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In this work, we provide an industry research view for approaching the design, deployment, and operation
of trustworthy Artificial Intelligence (AI) inference systems. Such systems provide customers with timely,
informed, and customized inferences to aid their decision, while at the same time utilizing appropriate se-
curity protection mechanisms for AI models. Additionally, such systems should also use Privacy-Enhancing
Technologies (PETs) to protect customers’ data at any time.

To approach the subject, we start by introducing current trends in AI inference systems. We continue by
elaborating on the relationship between Intellectual Property (IP) and private data protection in such systems.
Regarding the protection mechanisms, we survey the security and privacy building blocks instrumental in
designing, building, deploying, and operating private AI inference systems. For example, we highlight op-
portunities and challenges in AI systems using trusted execution environments combined with more recent
advances in cryptographic techniques to protect data in use. Finally, we outline areas of further development
that require the global collective attention of industry, academia, and government researchers to sustain the
operation of trustworthy AI inference systems.

CCS Concepts: • Computer systems organization→ Dependable and fault-tolerant systems and net-

works; • Security and privacy→Trust frameworks; Software and application security; •Computing

methodologies→ Machine learning; Artificial intelligence.

1 INTRODUCTION

At a macroscopic level, the players in the current AI and privacy landscape are customers (in-
cluding end-users), institutions, and regulators. Customers of digital systems continue maturing
awareness of the risks associated with the mishandling of and the malicious access to their pri-
vate information. Such risks include loss of competitiveness, financial loss, brand erosion, identity
theft, and more profoundly human rights violations. Moreover, the expectation for AI inference
systems to become integral parts of modern digital systems and the lack of understanding of how
some AI models operate further exacerbate customers’ concerns. Institutions aim to capitalize on
building more accurate AI inference systems from shared data belonging to multiple stakeholders
for providing better services to their customers, including end users [6]. The leading technology
companies improve the effectiveness of their platform recommendation systems by embedding
their customers’ preference patterns in sophisticated AI models [2]. Such models are part of in-
ference systems to deploy and operate in the cloud, in the core network, on devices, or a mixture
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thereof. Often, the raw data processed by such systems can carry private information, such as
gender, location or political views, and hence requires privacy protection at any time [4]. Simul-
taneously, the AI model and its coefficients (e.g., weights and biases) often require IP protection.
Institutions are also aware of the regulatory and legal risks associated with mishandling private
data and data breaches [42, 57], rendering cyber insurance policies indispensable for more and
more companies [126]. Regulators create and enact regulations to protect the rights of customers
and customers of customers. The enforcement of such privacy-related regulations (e.g., the Eu-
ropean GDPR [4] in the EU, CCPA [5], and the HIPAA [3] in the US) have already resulted in
substantial fines to institutions starting in 20191. In addition, the European Commission has pro-
posed a regulatory framework [55] which explicitly mentions trustworthiness as one of the criteria
AI systems should fulfill.

At a microscopic level, trends in AI and the crucial dimension of privacy influence the way
researchers and technologists think about privacy technologies in the context of the complex in-
teraction between customers, institutions, and regulators. Designing technologies to protect data
confidentiality at any time in the data lifecycle is not a new concept. In the 1990s, Ann Cavoukian
introduced the concept and principles of privacy by design that requires end-to-end data protection,
which includes the protection of data in use (including the input, the intermediate data, and the
output of a computation) [72]. Privacy-enhancing cryptographic techniques, such as secure multi-
party computation or homomorphic encryption, can protect data in use in compliance with the
data privacy regulations (e.g., GDPR). However, such methods are not yet widely adopted mainly
due to their programming complexity and computational overhead compared to insecure native
applications. The renewed awareness of customers’ risks with data digitization and AI, and the
expectation of AI to play in the global economy in the foreseeable future [10], have accelerated in-
dustry and academic researchers’ efforts to advance privacy-enhancing cryptographic techniques
towards the realization of broader market adoption and application [7].
There resides complex infrastructures in-between the micro- and macroscopic levels, compris-

ing the cloud, the end devices, and base stations, that abstract computation, storage, and communi-
cation resources. Such infrastructures represent the contact point between customers, institutions,
regulations, and AI systems. The infrastructures are also where a sustainable deployment of trust-
worthy AI inference systems is needed to address the mainstream concerns associated with data
privacy and IP protection.

Deployment and Operation. Deploying and operating trustworthy AI inference systems is chal-
lenging. In its most straightforward instance, an AI inference system captures the interactions
among three players: (8) the customer, who owns the input data to an AI service; (88) the service
provider, who owns, deploys, and operates the AI inference service; and (888) the infrastructure
provider (e.g., a cloud provider or a network operator).
Such parties are mutually distrustful, can collude, and can be malicious while aiming for differ-

ent goals. The AI inference service, often an IP owned (either created or acquired) by the service
provider, needs to be protected from the infrastructure provider and the customer. The customer’s
input data may carry privacy-sensitive information (e.g., in the case of medical records), and re-
quires protection from both the service and infrastructure provider. Furthermore, if the provider
experiences security breaches, the input data, the intermediate results, and the computation’s out-
put should remain confidential. Finally, the infrastructure provider requires protection from both
the service provider and the customer. These aspects all require careful consideration when de-
ploying solutions.

1As a consequence of data breaches, British Airways PLC received a fine of GBP 183M [42], Facebook received a fine of
USD 5B [57], to name a few.
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Security Mechanisms (TEE). Approaching the challenge of deploying and operating trustworthy
AI systems in its entirety requires thinking beyond traditional security mechanisms for confiden-
tiality, integrity, and IP protection such as a Trusted Execution Environment (TEE) [19, 26, 123].
TEEs allow protecting the service provider’s data at rest with encrypted storage, input data in
transit with secure channels, and the software, the intermediate data, and outputs from the infras-
tructure provider. However, the input, intermediate, and output data (data in use) appear in the
clear in the TEE. Protection of data in use should be seen at its core through the lens of the social
relationship governing disclosure between and among the customer and the service provider via
the platforms that collect, analyze, and manipulate information for some purpose, without neces-
sarily requiring parties to trust each other fundamentally. Occasionally, offering TEE protection
to customers’ data can be sufficient, but it is not sufficient in the general case. It is paramount to
provide service providers’ access to customers’ data for processing purposes, while not revealing
the data to the processing party.

Advanced Cryptographic Techniques (MPC and HE). To provide service providers access to cus-
tomers’ data, while not revealing the data to the processing party, and to protect customers’ data
even in the presence of data breaches at the service or infrastructure provider, technologists can re-
sort to advanced cryptographic techniques. For example, secure Multi-Party Computation (MPC)
andHomomorphic Encryption (HE) enable computation on private data without ever having plain-
text access. The absence of having the corresponding decryption information enhances customers’
data protection even in the case of data breaches. Fortunately, there has been an explosion of inno-
vation in advanced cryptographic techniques for computing on encrypted data in recent years—
such innovation promise to lower technology barriers currently hindering corporations in adopt-
ing the said technologies within existing workflows. Proofs-of-concept have appeared in the con-
text of AI inference, specifically in Deep Learning (DL) [16, 21, 23, 39, 61, 77, 85, 106].

Hybrid Solutions. Hence, while it is foreseeable for such techniques to percolate into technol-
ogy, technologists must bear in mind that the development, deployment, and operation of an AI
inference system must protect customers’ data at any time, as well as the security of the AI ser-
vice and its infrastructure. Technology providers should foresee a future in which the technology
deploys symbiotic combinations of current system security practices and advanced cryptographic
techniques to build secure, private, and trustworthy AI inference systems.

2 TAIL AND HEADWINDS

In this section, we highlight catalysts and design challenges for the real-world deployment of trust-
worthy AI inference systems. The discussion articulates the elements of an AI inference system,
roughly organized in the categories application, software, infrastructure, and hardware.

Application. In the application category, vision and specifically face recognition technologies are
mainstream. In the private sector, one of the most impactful events for business innovation is the
approval and adoption of AI for medical and diagnostic applications (e.g., the FDA green-lighting
AI-as-a-medical-device [58]). Additionally, early commercial applications are taking off in security,
retail, and consumer electronics, in which face recognition is quickly becoming a dominant form of
biometric authentication. In the public sector, however, there is strong opposition for the deploy-
ment of face recognition technologies for surveillance-related applications, as indicated by the
slowdown of the US Department of Homeland Security projects [129]. Even Amazon, Microsoft,
and IBM recently decided to limit the commercialization of their face recognition technologies due
to privacy and other societal concerns [20, 29]. Though it is clear that the ability to compute on
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encrypted data should be technically sufficient to address the privacy concerns, meaningful adop-
tion of cryptographic privacy technologies needs other developments than just technology. Other
humanity disciplines are needed to understand the interaction with humans. In particular, both
customers and institutions must have a thorough understanding of privacy technologies via edu-
cational paths, and agreements on the use of such technologies via the establishment of standards
and best practices. Relevant new challenges have recently been identified [9].

Software. In the software level category, the barrier to entry for the AI space is lower than ever,
thanks to open-source software. Following TensorFlow and Keras, major big-tech players have
made available various front-end frameworks for developers to choose from, including Apache®

MXNet. Additionally, middle-end and back-end optimizing frameworks (e.g., Apache® TVM, Intel™

nGraph, OpenVino®, and PlaidML [115]) were developed to facilitate the optimization of graph
computation and their mapping on a variety of hardware targets such as CPU, GPU, and FPGA.
The software level exhibits the path of least resistance in percolating privacy technologies in AI
systems, as illustrated by the appearance of proofs-of-concepts in the literature in the past few
years [21, 23, 44, 85].

Infrastructure. In the infrastructure category, the need for real-time decision making is pushing
AI closer to the edge, from the core network to demarcation points and down to end devices. This
trend gives devices the ability to process information locally and respond faster. Furthermore, the
data remains in proximity or mostly close to the data owner, which inherently helps with privacy.
Even so, in the presence of stolen devices and data breaches, it would be desirable to lift higher
the bar of data confidentiality with privacy-enhancing cryptographic techniques.

Hardware. In the hardware category, many players in the semiconductor industry and startups
are focused on building chips exclusively for AI workloads. It is noteworthy that semiconductor
players use specialized hardware and native data type specialization to fit in hardware constraints
and reach adequate performance by trading efficiency, accuracy, and speed. However, the sway
in the trade-off is domain-specific and application-dependent. For example, in the case of face
recognition to unlock devices, the computation needs to fit within tenths of a millisecond. Accu-
racy is essential, but a delay in response hinders usability. In other cases, such as medical diagnosis,
speed is relatively not critical, but a lack of accuracy can have fatal consequences for the customers,
leading to a loss of customers’ trust. Similarly, both high-accuracy and timeliness are required in
predicting an evacuation window given an expanding fire.
Hardware-assisted technologies such as TEE have existed for a long time to protect proprietary

software IPs. Solutions exist to protect AI models from the infrastructure hosting the accelera-
tor [60]. Introducing hardware aids for advanced cryptographic techniques remains challenging.
Such techniques often rely on data types for which mainstream devices are not designed for (e.g.,
high-degree polynomials with large coefficients in the case of homomorphic encryption). There
is also a lack of standardization of TEE architectures making programming difficult. The design
of new standardized hardware for privacy-enhancing cryptographic techniques would be a game
changer [71, 100, 103]. Making such techniques inexpensive would create opportunities inconceiv-
able with current software implementations optimized for existing hardware targets.

3 PRIVACY TECHNOLOGIES PENETRATION

Including privacy technologies into different facets of AI system design via security mechanisms
and advanced cryptographic techniques has been a very active field of research in recent years.
Most research focuses on machine learning (ML) tasks, providing accurate privacy-preserving
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classification using artificial, specifically convolutional neural networks. In Machine Learning-as-
a-Service (MLaaS), offered by all major cloud service providers, privacy technologies can allow
clients to issue classification queries without revealing the potentially sensitive information that
should be classified in the clear. In some cases, both model coefficients (weights and biases) and
the functional form of the service providers’ model are hidden from clients. They represent intel-
lectual property (IP) and might contain traces of sensitive training data. In other cases, only the
query to the model is protected.

TEE. Trusted Execution Environment (TEE) architectures such as Intel® Software Guard eXten-
sions (SGX), ARM® TrustZone®, and Sanctuary [27], to name a few, are hardware-assisted security
architectures that create a level of security and trust that goes beyond the protection capabilities
of commodity Operating Systems (OS).
Solutions that use TEEs alone [19, 26, 123] can protect the IP and are often the most efficient

since many TEE implementations work at the native speed of the CPU. However, the software
within the TEE processes the input data (or query), intermediate results, and outputs in the clear.
There exist practical cases where protection via a TEE cannot be enforced. In such cases, other
techniques such as proof of ownership [110] can be used to provide evidence that a service has
been counterfeited and that illegitimate uses of the service occurred.

MPC. Secure multi-party computation (MPC) protocols [62, 134] are cryptographic protocols
that allow multiple parties to jointly compute a publicly known function on their private inputs
while revealing no information other than the result of the computation. Therefore, MPC emulates
a trusted third party’s behavior within a provably secure cryptographic protocol without the need
to rely on such a trusted third party.
In solutions that use MPC protocols alone (e.g., [16, 85, 106]), the participants learn the archi-

tecture of the trained AI model. MPC solutions protect both the query to the model and the model
coefficients, but not the functional form of the model. Furthermore, when the model owner does
not own the computational infrastructure (e.g., the model owner serves the model via a cloud
provider), the service deployment must resort to a trusted execution environment (TEE). The TEE
protects the model coefficients and allows the model owner to outsource the model coefficients to
multiple non-colluding parties that run MPC [78].
Hiding even the architecture of the AI model with MPC techniques is possible by using so-called

universal circuits that can be programmed by the service provider to emulate any function up to
a given size [12, 64, 81, 83, 89, 112, 125, 135]. Securely evaluating such a universal circuit with an
MPC protocol results in private function evaluation (PFE), where the function itself is kept private.
However, universal circuits have an inevitable logarithmic overhead [125] and therefore are not
suitable for huge functions that occur in machine learning applications.

HE. Homomorphic Encryption (HE) is a potent tool to preserve the privacy of data and users.
An encryption scheme that has homomorphic properties enables computations on encrypted data.
Anyone can perform computations over a ciphertext without the need to perform decryption. In
practice, only limited computation on encrypted data is feasible today, creating a challenge for
finding AI model architectures that are compatible with these limitations.
HE could allow IP protection inherently when using Fully Homomorphic Encryption (FHE) con-

structions [24, 38, 52, 56, 59]. Due to the bootstrapping procedure to refresh ciphertexts noise, the
parameter selection to instantiate an FHE schema can become independent from the complexity of
the function to evaluate. Hence, only the party performing the inference learns (knows) the model.
If such a party is the cloud provider (e.g., AI serviced via Google’s or Microsoft’s infrastructure),
the model can be protected with the security schemes used to protect the cloud infrastructure and
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its services. If the party owning the model serves the model via a cloud infrastructure, the deploy-
ment can utilize a TEE to protect the model from the cloud infrastructure. In either case, fully
homomorphic encryption methods can evaluate the model in the clear on encrypted queries while
allowing computation on encrypted data owned by two (or more) distrusted parties. Industry has
recently picked up on implementations and performance evaluation in this field and commercial
applications are to be expected [13, 39, 46].

DP. Differential privacy (DP) [54] is a statistical notion of privacy where the goal is to protect
the privacy of individuals in the training data from an adversary who sees the trained model.
Privacy is guaranteed by ensuring that the participation of a single person in the training data
does not change the probability of any outcome by much. This implies that an adversary who sees
the output of a differentially private algorithm cannot make any inferences about a person in the
training data with high confidence that they could not make if this person had not been in the
training data at all.
In machine learning, differential privacy is mostly provided by adding noise during the training

process. Noise can be added in several ways – to the data itself, to a classifier built on the data [35,
111], or to a loss function or objective [35]. Currently the most common method for differentially
private machine learning is to add noise at each iteration of a stochastic gradient descent process
during training [8, 17, 116]. This provides good privacy, but the added noise results in a loss of
statistical efficiency – measured by model quality per sample size. Model quality can be measured
by classification accuracy (for classification models) or test log-likelihood (for generative models),
and usually the loss of quality due to privacy is lower when a large amount of training data is
present. While much progress has been made in the past years, ensuring high statistical efficiency
remains a central research problem in differentially private machine learning.

Hybrid Solutions. In addition to the protection profile, there are performance considerations that
call for hybrid solutions that realize privacy-, security-, and ultimately trustworthiness-preserving
building blocks. A straightforward implementation of such AI tasks with one advanced crypto-
graphic technique onlywill most likely not result in practical solutions in terms of latency, through-
put, and costs for computation power or network traffic in real-world applications. For example,
in state-of-the art instantiations of Yao’s garbled circuits MPC protocol [109], 197 bits of data must
be sent for each binary AND gate which is expensive for large multiplication circuits.
Hence, alternative hybrid approaches may be required to make privacy preserving MLaaS prac-

tically viable. Examples are the development of more efficient sub-protocols for specific tasks (e.g.,
matrix multiplication), data and network pre-processing, combinations of MPC protocols with HE
or TEEs, optimized mixing of different MPC protocols, and targeting more realistic and practical
security models and security levels.
ModernMPC protocols are a noteworthy example of hybrid protocols. Today’smost efficientMPC

protocols are hybrid protocols that combine different MPC protocols and potentially also HE
for different sub-tasks [15, 16, 21, 47, 66, 96, 106]. There is also compiler support for automa-
tion [31, 34, 75]. This results in highly efficient protocols for private AI (e.g., for deep neural
networks) [16, 21, 77, 90, 95, 97, 104–106, 110], for decision trees [15, 16, 80], and for new ma-
chine learning models such as Hyperdimensional computing [74] or sum-product networks [124].
However, most of the prior art provides solutions that are not yet easy-to-use by data scientists
and have mostly been demonstrated on simple deep neural networks and small to medium datasets
(e.g., MNIST [87] or CIFAR-10 [84]). In comparison to advanced cryptographic techniques, TEE ar-
chitectures provide several orders of magnitude better performance when used for protecting AI
systems [60, 123]. Furthermore, TEE architectures can be used to alleviate overheads introduced
by advanced cryptographic techniques. For example, in [127], a TEE, specifically Intel® SGX, was
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used to obviate the severe overhead in the software when performing bootstrapping in FHE. The
usage of a TEE architecture always requires some trust in the TEE provider. However, it is worth
noting that trusting the TEE provider is a practice that is well established in the semiconductor
industry to protect third party IP [32].

4 ECOSYSTEM DEVELOPMENT

Although there have been significant advances from the ongoing effort of academic, industry, and
government research groups, further research and development efforts are needed to realize a
meaningful commercial adoption of trustworthy AI inference systems. For example, none of the
privacy-preserving techniques (building blocks) presented above are easy to program, not to men-
tion proving the security of finalized systems.

Compilers. For MPC and HE, recently automation tools, specific compilers, and optimizers have
been designed that help developers build correct and performing solutions with MPC/HE libraries.
For MPC, such tools have been available for a while [28, 47, 66, 94], including projects where
tools designed for hardware development have been re-purposed to optimize according to the cost
models for encrypted "gates" [48, 117]. For example, CHET [45] is a framework optimized explicitly
for neural network inference. EVA [44] builds on CHET and adds a general-purpose compiler for
a specific HE scheme. Other projects [37, 44, 45, 96] provide frameworks for targeting multiple
library backends, providing a high-level unified Intermediate Representation (IR) or Application
Programming Interface (API). While promising, these tools are far from being mature, and mostly
target advanced cryptographic techniques in the same building block family (e.g., MPC or HE).

Complex applications. Mapping complex applications onto advanced cryptographic techniques
is still an ad hoc process and requires almost always cryptographic expertise to be done correctly.
In the case of DL workloads, much of the literature shows that solutions with advanced crypto-
graphic techniques can be handcrafted, but only recent work has started to show the execution of
full DL workloads. Frameworks such as Intel® nGraph-HE [21–23], TF-Encrypted [43], and CrypT-
Flow [85] allow seamless execution of pre-built neural networks on HE and MPC building blocks.
CryptoSPN [124] uses sum-product networks (SPNs) for private inference and is integrated with
an ML toolchain. The literature has focused on cases in which the service provider is also the
owner of the infrastructure. In this case, the data owner also trains and owns the model. As new
business models shift towards decentralizing the roles of the various owners in the lifecycle of AI
systems, designing more complex system architectures becomes necessary, specifically combin-
ing TEEs and advanced cryptographic techniques. By themselves, most TEEs are also not easy to
program. Fortunately, research programs such as Graphene [63], a joint effort between Intel and
academic partners, provides a solution to program SGX enclaves seamlessly and securely.

5 RESEARCH AND STANDARDS

The trend of privacy research and technology development will continue to mature current tech-
nologies ready formass deployment.We consider hybrid solutions as viable to build trustworthy AI
systems from a technology standpoint. Such solutions open opportunities to sustain the required
system performance while preserving security and privacy properties. With the progress made
so far, there are many areas of opportunities for further innovation developments and addressing
challenges for reaching meaningful adoption.

Decomposition. At a fundamental level, methods appearing in the literature are tied to specific
ML workloads, typically DL prototype networks. Thus, there is a lack of a broad understanding
of how to decompose an ML workload onto a set of cryptographic mechanisms for security, data
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privacy, performance, and energy efficiency. Filling this knowledge gap becomes essential because
new ideas and advances in ML are being proposed and adopted regularly, and the fact that privacy-
preserving building blocks are aggressively introduced and refined.

Integration. There is a need and opportunity to increase the integration of privacy-preserving
building blocks in established ML development tools such as ML frameworks and graph compilers.
For example, Intel® nGraph-HE-ABY [21] is an industry-class and open-source framework sup-
porting both HE andMPC. Beyond the integration of building blocks, such a (development/testing)
framework should also include automatic mechanisms to map ML workloads onto combinations
of privacy-preserving building blocks for data privacy (e.g., HE versus MPC variants) and perfor-
mance objectives. Additionally, it should be easy to incorporate new mechanisms as advances in
privacy technologies appear in the literature to easily repair or improve existing systems.

Deployment. There is also a need and opportunity to develop run-time frameworks that can
reason about the available resources of computation, storage, communication, and security re-
quirements, to automatically and expediently orchestrate the workload component for efficiency.
This is particularly important due to the additional resource demand imposed with the adoption
of modern privacy-preserving mechanisms and their parameter selection options.

Benchmarks. A fundamental lack of benchmarks leaves another gap to be filled as many ex-
periments restrict themselves to different tasks and assumptions. Systematic comparisons like,
e.g., [65] for a critical mass of experiments across AI and other tasks are required at a sufficient
scale to draw conclusions that can drive technology and best practices development, transfer and
adoption.

Hardware. New hardware is also an important topic for future research. It is paramount to de-
sign a programmable processor that provides end-to-end data security and privacy. Although new
processor technology has evolved to serve complex encryption tasks more efficiently, data move-
ment costs between the processor and memory still hinder the higher efficiency of applications
relying on advanced cryptographic techniques for privacy protection [73, 113]. To address this
issue, active research in industry and academia need to focus on designing novel architectures,
including but not limited to non-von Neumann compute architectures such as in-memory or near-
data computing [14, 100].

Standardization. Finally, there is a need for the development of global standards and best prac-
tices such as definitions, technical foundations and application standards to facilitate the broad
deployment of advanced cryptographic mechanisms [11, 30]. International standards work un-
der ISO/IEC JTC 1 Information Security includes privacy technologies for trustworthy AI sys-
tems [98, 101], and early-stage standardization on MPC and FHE techniques.

Provenance. Integrity and security of AI systems are required for validating privacy require-
ments. Immutable ledgers for data authenticity, trusted electronic supply chains, and verified neu-
ral networks for AI inference systems provide necessary trust to enable wide distribution of the
technology. There is a need for active research in integrating technologies like blockchain and
distributed ledger technology into AI systems to ensure provenance and integrity throughout the
manufacturing and lifecycle of the AI system components and to ensure privacy preserving re-
quirements are met [119, 132].

Fault Resiliency. AI models are vulnerable to various types of faults, such as permanent stuck-
at defects, random bit-flip, and thermal noise [82, 121], which makes reliability critical issues in
AI hardware. Both device aging and malicious activities can contribute to such reliability issues.
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Circuit vulnerabilities can be leveraged by attackers to intentionally cause the hardware to fail
under a variety of attack vectors, including row hammer, bit-flip, gradient descent, and back-
door attacks [40, 41, 67, 92, 102, 118]. Although recent work has investigated errors in AI mod-
els [36, 70, 88, 130, 131], they mostly focus on toleratingmanufacturing defects and overlook errors
caused by device aging or malicious intent. Such solutions also require non-trivial retraining and
data/hardware redundancy, limiting their applicability to edge devices with tight hardware budget
and limited training capability. Hence, to monitor and maintain reliability and trustworthiness of
AI accelerators, it is desirable to develop self-test and self-healing techniques that integrate test,
diagnosis, and recovery loops into the system. Such techniques should target both hard defects
and soft errors. They should perform a non-destructive self-test periodically to detect errors and
pinpoint defective cells if any. Upon detecting any error-induced accuracy loss, such techniques
should offer a retraining-free self-healing process to rescue the AI model’s accuracy. The interac-
tion of such techniques and privacy technologies is an open topic of research.

Side-Channel Resiliency. Although black-box model extraction techniques [76, 122] are ever-
evolving by adopting the cryptanalytic methods [33], they are still economically infeasible, since
they need millions of queries to steal a model with high fidelity. Side-channel analysis on infer-
ence systems [18, 49–51, 53, 68, 69, 91, 99, 120, 128, 133], by contrast, can succeed with signifi-
cantly fewer tests and are harder to prevent as we learned from the research on cryptographic
engineering. Side-channel analysis can steal both the input data of the customer [128], as well as
the model of the service provider [18], the general architecture of the deployed AI system [91],
and the detailed, bit-level values of its coefficients [51]. The defenses against digital side-channels,
such as timing side-channels, are relatively more natural to establish for specialized accelerators
(as opposed to general-purpose engines) because the design tools enable cycle-accurate control
and simulation. Building defenses to prevent physical side-channel leakages such as via power
consumption or electromagnetic radiation is challenging and needs tuning for the specifics of
the target algorithm and its underlying implementation. Research has shown the first proofs-of-
concept by extending the techniques from cryptographic engineering and empirically validating
the physical side-channel security [50, 51]. Further research is needed to achieve provably-secure,
composable, and low-cost solutions that can be deployed in real-world applications of trustworthy
AI systems. However, such research is unlikely to occur without significant investment, given that
it is still a challenge for cryptographic systems after two decades of work. One way to accelerate
the process is government involvement in standardizing the defenses [25].

6 PRIVACY AND EXPLAINABILITY

The performance of AI models depends on the quality of the training data. Training datasets with
inherent bias lead to models replicating that bias, sometimes resulting in positive feedback loops
where biased decisions are made based on decisions from biased models, creating more biased data
that the models are further trained on.ManyMLmodels, such as DNNs, are poorly explainable (i.e.,
it is hard to explain post-hoc what contributed to a specific incorrect or biased prediction). It
can be hard to understand how well or how poorly the model will behave on unexpected inputs.
Privacy technologies can further complicate this situation: if the model owners cannot see the
query or the result, they have little hope of detecting incorrect or biased predictions, possibly
thwarting good intentions to produce fair and unbiased ML applications. Novel strategies, such as
Hyperdimensional computing, show promise in supporting secure and private computation while
being explainable and easily updateable online [74, 79]. For a broader spectrum of applications,
many explainable AI (XAI) tools have been developed in recent years. They can be helpful for
explaining single decisions of arbitrary black-box classifiers [93, 107, 108] and for visualizing the
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general influence of single features [1]. In addition, there are many domain-specific XAI tools, e.g.,
saliency maps for image classification [86, 114].

7 CONCLUSION

In this work, we identify vehicles to percolate privacy technologies for AI inference, such as open-
source frameworks, infrastructure, and hardware design. We foresee architectural solutions, in-
cluding hybrid methods with security mechanisms and advanced cryptographic techniques as vi-
able innovations for designing, building, deploying and operating secure AI inference systems.
The challenge of enabling seamless, private, and secure access to data without disrupting the

existing AI ecosystem and lifecycle is open and offers a fertile space for privacy technologies and
the development of their use cases in fields such as healthcare, finance, and retail, to name a few.
Such developments can also be applied to generic private computing applications and are not
limited to AI or deep learning use cases.
We hope that the attention to the field continues fostering productive partnerships in the fore-

seeable future to address some of the challenges above and bring a future where the use of AI
technology is compliant, safe, private, and explainable to fully realize the anticipated benefits of
AI to societies and humanity worldwide.

ACKNOWLEDGMENTS

We are grateful to Grace Wei, Claire Vishik of Intel, and Lian Zhu of Vox.com for their invaluable
feedback. This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 850990
PSOTI). It was co-funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 CROSS-
ING/236615297 and GRK 2050 Privacy & Trust/251805230, and by the German Federal Ministry
of Education and Research and the Hessen State Ministry for Higher Education, Research and the
Arts within ATHENE. The work is in part supported in part by NSF under Award #1943245 and
SRC GRC Task 2908.001.

REFERENCES

[1] 2007–2022. Partial Dependence and Individual Conditional Expectation plots.
https://scikit-learn.org/stable/modules/partial_dependence.html.

[2] 2009. Netflix Prize. https://paperswithcode.com/dataset/netflix-prize.
[3] 2013. Health Insurance Portability and Accountability Act (HIPAA). https://www.hhs.gov/hipaa/index.html.
[4] 2016. General Data Protection Regulatory (GDPR). https://gdpr-info.eu.
[5] 2018. California Consumer Privacy Act (CCPA). http://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5.

[6] 2019. TheNextGeneration of Data Sharing in Financial Services. https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value.

[7] 2020. https://www.inpher.io/news/2020/5/26/named-in-gartner-homomorphic-encryption-report .
[8] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016.

Deep learning with differential privacy. In CCS’16. 308–318.
[9] Nitin Agrawal, Reuben Binns, MaxVan Kleek, Kim Laine, and Nigel Shadbolt. 2021. Exploring design and governance

challenges in the development of privacy-preserving computation. In CHI’21.
[10] Avi Goldfarb Ajay Agrawal, Joshua Gans. 2018. PredictionMachines: The Simple Economics of Artificial Intelligence.

https://www.predictionmachines.ai.
[11] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jef-

frey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison,
Amit Sahai, and Vinod Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical Report.
https://homomorphicencryption.org/.

[12] Masaud Y. Alhassan, Daniel Günther, Ágnes Kiss, and Thomas Schneider. 2020. Efficient and Scalable Universal
Circuits. Journal of Cryptology (JoC) (2020).

https://scikit-learn.org/stable/modules/partial_dependence.html
https://paperswithcode.com/dataset/netflix-prize
https://www.hhs.gov/hipaa/index.html
https://gdpr-info.eu
http://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value
https://www.inpher.io/news/2020/5/26/named-in-gartner-homomorphic-encryption-report
https://www.predictionmachines.ai
https://homomorphicencryption.org/


Trustworthy AI Inference Systems: An Industry Research View 11

[13] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli, Nicholas
Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian
Quah, Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew
Triplett, Vinod Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homomor-
phic Encryption Library. Workshop on Encrypted Computing & Applied Homomorphic Cryptography.
https://dualitytech.com/product/analytics-and-machine-learning/.

[14] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno, Richard Murphy, Ravi Nair, and Steven
Swanson. 2014. Near-data processing: Insights from a MICRO-46 workshop. IEEE Micro 34, 4 (2014), 36–42.

[15] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider.
2009. Secure Evaluation of Private Linear Branching Programs with Medical Applications. In ESORICS’09.

[16] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. 2011. Privacy-
Preserving ECG Classification with Branching Programs and Neural Networks. TIFS’11.

[17] Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In FOCS’14.

[18] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN: Reverse Engineering of Neural Network
Architectures Through Electromagnetic Side Channel. In USENIX Security Symposium. 515–532.

[19] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas
Schneider, Emmanuel Stapf, and Christian Weinert. 2020. Offline Model Guard: Secure and Private ML on Mobile
Devices. In DATE’20.

[20] Sarah Bird. 2022. Responsible AI investments and safeguards for facial recognition.
https://azure.microsoft.com/en-us/blog/responsible-ai-investments-and-safeguards-for-facial-recognition/ .

[21] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and Hossein Yalame. 2020. MP2ML: A
Mixed-Protocol Machine Learning Framework for Private Inference. In ARES’20.

[22] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. 2019. nGraph-HE2: A High-
Throughput Framework for Neural Network Inference on Encrypted Data. In WAHC’19.

[23] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski. 2019. nGraph-HE: A Graph Compiler for
Deep Learning on Homomorphically Encrypted Data. In CF’19.

[24] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2011. Fully Homomorphic Encryption without Boot-
strapping. Cryptology ePrint Archive, Report 2011/277. https://eprint.iacr.org/2011/277.

[25] Luís TAN Brandão, Michael Davidson, and Apostol Vassilev. 2019. Towards NIST Standards for Threshold Schemes for

Cryptographic Primitives: A Preliminary Roadmap. Technical Report. National Institute of Standards and Technology.
[26] Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, and Chris-

tian Weinert. 2018. VoiceGuard: Secure and Private Speech Processing. In INTERSPEECH’18.
[27] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2019. SANCTUARY:

ARMing TrustZone with User-space Enclaves. In NDSS’19.
[28] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko. 2022. MOTION – A Framework for

Mixed-Protocol Multi-Party Computation. Transactions on Privacy and Security 25, 2 (2022).
[29] Thomas Brewster. 2020. Microsoft Urged To Follow Amazon And IBM: Stop Selling Facial Recognition To Cops After

George Floyd’sDeath. https://www.forbes.com/sites/thomasbrewster/2020/06/11/microsoft-urged-to-follow-amazon-and-ibm-stop-selling-facial-recognition-to-cops-after-george-floyds-death/.

[30] Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger, Gillian Hadfield, Heidy Khlaaf, Jingy-
ing Yang, Helen Toner, Ruth Fong, Tegan Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung, Andrew Trask, Emma
Bluemke, Jonathan Lebensold, Cullen O’Keefe, Mark Koren, Théo Ryffel, JB Rubinovitz, Tamay Besiroglu, Federica
Carugati, Jack Clark, Peter Eckersley, Sarah de Haas, Maritza Johnson, Ben Laurie, Alex Ingerman, Igor Krawczuk,
Amanda Askell, Rosario Cammarota, Andrew Lohn, David Krueger, Charlotte Stix, Peter Henderson, Logan Gra-
ham, Carina Prunkl, Bianca Martin, Elizabeth Seger, Noa Zilberman, Seán Ó hÉigeartaigh, Frens Kroeger, Girish
Sastry, Rebecca Kagan, Adrian Weller, Brian Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel Herbert-Voss,
Martijn Rasser, Shagun Sodhani, Carrick Flynn, Thomas Krendl Gilbert, Lisa Dyer, Saif Khan, Yoshua Bengio, and
Markus Anderljung. 2020. Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims.
arXiv:2004.07213 [cs.CY]

[31] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and Thomas Schneider. 2018. HyCC: Com-
pilation of Hybrid Protocols for Practical Secure Computation. In CCS’18.

[32] Rosario Cammarota, Indranil Banerjee, and Ofer Rosenberg. 2018. Machine Learning IP Protection. In ICCAD’18.
[33] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. 2020. Cryptanalytic Extraction of Neural Network Models.

arXiv:2003.04884 [cs.LG]
[34] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi. 2019. EzPC: Programmable

and Efficient Secure Two-Party Computation for Machine Learning. In EuroS&P’19.

https://dualitytech.com/product/analytics-and-machine-learning/
https://azure.microsoft.com/en-us/blog/responsible-ai-investments-and-safeguards-for-facial-recognition/
https://eprint.iacr.org/2011/277
https://www.forbes.com/sites/thomasbrewster/2020/06/11/microsoft-urged-to-follow-amazon-and-ibm-stop-selling-facial-recognition-to-cops-after-george-floyds-death/
https://arxiv.org/abs/2004.07213
https://arxiv.org/abs/2003.04884


12 Cammarota et al.

[35] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differentially private empirical risk minimiza-
tion. Journal of Machine Learning Research 12, Mar (2011), 1069–1109.

[36] Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang, and Li Jiang. 2017. Accelerator-
friendly neural-network training: Learning variations and defects in RRAM crossbar. In DATE’17.

[37] Eduardo Chielle, Oleg Mazonka, Homer Gamil, and Michail Maniatakos. 2022. Accelerating Fully Homomorphic
Encryption by Bridging Modular and Bit-Level Arithmetic. In ICCAD’22. See also https://ia.cr/2018/1013.

[38] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, andMalika Izabachene. 2016. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In ASIACRYPT’16.

[39] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping Enables Efficient Homomorphic
Inference of Deep Neural Networks. In Cyber Security Cryptography and Machine Learning. Springer.

[40] Joseph Clements and Yingjie Lao. 2018. Backdoor attacks on neural network operations. In GlobalSIP’18. IEEE, 1154–
1158.

[41] Joseph Clements and Yingjie Lao. 2018. Hardware trojan attacks on neural networks. arXiv preprint arXiv:1806.05768
(2018).

[42] Janina Conboye. 2019. British Airways hit with record GBP 183M fine for data breach.
https://www.ft.com/content/197a6758-a148-11e9-a282-2df48f366f7d.

[43] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian Livingstone, Justin Patriquin, and Gavin
Uhma. 2018. Private Machine Learning in TensorFlow using Secure Computation. arXiv preprint arXiv:1810.08130.

[44] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi. 2020. EVA: An
encrypted vector arithmetic language and compiler for efficient homomorphic computation. In PLDI’20.

[45] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd
Mytkowicz. 2019. CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In PLDI’19.

[46] Kevin Deforth, Marc Desgroseilliers, Nicolas Gama, Mariya Georgieva, Dimitar Jetchev, and Marius Vuille. 2022.
XORBoost: Tree Boosting in the Multiparty Computation Setting. PETS 2022, 4 (2022), 66–85. https://inpher.io/.

[47] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Framework for Efficient Mixed-Protocol
Secure Two-Party Computation. In NDSS’15.

[48] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza Zeitouni, andMichael Zohner.
2017. Pushing the Communication Barrier in Secure Computation using Lookup Tables. In NDSS’17.

[49] Gaofeng Dong, Ping Wang, Ping Chen, Ruizhe Gu, and Honggang Hu. 2019. Floating-Point Multiplication Timing
Attack on Deep Neural Network. In SmartIoT’19.

[50] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. Bomanet: Boolean masking of an entire neural network.
In ICCAD’20.

[51] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. Maskednet: The first hardware inference engine aiming
power side-channel protection. In HOST’20.

[52] Léo Ducas and Daniele Micciancio. 2014. FHEW: Bootstrapping Homomorphic Encryption in less than a second.
Cryptology ePrint Archive, Report 2014/816. https://eprint.iacr.org/2014/816.

[53] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E. Balas. 2018. Stealing Neural Networks via Timing
Side Channels. arXiv:1812.11720 [cs.CR]

[54] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating Noise to Sensitivity in Private
Data Analysis. In Theory of Cryptography.

[55] European Commission. 2021. Proposal for a Regulation laying downharmonised rules on artificial intelligence (Artifi-
cial IntelligenceAct). https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence

[56] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint
Archive, Report 2012/144. https://eprint.iacr.org/2012/144.

[57] Federal Trade Commission (FTC). 2019. FTC Imposes USD 5B Penalty and Sweeping New Privacy Restrictions on
Facebook. https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions.

[58] Food and Drug Administration (FDA). 2020. FDA Authorizes Marketing of
First Cardiac Ultrasound Software That Uses Artificial Intelligence to Guide User.
https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-cardiac-ultrasound-software-uses-artificial-intelligence-guide-user.

[59] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Stanford University PhD Thesis.
[60] Santosh Ghosh, Luis S Kida, Soham Jayesh Desai, and Reshma Lal. 2020. A >100 Gbps Inline AES-GCM Hardware

Engine and Protected DMA Transfers between SGX Enclave and FPGA Accelerator Device. Cryptology ePrint
Archive, Report 2020/178. https://eprint.iacr.org/2020/178.

[61] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. 2016. Cryp-
tonets: Applying neural networks to encrypted data with high throughput and accuracy. In ICML’16.

https://ia.cr/2018/1013
https://www.ft.com/content/197a6758-a148-11e9-a282-2df48f366f7d
https://inpher.io/
https://eprint.iacr.org/2014/816
https://arxiv.org/abs/1812.11720
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence
https://eprint.iacr.org/2012/144
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-cardiac-ultrasound-software-uses-artificial-intelligence-guide-user
https://eprint.iacr.org/2020/178


Trustworthy AI Inference Systems: An Industry Research View 13

[62] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental Game. In STOC’87.
[63] Graphene Project. 2019. Graphene - A Library OS for Unmodified Applications. https://grapheneproject.io/.
[64] Daniel Günther, Ágnes Kiss, and Thomas Schneider. 2017. More Efficient Universal Circuit Constructions. In ASI-

ACRYPT’17.
[65] Veneta Haralampieva, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2020. A systematic comparison of en-

crypted machine learning solutions for image classification. In Proceedings of the 2020 workshop on privacy-preserving
machine learning in practice. 55–59.

[66] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2010. TASTY: Tool
for Automating Secure Two-party Computations. In CCS’10.

[67] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor Dumitras, . 2019. Terminal brain damage:
Exposing the graceless degradation in deep neural networks under hardware fault attacks. In USENIX Security’19.
497–514.

[68] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sherwood,
and Yuan Xie. 2019. Neural Network Model Extraction Attacks in Edge Devices by Hearing Architectural Hints.
arXiv:1903.03916 [cs.CR]

[69] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse Engineering Convolutional Neural Networks Through
Side-channel Information Leaks. In DAC’18.

[70] Wenqin Huangfu, Lixue Xia, Ming Cheng, Xiling Yin, Tianqi Tang, Boxun Li, Krishnendu Chakrabarty, Yuan Xie, Yu
Wang, and Huazhong Yang. 2017. Computation-oriented fault-tolerance schemes for RRAM computing systems. In
ASP-DAC’17. IEEE, 794–799.

[71] SiamUHussain and Farinaz Koushanfar. 2019. FASE: FPGAAcceleration of Secure Function Evaluation. In FCCM’19.
[72] Peter Hustinx. 2010. Privacy by Design: Delivering the Promises. Identity in The Information Society 3 (2010).
[73] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim: In-memory acceleration of deep

neural network training with high precision. In ISCA’19. IEEE, 802–815.
[74] Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Messerly, Patric Liu, Farinaz Koushanfar, and Tajana Rosing. 2019.

A framework for collaborative learning in secure high-dimensional space. In CLOUD’19. IEEE, 435–446.
[75] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas. 2019. Efficient MPC via Program Analysis: A Framework for

Efficient Optimal Mixing. In CCS’19.
[76] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. 2020. High Accuracy and

High Fidelity Extraction of Neural Networks. In USENIX Security’20. USENIX Association, Boston, MA.
[77] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018. GAZELLE: A Low Latency Framework

for Secure Neural Network Inference. In USENIX Security’18.
[78] Seny Kamara and Mariana Raykova. 2011. Secure Outsourced Computation in a Multi-Tenant Cloud. In IBM Work-

shop on Cryptography and Security in Clouds.
[79] Behnam Khaleghi, Mohsen Imani, and Tajana Rosing. 2020. Prive-HD: Privacy-Preserved Hyperdimensional Com-

puting. arXiv:2005.06716 [cs.LG]
[80] Ágnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas Schneider. 2019. SoK: Modular and Efficient Private

Decision Tree Evaluation. PETS’19 (2019).
[81] Ágnes Kiss and Thomas Schneider. 2016. Valiant’s Universal Circuit is Practical. In EUROCRYPT’16.
[82] Michael Klachko, Mohammad Reza Mahmoodi, and Dmitri Strukov. 2019. Improving noise tolerance of mixed-signal

neural networks. In IJCNN’19. IEEE, 1–8.
[83] Vladimir Kolesnikov and Thomas Schneider. 2008. A Practical Universal Circuit Construction and Secure Evaluation

of Private Functions. In FC’08.
[84] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 Dataset.

https://www.cs.toronto.edu/~kriz/cifar.html.
[85] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypT-

Flow: Secure TensorFlow Inference. In S&P’20.
[86] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-

Robert Müller. 2019. Unmasking Clever Hans predictors and assessing what machines really learn. Nature com-

munications 10, 1 (2019), 1–8.
[87] Yann LeCun and Corinna Cortes. 2010. MNIST Handwritten Digit Database. http://yann.lecun.com/exdb/mnist/.
[88] B. Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. 2015. Vortex: Variation-aware training for mem-

ristor X-bar. In DAC’15.
[89] Hanlin Liu, Yu Yu, Shuoyao Zhao, Jiang Zhang, Wenling Liu, and Zhenkai Hu. 2021. Pushing the Limits of Valiant’s

Universal Circuits: Simpler, Tighter and More Compact. In CRYPTO’21.
[90] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious Neural Network Predictions via MiniONN

Transformations. In CCS’17.

https://grapheneproject.io/
https://arxiv.org/abs/1903.03916
https://arxiv.org/abs/2005.06716
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/


14 Cammarota et al.

[91] Y. Liu, D. Dachman-Soled, and A. Srivastava. 2019. Mitigating Reverse Engineering Attacks on Deep Neural Net-
works. In ISVLSI’19. 657–662.

[92] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. 2017. Fault injection attack on deep neural network. In ICCAD’17.
IEEE, 131–138.

[93] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. Advances in neural

information processing systems 30 (2017).
[94] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay — A Secure Two-Party Computation

System. (2004).
[95] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. 2020. DELPHI:

A Cryptographic Inference Service for Neural Networks. In USENIX Security’20.
[96] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework for Machine Learning. In CCS’18.
[97] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable Privacy-preserving Machine Learning.

In S&P’17.
[98] Clare Naden. 2019. It’s all about trust. https://www.iso.org/news/ref2452.html.
[99] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. 2018. Rendered Insecure: GPU Side

Channel Attacks Are Practical. In CCS’18. 2139–2153.
[100] Hamid Nejatollahi, Saransh Gupta, Mohsen Imani, Tajana Simunic Rosing, Rosario Cammarota, and Nikil Dutt. 2020.

CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware. Cryptology ePrint Archive, Report
2020/276. https://eprint.iacr.org/2020/276.

[101] Antoinette Price. 2020. Achieving TrustworthyAIwith Standards. https://etech.iec.ch/issue/2020-03/achieving-trustworthy-ai-with-standards.

[102] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-flip attack: Crushing neural network with progressive bit
search. In Proceedings of the IEEE International Conference on Computer Vision. 1211–1220.

[103] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2019. HEAX: An Architecture for Computing on Encrypted
Data. In ASPLOS’19.

[104] M Sadegh Riazi, Bita Darvish Rouani, and Farinaz Koushanfar. 2019. Deep Learning on Private Data. S&P’19.
[105] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz Koushanfar. 2019. XONN:

XNOR-based Oblivious Deep Neural Network Inference. In USENIX Security’19.
[106] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schneider, and Farinaz

Koushanfar. 2018. Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications. In
ASIACCS’18.

[107] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should I trust you?" Explaining the predictions
of any classifier. In SIGKDD’16.

[108] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-precision model-agnostic explanations.
In AAAI’18.

[109] Mike Rosulek and Lawrence Roy. 2021. Three halves make a whole? Beating the half-gates lower bound for garbled
circuits. In CRYPTO’21.

[110] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. DeepSecure: Scalable Provably-Secure Deep
Learning. In DAC’18.

[111] Benjamin IP Rubinstein, Peter L Bartlett, Ling Huang, and Nina Taft. 2009. Learning in a large function space:
Privacy-preserving mechanisms for SVM learning. arXiv preprint arXiv:0911.5708 (2009).

[112] Ahmad-Reza Sadeghi and Thomas Schneider. 2008. Generalized Universal Circuits for Secure Evaluation of Private
Functions with Application to Data Classification. In ICISC’08.

[113] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu, R Stan-
ley Williams, and Vivek Srikumar. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[114] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013).

[115] Karthee Sivalingam and Nina Mujkanovic. 2019. Graph Compilers for Artifical Intelligence Training and Inference.
https://www.sodalite.eu/content/graph-compilers-ai-training-and-inference.

[116] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. 2013. Stochastic gradient descent with differentially
private updates. In 2013 IEEE Global Conference on Signal and Information Processing. IEEE, 245–248.

[117] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar. 2015. TinyGarble: Highly Compressed
and Scalable Sequential Garbled Circuits. In S&P’15.

[118] Aswin Sreedhar, Sandip Kundu, and Israel Koren. 2012. On reliability Trojan injection and detection. Journal of Low
Power Electronics 8, 5 (2012), 674–683.

https://www.iso.org/news/ref2452.html
https://eprint.iacr.org/2020/276
https://etech.iec.ch/issue/2020-03/achieving-trustworthy-ai-with-standards
https://www.sodalite.eu/content/graph-compilers-ai-training-and-inference


Trustworthy AI Inference Systems: An Industry Research View 15

[119] Mark Tehranipoor, Waleed Khalil, Matthew Casto, Yousef Iskander, Brian Dupaix, Rosario Cammarota, and
Brian Cohen. 2019. Trusted And Assured MicroElectronics (TAME) forum: Working Groups Report.
https://dforte.ece.ufl.edu/wp-content/uploads/sites/65/2020/08/TAME-Report-FINAL.pdf .

[120] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee. 2018. Privado: Practical
and Secure DNN Inference. CoRR abs/1810.00602 (2018). arXiv:1810.00602 http://arxiv.org/abs/1810.00602

[121] C. Torres-Huitzil and B. Girau. 2017. Fault and Error Tolerance in Neural Networks: A Review. IEEE Access 5 (2017).
[122] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2016. Stealing machine learning

models via prediction APIs. In USENIX Security’16.
[123] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted

Hardware. In ICLR’19.
[124] Amos Treiber, Alejandro Molina, Christian Weinert, Thomas Schneider, and Kristian Kersting. 2020. CryptoSPN:

Privacy-preserving Sum-Product Network Inference. In ECAI’20.
[125] Leslie G Valiant. 1976. Universal Circuits (Preliminary Report). In STOC’76.
[126] Bob Violino. 2022. Rising premiums, more restricted cyber insurance coverage poses big risk for companies.

https://www.cnbc.com/2022/10/11/companies-are-finding-it-harder-to-get-cyber-insurance-.html.
[127] Wenhao Wang, Yichen Jiang, Qintao Shen, Weihao Huang, Hao Chen, Shuang Wang, XiaoFeng Wang, Haixu Tang,

Kai Chen, Kristin Lauter, and Dongdai Lin. 2019. Toward Scalable Fully Homomorphic Encryption Through Light
Trusted Computing Assistance. arXiv preprint arXiv:1905.07766.

[128] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I Know What You See: Power Side-Channel Attack
on Convolutional Neural Network Accelerators. In ACSAC’18.

[129] Zack Whittaker. 2019. After criticism, Homeland Security drops plans to expand airport face recognition scans to
US citizens. https://techcrunch.com/2019/12/05/homeland-security-drops-airport-citizens-face-scans/.

[130] Lixue Xia, Wenqin Huangfu, Tianqi Tang, Xiling Yin, Krishnendu Chakrabarty, Yuan Xie, Yu Wang, and Huazhong
Yang. 2018. Stuck-at Fault Tolerance in RRAM Computing Systems. IEEE Journal on Emerging and Selected Topics in

Circuits and Systems 8, 1 (2018), 102–115.
[131] Lixue Xia, Mengyun Liu, Xuefei Ning, Krishnendu Chakrabarty, and Yu Wang. 2017. Fault-tolerant training with

on-line fault detection for RRAM-based neural computing systems. In DAC’17.
[132] Xiaolin Xu, Fahim Rahman, Bicky Shakya, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor. 2019. Electronics

Supply Chain Integrity Enabled by Blockchain. ACM Trans. Des. Autom. Electron. Syst. (2019).
[133] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache Telepathy: Leveraging Shared Resource

Attacks to Learn DNN Architectures. In USENIX Security’20.
[134] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In FOCS’86.
[135] Shuoyao Zhao, Yu Yu, Jiang Zhang, and Hanlin Liu. 2019. Valiant’s Universal Circuits Revisited: An Overall Improve-

ment and a Lower Bound. In ASIACRYPT’19.

https://dforte.ece.ufl.edu/wp-content/uploads/sites/65/2020/08/TAME-Report-FINAL.pdf
https://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1810.00602
https://www.cnbc.com/2022/10/11/companies-are-finding-it-harder-to-get-cyber-insurance-.html
https://techcrunch.com/2019/12/05/homeland-security-drops-airport-citizens-face-scans/

	Abstract
	1 Introduction
	2 Tail and Headwinds
	3 Privacy Technologies Penetration
	4 Ecosystem Development
	5 Research and Standards
	6 Privacy and Explainability
	7 Conclusion
	Acknowledgments
	References



