to ensure that the number of bound motors does not exceed the total number

of motors at r0. If so, all Mb configurations with that r0 are scaled down to conserve the

total number of motors beforeMf is calculated. We next update the free motor density in

line 9. The extra stress terms σf,σt arising from filament inextensibility and steric inter-

actions [8] are computed as moments of Ψ in line 13. We perform a two-dimensional FFT

and solve the transformed system of fluid equations for the three velocity components and

pressure û, v̂, ŵ, q̂ at every position on the z grid, then perform an inverse FFT to obtain

the three-dimensional fluid velocity u in line 13.

In a single-threaded implementation, the high dimensionality of Mb makes the

computations in lines 7-9 and line 11 prohibitively expensive for even moderate grid res-

olutions and experiment times. Fortunately, Mb can be computed explicitly and easily

parallelized over r0. Thus in [24, 8], the Mb and F computations are ported to the GPU.

84



Algorithm 2 Evolution scheme for the coupled microtubule density, motor protein density,
and fluid velocity equations.

Initialize Ψ and Mb

while t < tend do
Compute adaptive time steps dt, dt∗

Compute filament density Ψ(t+ dt) (Eqs. (4.1)-(4.3))
set t∗end = t+ dt
while t∗ < t∗end do

Compute bound motor density Mb(t
∗ + dt∗) (Eq. (4.4))

Update coarsened density Mb,coarse (Eq. (4.5))
Update free motor density Mf (Eq. (4.6))

end
Calculate motor force F2 (Eq. (4.10))
Calculate extra stresses σf,σt (Eq. (4.7))
Calculate fluid velocity u (Eqs. (4.7)-(4.9))

end

On the other hand, the Ψ equation is stiff due to the diffusion terms and is computed semi-

implicitly on the CPU. This decomposition of work is similar to several hybrid reactive flow

solvers [51].

To perform the integral in line 11, [24, 8] use independent GPU threads to compute

the integral at each r0 accumulating the partial results in thread-local storage, limiting the

use of atomic operations to the final reduction over nearby r0 at each x. Extra stress

tensor calculation, forward and reverse fast Fourier transforms, and computation of the

independent semispectral systems are all multithreaded on the CPU. In this work, we

expand upon this hybrid computational approach as described below.
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4.3 Acceleration Methodology

Our primary focus in this work is significant performance improvement through

targeted algorithmic design enabling a multi-GPU decomposition, as well as single-GPU

optimizations, described in detail below. Through these efforts we are able to scale to higher

resolutions than previously possible and achieve up to 27x total simulation acceleration in

a four GPU configuration. Use of additional GPUs is supported and should provide further

speedup with similarly excellent scaling, although we did not test this in this work.

4.3.1 Holistic Algorithmic and Data Flow Restructuring

A primary goal of our approach is to restructure the algorithm so that the memory-

intensive microscale motor protein data resides solely on the GPU, and only the smaller,

coarsened data is transferred to/from main memory. A secondary goal is to support a

multi-GPU decomposition. Additionally, we remove synchronization barriers and reduce

GPU memory consumption by two-thirds. Figure 4.2 summarizes the changes and details

follow.

Independent Time Steps. The original algorithm calculated a global dt∗ and up-

dated allMb configurations by this fixed time step to time t+dt, hindering performance in

several ways. First, it artificially limits the inherently independent per-cell update opera-

tions, some of which may be able to complete in fewer steps as their local configuration and

stability restrictions allow. Second, it requires an expensive reduction operation over the

entire bound motor density microstructure. Third, ifMb is distributed over multiple GPUs

as desired, the reduction creates an unnecessary synchronization barrier. We instead com-
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Figure 4.2: Data residency and computation before (left) and after (right) restructuring.
Left, transfer of the microstructure creates significant communication overhead. Right, the
bound motor microstructure now fully resides on the GPU eliminating expensive transfers,
and the coarse bound and free motor densities are calculated on GPU and transferred back
to main memory.

pute a local dt∗ for each r0 at the beginning of each inner time step and updateMb at each

r0 asynchronously. The most significant benefit of this change is enabling the multi-GPU

implementation. Stability and accuracy were not adversely affected.

Numerical Integration Scheme. The algorithm in [8] used Adams-Bashforth 2 for

time integration of the motor densities, whhich maintains the Mb array at three distinct

time points (tn+1, tn, tn−1). We instead use Runge-Kutta 2, which only requires the Mb

array at tn+1 and tn. This change reduces GPU memory requirements by one-third while

causing negligible impact on computation time. With these improvements, higher-resolution

Mb density representations may reside in scarce GPU memory.

Mixed Precision. We developed a mixed precision approach whereby we store and

updateMb andMf in single precision floating point while keeping the rest of the simulation

as double precision. This saves space and improves performance without causing appreciable
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change in simulation behavior.

Data Residency. The algorithm in [8] updated Mb one piece at a time due to

GPU memory constraints, then transferred the complete updated Mb to the GPU for the

motor force calculation. With the new numerical integration scheme and the use of mixed

precision, we have enough GPU memory to store the high-dimensional microstructure data

Mb solely on the GPU. This eliminates the overhead of transferring copies of Mb before,

during, and after the Mb update. Since Mb is required in order to calculate Mb,coarse and

F, we also do those calculations on the GPU, and transfer results to the CPU. Mb,coarse

and F are both macroscale data structures, and hence incur lower communication overhead.

Finally, Ψ, which is also stored on the macroscale, is transferred as before. The updated

data flow is shown in Figure 4.3.

Pseudocode describing the new GPU kernel is presented in Algorithm 3. The

result is one large kernel that fully updatesMb at each independent r0 value to t+ dt in as

many steps as needed, using a local adaptive time step. The new memory access pattern is

more amenable to caching as well, as each running block of threads on each GPU reads the

same contiguous memory for all Mb configurations at a fixed r0 location repeatedly until

those configurations are fully updated before moving on.

We use CPU parallelism via OpenMP to further accelerate the simulation, specifi-

cally in the calculations of the fluxes and stress tensors for the fluid solves, the outer global

time step dt calculation, and construction of the Ψ advection matrix. After moving the dt∗

calculation into the motor force update kernel and multithreading the dt calculation, time

step calculation becomes a negligible component of the total computation time.
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Figure 4.3: Residency and evolution of state from time step n to time step n + 1 on CPU
and GPUs in new algorithm. Red indicates the quantity updated through computation or
data transfer.

4.3.2 GPU Optimizations

This section describes various optimizations of the GPU kernel shown in Algo-

rithm 3. Combined, these single-GPU optimizations yield an average improvement of 4.7-

7.5x depending on resolution. The optimizations are described below and the individual

effect of each is listed in Table 4.5.

Mixed precision. As previously detailed, switching Mb, Mb,coarse, and Mf to

single precision halves the GPU memory requirement. In addition, it provides a 4.3x to

5.8x speedup in our bound motor density evolution routine. This improvement will depend

on the clock cycle ratio between single and double precision arithmetic for a given GPU

family.

Fast Math. Compiling with CUDA’s fast math library provides additional savings

without noticeable change in simulation behavior. Accelerations of 1.35x were typical.

Launch Bounds. The launch bounds macro in CUDA may be used to instruct the
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compiler to ensure a user-specified maximum number of concurrent threads and threads per

block running on each GPU Streaming Multiprocessor (SM). Using a launch bounds config-

uration of 128 threads/block and 8 simultaneous blocks per SM gives the best performance

of all configurations tested. Register spilling to global memory does occur at this configu-

ration as each thread is limited to 32 registers. Newer architectures with more registers per

SM will likely see immediate improvement by both reducing register spilling and enabling

more threads per block. Accelerations of 1.2x were typical at the higher inner resolution

and negligible at the lower inner resolution.

Dimension Mapping. CUDA threads are executed in simultaneous warps of 32

threads each, grouped first by their x-index then by their y-index. Since coalesced memory

accesses are desirable for performance, the bound motor density evolution kernel was mod-

ified so that a thread’s x-index maps to the s-index and the y-index maps to the θ-index.

With this mapping threads executing in a warp will accessMb storage in a coalesced fashion

since sequential s-indices are contiguous as the innermost array indices. Accelerations of

1.16x to 1.57x were observed.

Reordering Storage. The Superbee flux limiter operates in the arclength s dimen-

sion. Since threads in a warp operate on subsequent arclength indices, and the flux limiter

has a neighborhood access pattern of (s−2, s−1, s, s+1, s+2), this gives coalesced memory

accesses and pulls adjacent arclength data into the cache for subsequent iterations. The

layout of memory inMb was modified to make s the innermost variable instead of θ in the

storage of Mb(r0,x, θ, s), where x, θ, s are represented as sequential flat four-dimensional

arrays within a flat two-dimensional array over r0. This prevents strides between subsequent
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s accesses. Another benefit to making s the innermost variable is that the value of Ψ(x, θ)

can be read after the θ loop instead of in the innermost loop. Reordering the loops in this

fashion in the access-heavy motor force code resulted in a 1.54x acceleration. For the bound

motor density update, accelerations of 1.1x were typical at the higher inner resolution and

negligible at the lower inner resolution.

Unrolling Reductions. For the reduction step, [23] recommends manually unrolling

a reduction when the number of remaining threads is less than the warp size (32 for our

Tesla M2075), and performing part of a large reduction independently within each thread to

reduce synchronization. We already follow the latter suggestion as each thread accumulates

its contribution toMb,coarse before storing this running sum in a shared memory array sized

to the number of threads for the reduction step. We did not find meaningful performance

improvements for the manual reduction.

Block Shaping. To updateMb(r0,x, θ, s) we assign one block of threads to each r0

position and map those threads to the x, θ, s variables. For each x, a two-dimensional block

of threads is launched, with the threads’ x and y indices corresponding to the innermost

s and θ indices. Experimentation has shown 128 threads to be the optimal number in

our implementation. The “block shaping” row of the optimizations table compares against

running 256 threads in a 16x16 configuration. How these 128 threads are configured is

important: x = 8, y = 16 runs faster than x = 16, y = 8. Both caching effects and

memory coalescing play a role, and from our experience it is worthwhile to experiment with

various configurations. Accelerations of 1.15x were typical at the higher inner resolution

and accelerations of 1.65x were typical at the lower inner resolution.
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Algorithm 3 Bound & free motor density update GPU kernel

Precondition: Ψ(t+ dt) and dt are loaded into GPU memory.
Set t∗end = t+ dt
for r0 ∈ grid do

while t∗ < t∗end do
Compute adaptive dt∗

for x ∈ Brc(r0) do
for θ ∈ Brc(r0) do

for s ∈ Brc(r0) do

Compute Mb(r0,x, θ, s, t
∗ + dt∗

2 ) (Eq. (4.4))
Compute Mb(r0,x, θ, s, t

∗ + dt∗) (Eq. (4.4))

end

end

end
Compute Mb,coarse(r0, t

∗ + dt∗) (Reduction) (Eq. (4.5))
if Mtotal(r0) <Mb,coarse(r0, t

∗ + dt∗) then
for x, θ, s ∈ Brc(r0) do

Scale Mb(r0,x, θ, s, t
∗ + dt∗)

Set Mb,coarse(r0, t
∗ + dt∗) =Mtotal(r0)

end

end
Compute Mf (r0, t

∗ + dt∗) (Eq. (4.6))

end

end

To analyze performance of theMb and F GPU kernels, the Nvidia Visual Profiler

v8.0 [9] was used. According to its output, arithmetic operations constitute the largest

share of operations. No functional unit (load/store, arithmetic, control flow) is a bottleneck

because of the balance of operations. We run the maximum possible number of simultaneous

blocks per SM (8), but cannot run more threads per block without exhausting the available

registersper SM. The result is a GPU occupancy of 66%, for which the profiler’s heuristics

report that increasing occupancy is unlikely to improve execution time. Our experience

confirms this, as attempts to launch more threads per block to increase occupancy means

decreasing registers per thread to keep the simultaneous blocks per SM maximized at 8,
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resulting in longer execution times. GPU occupancy is one of many factors that contributes

to kernel performance, and it is possible to obtain high throughput at low occupancy levels

[68].

4.3.3 Scaling to Multiple GPUs

As the spatial resolution of the r0 grid increases, two factors limit the performance

of a single GPU. The first is that the number of blocks (each updating an independent r0)

that can run concurrently on the GPU is limited by the number of SMs on the card, as

we are running the maximum 8 simultaneous blocks per SM. Using two equivalent cards

simultaneously doubles the throughput at which we can update the motor densities and

calculate the motor force. The second factor is that once GPU memory is exhausted by the

bound motor density (and scratch space for the intermediate values needed for numerical

routines), additional large memory transfers to and from main memory become necessary

every time step.

We expand our implementation to multiple GPUs using simultaneous CUDA

streams and to multiple machines using MPI. After Mb is initialized at the beginning

of the simulation, subsections ofMb are transferred to the memory of each GPU. The outer

two-dimensional array ofMb (over r0) is distributed among available GPUs by rows, which

are contiguous in memory. Before invocation of the Mb and F kernels on the GPUs, the

newly updated Ψ is broadcast to each with an MPI BCAST from process rank 0. After

the bound motor density update and motor force kernels complete, The Mf and Mb,coarse

values computed by each GPU are collected by process rank 0 using an MPI GATHER

operation. The motor force output F from each GPU contains overlapping force vectors
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that need to be summed together, so an MPI REDUCE operation is used to combine them

in process rank 0. From here on the fluid velocity update proceeds as normal. The process

is summarized in Figure 4.4. OpenMPI 2.1 was used for this work.

Figure 4.4: MPI control flow for multiple GPUs across multiple nodes. We acheive nearly
ideal scaling of our GPU computation across multiple GPUs, indicating that the MPI
overhead is negligible.

4.4 Results

We present results at different resolutions, scaling both the outer resolution of the

x, y variables and the inner resolution of the θ, s variables. Increasing the outer resolution

(x, y) affects the two-dimensional grid over which Ψ,Mf ,Mb, and u are defined, and thus

increases the workload across all steps of the simulation. Doubling the resolution of x and
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y increases by a factor of four the total workload of the Mb and F kernels. Increasing the

inner resolution (θ, s) affects Ψ and Mb through their dependence on θ and Mb through

its dependence on s. Doubling the resolution of θ and s increases by a factor of four the

number of update tasks per thread in the motor density and force kernels, and adds two

more iterations to the reduction step in the motor density kernel.

Simulations were run on one or more servers configured with 2 Tesla M2075 GPUs,

64 GB RAM, and dual AMD Opteron 6272 processors. Speedup factors for the algorith-

mic modifications and GPU optimizations vs. the original implementation in a single-node,

single-GPU configuration are shown in Table 4.2. An average performance increase of

between 5.75x and 9.98x per full simulation step is observed versus the original imple-

mentation. The bulk of the improvement comes in the bound motor update and motor

force computations. Additionally, the dt computation is accelerated, the dt∗ computation

is moved onto the GPU, and the Ψ solve noticeably benefits from CPU acceleration.

We individually disable each GPU optimization and compare the running time

for a single invocation of the Mb update kernel in Table 4.5. We see the largest perfor-

mance improvement from switching from double precision to single precision, which affects

both floating point arithmetic performance as well as cache and memory demand. The

2562 × 322 resolution could not be tested with double precision on a single GPU as Mb

exceeded GPU memory. The launch bounds and storage reordering optimizations see their

biggest impact when the inner variable resolution is increased. When this optimization was

originally applied it showed a small improvement, but when it alone is removed from the

final implementation, no discernable impact is observed.
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Figure 4.6 shows that scaling the Mb and F kernels to multiple GPUs and across

nodes is effective, with nearly ideal linear acceleration at the higher resolutions where ac-

celeration is most needed. This demonstrates that the overhead to merge output between

GPUs on the same machine plus the MPI overhead among multiple machines is small com-

pared to execution time. As the inter-node communication consists of MPI broadcast,

reduction, and gather operations, it is expected that scaling to 8 or more GPUs would

likewise involve minimal overhead cost.

Table 4.3 summarizes overall performance of our optimized implementation using

one, two, and four GPUs vs. the original single-GPU only implementation. We obtain

higher accelerations for higher inner resolution sizes, which is desirable as we find the inner

resolution of 162 too coarse at outer resolutions over 642. Our maximum speedup factor

over the original implementation was over 27x, obtained at the highest resolution. The

simulation was previously limited to the 1282 × 322 configuration given the running times

involved. Reducing a day’s worth of computation to less than one hour greatly facilitates

the iterative exploration of the model’s parameter space. Sample simulation results at the

previously infeasible 2562 × 322 resolution are shown in Figure 4.7.

4.5 Conclusions

Mapping the different scales of a simulation to different computational hardware,

minimizing data transfers, and removing synchronization points like a global time step

calculation allows us to explore the parameter space of our high-dimensional micro-macro
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Figure 4.5: Multi-GPU scaling of the bound motor density and motor force computations
is nearly ideal. The overhead of inter-node communication via MPI arising in the 4 GPU
configuration does not have an appreciable effect.

Figure 4.6: Sample simulation output at equally spaced timing intervals of the evolution
of a lattice of overlapping filament rings from an overhead view of the assay, with periodic
boundary conditions. Top row: filament density Ψ in blue with predominant orientation
vector plotted every 8th cell in red. Bottom row: coarse bound motor density plotted in
red with fluid velocity plotted as a black arrow every 8th cell.
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simulation up to 540 times faster than a single-threaded implementation when using four

GPUs simultaneously. This holistic approach significantly outperforms the commonly em-

ployed approach of accelerating individual functions in isolation [24]. Multi-node, multi-

GPU overhead is minimal and the approach is expected to scale well to a greater number of

GPU accelerators. This approach capitalizes on the increasing prevalence of GPUs in high

performance computing.

As the number of GPUs used increases the semispectral fluid solve and filament

evolution update steps will become the next bottlenecks. Further adjustment of simulation

flow to offload more of the fluid solve computations onto the otherwise idle CPU cores of

non-root processes may then become cost effective.

It is our hope that our algorithmic design and breakdown of the various CPU

and GPU optimizations will provide a useful reference for prioritizing optimizations in

HPC software development and in porting of existing applications, where there is often an

expectation that porting time should be recovered by faster runtimes. While the specific

improvement will vary for different programs, quantifying the improvements corresponding

to various optimizations contributes to the growing information in the literature regarding

their efficacy [51].

98



Filament equations

∂tΨ +∇2 · (ẋ2Ψ) + ∂θ(θ̇Ψ) = 0 (4.1)

ẋ2 = −Vspp2 + u2 + U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψ (4.2)

θ̇ = ∇2u2 + U0
rD2,z0 : p⊥2 p2 −Dr∂θ ln Ψ (4.3)

Motor equations

∂tMb + ∂sMb = −koffMb + konMf1Drc (4.4)

Mb,coarse =

∫∫∫
MbΨ ds dx2 dθ (4.5)

Mf =M−Mb,coarse (4.6)

Fluid equations

−∇2
2u2 −

1

ε2
∂zzu2 + P0∇2q = σf∇2 · σf − σt∇2 · σt + F2 (4.7)

−∇2
2w −

1

ε2
∂zzw + P0∂zq = 0 (4.8)

∇2u2 + ∂zw = 0 (4.9)

Motor force

F2 = F

∫∫∫∫
p2δ(y2 +

l

L
sp2 − x2)ΨMb ds dr0 dy2 dθ (4.10)

Table 4.1: Summary of model equations for the filament and motor protein densities, the
macroscopic fluid equations, and the motor force that couples them.
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res. 642x162 642x322 1282x162 1282x322 2562x162 2562x322

total 332(7.16) 854(8.76) 2054(6.37) 5026(9.55) 8980(7.36) 21408(9.25)

Ψ 24(6.17) 49(5.37) 88(6.44) 171(7.88) 389(7.28) 722(9.19)

Mb&F 193(6.26) 682(6.42) 1492(6.03) 4366(7.51) 7050(6.65) 19125(4.72)

fluid 107(2.50) 112(2.21) 447(1.63) 456(1.96) 1437(2.00) 1438(2.42)

Table 4.2: Effect of single-node, single-GPU optimizations at various inner and outer reso-
lutions. Average time per full outer time step (milliseconds) and speedup factors (bold) for
original simulation vs. optimized simulation on a single machine with one GPU. Simulations
with varied resolutions run to a fixed end time. The expensive dt∗ calculation in the original
simulation is now negligible, contributing to the increased overall speedup reported in the
total time step row.
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Table 4.3: GPU optimizations. Time (milliseconds) and slowdown factors (bold) for theMb

evolution kernel at different resolutions with various optimizations individually disabled.
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resolution 642x162 642x322 1282x162 1282x322 2562x162 2562x322

1 node,1 GPU 7.16 8.76 6.37 9.55 7.36 9.25

1 node, 2 GPU 9.70 14.04 9.73 16.50 11.98 16.60

2 node, 4 GPU 11.98 20.23 13.59 26.69 17.69 27.41

Table 4.4: Overall speedup resulting from our optimized, multi-GPU approach, as compared
with original single-GPU simulation, as the number of nodes & GPUs is increased.
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Chapter 5

Conclusions

Before the framework designed herein can be used to make quantitative predic-

tions, a validation effort needs to be undertaken with assistance from experimentalists.

Tasks will include determining appropriate translational and rotational steric interaction po-

tentials, measuring the viscous fluid flow, testing the hydrodynamics of individual filaments,

and ensuring that motor-mediated and filament-filament interactions are well-resolved. No

studies of the three-dimensional flow within gliding motility assays are known as of the time

of writing.

Taking advantage of both sparsity and parallelism allows the application of micro-

macro methods to this high-dimensional system. Extension to generic mixtures of filaments

and freely flowing motor complexes capable of binding to multiple filaments would neces-

sitate a further increase in dimensionality. In such scenarios, each multiply-bound motor

complex would need to track the center-of-mass positions, orientations, and arclength bind-

ing locations along multiple filaments. The relatively small size of the motor complexes
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compared to the filaments creates the same kinds of sparsity employed for dimensional

reduction in this work; it is unclear whether this would be sufficient to make a similar

micro-macro formulation viable. Monte Carlo simulations have been employed in very

high-dimensional micro-macro models, and might be more appropriate.

Further computational improvements may be realized by porting the filament up-

date and fluid solve to the GPU, as both steps comprise multiple parallel tasks. The filament

solve and related advection terms are already computed via CPU parallelism and may ex-

hibit further acceleration on the GPU. The upwinding scheme used in the advection matrix

involves heavy conditional branching, and may thus exhibit poor GPU performance com-

pared to a weighting-based approach. The fluid solve steps of FFT, semispectral system

solves, and inverse FFT likewise already utilize CPU parallelism. The current approach

of storing each frequency pair’s lower and upper triangular matrix factorizations in dense

format is very expensive in terms of memory. As the original semispectral matrices are

sparse, a GPU-accelerated conjugate gradient method could calculate the sparse matrix-

vector products directly and thus obviate the need for any matrix storage.

While such changes might further accelerate the filament and fluid solve steps on

the root node, further work needs to be done to develop scalable multi-node implemen-

tations. Distributed memory multidimensional FFT and inverse FFT operations with the

FFTW library require each node to send a unique message to all other nodes [18]. The

semispectral solve might thus need to be replaced with a more scalable alternative. For the

filament solve, distributed conservative schemes need to be investigated.

It is hoped that the methods described herein provide useful guidance for any who
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find themselves facing similar computational bottlenecks. The successful acceleration and

scaling results obtained in this work demonstrate the suitability of micro-macro methods

for current state-of-the-art heterogenous high-performance computing paradigms.
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