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Abstract. Accurate prediction of future methane abundances
following a climate scenario requires understanding the life-
time changes driven by anthropogenic emissions, meteo-
rological factors, and chemistry-climate feedbacks. Uncer-
tainty in any of these influences or the underlying processes
implies uncertainty in future abundance and radiative forc-
ing. We simulate methane lifetime in three chemical trans-
port models (CTMs) – UCI CTM, GEOS-Chem, and Oslo
CTM3 – over the period 1997–2009 and compare the mod-
els’ year-to-year variability against constraints from global
methyl chloroform observations. Using sensitivity tests, we
find that temperature, water vapor, stratospheric ozone col-
umn, biomass burning and lightning NOx are the dominant
sources of interannual changes in methane lifetime in all
three models. We also evaluate each model’s response to
forcings that have impacts on decadal time scales, such as
methane feedback, and anthropogenic emissions. In general,
these different CTMs show similar sensitivities to the driving
variables. We construct a parametric model that reproduces
most of the interannual variability of each CTM and use it
to predict methane lifetime from 1980 through 2100 follow-
ing a specified emissions and climate scenario (RCP 8.5).
The parametric model propagates uncertainties through all
steps and provides a foundation for predicting methane abun-
dances in any climate scenario. Our sensitivity tests also en-
able a new estimate of the methane global warming potential
(GWP), accounting for stratospheric ozone effects, including
those mediated by water vapor. We estimate the 100-yr GWP
to be 32, which is 25 % larger than past assessments.

1 Introduction

Rising atmospheric concentrations of greenhouse gases are
the main cause of current and future climate change (In-
tergovernmental Panel on Climate Change, hereafter IPCC,
2007). Uncertainty in mapping an emission scenario onto
future abundance of greenhouse gases (GHGs) thus trans-
lates almost directly into uncertainty in our ability to project
climate change and its impact on nature and society. To
date, IPCC has generally adopted a single trajectory for the
growth of greenhouse gases in each of several different socio-
economic scenarios, thus neglecting uncertainty in those fu-
ture abundances. For methane, the second most important
anthropogenic GHG, these trajectories are based on sim-
ple parametric formulas for methane lifetime. In the IPCC
Third Assessment Report (TAR), 4 parameters accounted for
changes in the largest atmospheric methane sink, oxidation
by tropospheric OH: anthropogenic emissions of CO, nitro-
gen oxides (NOx), and volatile organic compounds (VOCs)
and the negative feedback between methane abundance and
tropospheric OH (Prather et al., 2001). Other sinks, which in-
clude oxidation in the stratosphere, oxidation by tropospheric
chlorine, and uptake into soil, were assessed but assumed not
to change during the 21st century projections. For the upcom-
ing IPCC 5th Assessment Report (AR5) the Representative
Concentration Pathway (RCP) scenarios adopt methane tra-
jectories calculated in the MAGICC model, which augments
the TAR parametric formula with a temperature term (Mein-
shausen et al., 2011a).

On small spatial scales, OH concentrations and methane
oxidation depend on temperature, pressure, sun elevation,
clouds, surface albedo, UV attenuation by stratospheric
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ozone, and local concentrations of water vapor, ozone,
CH4, CO, NOx, VOCs, and aerosols (e.g. Duncan et al.,
2000; Olson et al., 2006). Integrated globally and annu-
ally, some of these influences are small, but numerous stud-
ies have found that temperature, circulation, water vapor,
stratospheric ozone, clouds and natural and anthropogenic
emissions are important (Lelieveld and Crutzen, 1994; Spi-
vakovsky et al., 2000; Dentener et al., 2003; Stevenson et
al., 2005; Dalsoren et al., 2006; Fiore et al., 2006; Hess and
Mahowald, 2009; Voulgarakis et al., 2010). Uncertainties in
these factors and in the present-day methane budget mean
that each socioeconomic emission scenario could produce
a range of future methane abundances (Prather et al., 2012).

Global climate model (GCM) simulations with atmo-
spheric chemistry provide another method for predicting fu-
ture methane and other chemically reactive GHGs. An en-
semble of such models can provide a range of future methane
abundances for a single scenario (e.g. Atmospheric Chem-
istry and Climate Model Intercomparison Project (ACCMIP)
Lamarque et al., 2012), spanning some, but likely not all, fu-
ture uncertainties. This approach is computationally expen-
sive, however, which restricts the number of socioeconomic
scenarios and ensemble members that can be explored.

In this work we develop a new parametric model for global
methane lifetime that accounts for climate-chemistry interac-
tions that were neglected in previous parametric approaches.
We derive the parametric factors from perturbation tests in
a suite of 3 chemical transport models (CTMs), since CTMs
with detailed tropospheric chemistry provide the best mech-
anistic representation of methane loss from tropospheric OH.
We focus on the tropospheric OH sink because other methane
sinks are smaller and their intrinsic variability has a smaller
impact on the total methane lifetime. The parametric model
includes climate and emission factors that control the interan-
nual variability of methane lifetime in the CTMs. These fac-
tors are likely important on decadal time scales as well. The
parametric model also includes anthropogenic emissions that
can drive decadal trends in methane lifetime, but contribute
little to interannual variability. Uncertainties in atmospheric
chemistry are included in the parametric factors based on the
range of perturbation responses across the CTMs. We evalu-
ate the parametric model against 13-yr CTM simulations of
methane lifetime, and against observed variability in tropo-
spheric OH, as measured by the decay of methyl chloroform.
Assuming that the same climate and emission processes will
remain dominant drivers of methane lifetime throughout the
21st century, we use this parametric model to make new pro-
jections of methane abundance and its uncertainty through
2100. Finally, the perturbation tests also enable a new esti-
mate of the ozone contribution to methane radiative forcing
and global warming potential.

2 Model descriptions

We diagnose methane lifetime due to tropospheric OH,
τCH4×OH, from multi-year simulations in 3 different CTMs:
University of Oslo CTM3, University of California, Irvine
(UCI) CTM, and GEOS-Chem. All of these models are
driven by assimilated meteorological data and configured to
use the same emissions from anthropogenic, biogenic and
biomass burning sources. We use year-specific meteorol-
ogy spanning 1997–2009 for each model, except GEOS-
Chem simulations with GEOS-5 meteorology, which are
only 2004–2009. Sections 2.1–2.3 and Table S1 summarize
features of each model and Sect. 2.4 describes the emissions.

Monthly chemistry diagnostics from each model enable
us to calculateτCH4×OH, defined as the total atmospheric
CH4 burden divided by its loss through reactions with tro-
pospheric OH. All 3 models use fixed methane abundances
(1760 ppb for UCI CTM and Oslo CTM3, 1775 ppb for
GEOS-Chem), so variations inτCH4×OH are due solely to
changes in the OH sink. Different tropopause definitions in
the models have minimal effect onτCH4×OH since CH4 oxi-
dation between 200 hPa and the tropopause is 1.5 % of tropo-
spheric methane loss, or less. We calculate the total methane
lifetime, τCH4, using τCH4×OH values from this work and
recently estimated lifetimes for other methane sinks: tro-
pospheric chlorine (200 yr), stratosphere (120 yr), and soil
(150 yr) (Prather et al., 2012).

2.1 Oslo CTM3

Oslo CTM3 is a stratospheric and tropospheric CTM, re-
cently described by Søvde et al. (2012). Transport is driven
by pieced-forecast meteorology from the European Cen-
ter for Medium-range Weather Forecasting (ECMWF) In-
tegrated Forecast System (cycle 36r1,http://www.ecmwf.
int/research/ifsdocs/CY36r1/index.html). The original T359
(∼ 0.55◦

× 0.55◦) horizontal resolution and 60 layer ver-
tical resolution of the forecast model is degraded to T42
(∼ 2.8◦

× 2.8◦) resolution, while preserving the 3 h tempo-
ral resolution for all meteorological fields. Advection uses
the second-order moments scheme (Prather, 1986; Prather et
al., 2008) and convection follows Tiedtke (1989).

The Oslo CTM3 chemical mechanism includes a full
stratospheric chemical mechanism in addition to tropo-
spheric reactions. The tropospheric module contains 105 re-
actions and 51 gas-phase species, including sulfate, nitrate,
and sea-salt aerosols. Nitrate aerosols influence gas-phase
chemistry through HNO3 uptake, which is a sink for reac-
tive nitrogen through subsequent wet scavenging. Photolysis
rates required in the chemistry mechanism are calculated on-
line using the Fast-JX method (Neu et al., 2007), with cloud
distributions from ECMWF meteorology and ozone concen-
trations calculated in the CTM. Aerosol effects on photoly-
sis are neglected except for a small contribution from black
carbon (Søvde et al., 2012), which increases OH and biases
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Table 1.Emissions.

Source (Inventory)a NOx, Tg(N) yr−1 CO, Tg yr−1 Isoprene, Tg yr−1

Anthropogenic (RCP year 2000) 32b 609 –
Biomass burning (GFED3) 5.6c 360c –
Biogenic (MEGAN) – 76 523
Lightning 5d – –

Total 42 1047 523

a Inventory references: RCP, Lamarque et al. (2010); van Vuuren et al. (2011), GFED3 (van der Werf et al. (2010),
MEGAN Guenther et al. (2006).
b Land, ship, and aviation components are 26, 5.4, and 0.85Tg(N) yr−1, respectively.
c Average biomass burning for 1997–2009. Emissions for individual years are 3.3–6.1Tg(N) yr−1 and
263–605Tg(CO) yr−1.
d Average for 1997–2009 in UCI CTM and Oslo CTM3. Emissions for individual years are 4.8–5.4Tg(N) yr−1.
GEOS-Chem has 5.7–6.4Tg(N) yr−1 (average 6Tg(N) yr−1) over 2004–2009.

τCH4×OH low by about 10 % (Bian et al., 2003; Martin et
al., 2003). Oslo CTM3 shares the same chemical mechanism
and some other physical process algorithms with the older
Oslo CTM2, which has been extensively used for studies of
present and future tropospheric composition (Isaksen et al.,
2005; Hoor et al., 2009; Dalsoren et al., 2010).

2.2 UCI CTM

The UCI CTM is a tropospheric CTM, using the same mete-
orology, transport algorithms, and Fast-JX photolysis as Oslo
CTM3. Like Oslo CTM3, the UCI CTM uses T42 horizontal
resolution, but the vertical resolution in the boundary layer
is reduced, so there are 57 layers total. Tropospheric chem-
istry of the major gas-phase species involved in HOx, NOx,
O3, and VOC reactions is simulated with the ASAD pack-
age (Carver et al., 1997), with updates to the mechanism and
kinetics (Tang and Prather, 2010). This mechanism includes
84 reactions involving 33 species, making it simpler than the
Oslo CTM3 chemical mechanism. As in Oslo CTM3, clouds
from ECMWF meteorology are used for photolysis. Simpli-
fied stratospheric O3 chemistry is simulated with Linoz (ver-
sion 2, Hsu and Prather, 2009) and used for photolysis calcu-
lations and stratosphere-troposphere exchange. Aerosol ef-
fects on chemistry are neglected, which biasesτCH4×OH low
by up to 5 % in addition to the aerosol-induced photolysis
bias described above for Oslo CTM3 (Martin et al., 2003;
Macintyre and Evans, 2010).

2.3 GEOS-Chem

GEOS-Chem is a tropospheric CTM, driven by assimilated
meteorological data from the NASA Goddard Earth Observ-
ing System (GEOS-5) or MERRA reanalysis (Rienecker et
al., 2008, 2011). Both GEOS-5 and MERRA are produced
from closely related assimilation systems, using the same
spatial resolution of 0.5◦ × 0.66◦ and 72 vertical layers. We
use GEOS-Chem version 9-01-02 here. Most results, includ-
ing all sensitivity simulations, are based on GEOS-5 meteo-

rology, which has been degraded to 2◦
× 2.5◦ and 47 layers

for the CTM. GEOS-5 data are available only after 2004,
however, so we also simulate 1997–2009 using MERRA
meteorology at 4◦ × 5◦ and 47 layers. Temporal resolution
in GEOS-5 (MERRA) is 6 h (3 h) for most meteorological
quantities and 3 h (1 h) for surface quantities and mixing
depth.

The tropospheric chemistry mechanism in GEOS-Chem,
as recently updated by Mao et al. (2010), consists of 104
species and 236 chemical reactions that simulate aerosols
in addition to the HOx-NOx-VOC-ozone system. Photol-
ysis rates are calculated with the Fast-JX method, using
aerosol optical depths that are simulated internally, and
ozone columns from the TOMS and SBUV satellites (until
2008) or GEOS-5 assimilation of satellite data (after 2008).
For purposes of stratosphere-troposphere exchange, strato-
spheric ozone is simulated with Linoz.

2.4 Emissions

Emissions used in this work are representative of 1997–2010,
but do not resolve trends or interannual variability in anthro-
pogenic or biogenic emissions. To the extent possible, we
use identical emissions across all models. Anthropogenic,
biogenic, and biomass burning emissions of NOx, CO, and
isoprene are fully consistent in all models. Some differences
in VOC emissions arise because of the different lumping
schemes used in the various chemical mechanisms and be-
cause some VOC species are not simulated in all models.
Lightning NOx emissions also differ between models be-
cause they are calculated from underlying meteorology, as
described below.

Table 1 summarizes emissions of key species. We use
the RCP inventory for anthropogenic emissions for year
2000, repeating in each simulated year (Lamarque et al.,
2010; van Vuuren et al., 2011). This inventory provides
monthly gridded emissions of NOx, CO and speciated VOCs
from 11 emission activities. Aviation and shipping emissions
change each month, while other anthropogenic emissions are
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constant throughout the year. Biomass burning emissions are
specified for each year and month by the GFED inventory
(version 3, van der Werf et al., 2010). We use this instead
of the climatological biomass burning emissions provided in
the RCP inventory because fires are a major cause of year-
to-year variability in tropospheric OH (Duncan et al., 2003;
Manning et al., 2005; Dalsoren et al., 2006). Biogenic emis-
sions of isoprene, CO, and other VOCs are from a MEGAN
climatology for the 2000s decade (Guenther et al., 2006).
Anthropogenic, biogenic, and biomass burning emission data
are provided at 0.5◦ × 0.5◦ resolution. GEOS-Chem includes
additional oceanic emissions of acetone (13 Tg yr−1, Jacob et
al., 2002) and acetaldehyde (57 Tg yr−1, Millet et al., 2010),
which are not included in other models. All emissions except
aviation, biomass burning and lightning occur in the lowest
model layer and are quickly mixed vertically through bound-
ary layer convection and turbulence. Biomass burning is as-
sumed to occur at the surface in the UCI CTM and GEOS-
Chem. In Oslo CTM3, however, biomass burning emissions
follow the RETRO vertical distribution (Schultz et al., 2008),
which injects 35 % of equatorial emissions and 45 % of bo-
real emissions above the boundary layer. In a sensitivity test
we inject all biomass burning into the lowest model layer in
Oslo CTM3.

Lightning NOx emissions are calculated with similar
methods in all 3 CTMs, with UCI CTM and Oslo CTM3 us-
ing identical algorithms. In all models, these emissions are
derived from cloud-top heights in the underlying meteorol-
ogy (Price and Rind, 1994) and scaled to match satellite-
observed lightning flash rates (Christian et al., 2003). In the
UCI CTM and Oslo CTM3, 2 scale factors are calculated to
match observed multi-year mean flash rates over land and
ocean. In GEOS-Chem scale factors are calculated for ev-
ery grid column and month (Sauvage et al., 2007). Within
the convective column, lightning NOx is distributed verti-
cally based on NOx observations near thunderstorms (Ott
et al., 2010). Søvde et al. (2012) provide a full description
of lightning emissions in UCI CTM and Oslo CTM3, and
Murray et al. (2012) do the same for GEOS-Chem. Light-
ning NOx emissions average 6 Tg(N) yr−1 in GEOS-Chem
and 5 Tg(N) yr−1 in UCI CTM and Oslo CTM3.

3 Recent (1997–2009) variability of CH4 lifetime

Figure 1 showsτCH4×OH for 1997–2009, as simulated by
the 3 CTMs. The tropospheric OH lifetimes range from 8.5
to 10.1 yr. The longest of these lifetimes (GEOS-Chem) is
consistent with the constraint provided by methyl chloro-
form observations, 11.2± 1.3 yr (Prather et al., 2012), but all
are within the range of contemporary tropospheric chemistry
models (e.g. 9.7 ± 1.5 yr from ACCMIP, Naik et al., 2012).

These simulations show similar variability ofτCH4×OH in
all CTMs. Common features include a sharp dip in 1998
and peak in 2000, coincident with a strong El Niño and

1998 2000 2002 2004 2006 2008 2010

8.5
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τ C
H

  ×
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H
, y

4 Oslo CTM3
UCI CTM

GEOS-Chem/GEOS-5
GEOS-Chem/MERRA

CTM 5-Parameter Model

R2 = 0.90

R2 = 0.92
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R2 = 0.88

Fig. 1. Methane lifetime due to oxidation by tropospheric OH
(τCH4×OH) simulated by each CTM (solid lines) and reconstructed
from the 5-parameter model (dashed lines). The parameters are air
temperature, water vapor, ozone column, lightning NOx emission,
and biomass burning emission. Parameter values for each CTM are
given in Table 2 and the corresponding variables are in Fig. 3.
R2 values show correlation between each CTM and its own 5-
parameter model. GEOS-Chem simulations use either MERRA or
GEOS-5 meteorology. All lifetimes are smoothed with a 12-month
running mean.

La Niña, smaller peaks in 2004 and 2008, and general de-
cline after 2005. These features appear robust against the
various choices of chemical mechanism, meteorology, and
resolution used in these CTMs. In independent work, the
ECHAM model also simulates the same features, using dif-
ferent chemistry and emissions that include biogenic vari-
ations (Montzka et al., 2011). Oslo CTM3 has the least
variability (0.65 % for σ /mean), while GEOS-Chem with
MERRA meteorology has the most (1.1 %). The common
features, as well as differences in their magnitude, are ex-
plained below by a small number of processes (Sect. 3.3).

3.1 Methyl chloroform comparison

Two global measurement networks have recorded the growth
and decline of atmospheric methyl chloroform (MCF) since
the 1970s (ALE/GAGE/AGAGE, Prinn et al., 2005), with ex-
panded coverage since the 1990s (NOAA, Montzka et al.,
2000). Like methane, atmospheric MCF is oxidized mainly
by tropospheric OH, with small additional sinks in the strato-
sphere, oceans, and soil (Volk et al., 1997; Wennberg et
al., 2004; Wang et al., 2008). Because MCF has no natu-
ral sources and the anthropogenic production is well known
(McCulloch et al., 1999), MCF provides the best available
constraint on global OH levels and methane lifetime. The
analysis here uses observations since 1998, when anthro-
pogenic MCF emissions became small compared to atmo-
spheric oxidation of the residual atmospheric burden. Con-
sequently, MCF atmospheric lifetimes can be inferred from
observed decay rates without detailed accounting for emis-
sions and transport (Montzka et al., 2011).
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Fig. 2. Interannual variability ofτCH4×OH in CTMs and observed
global-mean methyl chloroform (MCF) decay rate. Observations
are derived from atmospheric MCF abundances at NOAA and
AGAGE surface stations (Montzka et al., 2000; Prinn et al., 2005),
with an uncertainty (shaded) given by the 16th to 84th percentile
range (±1σ ) of decay rates across stations within each network,
and adjusted by the tropospheric OH fraction of total MCF loss. All
data are shown as anomalies relative to their own 2004–2010 mean
(2004–2008 for NOAA data). Models, observations, and uncertain-
ties are smoothed with a 12-month running average. Note anomalies
in τCH4×OH and decay rate have opposite sign.

For each network, we calculate decay rates of MCF
from monthly average concentrations provided by each
network (NOAA: ftp://ftp.cmdl.noaa.gov/hats/solvents/
CH3CCl3/flasks/GCMS/CH3CCL3GCMS flask.txt, last
access: 6 August 2012; AGAGE:http://agage.eas.gatech.
edu/dataarchive/agage/gc-md/monthly/, last access: 4 April
2012). For sitei and montht the observed decay rate (yr−1)
is

ki,t = − ln(ci,(t+6)/ci,(t−6)), (1)

whereci,t is the concentration at sitei in montht . The global
MCF decay rate is the average ofki,t across sites within a net-
work. We calculate uncertainty in the global decay rate as
the 16th–84th percentile range (i.e.±1σ ) of ki,t across sites
within a network. No filling is used for months with missing
data. (See Supplement for additional method details.) Aver-
aged over 1998–2007, the global MCF decay rates from the
2 networks differ by less than 1 % (0.1811 yr−1 for NOAA,
0.1796 yr−1 for AGAGE), providing a strong constraint on
the long-term global-mean OH and methane lifetime. This
analysis, however, focuses on anomalies in the global de-
cay rate, relative to each network’s own mean. Because the
anomalies are attributed solely to tropospheric OH loss (see
below) and for comparison toτCH4×OH, the decay anomalies
are divided byr = 0.87 to account for the tropospheric OH
fraction of total MCF loss (Prather et al., 2012).

Figure 2 compares the interannual variability of simu-
lated τCH4×OH in the CTMs against the MCF decay rate.
In all CTMs, simulatedτCH4×OH variations (0.7–1.1 % for
σ /mean) are smaller than the upper limit imposed by the
MCF constraint (2.3 %, Montzka et al., 2011). Adding vari-
able isoprene emissions to the GEOS-Chem simulation in-
creases the simulated variability by only 0.1 % (not shown).
While the CTMτCH4×OH anomalies are consistently within

the observational uncertainty for both the AGAGE and
NOAA networks (shaded region of Fig. 2), the year-to-
year changes in the models generally do not correlate with
the MCF data. Residual anthropogenic or ocean emissions
could account for some MCF decay anomalies, but only if
these emissions change abruptly from year to year. Emission
anomalies of about 4 Gg yr−1 would be required to cause the
observed decay rate swings during 2002–2004. Meanwhile,
total anthropogenic and ocean emissions for those years are
estimated to be 6 and 4 Gg yr−1, respectively, and decreasing
smoothly (Wennberg et al., 2004; Prinn et al., 2005; Montzka
et al., 2011). Therefore, abrupt emission changes might ex-
plain part, perhaps half, of the decay anomalies, but cannot
account for the full discrepancy between simulatedτCH4×OH
and observations.

Collocated measurement sites in the NOAA and AGAGE
networks provide an alternative means to evaluate possible
errors in decay rates. With MCF concentrations about 30 ppt
(1 ppt = 1 pmol mol−1) in 2003 and decaying at a rate of
6 ppt yr−1, quantifying τCH4×OH anomalies of 1% requires
measurement accuracy of 0.06 ppt or better for the monthly
mean concentration. At all 4 collocated sites (Cape Grim,
American Samoa, Trinidad Head, and Mace Head) we find
differences between the networks as large as 2 % (∼0.1 to
0.5 pmol mol−1) in the monthly means. (See Fig. S2) While
small in absolute terms, these differences exceed the stan-
dard error in monthly means and persist for several consecu-
tive months; thus they are likely not caused by synoptic vari-
ability and differences in sampling frequency. Because the
biases change over time, they lead to differences of up to
4 % in MCF decay rates at a single site. As can be seen in
Fig. 2, both networks find similar magnitude of OH variabil-
ity, but they differ in sign and magnitude of the anomaly at
many times. These differences in observed MCF decay rates
between the two networks are as large as the discrepancy be-
tween CTMτCH4×OH anomalies and either set of observa-
tions. Therefore, we conclude that better understanding of
systematic differences between the observation networks is
required before MCF can be used to constrainτCH4×OH and
OH anomalies in specific years at the precision required (1-
2 %) to test CTM interannual variability.

3.2 Methane lifetime sensitivity to chemistry-climate
factors

Having identified consistent variations inτCH4×OH across
multiple CTMs, we examine their causes with explicit per-
turbation tests. In these tests, we perturb a single climate or
emission variable, simulate 3 or more years, discard the first
year as spinup, and analyze the difference from the unper-
turbed simulation in the remaining years. Perturbations are
applied to 1997–1999 for Oslo CTM3 and the UCI CTM,
and, because of meteorological data availability, to 2004–
2006 for GEOS-Chem with GEOS-5. The sensitivity,α, of
τCH4×OH to a climate or emission variable,F , is always
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Table 2.Sensitivity ofτCH4×OH to climate variables and emissionsa.

Variableb UCI CTM Oslo CTM3 GEOS-Chem Literaturec Adoptedd

Chemistry-climate interactions

Air temperaturee
−3.9 −2.8 −2.2 −3.0 ± 0.8

Water vapore −0.32 −0.29 −0.34 −0.32 ± 0.03
Ozone column, 40◦ S–40◦ N +0.66 +0.43f

+0.61 +0.28− 0.76g [1] +0.55 ± 0.11
+0.28h [2]
+0.27g [3]

Lightning NOx emissions −0.14 −0.11 −0.24 -0.08–0.16 [4] −0.16 ± 0.06
Biomass burning emissionsi +0.021 +0.013 +0.017 +0.020± 0.015

+0.003j

CH4 abundancek
+0.363 +0.307 +0.274 +0.32 [5] +0.31 ± 0.04

+0.28 ± 0.03 [6] (f = 1.34 ± 0.06)l

Convective mass flux −0.036 N
Optical depth, ice clouds +0.013 N
Optical depth, water clouds −0.025 +0.024 [2] N

−0.075 [3]

Anthropogenic emissions

Land NOx
m

−0.15 −0.10 −0.16 −0.137 [5] −0.14 ± 0.03
−0.121±0.055 [7]

Ship NOx −0.045 −0.048 −0.017 −0.0412± 0.01 [8] −0.03 ± 0.015
−0.0374± 0.005 [9]
−0.047 [10]

Aviation NOx −0.014± 0.003 [11] −0.014± 0.003
CO +0.066 +0.050 +0.065 +0.11 [5] +0.06 ± 0.02

+0.074± 0.004 [7]
VOC +0.047 [5] +0.04 ± 0.01

+0.033± 0.01 [7]

a Sensitivities are reported asd ln(τCH4×OH)/d ln(F ) for each variableF , based on perturbation tests described in Sect. 3.2.
b Italic variables are major causes of interannualτCH4×OH changes (based on sensitivity and interannual changes in the variable) that are included the 1997–2009
reconstruction of CTMτCH4×OH in Sect. 3.3. Bold variables can drive decadal trends and are included in 1980–2100 prediction ofτCH4×OH in Sects. 4 and 5.
c [1] Karlsdottir and Isaksen (2000), [2] Krol and van Weele (1997), [3] Voulgarakis et al. (2009), [4] Labrador et al. (2004),[5] Prather et al. (2001), [6] Fiore et
al. (2009), [7] Fry et al. (2012), [8] Hoor et al. (2009), [9] Myhre et al. (2011), [10] Dalsoren et al. (2010), [11] Holmes et al. (2011)
d Adopted values are the mean of CTMs, except for VOC, and aviationNOx, which come from literature. Uncertainties are 1-σ values based on CTM spread and
expert assessment of literature. Terms marked N have negligible impact on interannualτCH4×OH variability and are not used in the parametric model.
e Tropospheric perturbation only.
f In Oslo CTM3 stratospheric chemistry and stratosphere-troposphere exchange respond to the perturbation, whereas UCI CTM and GEOS-Chem responses are due
solely to tropospheric photolysis rates. Oslo CTM3 results are rescaled to the same ozone column change as the other models.
g Response to global ozone column perturbation.
h Response to extra-tropical ozone column perturbation (poleward of 30◦).
i Sensitivities assume fire emissions are contained in the boundary layer, except where noted for Oslo CTM3. The UCI CTM value is the emission-weighted average
sensitivity for 1997–2009 (Fig. 4). Values for other models are calculated from 3-yr perturbation tests and scaled to 1997–2009 means, assuming the same
interannual variability as the UCI CTM. Adopted uncertainty accounts for uncertainty in emission altitude and year-to-year variability.
j Calculated with the RETRO altitude distribution, which injects 35 % of equatorial (45 % of boreal) biomass burning emissions above 2 km. Net sensitivity is lower
because NO is longer lived at high altitudes and more effectively cancels the CO sink for OH.
kSensitivity toCH4 abundance calculated from perturbations applied over 1997–2009 in UCI CTM and Oslo CTM3 and 2004–2009 in GEOS-Chem.
l f is the methane feedback factor, defined as the ratio of methane perturbation lifetime to total budget lifetime (Prather et al., 2001). We calculatef using recent
estimates of all methane sinks, Prather et al. (2012). Using IPCC TAR lifetimes increasesf by 0.03.
m All anthropogenicNOx emission occurring on land, including combustion, agriculture, and waste.

defined as

α = d ln(τCH4×OH)/d ln(F ). (2)

As such,α can be interpreted as the percent change in
τCH4×OH resulting from a 1 % increase inF .

Table 2 reports sensitivities for the evaluated climate and
emission variables. These variables include most of those
identified in the literature as important influences on tropo-
spheric OH andτCH4×OH variability: temperature, water va-
por, stratospheric ozone column, convective fluxes, cloud op-
tical depth, biomass burning emissions, and anthropogenic
emissions. Perturbation magnitudes are chosen to be similar
to the interannual variability or decadal trend of each vari-
able (exact magnitudes in Table S2). Perturbations are ap-
plied globally, except for stratospheric ozone, which is only

perturbed over 40◦ S–40◦ N, where tropospheric OH produc-
tion from UV photolysis of tropospheric O3 occurs. The con-
sequences of averaging region choice are discussed further
in Sect. 3.3. Temperature and water vapor perturbations are
restricted to the troposphere in Oslo CTM3, which includes
full stratospheric chemistry, to avoid confounding changes in
stratospheric ozone columns.

Only variables with large sensitivity, large interannual
changes, or both can explain the year-to-yearτCH4×OH vari-
ations identified in Fig. 1. Figure 3 shows the interannual
changes of 5 key variables for 1997–2009. Water vapor,
having about 3 % variation andτCH4×OH sensitivity near
−0.3, could account for about 1 % interannual variability
in τCH4×OH. Temperature, ozone column, lightning NOx,
and biomass burning also have sufficient sensitivity and
variability to account for about 1 % variation inτCH4×OH.
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These 5 climate and emission variables that we identify as
important influences onτCH4×OH have been recognized pre-
viously, but their sensitivities have typically not been quan-
tified in a comparable way (e.g. Spivakovsky et al., 2000;
Dentener et al., 2003; Labrador et al., 2004; Stevenson et al.,
2005; Fiore et al., 2006; Hess and Mahowald, 2009).

Convective fluxes and cloud optical depths for water and
ice clouds, as diagnosed in ECMWF meteorology, vary an-
nually by 2 % and have small sensitivity (−0.03 to+0.01),
so these factors have very little impact onτCH4×OH (� 1%).
Due to the small impact in the UCI CTM, these perturba-
tion tests are not repeated in the other CTMs. Our results are
consistent with the known decrease in mass-weighted global
OH concentrations due to clouds (Voulgarakis et al., 2010)
because mass-weighted averaging emphasizes below-cloud
OH concentrations and we find compensating increases in
methane loss above clouds. In addition, past analyses of con-
vective fluxes have found both positive and negative influ-
ences onτCH4×OH depending on the convection scheme and
perturbation used (Lawrence and Salzmann, 2008).

Methane abundance and anthropogenic NOx, CO, and
VOC emissions vary smoothly between years, but changed
by 1–2 % over the 2000–2010 (Dlugokencky et al., 2011;
Granier et al., 2011). Therefore, these factors have little im-
pact onτCH4×OH variability during the 13-yr CTM simu-
lation, but are important on multi-decadal time scales and
longer.

Many of the sensitivity terms in Table 2 – specifically, wa-
ter vapor, CH4 abundance, and anthropogenic land NOx and
CO – are consistent among the CTMs and with past estimates
(Prather et al., 2001; Fiore et al., 2006; Hoor et al., 2009;
Myhre et al., 2011), suggesting a good understanding of how
these variables impact tropospheric methane loss. Adopted
values for each sensitivity (Table 2, right column) reflect the
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Fig. 4. Sensitivity ofτCH4×OH to biomass burning emissions,E,
in the UCI CTM. Biomass burning CO emissions and the CO/NO
emission ratio from the GFED3 inventory are also shown. Peak
emissions and peak CO/NO ratio occur during El Niño events, due
to tropical peat fires.

degree of consistency among models. These adopted values
are used in the parametric model described below.

For biomass burning, the CTMs show moderate agreement
in the mean sensitivity when fires are assumed to emit into
the boundary layer (α = 0.013 to 0.021). TheτCH4×OH re-
sponse to biomass burning depends strongly on the emission
altitude, however, since the net sensitivity results from off-
setting CO and NOx effects and the NOx lifetime depends
strongly on altitude. When using the RETRO vertical distri-
bution for wildfire emissions in Oslo CTM3, in which 35–
45% of emissions enter the free troposphere, theτCH4×OH
sensitivity is 4 times smaller (α = 0.003). This vertical distri-
bution explains why Oslo CTM3 exhibits t he leastτCH4×OH
variability in the 1997–2009 simulations (Fig. 1). Sensitiv-
ity to fires also changes dramatically between years, shown
in Fig. 4 for the UCI CTM. The sensitivity is greatest during
years with high biomass burning emissions, and high CO/NO
ratio in those emissions, both of which suppress tropospheric
OH (Duncan et al., 2003; Dalsoren et al., 2006; Voulgarakis
et al., 2010) and peak during El Niño years due to tropical
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peat fires. Future El Niño activity cannot be predicted ro-
bustly (Collins et al., 2010) and injection altitude distribu-
tions remain uncertain so, despite some CTM consensus on
present-day biomass burning sensitivity, we adopt a broad
uncertainty range for this sensitivity factor.

Other sensitivities, chiefly air temperature and ship NOx,
differ by 50 % or more across the models. These differences
are understandable, however, as consequences of modeling
assumptions. For ship NOx, Oslo CTM3 and UCI CTM are
nearly 3 times more sensitive than GEOS-Chem. In the UCI
CTM and Oslo CTM3, ship NOx is emitted as NO, diluted
into the grid volume, and the subsequent production of O3
and HNO3 are calculated by the grid-resolved chemistry. In-
stantaneous dilution overestimates the NOx lifetime and O3
production from ships (Chen et al., 2005), however. To com-
pensate, GEOS-Chem instantaneously converts all ship NOx
emissions to O3 and HNO3, following observed production
ratios. As a result, GEOS-Chem underestimates the large-
scale impact of shipping, since, in reality, 20–50 % of NOx
remains after 5 h following emission (Vinken et al., 2011).
Although previous estimates of ship NOx are close to the
high values in this work (Hoor et al., 2009; Myhre et al.,
2011), the actual atmospheric sensitivity to ship NOx, likely
lies somewhere between the GEOS-Chem and UCI CTM re-
sults.

Ship NOx emissions also explain the divergence of GEOS-
Chem and the UCI CTM in their temperature sensitivities.
Over land, both models predict similar reduction inτCH4×OH
in response to warming. Over the oceans, however, GEOS-
Chem predicts longerτCH4×OH at higher temperatures while
the UCI CTM predicts the opposite. In the presence of ship
NOx in the UCI CTM, higher temperatures increase both the
production and loss of O3, with net excess production; OH
rises in turn. In GEOS-Chem, by contrast, higher tempera-
tures increase O3 destruction over the ocean with less op-
portunity for enhanced production; OH thus decreases over
oceans.

The sensitivity of τCH4×OH to methane abundance is
closely related to the methane feedback factor,f , which is
the ratio of methane perturbation lifetime to total budget life-
time (Prather et al., 2001). We calculate these terms from
a 5 % perturbation to methane abundance for 1997–2009 in
the CTMs. Our multi-model mean sensitivity, 0.31 ± 0.04,
is similar to past estimates (Prather et al., 2001; Fiore et
al., 2009), but we derive a smaller feedback factorf =

1.34 ± 0.06 than has been recommended by IPCC (f =

1.4, Prather et al., 2001) because we use updated estimates
of methane lifetime (Prather et al., 2012). Reducing the
feedback factor, which was already suggested by Fiore et
al. (2009), lowers the methane radiative forcing and global
warming potential, as discussed in Sect. 6.

3.3 A parametric model for τCH4×OH

The sensitivity parameters in Table 2, together with the time
series of corresponding climate and emission variables in
Fig. 3, enable us to build a parametric model for methane
lifetime representing each CTM. We combine terms linearly,
so thatτCH4×OH is approximated by

ln(τCH4×OH(t)) = ln(〈τCH4×OH〉) + 6iαi1 ln(Fi(t)), (3)

whereFi(t) is the time series of forcing variablei, αi is the
sensitivity ofτCH4×OH to that forcing variable (Eq. 2), and
〈τCH4×OH〉 is the mean lifetime in the CTM. Figure 1 shows
the parametric model reconstruction of each CTM, along-
side the actual calculatedτCH4×OH. We find that 5 variables
– temperature, water vapor, column ozone, biomass burning
emissions, and lightning NOx emissions – explain 90 % of
the interannual variation inτCH4×OH in all 3 CTMs over the
simulated period 1997–2009. Even though the GEOS-Chem
sensitivity parameters were derived from 2◦

× 2.5◦ simula-
tions driven by GEOS-5, the 5-parameter model performs
equally well compared to the 4◦

× 5◦ GEOS-Chem simula-
tion driven by MERRA. The sensitivity parameters are thus
robust across changes in model resolution and meteorology.

We find that 85% of methane oxidation by tropospheric
OH occurs between 40◦ S and 40◦ N and that this region also
controls the interannual variability ofτCH4×OH in the CTMs.
The same latitudes also dominate the variability of global-
mean temperature, water vapor, lightning NOx and biomass
burning, so the parametric model performs nearly as well if
these input variables are averaged over 40◦ S to 40◦ N in-
stead of globally. Stratospheric ozone exerts the greatest in-
fluence onτCH4×OH over the same tropical and subtropical,
where UV photolysis of tropospheric ozone is an important
primary source of tropospheric OH and where the quasi-
biennial oscillation is the dominant source of stratospheric
ozone variability. However, global-mean ozone columns are
strongly influenced by variability in the springtime polar re-
gions, so using global-average ozone columns significantly
degrades the parametric model correlation with the CTMs
(R2

≈ 0.75).
The atmospheric chemistry of tropospheric OH and

methane involves nonlinear chemistry that could, in princi-
ple, undermine the additivity of terms in Eq. (3). We test the
linearity of the system with a final perturbation test in the
UCI CTM in which all 5 factors are perturbed simultane-
ously. The resulting change inτCH4×OH differs by about 1
part in 10 from the linear addition of factors.

The CTM simulations in this work make several assump-
tions to simplify the perturbation analysis and enable com-
parisons between CTMs, but these could alterτCH4×OH.
In particular, the simulations neglect variability in biogenic
VOC emissions (Guenther et al., 2006), trends in anthro-
pogenic emissions and their location, and trends in atmo-
spheric methane. We compare our GEOS-Chem/MERRA
simulation to an available GEOS-Chem simulation (M. Mu,
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Table 3.Datasets used to calculate historical and futureτCH4×OH.

Dataset

Variable Historical Sourcea Future Sourcea

(1980–2005) (2010–2100)

Air temperature MERRA [1] CMIP5b [5]
Water vapor MERRA [1] CMIP5b [5]
Ozone column TOMS/SBUV [2] SPARC [6]
Lightning NOx 0 ± 10 % Assumed +10 ± 20 % Assumed
Biomass burning CMIP5 [3] RCP 8.5 [7]
Anthropogenic emissions CMIP5 [3] RCP 8.5 [7]
(NOx, CO, VOC)
CH4 abundance CMIP5 [4] this workc

a [1] Bosilovich et al. (2011), [2] Stolarski and Frith (2006), [3] Schultz et al. (2008); Eyring et al. (2010b);
Lamarque et al. (2010); Lee et al. (2010), [4] CMIP5 historical GHG recommendations, Meinshausen et
al. (2011b) [5] Ensemble of 35 CMIP5 models (Climate Explorer,http://climexp.knmi.nl/, accessed 18
December 2012) [6] CCM-Val2 multimodel mean for SRES A1B greenhouses gases and A2 ozone depleting
substances (Austin and Scinocca, 2010; Eyring et al., 2010a), uncertainties assumed to be±3% in 2100. [7]
Riahi et al. (2007); van Vuuren et al. (2011).
b Future air temperature, water vapor and their uncertainties are calculated from global-mean surface
temperatures in the CMIP5 model ensemble. See Supplement for details.
c Calculated from the parametric model, as explained in Sect. 5.

personal communication, 2012) that includes these trends
and variability in emissions, uses identical meteorology
and resolution, and has minor other changes (version 9-01-
01). The two model configurations simulate very similar
τCH4×OH (R2

= 0.98) over 1999–2009, meaning that year-to-
year changes in biogenic and anthropogenic emissions con-
tribute little additionalτCH4×OH variability and do not alter
the key parametric factors.

4 Historical (1980–2005) changes in CH4 lifetime

Having established the ability of Eq. (3) to reconstruct
τCH4×OH over 1997–2009 in CTMs, we now use it to ex-
trapolate methane lifetime over several decades for which the
CTMs have not been run. We begin with the historical period
1980–2005, during which time the key atmospheric forcing
variables have been relatively well observed by satellites and
ground stations.

In addition to the 5 climate and emission variables iden-
tified in Sect. 3.2 and 3.3 as important influences on inter-
annual variability, we include CH4 abundance and anthro-
pogenic NOx, CO and VOC emissions for the historical re-
construction. NOx emissions are divided into land, ship and
aviation sectors because their sensitivities differ significantly.
In total, the expanded parametric model includes 11 vari-
ables. For the 11 sensitivity parameters,αi in Eq. (3), we
adopt values from the average and spread of sensitivities in
the 3 CTMs (Table 2, last column).

Table 3 summarizes the data sources for historical climate
and emission variables in the expanded parametric model.
NASA MERRA reanalysis provides temperature and water
vapor data (Bosilovich et al., 2011) and satellite observa-

tions provide ozone column data (Stolarski and Frith, 2006).
As with the 5-parameter model, ozone columns are averaged
over the 40◦ S to 40◦ N and other data are global averages.
Historical CH4 abundance and anthopogenic and biomass
burning emissions follow CMIP5 recommendations (Lamar-
que et al., 2010; Meinshausen et al., 2011b). Global annual
lightning flash rates have varied by up to 20 % since 1998, but
multi-decadal trends are not apparent (Murray et al., 2012),
so we assume no change since 1980, with 10 % Gaussian un-
certainty in the trend.

Figure 5 shows the reconstructed historical changes in
τCH4×OH and the contribution to those changes from each
climate and emission variable. We assess uncertainty in
τCH4×OH by generating 105 monte carlo realizations of
Eq. (3), allowing all parameters,αi , and lightning to vary
independently within their uncertainties. This does not ac-
count for possible errors in emissions, ozone observations,
or meteorological assimilation that are difficult to quantify.
(See Fig. S6 for uncertainties inτCH4×OH due to each com-
ponent.)

Our reconstructedτCH4×OH has annual variability of 1–
2 % over the 1980–2005 period. Reductions inτCH4×OH
occur during El Nĩno years (1982–1983, 1987–1988, and
1997–1998) driven mainly by water vapor and reinforced
by a smaller effect from temperature.τCH4×OH is also de-
pressed through much of the 1990s when stratospheric ozone
was low, due to the solar cycle and Mt. Pinatubo, enhanc-
ing UV penetration and photolysis in the troposphere. The
largest spikes inτCH4×OH occur when the solar cycle max-
imum and La Nĩna are synchronous, as in 1989 and 1999–
2000. Overall, the parametric model simulates a decrease in
τCH4×OH since 1980, which has also been found in numer-
ous CTM and GCM studies (Duncan et al., 2000; Karlsdottir
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and Isaksen, 2000; Dentener et al., 2003; Stevenson et al.,
2005; Hess and Mahowald, 2009; John et al., 2012; Naik et
al., 2012). This is an improvement over previous paramet-
ric approaches, which are shown in Fig. 5, that produce zero
or positive trends over the same period (Prather et al., 2001;
Meinshausen et al., 2011a).

Figure 6 identifies the contribution of each variable to the
total change inτCH4×OH. Rising atmospheric methane has the
largest influence onτCH4×OH, but the positive methane feed-
back effect (3.5 %) is more than compensated by negative
climate and emission terms. Temperature and water vapor,
which have increased due to GHGs, decreaseτCH4×OH by
2 %, collectively, although the water vapor effect is about 3
times larger. Halogen-driven decreases in stratospheric ozone
also shortened the lifetime about 1 %. Increases in ship and
land anthropogenic NOx emissions both decreaseτCH4×OH
by 1.5 %, despite the ship source having much smaller to-
tal magnitude. Lightning NOx could also have an important
impact onτCH4×OH, but the lightning trends are not known.

The totalτCH4×OH change from 1980–1985 to 2000–2005
is −2.2 ± 1.8 % in our model, or−0.12 % yr−1 from a lin-
ear fit. Dentener et al. (2003), simulated a larger decrease,
−0.2 % yr−1, in the 1980s that they attributed mainly to wa-
ter vapor. Meteorological inputs may contribute to the dif-
ference, since water vapor trends are known to vary amongst
reanalysis products (Trenberth et al., 2011). In addition, the
shift of anthropogenic emissions to SE Asia, which alters the
sensitivity ofτCH4×OH to emissions is not treated in the para-
metric model (e.g. Fuglestvedt et al., 1999; Karlsdottir and
Isaksen, 2000). Methyl chloroform analyses generally sug-
gest large decreases inτCH4×OH during the 1980s followed
by increases during the 1990s, which conflicts with the CTM
results (Bousquet et al., 2005; Prinn et al., 2005). Assum-
ing uncertainty of about 20 % in methyl chloroform emis-
sions, however, reconciles the observations with the small
trends found in CTMs and in our parametric model (Krol
and Lelieveld, 2003; Prinn et al., 2005).
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5 Future (2010–2100) CH4 and CH4 lifetime

We now apply the parametric model to predict methane and
methane lifetime, with their uncertainties, for a future so-
cioeconomic scenario. We make predictions for RCP 8.5 (Ri-
ahi et al., 2007), a scenario with rapid climate warming, but
these methods apply to other scenarios as well. The pre-
diction begins with the best estimate of present-day (2010)
methane budget, including natural (202± 35 Tg yr−1) and
anthropogenic (352± 45 Tg yr−1) emissions and lifetimes
for loss by tropospheric OH (11.2 ± 1.3 yr), tropospheric
Cl (200±100 yr), stratospheric reactions (120± 24 yr), and
soil uptake (150± 50 yr) (Prather et al., 2012). The scenario
specifies future anthropogenic methane emissions and we as-
sume natural emissions could change±20 % (1σ ) by 2100
due to climate feedbacks, which is about twice the change
in wetland emissions since the preindustrial era (Houweling
et al., 2000). We use the parametric model to predict future
τCH4×OH and assume other loss rates are constant. For future
predictions we use the same expanded set of 11 parameters
as were used in the historicalτCH4×OH reconstruction (Ta-
ble 2, last column). Table 3 lists data sources for the future
climate and emission variables. We then generate 105 monte
carlo realizations of future methane abundance in RCP 8.5,
sampling over the uncertainties in all parametric factors and
forcing variables in Eq. (3), as well as uncertainties in the
present-day methane budget.

Table 4 summarizes the predicted changes in climate and
emissions in RCP 8.5. In this scenario most anthropogenic
emissions of ozone precursors decrease by 2100 (7–75 %),
although aircraft NOx emissions rise 123 %. Biomass burn-
ing emissions, also specified by the scenario, decrease 35 %,
which we assume applies uniformly to all gases and aerosols
from fires. The parametric model requires future global-
mean air temperature and water vapor inputs consistent with
the scenario. We calculate these from global-mean surface
temperature in CMIP5 models that have simulated RCP 8.5
(Climate Explorer,http://climexp.knmi.nl/, accessed 18 De-
cember 2012) using the strong regression relationship be-

Table 4.Changes (2100−2010) in climate, emissions, and
τCH4×OH for RCP 8.5∗.

Variable Variable change τCH4×OH
change, %

Air temperature +3.6 ± 0.9 K −4.2 ± 1.5
Water vapor +43.2 ± 9.5 % −12.9 ± 3.1
Ozone column, 40◦ S–40◦ N +0.7 ± 3.0 % +0.4 ± 1.7
Lightning NOx emissions +10 ± 20 % −1.2 ± 3.3
Biomass burning emissions −34.8 % +0.5 ± 0.3
CH4 abundance +78.2 ± 8.4 % +28.9 ± 7.4

Anthropogenic emissions

Land NOx −75.3 % +11.2 ± 2.5
Ship NOx −7.2 % +0.2 ± 0.1
Aircraft NOx +123 % −1.7 ± 0.4
CO −44.0 % −2.6 ± 0.9
VOC −11.1 % −0.4 ± 0.1

Total (this work) +12.9 ± 10.8
IPCC TAR Total, Prather et al. (2001) +29.2
MAGICC Total, Meinshausen et al. (2011a) +12.6

∗ Variable changes from data sources in Table 3, exceptCH4 abundance, which is
calculated parametric model, as described in Sect. 5.τCH4×OH component changes
derive from the variable changes and the sensitivities in Table 2, including
uncertainties in both. Uncertainties are standard deviations from105 monte carlo
realizations.

tween annual-mean surface temperature, air temperature and
water vapor that we derive from historical reanalysis data
since 1979 (See Supplement for details). We use global-mean
surface temperatures to drive the parametric model because
these data are more easily available and because this sim-
plifies future applications of the parametric model to other
climate scenarios. The range of future surface temperatures
in the CMIP5 ensemble is propagated to uncertainty in fu-
ture air temperature and water vapor using regression fit-
ting errors from the historical reanalysis. In 2100, we cal-
culate air temperature and water vapor to be 3.6 ± 0.9 K
and 43.2 ± 9.5 % larger than 2010, respectively. For trop-
ical stratospheric ozone, multiple models predict recovery
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to 1980 levels around 2045 due to the decrease of long-
lived halogenated gases (Newman et al., 2007; Austin and
Scinocca, 2010; Eyring et al., 2010a), followed by GHG-
driven ozone decreases through 2100 (Eyring et al., 2010a).
We adopt this projection, adding uncertainty that grows to
3 % of the total column in 2100. Lightning NOx emissions
have been estimated in past work to grow 5–50 % by the
late 21st century (Wu et al., 2008), but these predictions are
highly speculative due to poor mechanistic understanding of
present-day global flash rates. GHG-driven climate warming
tends to reduce convection globally (Held and Soden, 2006),
but could intensify convection in some regions (Del Genio
et al., 2007), so the total effect on lightning is unclear. In
this work we assume 10 % increase by 2100, but allow broad
Gaussian uncertainty of 20 %.

Figure 7 shows future methane and its uncertainty. Pro-
jected abundances reach 3990± 330 ppb in 2100, which is
about 400 ppb lower than our previous work (Prather et al.,
2012), which did not account for emissions and climate
controls onτCH4×OH. MAGICC predicts lower concentra-
tions, 3750 ppb, due mainly to the strong negative sensitiv-
ity of τCH4×OH to temperature in that model, but the MAG-
ICC values lie within our estimated uncertainties through-
out the 21st century. Statistical uncertainties in methane
predictions are 8 % in 2100, based on the assessed pro-
cesses in the parametric model. Neglected processes – in-
cluding shifting emission locations, biogenic VOC emis-
sions, stratosphere-troposphere exchange, and cloud, dust
and aerosol interactions with photolysis and chemistry –
might cause additional systematic prediction errors, but we
have found that including these processes in one model
(GEOS-Chem/MERRA) has little impact on present-day
τCH4×OH variability (Sect. 3.3).

The parametric model predictsτCH4×OH will increase
+12.9 ± 10.8 % by 2100 (Fig. 7). MAGICC gives similar
results (+12.6 %), but the IPCC TAR formula yields a larger
result (+29.7 %), consistent with their respective historical
performances in Sect. 4. The ACCMIP model ensemble pre-
dicts+8.5 ± 10.4 % for RCP 8.5 (Voulgarakis et al., 2012).
Lightning NOx emissions likely explain theτCH4×OH differ-
ence, since ACCMIP models calculate 24± 29 % increase
in 2100 (Voulgarakis et al., 2012), compared to our assumed
increase of 10± 20 %. Although we do not think future light-
ning estimates from GCMs are robust (see above), assuming
an equally large lightning change in the parametric model
would lower τCH4×OH in 2100 by about 5 %, after includ-
ing the methane feedback. The similar central estimates and
ranges ofτCH4×OH change in this work and ACCMIP, af-
ter accounting for different lightning assumptions, demon-
strates that our simple parametric model represents the ma-
jor chemistry-climate interactions and uncertainties affecting
methane in current GCMs. This supports using the paramet-
ric model for climate scenarios where a large ensemble of
GCMs with chemistry is not available and too costly to gen-
erate.

Figure 6 and Table 4 decompose the netτCH4×OH changes
in 2100 into components due to each climate and emission
variable. For emission terms, all uncertainty comes from the
sensitivity parameter since the scenario emissions are taken
as given, while uncertainty in other terms is a combina-
tion of possible errors in the forcing variable and sensitiv-
ity. Methane feedback has the largest influence, with an indi-
vidual contribution of+28.9 ± 7.4 %. NOx emission reduc-
tions over land also forceτCH4×OH upwards (+11.2±2.5 %),
which is opposite to NOx influence in recent decades. Other
climate and emission components are zero or negative, with
water vapor having the largest effect (−12.9±3.1 %). Strato-
spheric ozone and lightning NOx contribute little toτCH4×OH
changes, but they make a significant contribution to the un-
certainty. MAGICC predicts similarτCH4×OH changes to the
parametric model because its temperature response is simi-
lar to the combined effects of temperature and water vapor
in our work, and sensitivities to the other dominant terms –
land NOx and methane feedback – have changed little since
the IPCC TAR, on which MAGICC is based. The parametric
model and MAGICC will differ in socioeconomic and cli-
mate scenarios where other emissions, ozone, or lightning
drive τCH4×OH changes.

6 Methane global warming potential

Global Warming Potentials (GWP) are useful for compar-
ing the radiative forcing (RF) caused by emissions of var-
ious GHGs having different absorbances and atmospheric
lifetimes. The methane GWP customarily accounts for the
direct RF from the emitted gas, as well as indirect RF caused
by methane-induced increases in ozone, stratospheric water
vapor, and feedback on the methane lifetime (Forster et al.,
2007). Here we evaluate the methane GWP implied by the
perturbation experiments. Radiative forcing of methane and
ozone are calculated for the control simulation and a simula-
tion with 5 % more methane, using the University of Oslo ra-
diative transfer model (Myhre et al., 2011). A small perturba-
tion is used to satisfy the linearity assumption in the methane
feedback factor derivation. In addition, we test the effect of
methane-induced water vapor on stratospheric ozone, with an
additional Oslo CTM3 simulation in which stratospheric wa-
ter vapor was increased to maintain equilibrium with the CH4
perturbation. To our knowledge, this indirect, H2O-mediated
effect on ozone has not been included in prior assessments of
methane GWP.

Table 5 summarizes ozone changes and RF results for all
simulations, normalized to 1 ppb CH4 perturbations. Tropo-
spheric ozone changes in GEOS-Chem and the UCI CTM
(2.9 and 4.0 DU ppm(CH4)−1, respectively) are within the
range of previous multi-model studies (Holmes et al., 2011;
Boucher, 2012; Fry et al., 2012). Oslo CTM3, however,
exhibits larger tropospheric changes (5.1 DU ppm(CH4)−1),
likely due to the effects of stratospheric chemistry on the
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Table 5.Present-day, steady-state methane impact on ozone and radiative forcinga.

UCI CTM Oslo CTM3 GEOS-Chem Literature Adopted

Ozone chemistry, DU(O3) ppm(CH4)−1

d[O3]/d[CH4] 4.03(T) 5.08(T) 2.90(T) 3.5±1.0(T)b

10.39(S) 3.0±0.8(T)c

d[O3]/d[H2O] (from CH4) −0.41(T)
−4.28(S)

Radiative forcing, mW m−2 ppm(CH4)−1

CH4 367 367 367 370± 27d 370
O3 from CH4 141(T) 202(T) 123(T) 126± 45(T)b 150(T)

82(S) 82(S)
O3 from CH4 via H2O −17(T) −17(T)

−20(S) −20(S)
H2O from CH4 55e 55
Total radiative forcing 620

100-yr GWP 25d 31.7
24.2 ± 4.2c

25.3 ± 2.8f

a Troposphere (T) and stratosphere (S) values given separately, wherever possible. All CTM results are for 2009.
b Review by Holmes et al. (2011).
c Fry et al. (2012).
d Forster et al. (2007).
e 15 % ofCH4 direct RF, Myhre et al. (2007).
f Boucher (2012), excludingCO2 production.

upper troposphere. Stratospheric ozone increases twice as
much as tropospheric ozone (10.4 DU ppm(CH4)−1), but the
change is small compared to the total stratospheric column.
We find that stratospheric water vapor produced by oxi-
dation of methane causes small decreases in stratospheric
ozone (−4.3 DU ppm(CH4)−1). Although these stratospheric
effects have greater uncertainty because they are assessed
from a single model, the stratospheric chemistry mechanism
in Oslo CTM3 is able to reproduce recent stratospheric ozone
variability (Isaksen et al., 2012).

Ozone generally has greater radiative forcing efficiency
in the troposphere than in the stratosphere (Forster and
Shine, 1997), so tropospheric ozone changes tend to domi-
nate the ozone RF components. In our 3 models, the methane
RF through tropospheric ozone is 30–50 % of the direct
methane RF. After including stratospheric changes, ozone
contributes up to 65 % of the direct RF. Previous IPCC as-
sessments have assumed 25 % for purposes of calculating
GWP (Shine et al., 1995; Forster et al., 2007), similar to
a recent estimate of 21 % based on tropospheric changes
alone (Fry et al., 2012). Methane perturbation data from
the TAR (3.67 DU(O3) ppm(CH4)−1) (Prather et al., 2001),
however, suggest that tropospheric ozone RF is about 40 %
of the methane RF (154 mW m−2 ppm(CH4)−1, assuming
efficiency of 42 mW m−2 DU(O3)−1) (Ramaswamy et al.,
2001).

Accounting for both direct and indirect effects, the
methane RF efficiency,Fe, is 620 mW m−2 ppm(CH4)−1

in steady-state. A 1 Tg pulse emission of methane raises
the atmospheric abundance byδ = 0.364 ppb, which de-
cays at a ratef τCH4, wheref = 1.34 is the methane feed-
back on its lifetime. We useτCH4 = 9.14 yr (Prather et al.,
2012). Neglecting delays between emission time and strato-
spheric impacts, the 100-yr absolute GWP isδf τCH4Fe =

2.76 mW yr m−2, compared to 0.087 mW yr m−2 for CO2.
Thus, the methane GWP100 is 31.8. Our result is higher than
several previous reports, generally near 25 (Forster et al.,
2007; Fry et al., 2012), mainly because we include strato-
spheric ozone effects, but also because the updated and
longer methane lifetime used here (Prather et al., 2012).
IPCC TAR recommendedf = 1.4 (Prather et al., 2001),
which would imply an even larger GWP, but sincef depends
on τCH4 the two must be chosen consistently. Uncertainty in
the GWP is difficult to assess without further modeling and
analysis of stratospheric impacts, but it is likely±20% or
larger.

7 Conclusions

Over 1997–2009, the three CTMs in this work exhibit com-
mon variability in methane lifetime, which is also shared
by other published model studies. The simulatedτCH4×OH
anomalies generally lie within the constraints provided by
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global methyl chloroform observations, but correlate poorly
with year-to-year changes inferred from the NOAA and
AGAGE networks. However, while both networks provide
strong and mutually consistent estimates of the long-term
meanτCH4×OH, their year-to-year anomalies differ from each
other by as much as they differ from the CTMs. These dif-
ferences in globalτCH4×OH anomalies between networks can
partially be explained by small discrepancies (∼ 0.1 ppt) in
the monthly mean methyl chloroform concentrations at col-
located measurement sites.

We quantitatively explainτCH4×OH variability in the
CTMs with 5 climate and emission variables: air temper-
ature, water vapor, ozone column, biomass burning emis-
sions, and lightning NOx emissions. A parametric model
built on these 5 factors reproduces 90 % of the variability
in methane lifetime during 1997–2009. For projections over
many decades, the parametric model also includes 5 factors
for anthropogenic emissions and one for methane feedback.
The ensemble of 3 models provides a measure of uncertainty
in each parametric factor, which we use to project past and
future methane and its lifetime, with uncertainties. While this
approach lacks the full complexity of atmospheric chemistry
that can be included through multi-decadal simulations of
a CTM or GCM, the advantage is that it can be rapidly ap-
plied to many climate data sets or socioeconomic scenarios.

Using the parametric model to reconstruct methane life-
time for 1980–2005, we estimate 2.2±1.8 % decrease in
τCH4×OH, in contrast to previous parametric approaches that
suggested increases or no change. Our decrease is the same
direction of change as previous CTM studies and consistent
with methyl chloroform observations, but smaller in magni-
tude than many past estimates. The parametric model may
underestimate the trend because it does not consider the lo-
cation of anthropogenic emissions. We also use the paramet-
ric model to project future methane abundance, which im-
plicitly assumes that the emission and climate processes that
controlled methane lifetime in the recent past will remain
dominant throughout the 21st century. For the RCP 8.5 sce-
nario, our projected methane abundances are larger than the
CMIP5 recommendations, which are based on the MAGICC
model, but the uncertainty encompasses the difference. Our
projected change in methane lifetime is consistent with an
ensemble of GCMs containing atmospheric chemistry, pro-
viding further evidence that the parametric model includes
the key processes. Uncertainty in 2100 methane abundance is
10 % based on the processes we have assessed here, which in-
clude a simple treatment of natural methane emissions. Water
vapor, anthropogenic NOx emissions, and methane feedback
on its OH sink are the major drivers ofτCH4×OH in both the
historical reconstruction and future RCP 8.5 scenario.

We also provide a new estimate of the indirect compo-
nents of methane RF. Based on three CTMs, tropospheric
ozone contributes 30–50 % of the direct methane RF, com-
pared to 25 % that has been used in previous IPCC assess-
ments (Forster et al., 2007). Using one model with strato-

spheric chemistry (Oslo CTM3), we calculate the strato-
spheric chemical effects of methane, including those medi-
ated by water vapor. Combining the troposphere and strato-
sphere results, the total methane-induced ozone RF is 50 %
of the direct methane RF. Based on these data, the 100-yr
methane GWP is 32, which is higher than several previous
estimates around 25.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
285/2013/acp-13-285-2013-supplement.pdf.
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