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ABSTRACT 
Building controls are becoming more important and complicated due to the dynamic and stochastic energy 
demand, on-site intermittent energy supply, as well as energy storage, making it difficult for them to be 
optimized by conventional control techniques. Reinforcement Learning (RL), as an emerging control 
technique, has attracted growing research interest and demonstrated its potential to enhance building 
performance while addressing some limitations of other advanced control techniques, such as model predictive 
control. This study conducted a comprehensive review of existing studies that applied RL for building controls. 
It provided a detailed breakdown of the existing RL studies that use a specific variation of each major 
component of the Reinforcement Learning: algorithm, state, action, reward, and environment. We found RL 
for building controls is still in the research stage with limited applications (11%) in real buildings. Three 
significant barriers prevent the adoption of RL controllers in actual building controls: (1) the training process 
is time consuming and data demanding, (2) the control security and robustness need to be enhanced, and (3) 
the generalization capabilities of RL controllers need to be improved using approaches such as transfer learning. 
Future research may focus on developing RL controllers that could be used in real buildings, addressing current 
RL challenges, such as accelerating training and enhancing control robustness, as well as developing an open-
source testbed and dataset for performance benchmarking of RL controllers. 
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1. Introduction 
People spend more than 85% of their time in buildings [1]. At the same time, buildings consume about 40% 
of total primary energy in countries like the United States [2]. Well-performing building controls are capable 
of delivering a healthy and comfortable indoor environment in an energy- and carbon-efficient way. However, 
building controls are becoming complicated because in addition to traditional services such as lighting and 
HVAC, modern building energy systems must respond to on-site intermittent renewables, energy storage, 
electric vehicle charging, and more. Furthermore, buildings need to respond to grid signals by shifting the load 
to improve grid stability and security, adding a layer of complexity to building controls. The U.S. Department 
of Energy launched an initiative on Grid-interactive Efficient Buildings (GEB), which aims to develop and 
integrate technologies for grid responsive buildings to achieve lower energy use (energy efficiency), flexible 
loads (demand flexibility), and resilience (e.g., running in low power mode under constrained conditions such 
as heatwaves). Smart building controls play a critical role in GEB [3].  
May [4] argued that advanced building controls need to function well in the following three aspects to make 
buildings smart and intelligent: first, they must balance the trade-off between multiple goals, such as occupant 
comfort, energy conservation, grid flexibility and carbon emission reduction; second, they must adapt 
autonomously to the environment and its occupants; and third, they must feed occupant feedback into the 
control logic (human-in-the-loop). Unfortunately, those functions are difficult to achieve using conventional 
building control techniques.  
The most conventional building control is rule-based feedback control, which includes two steps: (1) rely on 
some pre-determined schedules to select the setpoints (e.g., temperature setpoint), and (2) track the setpoints 
using techniques such as Proportional-Integral-Derivative (PID) control [5]. The rule-based prescriptive 
approach can maintain occupant comfort by maintaining a comfort range. Additionally, it is possible to reduce 
energy consumption and carbon emissions by adjusting the setpoints based on heuristic rules; for example, 
relaxing the temperature setpoint band during unoccupied hours or demand response events. ASHRAE 
Guideline 36 summarized those rules [6], which could represent the state of the art of this approach adopted 
by industry.  
The prescriptive and feedback-based reactive control strategy is simple and effective, but not optimal, for two 
reasons. First, predictive information is not taken into consideration, leading to sub-optimal performance. For 
instance, if the coming day is predicted to be hot, it might be more energy efficient to pre-cool the building in 
advance. Second, the control sequence (such as those parameters in the PID controller) is fixed and 
predetermined, so it is not customized to a specific building and climate condition. To improve building control 
performance, Model Predictive Control (MPC) has been explored. 
The three words in the Model Predictive Control correspond to its three critical steps. “Model” corresponds to 
the development and identification of models that characterize the thermal and energy dynamics of buildings 
and systems. “Predictive” corresponds to the disturbance prediction, such as weather or occupancy prediction 
in the building context. “Control” corresponds to solving the optimization problem by feeding the predictive 
information into the developed model. Since it was initially proposed in the 1970s in the chemical and 
petrochemical industries, MPC has been successfully applied in many fields [7]. In the building industry, MPC 
has been used to control radiant ceiling heating [8], floor heating [9], intermittent heating [10] and ventilation 
[11], and to optimize cold water thermal storage systems [12]. MPC has proved its potential to save energy in 
both simulation [13] and experimental tests on real buildings [8].  
The major challenge of MPC is that it is labor-intensive and requires expertise to use. It might be cost-effective 
to develop and calibrate a model for a car or an airplane that can be generalized and used for many cars and 
airplanes. Still, every building and its energy systems are unique, so it is difficult to generalize a standard 
building energy model for various buildings. As a result, despite the promising results, MPC has not yet been 
widely adopted by the building industry [14].  
Empowered by big data, powerful computing, and algorithm advancement, Machine Learning (ML) has been 
used in almost every stage of the building lifecycle and has demonstrated its potential to enhance building 
performance [15]. As a branch of machine learning specifically for control problems, Reinforcement Learning 
(RL) is becoming a promising method to revolutionize building controls. RL is data-driven, which could help 
users avoid the tedious work of developing and calibrating a detailed model, as is required by MPC. 
Additionally, RL could leverage the recent and rapid developments in the machine learning field, such as deep 
learning and feature encoding, to make better control decisions. RL has been successfully applied in other 
areas, ranging from gaming [16] to robotics [17]. It is the time to explore whether or not RL could be used to 
optimize building controls to achieve energy efficiency, demand flexibility, and resiliency, which is a new but 
rapidly developing area. The objectives of this paper are threefold. First, we introduce the general framework 
of RL and how this framework would fit into the building control field. Secondly, we provide a detailed 
breakdown of the existing studies that use a specific variation of each major component of the Reinforcement 
Learning: algorithm, state, action, reward, and environment. Last, we discuss the current challenges and future 



research opportunities of RL for building controls. 
 
2. Methods and Objectives 
2.1 Reinforcement learning for building controls 
Reinforcement learning is a branch of machine learning that is specialized in solving control, or sequential 
decision making, problems. As shown in Figure 1, the three categories of machine learning problems 
differentiate from each other in terms of the kinds of feedback the agent/algorithm will receive after they make 
a decision/prediction. For supervised learning, the agent will immediately know how accurate its prediction is 
compared with the ground truth given by the label data. And this information will be used to update and 
improve the predictor. For unsupervised learning, no feedback is provided as the dataset is unlabeled. 
Reinforcement learning lies in the middle between the two scenarios, which receives delayed feedback.  
 

 
Figure 1. Three types of machine learning problems  

 
To better understand the concept of delayed feedback, we need to dive deep into the Markov Decision Process 
(MDP), which is the mathematical foundation of RL. MDP is formed by a tuple (S, A, P, R), as shown in Figure 
2. 
• S: State 
The state is a mathematical description of the environment that is relevant and informative to the decision to 
be made. States in RL are similar to features in supervised or unsupervised learning. Taking HVAC controls 
as an example, current room temperature could be the state the HVAC controller wants to consider. 
Additionally, the predicted outdoor temperature of the next time step might also be another state variable, as 
this information could inform the controller to make a better decision. 
• A: Action 
Action is the decision made by the controller in terms of how to control the environment. In the example of 
HVAC control, the action could be adjusting indoor temperature setpoint, supply air temperature, fan speed, 
etc.  
• Environment 
Environment is the target of the control, which is mathematically represented by the following two functions: 

o P: Transition Probability 
The transition probability predicts how the environment will evolve if we take action 𝑎𝑎𝑡𝑡 at state 𝑠𝑠𝑡𝑡, i.e., 
mapping the state and action of the current time step to the state of the next time step. 
o R: Reward Function 
The reward function predicts the immediate rewards of taking action 𝑎𝑎𝑡𝑡 at state 𝑠𝑠𝑡𝑡, i.e., mapping the state 
and action to the rewards. 

• Controller/Agent 
The goal of the controller is to find the optimal Policy (𝝅𝝅), which outputs an optimal action for each state. 
There are primarily two approaches to achieve this goal:  

o Model-based RL 
If the characteristic of the environment is known to the controller, i.e., the transition probability and the 
reward function are known, we could use value iteration or policy iteration to find the optimal policy. 
o Model-free RL 
In most scenarios, the behaviors of the environment are unknown to the agent. The controller needs to find 
out the optimal policy without modeling the environment. Model-free RL is similar to the concept of end-
to-end machine learning, as they both skip some intermediate steps (modeling the environment in RL 
context) and achieve the goal directly. 



 
Figure 2. Reinforcement learning for building controls 

 
Given the RL framework, we can better understand the concept of delayed feedback. Because the feedback is 
delayed, the control problem becomes complicated. Under the context of RL, any action leads to two 
consequences, receiving an immediate reward and arriving at a new state. The control agent could not simply 
select the action corresponding to the highest reward; instead, it needs to consider the delayed future rewards 
corresponding to the new state. For instance, the action of pre-cooling might lead to higher immediate energy 
consumption, but in the long term, the new state saves utility costs. The strength of RL lies in its ability to 
optimize the trade-off between short-term and long-term benefits. To differentiate the long-term benefits from 
the short-term ones, the concept of Value is introduced. Value is defined as the accumulated ‘benefits’ of future 
multiple steps. On the contrary, reward is defined as the immediate ‘benefits’ of taking the selected action at 
the current time step. In other words, value is the accumulated rewards of multiple future steps until the end. 
As observed in Figure 2, there are five major components in RL settings: controller, states, actions, rewards, 
and the environment. Varieties in the five components (such as different algorithms or different states to 
represent the environment) lead to different RL implementation, which results in different control performance. 
The ultimate goal of this study is to conduct a tutorial survey and a comprehensive review of existing studies 
using RL for building controls. By surveying how current researchers select state and action variables, 
determine reward function, and choose algorithms, we aim to present an overview of the current applications 
of RL for building controls. 
 
2.2 Literature search 
We conducted a literature search on the academic search platform Web of Science using the topic structure and 
keywords shown in Equation 1, where the symbol “*” is used to search for terms in both singular and plural 
forms. The Web of Science platform could retrieve papers from both the traditional built environment field and 
the computer science field. We did not down select or filter out any papers that applied Reinforcement Learning 
in the buildings field.  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) AND [(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ OR ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗
OR ℎ𝑜𝑜𝑜𝑜𝑜𝑜 OR 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗) AND 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]    (Eq. 1) 
 
The literature search was conducted in December of 2019. With the search structure and keywords listed in 
Equation 1, 77 articles on this topic were found and reviewed. The 77 studies examined in this paper are listed 
in Table A1 of the Appendix. Figure 3 summarizes the papers based on their publication journals and the 
control subjects.  
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Figure 3. Summary of articles searched 
As shown in Figure 3, the publication on this topic jumped between 2014 and 2015, and then stayed stable. 
Applying RL for building controls is an interdisciplinary field: half of the papers are from journals focused on 
computer science, artificial intelligence, and controls. The remaining publications are from journals focused 
on buildings, energy, and the environment. To follow the latest progress, researchers need to watch journals 
from both fields. In terms of the control subject, 35% of studies used RL to control HVAC, and the proportion 
increased to 50% after 2015. Other popular subjects include the charging/discharging of batteries and 
scheduling of home appliances. 
In addition to the number of articles published, another important index for estimating the quality and influence 
of those publications is the number of citations,3 which was listed in Figure 3b. Articles in this field, in general, 
are cited between 20–70 times per paper. The most cited paper in this field was published in 2010 using tabular 
Q-learning for home appliance scheduling [18]. This article was published in First IEEE International 
Conference on Smart Grid Communications and has been cited 250 times. Papers using RL for HVAC controls 
were not cited as many times as those focused on other fields. A possible reason is those papers were published 
more recently, between 2015 and 2019. Table 1 lists the most highly cited papers in each subject, so hopefully, 
that list can direct readers to the most influential papers on each subject. 

                                                   
1 As studies using reinforcement learning for building controls were published in too many journals to be exhaustively 
presented, we only list those journals that published at least two papers and group the remaining into a small number 
of combined categories. The combined categories are noted with a star. 
2 An article might be counted twice if it controls multiple building components. 
3 The number of citations were retrieved from Google Scholar until December 23,2019. 



Table 1. Highly cited papers in each subject 
Subject Number 

of 
Citations 

Most Highly Cited Paper Journal/Conference of 
Publication 

HVAC 114 Dalamagkidis et al. (2007) 
[19] 

Building and Environment 

Batteries 108 Wei et al. (2014) [20] IEEE Transactions on Industrial 
Electronics 

Appliances 250 O'Neill et al. (2010) [18] IEEE Conference on Smart Grid 
Communications 

Domestic Hot 
Water 

48 Ruelens et al. (2014) [21] IEEE Conference on Power 
Systems Computation  

Thermal Energy 
Storage 

107 Liu and Henze (2006) [22] Energy and Buildings 

Combined Heat 
and Power 

87 Jiang and Fei (2014) [23] IEEE Transactions on Smart Grid 

Windows 114 Dalamagkidis et al. (2007) 
[19] 

Building and Environment 

Lighting 37 Cheng et al. (2016) [24] Energy and Buildings 

 
2.3 Previous reviews 
Three literature review studies were found in the literature search. They summarized the applications of 
reinforcement learning in building controls for three specific purposes: occupant comfort, energy savings, and 
demand response. 
Han et al. (2019) [25] reviewed the application of reinforcement learning for occupant comfort management. 
Thirty-three empirical studies on this topic have been identified and reviewed. Among the papers reviewed, 
value-based Q-learning was found to dominate the learning algorithms. The majority of papers sought to 
maintain comfortable indoor temperature, while other important aspects of occupant comfort, such as indoor 
air quality and visual comfort, are rarely studied. Another interesting finding is how the occupant comfort 
should be defined, as only 5 out of 33 studies include occupant feedback in the control loop. At the end of the 
paper, the authors proposed some future research trends. First, multi-agent reinforcement learning needs to be 
further explored because there might be multiple occupants present in the environment. Additionally, because 
reinforcement learning is computationally demanding, how to better integrate the computation platforms with 
the building management system is also important for the application of RL in buildings. 
Mason and Grijalva (2019) [26] reviewed the application of reinforcement learning for building energy 
management, including HVAC, water heater, appliances, lighting, photovoltaics (PV), batteries and the 
electrical grid. It was found that RL can typically provide savings of about 10% for HVAC and about 20% for 
water heaters. However, the vast majority of current studies are in simulation only. Several future research 
trends on this topic have been identified. First, Deep Reinforcement Learning was believed to be promising 
due to its capability to learn more complex policy under sophisticated environments. Second, as building 
operation has multiple goals (e.g., energy, comfort, cost), multi-objective RL demands further investigation, 
such as Pareto Q learning. Third, in the scenario of controlling a community of homes or in the campus/urban 
scale, multi-agent RL is needed. Last, transfer learning is crucial for the large adoption of RL for building 
controls, as it is time-consuming and computationally demanding, if not totally impossible, to train an RL 
controller for each building. Transfer Learning is defined as the process of applying the knowledge learned 
from one task to a related, but different, task [27]. Transfer learning is important because training the controller 
is a time-consuming process and requires expertise. Rather than training the RL controller on every individual 
building, it would be more efficient and scalable if we could train the RL controller on a small number of 
buildings and then apply them to larger building stocks. Transfer learning technique has been used in MPC 
based building controls [28], however, no successful application of transfer learning is found in the RL-based 
building controls. 
Vázquez-Canteli and Nagy (2019) [29] reviewed the use of reinforcement learning for demand response 
applications. In total, 105 articles were reviewed. Some common research gaps were identified; for example, 
only a small fraction of studies reviewed have been tested in physical systems, and very few studies include 



occupant feedback into the control loop. Additionally, Vázquez-Canteli and Nagy (2019) pointed out that most 
of the studies are not easily reproducible, and the performance of controllers are not comparable due to the 
different thermal dynamics and properties of different testbeds. Based on those gaps, two future research needs 
were identified. First, standardized control problems—as well as integrated software tools that include both 
building simulation and machine learning features—are needed to help researchers investigate their control 
approaches and compare them directly to other approaches. And second, the applicability of reinforcement 
learning in multi-agent systems needs to be further explored, especially for grid operation and optimization. 
 
2.4 Research gaps and objectives 
As introduced in Section 2.1, “reinforcement learning” is a broad and ambiguous term. A careful selection of 
states, actions, and algorithms is crucial for the performance of RL controllers. Meanwhile, different 
environmental settings make the comparison between various studies very challenging, if not impossible. As 
RL attracts increasing research and practical attention, it is necessary to comprehensively review and 
summarize which states, actions, and algorithms were selected, and how the environment was set up in existing 
studies. Such a review could help new researchers better understand the progress and identify research gaps in 
existing studies. In this study, we aim to provide a detailed breakdown of the existing studies that use a specific 
variation of each major component of the Reinforcement Learning, from the selection of algorithm, state, 
action, value approximation to the design of environment. Such a comprehensive breakdown has never been 
done before. Even though three review studies were found on similar topics, they only focus on a specific topic 
of building controls, which might not be able to provide a comprehensive overview of this topic.  
The goal of this study was to conduct a comprehensive survey of studies that applied RL for building controls. 
When designing an RL controller, many decisions need to be made; among them, how the state and action 
space is determined, how the reward function is designed, which algorithm is used, and where the training data 
come from. The object of this study was to dive deep into those subtle but essential variations. By reviewing 
the existing studies, we aim to present a whole picture of: (1) which areas/approaches have been extensively 
studied and which have not, and (2) which approach works and which does not, and why. We believe this work 
could help researchers learn from existing studies, get inspiration from current research trends, choose which 
research gaps to address, and improve the design of their own RL controller.  
We organize our review around five topics: algorithms, states, actions, rewards, and the environment—each 
corresponding to a key component in the RL framework, as presented in Figure 2. The result of this survey 
will be presented in Section 3. A full list of reviewed papers is shown in Table A1, so readers can easily retrieve 
key information as needed. In Section 4, we discuss some advanced topics of RL controllers, including how to 
speed up training, how to guarantee security, and how to evaluate performance. Conclusions are presented in 
Section 5. 
 
3 Survey on Reinforcement Learning for Building Controls 
Before diving deep into the survey results, we started with the mathematical formulation of the RL problem, 
which is shown in equations 2 and 3. The sequence of states and actions 𝑠𝑠1,𝑎𝑎1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇 is called trajectory г, 
which is determined by the transition probability 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  and the policy 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) . The transition 
probability 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  and the reward function 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  are the characteristics of the environment. 
Given 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) and 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡), the goal of the agent is to find the optimal control policy 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) that 
could result in the trajectory 𝑠𝑠1,𝑎𝑎1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇 with highest accumulative rewards 𝐸𝐸г~𝑝𝑝𝜃𝜃(г)[∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑡𝑡 ]. The 
expectation operator 𝐸𝐸г~𝑝𝑝𝜃𝜃(г) is introduced because both the environment and the policy could be stochastic. 

𝑝𝑝𝜃𝜃(𝑠𝑠1,𝑎𝑎1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇) = 𝑝𝑝(𝑠𝑠1)∏ 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝑇𝑇
𝑡𝑡=1 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)                      (Eq. 2) 

max
𝜃𝜃

{𝐸𝐸г~𝑝𝑝𝜃𝜃(г)[∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑡𝑡 ]}                                              (Eq. 3) 

 
3.1 Algorithms 
As introduced in Section 2.1, there are two major categories of RL algorithms: model-based RLs and model-
free RLs. A model-based RL learns the characteristics of the environment 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) and 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) first, 
if they are not known in advance. Then the learned 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  and 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  can be used to find the 
optimal policy. This approach is called “model-based RL” because the process of learning 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) and 
𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) is primarily developing a model for the environment. The model could be a data-driven model, such 



as a deep neural network, or a physics-based model, such as thermal resistance–thermal capacity model. In 
this regard, a model-based RL is similar to the MPC technique discussed in the Introduction section, as MPC 
could be developed from not only physics-based or reduced-order models [30], but also pure data-driven 
models [31]. 
However, learning an accurate model is time-consuming and requires expertise. And a more accurate model 
might not necessarily lead to better control [32]. The model-free RL skips the process of having to learn a 
model. Instead, it explores the optimal control policy by learning from the interaction with the environment. 
There are three approaches to find the optimal control policy without learning the model: policy gradient, 
actor-critic, and value-based. 
The Policy Gradient method directly differentiates the accumulated rewards 𝐸𝐸г~𝑝𝑝𝜃𝜃(г)[∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑡𝑡 ] (referred 
to as 𝐽𝐽𝜃𝜃) with respect to 𝜃𝜃. After some mathematical tricks, the gradient of accumulated rewards could be 
rewritten as Equation 4 [33]. Once ∇𝜃𝜃𝐽𝐽(𝜃𝜃) is calculated, we could update 𝜃𝜃 using Equation 5 to increase the 
accumulated reward 𝐽𝐽(𝜃𝜃). This approach is named “policy gradient” because it uses the gradient of policy 
∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) to update the policy. After the policy is updated, we run the new policy with the environment 
to collect a new trajectory and rewards 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇 , 𝑟𝑟𝑇𝑇, and use the new trajectory to calculate ∇𝜃𝜃𝐽𝐽(𝜃𝜃). 
Thanks to the advancement of deep learning, the implementation of the policy gradient is convenient, using 
automatic differentiation packages [34] such as TensorFlow, Pytorch, and others.  

∇𝜃𝜃𝐽𝐽(𝜃𝜃) ≈ 1
𝑁𝑁
∑ [(∑ ∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝑇𝑇

𝑡𝑡=1 )(∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡𝑇𝑇
𝑡𝑡=1 ))]𝑁𝑁

𝑖𝑖=1                        (Eq. 4) 

𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼∇𝜃𝜃𝐽𝐽(𝜃𝜃)                                                        (Eq. 5) 
As the log-likelihood term of ∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  essentially quantifies how likely the action 𝑎𝑎𝑡𝑡  will be 
selected given the current 𝑠𝑠𝑡𝑡, the policy gradient algorithm could be interpreted as: increasing the chance of 
taking action 𝑎𝑎𝑡𝑡 if 𝑎𝑎𝑡𝑡 will result in a higher accumulated reward ∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑇𝑇

𝑡𝑡=1 . 
The Actor-Critic algorithm enhances the policy gradient approach by replacing the accumulated rewards 
∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡𝑇𝑇
𝑡𝑡=1 ) with a value approximation function. We introduced ∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡𝑇𝑇

𝑡𝑡 ) because we need to evaluate 
the policy 𝜋𝜋, and use this evaluation to improve the policy. However, this evaluation has a high variance. 
Because the environment is stochastic in most cases, the trajectory 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇 , 𝑟𝑟𝑇𝑇 is just one of many 
outcomes. Therefore using ∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡𝑇𝑇

𝑡𝑡=1 ) in Equation 4 is essentially using only one sample of trajectory to 
estimate the performance of the policy 𝜋𝜋𝜃𝜃. Though the single-sample estimator is unbiased, it has a very high 
variance. To address this issue, Actor-Critic algorithm introduces a value estimator 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) to replace the 
single sample estimator ∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡𝑇𝑇

𝑡𝑡=1 ) as the evaluation of the policy; and then use 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) to update and 
improve the policy. 𝑄𝑄𝜑𝜑𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) is fitted with the sampled reward sums. This approach is named “Actor-Critic” 
because in addition to the policy function 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) (called actor), the value estimation function 𝑄𝑄𝜑𝜑𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) 
(called critic) is introduced.  
The third model-free RL algorithm type is Value-Based. A value-based RL learns the value function without 
explicitly representing the policies. The idea behind the value-based approach is: once we can evaluate every 
action-state pair (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) at any time step, there is no need to calculate ∇𝜃𝜃𝐽𝐽(𝜃𝜃) to improve the policy (𝜃𝜃 ←
𝜃𝜃 + 𝛼𝛼∇𝜃𝜃𝐽𝐽(𝜃𝜃)). Instead, we can directly use (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) to select our action by using an argmax operation as 
shown in Equation 6. In this way, we do not need to explicitly represent the policy function. The value function 
of action-state pairs is called the Q function. This approach is known as Q-learning. 

𝜋𝜋′(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = �1 𝑖𝑖𝑖𝑖 𝑎𝑎𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒              

                                           (Eq. 6) 

 
We summarized which approach is most widely used for the purpose of building controls in Table 2 and Figure 
4. Table 2 excluded three reviews and one tutorial from the 77 studies. It is clear the value-based approach 
dominates our field. The reason is that the value approximation function is needed because it significantly 
reduces the variance, compared with the single-sample estimation ∑ 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑡𝑡 . However, the policy function 
is not necessary, as we could directly use the argmax operation to represent and improve the policy. Therefore, 
the value-based approach balances well the trade-off of performance and simplicity. 



 
Table 2. RL algorithms used for building controls 

Algorithm 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) 𝑉𝑉𝜙𝜙(𝑠𝑠𝑡𝑡) or 
𝑄𝑄𝜙𝜙(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) 

Popularity 

Model-
free 

Policy 
Gradient 

√ × 3 out of 73 
studies 

Value-Based × √ 56 out of 73 
studies 

Actor-Critic √ √ 11 out of 73 
studies 

Model-based   3 out of 73 
studies 

 

 

(a) algorithms by year 

 
(b) algorithms by control subject4 

Figure 4. Algorithms of RL for building controls 
 
However, shown in Figure 4, the policy gradient and actor-critic approaches have become increasingly popular 
in recent years, especially since 2017. The reason behind this trend is researchers gradually realized an 
explicitly represented policy function 𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)  could help to transfer the knowledge learned from one 

                                                   
4 A paper might be counted twice if it controls more than one building system. 



building to another, i.e., facilitate transfer learning. To persuade the industry to adopt RL, it is critical to 
convince users that what a controller learned from one building can be generalized to another. The value 
function (a mapping from state-action pairs to value) is not suitable to transfer, because different clients might 
have different control goals and utility structures. However, the policy function (a mapping from state to action) 
is more transferable; for instance, no matter what the goal is, turning on the heating when the indoor 
temperature is low remains the same for almost every building. Therefore, increasingly studies are starting to 
explore the possibility of using policy gradient [32] or actor-critic [35] methods to facilitate transfer learning.  
If an actor-critic or value-based approach is selected, the next question is how to represent the value function. 
The simplest idea is to use a table to record the value associated with each action-state pair. As shown in Figure 
5, about 42% of studies adopted this simple solution. However, when the number of action/state variables 
increase, or if the state/action variables are continuous rather than discrete, storing the value of each action-
state pair in a table becomes infeasible. To solve this problem, value function estimators have been proposed. 
The most widely used estimator is a deep neural network, thanks to the rapid development of deep learning. 
As observed in Figure 5, using a deep neural network as a value function approximation accounts for more 
than 50% of studies in this field since 2018. 

 

Figure 5. Value functions of RL for building controls 
 
Another important aspect RL practitioners need to consider is the balance between exploration and exploitation. 
RL implements the trial-and-error approach to find the optimal control policy. It tries different control policies, 
evaluates them, and selects the most rewarding one. However, if the controller only focuses on improving itself 
using either policy gradient (Equation 5) or argmax (Equation 6), the controller might be locked in local 
optimal if it fails to explore the entire action space. Utilizing the currently known knowledge is called 
exploitation, and exploring the new action space is called exploration. A good controller needs to guarantee 
that it has explored the whole action space and avoided the local optimal. Two exploration strategies are 
popular in the RL field: ε − greedy and Boltzmann Exploration (a.k.a. softmax exploration).  
The 𝛆𝛆 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 approach, as presented in equations 7 and 8, selects the currently known optimal action with 
the probability of 1 − 𝜀𝜀 and selects a random action with the probability of 𝜀𝜀. The controller with a higher 
𝜀𝜀 explores more. 
𝑃𝑃(𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑄𝑄(𝑎𝑎𝑖𝑖))) = 1 − 𝜀𝜀                                           (Eq. 7) 
𝑃𝑃(𝑎𝑎𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝜀𝜀                                                     (Eq. 8) 
 
The Boltzmann approach, as presented in Equation 9, selects the action based on the action performance 
𝑄𝑄(𝑎𝑎𝑖𝑖) and 𝜏𝜏. 𝜏𝜏 is also called the “temperature” factor, specifying how random the selection is. When 𝜏𝜏 is 
high, all possible actions will be explored almost equally. When 𝜏𝜏 is small, actions with high 𝑄𝑄(𝑎𝑎𝑖𝑖) value 
are more likely to be selected. 



𝑃𝑃(𝑎𝑎𝑖𝑖) =
exp (𝑄𝑄�𝑎𝑎𝑖𝑖�𝜏𝜏 )

∑ exp (𝑄𝑄�𝑎𝑎𝑖𝑖�𝜏𝜏 )𝑛𝑛
𝑖𝑖=1

                                                      (Eq. 9) 

In practice, the controller tends to explore more at the beginning of training and exploit more when the majority 
of action space has been explored already. This strategy could be easily implemented by reducing 𝜀𝜀 or 𝜏𝜏 for 
ε − greedy and Boltzmann Exploration, respectively. 
Figure 6 surveyed the exploration methods used in the RL controller. About 60% of studies selected ε −
greedy, which is three times as popular as Boltzmann Exploration. ε − greedy is more popular because its 
simplicity does not sacrifice its performance. 
 

 
Figure 6. Exploration method of RL for building controls 

 
3.2 States 
The selection of states is another crucial step for RL learning. If unnecessary states are selected, the RL 
controller suffers from the curse of dimensionality. Contrarily, if some important states are not selected as 
inputs of the controller, it is impossible for the controller to make optimal decisions, regardless of how good 
the algorithm is. 
As introduced in Section 2, RL is mathematically formed as an MDP, in which the Markovian Property must 
be held. Markovian Property represents the behavior that future states purely depend on the current states, 
which, unfortunately, does not hold for building thermal dynamics, because of the thermal mass. To solve this 
problem, historical states need to be included in the MDP, especially if thermal dynamics are involved. As 
shown in Figure 7a, only one out of six studies of RL for HVAC control considered historical states. The 
remaining studies might be problematic because they train their controllers using RL but cannot guarantee that 
the Markovian Property holds.  
One reason that the majority of studies do not consider historical states is the curse of dimensionality. For 
instance, in the Fuselli and De Angelis (2013) study, states of the previous two time steps were considered in 
the critic network, markedly increasing the number of inputs [36]. Some solutions have been proposed to 
address the curse of dimensionality; for example, Ruelens et al. (2015) [37] used an auto-encoder to compress 
the previous ten indoor temperatures and control signals into six hidden states. They then used the six hidden 
states to develop their RL controller. The auto-encoder is a deep neural network-based dimension reduction 
technique. 



 

(a) Historical states as inputs 

(b) Predicted states as inputs 
Figure 7. States used in RL controller for building controls 

In addition to the historical states, predicted states could also help to improve controller performance. For 
instance, a weather forecast could be used to inform the operation of pre-cooling or pre-heating. Integrating 
predicted information into control is a crucial idea introduced by MPC, and this also can be used in an RL 
controller. As shown in Figure 7b, only about 16% of studies use predicted information. Ruelens et al. (2016) 
[38] found that including weather forecasts as states could improve the performance of RL controllers by 27%. 
Similarly, de Gracia et al. (2015) [39] used weather forecasts to improve the energy performance of a ventilated 
double skin façade controller. However, energy performance is very sensitive to the accuracy of the weather 
forecast. Using real weather data could save 18% energy than using predicted weather data. Actual weather 
forecasts unavoidably have some prediction errors; how those forecast errors influence the RL performance 
demands further investigation. 

3.3 Actions 

The selection of control variables is the third decision RL practitioners need to make. Too many control points 
is problematic due to the curse of dimensionality. As shown in Figure 8, 70% of existing studies control fewer 
than four points. More than ten control points are included in 13.8% of studies, mostly because those 
controllers are designed for multi-building optimization.  



 

Figure 8. Number of control points of RL for building controls 

 

HVAC control is more complicated than that for other building components, including batteries or lighting. 
Figure 9a illustrates why it is challenging to design an HVAC controller that could be used in every building. 
HVAC control is complex for two reasons. First, there are different components: a terminal, an air handling 
unit, a heating/cooling source, and a condenser; and for each component, there are different device types; for 
instance, the terminal could be a variable air volume (VAV) box or baseboard radiator. Second, for each device, 
there are different levels of controls. The controller could directly control the actuator level, or the setpoint 
(aka supervisory control). If the supervisory control is selected, conventional controllers are needed to control 
the actuator to track the setpoint. Figure 9b shows the control variables surveyed from existing studies. The 
majority of studies were controlling the HVAC terminals at a high level, i.e., the room temperature setpoint. 
At this level, pre-cooling or pre-heating strategies are optimized to shift the load. Additionally, six studies are 
about medium-level control of the terminal, such as the supply air temperature or flow rate of the VAV box. 
Very few current studies are controlling the actuator directly. 

 

 

(a) Complexity of HVAC control 

High-level
(Supervisory) Medium-level Low-level

(Actuator)

PID, etc. PID, etc.



 
(b) Complexity of HVAC control 

 
Figure 9. Control points of RL for HVAC control: temp is short for temperature, sp is short for set-point 

 

3.4 Rewards 

The reward function is designed based on the optimization goal. Figure 10 shows results from surveys of the 
optimization goal of existing studies. The surveys found three major goals for building controls: occupant 
comfort, energy conservation, and load flexibility. In this study, we consider load flexibility and cost reduction 
to be the same goals because cost reduction is achieved by shifting the load from the periods with high utility 
prices to periods with lower prices.  

 

Figure 10. Optimization goal of RL controller for buildings 

As observed in Figure 10, occupant comfort is a prerequisite of load flexibility and energy conservation, and 
all studies list occupant comfort as at least one of their control goals. Additionally, more than 60% of studies 
aim to enhance load flexibility. All RL controllers for combined heat and power, appliance scheduling and 
battery operation aim to improve load flexibility. Energy conservation is another common goal, and this goal 
is mostly achieved by controlling HVAC. Some other important goals, such as carbon reduction, are missing 
in current studies using RL for building controls. 

When multiple goals exist, the next question is how the reward function should be formulated so that different 
goals can be considered simultaneously. The first approach is to use the weighted sum of different optimization 
goals. Chen et al. (2019) [32] integrated the comfort and energy targets by formulating the cost function as 
Equation 10, where the weight 𝜂𝜂 is tunable: 𝜂𝜂 has a higher value during occupied hours than non-occupied 
hours. 

N
um

ber of studies



min (𝜂𝜂𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)                                           (Eq. 10)     

A second approach is to form the multi-objective optimization as a constrained optimization problem. Leurs 
et al. (2016) [40] set a lower and upper temperature boundary to guarantee occupant comfort. To make sure 
the comfort constraint would be satisfied, a conventional controller that could overwrite the RL controller 
when the temperature is close to or beyond the boundary was set up as a backup. The idea of a backup controller 
enhances the reliability of the RL controller. It also was used in Costanzo et al. (2016) [41], Ruelens et al. 
(2016) [42], and De Somer et al. (2017) [43]. In addition to the hard constraint, Yu and Dexter (2010) [44] 
implemented a soft constraint to co-optimize the comfort and energy goal by posing a penalty if the indoor 
temperature is outside the comfort range.  

3.5 Environment 

An RL controller is trained through trial-and-error approaches, which means an RL controller tries different 
policies, evaluates their performances, and then uses the evaluation to improve its policy. The trial-and-error 
method requires that the environment run the policy generated by the controller. This type of learning is called 
on-policy learning, i.e., the policy output of the controller is being carried out by the environment. However, 
on-policy training is challenging to implement in real buildings. A building operator would not allow an RL 
controller to test some random policy on an actual building because those random policies might mess up the 
built environment. Therefore, the idea of off-policy learning has been proposed. In off-policy training, 
controllers learn by observing the trajectory 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1, … 𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇 , 𝑟𝑟𝑇𝑇  generated from other polices. Policy 
gradient and actor-critic methods require on-policy learning, while some value-based algorithms allow off-
policy learning.5 This is one reason why a value-based approach is more popular than a policy gradient or 
actor-critic approach, because off-policy learning is more flexible than on-policy learning. 

Though off-policy learning is more flexible, it is not as effective as on-policy learning, because the action 
space cannot be fully explored, and the optimal policy might be overlooked by the current policy. Additionally, 
training an RL controller demands a huge amount of data. Using measured data alone might be inadequate.  

Therefore, some researchers use simulation to create a virtual environment. The RL controller learns by 
interacting with the virtual environment. Figure 11 shows results from surveys of the simulation platform used 
to train an RL controller. MATLAB and EnergyPlus are the most popular simulation platforms for this purpose. 

 

Figure 11. Environment to train the RL controller 
 

3.6 Application in real buildings 
Whether the RL controllers have been implemented in actual buildings and how they perform compared with 
conventional controllers are two key performance indicators of RL. Among the 77 studies reviewed in this 
paper, only nine controllers were implemented in real buildings: 3 domestic hot water controllers, 3 HVAC 
controllers, 2 lighting controllers and 1 window controller. Three studies reported energy/cost savings or 
comfort improvements compared with other controllers: In De Somer et al. (2017), the hot water controller 

                                                   
5 SARSA (State-Action-Reward-State-Action) is an on-policy value-based RL, while Q-learning is an off-policy value-based 

RL. 



[38] saved operational cost by 15% after 40 days of training. In Kazmi et al. (2018), the hot water controllers 
were implemented in 32 Dutch houses [45] and found, compared with the fixed schedule or fixed setpoint 
control, the RL controller reduced energy consumption by almost 20% while maintaining occupant comfort. 
Extrapolated to a year, the RL controller has the potential to reduce household energy consumption by up to 
200 kilowatt-hours (kWh). May (2019) [4] compared an RL controller with the manual occupant control of 
windows and found the RL controller could significantly improve thermal comfort and indoor air quality by 
90%. However, how the improvements were quantified was not described in detail. 
 
3.7 Discount factor 
Another component of a typical MDP that was not discussed in Section 2 is the discount factor γ. The discount 
factor will revise the accumulated rewards to 𝐸𝐸г~𝑝𝑝𝜃𝜃(г)[∑ γ𝑡𝑡−1𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑡𝑡 ]. As γ is usually less than 1, future 
rewards are not as valuable as current rewards.  
The discount factor is introduced mostly to guarantee convergence of MDP. Though primarily for 
mathematical purposes, the discount factor could be explained in two ways: (1) immediate rewards are more 
valuable because immediate rewards can generate interest if the reward is in a monetary form, and (2) due to 
the existence of uncertainty, future benefits are associated with higher risks, and accordingly need to be 
discounted. Because if you are uncertain about what will happen in the future, it is not a bad idea to discount 
future potential rewards a bit.  
Even though the discount factor seems to make sense in some way, determining the proper value of γ remains 
a question. Vázquez-Canteli et al. (2017) [46] discussed how different values of γ  would influence the 
behaviors of an RL controller for a heat pump. Higher γ values assign greater importance to achieve long-
term rewards and accordingly lead to more frequent operation of heat pumps when the outdoor temperature is 
high (higher coefficient of performance [COP]). Pre-heating during the periods with a high COP consumes 
more energy at the current time step, while saving energy for upcoming time steps. If γ  is small, the 
discounted future savings could not justify the current costs. Therefore, pre-heating could happen more only 
when γ is adequately high. 
 
 
4 Discussion 
4.1 Accelerate training  
As introduced in the previous section, training an RL controller is data- and time-demanding. An early study 
conducted by Henze and Dodier (2003) [47] showed 30 years of data was required to train the RL controller. 
With the advancement of the RL algorithm, the size of the training data has reduced significantly. The Yang et 
al. (2015) study found three years of training data to be adequate to guarantee that RL controllers outperform 
rule-based controllers [48]. How to use fewer data to achieve high performance with less training time is a 
crucial research question in this field.  
The first approach researchers have proposed to accelerate training is to reduce the dimension of state-action 
space. The optimization problem becomes more complicated when the number of state and action variables 
increases, which demands more data and longer training time. Guan et al. (2015) [49] used one state variable, 
the net power (defined as the difference between the electricity load and PV generation), to replace two state 
variables, load and generation. Additionally, auto-encoder, a neural network-based dimension reduction 
technique, was employed in the Ruelens et al. (2016) [42] study. Zhou et al. (2019) [50] implemented Fuzzy 
Q-learning, which used fuzzy rules to discretize continuous states-actions and to reduce dimensions. Yoon and 
Moon (2019) [51] used Gaussian Process Regression (GPR) to compress six states into two. 
The second approach is to decouple a complicated problem into multiple simpler problems. Ruelens et al. 
(2014) [21] decoupled a complicated problem with multiple action variables into multiple sub-problems, where 
each problem contained only one action variable. The multiple sub-problems communicate and collaborate in 
a multi-agent system. The authors claimed this approach brought in two benefits. First, the problem is more 
tractable and faster to train, as the number of state and action variables decreases for each sub-problem. Second, 
it provides a realistic decentralized solution with good scalability qualities. We will discuss the decentralized 
controller in more detail in Section 4.4. Zhang and van der Schaar (2014) [52] proposed the idea of decoupling 
the system dynamics into the known part and the unknown part, to speed the training. By decomposing the 
transition dynamics into these two parts, only the unknown part of the dynamics needs to be learned. By 
exploiting the partial information about the system dynamics that is already known, the convergence speed 
was increased by 30% compared to conventional Q-learning. 
Similarly, Kim et al. (2015) [53] also defined and used post-decision state (PDS) to better utilize the known 
dynamics, using RL to only learn unknown dynamics. The third way to decouple a complicated problem is to 



leverage supervisor control, i.e., controlling the setpoint only and leaving the setpoint tracking to conventional 
controllers such as a PID. In this way, the complexity of controlling the actuator could be left aside. As a result, 
fewer data and time are needed to train the controller. 
Li and Xia (2015) [54] used a multi-stage approach to speed the training. The idea is to first discretize the 
state-action space at low grid density, once the RL controller converges at the coarse discretization, then to 
implement a finer discretization. The simulation result shows that the multi-grid method helps accelerate the 
convergence of Q-learning. It is suggested to be applied to other problems where Q-learning of a single grid 
density is unsatisfying. 
Sun et al. (2013) [55] proposed an event-based approach to accelerate training. The event-based approach only 
updates decision variables when certain events happen. The events are defined as a set of transitions of 
disturbance variables such as occupancy, outdoor weather, and energy price. The authors claim this approach 
is effective and that it can save 70% of computational time for a building with 24 rooms. However, the event-
based approach could only find the suboptimal solution, which consumes 0.5% more energy than the 
traditional RL controller. The event-based approach was also adopted in the Sun et al. (2015) study to 
accelerate training [56]. 
 
4.2 Control security/safety/robustness 
As RL controllers learn the optimal policy by testing new policies and evaluating the outcomes, it is possible 
that some tested policies might lead to an undesirable outcome, such as too cold or too hot temperatures. The 
control security/safety/robustness in this section refers to minimizing or even eliminating the chance of 
generating control signals that might lead to undesirable outcomes during the training, testing, or 
implementation phases. How to avoid those undesirable outcomes and guarantee control security is a key 
challenge of implementing RL in real buildings. 
A commonly used approach to enhance control security is to set up a backup controller, like in studies [40], 
[41], [42] and [43]. When the temperature is close to or about to go beyond the comfort boundary, the backup 
controller is activated to overwrite the RL controller.  
The second approach is to pre-train the controller to make it safe enough to be implemented in real buildings. 
We could use simulators rather than real buildings to pre-train the controllers. Or, we could use some “expert” 
knowledge to pre-train the controller. The “expert” knowledge could be a common practice or industry 
standard in this field. The Jia et al. (2018) study found that, with some guidance from “expert” policy, the RL 
controller’s performance could be significantly improved [57].  
Additionally, we could also use the optimal policy resulting from other optimization methods to pre-train the 
controller. Fuselli and De Angelis (2013) [36] used the optimal solution found from Particle Swarm 
Optimization (PSO) 6  to pre-train the actor network. Wang et al. (2015) [59] first optimized the 
charging/discharging of the storage system by solving a model-based convex optimization problem, and then 
used the optimized results to pre-train the RL. Chen et al. (2019) [32] used the optimization result of MPC to 
pre-train the actor network. 
As the simulator or the model-based optimization is used only for pre-training, either the simulator or the 
model does not need to be very accurate. It is okay if the optimal policy found from other optimization methods 
is not the global optimal solution because RL will further improve the policy by fine-tuning it to better adapt 
to the environment. 
 
4.3 Multi-agent problem  
Multi-agent systems are common for building- or campus-level control problems. Based on the information 
availability and optimization goal, there are four different types of multi-agent optimization problems [60]: 
• Centralized: One agent with available information about the whole environment makes decisions. 
• Decentralized: Multiple agents who only perceive their environments make decisions.  
• Cooperative: Agents are allowed to share their observations about the environment, and this type aims to 

maximize the rewards of all agents. 
• Non-cooperative: Agents do not share observations, and only consider their interests. 
Ruelens et al. (2014) [21] proposed a decentralized multi-agent solution to coordinate the operation of domestic 

                                                   
6 PSO is a technique developed by Eberhard and Kennedy and inspired by certain social behaviors exhibited in bird and 

fish groups that is used to explore a solutions space for finding parameters that are required to optimize a specific aspect 

of the problem [58]. 



hot water heating of multiple households. Raju et al. (2015) [61] proposed Coordinated Q-Learning to optimize 
the micro-grid operation. In the Raju et al. (2015) framework, the agent first learns optimal single-agent policy 
when acting alone in the environment using conventional Q-learning. Then the coordinated Q-learning 
algorithm detects if any other agents’ operation would lead to any reward changes for the selected state-action 
pair. If no reward changes occur, then this state-action pair is marked as a “safe” state, and the Q-value does 
not need to be updated. If any changes are detected in the rewards, then this state-action pair is marked as a 
“dangerous” state, where the Q-value and corresponding optimal action will depend on other agents. For 
“dangerous” states, any interference from other agents will be reflected in the rewards. The Q-values of 
“dangerous” states need to be updated accordingly. The authors argued that distinguishing between “safe” and 
“dangerous” states could save computation by avoiding recalculating the Q-value of “safe” state-action pairs. 
Sun et al. (2015) explored the possibility of using the Lagrangian Relaxation (LR)-based method to co-
optimize the fresh air unit (FAU) at the building level and the fan coil unit (FCU) at the room level. The 
Lagrangian multipliers were introduced to decouple the two-level problem into sub-problems of FAU control 
and FCU control. The Lagrangian multipliers would be updated in a building-level dual problem to make sure 
the chiller capacity constraint is being considered, and finally, be forced with iteration. 
 
4.4 Performance evaluation  
Given that there are so many approaches, as introduced in Section 3, a natural question is which performs 
better under the context of building controls. Al-Jabery et al. (2016) [62] compared the actor-critic approach 
with the value-based approach for domestic hot water control and found Q-learning performs better ($466 
annual savings compared with $367). Al-Jabery et al. (2016) [62] claimed that Q-learning is simpler, more 
robust, and more easily deployable. Mocanu et al. (2018) [63] found both Deep Q-learning and Deep Policy 
Gradient performs better than the tabular Q-learning, and Deep Policy Gradient is more suited to perform 
scheduling of energy resources than Deep Q-learning.  
In terms of cross-study comparison, different studies use different benchmarks to evaluate the performance of 
their RL controller, making cross-study comparison difficult. Yang et al. (2015) [48] compared the RL 
controller with a “rule-based controller.” Barrett and Linder (2015) [64] selected the “always on” and 
“programmable control” as comparison benchmarks. Wang et al. (2017) [65] compared their RL controller 
with a “fixed setpoint” controller. Similarly, the Kazmi et al. (2018) [45] controller is compared with a “fixed 
schedule, fixed setpoint” control. Chen et al. (2018) [66] benchmarked their controller with a “rule-based 
heuristic” control strategy. Kazmi et al. (2019) [67] used a rule-based dead-band controller as the benchmark. 
Ahn and Park (2019) [68] claimed their controller saved 15.7% energy compared with the fixed pre-determined 
schedule on OA damper position and temperature setpoint. Different studies use different comparison baselines, 
and some of those baselines are too simple to justify the performance of an RL controller. To enable the 
selection and performance comparison of a different RL controller, an open-sourced and well-recognized 
control testbed is needed. One reason why RL developed fast in the past decade is that OpenAI Gym provides 
a common benchmark with a wide variety of different environments [69]. A similar platform in the building 
controls area is needed. The good news is some efforts have been taken. For example, the Open Building 
controls project is targeting this goal [70]. Additionally, the OpenAI Gym environment, CityLearn, was 
developed and open-sourced by the UT Austin team, for the easy implementation of reinforcement learning 
controllers in a multi-agent demand response setting [71]. The CityLearn Challenge has been announced and 
aims to compare different RL algorithms that are capable of coordinating multiple buildings to maximize 
demand response potential [72]. 
 
4.5 Contribution and implication  
In this study, we conducted a comprehensive review of studies applying RL for building controls. We dove 
deep into subtle but important choices researchers need to make to develop an RL controller, such as how the 
state and action space is determined, how the reward function is designed, which algorithm is used, where the 
training data come from, and other factors. This comprehensive review helps researchers better understand the 
general RL framework, and more importantly, the progress and challenges of applying RL for building controls, 
as well as helps identify the research gap and design specific RL controllers.  
 
5 Conclusion 
This article reviewed a broad set of studies using reinforcement learning for building controls. The number of 
papers published on this topic jumped in 2015 and has remained stable since then. Reinforcement learning has 
demonstrated its potential to enhance building controls, although some key challenges remain to be addressed. 
We surveyed existing studies from five perspectives: algorithms, states, actions, rewards, and the environment, 
each corresponding to one of the five key components of an RL controller. Significant findings include (1) 



Algorithm: 77% of existing studies used value-based RL algorithms, among which Q-learning is the most 
popular. Actor-critic and policy gradient approaches have become more frequently used since 2017 due to their 
ability to facilitate transfer learning. (2) States: 91% of studies did not include historical states. As the 
Markovian property might not hold in building thermal dynamics, the RL controller might fail to converge to 
the optimal. 83% of the studies did not include predicted states, even though the predicted states (e.g., weather 
forecast) might provide valuable information for optimization. (3) Actions: Fewer than four variables were 
controlled in 69% of the studies. A majority of HVAC controllers adopted supervisory control, i.e., controlling 
the setpoint rather than controlling the actuator directly. In this case, conventional controllers are still needed 
to track the setpoint. (4) Rewards: 97% of studies have multiple objectives: either enhancing flexibility (61%) 
or conserving energy (34%) or both (3%) while maintaining occupant comfort. (5) Environments: 90% of 
studies used simulators to generate data for training the RL controller. 
Even though RL-based building controls have attracted increasing research interest, the RL controller is still 
in the research and development stage, with limited adoption in actual buildings. Among the 77 studies we 
surveyed, only 11% of RL controllers were implemented and tested in an actual building. Significant barriers 
limiting the applications of RL controller for real building controls include (1) the training process is time-
consuming and data-demanding, (2) the security of controls needs to be addressed, i.e., making sure the RL 
controller would not mess up the building controls, especially during the training stage, (3) it is yet unknown 
how to implement the transfer learning so that controllers trained by a small number of buildings could be 
generalized and used for other buildings, and (4) a data-rich, open-sourced, and interoperable virtual testbed 
is needed to facilitate cross-study validations and benchmarking of performance of RL controllers. 
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Appendix 
Table A1. Summary of existing studies on reinforcement learning for building controls 

 
 Control 

objectives 
Control 
subject 

Algorithm Exploration Simulation 
environment 

Length of data 
for training 

Implementation 
in real buildings 

Anderson et al. 
(1997) [73] 

Energy & 
Comfort HVAC Value iteration ɛ-greedy 

Not introduced in 
detail 

 
No 

Henze and Dodier 
(2003) [47] 

Flexibility 
& Comfort battery, PV 

Tabular Q-
learning 

Boltzmann, ɛ-
greedy 

Not introduced in 
detail 

30 years 
No 

Henze and 
Schoenmann 
(2003) [74] 

Flexibility 
& Comfort TES 

Tabular Q-
learning ɛ-greedy 

Not introduced in 
detail 

 

No 
Liu and Henze 

(2006) [75] [22] 
Flexibility 
& Comfort HVAC, TES 

Tabular Q-
learning 

Boltzmann, ɛ-
greedy Matlab/Simulink 

3000-6000 days 
No 

Liu and Henze 
(2007) [76] Flexibility 

& Comfort HVAC, TES 
Tabular Q-

learning Boltzmann 

Matlab/Simulink 
implementing RC 

(2R3C) model 

6000 days 

No 
Dalamagkidis et 
al. (2007) [19] 

Energy & 
Comfort 

HVAC, 
window  ɛ-greedy Matlab/Simulink 

4 years 
No 

Du and Fei (2008) 
[77] 

Energy & 
Comfort HVAC   

Not introduced in 
detail 

 
No 

O'Neill et al. 
(2010) [18] 

Flexibility 
& Comfort appliances 

Tabular Q-
learning ɛ-greedy 

Not introduced in 
detail 

 
No 

Yu and Dexter 
(2010) [44] 

Energy & 
Comfort HVAC 

Fuzzy Q-
learning ɛ-greedy  

30 days 
No 

Jiang and Fei 
(2011) [78] 

Flexibility 
& Comfort 

CHP, 
battery 

Tabular Q-
learning ɛ-greedy 

Not introduced in 
detail 

 
No 

Liang et al. (2013) 
[79] Flexibility 

& Comfort appliances 

Temporal 
Difference 
Learning boltzmann  

 

No 
Kaliappan and 
Sathiakumar 
(2013) [80] 

Flexibility 
& Comfort appliances   Matlab 

 

No 
Fuselli and De 
Angelis (2013) 

[36] 
Flexibility 
& Comfort battery  

Random 
perturbation 

Not introduced in 
detail 

 

No 
Sun et al. (2013) 

[55] 
Flexibility 
& Comfort HVAC 

Tabular Q-
learning  Matlab 

 
No 

Li and Jayaweera 
(2013) [81] 

Flexibility 
& Comfort appliances 

Tabular Q-
learning ɛ-greedy  

10000 time 
steps No 

Wei and Liu 
(2014) [82] 

Flexibility 
& Comfort battery   

Not introduced in 
detail 

 
No 

Zhang and van der 
Schaar (2014) [52] 

Flexibility 
& Comfort battery   

Not introduced in 
detail 

 
No 

Wei and Liu 
(2014) [20] 

Flexibility 
& Comfort battery    

 
No 

Li and Jayaweera 
(2014) [83] 

Flexibility 
& Comfort battery  ɛ-greedy  

10000 time steps 
No 

Jiang and Fei 
(2014) [23] Flexibility 

& Comfort 

CHP, 
appliances, 

battery  ɛ-greedy self-coded in Java 

 

No 
Ruelens et al. 
(2014) [21] 

Flexibility 
& Comfort 

domestic 
hot water 

Fitted Q-
iteration boltzmann  

40-45 days 
 No 

Fazenda and 
Veeramachaneni 

(2014) [84] 
Energy & 
Comfort HVAC 

Wire fitted 
neural network  Matlab 

50 days 

No 
Wen et al. (2015) 

[85] 
Flexibility 
& Comfort appliances 

Tabular Q-
learning   

 
No 

Kim et al. (2015) 
[53] 

Flexibility 
& Comfort appliances  Not used  

 
No 

Rayati et al. 
(2015) [86] 

Flexibility 
& Comfort 

appliances, 
CHP, 

domestic 
hot water  ɛ-greedy 

Not introduced in 
detail 

 

No 
Wang et al. (2015) Flexibility battery Fitted Q-  Matlab  No 



[59] & Comfort iteration 
Raju et al. (2015) 

[61] 
Flexibility 
& Comfort battery 

Coordinated Q-
learning  

self-coded in 
Python 

 
No 

Berlink et al. 
(2015) [87] 

Flexibility 
& Comfort battery 

Tabular Q-
learning ɛ-greedy 

Simulation with 
historical data 

 
No 

Guan et al. (2015) 
[49] 

Flexibility 
& Comfort battery 

Temperoral 
Difference ɛ-greedy 

Simulation with 
historical data 

 
No 

Qiu et al. (2015) 
[88] 

Flexibility 
& Comfort battery 

Tabular Q-
learning ɛ-greedy 

Simulation with 
historical data 

 
No 

Sekizaki et al. 
(2015) [89] Flexibility 

& Comfort 

battery, 
domestic 
hot water  ɛ-greedy 

Simulation with 
historical data 

 

No 
Yang et al. (2015) 

[48] Energy & 
Comfort HVAC 

Batch Q-
learning with 

Memory Replay ɛ-greedy Matlab/Simulink 

3 years 

No 
Ruelens et al. 
(2015) [37] Energy & 

Comfort HVAC 
Fitted Q-
iteration Boltzmann 

RC model (1R1C 
for air and the 

building envelope) 

 

No 
Barrett and Linder 

(2015) [64] 
Energy & 
Comfort HVAC 

Tabular Q-
learning ɛ-greedy 

Not introduced in 
detail 

 
No 

Li and Xia (2015) 
[54] 

Energy & 
Comfort HVAC 

Tabular Q-
learning ɛ-greedy 

Matlab, 
Energyplus 

 
No 

Sun et al. (2015) 
[90] 

Flexibility 
& Comfort HVAC 

Tabular Q-
learning ɛ-greedy Matlab 

 
No 

Sun et al. (2015) 
[56] 

Energy & 
Comfort HVAC 

Tabular Q-
learning ɛ-greedy Matlab 

 
No 

de Gracia et al. 
(2015) [39] 

Energy & 
Comfort TES SARSA ɛ-greedy 

Self-coded 
numerical equation 

 
No 

Sheikhi et al. 
(2016) [91] 

Flexibility 
& Comfort appliances 

Tabular Q-
learning ɛ-greedy Matlab 

 
No 

Kazmi et al. 
(2016) [92] 

Energy & 
Comfort 

domestic 
hot water 

Hybrid Ant-
Colony 

Optimization 
was used to find 

the optimal 
control solution   

 

Yes 
Al-Jabery et al. 

(2016) [62] 
Flexibility 
& Comfort 

domestic 
hot water  

Random 
selection Matlab 

 
No 

Ruelens et al. 
(2016) [42] 

Flexibility 
& Comfort 

domestic 
hot water 

Fitted Q-
iteration Boltzmann  

40 days 
Yes 

Leurs et al. (2016) 
[40] 

Flexibility 
& Comfort HVAC 

Fitted Q-
iteration Boltzmann RC model (2R2C) 

 
No 

Ruelens et al. 
(2016) [38] 

Flexibility 
& Comfort HVAC 

Fitted Q-
iteration ɛ-greedy 

RC Model (Second 
order) 

 
No 

Costanzo et al. 
(2016) [41] 

Flexibility 
& Comfort HVAC 

Fitted Q-
iteration ɛ-greedy RC model 

20 days 
Yes 

Cheng et al. 
(2016) [24] 

Energy & 
Comfort lighting 

Tabular Q-
learning ɛ-greedy Not used 

 
Yes 

Bahrami et al. 
(2017) [93] 

Flexibility 
& Comfort appliances  Boltzmann 

Not introduced in 
detail 

 
No 

Mbuwir et al. 
(2017) [94] 

Flexibility 
& Comfort battery 

Fitted Q-
iteration  

Simulation with 
historical data 

 
No 

De Somer et al. 
(2017) [43] Flexibility 

& Comfort 
domestic 
hot water 

Fitted Q-
iteration 

Not 
introduced in 

detail 
Simulation with 
historical data 

2 months 

No 
Wang et al. (2017) 

[65] 
Energy & 
Comfort HVAC   EnergyPlus 

 
No 

Schmidt et al. 
(2017) [95] 

Energy & 
Comfort HVAC 

Fitted Q-
iteration 

Gaussian 
noise  

 
No 

Vázquez-Canteli 
et al. (2017) [46] 

Energy & 
Comfort TES 

Fitted Q-
iteration Boltzmann CitySim 

 
No 

Hurtado et al. 
(2017) [60] 

Flexibility 
& Comfort    Matlab/Simulink 

 
No 

Zhang et al. (2017) 
[35] 

Flexibility 
& Comfort   ɛ-greedy 

Not introduced in 
detail 

 
No 



Remani et al. 
(2018) [96] 

Flexibility 
& Comfort appliances 

Fitted Q-
iteration ɛ-greedy 

Not introduced in 
detail 

 
No 

Kazmi et al. 
(2018) [45] Energy & 

Comfort 
domestic 
hot water  

as part of the 
reward 

function Not used 

 

Yes 
Claessens et al. 

(2018) [97] 
Energy & 
Flexibility 
& Comfort 

district 
heating 

Fitted Q-
iteration Boltzmann 

Not introduced in 
detail 

60 days 

No 
Kontes et al. 
(2018) [98] Energy & 

Comfort HVAC  

Not 
introduced in 

detail EnergyPlus 

 

No 
Zhang et al. (2018) 

[99] Energy & 
Comfort HVAC  

Not 
introduced in 

detail Not used 

 

No 
Jia et al. (2018) 

[57] 
Energy & 
Comfort HVAC  Not used EnergyPlus 

 
No 

Mocanu et al. 
(2018) [63] Flexibility 

& Comfort 
HVAC, 

appliances 

Deep Q-
learning, Deep 
policy gradient Not used Not used 

 

Yes 
Chen et al. (2018) 

[66] 
Energy & 
Comfort 

HVAC, 
window Q-learning ɛ-greedy 

Not introduced in 
detail 

 
No 

Zhou et al. (2019) 
[50] 

Flexibility 
& Comfort battery 

Fuzzy Q-
learning ɛ-greedy 

Not introduced in 
detail 

 
No 

Odonkor et al. 
(2019) [100] 

Flexibility 
& Comfort battery 

Deep 
Deterministic 

Policy 
Gradients with 

experience 
replay  

Not introduced in 
detail 

 

No 
Kazmi et al. 
(2019) [67] Energy & 

Comfort 
domestic 
hot water 

Monte Carlo 
with Exploring 

Starts ɛ-greedy 
Not introduced in 

detail 

 

No 
Ahn and Park 
(2019) [68] Energy & 

Comfort HVAC  ɛ-greedy 

EnergyPlus on 
DOE reference 

model 

 

No 
Zhang et al. (2019) 

[101] Energy & 
Comfort HVAC 

Asynchronous 
advantage 

actor- critic ɛ-greedy 
EnergyPlus on real 

buildings 

 

No 
Lu et al. (2019) 

[102] Comfort HVAC 
Tabular Q-

learning ɛ-greedy ASHRAE database 
 

No 
Yoon and Moon 

(2019) [51] 
Energy & 
Comfort HVAC 

Double Deep 
Q-learning with 

experience 
replay 

Not 
introduced in 

detail EnergyPlus 

 

No 
Chen et al. (2019) 

[32] Energy & 
Comfort HVAC 

Differentiable 
MPC; 

REINFORCE Not used EnergyPlus 

 

Yes 
Park et al. (2019) 

[103] 
Energy & 
Comfort lighting Value iteration 

limited state 
and action, 

explore all of 
them Not used 

 

Yes 
Vázquez-Canteli 

et al. (2019) [104] 
Energy & 
Flexibility 
& Comfort TES 

Fitted Q-
iteration Boltzmann CitySim 

40 days 

No 
May (2019) [4] Comfort window SARSA Not used Not used  Yes 

 
 
 
  



References 
[1] N. E. Klepeis et al., “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to 
environmental pollutants,” J. Expo. Sci. Environ. Epidemiol., vol. 11, no. 3, pp. 231–252, Jul. 2001, doi: 
10.1038/sj.jea.7500165. 
[2] U. S. Energy Information Administration, “Monthly Energy Review November 2019.” US EIA, Nov-2019, [Online]. 
Available: https://www.eia.gov/totalenergy/data/monthly/pdf/sec2_3.pdf. 
[3] A. Roth and J. Reyna, “Grid-Interactive Efficient Buildings Technical Report Series: Whole-Building Controls, 
Sensors, Modeling, and Analytics,” NREL/TP-5500-75478, DOE/GO-102019-5230, 1580329, Dec. 2019. doi: 
10.2172/1580329. 
[4] R. May, “The reinforcement learning method : A feasible and sustainable control strategy for efficient occupant-
centred building operation in smart cities,” 2019, Accessed: 23-Dec-2019. [Online]. Available: 
http://urn.kb.se/resolve?urn=urn:nbn:se:du-30613. 
[5] Guang Geng and G. M. Geary, “On performance and tuning of PID controllers in HVAC systems,” in Proceedings 
of IEEE International Conference on Control and Applications, 1993, pp. 819–824 vol.2, doi: 10.1109/CCA.1993.348229. 
[6] The American Society of Heating, Refrigerating and Air-Conditioning Engineers, “Guideline 36-2018. High 
Performance Sequences of Operation for HVAC Systems.” A.S.H.R.A.E., 2018. 
[7] M. Morari and J. H. Lee, “Model predictive control: past, present and future,” Comput. Chem. Eng., vol. 23, no. 4, 
pp. 667–682, May 1999, doi: 10.1016/S0098-1354(98)00301-9. 
[8] S. Prívara, J. Široký, L. Ferkl, and J. Cigler, “Model predictive control of a building heating system: The first 
experience,” Energy Build., vol. 43, no. 2, pp. 564–572, Feb. 2011, doi: 10.1016/j.enbuild.2010.10.022. 
[9] H. Karlsson and C.-E. Hagentoft, “Application of model based predictive control for water-based floor heating in 
low energy residential buildings,” Build. Environ., vol. 46, no. 3, pp. 556–569, Mar. 2011, doi: 
10.1016/j.buildenv.2010.08.014. 
[10] I. Hazyuk, C. Ghiaus, and D. Penhouet, “Optimal temperature control of intermittently heated buildings using 
Model Predictive Control: Part II – Control algorithm,” Build. Environ., vol. 51, pp. 388–394, May 2012, doi: 
10.1016/j.buildenv.2011.11.008. 
[11] S. Yuan and R. Perez, “Multiple-zone ventilation and temperature control of a single-duct VAV system using 
model predictive strategy,” Energy Build., vol. 38, no. 10, pp. 1248–1261, Oct. 2006, doi: 10.1016/j.enbuild.2006.03.007. 
[12] Y. Ma, F. Borrelli, B. Hencey, A. Packard, and S. Bortoff, “Model Predictive Control of thermal energy storage in 
building cooling systems,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 
2009 28th Chinese Control Conference, 2009, pp. 392–397, doi: 10.1109/CDC.2009.5400677. 
[13] B. Paris, J. Eynard, S. Grieu, T. Talbert, and M. Polit, “Heating control schemes for energy management in buildings,” 
Energy Build., vol. 42, no. 10, pp. 1908–1917, Oct. 2010, doi: 10.1016/j.enbuild.2010.05.027. 
[14] G. D. Kontes et al., “Simulation-Based Evaluation and Optimization of Control Strategies in Buildings,” Energies, 
vol. 11, no. 12, p. 3376, Dec. 2018, doi: 10.3390/en11123376. 
[15] T. Hong, Z. Wang, X. Luo, and W. Zhang, “State-of-the-Art on Research and Applications of Machine Learning 
in the Building Life Cycle,” Energy Build., p. 109831, Feb. 2020, doi: 10.1016/j.enbuild.2020.109831. 
[16] D. Silver et al., “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play,” 
Science, vol. 362, no. 6419, pp. 1140–1144, Dec. 2018, doi: 10.1126/science.aar6404. 
[17] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination for robotic grasping 
with deep learning and large-scale data collection,” Int. J. Robot. Res., vol. 37, no. 4–5, pp. 421–436, Apr. 2018, doi: 
10.1177/0278364917710318. 
[18] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential Demand Response Using Reinforcement Learning,” 
in 2010 First IEEE International Conference on Smart Grid Communications, 2010, pp. 409–414, doi: 
10.1109/SMARTGRID.2010.5622078. 
[19] K. Dalamagkidis, D. Kolokotsa, K. Kalaitzakis, and G. S. Stavrakakis, “Reinforcement learning for energy 
conservation and comfort in buildings,” Build. Environ., vol. 42, no. 7, pp. 2686–2698, Jul. 2007, doi: 
10.1016/j.buildenv.2006.07.010. 
[20] Q. Wei, D. Liu, and G. Shi, “A novel dual iterative Q-learning method for optimal battery management in smart 



residential environments,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2509–2518, Apr. 2015, doi: 
10.1109/TIE.2014.2361485. 
[21] F. Ruelens, B. J. Claessens, S. Vandael, S. Iacovella, P. Vingerhoets, and R. Belmans, “Demand response of a 
heterogeneous cluster of electric water heaters using batch reinforcement learning,” in 2014 Power Systems 
Computation Conference, 2014, pp. 1–7, doi: 10.1109/PSCC.2014.7038106. 
[22] S. Liu and G. P. Henze, “Experimental analysis of simulated reinforcement learning control for active and passive 
building thermal storage inventory: Part 2: Results and analysis,” Energy Build., vol. 38, no. 2, pp. 148–161, Feb. 2006, 
doi: 10.1016/j.enbuild.2005.06.001. 
[23] B. Jiang and Y. Fei, “Smart Home in Smart Microgrid: A Cost-Effective Energy Ecosystem With Intelligent 
Hierarchical Agents,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 3–13, Jan. 2015, doi: 10.1109/TSG.2014.2347043. 
[24] Z. Cheng, Q. Zhao, F. Wang, Y. Jiang, L. Xia, and J. Ding, “Satisfaction based Q-learning for integrated lighting 
and blind control,” Energy Build., vol. 127, pp. 43–55, Sep. 2016, doi: 10.1016/j.enbuild.2016.05.067. 
[25] M. Han et al., “A review of reinforcement learning methodologies for controlling occupant comfort in buildings,” 
Sustain. Cities Soc., vol. 51, p. 101748, Nov. 2019, doi: 10.1016/j.scs.2019.101748. 
[26] K. Mason and S. Grijalva, “A Review of Reinforcement Learning for Autonomous Building Energy Management,” 
ArXiv190305196 Cs Stat, Mar. 2019, Accessed: 26-Nov-2019. [Online]. Available: http://arxiv.org/abs/1903.05196. 
[27] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Domains: A Survey,” J. Mach. Learn. Res., 
vol. 10, no. Jul, pp. 1633–1685, 2009. 
[28] Y. Chen, Z. Tong, Y. Zheng, H. Samuelson, and L. Norford, “Transfer learning with deep neural networks for model 
predictive control of HVAC and natural ventilation in smart buildings,” J. Clean. Prod., vol. 254, p. 119866, May 2020, 
doi: 10.1016/j.jclepro.2019.119866. 
[29] J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A review of algorithms and 
modeling techniques,” Appl. Energy, vol. 235, pp. 1072–1089, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.002. 
[30] D. H. Blum, K. Arendt, L. Rivalin, M. A. Piette, M. Wetter, and C. T. Veje, “Practical factors of envelope model setup 
and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning 
systems,” Appl. Energy, vol. 236, pp. 410–425, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.093. 
[31] Y. Chen, Z. Tong, W. Wu, H. Samuelson, A. Malkawi, and L. Norford, “Achieving natural ventilation potential in 
practice: Control schemes and levels of automation,” Appl. Energy, vol. 235, pp. 1141–1152, Feb. 2019, doi: 
10.1016/j.apenergy.2018.11.016. 
[32] B. Chen, Z. Cai, and M. Bergés, “Gnu-RL: A Precocial Reinforcement Learning Solution for Building HVAC Control 
Using a Differentiable MPC Policy,” in Proceedings of the 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation, New York, NY, USA, 2019, pp. 316–325, doi: 10.1145/3360322.3360849. 
[33] S. Levine, “CS 285: Deep Reinforcement Learning,” CS 285 at UC Berkeley:  Deep Reinforcement Learning. 
http://rail.eecs.berkeley.edu/deeprlcourse/ (accessed Jan. 02, 2020). 
[34] A. Güne¸, G. Baydin, B. A. Pearlmutter, and J. M. Siskind, “Automatic Differentiation in Machine Learning: a Survey,” 
J. Mach. Learn. Res., vol. 18, pp. 1–43, 2018. 
[35] X. Zhang, T. Bao, T. Yu, B. Yang, and C. Han, “Deep transfer Q-learning with virtual leader-follower for supply-
demand Stackelberg game of smart grid,” Energy, vol. 133, pp. 348–365, Aug. 2017, doi: 10.1016/j.energy.2017.05.114. 
[36] D. Fuselli et al., “Action dependent heuristic dynamic programming for home energy resource scheduling,” Int. J. 
Electr. Power Energy Syst., vol. 48, pp. 148–160, Jun. 2013, doi: 10.1016/j.ijepes.2012.11.023. 
[37] F. Ruelens, S. Iacovella, B. J. Claessens, and R. Belmans, “Learning Agent for a Heat-Pump Thermostat with a Set-
Back Strategy Using Model-Free Reinforcement Learning,” Energies, vol. 8, no. 8, pp. 8300–8318, Aug. 2015, doi: 
10.3390/en8088300. 
[38] F. Ruelens, B. J. Claessens, S. Vandael, B. De Schutter, R. Babuška, and R. Belmans, “Residential Demand Response 
of Thermostatically Controlled Loads Using Batch Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 
2149–2159, Sep. 2017, doi: 10.1109/TSG.2016.2517211. 
[39] A. de Gracia, C. Fernández, A. Castell, C. Mateu, and L. F. Cabeza, “Control of a PCM ventilated facade using 
reinforcement learning techniques,” Energy Build., vol. 106, pp. 234–242, Nov. 2015, doi: 
10.1016/j.enbuild.2015.06.045. 



[40] T. Leurs, B. J. Claessens, F. Ruelens, S. Weckx, and G. Deconinck, “Beyond theory: Experimental results of a self-
learning air conditioning unit,” in 2016 IEEE International Energy Conference (ENERGYCON), 2016, pp. 1–6, doi: 
10.1109/ENERGYCON.2016.7513916. 
[41] G. T. Costanzo, S. Iacovella, F. Ruelens, T. Leurs, and B. J. Claessens, “Experimental analysis of data-driven control 
for a building heating system,” Sustain. Energy Grids Netw., vol. 6, pp. 81–90, Jun. 2016, doi: 
10.1016/j.segan.2016.02.002. 
[42] F. Ruelens, B. J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška, and R. Belmans, “Reinforcement Learning 
Applied to an Electric Water Heater: From Theory to Practice,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3792–3800, Jul. 
2018, doi: 10.1109/TSG.2016.2640184. 
[43] O. De Somer, A. Soares, K. Vanthournout, F. Spiessens, T. Kuijpers, and K. Vossen, “Using reinforcement learning 
for demand response of domestic hot water buffers: A real-life demonstration,” in 2017 IEEE PES Innovative Smart 
Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–7, doi: 10.1109/ISGTEurope.2017.8260152. 
[44] Z. Yu and A. Dexter, “Online tuning of a supervisory fuzzy controller for low-energy building system using 
reinforcement learning,” Control Eng. Pract., vol. 18, no. 5, pp. 532–539, May 2010, doi: 
10.1016/j.conengprac.2010.01.018. 
[45] H. Kazmi, F. Mehmood, S. Lodeweyckx, and J. Driesen, “Gigawatt-hour scale savings on a budget of zero: Deep 
reinforcement learning based optimal control of hot water systems,” Energy, vol. 144, pp. 159–168, Feb. 2018, doi: 
10.1016/j.energy.2017.12.019. 
[46] J. Vázquez-Canteli, J. Kämpf, and Z. Nagy, “Balancing comfort and energy consumption of a heat pump using 
batch reinforcement learning with fitted Q-iteration,” Energy Procedia, vol. 122, pp. 415–420, Sep. 2017, doi: 
10.1016/j.egypro.2017.07.429. 
[47] G. P. Henze and R. H. Dodier, “Adaptive Optimal Control of a Grid-Independent Photovoltaic System,” presented 
at the ASME Solar 2002: International Solar Energy Conference, 2009, pp. 139–148, doi: 10.1115/SED2002-1045. 
[48] L. Yang, Z. Nagy, P. Goffin, and A. Schlueter, “Reinforcement learning for optimal control of low exergy buildings,” 
Appl. Energy, vol. 156, pp. 577–586, Oct. 2015, doi: 10.1016/j.apenergy.2015.07.050. 
[49] Chenxiao Guan, Y. Wang, Xue Lin, S. Nazarian, and M. Pedram, “Reinforcement learning-based control of 
residential energy storage systems for electric bill minimization,” in 2015 12th Annual IEEE Consumer Communications 
and Networking Conference (CCNC), 2015, pp. 637–642, doi: 10.1109/CCNC.2015.7158054. 
[50] S. Zhou, Z. Hu, W. Gu, M. Jiang, and X.-P. Zhang, “Artificial intelligence based smart energy community 
management: A reinforcement learning approach,” CSEE J. Power Energy Syst., vol. 5, no. 1, pp. 1–10, Mar. 2019, doi: 
10.17775/CSEEJPES.2018.00840. 
[51] Y. R. Yoon and H. J. Moon, “Performance based thermal comfort control (PTCC) using deep reinforcement 
learning for space cooling,” Energy Build., vol. 203, p. 109420, Nov. 2019, doi: 10.1016/j.enbuild.2019.109420. 
[52] Y. Zhang and M. van der Schaar, “Structure-aware stochastic load management in smart grids,” in IEEE INFOCOM 
2014 - IEEE Conference on Computer Communications, 2014, pp. 2643–2651, doi: 10.1109/INFOCOM.2014.6848212. 
[53] B.-G. Kim, Y. Zhang, M. van der Schaar, and J.-W. Lee, “Dynamic Pricing and Energy Consumption Scheduling 
With Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2187–2198, Sep. 2016, doi: 
10.1109/TSG.2015.2495145. 
[54] B. Li and L. Xia, “A multi-grid reinforcement learning method for energy conservation and comfort of HVAC in 
buildings,” in 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015, pp. 444–449, 
doi: 10.1109/CoASE.2015.7294119. 
[55] B. Sun, P. B. Luh, Q.-S. Jia, and B. Yan, “Event-based optimization with non-stationary uncertainties to save energy 
costs of HVAC systems in buildings,” in 2013 IEEE International Conference on Automation Science and Engineering 
(CASE), 2013, pp. 436–441, doi: 10.1109/CoASE.2013.6654055. 
[56] B. Sun, P. B. Luh, Q.-S. Jia, and B. Yan, “Event-Based Optimization Within the Lagrangian Relaxation Framework 
for Energy Savings in HVAC Systems,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1396–1406, Oct. 2015, doi: 
10.1109/TASE.2015.2455419. 
[57] R. Jia, M. Jin, K. Sun, T. Hong, and C. Spanos, “Advanced Building Control via Deep Reinforcement Learning,” 
Energy Procedia, vol. 158, pp. 6158–6163, Feb. 2019, doi: 10.1016/j.egypro.2019.01.494. 



[58] Eberhart and Yuhui Shi, “Particle swarm optimization: developments, applications and resources,” in Proceedings 
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, vol. 1, pp. 81–86 vol. 1, doi: 
10.1109/CEC.2001.934374. 
[59] Y. Wang, X. Lin, and M. Pedram, “A Near-Optimal Model-Based Control Algorithm for Households Equipped 
With Residential Photovoltaic Power Generation and Energy Storage Systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 
1, pp. 77–86, Jan. 2016, doi: 10.1109/TSTE.2015.2467190. 
[60] L. A. Hurtado, E. Mocanu, P. H. Nguyen, M. Gibescu, and R. I. G. Kamphuis, “Enabling Cooperative Behavior for 
Building Demand Response Based on Extended Joint Action Learning,” IEEE Trans. Ind. Inform., vol. 14, no. 1, pp. 127–
136, Jan. 2018, doi: 10.1109/TII.2017.2753408. 
[61] L. Raju, S. Sankar, and R. S. Milton, “Distributed Optimization of Solar Micro-grid Using Multi Agent Reinforcement 
Learning,” Procedia Comput. Sci., vol. 46, pp. 231–239, Jan. 2015, doi: 10.1016/j.procs.2015.02.016. 
[62] K. Al-jabery, Z. Xu, W. Yu, D. C. Wunsch, J. Xiong, and Y. Shi, “Demand-Side Management of Domestic Electric 
Water Heaters Using Approximate Dynamic Programming,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 
36, no. 5, pp. 775–788, May 2017, doi: 10.1109/TCAD.2016.2598563. 
[63] E. Mocanu et al., “On-Line Building Energy Optimization Using Deep Reinforcement Learning,” IEEE Trans. Smart 
Grid, vol. 10, no. 4, pp. 3698–3708, Jul. 2019, doi: 10.1109/TSG.2018.2834219. 
[64] E. Barrett and S. Linder, “Autonomous HVAC Control, A Reinforcement Learning Approach,” in Machine Learning 
and Knowledge Discovery in Databases, Cham, 2015, pp. 3–19, doi: 10.1007/978-3-319-23461-8_1. 
[65] Y. Wang, K. Velswamy, and B. Huang, “A Long-Short Term Memory Recurrent Neural Network Based 
Reinforcement Learning Controller for Office Heating Ventilation and Air Conditioning Systems,” Processes, vol. 5, no. 
3, p. 46, Sep. 2017, doi: 10.3390/pr5030046. 
[66] Y. Chen, L. K. Norford, H. W. Samuelson, and A. Malkawi, “Optimal control of HVAC and window systems for 
natural ventilation through reinforcement learning,” Energy Build., vol. 169, pp. 195–205, Jun. 2018, doi: 
10.1016/j.enbuild.2018.03.051. 
[67] H. Kazmi, J. Suykens, A. Balint, and J. Driesen, “Multi-agent reinforcement learning for modeling and control of 
thermostatically controlled loads,” Appl. Energy, vol. 238, pp. 1022–1035, Mar. 2019, doi: 
10.1016/j.apenergy.2019.01.140. 
[68] K. U. Ahn and C. S. Park, “Application of deep Q-networks for model-free optimal control balancing between 
different HVAC systems,” Sci. Technol. Built Environ., vol. 0, no. 0, pp. 1–14, Oct. 2019, doi: 
10.1080/23744731.2019.1680234. 
[69] G. Brockman et al., “OpenAI Gym,” Jun. 2016, Accessed: 02-Jan-2020. [Online]. Available: 
https://arxiv.org/abs/1606.01540v1. 
[70] M. Wetter, J. Hu, M. Grahovac, B. Eubanks, and P. Haves, “OpenBuildingControl: Modeling feedback control as a 
step towards formal design, specification, deployment and verification of building control sequences,” in Proc. of 
Building Performance Modeling Conference and SimBuild, Chicago, IL, USA, 2018, pp. 775–782. 
[71] J. R. Vázquez-Canteli, J. Kämpf, G. Henze, and Z. Nagy, “CityLearn v1.0: An OpenAI Gym Environment for Demand 
Response with Deep Reinforcement Learning,” in Proceedings of the 6th ACM International Conference on Systems 
for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 2019, pp. 356–357, doi: 
10.1145/3360322.3360998. 
[72] “www.citylearn.net.” https://sites.google.com/view/citylearnchallenge (accessed Mar. 27, 2020). 
[73] C. W. Anderson, D. C. Hittle, A. D. Katz, and R. M. Kretchmar, “Synthesis of reinforcement learning, neural networks 
and PI control applied to a simulated heating coil,” Artif. Intell. Eng., vol. 11, no. 4, pp. 421–429, Oct. 1997, doi: 
10.1016/S0954-1810(97)00004-6. 
[74] G. P. Henze and J. Schoenmann, “Evaluation of Reinforcement Learning Control for Thermal Energy Storage 
Systems,” HVACR Res., vol. 9, no. 3, pp. 259–275, Jul. 2003, doi: 10.1080/10789669.2003.10391069. 
[75] S. Liu and G. P. Henze, “Experimental analysis of simulated reinforcement learning control for active and passive 
building thermal storage inventory: Part 1. Theoretical foundation,” Energy Build., vol. 38, no. 2, pp. 142–147, Feb. 
2006, doi: 10.1016/j.enbuild.2005.06.002. 
[76] S. Liu and G. P. Henze, “Evaluation of Reinforcement Learning for Optimal Control of Building Active and Passive 



Thermal Storage Inventory,” J. Sol. Energy Eng., vol. 129, no. 2, pp. 215–225, May 2007, doi: 10.1115/1.2710491. 
[77] D. Du and M. Fei, “A two-layer networked learning control system using actor–critic neural network,” Appl. Math. 
Comput., vol. 205, no. 1, pp. 26–36, Nov. 2008, doi: 10.1016/j.amc.2008.05.062. 
[78] B. Jiang and Y. Fei, “Dynamic Residential Demand Response and Distributed Generation Management in Smart 
Microgrid with Hierarchical Agents,” Energy Procedia, vol. 12, pp. 76–90, Jan. 2011, doi: 10.1016/j.egypro.2011.10.012. 
[79] Y. Liang, L. He, X. Cao, and Z.-J. Shen, “Stochastic Control for Smart Grid Users With Flexible Demand,” IEEE Trans. 
Smart Grid, vol. 4, no. 4, pp. 2296–2308, Dec. 2013, doi: 10.1109/TSG.2013.2263201. 
[80] A. T. Kaliappan, S. Sathiakumar, and N. Parameswaran, “Flexible power consumption management using Q 
learning techniques in a smart home,” in 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013, pp. 
342–347, doi: 10.1109/CEAT.2013.6775653. 
[81] D. Li and S. K. Jayaweera, “Reinforcement learning aided smart-home decision-making in an interactive smart 
grid,” in 2014 IEEE Green Energy and Systems Conference (IGESC), 2014, pp. 1–6, doi: 10.1109/IGESC.2014.7018632. 
[82] Q. Wei, D. Liu, G. Shi, Y. Liu, and Q. Guan, “Optimal self-learning battery control in smart residential grids by 
iterative Q-learning algorithm,” in 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement 
Learning (ADPRL), 2014, pp. 1–7, doi: 10.1109/ADPRL.2014.7010630. 
[83] D. Li and S. K. Jayaweera, “Machine-Learning Aided Optimal Customer Decisions for an Interactive Smart Grid,” 
IEEE Syst. J., vol. 9, no. 4, pp. 1529–1540, Dec. 2015, doi: 10.1109/JSYST.2014.2334637. 
[84] P. Fazenda, K. Veeramachaneni, P. Lima, and U.-M. O’Reilly, “Using reinforcement learning to optimize occupant 
comfort and energy usage in HVAC systems,” J. Ambient Intell. Smart Environ., vol. 6, no. 6, pp. 675–690, Jan. 2014, 
doi: 10.3233/AIS-140288. 
[85] Z. Wen, D. O’Neill, and H. Maei, “Optimal Demand Response Using Device-Based Reinforcement Learning,” IEEE 
Trans. Smart Grid, vol. 6, no. 5, pp. 2312–2324, Sep. 2015, doi: 10.1109/TSG.2015.2396993. 
[86] M. Rayati, A. Sheikhi, and A. M. Ranjbar, “Applying reinforcement learning method to optimize an Energy Hub 
operation in the smart grid,” in 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), 
2015, pp. 1–5, doi: 10.1109/ISGT.2015.7131906. 
[87] H. Berlink, N. Kagan, and A. H. Reali Costa, “Intelligent Decision-Making for Smart Home Energy Management,” 
J. Intell. Robot. Syst., vol. 80, no. 1, pp. 331–354, Dec. 2015, doi: 10.1007/s10846-014-0169-8. 
[88] X. Qiu, T. A. Nguyen, and M. L. Crow, “Heterogeneous Energy Storage Optimization for Microgrids,” IEEE Trans. 
Smart Grid, vol. 7, no. 3, pp. 1453–1461, May 2016, doi: 10.1109/TSG.2015.2461134. 
[89] S. Sekizaki, T. Hayashida, and I. Nishizaki, “An intelligent Home Energy Management System with classifier system,” 
in 2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA), 2015, pp. 9–14, doi: 
10.1109/IWCIA.2015.7449452. 
[90] Y. Sun, A. Somani, and T. E. Carroll, “Learning based bidding strategy for HVAC systems in double auction retail 
energy markets,” in 2015 American Control Conference (ACC), 2015, pp. 2912–2917, doi: 10.1109/ACC.2015.7171177. 
[91] A. Sheikhi, M. Rayati, and A. M. Ranjbar, “Demand side management for a residential customer in multi-energy 
systems,” Sustain. Cities Soc., vol. 22, pp. 63–77, Apr. 2016, doi: 10.1016/j.scs.2016.01.010. 
[92] H. Kazmi, S. D’Oca, C. Delmastro, S. Lodeweyckx, and S. P. Corgnati, “Generalizable occupant-driven optimization 
model for domestic hot water production in NZEB,” Appl. Energy, vol. 175, pp. 1–15, Aug. 2016, doi: 
10.1016/j.apenergy.2016.04.108. 
[93] S. Bahrami, V. W. S. Wong, and J. Huang, “An Online Learning Algorithm for Demand Response in Smart Grid,” 
IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4712–4725, Sep. 2018, doi: 10.1109/TSG.2017.2667599. 
[94] B. V. Mbuwir, F. Ruelens, F. Spiessens, and G. Deconinck, “Battery Energy Management in a Microgrid Using Batch 
Reinforcement Learning,” Energies, vol. 10, no. 11, p. 1846, Nov. 2017, doi: 10.3390/en10111846. 
[95] M. Schmidt, M. V. Moreno, A. Schülke, K. Macek, K. Mařík, and A. G. Pastor, “Optimizing legacy building operation: 
The evolution into data-driven predictive cyber-physical systems,” Energy Build., vol. 148, pp. 257–279, Aug. 2017, 
doi: 10.1016/j.enbuild.2017.05.002. 
[96] T. Remani, E. A. Jasmin, and T. P. I. Ahamed, “Residential Load Scheduling With Renewable Generation in the 
Smart Grid: A Reinforcement Learning Approach,” IEEE Syst. J., vol. 13, no. 3, pp. 3283–3294, Sep. 2019, doi: 
10.1109/JSYST.2018.2855689. 



[97] B. J. Claessens, D. Vanhoudt, J. Desmedt, and F. Ruelens, “Model-free control of thermostatically controlled loads 
connected to a district heating network,” Energy Build., vol. 159, pp. 1–10, Jan. 2018, doi: 
10.1016/j.enbuild.2017.08.052. 
[98] G. D. Kontes et al., “Simulation-Based Evaluation and Optimization of Control Strategies in Buildings,” Energies, 
vol. 11, no. 12, p. 3376, Dec. 2018, doi: 10.3390/en11123376. 
[99] Z. Zhang, C. Ma, and R. Zhu, “Thermal and Energy Management Based on Bimodal Airflow-Temperature Sensing 
and Reinforcement Learning,” Energies, vol. 11, no. 10, p. 2575, Oct. 2018, doi: 10.3390/en11102575. 
[100] P. Odonkor and K. Lewis, “Automated Design of Energy Efficient Control Strategies for Building Clusters 
Using Reinforcement Learning,” J. Mech. Des., vol. 141, no. 2, Feb. 2019, doi: 10.1115/1.4041629. 
[101] Z. Zhang, A. Chong, Y. Pan, C. Zhang, and K. P. Lam, “Whole building energy model for HVAC optimal control: 
A practical framework based on deep reinforcement learning,” Energy Build., vol. 199, pp. 472–490, Sep. 2019, doi: 
10.1016/j.enbuild.2019.07.029. 
[102] S. Lu, W. Wang, C. Lin, and E. C. Hameen, “Data-driven simulation of a thermal comfort-based temperature 
set-point control with ASHRAE RP884,” Build. Environ., vol. 156, pp. 137–146, Jun. 2019, doi: 
10.1016/j.buildenv.2019.03.010. 
[103] J. Y. Park, T. Dougherty, H. Fritz, and Z. Nagy, “LightLearn: An adaptive and occupant centered controller for 
lighting based on reinforcement learning,” Build. Environ., vol. 147, pp. 397–414, Jan. 2019, doi: 
10.1016/j.buildenv.2018.10.028. 
[104] J. R. Vázquez-Canteli, S. Ulyanin, J. Kämpf, and Z. Nagy, “Fusing TensorFlow with building energy simulation 
for intelligent energy management in smart cities,” Sustain. Cities Soc., vol. 45, pp. 243–257, Feb. 2019, doi: 
10.1016/j.scs.2018.11.021. 

 


	ADP26E9.tmp
	ABSTRACT
	1. Introduction
	2. Methods and Objectives
	2.1 Reinforcement learning for building controls
	2.2 Literature search
	2.3 Previous reviews
	2.4 Research gaps and objectives

	3 Survey on Reinforcement Learning for Building Controls
	3.1 Algorithms
	3.2 States
	3.3 Actions
	3.4 Rewards
	3.5 Environment
	3.6 Application in real buildings
	3.7 Discount factor

	4 Discussion
	4.1 Accelerate training
	4.2 Control security/safety/robustness
	4.3 Multi-agent problem
	4.4 Performance evaluation
	4.5 Contribution and implication

	5 Conclusion
	Acknowledgments
	Appendix
	References




