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 SEMICLASSICAL THEORY OF COLLISIONALLY INDUCED FINE-STRUCTURE

‘ %
TRANSITIONS IN FLUORINE ATOMS -

. . » .
Richard K. Preston, Chris Sloane, and William H. Miller

Department of Chemistry, and Inorganic
Materials Research Division, Lawrence .
Berkeley Laboratory; University of California,

- Berkeley, California 94720

ABSTRACT

A célculation of fine-structure transitions inIF atoms
impiﬁging'on both Xe énd H+ has been carried out using a novel
semiclaésical theory whichvwas proposed rééently by Miller and
' _George. The theory has the advéntage of being éonceptionally
simple and applicablé to a wide class of situations. for Xe
'.v+ F the:cross sectioﬁ for the 2P3/2 - 2P1/2 excitagion of ¥

. o o
rises from its threshold (0.05 eV) to a value of ~ 0.1 A” at

~a collision energy of 0.5 eV. The cross section for H+ + F

o

is much larger, reaching a value of ~ 1 A2 at a collision
energy of 0.25 eV, in reasonable agreement with recent quantum

mechanical calculations.



I.  INTRODUCTION

Fine-structure transitions can play an impbrtant role in
) : ) _

viinéiastic atom-atom coilisionsvat'low energy, and there has been

, gonéidefable'théoreticallefforf expénded in the description of
this pheéomenon;l—a ;In the 1asf year,:for example;itﬁo qﬁantum
'vvmechanicél sﬁudies:héve appeared Qﬁich solve the céupléd equations

,numericaliy with realistic molecular interactions; Mies investi-
. N ' - ) ) .5 >k .
_ gated transitions in the F + H+.system while Reid studied the Na + He

: v 7- o -
system. It-has also been noted6’ that fine-structure transitions

can play a>significant role in atom-diatom doilisiohs, such as

F( P

12 or 2193/2) 4 H, > FH+H @

/

by determining the fraction of ihéident’atoms that actually_enter
oh—the_reactivé potehtial energy. surface.

" This paper reports calculations of cross sections for the

i

low energy processes o

\

F(P )+ Xe » r(%p )+Xe_:- . @)

3/2 1/2

F(%p,,.) + H' + F( P.,.) ,+'H+| .3y

3/2 1/2

\

.Qtilizing the semiclaséical model recently proposed by Miller
gand George.a'_Eine—structure transitions present an interestihg&

J

and challenging test for the semiclassical model, for here there



“~

is no obvious "avoided intersection! of the adiabatic potential
curves. - Nevertheless; the transition is localized and can be

_‘deséribed as takiﬁg place at a "complei crossing. point" of the
adiabatic p_otentials.9 | —
| This'semiclasSicai tfeatment is, of coursé, not as accurate
as avfﬁlly:quantum-mechanicaljc&ﬁpled chaﬁnel calculation théh
can be;readily carried.oﬁt_for ﬁheseiatom-atom systems, but‘it
ha; thé»advantage'ﬁhat it can be applied to mofe‘generéllcolli—
. . : - ) <4
sion(syétems, such as"Eq.’(l:l) ﬁbove,'while still incorporating

v

the full classical mechanicsbaf all the’héavy particle'degrees of

freedom. (A fully quahtum ﬁechanical.coupled cﬁanﬁel ﬁreatment Lo
4'for'a;_atom-diatom é&étem is unpealistig becausé of theilérge'.
number of rotational and vibrational states of<the diatom.) .To
the ;xtént.that the semiclassical desc;iption of.eleétronic transi-
tions ié accurate, therefore,\ﬁhere'ié the possibility of extending .
'ﬁodéls.such as Tully apd'Preston;s trajectory "surféce-hépping
model"? to freat_nqpadiabatiﬁ transitions between potential
renergy §ﬁrfaces that hﬁve no avoidea intersection. B
Section II first Summarizes the semiélaésical:theoryvas it
applies p0'atom-a£om collisions, and the potential'cqués whicﬁ
are used are déscribed 1ﬁ'Séctiqﬂ III. The results of the cal-

culations are presented and discussed in Section IV and Section

v, énd'Section VI summarizes the results and conclusions.



II. SUMMARY OF SEMICLASSICAL THEORY.

For electrénic»;réﬁsitions in léw energy atom-atom collisions
Milier an@jGedfge’S treatmegtsiredﬁcés eséentially pb Stuckelberg's‘
model.ll kThe principle‘emphésis_df theirlwork8'ﬁaé to extend
;this, ﬁithiﬁ a dyhamiéélly“eQacf desériptiqnfbf_héavy p;rticlg

. dyhamics; tdjﬁore géneral, for exampig a;bm—diatom,,coilision

.  sysigms.)',Thus:if A (r):andnvzl(r) are the.édiébatic potential

v curves’fdt élecérohigiétateé 1_and_2,;£he11 4”2 electronic transi-
tion fakes place along‘thé classiqal trgjeﬁtofy which chaﬁges
potenfial curves it the compiéx:Crossing point r,, i.e., the root
of \ _ 3 | g _ -

'_ V(). = V,(x) -’vl(r)-= o s @

- 1, must be poﬁpiex_since adiabatic patential'curvés of th¢vsaﬁe
syﬁmetry d'o’not:-.cxr:os‘s’.~ The probability émplitude‘férvthebtransi—
tion igﬁthe_ékponeﬁtial of the glaésiqal action along this .
t?ajectofy, )

o .

-

since the tréjectdry is complex valued#-Because it must pass
through (or around) the complex crossing boint—éthé action
‘is complex, so that the transition probability is

1Y exp2me) @

'
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This exponentially damped form for the non-adiabatic transition

- probability is :éminiscgnt of a tunneiing probability, and such
tr&nsitions‘actually—emérge in Miller'and Ceofge's theorys’g.as
a "classicalinyorbidden"\process,'a genefaliied kiﬁd of tﬁnneling,,
,ﬁy’taking account of.conservatioh_of'angular moméntum-fthé <
q;bital:angular momentﬁm of felative\translational:motion—-atom—
afomVCOllisions feduce to;one dimension#l.dynamical systems.
The:claésiéal trajéctofies df the system are‘thps givén eXpliéiﬁiy
by.quadrétgre; thé action integfai_alongva trajectoré/is a radial
" phase integral;. | | -

o(L) = fdr {2m [E = V(r)] - &2/r2}1/?

S (2.4)
where 2‘(replaced'by % + 1/2 in actual calculations) is the orbital
angular momentum. Ifﬁro, the real part of the complex crossing
point ,

rg SRe(ry) ., @

1s classically acgessible’on both adiabatic potentials (including

the centrifugal potential)——i.e.; if
v (f').+ 22/2mr‘2>> E - €2.6)
1\¥g) T X /emr, ' . :

i1 =1, 2--then the radial trajectory actually passes the crossing




region twice, once on the way‘in and once on the way out. Therefore
the net amplitude, or S-matrix element, for the 1 + 2 transition is

the sum of two terms similar to that in Eq. (2.2) (setting—ﬁ = 1):

S,00 = Vo (1= ) exp [0y, (V) |
V- @
+yPy (1 - py) eXP Fi¢ (2)] , ?’\ (2.7)

Pl v&;;@—ﬁn Ciwﬁ(L) &\\ 07 o

where
o N X ‘r : r . :
- X _ - . ' N ' At
¢in(l) 7 klr k2r + f d; k1 (') +/ dr k2 (?,)
. r, . : r : -
: 0 0
. \ \
ro\ - T ) v ) _ :
+ 2f dr' k, (') . - (2.8a)
‘ r2 : : ‘ : .

(2)-4 | r

1f - k2r + f dr' k (r') + f dr! k2 (r')
O: : . 0
g N o
+ 2f dr' k (') " _ SRR (2.8b)

with a o ' \

'ki(r)'= {2m [E - Vi(r)]'— 227r2}1/2 -

e ® . e



where r + = in Eq. (2.8); N and r, are the classical turning
points on V1 and v, réspectively. py in Eq. (2.7) is of the

form in Eq. (2.3),

Py = exp [-2Imd(R)] ';‘ L ' - (2-10)

and it is easy to show that the imaginary part of the action

along the éomplex trajectofy is

‘v‘ N L r

. .
Imd(L) = In [ dr [kj(x) - k,(x)]
. r
0 ;
T, S , :
= -1/ dr Re [k (x) - ky(D)], . (2.11)
0 -

. [Note ﬁhét -idr is feal and positive in Eq. (2.115.]} The phases
¢in(2)_and ¢°ut<2) in equatipn 65.7) and (2.8) are fhé realrpar;s
,Of the Action'integrals Along this complex trajectory. The préb—
ability factor associated with each ‘term in Eq. (2.7) corresponds
fd the fact that‘eéch trajectory makés a non-adiabatic tfansition
during one;ﬁéssége through the crossing region and does>not do "so
“during ﬁhe other passage.' |

The cross section for the 1 -+ 2 transition is constructed from

the S-matrix iﬁ the usual fashion:

0, . 4 = E (2z+1)| (z)l . (2.12)
2Ll 2 4=0 2,1 | |



Because many %'s contribute to the partial wave sum for atom-
atom collisions, it is convenient (and essentially no approxi- .

\. ’ . . - -v.; N ’ p -
mation) to replace the sum by integral, whereby Eq. (2.12)

becomes v J
L w’ ' - e } v
R
where‘. S
. b= 2/kl
P, .(b) = |s, (z)]2 | R S (2.14)
2’1 .. 2’1 ! ‘ . . L - . d

From Eq. (2.7) one has

| 2 1(b) = 4p2(l + p2) sin (4 + 1) ,> ”.‘\' o (2.15a)‘
= 2p,(1 - py) [1+ sin(2T)] ; . (2.15b)
with
I T O o ‘
T=/ dr k1 (r) - J dr kzl(r) s o (2.16)

in'mény cases the interference term (the second térm-in Eq.’(Z.le»

. 18 quenched bytthe‘impact paraﬁéter integration, so that Eq. (2.15)



t

+effectively becomes the cléssical result

Py1® = 22 - - ean

\ —_

e

. Eq. (2.7) applies only if r, is classically accessible on

0

both adiabatic potential curves (i.e., T fz < ro); if it is

classically accessible on neiﬁher (x > ro), thén the transi-

1° '3
tion must proceed by tunneling. In this case the transition

~involves only one complex trajectory, and.the S-matrix element

I

is thus given by

EOR exb'[i@(l)]v L o 2.18)
whefe
r S |
®(2) = - kyr - k,r + [ dr' ki (r') +/ dr'vkz(f') (2.19)
. S K Ty ; '

or

N r ox o
d(R) = —vklf - k2r + Sdr' k (') + /7 dr' k. (")
. - . 2 v
: : T 1 r
1 2
1_.1 N rZ , ' .
- 1f dr’ Kl(r') + 1S dr' Kz(r') -, (2.20)
. A . .

. where r + ®©, and where
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k(0 = (om (v, - B} #2232 0 @

t

The transition probability is then given by 8

N

P, (0 = exp [-2Imd(R)] ., o
o ) o i A
and from Eq; (2.20)\one fihd;m S
Imp(L) = [ dr Kz(_r) - [ dr Kl(r)
) rd . ‘ ro
’ r*. T '/ h . : .ox .
=1f dr' Im [K,(r) - K, (r)] .o T (2.23)
. T o _ ) . .
0 .

" For the intermediate situation thé;.ro is classically accessible

on the lower'po;ential Vl but inaccessible on the upper potential

VZ--iQe., r, <r, < r,--one needs a uniform semiclassical expres-

sipn which interpalates between Eqs.‘(2.7)-(2.$).énd Eqs./(2.18)— ' 
- (2.22). This is not difficuit; however, and isfdeécfibed.in the |
Appendix. . | |

| At sufficiéﬁtiy high collisioh energy it is.possible to

simplify the above expressionms. 'With regard to Eq. -(2.11), for

example; note that f
k(1) - ky(0) = [k ()7 - k%) 7 Ty () + k()]
‘ < 2m o, : - h
B’gi-AV(r) / [k;(r) + kz(r)]

N A, (2.24)
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where’

e -
v = [kz(rO)A+ kl(ro)]
is the average Velocity'aﬁ fO" Eq..(2;11)vthen becomes N
. L. | o
Imd(R) = @v) ~(-1)/ dr AV(r) = . - (2.26)
- - r N 7 ) . - A

: ;0

An even cruder, but simpler (and therefore more popular) high
eﬁergy approximation results if one takes the average velocity

v to be the free particle velocity

Vv -vieHM? o, S @
‘ oo 2172 .

where v = (2E/m) is the asymptotic. velocity. At high collision

.gnergy it is“also necessary to modify the expression for Py (see

Section 1V),



-

-

~1i-

III. ADIABATIC POTENTIAL CURVES.

To deseribe'the fine-structure transition

-/

) v A r(’e ) + A, @

"1/2

.

'F(ZP

where A is a rare gas atom, one needs the Born—Oppenheimer‘;

‘potential curves which take account of spiﬁ-orbit coupling -

~

in the F atom. A full, ab initio calqulation_ihcluding spin-
'orbitfinteraCtions is a considerable undgrtaking, but the
following simplified approach is usually réasonébiy accurate.

The Bofn-Oppenﬁeimer elect;onic Hamiltonian (i.e., the full
. ’ N S
the kinetic energy of the nuclei) is of the

Hamiltonian miﬁus

forﬁr :

H = Hstat + HSO ’ '_ n 1 7 ‘1, o | v (3'2}

e

~ where H is an ordinary electrqstatic Hamiltonian (electronic

. stat
‘ kipétic energy plus the coulomb interactions of électrons and

‘a spin—orbif operator_fdr an.isdlated F atom:

nuclei) and HSO

B=-Goes 0 ey

where L and S are electronic orbital and spin opérators for the
F atom and A = 404‘cﬁ71 is the fine-structure splitting in an



isolated F atom. If |j,m,> denotes states of total electronic

3
‘angular momentum and its z-projection, then it is not difficult

to show that the matrix representation of the ‘electrostatic

Hamiltonian’/ in this basis is

o ;" . g L., e -
statlj mj?'- 6m ,m, ' L C(lva i ml’mjn ml)

<j'ij|H
'- 3773 my

C(l2 .-j, m'q”mj_ - mz) vlmgl SR | ".(3.4)
where the C's are Clebsch—Gordan coeff1c1ents and vl l are the .
, g :
' eigenvalues of the electrostatic Hamiltonian; i.e., v (r) and
\'vl(r) are the T and H pqtential curves,-respectlvely, for F - A
obtained by ignoring spin-forbit coupling. The spin-orbit'

Hamiltonian is completely diagonal in this representation:

- <d'my"[Hgp|gmp> = -5§[j<j_‘+ 1)1 -1a D - 3G+ D] 'Zsj.’jamj.,
= - é{j(j-+ﬁ1)'; llj d 8 ..Ad '\(3 5) -
| 3 '\ . 4 ,j!’J mj!’mj- : <2 -

—

The total Hamlltonian is thus completely diagonal in mj and '

is designated as
o

u, ™y I o ’l _' (3.6)

m

J.
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~o

is one dimensional.- ‘Thus

B . i/"., S H, 2 =iv, Z é:':v‘ i?~ e " N S 3.
)’.-).
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these two eigenvalues asymptotically become -

L, e

o=
>
+
: hﬁr
S
wiro
[N
1
i

S SO N R
thergnergy levels of P1/2 and P3/2 F atoms, respectively,

rgfefred'to atom A and the "qentervéf gfavity" of the F(ZP)

manifold.
e 202 .
»Thg P3/2 > Pl/2_trgns%tion.thus takes-plage vithln the
m, = 1/2 block of the Hamiltonian matrix. If vy (r) and -V,(r)

T

denote the two adiabatlc potential curves given by Eq. (3 9),

then the complex crossing point is the root of

@) = vy () - vy (012 + 2 [vn(r) - vy (r)] + A2}1/2
-0, (3.12)
“which is alsb equivalent tov
} .
/vnfr) - vz(r) = A gxé [+ i'COS_l(— %)] e 0 (3.13)

If A is fairly 1arée, as it is/in tﬁe.present case, then the
v Erossing point willlocéur at sufficiently small r for the E~- iy
éplitting to.be determiped by electron exchange intéractions.
.in such cases the sﬁlitfi@g ié oft;n well approximated as a siﬁple

exponential function o
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Ar , L (3.14)

Ty

,=7 )\"1 [2n (A/A) i‘i COS-} ( - -3')] . T (3.15)
s

. With the £ - I splitting éséumed to have fhe form in.Eq. (3.14)

it is possible to evaluate the imaginary part of the action

interval expliéitly within the high energy approximation:

i . . . r*_ ‘ i ‘
S me W= @IS dr V@, . (3.16)
. e _ ro v

and'with Eq. (3.14)‘and Eq. (3.15) this becomes -

.1
. ~1(- .
; -~ cos 3 ' _ ; E
CImd () A ép%%x TR [eZix'+-§ eix +A1]¥(2
' . 2 T ’ v .
A @55 o, o (3.17)

T XN

so that the high énergy approximation to the non-adiabatic

transition probability is.\

4

Py =:exp;[4 2Imd (Q)[ﬁ].‘ )

= exp (—’gl ;ﬁ'%) oy | ) ' ~(3.18) 
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a result obtained by Nikitin.1 At energies so‘lafge that pi

is not smali‘comparéd to 1, however, it is necessary to use a.

renormalized version which takes proper account Sf-crossing

- points further from the real axis; this has been discussed
12 - o '

by Nikitin, " and for .the present case is

Py =‘[ex§ (-21md) —.exp'(;3Im§)]/[1 - exp:(—BImé)] .(?.19)

7

In'drder to apply‘tﬁe.semiclassiéal expressions suﬁméfized
. in Section II, eithéf bxactly or within the.high energy approxi-
- mation, it.is necessary to.anglytically continue fhe adiabatic -
potential.functiéns.Yi(r) and Vzir),.firsf_in arder to finq the
compiex rdot of Eq. (2(1) and then in-ﬁrder to evalqate_thé
infegrals in Eq. (2.11):dr Eq. (2;26); only AV(r) must be
anﬁlyticaily ¢0ntinuéd in ordeerQ_compute the approximate
‘result [ (Eq. 2.16)], whereés'both Vl(r) and Vz(r) are sep;rately
required in the more correct version, Eq. (2.11). Itais often )
possible to fit the adiabétic pbtential functions to éimple
analytic,forms, éé was discussed above, .and in sucﬁ cases the
analytic cpntinuatioh of the adiabaticvpotential curves to
complex r is tfivial._‘dfhér siﬁple éaramatefized,models'often~

used for AV(r) are the Landau-Zener mode1tt»13

- _ - 1/2 S
W) = [a® + £2@ - 1) | U (3.20)
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and the Demkov model

1/2

2 2,7t R @

W(r) = (4% + 4a
whéfé a; f;,Ai A; ande are‘const§nti
- In general, hoﬁevef, ;hévanalytic continuatidn of Vl(r) and
' _Vz(r) is not so Straight—forwafd, pérticularlf'sb if'they are

‘the ﬁumeficai output of a Born-Oppenheimer eigenvalue calculation.

'in'many cases one may be able to fit the potehtial éufves,calcu—'
lated for real r to a simplevfuqctional form and.thén‘use this
".analytic fit to determine the potential also for_coméléx'r.  bne
would expéct,this.to be'réliable for comﬁle# vaiﬁes of f‘not too
"faf;from the real axis.

‘The most general way. of analyticallylcontinuing the potentiai

curves to cémplex valués,of f‘iévto réturn‘to the electronic
secular'eqﬁationlfromﬂﬁhicﬁ they-qomé;_i.e.,.thé'adiabétic

‘potential curves Vi(r) are the roots of the secular equation
det JHij‘?)_- V(r).Gijl =0 . : | (3.;2)

ﬁijkr) is“the N x N7ﬁatfix of the electronic Hamiltonian in én '
‘N—dimeﬁéional electronic basis set which dépends parametrically
on the nuclear éeparation r; these matrix elemenfs, beiﬁg combina-
tions of coulomb and exchange iﬁte;vals, are mahifeéfly analytic

functions.of r and can be directiy evaluated for complek r. The
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secular determinént is a Nth Qrde: polynomial in V, and the N
veigenvalgeé are the foots of'thié polynomiél. ”be.N = 2, for
example,.one;can find tﬁe two.robts of the quadrafic equation
e;cwpl_icit]..y'; | |
. o _ ) 1 o _ ) 1/2.
VG = GIH )+ Hyy ()] {711, (r) - By, ()17 + Hy, ()7}

(3.23)

For N > 2.1;.18 not easy £o=write down the N roots'of.Eq. (3.22)_
explicitiy,'butifhere afe many operational procedures for'findingl
‘_tﬁem. -The important’ point is that the eigenvalués‘{Vi(r)} are

an glgébraic function of the e;ectronic matrix>elements Hij(r),
One.fhus agalytically continues Hij(r) to gomplex values of:r

by inSpéction and obtéins {Vi(r)}rby finding'the'roéts of Eq.
(3.22); if:#he-appropriate "eigenvalue finder" is uséd, then

the oﬁlyvchangeéjthét nega be made~inithe'com§ufer program is

simply to declare all quantities, H,, and V, to be the COMPLEX

_ 1]
Fortrén'variables and proceed with the same algebraic manipu-
latiéﬁs as if one were finding reai eigehvalues}_ Cgéfge and
Morokuma15 have.Carried out such calculations.

Another interesting point is thﬁt tﬁe N differént adiabatic_
_potential.curves {Vi(r)} are actually the N differeht branches,
or Riemann sheets df the same analytic function, For N = 2, |

'forvexample, this is seen explicitly in Eq. (3.23), where the

two eigenvalues result because of the double~valued character
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of the square foot‘functién. 'Similarly, ;hére are three roots
to a three by three secplar‘equatidn becausé of tﬁe triple-
valugdhess-of the cuBe root'funcpion,'and in gengral”the N
: robﬁs of the secular eﬁuation are a réSu1t of.the N-fold
muitivaluednéss of“the Nth root: function.. In truth, there-
fore,‘there is just one adiabatic pdtential energy fuﬁCtiop,
but'it'hﬁépens to be_muitivéiued;'within the Stuckelberg model
transitions between différent adiabatic electronic states occur
by complex—vaiued classicalvtrajeCtories that go around branch
points of thebmultivalued poténtial function and fhps_éhange

from one Riemann sheet.(i.e;,velectronic state) to another.

Another interesting feature of this semiclassical description

of nonadiabatic trahsitions is that nowhere do Born-Oppenheimer
‘pouﬁling terms enter into the picture ekplicitly; the.trénsition'
pfobability_given by Eq. (2;7)-— (2.15); for exampié,vinvolves
oply ;he.adiabatic potentiai'curveé Vi(r).. This ﬁeans thgt a;l
- information regarding’the nOpadiabatic_éoupling térmé which is .
required for the semiclas;ical model is céntained implicitly in
. fhe analytié-strﬁcture of the (multivalued) adiabatic‘éoteﬁtial
function. This,poiﬁt will be iilustrated more fully with the

" example discussed in Section IV.
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Iv. RESULTS FOR F + Xe.
 'Figure_l shows the difference of the 22 and 2H states of
Xe - F:és calculated by Liskow, Schaefer, Bagus? apd Liu.16.
) Ovér the range of interest the potential difference is fit
well by a single é#ponential,Ai.e., by Eq. (3.14); where the
"best fit" parameters are . ' |
| A = 48,2 hartreés

A=1.65a % .
, fo) .

The complex crossing point is thus given by Eq. (3<15), which
with these values of the parameters is ‘ A

r, = [6.15 * i(1,165j 50" . . (4.1)

Figure 2 shows the impéct parameter dependeﬁéé éf.the
tfénéifion probability:computéd:from‘the "eXact"“veréion'of-
the ‘semiclassical expressions [Egs. (2.7)-f (2.16)]'a£ a’
typical "high" collisién energy (1;0 eV)g the inset shows more
.&etail of the large impéct parametéf’region where’tﬁé transi—
'tion-takeé place by.tunneling'[Eq.’(2.18)—(2.23)].'fThe dashed line
shows thé "claésica1" result [Eq. (2.17)] obtained by discarding
the ihterfereﬁce term in Eq. (2.15b). It islgléar from the
figﬁré.thaé the tunneling coﬁtribuﬁion is neglible at this
energy and that theré are enough oscillationsiin the transition

- probability for the impacf parameter integration'to quench the

interference term. It 1s also clear, however, that interference
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effeCts'(Stuckerérg oscillations)VShould'be quite prominent'in

the inelastic differential cross section. Figure 3 shows a

similar plot for a "low" collision'energy (0.1 ev), énd one
sees that'fhe omission of‘interference'is‘less justifiable i
here. Impact pa:ameféf aveféges cdver1a'ﬁu1titude df sins,
vhowever,-aﬁd‘evén here the cross‘se¢tion obtained;from the
"classical" probability fﬁﬁction'in Fig. 3 is in.efror.byv
only 20%; by 0.2 eV tﬁe error drops to 10%. Again,‘tﬁe class-
.riéal versioh of the theory, i.é., ;he neglect of inferference,l
ﬁouid be much less satisfactory for ﬁhevdiffereﬁtigi croés
section. | | _

Figure 4 shows fhe cross section for the ZP’ > 2P

S A ' 3/2 . "1/2

excitation of F atom as:a’ function of relative colliision energy.
[The.cross sections shown in this papép.include a sum and average

over the m,-components of the electronic angular momentum of the

]
F atom; since only the mj ='t-% components give rise the transi-
tion, a factor of & must he supplied to the cross section formulae

2

of Secgion IT when considering the excitation process. This factor
of % is included in é}l displayed cross seétions.] The dashed
Aéurve is the.result of the "exéct" version éf the theory, and
 the so0lid cﬁrvé the-classical version thch omits interférence.
Qhe sees that only a,siight dsciilatofy structﬁre survives the
impact parametér average, and it.would probably bg unobservable
undervrealistic_experimentél conditions. |

Although there are other effects which must be taken into

account at high (non-thermal) collision energieséﬁprimarily the
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coriolis interaction-;it is of practical interest ﬁo see at what
energy #he simpler high energy approximation to_fhe'semiclassical
'expfessions:bécomes valid. Utilizingvthe renormal_ized'p2 given by
Eq. (3.19) and taking'; as the free particle veloéity_[Eq. (2.27)1,
- the .cross ;ecﬁion is given by (including the statistical factor of

1
2

o -2 - 3g -2t - 3f -2

LS (%)_ .é"db (2@_‘)' 2(e  -e _)' (l-e H)@Q-e )
2z | | (4.2)
| 2 =1/2 |
=2 -~y o )
3 r o

where the interference tefm_and the tunneling contribution has
been discafded;" A suitable change of integration variables cast

this into a more useful form:

9 3=9" 5 fLEERDTT . (4.4)
2 2 . .
where -
EOB%F '1T_§‘) oy | I’ | v, | | (4.5)

.and f£(x) is the dimensionless functioﬁ (arredﬁced.cross‘sectidn)

of the dimensionless variable x (a reduced velocity) :
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3' -2 y/x -3 y/x =2 y/x

f(x) ='£'dy 4y_ :(e . -e ‘) 1-e )
3
o ;3y/x -2 : S ) o '
x (1 -e ') e o - S (4.6)
One cah.show that"
f(x) ~ 1~ %-x ;l, X > ©
~ %l x exp(~ %;) , x>0 B , - (4.7)

Figure 5 shows this function f(x). For the present'case of

Xe - F the characteristic cross section has the value

) :

' 2 =744, (4.8)

. 2 :
| 9T Iy = 26.4 a,

and the characteristic.energy E

Ofof Eq. (4.5) is

Ey = 5.06 eV - . - - o _" (4.9)

Figufe 6 shows the reduced crOSS‘secfion f(x) in more
detail in thé Low eﬁefgy region,.comparéd to the "classical"
resu1t$ of Fig. 4 (divided by %ﬂ roz). Abové 0.5 eV collision
eﬁergy one sees that thé high energy approximation is essentially
exact, but below 0.5 eV it is important to take account of the

full dynamics correctly.



-24=

In prder to gain some insight into‘thevnatﬂre‘of the
semiclassicél_deséribtion of nonadiabatic:transitions it is
ihtéresting to’loék_éxplictly at'the'nonadiabatic cqppling
which would-be_fequiréd if the coupled chénﬁel Schroedinger
'equaﬁion ﬁéfe to be solved in the adiébéticVrepresentation.
Apart_ffom constants the interactién which couples adiabatic
states 1 and"2 is . |

S 3y, (q;1) | o ,
dq wl_(q‘r),T o, S .(4.10)

where q.denotes all electronic coordinates and {Wi} are adiabatic
elécgronicvwavernctions. If one ignores nonadiabatic effects

2. 2 | | 2
in the ¥ and "Il electronic states themselves, then Yl and ¥,

are of thé form -
Y (@) = () X @ +CH® @, (41D

where xl‘aﬁd'x2 are the I and H»eléctronic states; the r —‘dependent
coefficient matrix is the unitary matrix which diagonalizes the two
by two Hamiltonian matfix of Eq. (3.8). It is then a simple matter

to show that

W (q;r)  AH(Z) H,. (r) - AH (r) H.,(r)
[dq wl(q;r) - 23r - 12 > - 2.12
AH(x)” + 4H12(r).'
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where

M) =Ry () - B @ . | (4.12)

This quantity is shown in Figure 7; it takes on its maximum

precisely at o the_reél part-of'théICOmplex.crossing point,

and this is the quantum mechanical manifestation of the fact

thaﬁ_nonédiébatic transitions are localized in the fegion
abbutrro..f Even.thoﬁgh coupiing.terms sucﬁ_aSItheSe are not
needed for the semiclaésical theory, the analytic structure

of the adiabatic potential function--which is neededf—effegtively

has this information contained in it.
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V. RESULTS FOR F + H'.

While thevworkkon Xe + F_was.in pfogress'Mies'A'paper on
H+ + F appeared and thus provided the possibility: of a direct
. comparison of the semiciassical model with a quantum mechanical
couéied—chanﬁél«célculétion. *Sucﬁ cbmparisons for atom-atom
collision systems will be important forvestablishing‘ﬁhe validity
of the semiclassical model éince this will ﬁot be possible in
" the case of étom-diatom collisions. |

17

'We at first attempted to use Mies' analytic fits™' to the

22 and 2H statesls.of.ﬁF+_and find the fdots of Eq,((3{12).

This wasvnof possible, ﬁoweﬁer, for these analyfic fits were

too structuréd;—similar to high order Lagrangian interpoiation——
.so thét theirvanalytic continuation into the comp;éx piane waé
uhétable. If the Z'- I diffefence itéelf_is plotted‘on a semilog
scalev(as'shbﬁn in Figure 8), however, one sees é rather simplé
functional form.: Overrthe sigﬁificant range of internucléar 
distanée the logarithm of thé diffgrence-is fif weli‘By a

quadratic, implying a gaussian fit to the Z - II spiitting:

: v -3 2. : : '
ve(¥) - vp(r) = A e_Ar *yr , | - (5.1)

where the parameters are

A = 0.4676 hartrees
-1
0
2

A =1.001a
Y= 0.03814 ao‘ .
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‘Since?fheiﬂ'potential curve lies below the L curve in this case,18

{Eq,’(3.13)ffor the complex crossing point is replaced- by
- " -1, 1
. vz(r) - vn(r) = A exp[+ i cos (+,§)] s (5.2)

" and with the functional form in Eq.. (5.1) one finds the root

" of Eq. (5.2) to be
ey - - O

where

5@ a7 i ¢ 1 eos i )

with the above parametérs this gives '

r, = [7.25 £+ 1 (2.75)]’a0 B
Figure.9'shows the.éross section for

y + 5 » F(Pp

| F(2P3/2 y + 1t - (5.3)

1/2

>as a function of the relative collision energy; the individual

points are the values of Mies' quantum mechanical calculat;ions,4
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and although not spectacular, the agreement is seen to be reasonable.

Because of the strong»attractive‘potential wells in bdth the ¥ and I
18, o+ » Q : SR

states of H - F, the presént semiclassical model--which ignores

the coriolis interaction--is not expected to be as applicable here

as it is for F plus closed-shell neutral atoms and molecules for

which the interaction is predominantly repulsive.
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VI, CONCLUDING REMARKS.

The semiclassical model for hon—adiaba;ic electfonic transitions
provides an iﬁteresting and simple picture of sucﬁ piocesses: the
transition takes place along a classical trajectory which passes
through a complex crossing ﬁoint of'tﬁe adiabatic potential curves.
The pérticularly intefesting aspect of the examples’présentédvin>
this paper is that the adiabétic potentiél éurves havé”no "avoided
intersection" for real r, so thatvitimight have been:thought that
ho;such semiclaSsicalvtreatment wés'possiblef As ﬁas been seen,
howevef,vcomplex crossing points exist even for thesé cases,vand
'the semiclassical theory seems to provide.a gooa deécription of
the non-adiabatic process. “ |

. For the Xe - F example the cross section is smail at thermal

energy, reaching only ~ 0.1 A2 at a collision energy of 0.5 eV.
If the cross section for F + H26’7 were of'a.similar magnitude,
: thén for thermal enefgy collisiohs‘the best Zero—thvorder approximation
would be to assume that no non-adiabatic transitiéns occur. In
the thermal energy regime below 0.5 eV it is important to include
the full heavy particle dynamics of the crossing ehcouﬁter,.al—
though the high energyvappréximation is accurate aboVe_O;S eVv.

For H+ - F.the cfossvséction is'much larger, which is perhaps
expecged on acgoﬁnt of the cha:ged'species; -This exampie‘also
shows SOﬁe.of fhé practical difficulties that can éfise Vhen
applying the semiclassical thebry,;nameiy the neCessitf of.analyti—-
cally continuing the adiagagic poﬁenfial éurves,into £h§ complex

plane. If the potential Cufves have a simple éhapé, as for Xe - F,
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then it should be possible to fit them to éiﬁple fun¢tional forms
and extrapolaté these analytic fits to complex r; if»the required
fit is tob'structured,'ﬁowever, this approach mayvnot‘bé_pbssible.
':The‘most general solution to this problem is fo'calculate the
botehtial curves‘directly in the complex plane, as George and
Mo:ro_kuxnal*5 haye done,'but this of course adds to thé_overall :
comple#ity oflthe calculation. thethefvthis kind éf.practical
aiffiéultyvfroves to be common or rare will not bé kndﬁn Uﬁtil
more examples have been studied.

In conclusion, the semiclassical model fof nonfadiabatic
electronic tfansitions appears to be a useful techﬁiqqe‘for
descriBing these processes; particularly so at thefmal.energy
where it is.important to incorporate the full héavy.particlei
dynamics. Sinée all dynamics is treated classicélly; only_tﬁe
superposifion principle of quantuﬁ mechénics being_iﬁcludea, it
is possible té use the modgl in conjunction witﬁ nuﬁerically
computed classical trajectorie# qu’more'cthlex systems, e.g.,
atom-diatom collisions, and~We.anticipate future wérklin fhis_

direction.



- -31-

APPENDIX: A UNIFORM APPROXTMATION FOR WEAK TRANSITIONS

Referring to Figure 10, Eq. (2;7) —v(2.8) and«Eq,-(z.lB)-__(2;19)
are the semiclassical apprqxiﬁation to the S-matrix for E >>vE2 and
E << El’ respectively. Siﬁce_thé effective potenfigls éketghed in'
Eig. 10 increase with increasing impact p;famefer, Ei and Ez do
also, so that one would like to have an éxpréssion which is valid

2’ 71

" such an expression can be constructed for the near-adiabatic limit

-uniformly for E > E,, E. < E < Eé, and E'<'E1; Here we show how

‘ISZ’1IZ_§< 1) which is uéually the situation at ;ow éﬁergy. Rather
than being a uniform asymptotic appfoximation in the figordus sense
of the wordf—ﬁhich we cannot prpvef—the result has_ﬁore the stafus
of a useful interpolatioﬁ formula.

- By making use of the. known asymptotic'expressions fér the Airy

functionlg-—ﬁamely

ML(-z) - mH2LE i *.1

Al ~ 5w ' exp( ‘% ) , (A.2)
for z, z réal and >> l--one can easily show that Eq. (2.7) and
(2.18) are equivalent (in the near-adiabatic limit) to.

r

: r : -
= _ _ ) | ] ) LI | I
82,1 exp[ iklr ikzr + 1f dr kl(r ) + if dr kz(r )
, r r
1 72
Ty o Ty
1/2 1/4

+ 1/ dr'kl(r') - 1/ dr'ky(x)] 2m Ai( z) (A.3a)

To o



o =32-

o o ' .

z = {% [f dr k) (x) - J dr k, (r)]}z/; (A.3b)
rl ' r2 ) k .

for E > E,, and  '

52,1j= exp[—iklr - ikzr + 1f dr kl(r )+ if dr ké(r.)

T Ty s
- a'k )+ 1 dr'ky D1 2t VR Gy (e

T3 1

'z ='{§?[f-dr'xz (r) - [ dr K, (r)1¥?/3 (A.4b)
ro ro . -

for E < El’ respectively. Egs. (A.3) and'(A.4) are so similar
that at first glance one might think that they are the desired -
: unifﬁrm.eXpression aé'they stand.' For this to be the case it
would be necessary for Eq. (A.4) tO'result from Eq. (A.3), for
example,_és E is decfeased continuously f:om above E2 to below

E;; i.e., Eq. (A.3) and (A.4) should be the analytic continuation

- of each other. If for E < E one chooses
k (r) = 1K (r) o

then the correct exponential factor is obtained for Eq.>(A.4), and
. for E < E, the variable z of Eq. (A.Bb) becomes |

z=;12/3 ’
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where z = |z| is given by Eq. (A.4b). The %-—'root function is
triple—valded -—

,'12/3'= eiﬂ/3, e_lﬂ/3, or -1

---and to obtain the correct result for Eq. (A.4a) it is clear

2/3

that one must choose the branch i = ~=1. The problém, however,

is that as E is decreased continuously from above E2 to below El’

a continuous variation of z--which is clearly neceséary to have a
'uniformly valid expression-~leads to thé branch 12/3'='elﬂ/3 or

e-i"/% not the desired branch i2/3

= -1, Aﬁalytiq continuation
qf.Eq. (A.3)vto values qf.E beiow El’ tﬁefefore, does not lead to
the correct reéult, Eq. (A.4), and is thus not the desired uniform
expression.

To remedy the situation one invokes the identity19

Ai(—z).-.—-'e-v‘"/3 Ai(ze_iﬂ/3) + ein/3 Ai(ieiﬂ/s) \ » '(A.S)

for the Airy function in'Eq.‘(A.3a). pr-as'E 1s decreased to

values below El one chooses z to be

2=z ™3
for the first term in Eq. (A.5), and
z=3 13

for the second term in Eq. (A.5). Since

e—in/3 + ei‘n/3v== 1 ,
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The RHS of Eq. (A.5) becomes Ai(z), so that Eq. (A.4) is obtained.

To summarize, the desired uniform expression is

S o - o

SZ,l = exp[—iklr ~ik,r + i [ dr' kl.(r’).+ i f..dr' k, (r')
r r

_ 1 v . 2

T T, o . g

+1 [ dr' k) (') -1 S drf k, ] 2ﬂ1/2 (2,2, 1/8

o ro ro K

[e-iw/3 Ai(zlefiﬂ/3)+ 1m/3 Ai(zzeiN/;)] . :‘ (4.6)

where r + »; for E > E2, Zy = 2,=2, 2 real and positive, defined

by Eq. (A.3b). For E <.E2, zy and z, are complex, being different
branches of the'multiﬁalued function z; z; is the branch which

becomes z eiﬂ/3

for E <’El, and z, is the branch which becomes
; e —iﬁ/3

. Via Eq. (A.6), therefore, Eqs._(A.S) and'(A.A) are
now seen to be analytic continuations of each other, and one also

has a we11—behaved expression for the intermediate region E1 < E < Ez.
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FIGURE CAPTIONS.

Thétdifferenge of the I and T potential curves of Xe - F(ZP)

- as a function of internuclear distance.. The points are those

- calculated by:Liskowg et al. (ref. l§),pandfthé’¢urvé is the

exponential function Aexp(-Ar), with A = 1.65 aovl; A = 48,2

hartrees. »
The transition probability for Xe + I(2P3/£5v%'Xe + F(2P1/2)
as a function of impgct parameter at an initial collision
enefgy‘pf 1 eV. The solid'line-(ihéluding.;he“insert) is the
result of the complete semiclassical expreééibﬁ [EQS.IKZ.IO),
2.11), 2.15)] - | | |

'  , and the dashed line the élassiéal resul; [Eqs; (2.10),
(2.11), (2.17)] which omits intefferenée and ﬁgnne1ing.
Same'és Figure 2 except for é collision'enéré§ of O;I_éV.

. . _ 2. . 2. : ‘
The cross section for Xe + F( P3/2) -+ Xe +‘F( P1/2) as a

function of initial collision energy; the»arrow'indicates the

threshold. The solid curve is the classicél-result which

omits interferencé and‘tunneling, and the dééhe& curve the
result of the complete éemiclaSsical expressibns.' |

The réduced‘crOSS‘seétion of Eq. (4.6) - (4}7)_which is obtained

in the high energy approximation, as a function of the reduced

- velocity.

The cross section, in units of 2 mr 2, for Xe + F(ZP )
9 "0 3/2
Xe + F(ZPI/Z) as a function of the reduced veloéity. The solid

curve is the '"classical" version of the semiclassical result
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(i.e., the same as the solid curve in Fig. 4), and"the dashed

curve is the high energy approximation to;it;'i.é., the dashed

curve is the function f(x) of Eq. (4.6)-—f(4.7) with x = (E/E')llz.

‘The non-adlabatic coupling matrix element for Xe + F, defined
.by Eqs. (4.10) - (4.12), as a function of internuclear distance.

' The difference of H and 22 potential curves of H - F( P) as a

function of internuclear distance. The points are the calcula-
tion of Wahl et al. (ref. 18), and the solid ourve_the gaussian
fit of Eq. (5.1).

The cross section for H + F( P3/2) > H + F( P1/2) as a function

~of initial c011151on energy; the arrow indicates the threshold

for the transition. The points are the quantum mechanical values
of Mies (ref. 4).
A sketch of two adiabatic potential curves. r, is the real part

of the complex crossing point; for E > E,» E; <E<E,, or E<E,

“ro,is olassically_accessible on both.potential curves, only on

Vi(r); or on neither potentigl-curve, respectively.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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