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Abstract

ADHD is a neurocognitive disorder characterized by attention difficulties, hyperactivity, and 

impulsivity, often persisting into adulthood with substantial personal and societal consequences. 

Despite the importance of neurophysiological assessment and treatment monitoring tests, their 
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availability outside of research settings remains limited. Cognitive neuroscience investigations 

have identified distinct components associated with ADHD, including deficits in sustained 

attention, inefficient enhancement of attended Targets, and altered suppression of ignored 

Distractors. In this study, we examined pupil activity in control and ADHD subjects during 

a sustained visual attention task specifically designed to evaluate the mechanisms underlying 

Target enhancement and Distractor suppression. Our findings revealed some distinguishing factors 

between the two groups which we discuss in light of their neurobiological implications.

1. Introduction

Attention Deficit/Hyperactivity Disorder (ADHD) is a neurocognitive disorder characterized 

by behaviors like difficulty sustaining attention, restlessness, and impulsivity. People with 

ADHD may struggle to focus, exhibit levels of agitation, and often act impulsively. It is 

usually diagnosed in childhood using a set of criteria based on observed behavior and 

reported symptoms, but it can remain undetected and persistent until adulthood[7,38,2]. 

Adult ADHD is prevalent and enduring with substantial personal and societal impacts but 

objective methods for characterization of the disorder are limited [17].

Cognitive neuroscience studies have identified two functionally and neuronally distinct 

components of selective attentional control that can be altered independently: (a) a 

top-down controlled enhancement of attended targets and (b) suppression of ignored 

distractors[8,35,49]. ADHD symptoms include distractibility to irrelevant stimuli and 

difficulty to protect the ongoing focus of attention from distractors[37,1].

Pupil activity and attention are closely interconnected. In visual search, for example, 

we have found that pupillary dilation indicates target detection and decision-making 

processes[32,33]. A wide volume of data show how this dilation mechanism expands to 

many other cognitive tasks and can index cognitive workload, performance, and attentional 

effort in general[14,16,18,39,20,45,21].

We measured pupil activity of participants with ADHD and neuro-typical controls in a 

sustained visual attention experiment specifically designed to assess the aforementioned 

principle of attending-Targets vs. ignoring-Distractors enhancement/suppression mechanism.

2. Methods

We enrolled 76 adults: 42 Control and 34 ADHD (age range 18–40 years old) in the 

Berkeley, University of California, site. All participants in the ADHD sample were recruited 

from the University clinics, pools from prior University ADHD studies, local clinics, private 

practice clinicians and ADHD groups. Neurotypical controls were volunteers that responded 

to a participants recruitment flyer.

Specific inclusion criteria for ADHD participants included the following: (i) meeting 

of DSM-5 criteria for ADHD (American Psychiatric Association, [2]) presenting with 

clinically significant levels of impairment as assessed by structured clinical interview 

and the Adult ADHD Clinical Diagnostic Scale (ACDS DSM-5); (ii) Clinical Global 
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Impression-Severity (CGI-S) as indicated by a score ≥ 4; (iii) estimated IQ equal or greater 

than 80 (measured by WASI-II); (iv) allowance of anxiety disorders, persistent depressive 

disorder (dysthymia), antisocial personality disorder, oppositional defiant disorder (ODD), 

conduct disorder (CD), nicotine abuse or dependence allowed as comorbidities for 

the ADHD sample—to enhance generalizability; (v) ability to complete required study 

procedures.

Exclusion criteria (assessed with the Mini International Neuropsychiatric Interviews, MINI, 

DSM-V) for ADHD participants were as follows: lifetime history of bipolar disorder, 

major depression disorder (MDD), psychotic disorder, pervasive developmental disorder, 

substance abuse, or substance dependence (except nicotine). We excluded MDD while 

keeping Persistent Depressive Disorder (PDD) because MDD involves being in episode, 

while PDD is often considered a syndrome marked by lower levels of symptom severity 

without a clear episodic course. We felt that current MDD would interfere too much with 

their cognitive testing, thereby confounding the study data and assessment.

Exclusion criteria for ADHD and neurotypical participants included the following: (i) 

history of childhood neurodevelopmental disorder other than ADHD (e.g., autism, dyslexia); 

(ii) history of a general medical condition requiring chronic use of medication with CNS 

effects on cognitive performance; (iii) history of seizure disorder, brain tumor, other 

major neurological disorder, or head injury resulting in loss of consciousness; (iv) history 

of serious oxygen deprivation; (v) current psychopathology requiring ongoing treatment 

with antipsychotic medications, mood stabilizers, benzodiazepines, or anticonvulsants; (vi) 

current untreated psychopathology rated as greater in severity than ADHD per se; and (vii) 

current treatment with guanfacine (because of the unacceptable risks of rapid withdrawal). 

Neurotypical control participants were matched to the ADHD sample for age, gender, 

estimated IQ (IQ > 80 measured by WASI-II), and years of education.

One of the challenges in identifying a clinically generalizable sample of adults with 

ADHD is the well-known rates of psychiatric comorbidity, especially for mood and 

anxiety disorders. We are unaware of conclusive data suggesting that maintenance 

treatment with antidepressants for mood or anxiety syndromes significantly confounds 

cognitive testing. We thus excluded any medications with known cognitive effects (atypical 

antidepressants, antipsychotics, mood stabilizers, benzodiazepines, anticonvulsants) while 

allowing participants with stable maintenance treatment with antidepressants (stable dose for 

greater than 3 months) to be enrolled. We do not have the data for how many participants 

were taking typical antidepressants. To minimize acute effects of stimulants and atomoxetine 

on cognitive performance, participants were asked to refrain from ADHD medication use 

for a period of approximately 24 h prior to testing sessions. Such an approach was justified 

by the best available data showing limited durations of behavioral and performance effects 

beyond 12––14 h for stimulants and atomoxetine [25,47].

All participants were invited to come into the University testing facility for a diagnostic 

assessment lasting 1–2 h. Those participants who passed the screening and were diagnosed 

and assigned to the ADHD or Control group were then invited to come for a second and then 

a third visit one month later, each lasting about 1 h, for our experimental protocol.
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Participants performed the experiments in scotopic condition in a booth of approximately 

2×2 square meters that isolated them from the surrounding laboratory. The booth contained 

a chair and a small desk with the stimulus monitor as the only source of illumination, along 

with the pupil-tracker apparatus: EyeLink 1000 head supported eye-tracker system (https://

www.sr-research.com/EL_1000.html).

The visual settings of the experiment consisted of two circular light gray patches of 1.5 deg 

in diameter and located 12 deg apart horizontally, flickering on a darker gray background 

(Fig. 1). A black cross was positioned at the center of the two gray patches for eye fixation. 

The frequency of the flickering was well beyond the 2 Hz break frequency of the pupil 

servomechanism and thus could not influence low-frequency pupil fluctuations[31]. Targets 

and Distractors took the form of a square checkerboard superimposed over the flicker region, 

with side lengths of 1 deg. The checkerboard pattern consisted of four smaller squares 

spatially alternating between black and the gray used in the flicker patches. Targets and 

Distractors appeared every 1–5 s (randomized continuously) and remained on for 100 ms. 

The sequences for the two patches were independent, so that there was not any temporal 

perceptual relationship between the stimuli at the two locations. An a udio message saying 

“left” or “right” (of the fixation point) and just prior to the start of the experiment defined 

the side to attend. The participant was instructed to respond with a button press to target (a 

patch in the attended side) detection and to ignore patches that occurred on the non-attended 

side (i.e. distractors). Each trial of stimulus events lasted two minutes and included an 

average of forty patch stimulus presentations drawn on top of the flickering patch (Fig. 1, 

see Target or Distractor); trials were then repeated seven or eight times with a few minutes 

break in between. The entire task lasted approximately 45 min, with each trial being unique, 

as the sequence and timing of Targets and Distractors were randomized for each iteration.

Pupil diameter was recorded at a sampling frequency of 1000 Hz for the duration of the 

measurement (the example in Fig. 2 top panel shows only the first 20 s of one trial of 

one participant) and subsequently segmented into short periods of 1.5 s corresponding 

to each of the visual stimuli, with time zero (and diameter zero) indicating the time of 

(and the diameter at) stimulus presentation. These segments were finally grouped based on 

the stimulus (Targets or Distractors) and population (Controls or ADHD). Their average 

waveform is reported with a solid line in blue for Controls and gray for ADHD, with 

standard error indicated by a shaded area of the same color (Fig. 2, lower, middle and right 

panels, standard error refers to the mean of the mean of the waveforms of each subject). 

For significance testing between groups, we used the same cluster-based permutation test 

used and discussed in previous works[24], see also, [32]; and [10]. According to the test, 

areas of statistical significance between waveforms (for p < 0.01) are represented by an 

orange-shaded background.

Eye blink artifacts were detected off-line in post-processing analysis using the information 

included in the Eyelink eye tracker output and recovered with a linear fit. Each individual 

trial was visually inspected to check the presence of major tracking artifacts and, in case, 

removed from the analysis, about 25 % of the total number of trials.
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3. Results

Each trial was analyzed into two parts. The initial three-seconds (Fig. 2, bottom-left panel) 

reveal a rapid constriction of the pupil in response to the presentation of the gray background 

on the stimulus monitor at the beginning of the trial. Controls showed larger pupil diameters 

at baseline and through the entire duration of the reflex (Fig. 2, bottom-left panel), but with 

the same waveform as that of ADHD participants (small inset in Fig. 2, bottom-left panel, 

see mean waveforms shifted vertically for comparison and well overlapped).

The following 117 s of the trial corresponding to the actual visual experiment are 

characterized by a low-frequency quasi-erratic pattern of dilation-recovery oscillations (Fig. 

2, top panel) resembling pupil unrest [40]. We measured the amount of this activity using the 

interquartile distance, a measure of dispersion or variability given by the difference between 

the 75th and the 25th percentiles of the pupil diameters during the entire recording. It was 

larger for Controls (Fig. 3), 0.42 vs. 0.33, p < 0.0001, per an independent-sample t-test with 

a Cohen’s d effect size of 0.44. A different approach based on the analysis of the power 

spectrum of the Fourier transform in the low-frequency bandwidth of 0.1–2 Hz (see also 

[27]yielded the same conclusions: Controls have larger variations within the frequency range 

of interest.

Pupil segments are grouped, averaged, and displayed based on the stimulus, as well as 

Targets vs. Distractors and Controls vs. ADHD, (Fig. 2, bottom, middle and right panel). 

Time zero (and diameter zero) indicates the time of (and the pupil diameter at) the visual 

stimulus presentation. Both Targets and Distractors show an initial period of latency lasting 

approximately 250 msec after the presentation (green double arrow), during which the 

waveforms almost perfectly overlap, and the pupil does not yet show any significant 

reaction. This latent period is then followed by two different behaviors: a dilation for 

Targets (Fig. 2, bottom, middle panel) and a constriction for Distractors (Fig. 2, bottom, 

right panel). In response to Targets, onset and rate of the dilation is quicker for Controls 

than for participants with ADHD (Fig. 2, bottom, middle panel). For Distractors, the overall 

waveform of the constriction does not show a significant difference as measured by the 

cluster-based permutation criterion. However, when considering only the peak time of the 

constriction (indicated by the orange arrow in Fig. 2, bottom right panel), the amplitude of 

that constriction is significantly larger for Controls (0.015 mm vs 0.23 mm, p < 0.0001) 

according to an independent-sample t-test with a Cohen’s d effect size greater than 2.

4. Discussion

4.1. Phasic and tonic pupil behavior in the experiment

We conducted a simple visual experiment to assess sustained attention in a Target vs. 

Distractor paradigm consisting of a fixation point and small visual stimuli appearing 

intermittently on the right and left inside of the fixation. Subjects were asked to attend only 

one side (Target) while ignoring the other (Distractor) and to report Target detection with 

a button press. Controls have larger tonic pupils at baseline and through the entire course 

of the pupil light reflex during the initial three seconds of the experiment before stimuli 

presentation; (Fig. 2, lower left panel). In the remaining 117 s of the trial, as expected, visual 
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detections induced small and repeated pupil dilations [4,42,12,32]. Our data show that: (i) 

dilations are steeper for Controls (Fig. 2, lower middle panel); (ii) Distractors evoked an 

inverse (constricting) pupillary response for both groups as expected but with a slightly but 

statistically significant greater amplitude observed in the Controls group. (Fig. 2, lower right 

panel); (iii) the overall pupil variability was larger for Controls (Fig. 3). These findings 

are consistent with challenges observed in ADHDs regarding the effective allocation (and 

disallocation) of attentional resources to the sequence of Targets (and Distractors). We 

provide below a neurobiological rationale which involves a role of Locus Coeruleus.

4.2. Locus coeruleus (LC), catecholaminergic activities and ADHD

Catecholamines, including dopamine and norepinephrine (i.e. noradrenaline), have a 

modulating role in perception and cognition with enhancing effects on perceptual acuity, 

decision making and the execution of goal-directed behavior[4,6]. More specifically, 

in situations of uncertainty, they have a role in consolidating and supporting attention 

and decision making[12]. The locus coeruleus (LC), a small nucleus located deep 

in the brainstem, is one of the primary sources of norepinephrine in the brain and 

strongly influences dopamine neural activity and dopaminergic receptors in general[29,26]. 

Dysfunction in the LC system has been implicated in the etiology of ADHD[3].

4.3. Locus coeruleus LC, catecholaminergic activities and the pupil

The size and dynamics of the pupil depend on a variety of sensory and attentional 

factors acting synergistically on the two muscles of the iris: the sphincter and the 

dilator. The Edinger–Westphal (EW) complex in the midbrain is the main parasympathetic 

nucleus of the pupil. It receives excitatory inputs from retina and accommodative centers; 

light, for example, constricts the sphincter, relaxes the dilator, and thus produces pupil 

constriction[22,44]. We can refer to this process as the “anti-attentional” pathway.

Baseline activity in the LC directly projects to the EW complex[23]) in an opposite 

inhibitory fashion causing pupil dilation[4,42,32,12]. The cortex itself exercises an influence 

on the pupil through widespread catecholaminergic inhibitory projections to the EW 

nuclei and, thus, directly mediates pupillary responses to cortical activity[19,44]; general 

arousal for example, or alertness, or sustained mental processing produce pupil dilation. 

[14,16,18,41,30]. The posterior hypothalamic nucleus is also closely interconnected with 

the LC[44,13]and produces enlargement of the pupil by direct activation of the dilator 

muscles[22]. We can use the term “attentional pathway” to refer to this constellation of 

processes.

4.4. Phasic and tonic imbalances of the dopamine system in ADHD

The neurobiology of ADHD is complex and heterogeneous; research has focused primarily 

on catecholaminergic deficiency, mostly dopamine, which are also the main target of 

pharmacological treatments, generally based on stimulant medications[9,43,1]. The impact 

of dopaminergic deficit on behavior and cognition can be summarized as an improper 

balance between phasic and tonic activities in the distributed catecholaminergic network 

including the LC and yielding: (i) inability of maintaining an appropriate arousal tone 

and sustained attention during focused tasks, (ii) ineffective initialization of salient-related 
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phasic signaling for perceptual processing and preparation of responses[4,15,11,36,28,1] and 

(iii) altered suppression of ignored distractors likely linked to increased distractibility [8,35]. 

Elderly patients with cognitive decline show a similar impairment of distractor suppression 

in their fMRI brain measures[8].

4.5. Our findings regarding pupil behavior align with each of these three imbalances

Attentional and non-attentional processes engage in an agonist–antagonist interplay within 

the muscular apparatus of the iris sphincter and dilator. Attentional processes involve 

the sympathetic pathway, which, as discussed earlier, is responsible for modulating pupil 

size during active cognitive tasks and decision-making. It achieves this through direct 

mechanisms involving sympathetic hypothalamic innervation of the dilator muscle and 

indirect mechanisms involving cortical and locus coeruleus catecholaminergic projections 

on the Edinger-Westphal hub that innervates the sphincter muscle. The sympathetic 

attentional pathway is a dilator, and it measures attention. Conversely, the parasympathetic 

non-attentional pathway is involved in responding to passive and unattended stimuli, 

including light and general retina stimulation, irrespective of their visual significance. 

The parasympathetic non-attentional pathway is a constrictor, and it responds to passive 

perception[22].

In our experimental setup, the appearance of a patch in the visual field, even under 

isoluminant conditions, is expected to trigger a non-attentional parasympathetic pupil 

constriction [48,5]. In the case of attended Targets, this constriction is effectively 

counterbalanced by a strong attentional dilation, as depicted in Fig. 2 (lower middle panel). 

Non-attended Distractors cause constriction (Fig. 2, lower right panel); the difference in 

magnitude between the two groups suggests the existence of a counteracting attention-

resistant and dilatory component within individuals with ADHD that slightly hinders their 

ability to exhibit the expected level of constriction in response to the non-attended stimuli.

4.6. Limitations, future directions and conclusion

Although some pupil variables, such as velocity and baseline diameter, are known to be 

attenuated by age, our cohort, which ranges from late teens to late thirties, appears to be 

unaffected by such age-related effects, as demonstrated in prior research (e.g., [34]. This is 

why we omitted to consider age in our analysis. Future experiments are recommended to 

characterize and compare the principles elucidated in this study with ADHD subjects that 

include childhood, pre-adolescents, and older populations.

The protocol introduced in this study is relatively straightforward to program and administer. 

The visual task is easily comprehensible and can be followed by individuals of all ages, 

requiring minimal cooperation from the subjects. The presentation display includes a central 

fixation point and two simple flickering sources of visual stimulation positioned randomly 

on either side of the fixation point, serving as targets or distractors of attention.

Both target and distractors can be repetitively displayed, enabling the collection of a 

substantial amount of data points for statistical analysis in a relatively short time. Multiple 

pupillary signatures have been demonstrated to be valuable for diagnostic purposes. In the 

case of targets, we look at the briskness of the corresponding pupil dilation, which tends 
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to be slower in individuals with ADHD. For distractors, we look at the amplitude of the 

corresponding constriction, which is typically smaller in individuals with ADHD. Overall, 

individuals with ADHD exhibit smaller pupils and reduced variability during the trial.

Our findings align with those reported in a similar experiment conducted by Aboitiz’s 

group[46], which utilized a different type of visual stimuli and a younger population (10–11 

years-old). To the best of our knowledge, this is the only other literature available on this 

subject. The two studies can be distinguished based on two specific aspects of the protocol. 

Firstly, the cognitive load involved in our task was limited to a simple target detection 

(as opposed to the requirement of memorizing a visual pattern that is embedded within 

a sequence containing other distracting images). Secondly, we introduced Distractors as 

distinct and independent perceptual events, allowing for a comparative analysis of their 

influence on the pupil response in comparison to that elicited by Targets. This allowed us to 

investigate how processes related to suppressing distractions are also involved in ADHD.

Both works provide a valuable foundation for future research aimed at developing and 

refining a psychophysics paradigm that can be used as a biomarker to improve ADHD 

evaluation and nosology. This research endeavor promises to not only enhance our 

understanding of ADHD’s underlying mechanisms but also to contribute significantly to the 

advancement of diagnostic tools and therapeutic interventions for individuals with ADHD. 

By building upon the insights and methodologies presented in these studies, the field can 

aim to develop more precise, efficient, and personalized approaches for the assessment and 

treatment of ADHD, ultimately benefiting both patients and the broader fields of neurology 

and psychiatry.
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Fig. 1. 
Targets and Distractors took the form of a square checkerboard superimposed over two 

circular light gray patches flickering on a darker gray background. A black cross was 

positioned at the center of the two gray patches for eye fixation. An audio message just prior 

the start of the experiment would define the side to attend (left in this example). Targets and 

Distractors appeared every 1–5 s (randomized continuously) and remained on for 100 ms.
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Fig. 2. 
Top Inset. Pupil diameter was recorded for two minutes but only the first 20 s are displayed 

in this example (top inset). Arrows show the moment of presentation of Target (T) and 

Distractors (D). Bottom left panel. A light-induced pupil constriction characterizes the first 

three seconds of each trial; solid lines show the average waveform of Control (blue) and 

ADHD (gray), standard error is indicated by a shaded area of the same color. Areas of 

statistical difference between waveforms (for p < 0.01) are represented by the orange shaded 

background – when shifted vertically for comparison (small inset) the shape of the two 

average waveforms coincide. Bottom middle and right panel. Pupil segments are extracted 

from the following 117 s of the trial, grouped, averaged, and displayed based on Targets vs. 

Distractors and Controls vs. ADHD; time zero (and diameter zero) indicates the time of (and 

the pupil diameter at) the visual stimulus presentation. Controls have a more rapid onset of 

the dilation for Target and a larger constriction for Targets.

Privitera et al. Page 13

Neurosci Lett. Author manuscript; available in PMC 2025 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Pupil variability during the 117 s of the trial corresponding to the actual visual experiment is 

measured by the difference between the 75th and the 25th percentiles (interquartile distance) 

and is higher in Controls.
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