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Modified mean curvature flow of star-shaped hypersurfaces in
hyperbolic space

Longzhi Lin Ling Xiao

Abstract

We define a new modified mean curvature flow (MMCF) in hyperbolic space Hn+1, which
interestingly turns out to be the natural negativeL2-gradient flow of the energy functional intro-
duced by De Silva and Spruck in [DS09]. We show the existence, uniqueness and convergence
of the MMCF of complete embedded star-shaped hypersurfaces with prescribed asymptotic
boundary at infinity. The proof of our main theorems follows closely Guan and Spruck’s work
[GS00], and may be thought of as a parabolic analogue.

Keywords. Modified mean curvature flow, Hyperbolic space, Star-shaped hypersurfaces

1 Introduction

Let F(z, t) : Sn+ × [0,∞) → Hn+1 be a one parameter family of complete embedded star-shaped
hypersurfaces which are radial graphs in Hn+1 over Sn+, the upper hemisphere of the unit sphere
Sn in Rn+1, where the half-space model of Hn+1 is used. We say the images Σt = F(z, t) move
by modified mean curvature flow (MMCF) if

∂

∂t
F(z, t)⊥ = (H − σ) νH , (z, t) ∈ Sn+ × [0,∞) ,

F(z, 0) = Σ0 , z ∈ Sn+ ,
(1.1)

where H denotes the hyperbolic mean curvature of Σt, σ ∈ (−1, 1) is a constant, and νH denotes
the outward unit normal of Σt with respect to the hyperbolic metric. By the half-space model of
Hn+1, we mean

Hn+1 = {(x′, xn+1) ∈ Rn+1 : xn+1 > 0}
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equipped with the hyperbolic metric

ds2
H =

1

x2
n+1

ds2
E ,

where ds2
E denotes the standard Euclidean metric on Rn+1. One identifies the hyperplane {xn+1 =

0} = Rn × {0} ⊂ Rn+1 as the infinity of Hn+1, denoted by ∂∞Hn+1.
In this paper we consider the questions of the existence, uniqueness and convergence of the

MMCF of complete embedded star-shaped hypersurfaces (as radial graphs) in the hyperbolic space
Hn+1 with prescribed asymptotic boundary at infinity, under some natural geometric conditions on
the initial hypersurfaces. Namely, we consider the following Dirichlet problem of the MMCF:

∂

∂t
F(z, t)⊥ = (H − σ) νH , (z, t) ∈ Sn+ × [0,∞) ,

F(z, 0) = Σ0 , z ∈ Sn+ ,
F(z, t) = Γ(z) , (z, t) ∈ ∂Sn+ × [0,∞) ,

(1.2)

where σ ∈ (−1, 1) and Γ = ∂Σ0 is the boundary of a star-shapedC1+1 domain in {xn+1 = 0} (the
case of Γ being only continuous will also be discussed). As an application, we shall also show that
we can use the MMCF to deform a complete regular hypersurface to one with constant hyperbolic
mean curvature σ in hyperbolic space Hn+1.

Mean curvature flow (MCF) was first studied by Brakke [B78] in the context of geometric
measure theory. Later, smooth compact surfaces evolved by MCF in Euclidean space were inves-
tigated by Huisken in [H84] and [H90], and on arbitrary ambient manifolds in [H86]. The study
of the evolution of complete graphs by MCF in Rn+1 was also studied in [EH89], the result being
improved in [EH91]. See also [H89] for the nonparametric MCF with Dirichlet boundary condi-
tion. In [U03], Unterberger considered the MCF in hyperbolic space, namely, the case of σ = 0
in equation (1.1). And he obtained that if the initial surface Σ0 has bounded hyperbolic height
over Sn+ then under the MCF, Σt converges in C∞ to Sn+ which has constant mean curvature 0.
We shall remark that a similar MMCF (which is called the volume preserving MCF) was studied
by Huisken in [H87] for closed, uniformly convex hypersurface in Rn+1, where the constant σ in
(1.1) was replaced by the average of the mean curvature of Σt, see also [CM07] for this volume
preserving MCF in the hyperbolic space. With the average of the mean curvature of Σt in the place
of the constant σ, a priori one cannot predict what the flow will converge to (if it converges), while
we see directly that if the MMCF (1.1) converges then it converges to a hypersurface with constant
mean curvature σ. Namely, we can actually prescribe the constant mean curvature σ ∈ (−1, 1) for
the limiting hypersurface through the flow. This is the important feature and novelty of our version
of MMCF defined in this work, which is also special for the hyperbolic setting. Finally, we shall
remark that it would be very interesting to see what the corresponding MMCF is in the Euclidean
setting.

The problem of finding smooth complete hypersurfaces of constant mean curvature in hyper-
bolic space with prescribed asymptotic boundary at infinity (also known as Asymptotic Plateau
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Problem) has also been studied over the years, see [A82], [HL87], [T96] and [AR97] for the ap-
proach using geometry measure theory. The first elliptic PDE approach to this problem was due to
Lin [Lin89], and later on it was used by Nelli and Spruck [NS96] and Guan and Spruck [GS00].
In particular, in [GS00] Guan and Spruck proved the existence and uniqueness of smooth com-
plete hypersurfaces of constant mean curvature σ ∈ (−1, 1) in hyperbolic space with prescribed
asymptotic boundary at infinity. In [DS09], among other, De Silva and Spruck recovered this result
using the method of calculus of variations and representation techniques. We remark that our paper
can be thought of as a flow version of their variational method, see Section 2 . For the existence
of hypersurfaces of constant (general) curvature in hyperbolic space Hn+1 which have prescribed
asymptotic boundary at infinity, see [GSZ09] and [GS08] .

Due to the degeneracy of the MMCF (1.2) for radial graphs at infinity (see equation (2.10)
below), we will begin with considering the approximate problem. For fixed ε > 0 sufficiently
small, let Γε be the vertical translation of Γ to the plane {xn+1 = ε} and let Ωε be the subdomain
of Sn+ such that Γε is the radial graph over ∂Ωε (see Figure 1). We consider the following Dirichlet
problem of the approximate modified mean curvature flow (AMMCF):

∂

∂t
F(z, t) = (H − σ) νH , (z, t) ∈ Ωε × [0,∞) ,

F(z, 0) = Σε
0 , z ∈ Ωε ,

F(z, t) = Γε(z), (z, t) ∈ ∂Ωε × [0,∞) ,

(1.3)

where Σε
0 = F(Ωε, 0), ∂Σε

0 = Γε and σ ∈ (−1, 1) .

{xn+1 = ε}

Γε

Ωε

Σε
0

O

{xn+1 = 0}

Figure 1: Approximate initial hypersurface

For any ε ≥ 0 sufficiently small and any point P ∈ ∂Σε
0 = Γε (denoting Σ0

0 = Σ0 and Γ0 = Γ),
the uniform star-shapedness and regularity of Γε imply there exist balls BR1(a, P ) and BR2(b, P )
with radiiR1 > 0 andR2 > 0 and centered at a = (a′,−σR1) and b = (b′, σR2), respectively (see
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also “equidistant spheres” in Section 3.2 below), such that {xn+1 = ε} ∩ BR1(a, P ) is internally
tangent to Γε at P and {xn+1 = ε} ∩ BR2(b, P ) is externally tangent to Γε at P . Note that in a
small neighborhoodBδ(P ) around P for some δ > 0, both ∂BR1(a, P )∩Bδ(P ) and ∂BR2(b, P )∩
Bδ(P ) can be locally represented as radial graphs. To state our main results appropriately, we say
that the approximate initial hypersurfaces Σε

0’s satisfy the uniform interior (resp. exterior) local ball
condition if for all ε ≥ 0 sufficiently small and all P ∈ Γε, Σε

0 ∩Bδ(P )∩BR1(a, P ) = {P} (resp.
Σε

0 ∩ Bδ(P ) ∩ BR2(b, P ) = {P}, see Figure 2), and the local radial graph ∂BR1(a, P ) ∩ Bδ(P )
(resp. ∂BR2(b, P )∩Bδ(P )) has a uniform Lipschitz bound depending only on the star-shapedness
of Γ. If Σε

0’s satisfy both of the uniform interior and exterior local ball conditions, then we say Σε
0’s

satisfy the uniform local ball condition3.

{xn+1 = ε}

Σε
0

BR1(a, P )

BR2(b, P )

(b′, σR2)

(a′,−σR1)Γε

P

Figure 2: Uniform interior and exterior local ball conditions

The main results in this paper are the following.

Main Theorem 1.1. Let Γ be the boundary of a star-shaped C1+1 domain in {xn+1 = 0} =
∂∞Hn+1 and Γε be its vertical lift to {xn+1 = ε} for ε > 0 sufficiently small. Let Σ0 = limε→0 Σε

0

be the limiting hypersurface of radial graphs Σε
0 ∈ C1+1(Ωε) with ∂Σε

0 = Γε. Suppose Σε
0’s have

a uniform Lipschitz bound and satisfy the uniform local ball condition. Then

(i) there exists a unique solution F(z, t) ∈ C∞(Sn+ × (0,∞)) ∩ C1+1, 1
2

+ 1
2 (Sn+ × (0,∞)) ∩

C0(Sn+ × [0,∞)) to the MMCF (1.2);

(ii) there exist ti ↗ ∞ such that Σti = F (Sn+, ti) converges to a unique stationary smooth
complete hypersurface Σ∞ ∈ C∞(Sn+) ∩ C1+1(Sn+) (as a radial graph over Sn+) which has
constant hyperbolic mean curvature σ and ∂Σ∞ = Γ asymptotically. Also, each Σt is a
complete radial graph over Sn+;

3Such initial hypersurfaces naturally exist and this can be seen explicitly since the balls BR1(a, P ) and BR2(b, P )
can be constructed with uniform radii (see equation (8.5)) and the tangent plane to them at P can be computed explicitly
as well (see equation (6.2)).
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(iii) if additionally Σε
0 has mean curvature Hε ≥ σ for all ε > 0 sufficiently small, then Σt

converges uniformly to Σ∞ for all t.

In fact, if Σε
0 has hyperbolic mean curvature Hε ≥ σ for all ε > 0 sufficiently small, then the

uniform interior local ball condition on Σε
0’s can be relaxed.

Main Theorem 1.2. Let Γ and Γε be as in Theorem 1.1 and Σ0 = limε→0 Σε
0 be the limiting

hypersurface of radial graphs Σε
0 ∈ C2(Ωε) ∩ C1+1(Ωε) with ∂Σε

0 = Γε. Suppose Σε
0 has mean

curvature Hε ≥ σ for all ε > 0 sufficiently small and Σε
0’s have a uniform Lipschitz bound and

satisfy the uniform exterior local ball condition. Then there exists a unique solution F(z, t) ∈
C∞(Sn+ × (0,∞)) ∩ C0+1,0+ 1

2 (Sn+ × (0,∞)) ∩ C0(Sn+ × [0,∞)) to the MMCF (1.2). Moreover,
Σt = F (Sn+, t) converges uniformly for all t to a unique stationary smooth complete hypersurface
Σ∞ ∈ C∞(Sn+) ∩ C1+1(Sn+) (as a radial graph over Sn+) which has constant hyperbolic mean
curvature σ and ∂Σ∞ = Γ asymptotically. Also, each Σt is a complete radial graph over Sn+.

Remark 1.3. We expect that the same results would hold for general star-shaped initial hypersur-
faces.

In Section 8 we will give an example of “good” initial hypersurfaces of Theorem 1.2. We point
out that many of the techniques and estimates used in the proofs of Theorems 1.1 and 1.2 come
from the work of Guan and Spruck[GS00], and our results could be thought of as the parabolic
analogue of the results in [GS00]. Given this fact, we shall also remark that a proof via flow
method to the following existence theorem due to Guan and Spruck can be obtained.

Theorem 1.4 ([GS00]). Suppose Γ is the boundary of a star-shaped C1+1 domain in {xn+1 = 0}
and let |σ| < 1. Then there exists a unique smooth complete hypersurface Σ of constant hyperbolic
mean curvature σ in Hn+1 with asymptotic boundary Γ. Moreover, Σ may be represented as a
radial graph over Sn+ of a function in C∞(Sn+) ∩ C1+1(Sn+) .

With the aid of an a priori interior gradient estimate (see Section 9) and via an approximation
argument, the regularity of the boundary data Γ in Theorem 1.1 and Theorem 1.2 could be further
relaxed to be only continuous and a similar result still holds (see Theorem 9.2 below). And again,
we note that a parabolic version of proof to the following result due to Guan and Spruck [GS00]
and De Silva and Spruck [DS09] can be obtained.

Theorem 1.5 ([GS00, DS09]). Suppose Γ is the boundary of a continuous star-shaped domain
in {xn+1 = 0} and let |σ| < 1. Then there exists a unique smooth complete hypersurface Σ of
constant hyperbolic mean curvature σ in Hn+1 with asymptotic boundary Γ. Moreover, Σ may be
represented as a radial graph over Sn+ of a function in C∞(Sn+) ∩ C0(Sn+) .

The paper is organized as follows. In Section 2 we set up the problems, namely, the Dirichlet
problems for the MMCF and AMMCF for radial graphs in hyperbolic space. In Section 3 we state
the short-time existence result for the AMMCF and discuss the equidistant spheres in Hn+1 which
will serve as good barriers in many situations. We will prove Theorem 1.1 in sections 4−7. In
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Section 4 we prove a global gradient estimate for the solution to the AMMCF and therefore the
long-time existence of the AMMCF. In Section 5 we prove the uniform gradient estimate (inde-
pendent of ε) for the solutions to the AMMCF’s, which leads to the long-time existence of the
MMCF. This estimate is the main technical result of the paper. In Section 6 we show the boundary
regularity of the MMCF and the uniform convergence of the MMCF in the case ofHε ≥ σ initially
in Section 7 . In Section 8 we will prove Theorem 1.2 and give an example of “good” initial hyper-
surfaces in Theorem 1.2. In Section 9 we prove a version of a priori interior gradient estimate and
therefore the existence result of the MMCF with only continuous boundary data.

2 MMCF and AMMCF for radial graphs in hyperbolic space

Let Ω ⊆ Sn+, and suppose that Σ is a radial graph over Ω with position vector X in Rn+1. Then we
can write

X = ev(z) z , z ∈ Ω ,

for a function v defined over Ω. We call such function v the radial height of Σ. One observes that

{xn+1 = 0} = ∂∞Hn+1

z

X = evz

Γ

Sn+

Σ

O

νE

e

Figure 3: Σ as a radial graph

Σ remains a radial graph as long as
X · νE > 0 , (2.1)

where νE is the Euclidean outward unit normal vector of Σ (see Figure 3) .

2.1 Gradient flow

As in [DS09], one can define the energy functional I(Σ) associated to Σ :

I(Σ) = IΩ(v) = AΩ(v) + nσVΩ(v)

=

∫
Ω

√
1 + |∇v|2 y−n dz + nσ

∫
Ω
v(z) y−(n+1) dz , (2.2)
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where y = zn+1 and ∇ denotes the covariant derivative on the standard unit sphere. Note that
in this energy functional I(Σ), the term AΩ corresponds to the area of Σ (under the hyperbolic
metric) and the term VΩ corresponds to the radial volume of the cone region between Σ and the
origin (up to a constant), see [DS09] for more details .

Then for a smooth solution Σt = F(z, t) to the MMCF (1.1), which can be represented as a
complete radial graph over Ω = Sn+, namely,

F(z, t) = X(z, t) = ev(z,t)z , (z, t) ∈ Sn+ × (0,∞) ,

we have

d

dt
I(Σt) = −n

∫
Ω

(H − σ)2
√

1 + |∇v|2 y−ndz

= − n
∫

Σt

〈∂F/∂t , (H − σ)νH〉H dA = −n
∫

Σt

(H − σ)2dA ≤ 0 , (2.3)

where in the first equality we used integration by parts, equation (2.10) (see below) and the fact
that (see equation (1.2) of [DS09])

divz

(
y−n∇v√
1 + |∇v|2

)
= nHy−(n+1) in Ω ,

and the second equality is just the first variation formula for I .
From this point of view, one sees that the MMCF is the natural negative L2-gradient flow of

the energy functional I(Σ) . We have:

Lemma 2.1. Let F(z, t) = ev(z,t)z be a smooth radial graph solution to the AMMCF (1.3) in
Ω× [0, T ]. Then for all t ∈ [0, T ) we have

I(Σε
t) + n

∫ t

0

∫
Ω

(H − σ)2dAdt = I(Σε
0) . (2.4)

Remark 2.2. We point out that equation (2.3) is a natural analog of the well-known formula for
the classic MCF:

d

dt
Area(Σt) = −

∫
Σt

H2dA ≤ 0 .

2.2 The hyperbolic mean curvature

We will begin with fixing some notations, and collecting some relevant facts about the hyperbolic
space Hn+1, which can be easily found in [GS00]. Where necessary, expressions in the Euclidean
and hyperbolic spaces will be denoted by the subscript or superscript E and H , respectively. Let
∇ denote the covariant derivative on the standard unit sphere Sn in Rn+1 and

y = e · z for z ∈ Sn ⊂ Rn+1,
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where, throughout this paper, e is the unit vector in the positive xn+1 direction in Rn+1, and ‘·’
denotes the Euclidean inner product in Rn+1 . Let τ1, ..., τn be a local frame of smooth vector
fields on the upper hemisphere Sn+. We denote by γij = τi · τj the standard metric of Sn+ and γij

its inverse. For a function v on Sn+, we denote vi = ∇iv = ∇τiv, vij = ∇j∇iv, etc.
Suppose that locally Σ is a radial graph over Ω ⊆ Sn+. Then the Euclidean outward unit normal

vector and mean curvature of Σ are respectively

νE =
z−∇v
w

and

HE =
aijvij − n
nevw

,

where

aij = γij − γikvkvj
w2

, 1 ≤ i, j ≤ n and w = (1 + |∇v|2)1/2 .

Note that

X · νE =
ev

w
, (2.5)

and therefore as long as w is bounded from above Σ remains a radial graph by (2.1) .
We also have the hyperbolic outward unit normal vector

νH = u νE ,

where
u = e ·X = e · evz = y ev

is called the height function. Moreover, using the relation between the hyperbolic and Euclidean
principle curvatures

κHi = e · νE + uκEi , i = 1, ..., n ,

we have (see equation (2.1) of [GS00], cf. equation (1.8) of [GS08])

H = e · νE + uHE , (2.6)

which gives the hyperbolic mean curvature of Σ :

H = y evHE +
y − e · ∇v

w
=

y aij vij
nw

− e · ∇v
w

, (2.7)

and therefore
aijvij =

n

y
(Hw + e · ∇v) . (2.8)
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2.3 Degenerate parabolic equation

The first equation of the MMCF (1.2) implies〈
∂

∂t
F, νH

〉
H

=

〈
∂

∂t
(evz), νH

〉
H

=
ev

uw

∂v

∂t
=

1

yw

∂v

∂t
= H − σ . (2.9)

Therefore by equation (2.7) we have

∂v

∂t
= yw(H − σ) = y2a

ijvij
n
− ye · ∇v − σyw . (2.10)

Suppose Γ is the radial graph of a function eφ over ∂Sn+, i.e., Γ can be represented by

X = eφ(z)z , z ∈ ∂Sn+ .

Then one observes that the Dirichlet problem for the MMCF (1.2) is equivalent to the following
(degenerate parabolic) Dirichlet problem (i.e., the MMCF for radial graphs):

∂v(z, t)

∂t
= y2a

ijvij
n
− ye · ∇v − σyw , (z, t) ∈ Sn+ × (0,∞) ,

v(z, 0) = v0(z) , z ∈ Sn+ ,
v(z, t) = φ(z) , (z, t) ∈ ∂Sn+ × [0,∞) ,

(2.11)

where we represent Σ0 as the radial graph of the function ev0 over Sn+ and v0

∣∣
∂Sn+

= φ .

2.4 Approximate problem

Due to the degeneracy of equation (2.11) at infinity (i.e., y = 0), we consider the corresponding
approximate problem for a fixed ε > 0 sufficiently small. Namely, equivalently to (1.3), we solve
the following (non-degenerate parabolic) Dirichlet problem (i.e., the AMMCF for radial graphs):

∂v(z, t)

∂t
= y2a

ijvij
n
− ye · ∇v − σyw , (z, t) ∈ Ωε × (0,∞) ,

v(z, 0) = vε0(z) , z ∈ Ωε ,

v(z, t) = φε(z) , (z, t) ∈ ∂Ωε × [0,∞) ,

(2.12)

where we represent Σε
0 as the radial graph of the function ev

ε
0 over Ωε and vε0

∣∣
∂Ωε

= φε, and φε is
a function defined on ∂Ωε ⊂ Sn+ such that Γε can be represented as a radial graph of eφ

ε
over ∂Ωε,

i.e.,
X = eφ

ε(z)z , z ∈ ∂Ωε . (2.13)

We denote the regular solution to (2.12) by vε .
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3 The short-time existence and equidistant spheres

3.1 Short-time existence

In the rest of the paper, we will focus on the case of σ ∈ [0, 1) and the case of σ ∈ (−1, 0) can be
dealt with in the same way after using the hyperbolic reflection over Sn+. The standard parabolic
PDE theory with Schauder estimates guarantees the short-time existence of a regular solution (up
to the parabolic boundary) to the AMMCF (2.12) with a C∞ initial hypersurface and compatible
boundary data (i.e., H = σ on ∂Σε

0). For a C∞ initial hypersurface with incompatible boundary
data, a solution exists at least for short time and becomes regular immediately after t = 0 (cf.
[Ha75]) . This is the statement of the next lemma.

Lemma 3.1. There exists T ?ε > 0 such that the AMMCF (2.12) with initial data vε0 ∈ C∞(Ωε) has
a solution vε ∈ C∞(Ωε × [0, T ?ε )) except on the corner ∂Ωε × {t = 0} .

For less regular (e.g. C1+1) initial and boundary data, the short-time existence lemma will
remain true (see e.g. [L96, theorem 8.2] and [LSU68, theorem 4.2, P.559]) .

Lemma 3.2. There exists T ?ε > 0 such that the AMMCF (2.12) with initial data vε0 ∈ C1+1(Ωε)
has a solution vε ∈ C∞(Ωε × (0, T ?ε )) ∩ C0(Ωε × [0, T ?ε )) .

Moreover, as we shall see, the passage to the limit of {vε} as ε → 0 to get the long-time
existence of the MMCF (2.11) will be based on a series of estimates uniform in ε.

3.2 Equidistant spheres

In the following, let Tε (possibly∞) be the maximal time up to which the AMMCF (1.3) for radial
graphs or equivalently the solution to (2.12) exists, and let Vε = ∪0≤t≤TεΣ

ε
t denote the flow region

in Hn+1, where Σε
t = F(Ωε, t) is the hypersurface moving by the AMMCF (1.3) at time t.

Our estimates in the proof of the main theorems are all based on the following fact, which
was also extensively used in [GS00]. Let B1 = BR(a) be a ball of radius R centered at a =
(a′,−σR) ∈ Rn+1 where a′ ∈ Rn and σ ∈ (−1, 1). Then S1 = ∂B1 ∩ Hn+1 has constant
hyperbolic mean curvature σ with respect to its outward normal. Similarly, let B2 = BR(b) be a
ball of radius R centered at b = (b′, σR) ∈ Rn+1, then S2 = ∂B2 ∩Hn+1 has constant hyperbolic
mean curvature σ with respect to its inward normal. These so called equidistant spheres will serve
as good barriers in many situations (see Lemma 3.4 below). Let D ⊂ {xn+1 = 0} be the domain
enclosed by Γ and Dε ⊂ {xn+1 = ε} be the domain enclosed by Γε.

The following lemma is an immediate consequence of the fact mentioned above, see [GS00].

Lemma 3.3 ([GS00], lemma 3.1). Let B1 and B2 be balls in Rn+1 of radius R centered at a =
(a′,−σR) and b = (b′, σR), respectively. Suppose Σ has constant hyperbolic mean curvature σ.
Then

(i) If ∂Σ ⊂ B1, then Σ ⊂ B1 ;
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{xn+1 = ε}

B1

(a′,−σR)

Σε
t

Γε

S1

Figure 4: Bounded by equidistant spheres

(ii) If B1 ∩ {xn+1 = ε} ⊂ Dε, then B1 ∩ Σ = ∅ ;

(iii) If B2 ∩Dε = ∅, then B2 ∩ Σ = ∅ .

As a parabolic analogue of Guan and Spruck’s Lemma 3.3, we have the following a priori
bound for the flow.

Lemma 3.4. Let B1 and B2 be balls in Rn+1 of radius R centered at a = (a′,−σR) and b =
(b′, σR), respectively.

(i) If Σε
0 ⊂ B1, then Vε ⊂ B1 (see Figure 4) ;

(ii) If B1 ∩ {xn+1 = ε} ⊂ Dε and B1 ∩ Σε
0 = ∅, then B1 ∩ Vε = ∅ ;

(iii) If B2 ∩Dε = ∅ and B2 ∩ Σε
0 = ∅, then B2 ∩ Vε = ∅ .

Proof. The proof is virtually the same as the proof of Lemma 3.3 in [GS00] and we include it for
the convenience of the reader. This lemma follows from the maximum principle by performing
homothetic dilations (hyperbolic isometries) from (a′, 0) and (b′, 0), respectively. For (i), we ex-
pand B1 continuously until it contains Σε

0; for (ii) and (iii) we shrink B1 and B2 until they are
respectively inside and outside Σε

0. We note that Σε
t satisfies equation (2.10) as a radial graph and

its mean curvature is calculated with respect to its outward normal direction. Also S1, S2 have con-
stant mean curvature σ with respect to the outward and inward normal respectively, and locally as
radial graphs they both satisfy equation (2.10) (statically) too. Then from the maximum principle
we see that Σε

t cannot touch B1 or B2 when we reverse this process.
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4 Global gradient bounds and long time existence of the AMMCF

Before we begin our proof, we collect some important formulas that were first derived in [GS00].
From now on, we assume the local vector fields τ1, ..., τn to be orthonormal on Sn+ so that γij = δij
and thus aij = δij − vivj

w2 . The covariant derivatives of y are

yi = ∇iy = (e · z)i = e · τi, (4.1)

yij = ∇i∇jy = e · ∇i∇jz = e · ∇iτj = −yδij .

Therefore
e · ∇y =

∑
(e · τi)2 = 1− y2,

∇v · ∇y = e · ∇v and ∇w · ∇y = e · ∇w .

Note that we also have the identities

aijvi =
vj
w2
, aijvivj = 1− 1

w2
,
∑

aii = n− 1 +
1

w2
.

Moreover,

wi =
vkvki
w

, wij =
vkvkij
w

+
1

w
aklvkivlj and (∇kaij)vij = − 2

w
aijwivkj . (4.2)

Straight forward calculations also show that

(e · ∇v)i = (e · τkvk)i = e · τkvki − yvi = ykvki − yvi,
(e · ∇v)ij = e · τkvkij − 2yvij − e · τjvi = ykvkij − 2yvij − yjvi

and
∇v · ∇(e · ∇v) = vi(e · τkvki − yvi) = we · ∇w − y(w2 − 1) . (4.3)

We also have the formula for commuting the covariant derivatives

vijk = vkij + vjδik − vkδij . (4.4)

Now we are ready to state our first main technical lemma.

Lemma 4.1. Let v ∈ C3, 3
2 (Ω × (0, T )) be a function satisfying equation (2.10) for some T > 0

and Ω ⊆ Sn+ . Then(
∂

∂t
− L

)
w ≤ −σ(e · ∇v) +

y2(w2 − 1)

nw
−H2w ≤ 2w in Ω× (0, T ) , (4.5)

where L is the linear elliptic operator

L ≡ y2

n

(
aij∇ij −

2

w
aijwi∇j −

n

wy
(σ∇v + we) · ∇

)
.



Modified mean curvature flow in hyperbolic space 13

Remark 4.2. The main part of the linear elliptic operator L was already used by Guan and Spruck
in [GS00].

Proof. (of Lemma 4.1) By equation (2.10) we have

∂

∂t
w =

1

w
∇v · ∇(vt) =

∇v
w
· ∇(yw(H − σ))

=
∇v
w
· (∇yw(H − σ) + y∇w(H − σ) + yw∇H)

= e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

Differentiating both sides of the equation (2.8) with respect to τk gives (using also the equation
(4.2))

(∇kaij)vij + aijvijk = aijvijk −
2

w
aijwivkj

=
n

y
(Hkw +Hwk + (e · ∇v)k)−

n

y2
(Hw + e · ∇v)yk .

Therefore

aijvkij =
n

y
(Hkw +Hwk + (e · ∇v)k)−

n

y2
(Hw + e · ∇v)yk +

2

w
aijwivkj

− vk
w2

+ (n− 1 +
1

w2
)vk (4.6)

and

aijvkvijk −
2

w
aijwivkvkj =

n

y
∇v · (∇Hw +H∇w +∇(e · ∇v))− ne · ∇v

y2
(Hw + e · ∇v) .

Note that we also have

aijwij = aij(
vkvkij
w

+
1

w
aklvkivlj)

=
1

w
(vka

ij(vijk − vjδik + vkδij)) +
1

w
aijaklvkivlj .

Now by the definition of the operator L, we have(
∂

∂t
− L

)
w

= e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

− y2

n

(
aijwij −

2

w
aijwiwj −

n

wy
(σ∇v + we) · ∇w

)
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= e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

− y2

n

[
n

wy
∇v ·

(
∇Hw +H∇w +∇(e · ∇v)

)
− ne · ∇v

wy2
(Hw + e · ∇v)

]
+
y2aijvivj
nw

− y2(w2 − 1)

nw
(n− 1 +

1

w2
)− y2

nw
aijaklvkivlj

− 2y2

w2n
aijwivkvkj +

2y2

wn
aijwiwj +

y

w
(σ∇v + we) · ∇w

= e · ∇v(2H − σ)− y

w
(∇v · ∇(e · ∇v)− we · ∇w) +

(e · ∇v)2

w

+
y2

nw
(1− 1

w2
)− y2(w − 1

w
)(1− 1

n
+

1

nw2
)− y2

nw
aijaklvkivlj

≤ e · ∇v(2H − σ)− y

w
(−y(w2 − 1)) +

(e · ∇v)2

w
+
y2

nw
(1− 1

w2
)

− y2(w − 1

w
)(1− 1

n
+

1

nw2
)− 1

w
(Hw + e · ∇v)2

= − σ(e · ∇v) +
y2

n

(
w − 1

w

)
−H2w .

Here we have used equations (4.3), (2.8) and (by Cauchy-Schwarz inequality)

aijaklvkivlj ≥
1

n
(aijvij)

2 =
n

y2
(Hw + e · ∇v)2.

Hence we conclude that (
∂

∂t
− L

)
w ≤ 2w .

For any ε ≥ 0 sufficiently small and at any point z0 ∈ ∂Ωε corresponding to P0 = eφ
ε(z0)z0 ∈

Γε, let Bε
1 = Bε

R1
(a′,−σR1) and Bε

2 = Bε
R2

(b′, σR2) be the (Euclidean) balls with radii R1 > 0
and R2 > 0, respectively, such that Bε

1 and Bε
2 are tangent at P0, and Bε

1 ∩ {xn+1 = ε} is
internally tangent to Γε at P0, and Bε

2 ∩ {xn+1 = ε} is externally tangent to Γε at P0. Recall
that Sε1 = ∂Bε

1 ∩ Hn+1 has constant (hyperbolic) mean curvature σ with respect to its outward
normal while Sε2 = ∂Bε

2 ∩Hn+1 has constant mean curvature σ with respect to its inward normal.
Moreover, we can represent Sε1 and Sε2 near P0 as local radial graphs Xi = eϕ

ε
iz, i = 1, 2 for

z ∈ Ωε ∩Bε0(z0) where ε0 depends only on the radii of Bε
i ’s and the uniformly star-shapedness of

Γ. Then the uniform local ball condition implies

ϕε1(z) ≤ vε0 ≤ ϕε2(z) , z ∈ Ωε ∩Bε0(z0) . (4.7)

From this point of view, one sees that Sε1 and Sε2 serve as good local barriers of Σε
0 around P0 and

moreover we have |∇vε0|(P0) ≤ C, where C is independent of ε and P0 ∈ Γε . Also note that Sε1
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and Sε2 have constant hyperbolic mean curvature σ (w.r.t. respective normals) and they are static
under the MMCF (2.10) as local radial graphs. Therefore by the maximum principle, they also
serve as good local barriers of Σε

t around (P0, t) for all t ∈ [0, Tε) and we have

|∇vε|(P0, t) ≤ C (4.8)

for all t ∈ [0, Tε), where C is independent of ε and P0 by the uniform local ball condition.

Lemma 4.3. Locally Sε1 is interior to Vε and Sε2 is exterior to Vε .

Proof. This follows from the maximum principle .

Let PΩε(T
?
ε ) = Ωε × {0} ∪ ∂Ωε × [0, T ?ε ) be the parabolic boundary of Ωε × [0, T ?ε ). Then

Lemma 4.1, equation (4.8) and the Lipschitz bound on the initial radial graph Σε
0 immediately yield

(see e.g. [L96, thoerem 9.5])

wε(z, t) ≤ e3T ?ε max
(z,t)∈PΩε(T ?ε )

wε(z, t) ≤ C(ε) , (z, t) ∈ Ωε × [0, T ?ε ) . (4.9)

With this gradient estimate (and therefore the Hölder gradient estimate, see e.g. [L96, theorem
12.10]), for any fixed ε > 0 sufficiently small, the AMMCF with the approximate initial hypersur-
face satisfying the conditions in Theorem 1.1 exists uniquely by the parabolic comparison principle
and vε ∈ C∞(Ωε × (0,∞))∩C0+1,0+ 1

2 (Ωε × (0,∞))∩C0(Ωε × [0,∞)) by Schauder estimates.
Therefore we have proved

Theorem 4.4. Let Γ, Γε and Σε
0’s be as in Theorem 1.1. Then there exists a unique solution

F(z, t) ∈ C∞(Ωε × (0,∞)) ∩ C0+1,0+ 1
2 (Ωε × (0,∞)) ∩ C0(Ωε × [0,∞)) to the AMMCF (1.3).

5 Sharp gradient estimates

Since the earlier gradient estimate is too crude to prove the uniform convergence of the AMMCF’s
to the MMCF as ε → 0, we need a uniform sharp gradient estimate. To do this, we will need the
next main technical result.

Theorem 5.1. Let v ∈ C3, 3
2 (Ω× (0, T )) be a function satisfying equation (2.10) for some T > 0

and Ω ⊆ Sn+ . Then(
∂

∂t
− L

)
(ev(w + σ(y + e · ∇v))) ≤ 0 in Ω× (0, T ) , (5.1)

where L is the linear elliptic operator from Lemma 4.1 .
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Proof. From the proof of Lemma 4.1 we know that(
∂

∂t
− L

)
w ≤ −σ(e · ∇v) +

y2

n

(
w − 1

w

)
−H2w . (5.2)

We also have (
∂

∂t
− L

)
y = −L(y)

= − y2

n
(aijyij −

2

w
aijwiyj −

n

wy
(σ∇v + we) · ∇y)

= − y2

n
(−y

∑
aii − 2

w
aijwiyj −

n

wy
(σ∇v + we) · ∇y) (5.3)

= − y2

n
(− 2

w
aijwiyj −

n

wy
(σe · ∇v + w) + y − y

w2
)

=
2y2

nw
aijwiyj +

y

w
(σe · ∇v + w)− y3

n
+

y3

nw2
,

and (
∂

∂t
− L

)
(e · ∇v) = e · ∇vt − L(e · ∇v)

= e · ∇(yw(H − σ))− y2

n

[
aij(e · ∇v)ij −

2

w
aijwi(e · ∇v)j

− n

wy
(σ∇v + we) · ∇(e · ∇v)

]
= e · (∇yw(H − σ) + y∇w(H − σ) + yw∇H)

− y2

n

[
aij(ykvkij − 2yvij − yjvi)−

2

w
aijwi(ykvkj − yvj)

− nσ

wy
∇v · ∇(e · ∇v)− n

y
e · ∇(e · ∇v)

]
= (1− y2)w(H − σ) + (∇w · ∇y)y(H − σ) + ywe · ∇H

− y2

n

[
yk
(n
y

(Hkw +Hwk + (e · ∇v)k)−
n

y2
(Hw + e · ∇v)yk +

2

w
aijwivkj

− vk
w2

+ (n− 1 +
1

w2
)vk
)
− ∇v · ∇y

w2
− 2n(Hw + e · ∇v)

− 2

w
aijwiykvkj +

2y

w
aijwivj −

nσ

wy
∇v · ∇(e · ∇v)− n

y
e · ∇(e · ∇v)

]
= 2wH − σw(1− y2)− σy∇w · ∇y + (1 +

y2

n
+

y2

nw2
)e · ∇v

− 2y3

nw3
∇v · ∇w +

yσ

w
∇v · ∇(e · ∇v) ,
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where we used equations (2.8), (4.1)-(4.3) and (4.6) . Moreover,

(
∂

∂t
− L

)
v = yw(H − σ)− y2

n
(aijvij −

2

w
aijwivj −

n

wy
(σ∇v + we) · ∇v)

= yw(H − σ)− y2

n
(
n

y
Hw − 2

w3
∇v · ∇w − nσw

y
+
nσ

wy
)

= yw(H − σ)− yHw +
2y2

nw3
∇v · ∇w + yσw − yσ

w

=
2y2

nw3
∇v · ∇w − yσ

w
.

(5.4)

Next, we note that for a function η defined on Ω× (0, T ) ,

e−v
(
∂

∂t
− L

)
(evη) = η(vt − Lv) + (ηt − Lη)− y2

n
aijvivjη −

2y2

n
aijviηj . (5.5)

In particular,

e−v
(
∂

∂t
− L

)
(evw) ≤w

(
2y2

nw3
∇v · ∇w − yσ

w

)
+

[
−σ(e · ∇v) +

y2

n
(w − 1

w
)−H2w

]
− y2

n
aijvivjw −

2y2

n
aijviwj

=
2y2

nw2
∇v · ∇w − yσ − σ(e · ∇v) +

y2

n
(w − 1

w
) (5.6)

−H2w − y2

n
(w − 1

w
)− 2y2

nw2
∇v · ∇w

= − yσ − σ(e · ∇v)−H2w ,

and

e−v
(
∂

∂t
− L

)
(evy) = y

(
2y2

nw3
∇v · ∇w − yσ

w

)
+

2y2

nw
aijwiyj

+
y

w
(σe · ∇v + w)− y3

n
+

y3

nw2
− y3

n
aijvivj −

2y2

n
aijviyj

=
2y3

nw3
∇v · ∇w − y2σ

w
+

2y2

nw
∇y · ∇w − 2y2

nw3
(∇v · ∇w)(∇y · ∇v)

+
σy

w
(e · ∇v) + y − 2y3

n
(1− 1

w2
)− 2y2

nw2
∇v · ∇y ,
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and also

e−v
(
∂

∂t
− L

)
(ev(e · ∇v))

= (e · ∇v)(
2y2

nw3
∇v · ∇w − yσ

w
) + 2wH

− σw(1− y2)− σy∇w · ∇y + (e · ∇v)(1 +
y2

n
+

y2

nw2
)

− 2y3

nw3
∇v · ∇w +

yσ

w
∇v · ∇(e · ∇v)− y2

n
(e · ∇v)(1− 1

w2
)− 2y2

n

∇v · ∇(e · ∇v)

w2

=
2y2

nw3
(∇v · ∇w)(e · ∇v)− yσ

w
(e · ∇v) + 2wH − σw(1− y2)− σy∇w · ∇y

+ (e · ∇v)(1 +
2y2

nw2
)− 2y3

nw3
∇v · ∇w + (

yσ

w
− 2y2

nw2
)(we · ∇w − y(w2 − 1)), .

Therefore, combining the above two equations gives

e−v
(
∂

∂t
− L

)
(ev(y + (e · ∇v)))

= − y2σ

w
+ (

2y2

nw2
− σy

w
)y(w2 − 1) + y − 2y3

n
(1− 1

w2
) (5.7)

+ 2wH − σw(1− y2) + e · ∇v
= y + 2wH − σw + e · ∇v .

Finally, combining equations (5.6) and (5.7) implies(
∂

∂t
− L

)
(ev(w + σ(y + e · ∇v))) ≤ −ev(H − σ)2w ≤ 0 .

The uniform local ball condition (see equation (4.8)) and Theorem 5.1, together with the max-
imum principle allow us to conclude :

Corollary 5.2. Let vε be the regular solution to the AMMCF (2.12) with initial hypersurface Σε
0

as in Theorem 1.1. Then we have

|∇vε(z, t)| ≤ C , for all (z, t) ∈ Ωε × [0,∞) , (5.8)

where C is a constant independent of ε .

With the aid of Corollary 5.2 and the Arzelà-Ascoli theorem, letting ε → 0, we can extract a
subsequence of the regular solutions {Σεi

t } to the AMMCF (1.3), converging uniformly to Σt ∈
C∞(Sn+ × (0,∞)) ∩ C0+1,0+ 1

2 (Sn+ × (0,∞)) ∩ C0(Sn+ × [0,∞)) which solves the MMCF (1.2)
with initial hypersurface Σ0 = limεi→0 Σεi

0 .
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6 The boundary regularity

In this section we show the boundary regularity of the MMCF (1.2) in Theorem 1.1. The proof fol-
lows closely the idea in section 4.3 of [GS00], cf. [NS96]. Under the uniform local ball condition,
let P0 ∈ Γ and set ε = 0 in equation (4.7). Let us denote Si = S0

i and ϕi = ϕ0
i , i = 1, 2. Then for

some ε2 > 0 we have

ϕ1(z) ≤ v(z, t) ≤ ϕ2(z), (z, t) ∈
(
Sn+ ∩Bε2(z0)

)
× [0,∞) . (6.1)

Note that the tangent plane T to S1 and S2 at P0 is a radial graph T = eηz in Sn+ ∩ {z · ν0 > 0}
with

η(z) = log
P0 · e1

λy + z · e1
(6.2)

where λ = σ√
1−σ2

, e1 is the exterior unit normal to Γ at P0 and ν0 = σe +
√

1− σ2e1 is the unit
normal vector to S1 and S2 at P0. We also have

ϕ1(z) ≤ η(z) ≤ ϕ2(z) , z ∈ Sn+ ∩Bε2(z0). (6.3)

We will need the following more precise estimate on v .

Lemma 6.1. v(z, t) = η(z) +O(|z− z0|2) in (Sn+ ∩Bε2(z0))× [0,∞).

Proof. This follows immediately from equation (6.1) and the estimates |ϕi − η|(z) = O(|z −
z0|2), i = 1, 2 from [GS00, lemma 4.5 ].

Now let p ∈ Sn+ and δ be the geodesic distance of p to ∂Sn+ with δ < ε2. Let q ∈ ∂Sn+
be the closest point to p. Introduce normal coordinates x = (x1, . . . , xn) in TqSn+ with x(p) =
(0, . . . , 0, δ). We observe that equation (2.10) may be written as

∂v

∂t
− y2w

n
∇i
(
∇iv
w

)
+ y∇y · ∇v + σyw = 0

or in local coordinates (cf. equation (4.33) of [GS00]):

∂v

∂t
− y2w

n
√
γ

∂

∂xi

(√
γγij

w

∂v

∂xj

)
+ yγkl

∂y

∂xk

∂v

∂xl
+ σyw = 0 , (6.4)

where γ = det(γij) and w2 = 1 + γij ∂v∂xi
∂v
∂xj

. One sees easily that both v and η satisfy equation
(6.4) (note that the hyperplane T has constant hyperbolic mean curvature σ as well and locally as
radial graph T is static under the MMCF).

Set ṽ(x, t) = 1
δ v(δx, t) and η̃(x) = 1

δη(δx). Then (6.4) transforms to

∂ṽ

∂t
− ỹ2w̃

n
√
γ̃

∂

∂xi

(√
γ̃γ̃ij

w̃

∂ṽ

∂xj

)
+ ỹγ̃kl

∂ỹ

∂xk

∂ṽ

∂xl
+ σỹw̃ = 0 , (6.5)
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where ỹ(x) = 1
δy(δx), γ̃ij(x, t) = γij(δx, t), γ̃ = det(γ̃ij) and w̃2 = 1 + γ̃ij ∂ṽ∂xi

∂ṽ
xj
.

Under this transformation we can move point p to the “interior” point p̃ = (0, ..., 0, 1). For
any T > 0 and in BT = B 1

2
(p̃) × (0, T ), one observes that ỹ = O(1). Also since sup |∇ṽ| =

sup |∇v| ≤ C and by [L96, theorem 12.10], ṽ is uniformly C1+α, 1+α
2 . Moreover, since η̃ satisfies

the same equation (6.4), ṽ − η̃ satisfies a linear uniformly parabolic equation L(ṽ − η̃) = 0 with
uniformly Hölder continuous coefficients. Then by the standard parabolic Schauder-type estimates
and Lemma 6.1 we get

sup
BT

(
|∇(ṽ − η̃)|+ |∇2(ṽ − η̃)|

)
≤ C1 sup

BT

|ṽ − η̃| ≤ Cδ .

Returning to the original variable we obtain

|∇v|+ |∇2v| ≤ C , where C is independent of δ . (6.6)

Now by equation (2.3) and Lemma 2.1, the energy functional I is non-increasing as time t increases
and the MMCF subconverges to a smooth complete hypersurface Σ∞ ∈ C∞(Sn+)∩C1+1(Sn+) with
constant hyperbolic mean curvature σ and ∂Σ∞ = Γ ⊂ ∂∞Hn+1 . Thus we have proved

Theorem 6.2. Let v ∈ C∞(Sn+×(0,∞))∩C0+1,0+ 1
2 (Sn+×(0,∞))∩C0(Sn+×[0,∞)) be a solution

to the MMCF (2.11) and φ ∈ C1+1(∂Sn+). Then v ∈ C∞(Sn+×(0,∞))∩C1+1, 1
2

+ 1
2 (Sn+×(0,∞))∩

C0(Sn+ × [0,∞)). Moreover, there exist ti ↗∞ such that Σti = F (Sn+, ti) converges to a unique
stationary smooth complete hypersurface Σ∞ ∈ C∞(Sn+)∩C1+1(Sn+) (as a radial graph over Sn+)
which has constant hyperbolic mean curvature σ and ∂Σ∞ = Γ asymptotically.

So now all that is left to prove of Theorem 1.1 is the uniform convergence of the MMCF in the
case that Σε

0 has mean curvature Hε ≥ σ for all ε > 0 sufficiently small .

7 Uniform convergence

In this section we will show the uniform convergence of the regular solution to the MMCF (1.2) as
t → ∞ in the case of Hε ≥ σ initially for all ε > 0 sufficiently small. To do this, we first show
that for any fixed ε > 0 sufficiently small and for any z0 ∈ Ωε, vε(z0, t) is non-decreasing along
the flow in this case, where vε is the regular solution to the AMMCF (2.12) for radial graphs . This
is an immediate corollary of the following lemma.

Lemma 7.1. Let v ∈ C3, 3
2 (Ω × (0, T )) be a function satisfying equation (2.10) for some T > 0

and Ω ⊆ Sn+ . Then (
∂

∂t
− L̃

)
(yw(H − σ)) = 0 in Ω× (0, T ) , (7.1)

where L̃ is the linear elliptic operator

L̃ ≡ y2

n
aij∇ij +

[
2y2

nw3
(∇w · ∇v)∇v − 2y2∇w

nw
− σy

w
∇v − ye

]
· ∇.
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Proof. Let g = H − σ and h = ywg, we have

∂v

∂t
= yw(H − σ) = ywg = h , (7.2)

∂w

∂t
=

1

w
∇v · ∇(ywg) =

1

w
∇v · ∇h , (7.3)

∂aij

∂t
=

2vivj∇v · ∇h
w4

− hivj + hjvi
w2

, (7.4)

and
∂H

∂t
=

y

nw
(aijt vij + aij(vt)ij)−

yaijvijwt
nw2

− (e · ∇v)t
w

+
(e · ∇v)wt

w2
. (7.5)

Therefore by equations (7.3)-(7.5) and (2.8), we have

∂h

∂t
= ywtg + ywgt

= ywtg + yw

[
yaijt vij + yaijhij

nw
− yaijvijwt

nw2
− (e · ∇v)t

w
+

(e · ∇v)wt
w2

]

= yHwt − σywt +
y2vij
n

(
2vivj∇v · ∇h

w4
− hivj + hjvi

w2

)
+
y2

n
aijhij

− y(Hw + e · ∇v)

w
wt − y(e · ∇v)t +

y

w
(e · ∇v)wt

= yHwt −
σy

w
∇v · ∇h+

2y2

nw3
(∇w · ∇v)(∇v · ∇h)− 2y2∇w · ∇h

nw

+
y2

n
aijhij − yHwt − y(e · ∇v)t

=
y2

n
aijhij +

2y2

nw3
(∇w · ∇v)(∇v · ∇h)− 2y2∇w · ∇h

nw
− σy

w
∇v · ∇h− y(e · ∇h).

This completes the proof of the lemma using the definition of the operator L̃.

Corollary 7.2. Suppose Σε
0 has mean curvature Hε ≥ σ. Then ∂vε

∂t = ywε(Hε − σ) ≥ 0 for all
(z, t) ∈ Ωε × [0,∞) .

Proof. Since for any ε > 0 sufficiently small, vε(z, t) ≡ φε(z) for all (z, t) ∈ ∂Ωε × (0,∞), we
have vt ≡ 0 on ∂Ωε × (0,∞). Then the condition Hε ≥ σ at t = 0, Lemma 7.1 and the maximum
principle imply that ∂v

ε

∂t = ywε(Hε − σ) ≥ 0.

Theorem 7.3. Let Γ, Γε and Σε
0’s be as in Theorem 1.1 and suppose Σε

0 has mean curvature
Hε ≥ σ for all ε > 0 sufficiently small. Then Σt converge uniformly for all t to a unique smooth
complete star-shaped hypersurface Σ∞ ∈ C∞(Sn+) ∩ C1+1(Sn+) with constant hyperbolic mean
curvature σ and boundary Γ.
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Proof. The subconvergence of the flow follows from Theorem 6.2. Corollary 7.2 then yields ∂v
∂t ≥

0, where v is the regular solution to the MMCF (2.11) for radial graphs. This monotonicity of
v implies that the regular solution Σt to the MMCF (1.2) with initial hypersurface Σ0 converges
uniformly for all t to Σ∞ .

This completes the proof of Theorem 1.1 .

8 Proof of Theorem 1.2 and “good” initial hypersurfaces

In this section we will prove Theorem 1.2 and give an example of “good” initial hypersurfaces for
the Dirichlet problems (2.12) and (2.11).

Proof. (of Theorem 1.2) Note that since for any ε > 0 sufficiently small, we have Hε ≥ σ, Σε
0

(as a radial graph of the function ev
ε
0 over Ωε) is a subsolution to the AMMCF (2.12). Therefore

Σε
0 serves as a natural lower barrier for the AMMCF. Combining this with the uniform exterior

local ball condition yields the same proof as the one of Theorem 1.1 given in the previous sections,
except the C1+1 boundary regularity of the flow. The C1+1 boundary regularity of the limiting
hypersurface Σ∞ follows from an elliptic version of the argument given in Section 6, see also
section 4.3 of [GS00] .

To find an example of “good” initial hypersurfaces in Theorem 1.2, for any ε > 0 sufficiently
small we will restrict ourselves to looking for an initial smooth (C2-) hypersurface Σε

0 = F(Ωε, 0)
that can be represented as a radial graph of the function ev

ε
0 over Ωε ⊂ Sn+ and has hyperbolic mean

curvature Hε ≥ σ and Γε as its boundary. Moreover, Σε
0’s satisfy the uniform exterior local ball

condition and |∇vε0|(z) ≤ C for all z ∈ Ωε, where C is a constant independent of ε. To do this, we
will simply apply the implicit function theorem to construct a smooth hypersurface Σε

0 ∈ Hn+1 that
is of constant hyperbolic mean curvature close to 1 and has boundary Γε to serve as such “good”
initial hypersurface. As we shall see, the construction relies heavily on the estimates in [GS00] for
hypersurfaces with constant mean curvature as vertical graphs.

From equations (2.7) and (2.13), one observes that if a smooth radial graph of the function ev

over Ωε has constant hyperbolic mean curvature σ with prescribed boundary Γε, then v satisfies aijvij =
n

y
(σw + e · ∇v) in Ωε ,

v = φε on ∂Ωε ,
(8.1)

where φε ∈ C1+1(∂Ωε) is assumed.
It is clear that for σ = 1, the flat domain Dε ⊂ {xn+1 = ε} enclosed by Γε (known as

“horosphere”) is the corresponding smooth radial graph satisfying (8.1). Therefore, there exists
σ0 ∈ [0, 1)∩[σ, 1) with σ0 being sufficiently close to 1 so that the implicit function theorem applies
to (8.1). In this way, we can obtain a hypersurface Σε

0 = {evε0z : z ∈ Ωε}, where vε0 ∈ C∞(Ωε) ∩
C1+1(Ωε). Moreover Σε

0 has hyperbolic mean curvature σ0 and ∂Σε
0 = Γε. By continuity, Σε

0 is
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close to the flat domain Dε and for all ε ≥ 0 the uniform exterior local ball condition is satisfied by
Σε

0’s.
With this specific construction of the initial hypersurface, we next give a preliminary C0 esti-

mate for the solution to the AMMCF (1.3) .

Lemma 8.1. For Σε
t with initial hypersurface Σε

0 given above, there holds the height estimate

uε(z, t) <
d(D)

2

√
1− σ
1 + σ

+ ε , (z, t) ∈ Ωε × [0, Tε) , (8.2)

where d(D) is the Euclidean diameter of D (the flat domain enclosed by Γ) .

Proof. This is a direct parabolic generalization of [GS00, lemma 3.2]. Let B be a ball of radius
R with center on the plane {xn+1 = −σR} such that the n-ball B ∩ {xn+1 = ε} has radius
r = d(D)/2 and contains Dε. By continuity, we can choose σ0 so small that Σε

0 ⊆ B as well. By
(i) of Lemma 3.4, Σε

t is contained in B ∩Hn+1 for any t ∈ [0, Tε), and therefore

uε(z, t) < (1− σ)R , (z, t) ∈ Ωε × [0, Tε) .

Moreover, R2 = (ε+ σR)2 + r2, which implies

r√
1− σ2

+
σ

1− σ2
ε ≤ R ≤ r√

1− σ2
+

1 + σ

1− σ2
ε . (8.3)

This completes the proof.

Remark 8.2. In particular, on Σε
0 there holds the height estimate

uε0 <
d(D)

2

√
1− σ0

1 + σ0
+ ε . (8.4)

The only thing left to show is |∇vε0|(z) ≤ C for some constant C that is independent of
ε ≥ 0 and z ∈ Ωε. The first step is to obtain a good barrier for vε0 at any point z0 ∈ ∂Ωε

corresponding to P0 = eφ
ε(z0)z0 ∈ Γε. For convenience, we choose a coordinate system around

P0 so that the exterior normal to Γε at P0 is eε1. Let δ1 > 0 (respectively δ2) be such that for
each point P ∈ Γε, a ball of radius δ1 (respectively δ2) is internally (respectively externally)
tangent to Γε at P . Let Bε

i = Bε
i (σ0), i = 1, 2 be the (Euclidean) balls of radius Ri centered at

Ci = P0 + (−1)iδie
ε
1 + (ai − ε)e , where

Ri =
−(−1)iεσ0 +

√
ε2 + δ2

i (1− σ2
0)

1− σ2
0

and ai = (−1)iRiσ0 . (8.5)

Recall that Sε1(σ0) = ∂Bε
1 ∩Hn+1 has constant (hyperbolic) mean curvature σ0 with respect to its

outward normal while Sε2(σ0) = ∂Bε
2 ∩ Hn+1 has constant mean curvature σ0 with respect to its

inward normal. Moreover, by our construction, Bε
1 and Bε

2 are tangent at P0, Bε
1 ∩ {xn+1 = ε} is

internally tangent to Γε at P0, and Bε
2 ∩ {xn+1 = ε} is externally tangent to Γε at P0.
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Lemma 8.3 ([GS00]). Locally Sε1(σ0) is interior to Σε
0(σ0) and Sε2 is exterior to Σε

0 .

Proof. This follows from the maximum principle for the equation (2.7) .

Similar to equation (4.7), we see that Sε1(σ0) and Sε2(σ0) serve as good local barriers of Σε
0

around P0 and we obtain that
|∇vε0|(P0) ≤ C , (8.6)

where C is independent of ε and P0 ∈ Γε .
The next step is to obtain a uniform interior gradient bound for vε0 and one observes that we

only need to bound

Xε
0 · νεE =

ev
ε
0√

1 + |∇vε0|2

from below uniformly in ε . This can be done as follows. Firstly note that since Dε is a vertical
graph over D and by continuity (induced from the implicit function theorem used in the construc-
tion of Σε

0), Σε
0 is a vertical graph of the function uε0 over D as well. And similar to Lemma 8.1,

we have another height estimate for vertical graphs.

Lemma 8.4 ([GS00], lemma 3.5). On Σε
0 (that has constant mean curvature σ0) there holds

uε0(x′) ≥ d(x′)

√
1− σ0

1 + σ0
+

σ0ε

1 + σ0
, x′ ∈ D (8.7)

where d(x′) is the distance from x′ to ∂D .

Proof. For x′ ∈ D, let r = d(x′) and R > 0 satisfy R2 = (ε+ σ0R)2 + d2(x′). Note that
BR(x′,−σ0R) ∩ {xn+1 = ε} ⊂ Dε and ∂BR(x′,−σ0R) ∩ Hn+1 has constant hyperbolic mean
curvature σ0. Then by (ii) of Lemma 3.3,

uε0(x′) > (1− σ0)R .

Now the first inequality in (8.3) gives (8.7) .

Moreover, there exists ε1 > 0 such that, for any σ0 ∈ [1 − ε1, 1), there exists δ1 = δ1(ε1) so
that in the δ1-neighborhood of Γ in D one has |∇vε0| ≤ C

2 , where C is the uniform gradient bound
of vε0 on Γε as in equation (8.6). Away from the δ1-neighborhood, by Lemma 8.4

Xε
0 · νεE =Xε

0 · e−Xε
0 · (e− νεE)

≥ δ1

√
1− σ0

1 + σ0
− evε0

√√√√2− 2√
1 + |∇̃uε0|2

, (8.8)
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where ∇̃ is the Levi-Civita connection on Rn+1 and we used that

νεE =

 −∇̃uε0√
1 + |∇̃uε0|2

,
1√

1 + |∇̃uε0|2


since Σε

0 is a vertical graph.
Now using the fact that Hε

E is subharmonic on the constant mean curvature hypersurface Σε
0

(see Theorem 2.2 of [GS00]), we have

Lemma 8.5 ([GS00], corollary 2.3). For any λ ∈ (0, 1) ,√
1 + |∇̃uε0|2 ≤

1

(1− λ)σ0
in Ωλ , (8.9)

where Ωλ =
{
x ∈ D : uε0 ≤ λσ0

supΓε
Hε
E

}
.

To make use of Lemma 8.5, we also need the following estimate on the Euclidean mean cur-
vature Hε

E of Σε
0 on ∂Σε

0 = Γε. For x ∈ ∂D = Γ, denote by r1(x) and r2(x) the radius of the
largest exterior and interior spheres to ∂D at x, respectively, and let r1 = minx∈∂D r1(x), r2 =
minx∈∂D r2(x). Then we have

Lemma 8.6 ([GS00], lemma 3.3). For ε > 0 sufficiently small,

−
√

1− σ2
0

r2
− ε(1− σ0)

r2
2

<
σ0 − e · νεE

u
= Hε

E <

√
1− σ2

0

r1
+
ε(1 + σ0)

r2
1

on Γε .

In particular, e · νεE → σ0 on Γε as ε→ 0, provided that ∂D is C1+1.

Note that in (8.8), if |∇̃uε0| is sufficiently small then Xε
0 · νεE(x′) ≥ C(δ1) for any x′ ∈ D

that is away from the δ1-neighborhood of Γ. In the other case, if |∇̃uε0| is uniformly bounded from
below, then by combing the estimates in Remark 8.2 and Lemmas 8.4, 8.5, 8.6, we can choose σ0

sufficiently close to 1 (for fixed ε1) such that we still have

Xε
0 · νεE(x′) ≥ C(δ1) (uniformly in ε)

for any x′ ∈ D\δ1-neighborhood .
Now we can conclude

Theorem 8.7. There exist constants ε0 > 0 and σ0 ∈ (0, 1) ∩ [σ, 1) that is sufficiently close to 1
such that for all 0 ≤ ε ≤ ε0, there exists a smooth hypersurface Σε

0 with ∂Σε
0 = Γε ⊂ {xn+1 = ε}

and whose hyperbolic mean curvature is σ0. Additionally, Σε
0 can be represented as a radial graph

of a function ev
ε
0 over Ωε ⊂ Sn+ and

|∇vε0|(z) ≤ C , z ∈ Ωε , (8.10)

where C is a constant independent of ε. Moreover, the Σε
0’s satisfy the uniform exterior local ball

condition.
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9 Interior gradient bounds and continuous boundary data

9.1 Interior gradient bounds

We will next provide a version of a priori interior gradient estimate for the regular solution to
the MMCF (2.11), which is essential for the existence result of the MMCF with less regular (e.g.
continuous) boundary data. The idea follows closely the work of Evans and Spruck [ES92].

Lemma 9.1. Let v be a C3, 3
2 function satisfying equation (2.11) in Bρ(P ) × (0, 2T ) for some

T > 0, where Bρ(P ) ⊂ {y ≥ ε} . Then√
1 + |∇v|2(P, T ) = w(P, T ) ≤ C1e

C2
ρ2 ,

where C1, C2 are non-negative constants depending only on n, σ, ε, T and ‖v‖L∞ .

Proof. Define

L =
∂

∂t
− L ,

where L is the linear elliptic operator from Lemma 4.1 . Without loss of generality we may assume
(by adding a constant to v) 1 ≤ v ≤ C0. We will derive a maximum principle for the function
h = η(z, t, v(z, t))w by computing Lh in Bρ(P ) × (0, 2T ), where η is non-negative, vanishes
on the set {t(ρ2 − (dP (z)2) = 0}, and is smooth where it is positive. Here dP (z) is the distance
function (on the sphere) from P , the center of the geodesic ball Bρ(P ). Then h is non-negative
and vanishes on the parabolic boundary of Bρ(P )× (0, 2T ) .

Choose
η ≡ g(ϕ(z, t, v(z, t))) ; g(ϕ) = eKϕ − 1 ,

with the constant K > 0 to be determined and

ϕ(z, t, v(z, t)) =

[
−v(z, t)

2v(P, T )
+
t

T

(
1−

(
dP (z)

ρ

)2
)]+

.

By Lemma 4.1 we have

Lh = ηLw + wLη − 2y2

n
aijηiwj

= ηLw + w

(
ηt −

y2

n
Mη

)
≤ w

(
2η + ηt −

y2

n
Mη

)
, (9.1)

where

M = aij∇ij −
n

y

(
σ
∇v
w

+ e

)
· ∇ .

We will choose K so that 2η + ηt − y2

nMη ≤ 0 on the set where h > 0 and w is large.
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A straightforward computation gives that on the set where h > 0 (using equation (2.10))

Mη = g′(ϕ)

(
aij∇ijϕ−

n

y

(
σ
∇v
w

+ e

)
· ∇ϕ

)
+ g′′(ϕ)aij∇iϕ∇jϕ

=KeKϕ

[
−nvt

2y2v(P, T )
− nσ

2ywv(P, T )
− 2t

ρ2T

(
aij∇idP∇jdP + dPa

ij∇ijdP
)

+
2nt

ρ2yT

(
σ
∇v
w

+ e

)
· dP∇dP

]

+K2eKϕaij
(

vi
2v(P, T )

+
2t

ρ2T
dP∇idP

)(
vj

2v(P, T )
+

2t

ρ2T
dP∇jdP

)
.

Using the definition of aij we find

aij
(

vi
2v(P, T )

+
2t

ρ2T
dP∇idP

)(
vj

2v(P, T )
+

2t

ρ2T
dP∇jdP

)
=

|∇v|2

4(v(P, T ))2w2
+

2tdP
Tv(P, T )ρ2w2

〈∇v,∇dP 〉+
4t2d2

P

T 2ρ4

(
1−

〈
∇v
w
,∇dP

〉2
)
,

where 〈 , 〉 denotes the inner product with respect to the induced Euclidean metric on Σt. Therefore
we have

2η + ηt −
y2

n
Mη = 2η +KeKϕ

 −vt
2v(P, T )

+
1−

(
dP
ρ

)2

T

− y2

n
Mη

≤ 2η +
KeKϕ

T
− y2

n
Mη − KeKϕvt

2v(P, T )

≤ −y
2

n
eKϕ

[
K2

(
|∇v|2

4w2(v(P, T ))2
− 1

w2

(
32

ρ2
+

|∇v|2

8(v(P, T ))2

))
− CK

ρ2
− C

]
≤ −y

2

n
eKϕ

[
K2

32
− CK

ρ2
− C

]
,

whenever w > max{
√

2, 32C0
ρ } = 32C0

ρ so that |∇v|
2

w2 > 1
2 and 32

w2ρ2 <
1

32C2
0

.

Thus, the choice of K = 32CC0

(
1 + C0

ρ2

)
gives

Lh ≤ w

[
2η + ηt −

y2

n
Mη

]
< 0 (9.2)

on the set where h > 0 and w > 32C0
ρ . Then by the maximum principle, (9.2) gives

h(P, T ) =
(
e
K
2 − 1

)
w(P, T ) ≤ maxh ≤

(
e2K − 1

) 32C0

ρ
(9.3)
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and hence

w(P, T ) ≤ C1e
CC0
ρ2

for a slightly larger constant C . This completes the proof.

9.2 Continuous boundary data

By standard modulus of continuity estimates (see e.g. [L96, theorem 10.18]) and with the aid of the
a priori interior gradient estimate (see Lemma 9.1) proved in the previous section, one can further
relax the regularity of the boundary data to be only continuous via an approximation argument. We
have

Theorem 9.2. Let Γ be the boundary of a continuous star-shaped domain in {xn+1 = 0} and Σ0 =
limε→0 Σε

0 be as in Theorem 1.1 or Theorem 1.2. Then there exists a unique solution F(z, t) ∈
C∞(Sn+ × (0,∞)∩C0(Sn+ × [0,∞)) to the MMCF (1.2). Moreover, there exist ti ↗∞ such that
Σti = F (Sn+, ti) converges to a unique stationary smooth complete hypersurface Σ∞ ∈ C∞(Sn+)∩
C0(Sn+) (as a radial graph over Sn+) which has constant hyperbolic mean curvature σ and ∂Σ∞ =
Γ asymptotically.
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