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Data‑driven distillation 
and precision prognosis 
in traumatic brain injury 
with interpretable machine 
learning
Andrew Tritt 1, John K. Yue 2,3, Adam R. Ferguson 2,3,4, Abel Torres Espin 2,3, 
Lindsay D. Nelson 5, Esther L. Yuh 2,3, Amy J. Markowitz 2,3, Geoffrey T. Manley 2,3,6,7, 
Kristofer E. Bouchard 7,8,9,10* & the TRACK‑TBI Investigators *

Traumatic brain injury (TBI) affects how the brain functions in the short and long term. Resulting 
patient outcomes across physical, cognitive, and psychological domains are complex and often 
difficult to predict. Major challenges to developing personalized treatment for TBI include distilling 
large quantities of complex data and increasing the precision with which patient outcome prediction 
(prognoses) can be rendered. We developed and applied interpretable machine learning methods 
to TBI patient data. We show that complex data describing TBI patients’ intake characteristics and 
outcome phenotypes can be distilled to smaller sets of clinically interpretable latent factors. We 
demonstrate that 19 clusters of TBI outcomes can be predicted from intake data, a ~ 6× improvement 
in precision over clinical standards. Finally, we show that 36% of the outcome variance across patients 
can be predicted. These results demonstrate the importance of interpretable machine learning applied 
to deeply characterized patients for data‑driven distillation and precision prognosis.

The collection of ever larger and more detailed biomedical datasets brings with it the promise of personalized 
treatments and interventions for a diversity of diseases and  disorders1. Extraction of clinically interpretable 
insights from such large, complex datasets is challenging and creates an impediment to better understanding 
and hence treatment. Current medical frameworks typically group patients with a given condition into a small 
number of classes, obfuscating the individual nature of their biology and  ailments2. A critical first step towards 
personalized treatments is to increase the precision with which we describe the patient and their outcomes, 
and predict those outcomes from socioeconomic, demographic, biomarker, and medical variables from initial 
clinical presentation, that we refer to as “intake”  data2,3. Here, we addressed this gap by developing and apply-
ing interpretable machine learning techniques for data distillation and precision prognoses in the context of 
traumatic brain injury (TBI).

Traumatic brain injury is damage to the brain resulting from any external force or object. According to 2020 
estimates, 2.8 million people sustain a TBI annually in the United States (US), of which 64,000 die, 223,000 are 
hospitalized, and 2.5 million (~ 90%) are treated and released from an emergency  department4. TBI is a contrib-
uting factor to one-third of all injury-related deaths in the US and has complex relationships with  polytrauma5. 
Direct medical costs and indirect costs of TBI, such as lost productivity, cost the world economy ~ $400 billion 
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 annually6. Despite the tremendous human and financial toll of TBI, our understanding of, and hence ability to 
treat this disabling medical condition, is not commensurate with its personal and societal  impact6.

The Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study (TRACK-TBI 
Pilot; ClinicalTrials.gov NCT01565551; enrollment 2010-20127) consortium aimed to improve our diagnostic 
models of TBI, understand patient outcomes, and predict those outcomes from the intake  features8,9. To this end, 
the study collected multimodal data immediately following injury (e.g., blood based biomarkers, radiological 
assessments of CT scans, as well as questions assessing a variety of socio-economic, pre-existing conditions) 
and diverse outcome measures at 3, 6 and 12 months post injury, to deeply phenotype patients (Fig. 1A). The 
enrolled patients (a subpopulation of TBI patients who were admitted to the ER/hospital/ICU) were diverse 
across demographic and socioeconomic characteristics, pre-existing conditions, and injury causes and severity 
which, together, could lead to complex and diverse outcome phenotypes with numerous comorbidities. Indeed, 
as qualitatively displayed by the Venn diagram in Fig. 1B, in the TRACK-TBI Pilot data (N = 586 patients), indi-
vidual patients exhibited complex combinations of multiple clinical symptoms at 3 months.

One contributing factor to the dearth of effective treatments for TBI is the lack of holistic yet precise descrip-
tions of TBI patient characteristics to allow for a more personalized approach to care. Causes of TBI include a 

Figure 1.  TBI patients and outcomes are described by complex combinations of heterogeneous clinical and 
outcome features. (A) Schematic depicting the diverse variable types across many scales that are collected in 
the TRACK-TBI Pilot data set. (B) Venn diagram of co-morbidity of post-TBI clinical symptoms at 3 months. 
Outcome variables were put into mutually exclusive groups based on the type of symptom measured by 
the variable. Percentages depict the fraction of patients that have symptoms associated with these outcome 
phenotypes (C). Precision medicine and personalized treatments require prognostication (i.e., prediction of 
outcomes) at the individual patient level. Conceptually, broad classifications of patient outcomes (e.g., mild, 
moderate, severe) can be subdivided into finer categories for more precise patient prognosis. Carrying this 
subdivision of categories (i.e., colored ovals) forward to the individual patient level turns the classification 
problem into a regression problem (i.e., the single gray oval across all features). (D) Histograms of selected 
clinical intake features. € Histogram of selected clinical outcome features. Both intake and outcome features 
contained binary variables (e.g., intracranial pressure monitoring or post-traumatic stress disorder), ordinal 
variables (e.g., age or overall neurological health), and more continuous variables (e.g., California Verbal 
Learning Test). CVLT California Verbal Learning Test, EtOH alcohol, GCS Glasgow Coma Scale, GFAP glial 
fibrillary acidic protein, GOSE Glasgow Outcome Scale-Extended, ICP intracranial pressure, Na sodium, PE 
pre-existing, PTSD post-traumatic stress disorder, RPQ Rivermead Postconcussion Symptom Questionnaire, 
UCH-L1 ubiquitin c-terminal hydrolase-L1.
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range of mechanisms from blunt force trauma to blast injuries. Further exacerbating the complexity of the situa-
tion, each TBI patient’s presentation is coupled with distinct sets of comorbidities that may or may not contribute 
to their specific  outcomes10–14. For example, as with many diseases and disorders, it is likely that heterogeneity 
in preexisting medical conditions and socioeconomic status contribute to the diversity of TBI  outcomes10,15, 16. 
The raw data describing TBI patients are both high-dimensional and complex, and extracting clinical insights 
that holistically describe patients’ intake characteristics and outcome phenotypes is an open challenge. Cur-
rently, standard clinical metrics typically classify TBI as either mild, moderate, or  severe17,18. As the precision of 
describing outcomes increases from broad categories towards smaller patient subsets (depicted as smaller ovals 
in Fig. 1C) all the way to individual patients (demarcated with a star in Fig. 1C), the prediction problem transi-
tions from a classification to a regression problem (Fig. 1C). Predictions of precise yet holistic patient outcome 
phenotypes from intake characteristics is nascent. From a data analytics perspective, these gaps correspond to 
three challenges: to distill high-dimensional, complex intake and outcome data in terms of holistic, clinically 
meaningful concepts; to increase the precision with which TBI outcomes are described; and to determine the 
degree to which precise outcomes can be predicted from intake data (prognosis).

We hypothesized that, hidden within the complexity of raw TRACK-TBI Pilot data, there were a small 
number of clinical concepts that parsimoniously described individual patients’ intake characteristics and out-
come phenotypes. We further hypothesized that there is an unappreciated level of precision with which TBI 
outcome phenotypes can be predicted from intake features. To test these hypotheses, we developed interpret-
able statistical-machine learning algorithms and applied them to demographic, socioeconomic, biomarker, and 
medical record data (‘intake’ features) as well as patient outcome data. We found that a small number of latent 
factors captured holistic clinical concepts associated with individual patients’ intake characteristics and outcome 
phenotypes. Across the patient population, we found that 19 TBI outcome clusters are predictable from intake 
data. Furthermore, we found that 36% of the total variance across individual patient outcomes can be predicted. 
Pre-existing sociomedical factors, mental health conditions, and other medical conditions interacted with injury 
severity indicators to predict diverse TBI outcomes. Together, these results deepen our understanding of TBI 
by providing quantitative, data-driven descriptions of holistic TBI patient intake characteristics and outcome 
phenotypes, and enable state-of-the-art prediction of precise TBI outcomes down to the individual patient level. 
While we here demonstrate the power of our approach in the specific context of TBI, our conceptual framework 
and specific methods are generalizable. As such, we believe our work will have applications to other complex 
medical conditions in the emerging age of data-driven precision medicine.

Results
TBI patients are described by complex combinations of heterogeneous intake and outcome 
features
The TRACK-TBI Pilot data set has been described previously and consists of a broad and detailed set of vari-
ables from 586 TBI patients evaluated at three United States Level 1 Trauma  Centers7 (see “Methods” section). 
From these patients, there were up to 524 ‘intake’ variables collected in the first 24 h of admissions (i.e., features) 
describing socioeconomic, demographic (race, sex, etc.,), pre-existing conditions (e.g., depression, cardiovascular, 
gastrointestinal, etc.,), and clinical intake information (e.g., location of injury, Glasgow Coma Scale (GCS), high-
est level of care and hospital course, etc.,) (Fig. 1D). For the same patients, there were up to 394 outcome items 
from each follow-up assessment in the cognitive, psychiatric, functional, return to work, quality of life, and other 
domains (Fig. 1E). Due to several causes (e.g., death/coma, lack of patient participation in follow-up assessments, 
etc.), not all variables are present for all patients. Our goal was to determine the degree of precision prognosis that 
can be achieved in the most deeply phenotyped individuals. Thus, we focused on a subset of patients who were 
alive and not comatose (e.g., vegetative state) at 3 or 6 months post-injury and for whom there were no missing 
values in a large subset of intake and outcome features (i.e., a ‘complete analysis’). This sub-setting resulted in 
N = 247 patients, PI = 235 intake features and PO = 177 outcome features. There were 174 males and 73 females. Of 
the 247 patients, 33% were discharged home, 29% were admitted to the ICU, 20% were admitted to the ward, 14% 
were stepdown, and 4% went into surgery. The 177 outcome features span a diverse range of clinical assessment 
domains. This included both clinical instruments and individual clinical features. The data types associated with 
both the intake features and outcome features were heterogeneous and complex. For example, some features were 
multi-categorical (e.g., race), some were binary (e.g., intracranial pressure monitoring; 6-month post-traumatic 
stress disorder) or ordinal across different ranges (e.g., GCS; and Glasgow Outcome Scale-Extended: GOSE) 
(Fig. 1D,E). Subsequently, all data were converted to non-negative numerical values and numerical ranges were 
standardized (see “Methods” section). Our strategy was to first distill the complexity of the original intake and 
outcome feature sets by learning interpretable latent factors that enhance clinical insight into individual patients. 
We then determined the precision by which holistic TBI outcomes can be predicted from intake features, and 
finally interpreted those predictions through the lens of the learned latent factors.

Complex TBI patient data can be distilled to clinically interpretable latent factors
The high-dimensional feature sets associated with both the intake and outcome data contain all available infor-
mation for description of patients’ intake features, injury characteristics, and outcomes. At the surface, it would 
appear that one benefit of working with the raw features is that, by definition, the item-level description may be 
clinically interpretable, as they were designed by clinicians. Previous approaches have interrogated the data at 
the item  level5,8,12. However, holistically, individual patients are defined by combinations of a large number of 
features, and the presence of complex and often hidden (i.e., latent) relationships amongst the  features19. Indeed, 
principal components analysis (PCA, Supplementary Fig. 1A,B) shows that a small number of principal compo-
nents retain the majority of the variance in each feature set (3 and 12 PCs account for 95% of variance in intake 
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and outcome features). This indicates that, while there are a large number of (correlated) features, the information 
they contain can be captured by a much smaller number of latent factors (3/235 = 1.3% and 12/177 = 6.8% for 
intake and outcome feature sets respectively). However, while PCA is optimal for capturing variance, it is often 
challenging to interpret individual components in terms of clinically meaningful concepts.

To learn a small number of latent factors that group correlated features into clinically meaningful concepts, we 
deployed nonnegative matrix factorization (NMF) using our recently introduced UoI-NMF algorithm. UoI-NMF 
learns stable latent factors of the data that group correlated variables together. UoI-NMF was performed on the 
intake features and outcome features separately. We found that five (5/235 = 2.1%) and eight (8/177 = 4.5%) latent 
factors parsimoniously summarized the intake and outcome features, respectively (Supplementary Fig. 1C,D). 
Generally speaking, we found that a relatively small set of original features were strongly loaded (weighted) on 
each factor, and that features contributing most to each factor reflect the same or similar conceptual groups 
(Fig. 2A,B) (see also Supplementary Fig. 2A). Furthermore, individual features that were indicative of the same 
clinical concept were naturally grouped together (Fig. 2C,D) (See also Supplementary Figs. 3 and 4). These 
qualities enabled us to assign clinically interpretable labels to the latent factors based on the features that they 
were composed of.

Figure 2A presents the contributions (gray scale color bar) of individual intake features (x-axis) to the 
extracted latent factors (y-axis). We found that latent factors grouped the intake features into clinical concepts 
named as follows (based on the features prominent in those factors): degree of consciousness, severity of intrac-
ranial injury, pre-existing mental health conditions, pre-existing medical conditions, and sociomedical factors. 
The contribution of a subset of the most important features for each intake factor are displayed in Fig. 2C (see 
Supplementary Fig. 3 for further details). We found that the latent factors grouped conceptually similar intake 
features together. For example, the degree of consciousness factor heavily weighted features such as closed injury 
and good responses on the Glasgow Coma Scale (GCS), indicating that patients high in this factor would have a 
high degree of consciousness. The intracranial injury factor heavily weighted significant trauma and intracranial 
injury features, indicating that patients high in this factor would have severe intracranial injury. Interestingly, the 
sociomedical factor was composed of presentation with pre-existing mental health conditions, substance use, 
injury by assault, and non-white race, but were discharged from the hospital (Fig. 2c, see also Supplementary 
Fig. 3).

Likewise, for the outcome features, we found that the latent factors holistically captured several clinically 
meaningful outcome phenotypes. Figure 2B presents the contributions (gray scale color bar) of individual out-
come features (x-axis) to the extracted latent factors (y-axis). We found that latent factors grouped the outcome 
features into the following clinical concepts: functional recovery, post-TBI stress, cognitive impairment, 3-month 
neurobehavioral impairment, emotional distress, concussive and episodic memory issues, vestibulo-ocular symp-
toms, and sleep disturbance. The contribution of a subset of the most important features for each factor are 
displayed in Fig. 2D (See Supplementary Fig. 4 for further details). Interestingly, in contrast to the intake latent 
factors, the latent factors for outcomes had more overlap in their contributing features (Fig. 2A vs. Fig. 2B). This 
supports the observation that TBI patients generally exhibit a complex combination of outcome  phenotypes20. 
In particular, the post-TBI stress factor was composed of PTSD-specific features (e.g., PTSD diagnosis), but also 
had contributions from many other features that spanned other outcome phenotypes, such as sleep disturbance, 
depression, and neuro-behavioral impairments. Together, these observations indicate that the latent factors suc-
cinctly and holistically capture complex clinical concepts that underlie the intake characteristics and outcome 
phenotypes of TBI patients.

The quantitative phenotypic landscape of individual TBI patients
The results presented above revealed a small number of clinically interpretable latent factors (5 and 8) that par-
simoniously summarize the high-dimensional intake and outcome features across patients. These factors not 
only distill the complexity of the original features, but can be utilized as quantitative descriptors of the individual 
patients. That is, the full description of each patient in terms of the original features can be reconstructed as 
additive combinations of the NMF latent factors. This enables, among other things, the quantitative assessment 
of the presence and degree to which the characteristics and phenotypes (summarized by the intake and outcome 
latent factors) are expressed by individual patients. Therefore, we next analyzed the landscape of individual TBI 
patients through the lens of the clinically interpretable intake and outcome latent factors.

We visualized the landscape across the entire patient population in terms of the latent factors at the individual 
patient level. Figure 3A,B visualizes individual patients projected in the two-dimensional UMAP spaces derived 
from the original intake (Fig. 3A) and outcome (Fig. 3B) features (see “Methods” section). Here, individual 
patients were plotted as pie-charts, where each pie slice is proportional to the relative weight of an intake (Fig. 3A) 
or outcome latent factor (Fig. 3B) to that patient’s description. The localization of individual latent factors was 
high-lighted by computing kernel-density estimates of the factors, and displaying them around the main plot 
(Fig. 3Ai–v,Bi–viii). We observed that several intake characteristics and outcome phenotypes occupied distinct 
and localized regions of their respective landscapes, while others were more diffusely distributed across the entire 
plane. For the intake characteristics, for example, patients that strongly expressed intracranial injury were local-
ized to the bottom-right (yellow, Fig. 3A, Ai) while patients that strongly expressed sociomedical factors were 
localized to a ridge in the upper-left (brown, Fig. 3A,Av). In contrast, the degree of consciousness characteristic 
(green, Fig. 3A,Aii) and pre-existing mental health conditions (blue, Fig. 3A,Aiii) were broadly distributed, 
indicating that they are diffusely present across patients. Notably, however, there is a subset of patients that have 
high intracranial damage and low consciousness (Fig. 3 A, bottom left-quadrant): these are the most severely 
injured patients. This visualization also suggests patterns of comorbidity expressed by individual patients. For 
example, a subset of patients had high expression of pre-existing medical conditions (pink) and sociomedical 
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factors (brown) as well as a high degree of consciousness (green) (Fig. 3A middle region, Fig. 3Ai,iv,v), and 
another subset exhibited almost exclusive comorbidity of sociomedical factors (brown) and degree of conscious-
ness (green) (upper right-hand ridge, Fig. 3A,Ai,iv). Compared to the intake characteristics, we observed more 
overlap in the expression of the outcome phenotypes at the individual patient level. That is, generally speaking, 
individual patients were comorbid for multiple outcome phenotypes, and the outcome phenotypes themselves 
occupied overlapping regions of the space (Fig. 3B,Bi–viii). For example, patients in the middle of the space 
expressed comorbidity of several outcome phenotypes. However, a few phenotypes were relatively localized, such 
as post-TBI stress in the upper region (pink, Fig. 3B,Bii), and high expression of functional recovery of patients 
in the lower region (blue, Fig. 3B,Bi).

Figure 2.  Complex TBI patient data can be distilled to clinically interpretable latent factors. Visualization of 
the contribution of intake and outcome features to extracted latent factors. (A,B) Latent factors (rows) and 
original features (columns) for intake (A) and outcome (B) features. Results are ordered for visualization 
purposes. Latent factors are labeled according to the holistic contributions of the individual features to each 
factor. Columns were shaded to indicate the features that contribute the most to each latent factor. Note that 
individual intake (A) and clinical features (B) contributed to a small number of latent factors, and each latent 
factor was constructed from a small-number of original features (C,D) Top contributing features for the 
intake (C) and outcome (D) latent factors. The normalized weight of the top features for each latent factor 
is plotted. 3m 3-month, 6m 6-month, CHARTSF Craig Handicap Assessment and Reporting Technique 
Short Form, CT computed tomography, DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition, ED emergency department, GCS Glasgow Coma Scale, GOSE Glasgow Outcome Scale-Extended, 
NBI neurobehavioral impairment, PEMC pre-existing medical conditions, PEMHC pre-existing mental health 
conditions, PMH prior medical history, PTSD post-traumatic stress disorder, TBI traumatic brain injury. 
Coloring for latent intake features: light green = degree of consciousness; light orange = severity of intracranial 
injury; blue = PEMHC; deep pink = PEMC; brown = sociomedical factors. Coloring for latent outcome features: 
light blue = functional recovery; pink = post-TBI stress; light brown = cognitive impairment; gray = 3-month 
neurobehavioral impairment; orange = emotional distress, yellow = concussive & episodic memory issues; lime 
green = vestibulo-ocular symptoms; turquoise = sleep disturbance.
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We summarized the dominance and comorbidity of patient intake characteristics and outcome phenotypes 
across the population. We first grouped patients according to their most heavily weighted latent factors (i.e., the 
largest pie slice in Fig. 3A,B) resulting in five intake characteristic groups (Fig. 3C) and eight outcome phenotype 
groups (Fig. 3D). For each group, we then averaged the latent factor contributions to the patients to create a sum-
mary representation. In the top row of Fig. 3C,D, we plot the proportion of patients that were dominant for each 
factor, while the bottom row displays stacked bar plots of the distribution of factor contributions for the patients 

Figure 3.  The quantitative phenotypic landscape of individual TBI patients. (A) Two-dimensional UMAP 
embedding of clinical features. Each point (i.e., patient) in the two-dimensional embedding is represented 
as a pie chart computed using normalized weights from NMF performed on the clinical features. (B) Two-
dimensional UMAP embedding of outcome features. (A.i–A.v) Probability densities for clinical feature 
UMAP embeddings. Points in the kernel density estimates were weighted by the respective clinical feature 
NMF factor weights. (B.i–B.viii) Probability densities for outcome feature UMAP embeddings. Points in the 
kernel density estimates were weighted by the respective outcome feature NMF factor weights. (C,D) Top: the 
fraction of patients that were dominant for each latent factor; Bottom: stacked bar plots of the distribution of 
latent factor contributions across patients dominant for that factor. (C) Intake factors; (D) Outcome factors. 
Coloring for latent intake features: light green = degree of consciousness; light orange = severity of intracranial 
injury; blue = PEMHC; deep pink = PEMC; brown = sociomedical factors. Coloring for latent outcome features: 
light blue = functional recovery; pink = post-TBI stress; light brown = cognitive impairment; gray = 3-month 
neurobehavioral impairment; orange = emotional distress, yellow = concussive and episodic memory issues; lime 
green = vestibulo-ocular symptoms; turquoise = sleep disturbance.
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dominant in that factor. Reinforcing the results described above, we found that, for the intake characteristics 
(Fig. 3C), the majority of patients (81.0%) were dominant for the high degree of consciousness. On average, in 
these patients, the other four characteristics were present in roughly equal proportions. A smaller, yet notable 
portion (15.0%), was dominant in the intracranial injury factor, which was modulated mostly by degree of 
consciousness characteristics. Some patients were dominant in the PEMC and PEMHC, while no patients were 
dominant in sociomedical factors (depicted with a hatched bar). Likewise, for the outcome features (Fig. 3D), 
the majority of patients are high in functional recovery (84.6%), consistent with the observation that the major-
ity of patients had mild TBI characteristics (Fig. 3C). A smaller portion (14.6%) was dominant in the post-TBI 
stress factor, while a much smaller fraction of patients were dominant in the expression of cognitive impair-
ment, 3-month neurobehavioral impairment (NBI), as well as emotional distress phenotypes. No patients were 
dominant in vestibulo-ocular, sleep disturbance and episodic memory factors. Broadly speaking, the patterns 
of comorbidity in these groups were consistent with the patterns observed at the individual patient level. For 
example, the patients that most strongly expressed PEMHC (blue) also expressed comorbidity with high degrees 
of consciousness (green) characteristics (Fig. 3C). Likewise, with the notable exception of the functional recov-
ery phenotype, the patients that were dominant in the expression of an outcome phenotype were comorbid for 
many other outcome phenotypes (Fig. 3D). There was no significant Spearman correlation between the number 
of patients dominant in a factor and the number of features in that factor (P > 0.1). Together, these results dem-
onstrate the quantification of qualitatively known patterns of dominance and comorbidity, as well as revelation 
of new patterns. They thus highlight the utility of the holistic latent factors in quantitative description of single 
patient intake characteristics and outcome phenotypes.

TBI patient outcomes can be predicted with a high degree of precision
The results above demonstrate that individual TBI patients are described by multiple intake characteristics and 
can end up with diverse combinations of outcome phenotypes. Although individual TBI patients are typically 
classified into a small number of outcome phenotype categories (e.g., mild, moderate, severe), the analysis 
presented above suggests such course descriptions likely mask underlying complexity of the patient outcome 
symptomatology. Here, we take a data-driven approach to determine how many ‘types’ of TBI outcomes are 
present in the TRACK-TBI Pilot data.

We developed a novel approach to determine how many types of TBI outcomes can be predicted from the 
intake data through a combination of non-parametric unsupervised and supervised machine learning approaches 
(see “Methods” section). The intuition behind our method is that classification accuracy (relative to chance) 
should plateau at the true number of predictable clusters in the dataset. Briefly, we first perform unsupervised 
hierarchical clustering on the outcomes, and systematically vary the number of detected clusters. We then train a 
Random Forest classifier to predict patient outcome cluster membership from intake features for various number 
of outcome clusters. Note that the classification problem gets harder as the number of classes (i.e., outcome clus-
ters) increases—that is, classification accuracy will generally decline as the number of classes increases. Thus, we 
normalized the predictive accuracy of the classifier by the data-derived chance accuracy, to arrive at the Fold Over 
Chance (FOC) metric. We determine the number of clusters in the data as the estimated asymptote of FOC as a 
function of the number of clusters. In synthetic data, we found that this method was highly accurate, with a linear 
relationship between true and estimated number of clusters accounting for 98% of the variance in the estimated 
number of clusters  (R2 = 0.98, Supplementary Fig. 5). Thus, we have developed a simple, non-parametric, data-
driven approach to determine the number of outcome clusters that can be predicted from the intake features.

We utilized the method described above to estimate the number of TBI outcome clusters that can be pre-
dicted from the intake features. Figure 4A plots the raw classification accuracy for predicting outcome cluster 
membership from intake features as a function of increasing number of outcome clusters (black, mean ± s.d., 
N = 250 non-parametric bootstrap samples), as well as the data-derived chance accuracy (gray, mean ± s.d., 
N = 250 non-parametric bootstrap samples). As expected, both raw classification accuracy (black) and chance 
performance (gray) declined monotonically as the number of clusters increased. In contrast, Fold Over Chance 
(FOC) increased to an asymptote (Fig. 4B, red points, mean ± s.d., N = 250 non-parametric bootstrap samples). 
The dashed black line in Fig. 4B is the best fitting asymptotic function. Using the procedure described above, 
we estimated that the number of TBI outcome clusters was 19 ± 2 (Fig. 4B, mean ± 95 C.I. dashed vertical line 
and gray region). For 19 outcome clusters, the median raw classification accuracy was 0.210, while the median 
chance accuracy was 0.0726 (median FOC was 3.06, i.e., 306% of chance). We visualized how the 19 clusters 
grouped individual patients relative to their outcome latent factor compositions. Figure 4C plots the 247 patients 
(represented as outcome latent factor pie charts, as in Fig. 3B) in the 2D UMAP outcome space, with bounding 
polygons around the patients in the same cluster. The 19 clusters tiled the outcome landscape, and the latent 
factor composition (pie charts) associated with the patients within the same cluster were relatively homogenous 
compared to the entire population. For example, the gray-shaded cluster at the bottom was composed of patients 
dominated by the functional recovery latent factor, while patients in the gray-shaded cluster were dominated by 
post-TBI stress latent factor (albeit with contributions from other factors, as expected). These results indicate 
that the predictive clustering of outcomes grouped together patients with similar outcome phenotypes (see also 
Supplementary Fig. 6). Together, these results demonstrate that there is an unappreciated degree of outcome 
phenotypic precision that can be predicted from the intake features in deeply phenotyped TBI patients.

Holistic individual patient outcomes can be predicted from intake features
The results presented above indicate there are many more types of TBI outcomes that are predictable from intake 
data than previously known. We next sought to determine the degree to which holistic patient outcomes can be 
predicted from intake features at the individual patient level. Here, our goal is to provide a holistic prognostic 
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model by predicting as much of the full heterogeneity and complexity of individual patient outcomes as pos-
sible from the intake data, while retaining interpretability. To this end, we deployed sparse canonical correlation 
analysis (sCCA), a method for simultaneously computing aggregations of features for two separate sets of data 
that are maximally linearly correlated with each other. Briefly, sCCA computes paired sets of canonical variates 
(CVs)—in this case one set of variates each for the intake and outcome features. Each pair of CVs is a (sparse) 
weighted combination of features in one set (i.e., intake features) that are maximally correlated with a (sparse) 
weighted combination of features in the other set (i.e., outcome features) (Fig. 5A, upper). We derived equa-
tions that enabled us to calculate how much of the total outcome variance could be explained by each CV (see 
“Methods” section), and ordered them according to explained outcome variance.

When applied to the TRACK-TBI Pilot data, we found that the amount of explained outcome variance 
decreased quickly as a function of the number of CVs, and exhibited a long tail after nine variates (Fig. 5A, 
lower left). This indicates that the CVs beyond nine provide diminishing returns on explained outcome vari-
ance. These first nine variates (5% of the total 177 CVs) explained 36% of the total variance across individual 
patient outcomes (Fig. 5A, lower right)  (R2 = 0.36 > 17 s.d. from mean of null distribution; P <  10−3, N = 247 
patients, Permutation test, Supplementary Fig. 7). As an example of the predictive relationships captured by the 
canonical variates (CVs), in Fig. 5B we plotted each patient in the plane formed by the first CV (x-axis: 1st intake 
canonical variate; y-axis: 1st outcomes canonical variate, black line is best linear fit). Here, each patient is colored 
according to the severity of their TBI as assessed at intake (mild, moderate, severe, Fig. 5B). We found that the 
cross-validated predictive accuracy was very high, with 82% of the variance in the first outcome CV accounted 
for by the first intake CV (P <  10−10 N = 247 patients). Note that this predictive accuracy is restricted to just the 
outcome variance associated with the first canonical variate, which itself accounted for a fraction of the total 
outcome variance (see Fig. 5A, bottom). Additionally, there was a visually apparent ordering of TBI severity 
contained in the predictive relationship captured by the CVs: mild injuries were distributed predominantly at the 
lower end of the numerical range, moderate injury in the middle range, and severe injuries at the upper range. 
Similar, though more complex, relationships were observed when each patient was represented with the intake 
and outcome latent factor contribution pie-charts (Supplementary Fig. 8). Together, these results demonstrate 
that a small number of canonical variates (9/177, 5%) can explain a sizable fraction (36%) of the total outcome 
variability across individual TBI patients that are deeply phenotyped, and CVs retain clinically meaningful 
structure towards prediction of TBI outcomes from intake variables.

The canonical variates (CVs) were highly distributed across the patient population, in contrast to the NMF 
latent factors (see Supplementary Fig. 9). Thus, to gain deeper, more holistic insight into the contributions of 
intake characteristics towards prediction of outcome phenotypes, we analyzed the CVs through the lens of the 
NMF latent factors (see “Methods” section). Briefly, the latent factors describe weighted combinations of intake/
outcome features that parsimoniously account for the structure of the full data. Similarly, the canonical variates 
identify weighted combinations of intake features that are maximally predictive of weighted combinations of 
outcome features. Thus, we can combine those weights to examine how combinations of intake characteristics are 
predictive of combinations of outcome phenotypes. In Fig. 5C, we plot the fractional contributions of the latent 
intake characteristics and outcome phenotypes for each of the nine canonical variates. We observed that both 
the intake and outcome CVs were composed of non-uniform contributions of latent factors. For example, the 
first canonical variate emphasized how the combination of pre-existing mental health conditions (PEMHC, blue) 
and sociomedical factor (brown) intake characteristics were predictive of sleep disturbance and vestibulo-ocular 

Figure 4.  TBI patient outcomes can be predicted with a high degree of precision. (A) Accuracy of predicting 
outcome clusters using clinical features for different numbers of clusters. Each point corresponds to clustering 
outcomes into a different number of clusters. Error bars on each point represent the standard deviation of 
accuracy across UMAP replicates. Black line corresponds to true predictive accuracy and gray line corresponds 
to chance predictive accuracy. (B) Fold-over-chance accuracy of predicting outcome clusters using clinical 
features for different numbers of clusters. Each point corresponds to clustering outcomes into a different number 
of clusters. Error bars on each point represent the standard deviation of accuracy across UMAP replicates. Fold-
over-chance values were calculated as the ratio of true predictive accuracy to chance predictive accuracy. Black 
dotted line represents the least squares exponential fit. Vertical gray dotted line represents estimate of number 
of clusters and gray shading represents 95% CI around estimate. (C) Two-dimensional UMAP embedding 
clustered into 19 clusters. Points are drawn as pie charts calculated using normalized outcome NMF weights.
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outcome phenotypes (Fig. 5C, top row). Across CVs, we observed that different patterns of intake characteris-
tics were predictive of different patterns of outcome phenotypes. We summarized the predictive relationships 
between the latent factors by computing the cross-covariance for the NMF factors projected into the canonical 
variates (Fig. 5D). We found that the strongest relationships were between presentation of pre-existing medical 
conditions (PEMC) contributing to 3-month neuro-behavioral impairment (NBI), and higher degree of con-
sciousness contributing to less post-TBI stress. (Fig. 5D, colorbar). We also observed remarkable consistency in 
the relative importance of pre-injury intake phenotypes (sociomedical factors; PEMHC; PEMC) for predicting 
multiple outcome phenotypes with moderate correlation strength (3-month NBI; vestibulo-ocular; concentration 
and episodic memory; sleep disturbance; functional recovery). In contrast, the intake phenotypes comprising 
objective indicators of clinical injury emerged as strong predictors of specific outcome phenotypes (degree of 
consciousness for post-TBI stress, and concussion and episodic memory; intracranial injury for 3-month NBI). 
Likewise, we found a gradation in the extent to which outcome phenotypes could be predicted, with 3-month 
NBI being the most predictable, while emotional distress and cognitive impairment being the least predictable. 
Together, these results quantify the complexity by which combinations of intake characteristics lead to outcome 
phenotypes.

Discussion
Traumatic brain injury is defined as an injury to the brain resulting from an external  force21. This injury interacts 
with individual patient backgrounds to result in complex and heterogeneous outcome phenotypes. Understand-
ing and predicting holistic outcome phenotypes with high precision from intake data is a major challenge in the 

Figure 5.  Holistic individual patient outcomes can be predicted from intake features. Sparse canonical 
correlation analysis of clinical feature and outcome data. (A) Upper. Canonical correlation analysis projects 
observed features into maximally correlated latent spaces. Lower. Outcome variance explained by canonical 
variates (left) and cumulative outcome variance explained by canonical variates (right). Dotted red line indicates 
cutoff for significant canonical variates. (B) First canonical variate. Solid black line indicates least squares 
regression line with corresponding R2 indicated on plot. Points are colored according to the patient Glasgow 
Coma Scale classification. (C) Absolute total leverage of NMF features within each canonical variate. (D) 
Predictive relationship between intake characteristics and outcome phenotypes. Color bar depicts the Pearson 
correlation coefficient.
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field. To address this gap, we developed novel combinations of unsupervised and supervised machine learning 
algorithms and applied them to a cohort of deeply phenotyped patients in the TRACK-TBI Pilot data set. We 
found that the complexity of the data could be distilled to a small number of latent factors associated with clini-
cally meaningful intake characteristics and outcome phenotypes. Furthermore, we found that ~ 19 types of TBI 
outcome clusters can be predicted from the intake features, an ~ 6× improvement in precision over the current 
clinical standard of care (mild, moderate, and severe TBI). Finally, 36% of the total variance across individual 
patients could be predicted from a small number of latent predictive mappings between the entire intake and 
outcome features.

Data‑driven distillation of complex intake characteristic and outcome phenotype data
Every person’s medical trajectory is defined by the entirety of their life experience, including their pre-existing 
conditions and socioeconomic status. In the brain, interacting but distinct anatomical regions are responsi-
ble for performing different functions. For example, the hippocampus is important for formation of episodic 
 memories22,23. As such, in TBI there are a diverse set of outcome phenotypes that can occur, depending on the 
interaction of the patient’s pre-injury status with the location and severity of the brain  injury24–26. Precision 
medicine requires not only capturing this diversity through deeply characterizing individual patients, but under-
standing and leveraging this knowledge towards holistic, personalized predictions and treatments. However, 
such precision medicine data, which represents the clinical knowledge about the patients, is often very complex: 
individual patients are associated with a large number of both intake and outcome features. This complexity 
often presents an impediment to clinical understanding. In the context of the patients composing the TRACK-
TBI Pilot study, we focused on the subset of patients that had the most complete set of a large number of intake 
and outcome features. This was done to maximize the amount of information present in both the intake and 
outcome feature spaces.

We sought to provide data-driven, holistic insight into the entirety of intake and outcome features that 
describe individual patients through interpretable unsupervised machine learning methods. We found that our 
UoI-NMF algorithm distilled the complexity of the high-dimensional original features down to a small-number 
of clinically meaningful concepts associated with intake characteristics and outcome phenotypes. The discovered 
latent factors grouped related original features together, thus naturally handling issues of multicollinearity in 
the data. Therefore, we have defined latent intake characteristics and outcome phenotypes, and the individual 
items they are composed of, to effectively provide data-driven distillation of complex TBI knowledge that has 
eluded researchers for the past 4 decades.

The latent factors are composed of many original features that co-occur across patients, and each patient can 
be described as weighted combinations of those latent factors. Importantly, this enables quantitative description 
of individual patients’ expression of the holistic intake characteristics and outcome phenotypes (e.g., Fig. 3). 
Within the patient population that is alive/non-comatose at 6 months, there are many dimensions that differenti-
ate their quality of life, and patients exhibit a spectrum ranging from fully recovered to severely  debilitated8. We 
found that individual patients can be quantitatively mapped by their intake and outcome phenotypes to show 
the relative contribution of each latent phenotype to each patient’s presentation, as well as the co-occurrence 
of distinct intake and outcome phenotypes in clusters of patients. For example, degree of consciousness and 
functional recovery are diffusely enriched across the majority of patients (reflecting that most patients had mild 
TBI and recovered), post-TBI stress co-occurs with a subset of PEMHC and sociomedical factors, and severe 
intracranial injury and sociomedical factors tended not to co-occur. These data-driven revelations make intuitive 
sense, as the predominance of TBI patients in TRACK-TBI Pilot were on the milder end of the severity spectrum 
from concussion to coma, which is dependent on assessment of functional recovery, and of initial Glasgow Coma 
Scale (GCS) score. Further, post-TBI stress is known from literature to be associated with pre-existing mental 
health conditions and sociomedical  factors27; however the precise relationships are complex. The emergence of 
intake phenotypes with little overlap (sociomedical factors; intracranial injury) highlight that the component 
features of these two latent phenotypes weigh differently across subpopulations of patients, which can enable 
identification of these subpopulations during classification approaches. Together, these results demonstrate the 
power of interpretable unsupervised machine learning for data-driven distillation of complex precision medi-
cine data into clinically meaningful, quantitative descriptions of individual patient intake characteristics and 
outcome phenotypes.

From categories to continuums towards precision prognostication
The promise of personalized treatments from precision medicine is predicated upon the ability to accurately and 
precisely predict patient outcomes from intake data. Furthermore, it is desirable for the outcome predictions to 
be in the context of holistic descriptions of patients that account for multiple phenotypic dimensions, not just 
single outcome measures. Put another way, the ability to tailor treatments for individuals requires the ability to 
predict patient outcomes with high accuracy and high precision across the diversity of phenotypic domains. There 
is typically an inherent tradeoff between precision and accuracy, with more precise parcelations of an outcome 
(e.g., increased number of outcome classes/clusters) making accurate prediction more difficult. For example, 
predicting mortality and/or severe disability at 6 months following TBI requires comparatively less precision 
than predicting performance on complex measures of functional, cognitive, and neuropsychiatric recovery, as 
evidenced by well-validated prognostic calculators based on large multicenter  datasets28,29. Conversely, we argue 
that increased outcome precision is naturally associated with more holistic outcome descriptions, as the ability 
to meaningfully describe individuals with increased precision requires more diverse types of information about 
those individuals to be taken into account. We distilled this diverse information into latent factors. Indeed, 
the latent factors associated with outcome phenotypes enables quantification of an individuals’ expression of 
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combinations of those outcome phenotypes, providing holistic and precise descriptions. However, these outcome 
phenotype descriptions do not speak to the ability to predict whether a patient will exhibit those outcomes. That 
is, how precisely can we prognose patient outcomes?

In the subset of deeply phenotyped patients we focused on in the TRACK-TBI Pilot data, we found that there 
were ~ 19 clusters of TBI outcomes that can be predicted from the intake data. Individual classes were composed 
of patients with similar combinations of multiple outcome  phenotypes30. For 19 outcome clusters, the median 
raw classification accuracy was 21%, which was 306% of chance. While this accuracy is not likely to reach the 
level of clinical actionability, we note that the subset of patients associated with the large number of features 
necessitated by our goals strongly suggests that increasing the patient population with the same degree of deep 
phenotyping will increase prediction accuracy, and perhaps outcome phenotype precision as well. Nonetheless, 
these results demonstrate a high-degree of previously unknown precision of predictability of patient outcomes.

The results described above indicate many more post-injury clusters of TBI are predictable from intake data 
than previously appreciated. This in-and-of-itself is a major step toward precision description and prediction 
of TBI outcomes. However, it still treats the patients in a cluster as undifferentiated members of a homogenous 
group, not as individuals. Conceptually, carrying prediction precision to its logical conclusion by increasing the 
number of clusters until we attempt to predict the precise outcomes of each individual patient from intake data 
turns the classification problem to a regression problem. Typically, individual patient predictive modeling is 
done by considering single outcome  variables31. In contrast, our goal was to predict as much of the full hetero-
geneity and complexity of individual patient outcomes as possible to provide a holistic and complete prognostic 
model. We found that 36% of the total variance across all outcome features at the individual patient level could 
be predicted from intake features with nine canonical variates. To the best of our knowledge, no prior study has 
attempted to explain the total variance across all outcome variables. As such, the sheer novelty of this finding 
makes it significant. To view the predictive mapping through the lens of the distilled intake characteristics and 
outcome phenotypes, we leveraged the compositionality of linear methods (i.e., NMF and CCA). This revealed 
novel insights into how the complex interaction of pre-existing conditions and injury severity give rise to diverse 
outcome phenotypes.

Here, we utilized predictive accuracy and precision as lenses with which to quantitatively interrogate the 
relationships between intake characteristics and outcome phenotypes, but it is not the end goal– the end goal 
is precision prognosis. In the specific context of TBI, prognostication has been hampered by lack of accuracy 
and precision, without validated prediction models beyond acute mortality, 6-month mortality and unfavorable 
 outcome28. Extant prediction models rely on multivariate regressions of presentation and injury variables onto 
dichotomized, multiclass, or ordinal prediction of single outcome variables , which inherently limits  precision13,32. 
Furthermore, prognosis calculators acceptable to the clinical community have been limited to global outcomes, 
such as the Glasgow Outcome Scale—a 1–5 or 1–8 ordinal scale of outcome from death to full recovery. The 
lack of acceptable prediction models for more granular outcomes and outcome domains has been limited by 
the heterogeneity of: (1) pre-existing medical and social condition and injury severity, (2) treatment course and 
interventions, and (3) symptomatology constituting multidimensional outcomes. Critical to the absence of a 
precise prediction model is the lack of accurate and precise definitions of “clinically important” injury intake 
and outcome factors suitable for measurement across the spectrum of TBI, which has limited the advancement 
of TBI care. Our solution to this pressing issue is to view predictive models through the lens of the latent intake 
characteristics and outcome phenotypes. The importance and relevance of our approach is that it was driven 
by the inherent heterogeneity, collinearity, and noise of the presentation and outcome data in each unique TBI 
patient presenting to care (i.e., data-driven). For the first time, distillation and capture of these latent intake and 
outcome phenotypes more certainly defines the relevant underlying phenotypic categories, which have escaped 
capture in historical approaches, and can be targeted for precision prognosis. Equally important is our distillation 
of the various individual outcome symptomatology scores to reduce the inherent collinearity and redundancy 
between similar symptoms assessed by different measurement tools—data parsimony. This is requisite to enabling 
precise prognosis. See Supplementary Discussion for more in-depth discussion on TBI specific metrics. If this 
approach can be validated and adopted in the clinical realm it will obviate the historical limitations to defining 
a “clinical state” and truly advance our ability to perform precision prognostication.

Data collection and methodological considerations for data‑driven precision prognostication
The ability to detect the high precision found here depended on the combination of the development of statistical-
machine learning algorithms and the application of those methods to deeply phenotyped patients. Put more 
precisely, the entropy (i.e., heterogeneity) of features in both the intake and outcome data put mathematical 
limitations on the precision with which predictions can be made. A corollary of this is that fewer outcome types 
would (likely) be detectable in datasets (either other datasets or larger subsets of the TRACK-TBI Pilot data) 
that have fewer features associated with each patient.

Inevitably, as more features are collected on patients, there will be overlap in the information captured by 
those features. A recurring challenge for many traditional approaches to the analysis of complex biomedi-
cal datasets is the presence of multicollinearity (i.e., correlations) amongst the features. For example, in the 
TRACK-TBI Pilot data set, several features are rescalings of other features, or are composites of several features. 
The latent factors discovered here naturally deal with this by grouping collinear features together. Indeed, hav-
ing collinearity amongst features is required to reduce their dimensionality. Likewise, the methods we used for 
predictive modeling are less sensitive to collinearity (Random Forests), or directly take it into account (CCA). 
Generally speaking, modern statistical-machine learning algorithms have become more robust to the presence 
of multicollinearity in datasets. But, if a clinical feature is not collected, that information is forever lost. Thus, we 
advocate for the collection of ever more detailed and deeply phenotyped biomedical datasets. At the same time, 
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we appreciate that there is a cost associated with all data collection, and given the finite resources available, this 
necessitates a tradeoff between the size of the patient cohort examined and the depth of phenotyping that can 
be achieved. One approach would be to conduct modest size studies with as much phenotypic depth as possible, 
and then use data-driven approaches (e.g., the NMF feature weightings) to identify the most important variables 
to collect in future large-scale studies.

Our analysis depends on having a large number of intake and outcome features for each patient, and this 
dependence resulted in a sub-selection of N = 247 patients. Removal of missing data can introduce bias in medi-
cal study results since there are often nontrivial reasons for data missingness in clinical data collection. One 
could use stochastic missing value imputation to address this issue. UMAP can reproduce different (sometimes 
discordant) results with multiple resampling runs. However, we did not observe this in our analysis. We sought 
embeddings that preserved both global and local structure, though empirical hyperparameter selection could be 
performed. Furthermore, there was substantial racial disparity in the data set, with mostly white patients, which 
may result in challenges generalizing to other populations. Finally, we focused on those patients with a GOSE > 2, 
as those patients had the most robust features, and were the most poorly understood. As such, while our results 
are highly statistically significant and use cross-validated predictive accuracy as a metric, future studies should 
increase the sample size to ensure predictive generalizability.

One of our goals was to provide data-driven insight into the complex TRACK-TBI Pilot data using methods 
that are amenable to the modest sample size and are easily deployable and scalable. For example, we utilized the 
compositionality of unsupervised (NMF) and predictive (CCA) linear models to provide quantitative insights 
into predictive models. We used a novel combination of standard non-parametric clustering and predictive 
models for discovery of the number of outcome clusters. An alternative would have been to utilize Bayesian 
methods; however, those approaches typically require more complex models, and scalability of inference can be 
a challenge. Likewise, while deep networks could be used to maximize both prediction accuracy and precision, 
the highly non-linear nature of deep networks make them hard to interpret, and the large number of parameters 
make them prone to overfitting. Exploring how to utilize such approaches towards interpretable distillation of 
complex data and improved prognostic precision given the data constraints is an area of active research. Finally, 
conformal analysis should be deployed for confidence in clinical decision making.

In many clinical settings, an individual’s medical outcome is the result of interactions between the environ-
ment that they are exposed to and the cause of the condition. For example, even in Huntington’s Disease, which 
has a known genetic cause, there exists extreme heterogeneity in the onset of symptoms for low-penetrance 
 genotypes33. This heterogeneity is thought to arise from the diversity of environments that those patients live 
in, but is poorly understood. In the context of TBI, we have demonstrated distillation and quantification of how 
a patient’s complex outcome phenotype depends on the combination of their injury characteristics with pre-
existing conditions, some of which may have social determinants. Therefore, we contend that the approach taken 
here for TBI will be applicable to complex biomedical datasets associated with many other health conditions.

Methods
Study and subjects
In the early 2000s, the National Institutes of Health (NIH) and National Institute of Neurological Disorders 
and Stroke (NINDS) developed the TBI Common Data Elements (CDEs) to overcome long-standing pitfalls in 
TBI clinical research, including lack of standardization in data collection and analysis, inability to appropriately 
stratify patients, and disparate injury  types34. Using a consensus-based approach, in 2010 NINDS working 
groups established standards for data capture across 4 broad domains: clinical assessments and demographic 
information, genetics and proteomics, neuroimaging, and outcome  measures35–38. The prospective, multicenter, 
observational TRACK-TBI Pilot assessed the feasibility and utility of version 1 of the TBI  CDEs7, setting the stage 
for feedback to the NINDS working groups, refinement of the  CDEs39, and subsequent large-scale multicenter 
prospective efforts in the US and  Europe40.

TRACK-TBI Pilot was conducted at three U.S. Level I trauma centers (Zuckerberg San Francisco General 
Hospital (California, US), University of Pittsburgh Medical Center (Pennsylvania, US), University Medical Center 
Brackenridge (Texas, US)). Inclusion criteria were patients of all ages with external force head trauma and presen-
tation to a participating institution with a clinically indicated head computed tomography (CT) scan within 24 h 
of injury. Exclusion criteria were pregnancy, ongoing life-threatening disease (e.g., end-stage malignancy), police 
custody, involuntary psychiatric hold, and non-English speakers due to multiple outcome measures administered 
and/or normed only in English. Institutional Review Board (IRB) approval was obtained at each participating 
institution with the University of California, San Francisco (UCSF) as the coordinating center (UCSF Committee 
on Human Research, Study #10-00011). Informed consent was obtained from each subject prior to enrollment. 
For patients unable to consent for themselves, the informed consent process was pursued with the surrogate 
next of kin or legally authorized representative. Consent for patients under 18 years of age was obtained from the 
parent or legal custodian and accompanied by patient assent if the patient was 7 years of age or older. Subjects 
were re-consented, if cognitively able, during the course of clinical care and/or follow-up timepoints for study 
participation. See Yue et al.7, for further details.

Between April 2010 and May 2011, TRACK-TBI Pilot enrolled 599 acute TBI patients, and final outcomes 
testing was completed in June 2012; 13 subjects aged < 16 years were excluded due to differences in variables 
recommended by CDE working groups, resulting in 586 subjects suitable for legacy analyses. At the time of 
TRACK-TBI Pilot implementation, 6 months post-injury was regarded as the gold standard time-point for 
outcomes assessment by CDE working groups and a comprehensive battery of 10 representative measures cover-
ing the consensus-selected domains of global outcome, neuropsychological impairment, psychological status, 
post-concussive symptoms, social role participation, and quality of life were administered (Glasgow Outcome 
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Scale-Extended [GOSE]; Neurological Symptoms Inventory (NSI); California Verbal Learning Test, Second Edi-
tion; Wechsler Adult Intelligence Scale, 4th Edition-Processing Speed Index; Trail Making Test; PTSD Checklist-
Civilian Version; Brief Symptom Inventory-18 Item; Rivermead Post Concussion Symptoms Questionnaire; 
Craig Handicap Assessment and Reporting Technique-Short Form; Satisfaction with Life Scale)37; at 3 months, a 
subset of measures (GOSE, NSI) were administered as part of evaluating the feasibility and utility of the 3-month 
time-point, as previously  described7. In the current study, patients and features were excluded to remove miss-
ing values in the intake and outcome feature matrices. The resulting dataset had 247 patients with 235 intake 
features and 177 outcome features. Of the 586 total patients, the number of patients with outcome data from the 
original dataset are: 3 months, 463; 6 months, 418; 12 months, 280. The number of patients with outcome data 
from filtered dataset: 3 months, 247; 6 months, 247; 12 months, 0.

The GCS was obtained upon arrival to the emergency department by the treating clinician in the emergency 
department. Demographic, socioeconomic, and medical history variables were collected directly from the patient 
and/or caregiver when available, as well as from chart review of the medical record. All treatment data up until 
hospital discharge were extracted directly from the medical record. Outcome data were obtained from patient 
interviews, which were conducted in person at 6-months post-injury and by telephone at 3-months post-injury. 
See Yue et al.7, for further details.

Glasgow coma scale classification
Glasgow coma scale (GCS) was divided into subranges for visualization and cross-validation stratification. The 
subranges for the three classifications are: GCS 3–8, severe; GCS 9–12, moderate; GCS 13–15 mild.

Subject selection criterion and feature cleaning
The TRACK-TBI Pilot dataset used for analysis was unusable in its raw form. All patients had at least one miss-
ing intake variable and one missing outcome variable, and 76% of all intake variables had at least one patient 
missing while all outcome variables had at least one patient missing. In aggregate, 25% of the original intake 
data had missing values, while 51% of outcome data had missing values. To avoid imputing data, these missing 
data points were addressed by removing patients and intake and outcome variables to produce a dataset with 
no missing data. This resulted in a final population size of N = 247. Finally, categorical features were one-hot 
encoded: i.e., create a dummy variable for each category. The software and raw data are available in the Github 
repository for this paper (see below). The racial breakdown of the 247 patients is as follows: 192 Caucasian, 23 
African American or African, 11 Asian, 8 Hawaiian or Pacific Islander, 8 More than One Race, 3 American Indian 
or Alaskan. There were 174 males and 73 females.

Software and data
All software and data are freely available at: https:// github. com/ Bouch ardLab/ ML_4_ prec_ progn osis and https:// 
github. com/ TRACK- TBI- Public.

Statistical tests and hypothesis testing
We deployed resampling techniques (i.e., cross-validation, bootstrap resampling, see below for details) for the 
metrics of interest so as to produce confidence intervals and perform statistical tests. Statistical tests were deemed 
as significant if the probability of incorrectly rejecting the null hypothesis was alpha < 0.05.

Non‑negative matrix factorization via union of intersections
Non-negative matrix factorization (NMF)41 was carried out using the Union-of-Intersections-NMF (UoI-NMF)42 
framework. THE UoI-NMF algorithm utilizes bootstrap sampling when deriving the latent representations42. This 
approach greatly reduces sensitivity to perturbations in patient sampling and data values. UoI-NMF was executed 
using the pyuoi (version 1.0.0) Python  package43. Before executing UoI-NMF, NMF hyperparameters (number 
of latent features and elastic-net44 regularization parameters) were optimized. The multiplicative-update algo-
rithm was used to solve the Kullback–Leibler divergence loss  function45. For hyperparameters, tThe number of 
latent factors was chosen as the number of factors that minimized the Bayesian Information Criterion (BIC)41. 
Regularization parameters (regularization strength and L1-ratio) were chosen by visualizing the bases from 
factorizations calculated for all pairwise combinations of the following parameter sets: regularization strength 
of [0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0] and [0.1, 0.2, 0.5, 1.0, 2.0, 5.0] for outcomes and biomarkers, respectively, and 
L1-ratio of [0.1, 0.2, 0.5, 0.7, 1.0] for both outcomes and biomarkers. Each factorization was visually inspected, 
and the factorization that appeared to produce the most disjoint factors, in terms of loadings from the original 
features, was chosen. After NMF hyperparameters were determined, UoI-NMF was run. To ensure UoI-NMF 
produced the desired number of latent factors, the DBSCAN 46 clustering step of UoI-NMF was replaced with 
K-means47. K-Means and NMF were run using Sci-Kit Learn (version 0.23.1)48.

UMAP
Embeddings calculated with the Uniform Manifold Approximation and Projection (UMAP)  method49 were 
executed using the umap-learn (version 0.3.10) Python package (https:// github. com/ lmcin nes/ umap). Clini-
cal feature embeddings were calculated using default parameters with the exception of the following param-
eters: n_components = 2, min_dist = 1.0, random_state = 20,001. Outcome embeddings were calculated using 
default parameters with the exception of the following parameters: n_components = 2, min_dist = 0.0, random_
state = 20,001. Additionally, we used a custom distance matrix to accommodate the high proportion of binary 
features in the outcome features. This distance matrix was calculated as a weighted average of distance matrices 

https://github.com/BouchardLab/ML_4_prec_prognosis
https://github.com/TRACK-TBI-Public
https://github.com/TRACK-TBI-Public
https://github.com/lmcinnes/umap
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computed for binary and continuous features. The distance matrices for binary and continuous features were 
computed using the Jaccard–Needham dissimilarity and the Euclidean distance, respectively.

Number of outcome categories
The number of outcome categories was determined by calculating the smallest number of outcome clusters 
that achieved the maximum predictive accuracy when regressed onto the clinical features. After computing 
an upper limit on predictive accuracy, the outcome clustering with the fewest clusters that achieves the maxi-
mum predictive accuracy within some level of uncertainty. Before clustering, outcome variables were embedded 
into a low-dimensional space using  UMAP49 (n_components = 2, min_dist = 0.0, random_state = 20,001). The 
min_dist parameter was set to 0.0 to create more compact clumps to improve downstream clustering analysis, 
and n_components was set to 2 to reduce computational complexity after we verified that this parameter did 
not affect downstream results. After embedding with UMAP, patients were then clustered with Ward’s  method50 
for agglomerative hierarchical clustering using low-dimensional embeddings produced by UMAP. The thresh-
old was varied to produce clusterings with 2 to 50 clusters. These clusterings were evaluated by calculating the 
cross-validated predictive accuracy from regressing cluster labels onto the patient clinical feature data using 
random  forests51. For cross-validation, we used five splits stratified by cluster label with no repeats. These accu-
racy scores were adjusted to account for the varying classification difficulty across clusterings by dividing by the 
cross-validated predictive accuracy of a naive classifier that was trained by regressing randomly shuffled cluster 
labels onto patient clinical feature data using random forests and the same cross-validation procedure used in 
the previous step. This gives us the fold-over chance predictive accuracy (FOC). This entire process was carried 
out 250 times to account for instability in clustering results from stochasticity in UMAP embeddings and the 
mean FOC and standard deviation was calculated for each number of clusters. To determine the upper limit on 
FOC i.e. maximum predictive accuracy, we modeled predictive accuracy as a function of the number of clusters. 
Using this function, we take the limit as the number of clusters approaches infinity to find the maximum predic-
tive accuracy. To do this, we fit an exponential function to the FOC scores across all clusterings. The function 
takes the form A = x0 + x1e

x2C , where A is the adjusted cross-validated predictive accuracy, C is the number of 
clusters in each clustering, and x0 is the FOC upper limit. To account for uncertainty in the estimate of the upper 
limit of FOC and FOC for each cluster, we adjust mean calculations by their respective standard deviations. The 
final number of clusters was determined to be the smallest number of clusters for which the µ̂A + σ̂A > x̂0 − σ̂x0 , 
where µ̂A and σ̂A are the estimated mean and standard deviation, respectively, of FOC scores for a clustering A , 
x̂0 is estimate for x0 , and σ̂x0 is the standard deviation for the x0 estimate.

Sparse canonical correlations analysis
The truly alternating least squares algorithm presented  in52 for solving sparse canonical correlation analysis was 
implemented in Python. Inner  lasso53 regression problems were solved using coordinate-descent as implemented 
in Sci-Kit  Learn48. Cross-validated explained outcome variance was used to select optimal regularization param-
eters. Cross-validation used five folds, stratified by patient GCS classification (i.e., severe, moderate, mild). Total 
outcome variance explained by a canonical variate i , ηi , is calculated by scaling the weighted sum of the cosine 
similarities between the outcome canonical variate and all principal components of the outcomes by the ratio of 
shared variance between the clinical feature and outcome canonical variate. That is:

where r is Pearson’s correlation coefficient, ui is the left (i.e., intake feature) canonical variate, vi is the right (i.e., 
outcome) canonical variate, �j is the explained variance for outcome principal component j , wj is outcome prin-
cipal component j , and Sc is the cosine similarity.

Canonical variate visualizations
Bar-plots were generated by collapsing canonical variate loadings according to nonnegative factors. The non-
negative factor to which each observed feature was assigned was calculated by identifying the factor for which 
the observed feature had the highest factor loading. The absolute value of canonical variate loadings of observed 
features were summed for each nonnegative factor. This process created B , a k × l matrix, where k is the number 
of nonnegative factors and l  is the number of canonical variates. This process was done for both intake variables 
and outcome variables, creating matrices BI and BO , respectively.

Let Fij = 1 if argmaxkH·j = i , 0 otherwise, where H is the nonnegative bases matrix and k is the number of 
nonnegative factors. Let G by the row L1-normalized form of F . Then BI = GIβ and BO = GOθ , where β and θ 
are the canonical variate loadings for the intake variables and outcome variables, respectively. The left panel and 
right panel of Fig. 5C were generated from BI and BO , respectively. The heatmap in Fig. 5D was generated from the 
matrix P where Pij is the Pearson correlation coefficient between the row i and column j of BI and BO , respectively.
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