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Neural  networks  may  be  made  faster  and  more  efficient  by  reducing  the  amount  of  memory  and
computation used. In this paper, a new type of neural network, called an Adaptive Neural Network, is
introduced. The proposed neural network is comprised of 5 unique pairings of events. Each pairing is a
module, and the modules are connected within a single neural network. The pairings are simulations of
respondent conditioning. The simulations do not necessarily represent conditioning in actual organisms. In
the theory presented here, the pairings in respondent conditioning become aggregated together to form a
basis  for  operant  conditioning.  The  specific  pairings  are  as  follows.  The  first  pairing  is  between  the
reinforcer and the neural stimulus that elicits the behavior. This pairing strengthens and makes salient
that  eliciting  neural  stimulus.  The second pairing is  that of  the now salient neural  stimulus with the
external  environmental  stimulus  that  precedes  the  operant  behavior.  The  third  is  the  pairing  of  the
environmental  stimulus event with the reinforcing stimulus.  The fourth is  the pairing of  the stimulus
elicited by the drive with the reinforcement event, changing the strength of the reinforcer. The fifth pairing
is that, after repeated exposure, the external environmental stimulus is paired with the drive stimulus.
This drive stimulus is generated by an intensifying drive. Within each module, a “0” means no occurrence
of a Pairing A of Stimulus A and a “1” means an occurrence of a Pairing A of Stimulus A. Similarly, a “0”
means no occurrence of a Pairing B and a “1” means an occurrence of a B, and so on for all 5 pairings. To
obtain an output, one multiplies the values of Pairings A through E. In one trial or instance, all 5 pairings
will occur. The results of the multiplications are then accumulated and divided by the number of instances.
The use of these simple respondent pairings as a basis for neural networks reduces errors. Examples of
problems that may be addressable by such networks are included.

Keywords: neural networks, respondent conditioning, adaptive learning

This paper proposes a new way of creating neural  networks, called Adaptive
Neural  Networks. The framework on which these neural  networks are based is the
Model of Hierarchical Complexity (MHC) (Commons, Gane-McCalla, Barker, & Li, 2014;
Commons & Pekker, 2008), a behavioral-developmental and evolutionary theory. This
section gives a brief outline of what is being proposed and why it is being proposed. It
also lays out the structure of the overall paper. 

Traditional neural networks are based on operant conditioning (e.g., Grossberg,
1970; McClelland & Rumelhart,  1986). The present conception proposes a different
model. The idea stems from a paper by Commons and Giri (2016), in which it was
shown that operant conditioning could be explained as resulting from the combination
of several steps of respondent conditioning. At that point in time, they suggested there
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were three such steps. In this paper, we propose a neural network composed of five
pairings. These are similar to the pairings seen in the earlier respondent conditioning
paper, but two additional  pairings have been added. This Adaptive Neural Network
would be faster than the current networks based on operant conditioning, as well as
require  less  memory  and  use  fewer  computational  resources.  While  this  idea
originated from work suggesting that respondent conditioning formed the basis for
operant conditioning, the proposal here is not meant as a simulation of any animal
behavior. Instead, it is a proposal of how to construct, in the abstract, learning that
ultimately is responsive to consequences. 

The paper has the following sections. First, in order to understand the basis for
such a proposal, the paper introduces the Model of Hierarchical Complexity (Commons
et al., 2014; Commons & Pekker, 2008), which is a model of how more complex actions
are composed from combinations of simpler actions. The model has been shown to
explain developmental differences (i.e., differences between tasks successfully solved
by individuals at different ages). It has also been used to explain differences in the
complexity  of  tasks  solved  by  different  species  of  animals  (Harrigan  & Commons,
2014). 

Once  the  overall  model  is  described,  then  the  proposed  early  stages  of
development, including respondent and operant conditioning, will be described. This
will provide a context for the proposal for Adaptive Neural Networks. Next, the specific
pairings that are proposed for the Adaptive Neural Networks will be described in detail
and examples will be given. Following that section, there will be a brief introduction to
some of the ideas underlying neural networks, and then a description of the specific
form of neural network introduced here. At the end of the paper, we will include a brief
summary of the advantages of both the Model and of the Adaptive Neural Networks,
as well as implications and likely next steps suggested in this area. 

The Model of Hierarchical Complexity (MHC)

The structure of the proposed model for Adaptive Neural Networks is derived
from the Model of Hierarchical Complexity. For this reason, the model will be described
in some detail. The Model of Hierarchical Complexity (MHC) is a model used for the
sequencing of the difficulty of tasks. In order to understand the model, it is first useful
to think of the environments in which animals live as consisting of a series of tasks.
The tasks generally are organized into domains, such as tasks that are food related,
those that are related to producing the next generation, those related to maintaining
one’s own life, those related to successfully rearing one’s young, and so on. Not all
domains will be relevant for all animals. One other important aspect of tasks is that
there is almost always a sequence of tasks within a domain. That is, one can observe
that initially young organisms either do not carry out certain tasks at all or that they
carry them out imperfectly. For many animals, one can see development over time in
the difficulty of tasks that an organism undertakes. 

The question that  the Model  of  Hierarchical  Complexity  addresses is  how to
capture this notion of the difficulty or the complexity of tasks. There are two forms of
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complexity.  Horizontal  complexity means adding more units,  without fundamentally
changing the nature of the problem. An example of horizontal complexity is that, in
humans, children first learn to add together single digits. While they gradually add
larger and larger numbers, they continue to engage in addition but simply execute it
for larger numbers. 

The Model of Hierarchical Complexity defines a different kind of complexity, as
follows. An action is more hierarchically complex when (1) it is defined in terms of at
least two task actions from the next lower (adjacent) order of hierarchical complexity,
(2) it  organizes these less complex actions, and (3) the ordering of the lower task
actions has to be carried out in a non–arbitrary way. That is, actions cannot just be
chained together in any way. 

The higher the order of complexity, the more difficult a task gets. The upside
down tree-like structure of the model is shown in Figure 1 below.

Figure 1. Lower order (simpler) tasks, shown at the bottom, must be completed in order to 
proceed to the higher order (more complex) tasks. Order n+1 is more difficult a task than Order n 
and less difficult a task than Order n+2. 

A useful intuitive example for most readers is seen in the difference between
calculating a problem using simple addition or simple multiplication versus carrying
out  a  calculation  that  involves  the  distributive  property.  Children  in  the  early
elementary  years  learn  to  carry  out  simple,  single  arithmetic  operations,  such  as
addition and multiplication. So, they could easily solve a problem such as “3 + 4 = ?”.
Only after they have practiced both addition and multiplication over a reasonably long
period of time do they begin to correctly address the distributivity problem (e.g., “2 *
(3 + 4)”). They do so by coordinating together the two lower order actions of addition
and multiplication: 2 (3 + 4) = (2*3) + (2*4)”. The distributivity problem is at a higher
Order of Complexity because it combines two actions that are from the next lower
order.
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One additional characteristic of this model is that when an animal completes a
task at a particular Order of Hierarchical Complexity, the animal’s performance on that
task is said to be at a stage that has the same name and number as the order of
complexity  of  the  task.  The  main  purpose  of  having  the  two  terms  (Order  of
Complexity of the task, and Stage of Performance on a task) is that this allows for a
clear distinction between the characteristics of the task and the performance on the
task. 

In this model, behavioral tasks and subtasks are organized according to their
hierarchical complexity using an ordinal, equally-spaced one-dimensional scale called
the Order of Hierarchical Complexity. The scale is derived from notions proposed by
the theory of measurement (Krantz, Luce, Suppes, & Tversky, 1971; Luce & Tukey,
1964). Thus, we consider this to be a mathematical behavioral-developmental theory.
It  is  also  evolutionary  because  it  accounts  for  patterns  of  task  completions  of  all
species of animals, past and current. 

Another important influence on the order of hierarchical complexity scale was
the work of Piaget and colleagues (e.g., for a comprehensive review, see Hunt, 1969;
see  also  Inhelder  &  Piaget,  1958;  Piaget,  1928,  1930,  1952,  1960).  Piaget  and
colleagues proposed a notion of stages of development. They published considerable
amounts  of  data  over  many years showing that  children at  different ages showed
replicable differences in how they approached problem solving. They referred to these
differences  as  stages  of  development.  However,  they  attributed  stage  to
developments in hypothetical  mental  structures.  The problem was that  they never
manipulated the tasks used to assess stage and so could never adequately explain
performance. The work also relied overly much on verbal justifications, which made it
difficult to apply to all animals, including humans. 

Other,  later  conceptions  of  stages  of  development,  such  as  that  of  Fischer
(1980)  were  also  influential.  Fischer’s  model  was  limited  to  explaining  human
behavior. Stage ideas have only sometimes been applied to nonhuman animals. One
example is work by Parker and McKinney (1999), who applied a few of Piaget’s stages
to apes. It is asserted here that any theory of the development of intelligence must be
applicable to all animals, including humans.

Using this model, 17 Orders of Complexity have been described. The Orders of
Complexity have been shown to capture important aspects of task completion across
two types of studies. In one type, researchers have classified behaviors of nonhuman
or human animals, and then examined the relationship of the Stage of Complexity of a
performance to another real world behavior. For example, Miller et al. (2015) found a
significant  relationship  between  the  hierarchical  complexity  of  a  street  peddler’s
pricing strategy and their reported income from street peddling, r = .71, n = 45, p <
0.01. In the second type of study, a series of tasks is constructed, based on the orders
of complexity, and these are tested to see if performance on the tasks confirms the
predicted  order.  This  uses  Rasch  (1980)  analysis  to  measure  to  extent  to  which
performances conform to the predicted sequence. In studies thus far with humans, it
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has been shown that the orders predict performance with r’s ranging from .88 to .98
across a variety of constructed tasks (e.g., Giri, Commons, & Harrigan, 2014).

In order to understand the Model of Hierarchical Complexity in somewhat more
depth and, in particular, to understand the implications of its use for examining and
comparing the behaviors of different species of animals, as well as its applicability to
neural  network models,  we briefly include some implications of its use in the next
section.

Some Implications of this Model

As  discussed  above,  irrespective  of  context  or  domain,  each  order  lays  the
foundation for the next higher order. The other important characteristic of the model is
that  the  method  classifies  performances  only,  not  animals  themselves,  and  each
performance is tied to a specific task.

These two characteristics  of the model result in some important predictions.
First, the model does not classify an animal as being at a stage. Some tasks that any
animal  (nonhuman or human) completes may be relatively simple.  For  instance,  a
simple reflexive sneeze tends to effectively clear irritants from a nose. Other tasks
may be more complex, such as learning how to use a stone to crack open a nut. This
kind of heterogeneity across tasks is predicted by the model.

Another prediction that follows from the two characteristics mentioned above is
that because of what tasks they successfully complete, there are differences between
species. For example, some animals may obtain food by bumping into it in the course
of locomotion and then may have a pre-wired mechanism for automatically ingesting it
if it meets certain criteria. Others may hunt specific prey, either alone or along with
conspecifics. These two ways of solving the task of obtaining food involve actions that
are at different orders of complexity, although both types result in the same end (see
Harrigan & Commons, 2014, for additional examples).

A third set of implications is that, within species, there can also be differences
between different individuals. This heterogeneity is likely to exist in the orders of tasks
successfully  addressed,  and  this  is  true  for  all  species.  These  may  be  due  to
differential learning histories as well as other factors.

Finally, it is important to understand what we mean when we use the term task
action. A task action is any action that addresses a certain task. Some task actions
correctly address the task and some do not, as is explained next. Both the Orders of
Complexity and the Stages of Performance are generally presented in terms of the
particular lower order actions that are coordinated together to reach the next higher
stage  of  performance.  It  is  important  to  recognize,  however,  that  the  process  of
transition from one stage to another is a dynamic one, in which a number of tasks,
sometimes called subtasks, will be engaged in as an organism transitions from a task
at one order of complexity to a task at the next order. Siegler (1996), among others,
has described subtasks engaged in by children as they transition from an easier to a
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more complex task. Even when an animal has correctly performed a new task at a
given order of complexity, actions at previous orders are still  available and can be
seen under a variety  of  circumstances.  As a result,  there will  be many behavioral
performances by animals, which may or may not directly fit the orders as described. In
particular,  some nonhuman and human animals may be found to be performing a
particular task somewhere within the transition between two of the orders described. 

In  sum,  the  Model  of  Hierarchical  Complexity  provides  a  way  to  scale  and
compare  the  difficulty  of  tasks.  Task  difficulty  has  been  shown  to  be  related  to
development within a species. The model provides a methodology for comparing task
completions across species, especially with tasks that vary in difficulty. It also provides
a methodology for constructing sequences of tasks. These features of the model thus
also provide templates for constructing models of problem solving. As we will show
later  in  the  paper,  one  of  the  applications  is  to  a  variety  of  Artificial  Intelligence
models. Because the application to be described here is based on Orders 1, 2, and 3 of
the model, we will start by describing the first five orders.

The Lowest Orders of Hierarchical Complexity

Brief descriptions of the first five orders are shown in Table 1. Note that Order 0,
Calculatory, is included at least partly because the Orders of Complexity do not apply
just to animals. They can and should also apply to any entity that carries out a task,
even  one  that  is  completely  preprogrammed  and  has  no  variability,  such  as  a
computer program. The difference between Calculatory and Automatic is that even
though  behaviors  seen  in  animals  completing  tasks  at  the  automatic  order  are
preprogrammed there is also the possibility of some variability in the responses. They
are not always carried out in the same exact fashion, the way that they would be in a
computer  program.  This  variability  in  responses  would  be  useful  in  terms  of  an
organism’s likelihood of successfully adapting in the face of changes in the expected
environment.

In the next section, the paper will expand on the information given in Table 1, in
particular  for  Orders 1,  2,  and 3,  because  those  will  be the orders  that  are  most
relevant  to  the Adaptive  Neural  Networks  proposal.   The paper  will  provide some
animal  examples.   These  examples  will  help  to  make  clear  what  kinds  of  tasks
characterize an Order of Complexity, as well as how more hierarchically complex tasks
are combinations of lower order tasks.

Table 1
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MHC Order Names, Numbers, Definitions, and Examples

Order Name
Order

Number
Definition and Example

Calculatory 0

Definition: Exactly follow a programmed set of 
instructions.
Example: Computer program. 

Automatic 1

Definition: Engage in a single “hard-wired” action at a 
time. 
Tropisms, sensitization, habituation, unconditioned 
reflexes. 
Example: Paramecium moves away from light (Mingee, 
2013).

Sensory or 
Motor

2

Definition: Respondent conditioning.
Example: On hearing mother’s voice, infant turns head in 
that direction begins rooting.

Circular 
Sensory Motor

3

Definition: Operant conditioning. 
Example: When infant babbling is followed by vocalizing 
and smiling from adult, infant babbles more.

Sensory Motor 4
Definition: Forms concepts. 
Example: Animals from a variety of species learn 
discriminations of concepts, such as same/different.

The First Three Behavioral-Developmental Orders

Automatic Order 1

At  the  Automatic  Order  1,  a  single  action  occurs  as  an  innate  biological
response to a single environmental stimulus. This may be a reflex or a tropism or other
related action. There are many animals that successfully perform tasks at this Order of
Complexity. The examples provided here are primarily from unicellular organisms. It is
important to keep in mind, however,  that this discussion is not characterizing any
particular organism or type of organism as being at a stage. Instead, the discussion
focuses primarily on the characteristics of an Order 1 task. It does include an example
of an animal performing an action that completes that task. 

In  the  case  of  Automatic  Order  1,  a  single  response  is  elicited  by  a  single
environmental stimulus. In a particular organism, there is no variability in the response
seen to that stimulus. An example of Order 1 response is a form of taxis seen in an
experiment by Armus and Montgomery (2001). They showed that paramecia approach
areas in which a mild shock was delivered. In that case, the electrical field created by
the shock is the environmental  event,  and the approach behavior is the response.
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There is behavioral change at this order because there are processes such as stimulus
generalization, habituation, and sensitization.  However, the eliciting stimulus is not
coordinated with other environmental stimuli as in respondent or classical conditioning
(Commons & Giri, 2016).

Sensory or Motor Order 2

Respondent conditioning at Order 2 of hierarchical complexity results from the
coordination of two stimulus response pairs. One of the stimulus response pairs is an
unconditioned reflex. For example, an unconditioned stimulus (US), such as an air puff,
elicits an unconditioned response (UR), an eye blink. The second pair consists of an
event that automatically elicits orienting or attention. This might be an auditory or
visual stimulus. When the auditory or visual stimulus is paired with the US (air puff),
because it already elicits attention, it can become a conditioned stimulus (CS). Over
time and enough pairings, it comes to elicit the eye blink (conditioned response or CR).
This  example  comes  from  the  work  of  Thompson  and  colleagues  on  classical
conditioning of the eye blink reflex (e.g., Thompson et al., 1998; Weeks et al., 2007). 

In addition to showing that simple auditory and visual stimuli, when paired with
an  unconditioned  stimulus,  such  as  an  air  puff,  would  then  elicit  the  previously
unconditioned eye-blink response, Weeks et al. (2007) also have contributed elegant
work showing the possible brain circuits underlying this kind of classical conditioning.
Note  that  the  pairing  may  either  occur  in  a  naturalistic  environment  or  could  be
carried out by an experimenter. It is also important to mention that the example above
involves a reflex. It is likely that other types of Order 1 behaviors could be part of a
respondent conditioning Order 2 task. For example, Armus, Montgomery and Gurney
(2006) reported that paramecia differentially swim to areas that are paired with a light
that had been previously paired with shock. While most previous work on paramecium
learning has found there to be some confounding factor that accounts for the apparent
learning, thus far no such criticism has been aimed at the Armus et al. (2006) study
(see Mingee, 2013). Absent at least some basic neural circuitry, it is hard to see what
that mechanism might be. 

In  sum, Sensory or  Motor  Order  2  actions  coordinate  two or  more stimulus-
response pairs from the lower Automatic Order 1. The response that is paired with the
stimulus can be any of the Order 1 Automatic behaviors.

Circular Sensory Motor Order 3

The definition from the Model of Hierarchical  Complexity states that operant
conditioning (Order 3) is the product of the nonarbitrary coordination of two or more
respondent conditioning (Order 2) pairings (Commons & Giri, 2016). This section will
first  briefly  describe  the  traditional  view  of  operant  conditioning  and  give  two
examples. A more detailed description of the specific classical conditioning pairings
that constitute operant conditioning will be laid out in the next section.
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Operant conditioning has been described as resulting from a sequence of three
events, specifically, an observable behavior that occurs in a stimulus situation and is
followed by either a reinforcing or a punishing consequence. This kind of conditioning
can be seen in at least some invertebrates as well as many other kinds of animals. The
studies  of  invertebrates  have  also  often  connected  the  appearance  of  operant
conditioning to some form of simple nervous system.  Drosophila melanogaster (fruit
flies)  have  been  operantly  conditioned  in  a  laboratory  environment  (Brembs  &
Heisenberg, 2000).  Aplysia californica (California sea hare) have also been operantly
conditioned by pairing electric stimulation in the anterior branch of the esophageal
nerve (En2) with biting behavior (Lechner, Baxter & Byrne, 2000). 

In the current paper, a different conception of operant conditioning is proposed,
which consists of a coordination of five pairings of respondent conditioning instances.
These five are based on pairings of events that are the same or similar to the ones
involved  in  respondent  conditioning.  Thus,  the  clear  implication  is  that  operant
conditioning is based on respondent conditioning. 

There are several reasons for making such a proposal. As argued in more detail
in Commons and Giri (2016), the accounts of operant learning are not as well worked
out  as those of  respondent  conditioning.  They also  contain  several  problems.  One
problem is that it is not clear why a behavior that becomes an operant starts occurring
in the first place. Commons and Giri (2016) argued that the stimulus situation prior to
the behavior has been neglected as an important factor in causing that behavior. A
second difficulty is that cause   effect chains typically run from left to right. Most
accounts of operant conditioning nevertheless assert that the cause of the behavior
becoming an operant (the reinforcer) actually happens after the behavior. Finally, if
one considers how a new learning mechanism might evolve, it would seem most likely
for any new mechanism to be based on existing, older mechanisms. The evolutionary
record suggests that very simple animals, in which it is likely that either only Order 1
or at most Order 2 behaviors were present, were likely the first animals. The most
straightforward way for later learning mechanisms- such as operant conditioning- to
develop is partly basing on earlier learning mechanisms. Presumably, initially some
small incremental changes might have occurred in respondent conditioning. Animals
who exhibited additional pairings might have gained an advantage in terms of their
obtaining of resources and eventual survival. 

As a result of these arguments, Commons and Giri (2016) argued that a better
explanation  of  operant  conditioning  was  that  it  consists  of  three  instances  of
respondent conditioning that are coordinated together in a nonarbitrary fashion. As
can be seen by the reader, the idea of this coordination is based on the Model of
Hierarchical  Complexity. That is, it requires that the higher order action of operant
conditioning  be  the  result  of  nonarbitrary  coordination  of  at  least  two respondent
conditioning actions. In further elaborating on this idea in this paper, we have found
that five respondent-based pairings are necessary to completely account for operant
conditioning.

Five Steps in Operant Conditioning
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The following sections will explain the five respondent-conditioning steps that
make  up  operant  conditioning.  The  steps  will  be  related  to  the  five  questions
associated with each of these steps. Table 2 summarizes in a short, symbolic form the
relationships described in the text. Note that in Table 2 the specific situation that is
included  is  one  in  which  there  is  positive  reinforcement.  Also  note  that  the  step
numbers give the ordering in which the steps occur.

Table 2

Five Steps of Respondent Conditioning

Step Question Stimulus Pairing Response

1 What is the value of doing it?   SDrive o SConsequence                     RValue 

2 What to do? srb - R“Operant” o SR+            ROperant Strengthening

3 When to do it? SEnvironment o srb-R “Operant"  RConditioned Reflex

4 Why to do it?                            SEnvironment o SR+                          RIncentive

5 Where to do it? SEnvironment o SDrive             REnvironment

Note. S = stimulus; R = response; SR+  = positive reinforcement;
o = pairing 

One assumption that underlies this conception is that all behaviors are caused
by stimuli, either external or internal. Even if a free operant behavior appears to be
random, it is posited that there is an internal stimulus that elicits it. This assumption is
necessary because the original cause of the behavior has to be something that occurs
before it,  not  afterwards.  Because  it  is  an  internal  event,  it  is  not  always  directly
observable. Evoked-potential studies often find this stimulus occurring 250 to 500 ms
before the operant response (Sur & Sinha, 2009). In this work, we refer to this internal
stimulus or  internal  neural  event  as  the  srb.  It  is  equivalent  to  a  US/CS, albeit  an
internal one.

In the next section, the five steps are described in detail  and an example is
given in support of each description.

Step 1: What Is the Value of Doing It? Or, Drive-Determining Consequence
Value

In  Step 1 from respondent  conditioning,  the activation of  the drive stimulus
(SDrive) gives value to the consequence SConsequence. That is, the pairing of a drive stimulus
with a consequence changes the value of the consequence simultaneously. The result
is that the consequence, Sconsequence, changes to SR+, a reinforcing consequence. This can
also be referred to as the US/SR+. 

One can see the importance of the drive stimulus in the common practice of
maintaining animals at 80% of their free-feeding weight when food is being used as a
reinforcer. This is well understood to increase the value of the food consequence. This
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increases  the  drive  level,  which  has  the  effect  of  increasing  the  value  of  the
consequence. This makes learning more likely.

Step 2: What to do? Or, Operant Strengthening 

In  Step  2  from respondent  conditioning,  the  internal  neural  event  (srb)  that
elicits the operant response is paired with the SR+. The association of the neural event
(srb) with the US/SR+ makes the internal neural event more salient and thereby helps to
strengthen the operant response.

An example that illustrates this can be seen in the work of Lechner, Baxter, and
Byrne (2000)  with  Aplysia  californica.  In  a  classical  conditioning  procedure,  tactile
stimulation  of  the  lips  of  Aplysia with  a  paintbrush  was  paired  with  seaweed.
Conditioning was tested simply by comparing the change in the number of bites that
an animal made to the seaweed in the paired condition as opposed to those in the
unpaired condition. While this was not set up as an operant learning situation, the
animals were allowed to ingest the seaweed for up to 60 s following the beginning of
its presentation. This, in effect, served as an event that could reinforce earlier events.
Furthermore,  the researchers found that a key component of the conditioning that
occurred was having an intact esophageal nerve. When other relevant neurons were
tested, there was no such effect. The findings were that the tendency to respond to
the US was strengthened by the pairing of the internal neural event and the food (SR+).

Step 3: When to do it? Or, Stimulus Control

The  stimulus  control  process  is  the  pairing  of  the  now more  salient  neural
stimulus  srb (along with the operant response) with the environment event  SEnvironment.
This is a “when” pairing because the cue or cues in the environment elicit the neural
stimulus,  srb, determining when it occurs. When the relevant cues are not here, the
neural  stimulus  does  not  occur.  In  operant  terms,  this  pairing  changes  the
environmental event into an SD (discriminative stimulus). Both SEnvironment and srb have
to  be  salient  in  order  for  learning  to  take  place  (Rescorla  &  Wagner,  1972).  The
internal stimulus becomes controlled by the occurrence of the environmental stimulus
no matter what the time difference is. 

An  experiment  by  Andrew  and  Savage  (2000)  shows  this  phenomenon  in
Lymnaea  (pond snails). In one of the sub-experiments, snails were placed in a glass
gutter with either a visible black or a white panel 30 cm into the tube. The black panel
was  judged  to  be  discriminable,  while  the  white  panel  was  not.  In  reinforcement
conditions, these potential conditioned stimuli were paired with sucrose (or water in
the nonconditioning trials).  Snails were observed to rasp (which is the way a snail
would ingest food) in anticipation of the possible delivery of sucrose much sooner for
trials with black panels than those with white panels. Thus, snails showed conditioned
feeding in the presence of a visual (environmental) event.

Step 4: Why to do it? Or, Establishing an Incentive
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In Step 4 from respondent conditioning, the environmental stimulus SEnvironment is
paired  with  the  SR+,  making  the  SEnvironment more  salient  and  valued.  Pairing  the
environmental  stimulus with the reinforcing stimulus establishes the environmental
stimulus SEnvironment as an incentive (see Killeen, 1982). The incentive value means that
there is an increase in the salience and value of the representation of a reinforcement
rate  relative to the representation of  other behaviors  that are not  associated with
reinforcement. 

An example is seen in Octopus vulgaris (Schiller, 1949). The organism is placed
in a maze. There are two inverted cans. One of the cans had covered crab bait; the
other can was without crab bait. Thus, the environmental stimulus S, the “visible” bait
can, was paired with crab bait. A partition wall had to be circumvented to reach the
baited can. Octopus vulgaris learned to make a turn toward the proper side if the bait
was visible at all times as it viewed it as an incentive. 

Step 5: Where to do it? Or, Environment Paired with the Drive Stimulus 

In Step 5 from respondent conditioning, the environmental stimulus  SEnvironment

gets paired with the drive stimulus,  SDrive. After multiple trials of this type of pairing,
the  properties  of  the  environment  or  a  similar  environment  are  paired  with  drive
stimulus SDrive. The organism will then react to an environment where there is a drive
associated with it. 

This  can be illustrated  by experiments involving the effects  of  viewing food
images that are high in fat or carbohydrates (Harrar, Toepel, Murray, & Spence, 2011).
When shown such images, human participants responded more rapidly the higher in
fat  or  carbohydrates  a food  was  perceived to  be.  The authors  interpreted  this  as
showing that because such food items have a higher “incentive” value, seeing them
may produce a kind of overall alerting effect. In this case, “higher incentive value”
refers to the drive stimulus. Spence,  Okajima, Cheok, Petit, & Michel  (2016), in an
extensive review,  summarized multiple  ways  in  which  exposure to  food images in
humans’ everyday environments is associated with a greater tendency to eat and,
therefore, with being overweight.

The  description  of  the  five  respondent  conditioning-based  steps  above
represents a possible model for the respondent pairing steps that underlie operant
conditioning.  Recall  that  it  is  not  being  said  that  this  is  necessarily  how  operant
conditioning takes place in live organisms. What this model does is take all the events
involved in operant conditioning and interrelates them using five instances based on
the existing and known mechanism of respondent conditioning. This is possibly useful
in at least two ways. For one thing, research on automatic, respondent, and operant
behaviors can empirically test various aspects of this model with animals. A second
application of these ideas is to translate the events and their inter-relationships into a
proposed neural-network model. Having the steps clearly delineated in terms of the
type  of  events  that  each  represents  is  necessary  for  such  modeling.  In  the  next
section, we will first describe and define what a neural network is. Then, we will show
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what  the  proposed  neural  network  for  the  five  steps  looks  like  and how it  would
operate. 

Neural Networks

Neural networks are one possible implementation within the larger field of what
is called Artificial  Intelligence intelligence (AI).  The main goal  of  AI  is  to represent
information processing and problem solving actions seen in animals using either hard
wired machines or computer programs (Goertzel  & Pennachin, 2007). As argued in
Leite (2018), AI can be used as a model for testing different models of how human and
nonhuman animals solve tasks (see also Cassimatis, 2012).

A neural network is a particular kind of artificial information processing system
that simulates the nervous system. It is thought to be closer to the way that the brain
actually works. A particular neural network may consist of multiple units or nodes. The
nodes  are  equivalent  to  artificial  neurons  or  groups  of  neurons.  These  nodes  are
interconnected with each other to form a network (Guresen & Kayakutlu, 2011). The
main objective of a neural network is to find associations and patterns with the input
and  outputs  through  pattern  recognition.  The  associations  are  formed  by  training
using feedback from the output to the input for correct  indications of  the pattern.
Figures 3a and 3b show different visualizations of a neural network. 

A hypothetical three-layer neural network is shown in Figure 3a. We will use this
simple diagram to illustrate some of the possibilities of neural network models. Within
this illustration, we will use a tangible example of sensory inputs being converted into
the output of recognizing an appropriate prey animal. This example was simply made
up here to illustrate some of the features of these models. One starts to read such a
model often at the bottom. So, at the bottom of this model, inputs (represented as
black arrows) are shown entering or being registered by each of the red circles. These
inputs might be sensory information, for example, sounds, smells, and visual inputs
from a stimulus. As shown by the pink arrows going from the bottom to the middle row
of nodes, each node at the bottom is shown to be feeding the information received to
more than one node at the second level. In effect, this means that each of those three
nodes at the second level would combine the same information, although if they are
postulated to be in different parts of a brain, the resulting output might be different.
For example, perhaps one of the middle circles is a kind of visual processing node, and
another is an odor processing node. 

The top-most node receives input from each of those middle nodes. This leads
to  a  further  combination  of  the  information.  A  resulting  output  might  be  the
recognition of  a  prey animal.  Most  importantly,  depending upon how a researcher
diagrammed the model and the processes that they were interested in, they could
construct these models in different ways. For example, the model in Figure 3a contains
three layers. It is possible to construct models with either fewer or more layers. The
circles, or the nodes themselves, could be programmed to carry out different actions
or operations. Literally then, this provides a way to translate a particular information
processing or problem solving process into a kind of structure to test the extent to
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which the proposed neural network model solves that same particular problem in the
same way that animals are thought to solve that problem. The solving of the problem
process is often done through the use of a computer program. Doing this clearly forces
the precise specification of the possible processes involved.

                                    
                                                                     Subfigure 3a                                                           Subfigure 3b

Figure 3. A simple neural network. On the left (a) is a fully connected three-layer neural network 
complete with hidden layers and a feedback loop. The right subfigure (b) shows the same neural network 
represented as a single module. The colored square containing the circle with arrows represents a neural 
network and its hidden layers. The arrows pointing upward into the module represent the input. The pink 
arrow shows the output. 

The Algorithm Showing how the Five Steps of Respondent Conditioning are
Converted into an Adaptive Neural Network

Figure 4 shows a proposed Adaptive Neural Network that is based on the five
steps of Respondent Conditioning. Note that the architecture of this neural network is
different from the example from Figure 3. Here, there are 5 pairs of nodes, starting at
the bottom of the figure and going up. Based on the way that the information on the
pairings was presented, the bottom 2 circles represent Step 1 (i.e., what is the value of
doing it). The next 2 circles represent Step 2 (the what-to-do step), Step 3 (when to do
it), Step 4 (why to do it), and Step 5 (where to do it). Note that two possible inputs are
shown. This represents the fact that animals are almost always in environments with
multiple inputs. As mentioned in the Figure 4 caption, it is assumed that these inputs
or environments will usually have different rates of reinforcement. Also note that Step
3, the where step, pairs the internal event with the environment. A feedback loop is
shown here to represent this idea. Finally, note that the inputs from each step are
accumulated and produce the output at the top.

It is proposed that the first layer of a respondently-based neural network (see
Figure 4) follows an all or nothing method, in which “0” means no occurrence of a
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correct pairing at that step and “1” means an occurrence of a correct pairing at that
step.  In  each case,  either  a  0  or  a  1  representing the output  is  multiplied.  When
effective pairing has occurred, the value resulting from that step is 1. 

Once these initial outputs are obtained, they are fed into a second layer, which
cumulates  the  values  from  the  5  steps  below.  To  get  the  relative  value  of  the
conditioning, this second layer sums the total number of successful instances, then
divides it by the sum of successful and unsuccessful instances. This yields weights
reflecting  the  strength  of  response  and  amount  of  stimulus  control.  Operant
conditioning does not happen unless all  the steps are executed. In that case, it  is
called  a  complete  instance.  There  are  failed  instances,  in  which  not  all  steps  are
effectively executed. 

The simplicity of the pairing, resulting in outcome values of either 0 or 1, which
can  then  be  multiplied,  will  increase  processing  speed  drastically  since  it  uses  a
minimum amount of memory.  This is in contrast to neural  networks that are often
currently written in higher order languages, such as R, that execute more slowly and
use more memory.

Figure 4. An example of neural networks represented as five steps of respondent conditioning.
What is shown here is the first layer of a single respondently-based neural network. The neural network
may only pay attention to one of the sensory inputs that are shown. It will give precedence to the signal
or input with the larger relative reinforcement rate.

Discussion and Conclusions

This  paper  introduces  a  proposed  mechanism  for  operant-conditioning-like
neural  networks,  based  on  five  steps  of  respondent  conditioning.  The  proposed
mechanism is an application of the Model of Hierarchical Complexity. This model has
been shown to predict changes in development within a species (e.g., Giri et al., 2014,
Commons & Harrigan, 2014,). The order of complexity of a task completed has also
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been shown to predict real world outcomes, such as earnings in street peddlers (e.g.,
Miller  et  al.,  2015).  Most  importantly  in  this  context,  the  model  also  provides  a
framework  for  a  more  precise  understanding  of  differences  in  successful  task
completions across different animals (e.g., Harrigan & Commons, 2014).

The Model of Hierarchical Complexity categorizes operant conditioning as one
order of hierarchical complexity above respondent conditioning. By definition, because
higher  order  tasks  are  the  result  of  coordinating  at  least  two  less  hierarchically
complex task actions, it was argued that coordinating several instances of respondent
conditioning together would be one way in which operant conditioning might have
arisen in the course of evolution. This proposal shows how all of the antecedent and
consequent events are coordinated together to obtain operant conditioning. Finally, it
is shown that the five respondent conditioning steps can also form the basis for a
relatively simple neural network that would simulate operant conditioning.

There  are  several  implications  and  next  steps  related  both  to  the  Model  of
Hierarchical Complexity and to the proposal for a new kind of neural network. One,
also  suggested  earlier,  should  be  more  empirical  attempts  at  categorizing  task
performances in different animals in terms of the Model of Hierarchical Complexity.
This would be done mostly by creating sequences of tasks that would fit the sequence
of the orders of hierarchical  complexity and testing these sequences. For example,
with respect to the series of tasks suggested here, an animal may complete some of
the five steps but not all of them. It is also possible that empirical testing of these
ideas  would  show that  a  different  number  of  steps  might  be  enough  for  operant
conditioning to occur. The purpose here is to propose a structure for testing a variety
of possibilities in real-world situations.

As also discussed in the introduction to the model, it is likely that performances
that  are intermediate  between the definitions of  the orders  of  complexity  are also
possible. Siegler (1996),  for example, found that children engaged in a number of
subtasks on their way to acquiring a task. An animal’s task performances may be at
various different points in the development from one Order of Complexity to the next.

Another next step based on this proposal is to begin to construct and test a
neural network model that includes the five respondent pairings. Performance of such
a network on simulations of commonly used empirical situations would be an excellent
way to better understand the evolution and comparative performances of animals on
these tasks and to better understand the development of problem solving in general
(as also proposed by Common’s Applied Patent, 2015; Leite, 2018). The five-layered
nature of the respondent neural networks was suggested in Leite's dissertation (2018).
Compared to other currently available neural networks for operant conditioning tasks,
the respondent neural networks are more efficient because they are based on simple
addition and multiplication of 0’s and 1’s. Because of the simplicity of the network, it
may also be possible to develop hardware based on these principles, in addition to
software.  Multiplying  0’s  and  1’s  as  opposed to  having  to  program in  higher-level
languages in computation can be directly done in machine language. Once versions of
the  network  are  developed,  via  either  hardware  or  software,  then  they  can  help
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determine what its possible applications will be.
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	Neural networks may be made faster and more efficient by reducing the amount of memory and computation used. In this paper, a new type of neural network, called an Adaptive Neural Network, is introduced. The proposed neural network is comprised of 5 unique pairings of events. Each pairing is a module, and the modules are connected within a single neural network. The pairings are simulations of respondent conditioning. The simulations do not necessarily represent conditioning in actual organisms. In the theory presented here, the pairings in respondent conditioning become aggregated together to form a basis for operant conditioning. The specific pairings are as follows. The first pairing is between the reinforcer and the neural stimulus that elicits the behavior. This pairing strengthens and makes salient that eliciting neural stimulus. The second pairing is that of the now salient neural stimulus with the external environmental stimulus that precedes the operant behavior. The third is the pairing of the environmental stimulus event with the reinforcing stimulus. The fourth is the pairing of the stimulus elicited by the drive with the reinforcement event, changing the strength of the reinforcer. The fifth pairing is that, after repeated exposure, the external environmental stimulus is paired with the drive stimulus. This drive stimulus is generated by an intensifying drive. Within each module, a “0” means no occurrence of a Pairing A of Stimulus A and a “1” means an occurrence of a Pairing A of Stimulus A. Similarly, a “0” means no occurrence of a Pairing B and a “1” means an occurrence of a B, and so on for all 5 pairings. To obtain an output, one multiplies the values of Pairings A through E. In one trial or instance, all 5 pairings will occur. The results of the multiplications are then accumulated and divided by the number of instances. The use of these simple respondent pairings as a basis for neural networks reduces errors. Examples of problems that may be addressable by such networks are included.
	This paper proposes a new way of creating neural networks, called Adaptive Neural Networks. The framework on which these neural networks are based is the Model of Hierarchical Complexity (MHC) (Commons, Gane-McCalla, Barker, & Li, 2014; Commons & Pekker, 2008), a behavioral-developmental and evolutionary theory. This section gives a brief outline of what is being proposed and why it is being proposed. It also lays out the structure of the overall paper.
	Traditional neural networks are based on operant conditioning (e.g., Grossberg, 1970; McClelland & Rumelhart, 1986). The present conception proposes a different model. The idea stems from a paper by Commons and Giri (2016), in which it was shown that operant conditioning could be explained as resulting from the combination of several steps of respondent conditioning. At that point in time, they suggested there were three such steps. In this paper, we propose a neural network composed of five pairings. These are similar to the pairings seen in the earlier respondent conditioning paper, but two additional pairings have been added. This Adaptive Neural Network would be faster than the current networks based on operant conditioning, as well as require less memory and use fewer computational resources. While this idea originated from work suggesting that respondent conditioning formed the basis for operant conditioning, the proposal here is not meant as a simulation of any animal behavior. Instead, it is a proposal of how to construct, in the abstract, learning that ultimately is responsive to consequences.
	The paper has the following sections. First, in order to understand the basis for such a proposal, the paper introduces the Model of Hierarchical Complexity (Commons et al., 2014; Commons & Pekker, 2008), which is a model of how more complex actions are composed from combinations of simpler actions. The model has been shown to explain developmental differences (i.e., differences between tasks successfully solved by individuals at different ages). It has also been used to explain differences in the complexity of tasks solved by different species of animals (Harrigan & Commons, 2014).
	Once the overall model is described, then the proposed early stages of development, including respondent and operant conditioning, will be described. This will provide a context for the proposal for Adaptive Neural Networks. Next, the specific pairings that are proposed for the Adaptive Neural Networks will be described in detail and examples will be given. Following that section, there will be a brief introduction to some of the ideas underlying neural networks, and then a description of the specific form of neural network introduced here. At the end of the paper, we will include a brief summary of the advantages of both the Model and of the Adaptive Neural Networks, as well as implications and likely next steps suggested in this area.
	The Model of Hierarchical Complexity (MHC)
	The structure of the proposed model for Adaptive Neural Networks is derived from the Model of Hierarchical Complexity. For this reason, the model will be described in some detail. The Model of Hierarchical Complexity (MHC) is a model used for the sequencing of the difficulty of tasks. In order to understand the model, it is first useful to think of the environments in which animals live as consisting of a series of tasks. The tasks generally are organized into domains, such as tasks that are food related, those that are related to producing the next generation, those related to maintaining one’s own life, those related to successfully rearing one’s young, and so on. Not all domains will be relevant for all animals. One other important aspect of tasks is that there is almost always a sequence of tasks within a domain. That is, one can observe that initially young organisms either do not carry out certain tasks at all or that they carry them out imperfectly. For many animals, one can see development over time in the difficulty of tasks that an organism undertakes.
	The question that the Model of Hierarchical Complexity addresses is how to capture this notion of the difficulty or the complexity of tasks. There are two forms of complexity. Horizontal complexity means adding more units, without fundamentally changing the nature of the problem. An example of horizontal complexity is that, in humans, children first learn to add together single digits. While they gradually add larger and larger numbers, they continue to engage in addition but simply execute it for larger numbers.
	The Model of Hierarchical Complexity defines a different kind of complexity, as follows. An action is more hierarchically complex when (1) it is defined in terms of at least two task actions from the next lower (adjacent) order of hierarchical complexity, (2) it organizes these less complex actions, and (3) the ordering of the lower task actions has to be carried out in a non–arbitrary way. That is, actions cannot just be chained together in any way.
	The higher the order of complexity, the more difficult a task gets. The upside down tree-like structure of the model is shown in Figure 1 below.
	
	A useful intuitive example for most readers is seen in the difference between calculating a problem using simple addition or simple multiplication versus carrying out a calculation that involves the distributive property. Children in the early elementary years learn to carry out simple, single arithmetic operations, such as addition and multiplication. So, they could easily solve a problem such as “3 + 4 = ?”. Only after they have practiced both addition and multiplication over a reasonably long period of time do they begin to correctly address the distributivity problem (e.g., “2 * (3 + 4)”). They do so by coordinating together the two lower order actions of addition and multiplication: 2 (3 + 4) = (2*3) + (2*4)”. The distributivity problem is at a higher Order of Complexity because it combines two actions that are from the next lower order.
	One additional characteristic of this model is that when an animal completes a task at a particular Order of Hierarchical Complexity, the animal’s performance on that task is said to be at a stage that has the same name and number as the order of complexity of the task. The main purpose of having the two terms (Order of Complexity of the task, and Stage of Performance on a task) is that this allows for a clear distinction between the characteristics of the task and the performance on the task.
	In this model, behavioral tasks and subtasks are organized according to their hierarchical complexity using an ordinal, equally-spaced one-dimensional scale called the Order of Hierarchical Complexity. The scale is derived from notions proposed by the theory of measurement (Krantz, Luce, Suppes, & Tversky, 1971; Luce & Tukey, 1964). Thus, we consider this to be a mathematical behavioral-developmental theory. It is also evolutionary because it accounts for patterns of task completions of all species of animals, past and current.
	Another important influence on the order of hierarchical complexity scale was the work of Piaget and colleagues (e.g., for a comprehensive review, see Hunt, 1969; see also Inhelder & Piaget, 1958; Piaget, 1928, 1930, 1952, 1960). Piaget and colleagues proposed a notion of stages of development. They published considerable amounts of data over many years showing that children at different ages showed replicable differences in how they approached problem solving. They referred to these differences as stages of development. However, they attributed stage to developments in hypothetical mental structures. The problem was that they never manipulated the tasks used to assess stage and so could never adequately explain performance. The work also relied overly much on verbal justifications, which made it difficult to apply to all animals, including humans.
	Other, later conceptions of stages of development, such as that of Fischer (1980) were also influential. Fischer’s model was limited to explaining human behavior. Stage ideas have only sometimes been applied to nonhuman animals. One example is work by Parker and McKinney (1999), who applied a few of Piaget’s stages to apes. It is asserted here that any theory of the development of intelligence must be applicable to all animals, including humans.
	Using this model, 17 Orders of Complexity have been described. The Orders of Complexity have been shown to capture important aspects of task completion across two types of studies. In one type, researchers have classified behaviors of nonhuman or human animals, and then examined the relationship of the Stage of Complexity of a performance to another real world behavior. For example, Miller et al. (2015) found a significant relationship between the hierarchical complexity of a street peddler’s pricing strategy and their reported income from street peddling, r = .71, n = 45, p < 0.01. In the second type of study, a series of tasks is constructed, based on the orders of complexity, and these are tested to see if performance on the tasks confirms the predicted order. This uses Rasch (1980) analysis to measure to extent to which performances conform to the predicted sequence. In studies thus far with humans, it has been shown that the orders predict performance with r’s ranging from .88 to .98 across a variety of constructed tasks (e.g., Giri, Commons, & Harrigan, 2014).
	In order to understand the Model of Hierarchical Complexity in somewhat more depth and, in particular, to understand the implications of its use for examining and comparing the behaviors of different species of animals, as well as its applicability to neural network models, we briefly include some implications of its use in the next section.
	Some Implications of this Model
	As discussed above, irrespective of context or domain, each order lays the foundation for the next higher order. The other important characteristic of the model is that the method classifies performances only, not animals themselves, and each performance is tied to a specific task.
	These two characteristics of the model result in some important predictions. First, the model does not classify an animal as being at a stage. Some tasks that any animal (nonhuman or human) completes may be relatively simple. For instance, a simple reflexive sneeze tends to effectively clear irritants from a nose. Other tasks may be more complex, such as learning how to use a stone to crack open a nut. This kind of heterogeneity across tasks is predicted by the model.
	Another prediction that follows from the two characteristics mentioned above is that because of what tasks they successfully complete, there are differences between species. For example, some animals may obtain food by bumping into it in the course of locomotion and then may have a pre-wired mechanism for automatically ingesting it if it meets certain criteria. Others may hunt specific prey, either alone or along with conspecifics. These two ways of solving the task of obtaining food involve actions that are at different orders of complexity, although both types result in the same end (see Harrigan & Commons, 2014, for additional examples).
	A third set of implications is that, within species, there can also be differences between different individuals. This heterogeneity is likely to exist in the orders of tasks successfully addressed, and this is true for all species. These may be due to differential learning histories as well as other factors.
	Finally, it is important to understand what we mean when we use the term task action. A task action is any action that addresses a certain task. Some task actions correctly address the task and some do not, as is explained next. Both the Orders of Complexity and the Stages of Performance are generally presented in terms of the particular lower order actions that are coordinated together to reach the next higher stage of performance. It is important to recognize, however, that the process of transition from one stage to another is a dynamic one, in which a number of tasks, sometimes called subtasks, will be engaged in as an organism transitions from a task at one order of complexity to a task at the next order. Siegler (1996), among others, has described subtasks engaged in by children as they transition from an easier to a more complex task. Even when an animal has correctly performed a new task at a given order of complexity, actions at previous orders are still available and can be seen under a variety of circumstances. As a result, there will be many behavioral performances by animals, which may or may not directly fit the orders as described. In particular, some nonhuman and human animals may be found to be performing a particular task somewhere within the transition between two of the orders described.
	In sum, the Model of Hierarchical Complexity provides a way to scale and compare the difficulty of tasks. Task difficulty has been shown to be related to development within a species. The model provides a methodology for comparing task completions across species, especially with tasks that vary in difficulty. It also provides a methodology for constructing sequences of tasks. These features of the model thus also provide templates for constructing models of problem solving. As we will show later in the paper, one of the applications is to a variety of Artificial Intelligence models. Because the application to be described here is based on Orders 1, 2, and 3 of the model, we will start by describing the first five orders.
	The Lowest Orders of Hierarchical Complexity
	Brief descriptions of the first five orders are shown in Table 1. Note that Order 0, Calculatory, is included at least partly because the Orders of Complexity do not apply just to animals. They can and should also apply to any entity that carries out a task, even one that is completely preprogrammed and has no variability, such as a computer program. The difference between Calculatory and Automatic is that even though behaviors seen in animals completing tasks at the automatic order are preprogrammed there is also the possibility of some variability in the responses. They are not always carried out in the same exact fashion, the way that they would be in a computer program. This variability in responses would be useful in terms of an organism’s likelihood of successfully adapting in the face of changes in the expected environment.
	In the next section, the paper will expand on the information given in Table 1, in particular for Orders 1, 2, and 3, because those will be the orders that are most relevant to the Adaptive Neural Networks proposal. The paper will provide some animal examples. These examples will help to make clear what kinds of tasks characterize an Order of Complexity, as well as how more hierarchically complex tasks are combinations of lower order tasks.
	
	The First Three Behavioral-Developmental Orders
	Automatic Order 1
	At the Automatic Order 1, a single action occurs as an innate biological response to a single environmental stimulus. This may be a reflex or a tropism or other related action. There are many animals that successfully perform tasks at this Order of Complexity. The examples provided here are primarily from unicellular organisms. It is important to keep in mind, however, that this discussion is not characterizing any particular organism or type of organism as being at a stage. Instead, the discussion focuses primarily on the characteristics of an Order 1 task. It does include an example of an animal performing an action that completes that task.
	In the case of Automatic Order 1, a single response is elicited by a single environmental stimulus. In a particular organism, there is no variability in the response seen to that stimulus. An example of Order 1 response is a form of taxis seen in an experiment by Armus and Montgomery (2001). They showed that paramecia approach areas in which a mild shock was delivered. In that case, the electrical field created by the shock is the environmental event, and the approach behavior is the response. There is behavioral change at this order because there are processes such as stimulus generalization, habituation, and sensitization. However, the eliciting stimulus is not coordinated with other environmental stimuli as in respondent or classical conditioning (Commons & Giri, 2016).
	Sensory or Motor Order 2
	Respondent conditioning at Order 2 of hierarchical complexity results from the coordination of two stimulus response pairs. One of the stimulus response pairs is an unconditioned reflex. For example, an unconditioned stimulus (US), such as an air puff, elicits an unconditioned response (UR), an eye blink. The second pair consists of an event that automatically elicits orienting or attention. This might be an auditory or visual stimulus. When the auditory or visual stimulus is paired with the US (air puff), because it already elicits attention, it can become a conditioned stimulus (CS). Over time and enough pairings, it comes to elicit the eye blink (conditioned response or CR). This example comes from the work of Thompson and colleagues on classical conditioning of the eye blink reflex (e.g., Thompson et al., 1998; Weeks et al., 2007).
	In addition to showing that simple auditory and visual stimuli, when paired with an unconditioned stimulus, such as an air puff, would then elicit the previously unconditioned eye-blink response, Weeks et al. (2007) also have contributed elegant work showing the possible brain circuits underlying this kind of classical conditioning. Note that the pairing may either occur in a naturalistic environment or could be carried out by an experimenter. It is also important to mention that the example above involves a reflex. It is likely that other types of Order 1 behaviors could be part of a respondent conditioning Order 2 task. For example, Armus, Montgomery and Gurney (2006) reported that paramecia differentially swim to areas that are paired with a light that had been previously paired with shock. While most previous work on paramecium learning has found there to be some confounding factor that accounts for the apparent learning, thus far no such criticism has been aimed at the Armus et al. (2006) study (see Mingee, 2013). Absent at least some basic neural circuitry, it is hard to see what that mechanism might be.
	In sum, Sensory or Motor Order 2 actions coordinate two or more stimulus-response pairs from the lower Automatic Order 1. The response that is paired with the stimulus can be any of the Order 1 Automatic behaviors.
	Circular Sensory Motor Order 3
	The definition from the Model of Hierarchical Complexity states that operant conditioning (Order 3) is the product of the nonarbitrary coordination of two or more respondent conditioning (Order 2) pairings (Commons & Giri, 2016). This section will first briefly describe the traditional view of operant conditioning and give two examples. A more detailed description of the specific classical conditioning pairings that constitute operant conditioning will be laid out in the next section.
	Operant conditioning has been described as resulting from a sequence of three events, specifically, an observable behavior that occurs in a stimulus situation and is followed by either a reinforcing or a punishing consequence. This kind of conditioning can be seen in at least some invertebrates as well as many other kinds of animals. The studies of invertebrates have also often connected the appearance of operant conditioning to some form of simple nervous system. Drosophila melanogaster (fruit flies) have been operantly conditioned in a laboratory environment (Brembs & Heisenberg, 2000). Aplysia californica (California sea hare) have also been operantly conditioned by pairing electric stimulation in the anterior branch of the esophageal nerve (En2) with biting behavior (Lechner, Baxter & Byrne, 2000).
	In the current paper, a different conception of operant conditioning is proposed, which consists of a coordination of five pairings of respondent conditioning instances. These five are based on pairings of events that are the same or similar to the ones involved in respondent conditioning. Thus, the clear implication is that operant conditioning is based on respondent conditioning.
	There are several reasons for making such a proposal. As argued in more detail in Commons and Giri (2016), the accounts of operant learning are not as well worked out as those of respondent conditioning. They also contain several problems. One problem is that it is not clear why a behavior that becomes an operant starts occurring in the first place. Commons and Giri (2016) argued that the stimulus situation prior to the behavior has been neglected as an important factor in causing that behavior. A second difficulty is that cause  effect chains typically run from left to right. Most accounts of operant conditioning nevertheless assert that the cause of the behavior becoming an operant (the reinforcer) actually happens after the behavior. Finally, if one considers how a new learning mechanism might evolve, it would seem most likely for any new mechanism to be based on existing, older mechanisms. The evolutionary record suggests that very simple animals, in which it is likely that either only Order 1 or at most Order 2 behaviors were present, were likely the first animals. The most straightforward way for later learning mechanisms- such as operant conditioning- to develop is partly basing on earlier learning mechanisms. Presumably, initially some small incremental changes might have occurred in respondent conditioning. Animals who exhibited additional pairings might have gained an advantage in terms of their obtaining of resources and eventual survival.
	As a result of these arguments, Commons and Giri (2016) argued that a better explanation of operant conditioning was that it consists of three instances of respondent conditioning that are coordinated together in a nonarbitrary fashion. As can be seen by the reader, the idea of this coordination is based on the Model of Hierarchical Complexity. That is, it requires that the higher order action of operant conditioning be the result of nonarbitrary coordination of at least two respondent conditioning actions. In further elaborating on this idea in this paper, we have found that five respondent-based pairings are necessary to completely account for operant conditioning.
	Five Steps in Operant Conditioning
	The following sections will explain the five respondent-conditioning steps that make up operant conditioning. The steps will be related to the five questions associated with each of these steps. Table 2 summarizes in a short, symbolic form the relationships described in the text. Note that in Table 2 the specific situation that is included is one in which there is positive reinforcement. Also note that the step numbers give the ordering in which the steps occur.
	Five Steps of Respondent Conditioning
	One assumption that underlies this conception is that all behaviors are caused by stimuli, either external or internal. Even if a free operant behavior appears to be random, it is posited that there is an internal stimulus that elicits it. This assumption is necessary because the original cause of the behavior has to be something that occurs before it, not afterwards. Because it is an internal event, it is not always directly observable. Evoked-potential studies often find this stimulus occurring 250 to 500 ms before the operant response (Sur & Sinha, 2009). In this work, we refer to this internal stimulus or internal neural event as the srb. It is equivalent to a US/CS, albeit an internal one.
	In the next section, the five steps are described in detail and an example is given in support of each description.
	Step 1: What Is the Value of Doing It? Or, Drive-Determining Consequence Value
	In Step 1 from respondent conditioning, the activation of the drive stimulus (SDrive) gives value to the consequence SConsequence. That is, the pairing of a drive stimulus with a consequence changes the value of the consequence simultaneously. The result is that the consequence, Sconsequence, changes to SR+, a reinforcing consequence. This can also be referred to as the US/SR+.
	One can see the importance of the drive stimulus in the common practice of maintaining animals at 80% of their free-feeding weight when food is being used as a reinforcer. This is well understood to increase the value of the food consequence. This increases the drive level, which has the effect of increasing the value of the consequence. This makes learning more likely.
	Step 2: What to do? Or, Operant Strengthening
	In Step 2 from respondent conditioning, the internal neural event (srb) that elicits the operant response is paired with the SR+. The association of the neural event (srb) with the US/SR+ makes the internal neural event more salient and thereby helps to strengthen the operant response.
	An example that illustrates this can be seen in the work of Lechner, Baxter, and Byrne (2000) with Aplysia californica. In a classical conditioning procedure, tactile stimulation of the lips of Aplysia with a paintbrush was paired with seaweed. Conditioning was tested simply by comparing the change in the number of bites that an animal made to the seaweed in the paired condition as opposed to those in the unpaired condition. While this was not set up as an operant learning situation, the animals were allowed to ingest the seaweed for up to 60 s following the beginning of its presentation. This, in effect, served as an event that could reinforce earlier events. Furthermore, the researchers found that a key component of the conditioning that occurred was having an intact esophageal nerve. When other relevant neurons were tested, there was no such effect. The findings were that the tendency to respond to the US was strengthened by the pairing of the internal neural event and the food (SR+).
	Step 3: When to do it? Or, Stimulus Control
	The stimulus control process is the pairing of the now more salient neural stimulus srb (along with the operant response) with the environment event SEnvironment. This is a “when” pairing because the cue or cues in the environment elicit the neural stimulus, srb, determining when it occurs. When the relevant cues are not here, the neural stimulus does not occur. In operant terms, this pairing changes the environmental event into an SD (discriminative stimulus). Both SEnvironment and srb have to be salient in order for learning to take place (Rescorla & Wagner, 1972). The internal stimulus becomes controlled by the occurrence of the environmental stimulus no matter what the time difference is.
	An experiment by Andrew and Savage (2000) shows this phenomenon in Lymnaea (pond snails). In one of the sub-experiments, snails were placed in a glass gutter with either a visible black or a white panel 30 cm into the tube. The black panel was judged to be discriminable, while the white panel was not. In reinforcement conditions, these potential conditioned stimuli were paired with sucrose (or water in the nonconditioning trials). Snails were observed to rasp (which is the way a snail would ingest food) in anticipation of the possible delivery of sucrose much sooner for trials with black panels than those with white panels. Thus, snails showed conditioned feeding in the presence of a visual (environmental) event.
	Step 4: Why to do it? Or, Establishing an Incentive
	In Step 4 from respondent conditioning, the environmental stimulus SEnvironment is paired with the SR+, making the SEnvironment more salient and valued. Pairing the environmental stimulus with the reinforcing stimulus establishes the environmental stimulus SEnvironment as an incentive (see Killeen, 1982). The incentive value means that there is an increase in the salience and value of the representation of a reinforcement rate relative to the representation of other behaviors that are not associated with reinforcement.
	An example is seen in Octopus vulgaris (Schiller, 1949). The organism is placed in a maze. There are two inverted cans. One of the cans had covered crab bait; the other can was without crab bait. Thus, the environmental stimulus S, the “visible” bait can, was paired with crab bait. A partition wall had to be circumvented to reach the baited can. Octopus vulgaris learned to make a turn toward the proper side if the bait was visible at all times as it viewed it as an incentive.
	Step 5: Where to do it? Or, Environment Paired with the Drive Stimulus
	In Step 5 from respondent conditioning, the environmental stimulus SEnvironment gets paired with the drive stimulus, SDrive. After multiple trials of this type of pairing, the properties of the environment or a similar environment are paired with drive stimulus SDrive. The organism will then react to an environment where there is a drive associated with it.
	This can be illustrated by experiments involving the effects of viewing food images that are high in fat or carbohydrates (Harrar, Toepel, Murray, & Spence, 2011). When shown such images, human participants responded more rapidly the higher in fat or carbohydrates a food was perceived to be. The authors interpreted this as showing that because such food items have a higher “incentive” value, seeing them may produce a kind of overall alerting effect. In this case, “higher incentive value” refers to the drive stimulus. Spence, Okajima, Cheok, Petit, & Michel (2016), in an extensive review, summarized multiple ways in which exposure to food images in humans’ everyday environments is associated with a greater tendency to eat and, therefore, with being overweight.
	The description of the five respondent conditioning-based steps above represents a possible model for the respondent pairing steps that underlie operant conditioning. Recall that it is not being said that this is necessarily how operant conditioning takes place in live organisms. What this model does is take all the events involved in operant conditioning and interrelates them using five instances based on the existing and known mechanism of respondent conditioning. This is possibly useful in at least two ways. For one thing, research on automatic, respondent, and operant behaviors can empirically test various aspects of this model with animals. A second application of these ideas is to translate the events and their inter-relationships into a proposed neural-network model. Having the steps clearly delineated in terms of the type of events that each represents is necessary for such modeling. In the next section, we will first describe and define what a neural network is. Then, we will show what the proposed neural network for the five steps looks like and how it would operate.
	Neural Networks
	Neural networks are one possible implementation within the larger field of what is called Artificial Intelligence intelligence (AI). The main goal of AI is to represent information processing and problem solving actions seen in animals using either hard wired machines or computer programs (Goertzel & Pennachin, 2007). As argued in Leite (2018), AI can be used as a model for testing different models of how human and nonhuman animals solve tasks (see also Cassimatis, 2012).
	A neural network is a particular kind of artificial information processing system that simulates the nervous system. It is thought to be closer to the way that the brain actually works. A particular neural network may consist of multiple units or nodes. The nodes are equivalent to artificial neurons or groups of neurons. These nodes are interconnected with each other to form a network (Guresen & Kayakutlu, 2011). The main objective of a neural network is to find associations and patterns with the input and outputs through pattern recognition. The associations are formed by training using feedback from the output to the input for correct indications of the pattern. Figures 3a and 3b show different visualizations of a neural network.
	A hypothetical three-layer neural network is shown in Figure 3a. We will use this simple diagram to illustrate some of the possibilities of neural network models. Within this illustration, we will use a tangible example of sensory inputs being converted into the output of recognizing an appropriate prey animal. This example was simply made up here to illustrate some of the features of these models. One starts to read such a model often at the bottom. So, at the bottom of this model, inputs (represented as black arrows) are shown entering or being registered by each of the red circles. These inputs might be sensory information, for example, sounds, smells, and visual inputs from a stimulus. As shown by the pink arrows going from the bottom to the middle row of nodes, each node at the bottom is shown to be feeding the information received to more than one node at the second level. In effect, this means that each of those three nodes at the second level would combine the same information, although if they are postulated to be in different parts of a brain, the resulting output might be different. For example, perhaps one of the middle circles is a kind of visual processing node, and another is an odor processing node.
	The top-most node receives input from each of those middle nodes. This leads to a further combination of the information. A resulting output might be the recognition of a prey animal. Most importantly, depending upon how a researcher diagrammed the model and the processes that they were interested in, they could construct these models in different ways. For example, the model in Figure 3a contains three layers. It is possible to construct models with either fewer or more layers. The circles, or the nodes themselves, could be programmed to carry out different actions or operations. Literally then, this provides a way to translate a particular information processing or problem solving process into a kind of structure to test the extent to which the proposed neural network model solves that same particular problem in the same way that animals are thought to solve that problem. The solving of the problem process is often done through the use of a computer program. Doing this clearly forces the precise specification of the possible processes involved.
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