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A subgroup of patients with obstructive sleep apnoea who benefit from stabilising ventilatory control
with supplemental oxygen therapy can be recognised by estimating pathophysiological mechanisms
from a routine diagnostic sleep study http://ow.ly/yeVp30lewG4
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ABSTRACT A possible precision-medicine approach to treating obstructive sleep apnoea (OSA) involves
targeting ventilatory instability (elevated loop gain) using supplemental inspired oxygen in selected
patients. Here we test whether elevated loop gain and three key endophenotypic traits (collapsibility,
compensation and arousability), quantified using clinical polysomnography, can predict the effect of
supplemental oxygen on OSA severity.

36 patients (apnoea–hypopnoea index (AHI) >20 events·h−1) completed two overnight
polysomnographic studies (single-blinded randomised-controlled crossover) on supplemental oxygen (40%
inspired) versus sham (air). OSA traits were quantified from the air-night polysomnography. Responders
were defined by a ⩾50% reduction in AHI (supine non-rapid eye movement). Secondary outcomes
included blood pressure and self-reported sleep quality.

Nine of 36 patients (25%) responded to supplemental oxygen (ΔAHI=72±5%). Elevated loop gain was
not a significant univariate predictor of responder/non-responder status (primary analysis). In post hoc
analysis, a logistic regression model based on elevated loop gain and other traits (better collapsibility and
compensation; cross-validated) had 83% accuracy (89% before cross-validation); predicted responders
exhibited an improvement in OSA severity (ΔAHI 59±6% versus 12±7% in predicted non-responders,
p=0.0001) plus lowered morning blood pressure and “better” self-reported sleep.

Patients whose OSA responds to supplemental oxygen can be identified by measuring their
endophenotypic traits using diagnostic polysomnography.

This article has supplementary material available from erj.ersjournals.com

This study is registered at ClinicalTrials.gov with identifier number NCT01751971. Data will be made available to
qualified scientists upon request.

Received: April 09 2018 | Accepted after revision: July 29 2018

Copyright ©ERS 2018

https://doi.org/10.1183/13993003.00674-2018 Eur Respir J 2018; 52: 1800674

ORIGINAL ARTICLE
SLEEP APNOEA

mailto:sasands@bwh.harvard.edu
http://ow.ly/yeVp30lewG4
http://ow.ly/yeVp30lewG4
https://doi.org/10.1183/13993003.00674-2018
https://doi.org/10.1183/13993003.00674-2018
erj.ersjournals.com
https://clinicaltrials.gov
http://crossmark.crossref.org/dialog/?doi=10.1183/13993003.00674-2018&domain=pdf&date_stamp=


Introduction
Around half of patients diagnosed with obstructive sleep apnoea (OSA) are currently untreated or
non-adherent to continuous positive airway pressure (CPAP) [1, 2]. Thus, novel approaches to OSA
therapy are required. In the last few years, the concept of personalised OSA therapy has emerged, based on
the idea that OSA interventions have maximal impact when they match patients’ underlying
pathophysiology or “endophenotypes” [3–7]. At the core of this notion is the recognition that OSA
emerges as the consequence of different endophenotypic traits in different individuals, namely 1) increased
pharyngeal collapsibility, 2) reduced ventilatory control stability (elevated loop gain, i.e. an exaggerated
ventilatory drive response to reduced airflow and attendant hypoxia/hypercapnia), 3) reduced respiratory
arousal threshold (a small rise in ventilatory drive terminates sleep) and 4) reduced compensatory
pharyngeal dilator muscle activation [8–11].

A major hurdle for clinical implementation of personalised medicine is that the assessment of traits
causing OSA has been confined to research laboratories [9, 12]. To overcome this barrier, we recently
developed an automated technique for estimating the four key traits [13–15] using routine clinical sleep
studies (polysomnography).

Here, we prospectively tested the predictive value of phenotyping using polysomnography in a study of
supplemental inspired oxygen, a therapy which acts specifically to lower loop gain [16] and substantially
improves OSA in a subgroup of patients [3]. We tested the primary hypothesis that elevated loop gain,
measured from clinical polysomnography, predicts a preferential reduction in OSA severity with a single
night of supplemental oxygen (40% inspired) versus sham (air) in a randomised single-blind crossover
study (NCT01751971). We also assessed the predictive value of elevated loop gain in combination with the
other three traits ( post hoc analysis).

Methods
Participants
Patients with a previous clinical diagnosis of OSA with an apnoea–hypopnoea index (AHI) >20 events·h−1

were eligible to participate. Patients using respiratory stimulants or depressants (including opioids and
benzodiazepines) were excluded, as were those with diagnoses of heart failure or lung diseases, those with
central rather than obstructive sleep apnoea (majority central respiratory events) and women who were
pregnant. Participants provided written informed consent, and approval was granted by the Partners’
Institutional Review Board.

We enrolled 47 participants; eight did not exhibit OSA and three did not attend the second overnight
session, leaving 36 patients who completed the protocol (supplementary figure S1).

Procedure
Patients completed two overnight polysomnographic studies, one week apart (randomised order).
Supplemental oxygen or medical air (sham) was delivered via a Venturi mask (40% inspired oxygen,
equivalent to ∼4 L·min−1 via a cannula [17]; see [3, 4]). The single-blind design enabled real-time
monitoring of appropriate inspired oxygen levels (O2 analyzer 17625; VacuMed, Ventura, CA, USA).
Patients slept predominantly supine to minimise position effects. Supine blood pressure was measured
(Dinamap Pro 100v2; GE Medical Systems, Tampa, FL, USA) during quiet wakefulness immediately
preceding lights out (after ⩾1 h of rest during setup and ∼10 min in the supine position) and again
∼10 min after lights on with oxygen/sham removed. We assessed self-reported sleep quality at study
completion (“better”, “same” or “worse” versus previous study; scored 1, 0 and −1, respectively) and
alertness (Stanford Sleepiness Scale) each morning.

Polysomnography
Standard clinical polysomnographic instrumentation was used [18]. Airflow was assessed with nasal
pressure and an oronasal thermistor. We prioritised recording of high-quality nasal pressure signals.
Hypopnoeas were scored based on a 30% reduction in airflow without oxygen desaturation or an arousal
criterion (supplemental oxygen would otherwise mask hypopnoeas).

Quantifying the pathophysiological traits using polysomnography
Sham night polysomnography was used to quantify the baseline OSA traits using an automated method
[13–15] described below.

Chemical drive
Phenotypic traits were quantified by first estimating “ventilatory drive”, i.e. intended ventilation, using a
chemoreflex feedback control model (gain, response time, delay, arousal response) fit to ventilation data [13].
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Briefly, nasal pressure (square-root transformed) provided a ventilatory flow surrogate that was integrated
to yield a breath-to-breath ventilation signal (uncalibrated tidal volume×respiratory rate, mean-
normalised). 7-min windows containing ⩾1 respiratory event were identified (non-rapid eye movement
(REM)), and estimated ventilatory drive (model output) was best fit to the ventilation signal between
obstructive events (when the airway was patent).

Loop gain
For each window, loop gain was calculated from the feedback model; the median was used to represent the
night [13]. Two parameters were quantified: LG1 (a priori predictor) is the ventilatory drive response to a
1 cycle·min−1 reduction in ventilation and reflects “hypersensitivity” (e.g. increased chemosensitivity or
reduced lung volume). LGn quantifies “instability” and also includes circulatory delay effects (LGn>1.0
yields periodic central apnoeas) [3, 19].

Arousal threshold
The arousal threshold was taken as the median estimated ventilatory drive preceding scored
electroencephalogram arousals [15].

Upper airway physiology
Pharyngeal collapsibility (Vpassive) was defined here as the ventilation at normal/eupnoeic ventilatory drive
[9, 12] during sleep and was quantified using an overnight breath-by-breath summary plot of ventilation
versus estimated ventilatory drive [14]. Pharyngeal muscle “compensation” is the increase in ventilation
from Vpassive to the value at the arousal threshold (Vactive; compensation=Vactive−Vpassive). Greater Vpassive and
compensation indicate better pharyngeal patency and were expected to predict successful oxygen therapy.

Definition of response to therapy
Patients were considered “responders” if their AHI was reduced by ⩾50% with treatment versus sham
(a priori criterion); patients were otherwise considered “non-responders”. Responses were considered
“complete” if the AHI was also <15 events·h−1 with treatment [4], equivalent to a >67% reduction in AHI
in our population. Non-responders were considered “borderline” if they exhibited a >33% reduction in AHI.

Assessment of predictive value
The predictive value of loop gain and other traits was assessed based on whether there was a significant
difference in the reduction in AHI (as a percentage of the baseline value) between defined “predicted
responder” and “predicted non-responder” subgroups (e.g. high versus low loop gain). The pre-specified
choice of loop gain parameter (LG1) and a cut-off of 0.7 (i.e. the threshold that defines high versus low
LG1) were based on prior findings [13]. For all post hoc subgroup classification tests, including
multivariable analysis (below), cut-off values were selected to maximise sensitivity plus specificity [20].
Predictive values were estimated using leave-one-out cross-validation, whereby each subject’s response was
predicted using a modified version of the same model with the subject’s own data left out.

Multivariable model analysis
We employed logistic regression using the phenotypic variables, i.e. loop gain, collapsibility, arousal
threshold and muscle compensation, to define subgroups of predicted responders and predicted
non-responders; a quadratic model that included interaction terms and squared terms was chosen based
on clear evidence of interactions. Terms were selected using backwards elimination (p-to-remove=0.157)
[21]. To raise statistical power, we included training data from a previous study employing supplemental
oxygen (n=20) to help build a more robust regression model [4]; the predictive value is reported
exclusively for patients in the current study (supplementary material).

Statistical analysis
Unpaired t-tests or Wilcoxon rank-sum tests were used to compare differences between groups
(responders versus non-responders; predicted responders versus predicted non-responders). Standard
errors for proportions (positive/negative predictive values, i.e. proportion of correct predictions given a
positive/negative prediction) employed the normal approximation to the binomial distribution; p-values
indicate differences from chance values. Significance was accepted at p<0.05.

Results
Baseline characteristics are detailed in table 1. Supplemental oxygen lowered AHI by ∼30% overall
(supplementary table S1) confirmed by an ∼25% reduction in arousal index. Responders (n=9) exhibited
an ∼70% reduction in AHI, accompanied by an ∼50% reduction in the frequency of arousals from sleep,
an ∼50% reduction in the time spent in light sleep (stage 1 non-REM), and an ∼7 mmHg reduction in the
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overnight change in blood pressure (figure 1). These changes were not observed in non-responders
(n=27). Six of nine responders also had an AHI of <15 events·h−1 on oxygen (i.e. complete responders).
Overall, most patients felt they slept “better” on the oxygen night (better:same:worse on oxygen versus
air=19:9:7). There was no effect on subjective alertness (change in Stanford Sleepiness Scale rating: +0.1
±0.2 units, higher value represents reduced alertness).

Loop gain and responses to oxygen
Example measurements in one responder and one non-responder are shown in figure 2. Contrary to our
primary hypothesis, elevated baseline loop gain was not a significant univariate predictor of the response
to treatment (% reduction in AHI with supplemental oxygen versus sham), i.e. there was no difference in
the response between patients with higher versus lower loop gain based on LG1 (35.7±6.6% versus 25.2
±9.0%, p=0.4; pre-specified cut-off=0.7; supplementary figure S2). However, there was a strong trend
towards a greater response in those with higher loop gain based on LGn (figure 3).

Other physiological traits and responses to oxygen
Reduced collapsibility (higher Vpassive) and greater compensation were strong predictors of the response
to oxygen, and there was a trend towards a greater response in patients with lower arousal threshold
(figure 3).

Multivariable model analysis
When traits were considered in combination (multivariable logistic regression), a higher loop gain
increased the likelihood of being a responder, particularly in patients with better compensation;
poor compensation and poor collapsibility reduced the likelihood of being a responder (table 2, figure 4;
see also supplementary table S2, supplementary figure S3). The regression model exhibited
excellent predictive value overall (ΔAHI in predicted responders versus predicted non-responders: 62±5%
versus 10±7%, p<0.0001; positive predictive value (PPV)=69±13%, p=0.0005; negative predictive value

TABLE 1 Patient characteristics

Characteristic All patients Responders# Non-responders p-value¶

Subjects 36 9 27
Demographics
Age years 55±2 53±4 55±2 0.7
Male/female 26/10 6/3 20/7 0.7
Race 0.015
Black 9 5 4
White 25 3 22
Asian 0 0 0
Other 1 0 1

Body mass index kg·m−2 31.1±0.7 32.3±1.2 30.6±0.8 0.3
Neck circumference cm 40.6±0.5 40.2±1.0 40.7±0.7 0.7
Systolic blood pressure+ mmHg 136.8±2.4 134.9±3.7 137.5±2.9 0.6
Diastolic blood pressure+ mmHg 80.7±1.9 79.7±3.8 81.1±2.2 0.8
Current use of anti-hypertensive medication n (%) 12 (33) 1 (11) 11 (41) 0.2
Currently treated 0.06
CPAP 12 1 11
Oral appliance therapy 2 0 2
Untreated 22 8 14

Polysomnography§

AHI events·h−1 57.9±22.1 56.6±7.7 58.3±4.3 0.8
Central eventsƒ 4.7±2.0 8.5±5.7 3.4±1.8 0.3
Hypopnoeasƒ 47.3±5.4 61.9±11.3 42.5±6.0 0.12
Arousalsƒ 88.8±4.9 79.1±5.2 92.1±6.2 0.3

Nadir oxygen saturation % 87.1±4.8 89.2±1.5 86.4±0.9 0.13
Stage 1 sleep as % total sleep time 25.9±22.0 22.3±5.1 27.1±4.6 0.6

Data are presented as n or mean±SEM, unless otherwise indicated. CPAP: continuous positive airway pressure; AHI: apnoea–hypopnoea index.
#: responders are defined by a ⩾50% reduction in AHI; ¶: t-tests were used for continuous variables and Fisher exact tests were used for
categorical variables (including black versus not black, treated versus not treated); +: morning, supine, off treatment (sham night);
§: polysomnography refers to the sham night; respiratory event and oxygenation data reflect supine non-random eye movement sleep; ƒ: data
presented as % of respiratory events.
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(NPV)=100±0%, p<0.0001; accuracy=89±5%, p<0.0001); after cross-validation results remained strong
(ΔAHI=58±6% versus 12±7%, p=0.0001; PPV=62±13%, p=0.007; NPV=96±4%, p<0.0001; accuracy=83
±6%, p=0.0002).

Secondary outcomes in predicted responders
Predicted responders (cross-validated results) exhibited improvements with oxygen in arousal index, blood
pressure and subjective sleep quality (slept better, same or worse on oxygen versus air) that were not
observed in predicted non-responders (figure 5). Stanford Sleepiness Scale ratings were unchanged in both
subgroups.

Predictive values of non-physiological variables
Predicted responder/non-responder status based on patients’ pathophysiology remained significantly
associated with responses to oxygen (p=0.002–0.003) after adjusting for common clinical factors (age, sex,
body mass index, neck circumference, current CPAP use and AHI off treatment; logistic regression with
covariates added separately; supplementary figure S4). These clinical factors were not significant predictors.

Effect of oxygen on the physiological traits
To understand whether oxygen therapy adversely affected traits other than loop gain, particularly in
non-responders, we also assessed the effect of oxygen on the traits causing sleep apnoea (table 3;
individual data given in supplementary figure S5). As expected [13, 16], oxygen lowered loop gain
(instability; LGn) through a reduction in ventilatory control sensitivity (LG1) but had no influence on
collapsibility (Vpassive) or compensation. However, oxygen lowered our measure of the arousal threshold.
Effects were similar between responder and non-responder subgroups.

Discussion
The current study demonstrated that quantifying the pathophysiological traits of OSA patients using
diagnostic polysomnography can identify patients whose condition is likely to be treatable using
supplemental oxygen, and can rule out non-responders. In contrast to our specific hypothesis, elevated
loop gain alone was not a strong predictor of the response to oxygen. Rather, elevated loop gain in
combination with greater pharyngeal patency (less-severe collapsibility and greater compensation)
predicted improved OSA; the combined multivariable model accurately ruled out a positive response to
treatment (95% certainty), and identified a subgroup of predicted responders who 1) had a 62% likelihood
of halving the frequency of respiratory events and a 46% likelihood of adequately treating OSA
(AHI<15 events·h−1), and 2) experienced a significant reduction in morning blood pressure (relative to
evening values) and an improvement in self-reported sleep quality (slept better than on the night without
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treatment). Our study shows that measuring and combining key endophenotypic causes of sleep apnoea,
based on a routine sleep study, provides insight into the response to an intervention and opens the door
for personalising intervention based on underlying mechanisms.
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Physiological insight
Elevated loop gain
We hypothesised that elevated loop gain would predict the response to lowering loop gain with supplemental
oxygen, based on the notion that patients with higher loop gain have the greatest range for lowering loop gain
and improving OSA. For example, many forms of central sleep apnoea, a high loop gain condition, can be
effectively treated with supplemental oxygen [22, 23]. In addition, our prior study (n=12) in OSA found that
oxygen is more effective in patients with higher versus lower loop gain [3, 13]. Yet here we found that loop
gain alone was insufficient to predict the response to supplemental oxygen, confirming more recent studies
illustrating that loop gain (or chemosensitivity) by itself is not strongly associated (or even inversely associated
[24]) with the reduction in OSA severity with treatments that lower loop gain (e.g. oxygen, acetazolamide)
[4, 6, 25]. The current study demonstrates that successfully targeting an abnormal pathophysiological trait
for OSA treatment requires not just knowledge of the trait itself but also the other determinants of OSA.

Greater pharyngeal patency
Importantly, our study demonstrates that more-severe pharyngeal collapsibility and poor muscle
compensation (as measured using polysomnography) rule out a positive OSA response to supplemental

TABLE 2 Logistic regression model for predicting responses to oxygen therapy

Variable β SEM Odds ratio# p-value Interpretation

Constant −1.97 1.02 0.01
Loop gain 15.41 7.40 3.7 0.038 Higher loop gain→success
Vpassive 5.27 3.71 4.8 0.15 Reduced collapsibility→success
Compensation 15.09 6.62 45.5 0.023 Greater compensation→success
Vpassive×compensation −58.53 29.97 0.11 0.036 Poor collapsibility and poor compensation→failure
Loop gain×compensation −80.34 34.16 0.17 0.019 Low loop gain and poor compensation→failure
Arousal threshold×compensation −86.43 29.53 0.012 0.003 Low arousal threshold and higher compensation→success

Data represent the final regression results (six terms) after backwards stepwise elimination (p-to-remove=0.157) which began with four traits,
their squares and all interaction terms (full quadratic model, n terms=14). #: odds ratio describes the increase in likelihood of being a
responder per SD increase in each term. Traits were mean-subtracted before application to the regression model: mean Vpassive*=62.8%, mean
loop gain (LGn)=0.42, mean arousal threshold*=157.6%, mean compensation=6.1%. *To promote normality, Vpassive and arousal threshold
values were square-root transformed around 100% using y=1+(x−1)0.5 and y=1−(1−x)0.5 respectively (x=1 describes 100%); asterisks indicate
transformed variables. Patients were considered a predicted responder if Y=−1.97+15.41(loop gain)+5.27(Vpassive*)+15.09(compensation)–58.53
(Vpassive*×compensation)–80.34(loop gain×compensation)–86.43(arousal threshold*–compensation)> −0.66 (use of this equation requires
transformed, mean-subtracted traits). A simplified two-trait model is provided in the supplementary material (table S2, figure S3).
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oxygen. These findings are consistent with OSA pathophysiology; patients who have both a high loop gain
and reduced airway patency will continue to have reduced patency once loop gain is lowered, promoting
residual OSA regardless of how high loop gain was at baseline [4, 16].

Baseline OSA severity
Remarkably, in the nine responders (25% of patients), oxygen lowered the AHI from an average of 57
to 18 events·h−1 (∼70% reduction), illustrating that supplemental oxygen can have a large impact in the right
patients even in severe OSA. Responders were not identified by milder sleep apnoea at baseline, i.e. a lower
AHI. Thus, OSA severity is unlikely to contribute meaningfully to clinical decisions regarding the use of
loop-gain-lowering interventions for OSA (table 1, supplementary table S1, supplementary figure S4).

Ruling out versus ruling in
Polysomnographic phenotyping accurately ruled out non-responders to supplemental oxygen (high NPV),
but was somewhat less accurate at ruling in responders to treatment. Thus, it remains uncertain whether a
patient with appropriate pathophysiology will respond favourably to treatment. A more certain outcome
might require that the intervention also consistently succeed at improving the pathophysiology (lowering
loop gain) across patients, but the magnitude of such improvements vary considerably [3, 4, 13, 25].
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Regardless, by ruling out clear non-responders, our method potentially allows clinicians and investigators
to limit future trials of supplemental oxygen (or other agents lowering loop gain) to the subgroup of OSA
patients with the most favourable pathophysiology.

TABLE 3 Effect of oxygen therapy on the physiological traits

Phenotypic trait Overall effects (n=36) Responders (n=9) versus non-responders
(n=26#)

Sham Oxygen therapy Median change p-value¶ Median change
within

responders

Median change
within

non-responders

p-value+

Loop gain, LGn

(instability)
0.41 (0.38 to 0.49) 0.38 (0.33 to 0.45) −0.05 (−0.11 to 0.01) 0.026 −0.10ƒ

(−0.21 to −0.1)
−0.03

(−0.10 to 0.03)
0.16

Loop gain, LG1

(sensitivity)
0.63 (0.56 to 0.75) 0.46 (0.40 to 0.58) −0.18 (−0.25 to −0.04) <0.00001 −0.20*

(−0.40 to −0.10)
−0.17***

(−0.24 to −0.03)
0.4

Delay s 10.1 (8.9 to 11.4) 12.8 (10.0 to 15.4) +2.0 (0.9 to 4.4) <0.00001 +1.6*
(0.6 to 2.3)

+2.4***
(0.9 to 5.3)

0.3

Arousal
threshold %

131 (116 to 151) 118 (109 to 150) −9.8 (−20 to 2) 0.038 −9.8*
(−21.6 to −2.2)

−9.5
(−17.4 to 10.7)

0.3

Vpassive %
(collapsibility§)

91.5 (75.0 to 94.2) 87.3 (69.7 to 94.8) 0.0 (−11.2 to 4.0) 0.7 +0.6
(−0.7 to 3.8)

−2.1
(−13.4 to 4.0)

0.6

Compensation % 0 (−11.8 to 6.8) −1.9 (−22.5 to 5.8) −3.2 (−13.1 to 11.9) 0.5 −4.7
(−11.5 to 1.7)

−1.6
(−16.8 to 12.8)

0.9

Data are presented as median (interquartile range). #: one non-responder provided no data; no 7-min windows of non-rapid eye movement
sleep with no longer than 30 s of continuous wake were available for analysis; ¶: Mann–Whitney U-test; +: Wilcoxon signed-rank test; §: higher
values of Vpassive indicate less-severe collapsibility; ƒ: p<0.1; *: p<0.05; ***: p<0.001 Wilcoxon signed-rank test within responder/non-responder
subgroups.
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FIGURE 5 Effect of supplemental oxygen on primary and secondary outcomes in patients with suitable pathophysiology, i.e. “predicted
responders” (n=13), and patients with unsuitable pathophysiology, i.e. “predicted non-responders” (n=23), based on endophenotypic traits (logistic
regression, cross-validated; table 2, figure 4). a) In predicted responders, treatment led to an improvement in obstructive sleep apnoea severity
(reduction in apnoea–hypopnoea index (AHI)); in contrast to figure 1, differences between predicted responders and non-responders are not “by
definition” because subgroups were assigned using only data from the other subjects (i.e. cross-validation). Predicted responders also exhibited
improvements in b) the frequency of arousals from sleep, c, d) blood pressure (evening minus morning levels) and e) subjective sleep quality.
Subjective sleep quality was scored as follows: 1=slept better; 0=slept the same; −1=slept worse. There was no effect on the Stanford Sleepiness
Scale (subjective morning alertness, not shown) in either subgroup. SBP: systolic blood pressure; DBP: diastolic blood pressure. #: oxygen versus
sham; ¶: responders versus non-responders. Compare results with figure 1.

https://doi.org/10.1183/13993003.00674-2018 9

SLEEP APNOEA | S.A. SANDS ET AL.



Effect of oxygen therapy on the traits
We found that supplemental oxygen lowered our estimate of loop gain and had no influence on our
estimates of upper airway physiology (collapsibility and compensation), consistent with previous data [16];
there was also no evidence of a differential effect on collapsibility or compensation in non-responders
versus responders (table 2, supplementary figure S5) to support the notion that oxygen may worsen upper
airway traits in non-responders. We also observed that oxygen lowered the arousal threshold, i.e. it had a
deleterious effect. The direction of influence, and the clearer effect in responders, indicates that this effect
is not a plausible cause of the improvement in OSA or of differences between responders and
non-responders. Lowering of the arousal threshold may occur consequent to a habituation effect
accompanying the amelioration of OSA [26]. This observation is also consistent with our previous finding
that reducing inspired oxygen levels (hypoxia) increases the arousal threshold [16].

Additional outcomes
Supplemental oxygen was recently confirmed to have no impact on lowering blood pressure in unselected
patients with OSA, in contrast to CPAP [27, 28]. On the surface, those findings may appear to contrast with
ours. However, in our study, blood-pressure-lowering effects (i.e. reduced morning minus evening values of
systolic and diastolic blood pressure) were only exhibited in the subgroup that responded to treatment. Thus,
the available evidence suggests that oxygen administration may exclusively lower blood pressure in the
subgroup of patients in whom it also improves OSA. Longer-term investigations are warranted.

Clinical implications
A large proportion of OSA patients are intolerant of CPAP, and supplemental oxygen is currently used as a
salvage therapy for OSA primarily to maintain nocturnal oxygenation. In unselected patients, improvements in
oxygenation are consistent but improvements in OSA are modest (∼10–30% reduction in AHI) [3, 6, 27–31];
in some individuals, oxygen may even increase OSA severity (figures 2–5). However, in patients with a specific
set of phenotypic traits, supplemental oxygen can have clinically relevant effects (>50% reduction in AHI;
figures 4 and 5). In addition, a recent trial indicated that adherence to supplemental oxygen, while imperfect,
is superior to CPAP [27], suggesting that supplemental oxygen may be well tolerated in these individuals.

Our approach to identifying likely responders was to quantify the pathophysiological traits causing OSA
using clinical sleep studies and a technique that requires no invasive equipment or positive airway pressure
manipulation and is fully automated. Thus, our approach can be readily implemented in the clinical setting.

The specific four-trait regression model (figure 4) was developed based on the available data ( post hoc)
and tested using a leave-one-out cross-validation approach, which makes efficient use of limited data. We
emphasise that our specific model needs to be confirmed via prospective testing, preferably over a longer
treatment period, to confirm clinical utility. Because our findings are consistent with physiological
principles, we believe that the likelihood of reproducibility is high.

Our study also provides proof of principle that it is possible to identify OSA responders to
loop-gain-lowering therapies more generally. We hope that our results will also apply to the prediction of
responses to other current and future OSA interventions targeting loop gain, e.g. acetazolamide [25], H2S
inhibitors [32] and purinergic antagonists [33]. The general approach to combining noninvasive trait
measurements may also help to predict responses to other therapies, such as pharyngeal surgery [34, 35].
Further investigations along these lines are needed.

Methodological considerations
In the current study, subjects were studied on one night of treatment with supplemental oxygen. Thus,
possible additional improvements in OSA severity over time were not captured [26, 36]. However, available
data indicate that oxygen has no major impact on OSA severity beyond the effects on the first night, and
observed improvements in OSA severity are immediately reversed with treatment discontinuation [30].
Nonetheless, longer-term studies are necessary to examine the effects of oxygen on OSA symptoms and
blood pressure in predicted responders. For purposes of scientific veracity we administered supplemental
oxygen through a Venturi mask at a moderate concentration (40% inspired, equivalent to ∼4 L·min−1 by
nasal cannula), at a level used previously [3, 4]. We thereby 1) avoided interference between nasal cannula
airflow measurement and oxygen/sham administration, 2) avoided a titration procedure which may have
affected patient blinding and reduced the proportion of the night on optimal therapy, and 3) minimised
dosage differences that might have confounded assessment of outcomes between subgroups.

We interpreted the results of our multiple-trait model (including high loop gain and less-severe collapsibility)
as evidence that there is an identifiable patient subgroup that responds preferentially to oxygen therapy. We
also consider the possibility that this phenotype could simply have a form of less-severe OSA (albeit previously
unrecognised based on AHI or other polysomnographic measures), which might be easier to treat in general
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regardless of the type of OSA intervention. While further studies are needed to demonstrate oxygen-therapy
specificity, the available evidence refutes this notion. First, the predicted-responder subgroup exhibited selective
improvements in blood pressure and self-reported sleep quality, demonstrating that the responder phenotype
of OSA appears clinically important, i.e. is non-trivial. Second, higher loop gain measured using
polysomnography has been shown to predict non-responders to pharyngeal surgery, illustrating that the high
loop gain contribution to the oxygen-responder phenotype is not a biomarker of easier-to-treat OSA [35].
Third, our recent data suggest that higher loop gain and less-severe collapsibility (the oxygen-responder
phenotype) predicts that oral appliance therapy will fail [37], suggesting that oxygen responders are likely to be
non-responders to other therapies; indeed, high loop gain via CPAP manipulation also predicts oral appliance
non-responders [5]. A study is underway to investigate this issue further (NCT03189173).

We note that the values for physiological traits obtained in the current study from routine
polysomnography are surrogates and might differ from those obtained with invasive “gold standard”
measures used in specialised physiology laboratories. However, our measures compare favourably with
gold standard values (correlation coefficients ∼0.7 for each trait) [13–15].

The primary outcome variable was the AHI measured in supine non-REM sleep, with respiratory events
scored using modified criteria that avoid reliance on the oxygen saturation signal (respiratory events
require ⩾30% reduction in airflow). Use of standard criteria for scoring respiratory events (⩾30%
reduction in flow with ⩾3% desaturation or arousal), or inclusion of all sleep states and positions, yielded
similar results (supplementary table S1).

Patients slept supine because this captures OSA pathophysiology at its worst; treatment of lateral OSA
without mechanical intervention would have been a less formidable challenge. In a patient who sleeps
entirely lateral, we see no reason that the same traits while lateral would not predict responses to oxygen
therapy also in the lateral position. Additional testing is warranted.

Conclusions
For the first time, we show that measuring the pathophysiologic variables causing OSA from a clinical
sleep study (off treatment) can predict which patients are most suitable for supplemental oxygen therapy.
A multivariable model incorporating increased loop gain with an improved airway (better collapsibility
and compensation) accurately predicted responders to therapy: predicted responders not only exhibited
improvements in OSA severity, but also experienced improvements in blood pressure and perception of
sleep quality. We consider that phenotyping in this manner will provide an avenue for personalising
interventions for patients who are intolerant of CPAP and may otherwise remain untreated.
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