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Modified mean curvature flow of star-shaped hypersurfaces in
hyperbolic space

Longzhi Lin Ling Xiao

Abstract

We define a new modified mean curvature flow (MMCF) in hyperbolic space H" "1, which
interestingly turns out to be the natural negative L?-gradient flow of the energy functional intro-
duced by De Silva and Spruck in [DS09]. We show the existence, uniqueness and convergence
of the MMCF of complete embedded star-shaped hypersurfaces with prescribed asymptotic
boundary at infinity. The proof of our main theorems follows closely Guan and Spruck’s work
[GS00], and may be thought of as a parabolic analogue.

Keywords. Modified mean curvature flow, Hyperbolic space, Star-shaped hypersurfaces

1 Introduction

Let F(z,t) : ST x [0,00) — H""! be a one parameter family of complete embedded star-shaped
hypersurfaces which are radial graphs in H" ™! over "t , the upper hemisphere of the unit sphere
S™ in R"*!, where the half-space model of H"*! is used. We say the images ©; = F(z,t) move
by modified mean curvature flow (MMCEF) if

%F(z,t)L =(H—-0o)vg, (z,t) €S} x[0,00),

F(Z70):Eo, ZES’I’L7

(1.1

where H denotes the hyperbolic mean curvature of 3;, 0 € (—1,1) is a constant, and vy denotes
the outward unit normal of 3; with respect to the hyperbolic metric. By the half-space model of
H"*!, we mean

H" = {(2, 2py1) € R"™ 201 > 0}
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equipped with the hyperbolic metric

1

ds? = Tds%,

xn+1
where ds?%, denotes the standard Euclidean metric on R" 1. One identifies the hyperplane {x,, 41 =
0} = R" x {0} € R"*! as the infinity of H"*!, denoted by O, H" 1.

In this paper we consider the questions of the existence, uniqueness and convergence of the
MMCEF of complete embedded star-shaped hypersurfaces (as radial graphs) in the hyperbolic space
H"*! with prescribed asymptotic boundary at infinity, under some natural geometric conditions on
the initial hypersurfaces. Namely, we consider the following Dirichlet problem of the MMCEF:

gtl?(z,t)L —(H=0)vy, (z.t) €S x[0,00),

F(Za O) = EOa Z < S’r_:_, (12)
F(z,t) =T(z), (z,t) € IS x [0,00),

where o € (—1,1) and I = 9% is the boundary of a star-shaped C'*! domain in {z,,1 = 0} (the
case of I being only continuous will also be discussed). As an application, we shall also show that
we can use the MMCEF to deform a complete regular hypersurface to one with constant hyperbolic
mean curvature ¢ in hyperbolic space H" .

Mean curvature flow (MCF) was first studied by Brakke [B78] in the context of geometric
measure theory. Later, smooth compact surfaces evolved by MCF in Euclidean space were inves-
tigated by Huisken in [H84] and [H90], and on arbitrary ambient manifolds in [H86]. The study
of the evolution of complete graphs by MCF in R"*! was also studied in [EH89], the result being
improved in [EH91]. See also [H89] for the nonparametric MCF with Dirichlet boundary condi-
tion. In [UO3], Unterberger considered the MCF in hyperbolic space, namely, the case of ¢ = 0
in equation (1.1). And he obtained that if the initial surface 3y has bounded hyperbolic height
over S} then under the MCF, X; converges in ' to S"} which has constant mean curvature 0.
We shall remark that a similar MMCF (which is called the volume preserving MCF) was studied
by Huisken in [H87] for closed, uniformly convex hypersurface in R"*!, where the constant ¢ in
(1.1) was replaced by the average of the mean curvature of ¥, see also [CMO7] for this volume
preserving MCF in the hyperbolic space. With the average of the mean curvature of 3, in the place
of the constant o, a priori one cannot predict what the flow will converge to (if it converges), while
we see directly that if the MMCEF (1.1) converges then it converges to a hypersurface with constant
mean curvature o. Namely, we can actually prescribe the constant mean curvature o € (—1, 1) for
the limiting hypersurface through the flow. This is the important feature and novelty of our version
of MMCEF defined in this work, which is also special for the hyperbolic setting. Finally, we shall
remark that it would be very interesting to see what the corresponding MMCEF is in the Euclidean
setting.

The problem of finding smooth complete hypersurfaces of constant mean curvature in hyper-
bolic space with prescribed asymptotic boundary at infinity (also known as Asymptotic Plateau
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Problem) has also been studied over the years, see [A82], [HL87], [T96] and [AR97] for the ap-
proach using geometry measure theory. The first elliptic PDE approach to this problem was due to
Lin [Lin89], and later on it was used by Nelli and Spruck [NS96] and Guan and Spruck [GSO00].
In particular, in [GS00] Guan and Spruck proved the existence and uniqueness of smooth com-
plete hypersurfaces of constant mean curvature o € (—1, 1) in hyperbolic space with prescribed
asymptotic boundary at infinity. In [DS09], among other, De Silva and Spruck recovered this result
using the method of calculus of variations and representation techniques. We remark that our paper
can be thought of as a flow version of their variational method, see Section 2. For the existence
of hypersurfaces of constant (general) curvature in hyperbolic space H"*! which have prescribed
asymptotic boundary at infinity, see [GSZ09] and [GS08] .

Due to the degeneracy of the MMCEF (1.2) for radial graphs at infinity (see equation (2.10)
below), we will begin with considering the approximate problem. For fixed ¢ > 0 sufficiently
small, let I'. be the vertical translation of IT" to the plane {z,+1 = €} and let 2 be the subdomain
of St such that I, is the radial graph over 0f). (see Figure 1). We consider the following Dirichlet
problem of the approximate modified mean curvature flow (AMMCEF):

O F(at) = (H—o)vi, (2.1) €0 x[0,00),
F(z,0) = X, zeQ,, (1.3)
F(s,1) = T (2), (2.t) € 09, x [0,00).

where X§ = F(Q,,0), 03§ =T'cando € (—1,1).

{eni1 =0}

Figure 1: Approximate initial hypersurface

For any e > 0 sufficiently small and any point P € 0¥ = I (denoting £ = £y and 'y = I),
the uniform star-shapedness and regularity of I'c imply there exist balls Bg, (a, P) and Bg, (b, P)
with radii R; > 0 and Ry > 0 and centered at a = (a’, —o0R1) and b = (b, 0 R2), respectively (see
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also “equidistant spheres” in Section 3.2 below), such that {z,,11 = €} N Bpg, (a, P) is internally
tangent to I'c at P and {x,,+1 = €} N Bg,(b, P) is externally tangent to I'. at P. Note that in a
small neighborhood B;(P) around P for some 6 > 0, both 0Bg, (a, P)NBs(P) and 0Bg, (b, P)N
Bj(P) can be locally represented as radial graphs. To state our main results appropriately, we say
that the approximate initial hypersurfaces >§5’s satisfy the uniform interior (resp. exterior) local ball
condition if for all € > O sufficiently small and all P € ', £§ N B5(P) N By, (a, P) = {P} (resp.
¥§ N Bs(P) N Bg, (b, P) = {P}, see Figure 2), and the local radial graph 0Bp, (a, P) N Bs(P)
(resp. 0Bg, (b, P) N Bs(P)) has a uniform Lipschitz bound depending only on the star-shapedness
of I. If ¥§’s satisfy both of the uniform interior and exterior local ball conditions, then we say >§’s
satisfy the uniform local ball condition?.

BRQ(b7 P)

Figure 2: Uniform interior and exterior local ball conditions

The main results in this paper are the following.

Main Theorem 1.1. Let I' be the boundary of a star-shaped C**' domain in {x, .1 = 0} =
O H" Y and T be its vertical lift to {x,11 = €} for € > 0 sufficiently small. Let Yo = lim,_,o 3§
be the limiting hypersurface of radial graphs ¥ € C Q) with 0L = T'. Suppose 25’s have
a uniform Lipschitz bound and satisfy the uniform local ball condition. Then

(i) there exists a unique solution F(z,t) € C*°(S% x (0,00)) N C’Hl’%‘%(@ x (0,00)) N
CO(ST x [0,00)) to the MMCF (1.2);

(ii) there exist t; ,/* oo such that ¥, = F(S'},t;) converges to a unique stationary smooth
complete hypersurface Lo, € C*(SL) N CYY(S™) (as a radial graph over S') which has
constant hyperbolic mean curvature o and 0%, = ' asymptotically. Also, each Y is a
complete radial graph over S'} ;

3Such initial hypersurfaces naturally exist and this can be seen explicitly since the balls Br, (a, P) and Br, (b, P)
can be constructed with uniform radii (see equation (8.5)) and the tangent plane to them at PP can be computed explicitly
as well (see equation (6.2)).
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(iii) if additionally Y5 has mean curvature H® > o for all € > 0 sufficiently small, then %
converges uniformly to Yo for all t.

In fact, if 3§ has hyperbolic mean curvature ¢ > o for all ¢ > 0 sufficiently small, then the
uniform interior local ball condition on X§’s can be relaxed.

Main Theorem 1.2. Let I' and I'c be as in Theorem 1.1 and Yo = lim._,o X be the limiting
hypersurface of radial graphs %5 € C?(Q.) N CYY(Q,) with 0%§ = T'.. Suppose 3§ has mean
curvature H® > o for all € > 0 sufficiently small and 35’s have a uniform Lipschitz bound and
satisfy the uniform exterior local ball condition. Then there exists a unique solution F(z,t) €
C>(Sh x (0,00)) N CO‘H’OJF%(@ x (0,00)) N CO(ST x [0,00)) to the MMCF (1.2). Moreover,
Yy = F (S, t) converges uniformly for all t to a unique stationary smooth complete hypersurface
Yoo € C(S™) N CY(ST) (as a radial graph over S™) which has constant hyperbolic mean
curvature o and 0¥, = I' asymptotically. Also, each ¥y is a complete radial graph over S'}.

Remark 1.3. We expect that the same results would hold for general star-shaped initial hypersur-
faces.

In Section 8 we will give an example of “good” initial hypersurfaces of Theorem 1.2. We point
out that many of the techniques and estimates used in the proofs of Theorems 1.1 and 1.2 come
from the work of Guan and Spruck[GS00], and our results could be thought of as the parabolic
analogue of the results in [GS00]. Given this fact, we shall also remark that a proof via flow
method to the following existence theorem due to Guan and Spruck can be obtained.

Theorem 1.4 ([GS00]). Suppose T is the boundary of a star-shaped C**1 domain in {z,,,1 = 0}
and let |o| < 1. Then there exists a unique smooth complete hypersurface Y. of constant hyperbolic
mean curvature o in H" " with asymptotic boundary T. Moreover, ¥ may be represented as a
radial graph over S". of a function in C*(S) N C*T1(S™).

With the aid of an a priori interior gradient estimate (see Section 9) and via an approximation
argument, the regularity of the boundary data I" in Theorem 1.1 and Theorem 1.2 could be further
relaxed to be only continuous and a similar result still holds (see Theorem 9.2 below). And again,
we note that a parabolic version of proof to the following result due to Guan and Spruck [GS00]
and De Silva and Spruck [DS09] can be obtained.

Theorem 1.5 ([GS00, DS09]). Suppose T is the boundary of a continuous star-shaped domain
in {xn+1 = 0} and let |o| < 1. Then there exists a unique smooth complete hypersurface > of
constant hyperbolic mean curvature o in H" ' with asymptotic boundary T'. Moreover, . may be
represented as a radial graph over S’} of a function in C*°(S") N o (Sm).

The paper is organized as follows. In Section 2 we set up the problems, namely, the Dirichlet
problems for the MMCF and AMMCEF for radial graphs in hyperbolic space. In Section 3 we state
the short-time existence result for the AMMCF and discuss the equidistant spheres in H" ! which
will serve as good barriers in many situations. We will prove Theorem 1.1 in sections 4—7. In
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Section 4 we prove a global gradient estimate for the solution to the AMMCEF and therefore the
long-time existence of the AMMCEF. In Section 5 we prove the uniform gradient estimate (inde-
pendent of ¢€) for the solutions to the AMMCEF’s, which leads to the long-time existence of the
MMCE. This estimate is the main technical result of the paper. In Section 6 we show the boundary
regularity of the MMCEF and the uniform convergence of the MMCEF in the case of H¢ > ¢ initially
in Section 7 . In Section 8 we will prove Theorem 1.2 and give an example of “good” initial hyper-
surfaces in Theorem 1.2. In Section 9 we prove a version of a priori interior gradient estimate and
therefore the existence result of the MMCEF with only continuous boundary data.

2 MMCF and AMMCEF for radial graphs in hyperbolic space

Let (2 C S7, and suppose that X is a radial graph over {2 with position vector X in R™ 1. Then we

can write
X =¢Pz, zeQ,

for a function v defined over ). We call such function v the radial height of 3. One observes that

{$n+1 = 0} = 630Hn+1

Figure 3: ¥ as a radial graph

> remains a radial graph as long as
X vg >0, 2.1)

where v is the Euclidean outward unit normal vector of X (see Figure 3).

2.1 Gradient flow

As in [DS09], one can define the energy functional Z(X) associated to X :

I(¥) = Ig(v) = Aq(v) +noVq(v)

= / 1+ |Vu]Py "dz + na/ v(z)y~ ") dz (2.2)
Q Q
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where y = z,4+1 and V denotes the covariant derivative on the standard unit sphere. Note that
in this energy functional Z(Y), the term Ag corresponds to the area of X (under the hyperbolic
metric) and the term Vq, corresponds to the radial volume of the cone region between > and the
origin (up to a constant), see [DS09] for more details .

Then for a smooth solution ¥; = F(z,t) to the MMCEF (1.1), which can be represented as a
complete radial graph over {2 = S, namely,

F(z,t) = X(z,t) = ¢"®Vz, (z,t) € ST x (0,00),

we have

d
—I(%) = —n /(H—0)2 14 |Vo]2y "dz
at 5

= —n/ (OF [0t , (H — o)vpy)y dA = —n/ (H—0)%dA <0, (2.3)
¢ P>

where in the first equality we used integration by parts, equation (2.10) (see below) and the fact
that (see equation (1.2) of [DS09])

div, (M’) = nHy= ™D i Q,

V14| Vol?

and the second equality is just the first variation formula for 7 .
From this point of view, one sees that the MMCEF is the natural negative L?-gradient flow of
the energy functional Z(X) . We have:

Lemma 2.1. Let F(z,t) = e’@bz be a smooth radial graph solution to the AMMCEF (1.3) in
Q x [0, T]. Then for all t € [0,T) we have

t
I(%6) + n/ / (H — 0)*dAdt = I(X5). (2.4)
0 JQ

Remark 2.2. We point out that equation (2.3) is a natural analog of the well-known formula for
the classic MCF:

iArea(Et) = — | H*A<0.
dt 2,

2.2 The hyperbolic mean curvature

We will begin with fixing some notations, and collecting some relevant facts about the hyperbolic
space H" !, which can be easily found in [GS00]. Where necessary, expressions in the Euclidean
and hyperbolic spaces will be denoted by the subscript or superscript £ and H, respectively. Let
V denote the covariant derivative on the standard unit sphere S in R"*! and

y=e-z forzeS"cC R,
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where, throughout this paper, e is the unit vector in the positive x,,,1 direction in R"*!, and -’
denotes the Euclidean inner product in R"*!. Let 7y, ..., 7, be a local frame of smooth vector
fields on the upper hemisphere S”. We denote by 7;; = 7; - 7; the standard metric of S’} and A
its inverse. For a function v on S}, we denote v; = V;v = Vv, v;; = V,;V,v, etc.

Suppose that locally 3 is a radial graph over {2 C S'!. Then the Euclidean outward unit normal
vector and mean curvature of 3. are respectively

z— Vv
Vg =
w
and .
Hy = @0i—n
ne'w
where
ik
. . VU5
alf =1 = Y < < and w = (14 [Vol2)Y2.
w
Note that
eU
Xovp =& (2.5)
w

and therefore as long as w is bounded from above X remains a radial graph by (2.1).
We also have the hyperbolic outward unit normal vector

Vg = ulVg,

where
u=e-X=e-e'z=ye’

is called the height function. Moreover, using the relation between the hyperbolic and Euclidean

principle curvatures
H

K

E .
;, =e-vgp +uk;, i1=1,..,n,

we have (see equation (2.1) of [GS00], cf. equation (1.8) of [GSO8])
H=e vg +uHg, (2.6)
which gives the hyperbolic mean curvature of X :

—e- Vv a v, e - Vv
H=ye' Hg+ 2 - :ynw”— . 2.7)

and therefore
a’vij = —(Hw+e-Vv). (2.8)
Yy
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2.3 Degenerate parabolic equation

The first equation of the MMCEF (1.2) implies

0 0, ., N
<atF,VH>H = <8t(6 z),VH>H = ww ol gl H—-o0. (2.9)

Therefore by equation (2.7) we have

i, .
% =yw(H —0) = y2w —ye- Vv —oyw. (2.10)

Suppose T is the radial graph of a function e? over 0S,ie., I can be represented by
X =@z, ze oS’ .

Then one observes that the Dirichlet problem for the MMCEF (1.2) is equivalent to the following
(degenerate parabolic) Dirichlet problem (i.e., the MMCEF for radial graphs):

Wy, .
avézt’ t = y2a Yij _ ye-Vv—oyw, (z,t) €S} x(0,00),
o(2,0) = vo(z), 2 €S, 1D
v(z,t) = ¢(z), (z,t) € OST} x [0,00),

where we represent ¥ as the radial graph of the function e*° over S’} and vy ‘ o8 = Q.

2.4 Approximate problem

Due to the degeneracy of equation (2.11) at infinity (i.e., y = 0), we consider the corresponding
approximate problem for a fixed ¢ > 0 sufficiently small. Namely, equivalently to (1.3), we solve
the following (non-degenerate parabolic) Dirichlet problem (i.e., the AMMCEF for radial graphs):

GU(Z,t) _ y2 aijvij

—ye-Vv—oyw, (z,t)€ Q x(0,00),

ot
v(2,0) = v(2), ze 9., @12)
v(z,t) = ¢°(2), (z,t) € 0Q x [0,00),

where we represent X as the radial graph of the function €% over Q. and v§ ‘ a0, = ¢ and ¢ is

a function defined on 9€2. C S} such that I'; can be represented as a radial graph of e® over 09,
ie.,

X =@z 7z€09.. (2.13)

We denote the regular solution to (2.12) by v°.
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3 The short-time existence and equidistant spheres

3.1 Short-time existence

In the rest of the paper, we will focus on the case of o € [0, 1) and the case of o € (—1,0) can be
dealt with in the same way after using the hyperbolic reflection over S} . The standard parabolic
PDE theory with Schauder estimates guarantees the short-time existence of a regular solution (up
to the parabolic boundary) to the AMMCEF (2.12) with a C'* initial hypersurface and compatible
boundary data (i.e., H = o on 9%f). For a C* initial hypersurface with incompatible boundary
data, a solution exists at least for short time and becomes regular immediately after ¢ = 0 (cf.
[Ha75]) . This is the statement of the next lemma.

Lemma 3.1. There exists T > 0 such that the AMMCF (2.12) with initial data v§ € C*°(Q¢) has
a solution v € C®(Q, x [0,T*)) except on the corner 9 x {t = 0}.

For less regular (e.g. C'*!) initial and boundary data, the short-time existence lemma will
remain true (see e.g. [L96, theorem 8.2] and [LSU68, theorem 4.2, P.559]) .

Lemma 3.2. There exists T} > 0 such that the AMMCF (2.12) with initial data v§ € C1(S)
has a solution v¢ € C*®(Q, x (0,T%)) N C°(Q x [0,T7)).

Moreover, as we shall see, the passage to the limit of {v°} as ¢ — 0 to get the long-time
existence of the MMCEF (2.11) will be based on a series of estimates uniform in e.

3.2 Equidistant spheres

In the following, let T¢ (possibly co) be the maximal time up to which the AMMCEF (1.3) for radial
graphs or equivalently the solution to (2.12) exists, and let V., = Up<;<7, 2§ denote the flow region
in H"*1, where ¥ = F(, t) is the hypersurface moving by the AMMCEF (1.3) at time .

Our estimates in the proof of the main theorems are all based on the following fact, which
was also extensively used in [GS00]. Let By = Bpr(a) be a ball of radius R centered at a =
(a',—oR) € R*""! where ' € R" and o € (—1,1). Then S; = 9B; N H"! has constant
hyperbolic mean curvature o with respect to its outward normal. Similarly, let By = Bpr(b) be a
ball of radius R centered at b = (¥, 0 R) € R"*!, then Sy = 0By N H""! has constant hyperbolic
mean curvature o with respect to its inward normal. These so called equidistant spheres will serve
as good barriers in many situations (see Lemma 3.4 below). Let D C {z,,+1 = 0} be the domain
enclosed by I" and D, C {x,+1 = €} be the domain enclosed by T'..

The following lemma is an immediate consequence of the fact mentioned above, see [GS00].

Lemma 3.3 ((GS00], lemma 3.1). Let By and By be balls in R" ! of radius R centered at a =
(a/,—0oR) and b = (V', 0 R), respectively. Suppose Y. has constant hyperbolic mean curvature o.
Then

(i) If@E C By, then ¥ CBl;
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Figure 4: Bounded by equidistant spheres

(i) If By N {%ns1 =€} C Do, then BiN S =0 ;
(iii) If By N D¢ = 0, then BoN'Y = §).

As a parabolic analogue of Guan and Spruck’s Lemma 3.3, we have the following a priori
bound for the flow.

Lemma 3.4. Let By and Bs be balls in R™t! of radius R centered at a = (a’,—0oR) and b =
(b, o R), respectively.

(i) If X35 C By, then V. C By (see Figure 4);
(ii) If By N{xpy1 =€} C Deand ByNX§ =0, then BNV, =0;

(iii) If ByN D, = ) and Bo N X§ = (), then Bo NV, = ).

Proof. The proof is virtually the same as the proof of Lemma 3.3 in [GS00] and we include it for
the convenience of the reader. This lemma follows from the maximum principle by performing
homothetic dilations (hyperbolic isometries) from (a’,0) and (¥, 0), respectively. For (i), we ex-
pand B; continuously until it contains X5; for (ii) and (iii) we shrink B; and B until they are
respectively inside and outside X§. We note that 3§ satisfies equation (2.10) as a radial graph and
its mean curvature is calculated with respect to its outward normal direction. Also Sy, .S have con-
stant mean curvature o with respect to the outward and inward normal respectively, and locally as
radial graphs they both satisfy equation (2.10) (statically) too. Then from the maximum principle
we see that 25 cannot touch B; or By when we reverse this process. L]
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4 Global gradient bounds and long time existence of the AMMCF

Before we begin our proof, we collect some important formulas that were first derived in [GS00].

From now on, we assume the local vector fields 71, ..., 73, to be orthonormal on S7} so that v;; = ;5
and thus a” = §;; — U;”Qj . The covariant derivatives of y are

wi=Viy=(e-zi=e-m @.1)
yij = ViVjy=e-V,Vz=e-V,1; = —yd;j.
Therefore
e-Vy:Z(e.Tiy:l_yz,
Vv-Vy=e-Vv and Vw-Vy=e -Vuw.

Note that we also have the identities

1y, — _J ny.ny. — i
a’v; = —=%, a’vv;,=1— — E a“=n—14 —.
w2’ J w2’ w2
Moreover,

Vi Vki VEUVkiq 1 .. 2 ..
Wy = —, Wi = —= 4 —aklvkwlj and (Vka”)vij = ——a”wivkj . 4.2)
w w w w

Straight forward calculations also show that

(e Vv); = (e Tpvg)i = € TKUk — YV = YkVki — YVi,
(e Vv)ij = e Tkugij — 2yvij — € TjU; = YkVkij — 2YVij — YV

and
Vo - V(e Vo) = v(e - g — yvi) = we - Vw — y(w? —1). 4.3)

We also have the formula for commuting the covariant derivatives
Vijk = Ukij + Vj0;k — V05 . 4.4)
Now we are ready to state our first main technical lemma.
Lemma 4.1. Letv € C33 (2 x (0,T)) be a function satisfying equation (2.10) for some T' > 0
and Q) C S'! . Then

2 2
(a_L>w < —oe-v) + LT 2y 2oy maxo1), @)
ot nw

where L is the linear elliptic operator

2 . 2 ..
L=, (a”Vij — —aw;V; — i(UVU + we) - V) .
n w wy
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Remark 4.2. The main part of the linear elliptic operator L was already used by Guan and Spruck
in [GS00].

Proof. (of Lemma 4.1) By equation (2.10) we have

0 1 Vou
Erihe EV@ V() = o V(yw(H — o))
= % (Vyw(H — o) + yVw(H — o) + ywVH)

y(H — o)

=e-Vu(H —0)+ Vv -Vw+yVu-VH

Differentiating both sides of the equation (2.8) with respect to 75 gives (using also the equation
4.2))

(Via)vij + a vy = a vy, — Ea”wivkj

zg(ka+Hwk + (e- Vo)) — %(Hw—l—e-Vv)yk.

Therefore
i n n 2 s
a" v :§(ka + Hwy + (e - Vo)) — ?(Hw +e-Vo)y, + 2° Twivg;
Vi 1
) +(n—1+ E)Uk (4.6)
and
avpvije — A wivgve; = EVU -(VHw+ HVw + V(e-Vv)) — " (Hw+e-Vv).

Note that we also have

ij(vk”kij + L )

a’wi; =a ” Ea Vki V15

1 . 1 ..
kl
= E(Uka” (vijk — vj0ir + vEdij)) + Ea”a Vgi Vg -

Now by the definition of the operator L, we have

(5-)-

:e.vU(H_U)_,_y(Hi_U)

Vv -Vw+yVv-VH

2
g 9
L (a”wij — —aww; — a (eVv + we) - Vw)
n w wy
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H—
:e'Vv(HU)er(wU)VU-quLva-VH

2

Y ne - Vo

- = iVv-(VHw—I—HVuH—V(e-VU))— > (Hw +e-Vv)
n |wy wy
2 ify 2002 — 1 1 2
A (w )(n_1+72) Y~ i My,
nw nw w nw
2y° 2y°
—5—a Tk + ia”waJ g(UVU + we) - Vw
~wln wn w
- V)2
:e-Vv(QH—U)—g(Vv-V(e-Vv)—we-Vw)—&-u
w
2 2
y 1 2 1 L1 y ki
Tl )~V = 0= D ) =t oy
Y 2 (e-Vv)? v 1
<e Vo(2H —0) — L(—y@? — 1))+ Y ¥ q o~
<e Vo — o)~ Lioyw? —1) + CYE L Vg
1 11 )
o2
=—o(e Vv)+<w— >—H2w
n w

Here we have used equations (4.3), (2.8) and (by Cauchy-Schwarz inequality)

1 .
aaluo; > E(a”vij)Q = %(Hw—l—e-Vv)Q.

0

( ETh L) < 2w. O
Foranye > 0 sufﬁciently small and at any point zg € 99, corresponding to Py = e?*(#0)z, ¢
T, let BS = th( —oRy) and B§ = Bf, (b', o0 R2) be the (Euclidean) balls with radii Ry > 0
and Ry > O, respectlvely, such that B{ and B are tangent at Py, and B{ N {x,41 = €} is
internally tangent to I'c at Py, and BS N {z,41 = €} is externally tangent to I'. at Py. Recall
that S§ = AB{ N H""! has constant (hyperbolic) mean curvature o with respect to its outward
normal while S§ = dBS N H""! has constant mean curvature o with respect to its inward normal.
Moreover, we can represent S§ and S§ near Py as local radial graphs X; = e¥iz,i = 1,2 for
z € Q¢ N B, (20) where ¢ depends only on the radii of B’s and the uniformly star-shapedness of

I". Then the uniform local ball condition implies

Hence we conclude that

©i(z) < v < @5(z), z€ QN Be(zo). 4.7)

From this point of view, one sees that S| and S5 serve as good local barriers of ¥ around P, and
moreover we have |Vv§|(Py) < C, where C'is independent of € and ) € I'c. Also note that S
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and S5 have constant hyperbolic mean curvature o (w.r.t. respective normals) and they are static
under the MMCEF (2.10) as local radial graphs. Therefore by the maximum principle, they also
serve as good local barriers of 3¢ around (P, t) for all ¢ € [0, T) and we have

V€| (Po,t) < C (4.8)
forall ¢t € [0,T,), where C' is independent of ¢ and Py by the uniform local ball condition.
Lemma 4.3. Locally ST is interior to V. and S5 is exterior to V.

Proof. This follows from the maximum principle . O

Let PQ(TF) = Q. x {0} U Qe x [0, TY) be the parabolic boundary of . x [0, 7). Then
Lemma 4.1, equation (4.8) and the Lipschitz bound on the initial radial graph 5 immediately yield
(see e.g. [L96, thoerem 9.5])

w(z,t) < 3¢ (th)g%f@)m(z,t) < C(e), (z,t)€Qex[0,T7). (4.9)

With this gradient estimate (and therefore the Holder gradient estimate, see e.g. [L96, theorem
12.10]), for any fixed ¢ > 0 sufficiently small, the AMMCEF with the approximate initial hypersur-
face satisfying the conditions in Theorem 1.1 exists uniquely by the parabolic comparison principle
and v¢ € C°(Q, x (0, 00)) N COFLO+2 (O x (0, 00)) N CO(Q x [0,00)) by Schauder estimates.
Therefore we have proved

Theorem 4.4. Let I', I'c and X’s be as in Theorem 1.1. Then there exists a unique solution
F(z,t) € C%(Qe x (0, 00)) N COHL0T3 (0 x (0,00)) N CO(Qh x [0,00)) fo the AMMCF (1.3).

5 Sharp gradient estimates

Since the earlier gradient estimate is too crude to prove the uniform convergence of the AMMCEF’s
to the MMCEF as € — 0, we need a uniform sharp gradient estimate. To do this, we will need the
next main technical result.

Theorem 5.1. Let v € C%3 (Q x (0,7)) be a function satisfying equation (2.10) for some T' > 0
and Q) C St . Then

<§t —L) (e"(w+o(y+e-Vu))) <0 inQ2x(0,T), (5.1)

where L is the linear elliptic operator from Lemma 4.1 .
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Proof. From the proof of Lemma 4.1 we know that

Q—L w<—a(e-Vv)+y—2 w—l — H?w (5.2)
ot = n w . )
We also have
0
2 _L)y=-L
((% )y (y)
y?
= Py~ ey~ (V0 we) W
y? i 2 n
=—"(-y) a"'——a wiy; = o (oVv +we) - Vy) (5.3)
——yj(—zajw — —(ce-Vo+w)+ —i)
= n zy] o w 4 w2
2 3 3
Yy Yy
_ ij ¥ v -2 4+ 2
a’wiy; + =(ce- Vv +w) n w?’

and

(;—L> (e-Vv)=e- Vi — L(e- Vv)

2
y 9
=e-V(yw(H —0)) — ‘% [a¥ (e - Vv);; — Ea”wi(e - Vv);

n
- w—y(aVu + we) - V(e - Vv)]
=e- (Vyw(H — o) +yVw(H — o) + ywVH)
y 2 .
- % [a" (yworij — 2yvij — yjvi) — Eaz]wi(ykvkj - yvj)
LA VIR V(e-Vuv)— De. V(e Vv)]
wy Yy

=1 -y Hw(H — o)+ (Vw - Vy)y(H — o) + ywe - VH

y2

n
n 2

n 2
[yk(g(ka + Hwy, + (e - Vo)) ” (Hw +e- Vv)y, + EQZ]wiUkj

Vi 1 vv‘v?/
_E—i_(n_l—i_ﬁ)vk)_ o —2n(Hw + e - Vv)

— —awiypvr; + —ya”wivj gy V(e-Vv)— —e-V(e-Vv)]
w w wy Yy

2 2
:QwH—aw(l—yQ)—Uwa-Vy+(1+yf+y—2)e-Vv
n o nw

23
—LVU-VUHL%VU-V(&VU),

nw3
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where we used equations (2.8), (4.1)-(4.3) and (4.6) . Moreover,

0 y? ij 2 n
( - L) v=yw(H —0o) — g(ajvij - Ea]wwj — w—y(UVv + we) - Vo)

ot
y? n 2 now  no
= yw(H —0)— —(-Hw— —5Vv-Vw - —— + —)
ny w vy (5.4)
9 2
:yw(H—a)—wa—l—%Vv-Vw%—yaw—y—U
nw w
9 2
R4
nw w

Next, we note that for a function 7 defined on 2 x (0,7,

e v y? ij 2y ij
e i L | (e’n) =n(ve — Lv) + (n: — Ln) — avugn — = —a v (5.5)

In particular,

2 2
e’ (8 — L) (e’w) <w <2yV1} -Vw — ya) + [—U(e -Vv) + yf(w - l) — H?w
nw w n w

ot 3
2 9 2
— Z—avvjw — ia”vlw]
2y 2 1
:%V’U-Vw—ya—a(e-Vv)—l—yf(w——) (5.6)
nw n w
2 1 2 2
—H2w—y—( ——)—%V?} Vw
n w nw

and
_ 0 2y2 Yyo 23/2 ..
e’ (E)t — L) (e’y) =y (WVU -Vw — o + ma”wiyj
3 3 3 202
+ 2( e-Vv+w)— L y—2 - y—a”vivj — ia”viyj
w n - nw n n
2 3 2 2 2 2 2
= LSVU T A iVy -Vw — L?’(Vv -Vw)(Vy - Vo)
nw w o nw nw
2y3 1 2y°
+U—(e-Vv)+ —i(l——)— yQV%Vy,
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and also

—v a v

e (875_L> (e’(e- Vv))
=( .V)(Lfv v _y£)+2 H
=(e-Vu)(- 5Vv-Vw -~ w

2 2
) Y
— 1—q¢2) = . . 1+ 4+ 2
ow(l —y*) —oyVw - Vy+ (e Vo)(1 + - + an)
9 3 2 1 2 2 Vv -V -V
~ gy v+ v V(e Vo) - Le Vo)1 - ) - Lw
nw w n w n w
2y yo 2
=—=(Vv-Vuw)(e Vv) — (e Vv) + 2wH — ocw(l — y~) — oyVw - Vy
nw w
2y° 2y yo 2y 2
+ (er)(1+ W) - wVv -Vw + (; - W)(wve fy(w — 1)),
Therefore, combining the above two equations gives
e’ 9 L|(e’(y+ (e-Vv)))
ot Y
2 2 3
yoo 2y oy, o o9 2y 1
=—-"—4 (== -—= -1 -—1-— 5.7
ot =y =)ty = —-(1-—5) (5.7
4+ 2wH — ow(l —y*) +e- Vv
=y+2wH —ow+e-Vu.
Finally, combining equations (5.6) and (5.7) implies
9 v v 2
a—L (e(w+o(y+e-Vv))) < —e’(H—-0)w < 0. O

The uniform local ball condition (see equation (4.8)) and Theorem 5.1, together with the max-
imum principle allow us to conclude :

Corollary 5.2. Let v¢ be the regular solution to the AMMCF (2.12) with initial hypersurface ¥
as in Theorem 1.1. Then we have

Vos(z,t)| < C, forall (z,t) € Qc x [0,00), (5.8)
where C'is a constant independent of €.

With the aid of Corollary 5.2 and the Arzela-Ascoli theorem, letting ¢ — 0, we can extract a
subsequence of the regular solutions {X;*} to the AMMCEF (1.3), converging uniformly to 3; €
C (S % (0,00)) N COTLOTE (ST x (0,00)) N CO(ST x [0, 00)) which solves the MMCF (1.2)
with initial hypersurface Xy = lim,, 0 X .
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6 The boundary regularity

In this section we show the boundary regularity of the MMCEF (1.2) in Theorem 1.1. The proof fol-
lows closely the idea in section 4.3 of [GS00], cf. [NS96]. Under the uniform local ball condition,
let Py € T and set € = 0 in equation (4.7). Let us denote S; = S and ¢; = ¢?, i = 1,2. Then for
some €5 > 0 we have

¢1(z) < v(z,t) < a(z), (z,t) € (S N Bey(20)) x [0,00). (6.1)

Note that the tangent plane 7" to Sy and Sy at F is a radial graph 7' = €"z in S, N {z - 1y > 0}
with N
-er
= log ———— 6.2

1—02’
normal vector to S and Sy at Py. We also have

where \ = \/L e; is the exterior unit normal to I" at Py and vy = oe + v/ 1 — o2ey is the unit

p1(z) <n(z) < @a(z), 2z €S} NDBe,(zo). (6.3)
We will need the following more precise estimate on v .
Lemma 6.1. v(z,t) = n(z) + O(|z — 2zo|?) in (S N Be,(20)) x [0, 00).

Proof. This follows immediately from equation (6.1) and the estimates |p; — n|(z) = O(|z —
z0|?),i = 1,2 from [GS00, lemma 4.5 ]. O

Now let p € S} and ¢ be the geodesic distance of p to OS"! with § < e3. Let ¢ € OS"}
be the closest point to p. Introduce normal coordinates x = (z1,...,xy) in T,S} with z(p) =
(0,...,0,0). We observe that equation (2.10) may be written as

o y*w Vv
ot n

— - —V; " )+yVy-Vv+ayw =0

or in local coordinates (cf. equation (4.33) of [GS00]):

2 ij

ot n./7y 0x; w Oz Oxy, 0xy

where v = det(v;;) and w? =1+ ~Y 687;;8871;' One sees easily that both v and 7 satisfy equation

(6.4) (note that the hyperplane T has constant hyperbolic mean curvature ¢ as well and locally as
radial graph 7' is static under the MMCEF).
Set #(z,t) = tv(6z,t) and 7j(z) = %n(x). Then (6.4) transforms to

05 Pw 0 (VI OO w0y o
ot nﬁaxi( o ow;,) T Gy omy OV =0 (6:5)
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where g(x) = %y(éa:), Fij(z,t) = vi;(0z,t), ¥ = det(%;;) and =1+ &ij%’i‘z—?.
Under this transformation we can move point p to the “interior” point p = (0, ...,0,1). For
any 7" > 0 and in By = Bi1(p) x (0,T), one observes that § = O(1). Also since sup |V7| =
2

sup |[Vo| < C and by [L96, theorem 12.10], ¢ is uniformly Cltets® Moreover, since 7} satisfies
the same equation (6.4), ¥ — 1j satisfies a linear uniformly parabolic equation L(? — 7)) = 0 with
uniformly Holder continuous coefficients. Then by the standard parabolic Schauder-type estimates
and Lemma 6.1 we get
sup (|V(2 — )| + VX0 — 7)) < Cy sup o -7 < C§.

T

T

Returning to the original variable we obtain
|Vo| + |[V?v| < C, where C is independent of § . (6.6)

Now by equation (2.3) and Lemma 2.1, the energy functional 7 is non-increasing as time ¢ increases
and the MMCF subconverges to a smooth complete hypersurface Yoo € C(S)NC T (ST) with
constant hyperbolic mean curvature o and 90X, = I' C 9, H"!. Thus we have proved

Theorem 6.2. Let v € C*°(S"} x (0, oo))ﬂC’O“'l’OJr% (S x (0, 00))NCO(ST %[0, 00)) be a solution
to the MMCF (2.11) and ¢ € C'F1(9ST). Thenv € C*°(S™ x (0, 00))NC 2 +2 (S x (0, 00)) N
CO(S™ x [0,00)). Moreover, there exist t; /* 0o such that %, = F(S'., ;) converges to a unique
stationary smooth complete hypersurface Yoo € C*(S)NC 141 (@) (as a radial graph over S'} )
which has constant hyperbolic mean curvature o and 0%, = 1" asymptotically.

So now all that is left to prove of Theorem 1.1 is the uniform convergence of the MMCEF in the
case that 3§ has mean curvature H¢ > o for all € > 0 sufficiently small.

7 Uniform convergence

In this section we will show the uniform convergence of the regular solution to the MMCEF (1.2) as
t — oo in the case of H¢ > o initially for all € > 0 sufficiently small. To do this, we first show
that for any fixed ¢ > 0 sufficiently small and for any zy € Q, v(zo,t) is non-decreasing along
the flow in this case, where v° is the regular solution to the AMMCEF (2.12) for radial graphs. This
is an immediate corollary of the following lemma.

Lemma 7.1. Letv € C33 (Q x (0,T)) be a function satisfying equation (2.10) for some T' > 0
and Q) C S'! . Then

(0825 — E) (yw(H—0))=0 in Qx(0,T), (7.1)

where L is the linear elliptic operator

~ 2 22 22
L= %awvij + [y(Vquv)Vv— yVw _ %Vv—ye - V.

nw3 nw
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Proof. Let g = H — o and h = ywg, we have

0
8—: =yw(H —0) = ywg = h, (7.2)
ow 1 1
— = —Vu- =—Vuv-Vh 7.3
ot wVv V(ywg) wVv Vh, (7.3)
da" _ 2v;v;Vu - Vh B hiv; + hjv; ’ (7.4)
ot w? w?
and N
OH Yo i . yaviw,  (e- Vo), (- Vo)wy
E = %( t Vij + a¥ (Ut)lj) — an — w + w2 . (75)
Therefore by equations (7.3)-(7.5) and (2.8), we have
Oh L
— = yw w
ot Yywig T Ywyi
i iJh. g, - AV, V4
— g + yw ya; vij +ya“hi  ya vgwt _ (e- Vo) n (e :)wt
nw nw w w
2., ) . s (a3 2
=yHw, — oyw + Y :U <QUZUJZZ Vi hlv];hﬂ)z) + y—aijhz’j
H -V
— y(Hw +e U)wt —yle-Vu)i + g(e - Vo)w,
w w
2y? 2y*Vw - Vh
— yHuw, — V0 Vh+ L (Vw - Vo) (Vo - Vh) - L2220
w nw nw
+ ga”hij —yHuw; —y(e- Vo),
2 2y° 2y*Vw - Vh
— L aiihg + L (Vw - Vo) (Vo - V) - L2 TGy vk~ y(e - Vh).
n nw nw w
This completes the proof of the lemma using the definition of the operator L. O

Corollary 7.2. Suppose % has mean curvature H* > o. Then % = yw(H® — o) > 0 forall
(z,t) € Qe x [0,00).

Proof. Since for any € > 0 sufficiently small, v*(z,t) = ¢°(z) for all (z,t) € 9Q, x (0,00), we
have v; = 0 on 99 x (0, 00). Then the condition H¢ > ¢ att = 0, Lemma 7.1 and the maximum
principle imply that % =yw(H— o) > 0. O

Theorem 7.3. Let I', I'c and X§’s be as in Theorem 1.1 and suppose X has mean curvature
H¢ > o for all € > 0 sufficiently small. Then ¥; converge uniformly for all t to a unique smooth
complete star-shaped hypersurface Yoo € C™(St) N C'1(S™) with constant hyperbolic mean
curvature o and boundary T'.
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Proof. The subconvergence of the flow follows from Theorem 6.2. Corollary 7.2 then yields % >
0, where v is the regular solution to the MMCF (2.11) for radial graphs. This monotonicity of
v implies that the regular solution >; to the MMCEF (1.2) with initial hypersurface g converges
uniformly for all £ to X . O

This completes the proof of Theorem 1.1.

8 Proof of Theorem 1.2 and “‘good” initial hypersurfaces

In this section we will prove Theorem 1.2 and give an example of “good” initial hypersurfaces for
the Dirichlet problems (2.12) and (2.11).

Proof. (of Theorem 1.2) Note that since for any € > 0 sufficiently small, we have H® > o, 3§
(as a radial graph of the function e over (),) is a subsolution to the AMMCF (2.12). Therefore
25 serves as a natural lower barrier for the AMMCE. Combining this with the uniform exterior
local ball condition yields the same proof as the one of Theorem 1.1 given in the previous sections,
except the C'*! boundary regularity of the flow. The C''*! boundary regularity of the limiting
hypersurface X, follows from an elliptic version of the argument given in Section 6, see also
section 4.3 of [GS00] . ]

To find an example of “good” initial hypersurfaces in Theorem 1.2, for any € > 0 sufficiently
small we will restrict ourselves to looking for an initial smooth (C?-) hypersurface 3§ = F(Q, 0)
that can be represented as a radial graph of the function %0 over Q. C S" and has hyperbolic mean
curvature ¢ > o and I'¢ as its boundary. Moreover, 35’s satisfy the uniform exterior local ball
condition and |Vv§|(z) < C for all z € Q, where C is a constant independent of €. To do this, we
will simply apply the implicit function theorem to construct a smooth hypersurface 3§ € H"*! that
is of constant hyperbolic mean curvature close to 1 and has boundary I'. to serve as such “good”
initial hypersurface. As we shall see, the construction relies heavily on the estimates in [GS00] for
hypersurfaces with constant mean curvature as vertical graphs.

From equations (2.7) and (2.13), one observes that if a smooth radial graph of the function e”
over (). has constant hyperbolic mean curvature o with prescribed boundary I'¢, then v satisfies

av;; = E(Uw +e-Vv) in Q,
Y (8.1)
v = ¢* on 0¥,

where ¢¢ € C111(9Q,) is assumed.

It is clear that for 0 = 1, the flat domain D, C {z,+1 = €} enclosed by I'c (known as
“horosphere”) is the corresponding smooth radial graph satisfying (8.1). Therefore, there exists
oo € [0,1)N[o, 1) with o being sufficiently close to 1 so that the implicit function theorem applies
to (8.1). In this way, we can obtain a hypersurface 3§ = {€%z : z € Q.}, where v§ € C*®(2) N
C'1(Qe). Moreover X§ has hyperbolic mean curvature o and 9%§ = I'.. By continuity, 3§ is
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close to the flat domain D, and for all € > 0 the uniform exterior local ball condition is satisfied by
25’s.

With this specific construction of the initial hypersurface, we next give a preliminary C? esti-
mate for the solution to the AMMCEF (1.3).

Lemma 8.1. For X with initial hypersurface ¥ given above, there holds the height estimate
d(D) [1—-0o

2 140
where d(D) is the Euclidean diameter of D (the flat domain enclosed by T").

u(z,t) <

Ye, (z0)eQ x0T, (8.2)

Proof. This is a direct parabolic generalization of [GS00, lemma 3.2]. Let B be a ball of radius
R with center on the plane {z,,11 = —oR} such that the n-ball B N {x,+1 = €} has radius
r = d(D)/2 and contains D.. By continuity, we can choose oq so small that X C B as well. By
(i) of Lemma 3.4, 3¢ is contained in B N H""! for any ¢ € [0, T.), and therefore

u(z,t) < (1—0)R, (z,t) € Qe x[0,T¢).
Moreover, R? = (e + o R)? + r2, which implies
r o T 1+o

< R < : 8.3
\/1—02+1—026_ _\/1—(72—i_1—<726 8.3)
This completes the proof. O
Remark 8.2. In particular, on 2§ there holds the height estimate
d(D) |1-—
o < 4D) % ye. (8.4)

<
0 2 1+ o9

The only thing left to show is |Vu§|(z) < C for some constant C' that is independent of
€ > 0and z € Q.. The first step is to obtain a good barrier for v§ at any point zg € 99
corresponding to Py = e¢® (#0)z; € T'.. For convenience, we choose a coordinate system around
Py so that the exterior normal to I'c at Py is e{. Let 6; > 0 (respectively d2) be such that for
each point P € T'¢, a ball of radius §; (respectively d2) is internally (respectively externally)
tangent to I'c at P. Let Bf = B{(0y), ¢ = 1,2 be the (Euclidean) balls of radius R; centered at
C; = Py + (—=1)%5;e{ + (a; — €)e, where

—(=1)lecg + /€2 + 62(1 — 0?) .
Ri = 5 and a; = (—1) RZ‘U(). (85)
1—o0§

Recall that S§(o¢) = 0B N H"+! has constant (hyperbolic) mean curvature o with respect to its
outward normal while S$(og) = 9BS N H""! has constant mean curvature o with respect to its
inward normal. Moreover, by our construction, B and B§ are tangent at Py, B{ N {zp4+1 = €} is
internally tangent to I'c at Py, and BS N {z,4+1 = €} is externally tangent to I at P.
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Lemma 8.3 ([GS00]). Locally S§(0o) is interior to ¥.5(0¢) and S5 is exterior to 3 .

Proof. This follows from the maximum principle for the equation (2.7) . O

Similar to equation (4.7), we see that S{(og) and S5(o0) serve as good local barriers of %
around F, and we obtain that

\Vugl(Po) < C, (8.6)

where C' is independent of € and Py € I',.
The next step is to obtain a uniform interior gradient bound for v and one observes that we
only need to bound

€
evo

V14 |Vu§)?
from below uniformly in €. This can be done as follows. Firstly note that since D, is a vertical
graph over D and by continuity (induced from the implicit function theorem used in the construc-

tion of %), X is a vertical graph of the function u§ over D as well. And similar to Lemma 8.1,
we have another height estimate for vertical graphs.

€ €
Xo‘l/E—

Lemma 8.4 ([GSO00], lemma 3.5). On X (that has constant mean curvature o) there holds

1—o09 oQ€
£z > d(2’ "e D 8.7
uj() > Ay T e e 87)

where d(x') is the distance from x' to 9D .

Proof. For 2/ € D, letr = d(2/) and R > 0 satisfy R2 = (e 4+ ogR)? + d?(2). Note that
Bgr(2',—aoR) N {zn41 = €} C D, and dBg(2’, —o9R) N H""! has constant hyperbolic mean
curvature og. Then by (ii) of Lemma 3.3,

uf(z') > (1 —09)R.
Now the first inequality in (8.3) gives (8.7). ]
Moreover, there exists €; > 0 such that, for any o9 € [1 — €1, 1), there exists 6; = d1(e1) so
that in the d;-neighborhood of I in D one has |Vv§| < Q, where C is the uniform gradient bound

of v§ on I'c as in equation (8.6). Away from the d;-neighborhood, by Lemma 8.4

Xo-vy =X5-e—X§ - (e—vg)

1-— e 2
>0/ N P S— (8.8)
o0 1+ [Vu§l?
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where 6 is the Levi-Civita connection on R"*! and we used that
_ —Vug 1
\/1 + | Vug|? \/1 + Vg2

Vi

since XJ§ is a vertical graph.
Now using the fact that H§; is subharmonic on the constant mean curvature hypersurface X
(see Theorem 2.2 of [GS00]), we have

Lemma 8.5 ([GS00], corollary 2.3). Forany X\ € (0,1),

/ ~ 1 .
1 + |VU0|2 S W in Q/\, (89)

0

where Q) = {:n €D :uf< supi\«O—OHe }
€ E

To make use of Lemma 8.5, we also need the following estimate on the Euclidean mean cur-
vature H§, of ¥ on 03§ = I'c. For x € 0D = T, denote by r1(x) and ra(z) the radius of the
largest exterior and interior spheres to D at x, respectively, and let 7y = mingcyp r1(x),r2 =
mingecgp r2(x). Then we have

Lemma 8.6 ([GS00], lemma 3.3). For € > 0 sufficiently small,

\/1—08 €(l—o09) o00—e-vy . \/1—08 e(1+ o00)
o 5 u 1 Ty

on T..

In particular, e - v, — g on I'c as € — 0, provided that D is C1*+1.

Note that in (8.8), if |6u5\ is sufficiently small then X§ - v, (2') > C(61) for any 2’ € D
that is away from the d;-neighborhood of I'. In the other case, if |§u6\ is uniformly bounded from
below, then by combing the estimates in Remark 8.2 and Lemmas 8.4, 8.5, 8.6, we can choose o
sufficiently close to 1 (for fixed €;) such that we still have

6-vp(@') > C(61) (uniformly in €)

for any 2/ € D\ d;-neighborhood .
Now we can conclude

Theorem 8.7. There exist constants €9 > 0 and o¢ € (0,1) N [0, 1) that is sufficiently close to 1
such that for all 0 < e < €, there exists a smooth hypersurface ¥§ with 0X§ =T'c C {41 = €}
and whose hyperbolic mean curvature is oy. Additionally, 335 can be represented as a radial graph
of a function %0 over Q, C ST and

Voil(z) < C, z€Q,, (8.10)

where C'is a constant independent of €. Moreover, the X§’s satisfy the uniform exterior local ball
condition.
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9 Interior gradient bounds and continuous boundary data

9.1 Interior gradient bounds

We will next provide a version of a priori interior gradient estimate for the regular solution to
the MMCEF (2.11), which is essential for the existence result of the MMCF with less regular (e.g.
continuous) boundary data. The idea follows closely the work of Evans and Spruck [ES92].

Lemma 9.1. Let v be a 33 function satisfying equation (2.11) in B,(P) x (0,2T') for some
T > 0, where B,(P) C {y > €}. Then

Ca

V1+|Vu2(P,T) = w(P,T) < Cyer* ,

where C, Cy are non-negative constants depending only on n, o, e, T and ||[v|| e .

Proof. Define

B
SR 5
L=5 L,

where L is the linear elliptic operator from Lemma 4.1 . Without loss of generality we may assume
(by adding a constant to v) 1 < v < (. We will derive a maximum principle for the function
h = n(z,t,v(z,t))w by computing Lh in B,(P) x (0,27, where 7 is non-negative, vanishes
on the set {t(p* — (dp(z)?) = 0}, and is smooth where it is positive. Here dp(z) is the distance
function (on the sphere) from P, the center of the geodesic ball B,(P). Then h is non-negative
and vanishes on the parabolic boundary of B,,(P) x (0,2T).

Choose

n=gle(z,t,v(z,1); glp) =e"? -1,
with the constant K > 0 to be determined and

—o(z,t) dp(2)\2\ 1"
2v<P,T>+T<1‘( K ))] |

o(z,t,v(z,t)) =

By Lemma 4.1 we have
29% 4
Lh = nLw + wln — ——a"nw,
n
Y Y
. n£w+w<nt—nM77> < w<277+?7t—nM77> ) 9.1)

where

M = aijvij—n(aw—i—e) -V.
y w

We will choose K so that 21 4 7, — y;Mn < 0 on the set where h > 0 and w is large.
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A straightforward computation gives that on the set where A > 0 (using equation (2.10))

g v N
Mn =g'(¢) (a”%w - Z ( 2 4 e) -Vw) + " (p)a" VoV p

0'7
w
o no 2 )
=K Ko _ _ UN . dpV.d dpaiV. d
‘ 2y2v(P7 T) 2yu}’U(P7 T) p2T (CL Up 7 P+ Pa ij P)
2nt Yv
— -dpVd

y ; 2t v 2t
K2eKeqi (U dpVyd ! dpVdp ) .
TR (QU(P,T) T oapdPVide )\ ooy T e Vidr
Using the definition of a* we find
“ <2v(P,T) T oapdeVide )\ gy T e Vidr

Vo2 2tdp 4t2d3, Vo 2
= d — (1 - (—,Vd
4(v(P, T))%w? * Tu(P,T)p?w? (Vo, Vdp) + T2p* w Vdp ’

where (, ) denotes the inner product with respect to the induced Euclidean metric on X;. Therefore
we have

2
2 + y2M o2 + Ke% U +1_ <d7) y2M
Y = ¢ v
T n " n 20(P,T) T n "
Kele 2 Keley,
<2 A .1
e e A NI

2 2 2
o P VP 1 m VP VY K
n WP D)2 w? \2 seED2)) P

_yjelﬂo [KQ CK ]

- n 32 02
whenever w > max{/2, 3250} = % so that ‘YU”Q'Q > 3 and w%QPQ < ﬁ
Thus, the choice of K = 32C () (1 + %) gives
y?
Lh < w [277+77t — nMn] <0 (9.2)

on the set where A > 0 and w > % . Then by the maximum principle, (9.2) gives

h(P,T) = <e% - 1) w(P,T) < maxh < (2K —1) 3250 9.3)
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and hence
ccy
w(P,T) < Cie #*
for a slightly larger constant C'. This completes the proof. O

9.2 Continuous boundary data

By standard modulus of continuity estimates (see e.g. [L96, theorem 10.18]) and with the aid of the
a priori interior gradient estimate (see Lemma 9.1) proved in the previous section, one can further
relax the regularity of the boundary data to be only continuous via an approximation argument. We
have

Theorem 9.2. Let I' be the boundary of a continuous star-shaped domain in {xn4+1 = 0} and Xy =
lim,_,o 2§ be as in Theorem 1.1 or Theorem 1.2. Then there exists a unique solution F(z,t) €
C>°(S™ x (0,00) N CO(ST x [0, 00)) to the MMCF (1.2). Moreover, there exist t; /* 0o such that
Y, = F(ST,1;) converges to a unique stationary smooth complete hypersurface Yo, € C*°(S'})N
o (@) (as a radial graph over S'} ) which has constant hyperbolic mean curvature o and 0¥, =
I" asymptotically.
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