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a genomic data archive from the 
Network for Pancreatic Organ 
donors with Diabetes
Daniel J. Perry  1,11, Melanie R. Shapiro  1,11, Sonya W. Chamberlain2, Irina Kusmartseva  1,  
Srikar Chamala1, Leandro Balzano-Nogueira1, Mingder Yang1, Jason O. Brant1,3, 
Maigan Brusko1, MacKenzie D. Williams1, Kieran M. McGrail1, James McNichols1, 
Leeana D. Peters1, Amanda L. Posgai  1, John S. Kaddis4, Clayton E. Mathews1,5, 
Clive H. Wasserfall1, Bobbie-Jo M. Webb-Robertson  1,6, Martha Campbell-thompson1,7, 
Desmond Schatz5, Carmella Evans-Molina8, Alberto Pugliese9, Patrick Concannon1,10, 
Mark S. anderson2, Michael S. German2, Chester E. Chamberlain2, Mark A. atkinson1,5 ✉  
& Todd M. Brusko  1,5 ✉

the Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of 
human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-
onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), 
gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, 
processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard 
operating procedures, and associated de-identified data/metadata to researchers around the world. 
Herein describes the release of high-parameter genotyping data from this collection. 372 donors were 
genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data 
were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed 
HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel 
coding region variants via whole exome sequencing (WES). These data are publicly-available to enable 
genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in 
the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development 
of novel therapies.
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Background & Summary
Genetic predisposition to risk for or protection from type 1 diabetes (T1D) is highly polygenic, with the total 
possible set of disease-associated variants yet to be fully defined1. Genome-wide association studies (GWAS) 
have identified population-level risk loci (minor allele frequency (MAF) >1%), dominated by Human Leukocyte 
Antigen (HLA) class II and insulin, and accompanied by 77 additional regions, which in total cover over 3,600 
predicted causal moderate effect size variants (odds ratio (OR) <2) associated with genes thought to impact 
leukocyte and pancreatic β-cell function2,3. While a combination of many such population-level variants may 
contribute to the development of “classical” T1D2,3 and latent autoimmune diabetes in adults (LADA)4, we are 
beginning to appreciate that rare (MAF ≤1%) larger effect size (OR ≥2) variants may explain the “missing 
heritability” of autoimmune diabetes5 (Fig. 1a). In support of this notion, rare variants with large effect size 
are associated with monogenic autoimmune forms of diabetes including immune dysregulation, polyendocrin-
opathy, enteropathy, X-linked syndrome (IPEX), signal transducer and activator of transcription 3 (STAT3)-, 
and cytotoxic T-lymphocyte protein 4 (CTLA4)-associated diabetes6, in addition to non-autoimmune forms of 
diabetes such as maturity-onset diabetes of the young (MODY) and cystic fibrosis-related diabetes (CFRD)7.

The Network for Pancreatic Organ donors with Diabetes (nPOD)8, founded in 2007, has become the larg-
est biorepository of human pancreata, pancreatic lymph nodes, and spleen from organ donors with T1D, 
MODY, CFRD, T2D, gestational diabetes, non-diabetic islet autoantibody positive (AAb+) donors, and 
non-diabetic autoantibody-negative (AAb-) control donors9. nPOD provides worldwide distribution of bio-
specimens to researchers working to elucidate T1D pathogenesis in order to promote the development of new 
strategies for prevention and treatment. To date (September 2022), nPOD has supplied biosamples to > 280 
independent research projects studying β-cell physiology, β-cell differentiation, immunology, T1D biomark-
ers, technology development, T1D pathology, and diabetes etiology (https://www.jdrfnpod.org/publications/
current-npod-projects/, accessed October 21, 2021). A major goal of nPOD, in addition to biosample distri-
bution, is the sharing of de-identified donor data from multiple core laboratories to facilitate discovery efforts. 
The nPOD Data Portal provides approved investigators with access to donor clinical and demographic infor-
mation, serum HbA1c and C-peptide levels, islet AAb status (insulin, glutamic acid decarboxylase [GAD], 
insulinoma-associated antigen-2 [IA-2], zinc transporter 8 [ZnT8])10, pancreas weights, and histopathology 
reviews8,11 (https://portal.jdrfnpod.org/, accessed October 21, 2022). Whole slide scans from hematoxylin and 
eosin-stained (H&E) sections are available for online viewing via the Online Pathology portal (https://aperi-
oeslide.ahc.ufl.edu/, accessed October 21, 2022) for access to cross-sectional pancreas morphology as well as 
multiplex immunohistochemistry (IHC)-stained sections for insulin, glucagon, somatostatin, and pancreatic 
polypeptide (PP) to visualize endocrine β-, α-, δ-, and PP cells, respectively. Multiplex IHC staining panels 
are also available for markers including, but not limited to, Ki67, CD3, insulin, and/or glucagon for quantifi-
cation of cell proliferation and immune cell infiltration in pancreatic endocrine and exocrine compartments. 
Histopathology reports summarizing blinded assessment of H&E- and IHC-stained sections from pancreas 
and other available organs are provided to detail islet parameters and major abnormalities. In terms of genetic 
data, the standard operating procedures (SOPs) for nPOD donors were previously limited to the collection of 
high-resolution four-digit HLA genotypes8,12. The availability of additional high-parameter genotyping data has 
therefore been a high priority that is now realized with the data release described herein.

Our approach for characterizing nPOD donor genetics was twofold: donors were genotyped with 1) the 
University of Florida Diabetes Institute (UFDI) custom single nucleotide polymorphism (SNP) microarray 
(UFDIchip)13 and 2) the University of California San Francisco (UCSF) standardized whole exome sequencing 

Fig. 1 Complementary methods for detecting genetic variants associated with T1D. (a) The effect size of any 
given variant on T1D risk is inversely related to the frequency of the variant5. (b) To detect more commonly 
observed variants, DNA samples from nPOD donors were probed for the presence of SNPs previously reported 
in T1D GWAS2 efforts using the UFDIchip, yielding CEL microarray image files (modified from Affymetrix 
Axiom website: https://www.affymetrix.com/products_services/arrays/specific/axiom_mydesign.affx). (c) To 
detect rare or novel variants, whole exome sequencing (WES) was performed on DNA from nPOD donors 
(modified from Roche NimbleGen SeqCap EZ Exome Library workflow68). Diagrams created in BioRender.
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(WES) pipeline14. Specifically, nPOD cases (N = 372)— comprised of AAb- no diabetes controls (N = 147), 
AAb + without T1D (N = 26), T1D (N = 111), T1D medalists15,16 (N = 2), T1D recipients of pancreas trans-
plant (N = 5), type 2 diabetes (T2D, N = 38), gastric bypass (N = 2), gestational diabetes (N = 4), monogenic 
diabetes (N = 4), cystic fibrosis (CF, N = 5), other diabetes (N = 12), other no diabetes (N = 12), and pregnant 
without diabetes (N = 4)— were genotyped using the UFDIchip13 custom AxiomTM array (Fig. 1b). All nPOD 
donors with available DNA or tissue were evaluated for population-level variants via UFDIchip. We prior-
itized the selection of T1D, AAb + without T1D, gestational diabetes, monogenic diabetes, and other diabe-
tes donors in addition to including a few no diabetes donors as controls for WES-based characterization of 
rare diabetes-associated variants that may not have been powered for detection by previous GWAS studies. 
Specifically, nPOD donors (N = 207)— including AAb- no diabetes controls (N = 13), AAb + without T1D 
(N = 34), T1D (N = 135), T1D recipients of pancreas transplant (N = 6), gestational diabetes (N = 4), mono-
genic diabetes (N = 4), and other diabetes (N = 11)— were queried for rare known and novel coding region var-
iants in autoimmune and MODY-associated genes via WES14 (Fig. 1c). Data emanating from these assays were 
used to provide individual genotypes, infer relatedness17 and genetic ancestry18, impute HLA19, and calculate a 
combined T1D genetic risk score (GRS)20–22 per donor.

These genotyping data have been generated and made accessible to enable genotype-selected sample requests 
and the study of novel genotype:phenotype associations by the international community of nPOD investigators. 
We anticipate that the diversity of nPOD donor genetics may be partly responsible for inter-donor heterogeneity 
observed in islet health, insulitis composition, age at T1D onset, islet AAb status, and other endotype-related 
characteristics23–25. Importantly, beyond explaining diabetes heterogeneity, the findings facilitated by these data 
are expected to inform precision medicine strategies for prevention or suspension of the pathogenesis of T1D as 
well as other forms of diabetes.

Methods
Donor tissues. Transplant-quality organs, including pancreas and up to 13 other tissues, were recovered 
from cadaveric organ donors by United States (U.S.) organ procurement organizations (OPOs, http://www.
jdrfnpod.org//for-partners/npod-partners/, accessed October 15, 2021) in accordance with federal guidelines, 
then processed by the nPOD Organ Processing and Pathology Core (OPPC) according to University of Florida 
(UF) Institutional Review Board (IRB) approved protocol IRB201600029, as previously described8,11. Studies 
conducted using organ donor tissue samples from the nPOD biobank are classified as minimum risk research, as 
study participants are no longer living. However, informed consent for research participation is obtained from 
family members via both written and verbal communication prior to organ donation, with the consent processes 
undertaken by qualified personnel affiliated with the U.S. OPO network. All subject information is de-identified 
in accordance with HIPAA regulations. For each donor, clinical and demographic information, were obtained via 
medical chart review and OPO-conducted interview with the donor’s family. High-resolution four-digit HLA typ-
ing was performed by Next Generation Sequencing (NGS) as previously described8,12 at the Barbara Davis Center 
for Childhood Diabetes HLA Core (University of Colorado Anschutz Medical Campus). nPOD donors were 
categorized by diabetes type, verified by UF endocrinologist review of the de-identified terminal medical records 
(including diagnosis and duration of diabetes, history or clinical data for diabetic ketoacidosis, medications, and 
BMI), donor metadata (e.g., age, sex, reported race and ethnicity), and additional data (serum C-peptide levels, 
islet AAb status10, hemoglobin A1c [HbA1c], and high-resolution HLA8,12). Unique research resource identifiers 
(RRIDs) were assigned to each organ donor, in order to facilitate the provenance and reproducibility of results26.

Clinical Group Female Male
Black/African 
American

American Indian/
Alaska Native Asian

White/
Caucasian

Hispanic/
Latinx Multiracial

Age (Median 
[IQR])

Diabetes Duration 
(Median [IQR])

No Diabetes 50 97 30 1 1 93 20 2 15.20 [3.9–25.9] N/A

AAb + 12 14 2 0 0 18 6 0 25.17 [21.0–38.5] N/A

T1D 52 59 16 0 0 86 9 0 26.00 [19.1–33.9] 11.00 [5.0–20.0]

T1D Medalist 1 1 0 0 0 2 0 0 69.00 [64.5–73.5] 66.50 [62.8–70.2]

Transplant 1 4 0 0 0 5 0 0 52.00 [47.0–55.3] 38.00 [26.0–40.0]

T2D 18 20 11 0 2 17 8 0 48.90 [45.0–60.0] 10.00 [3.0–15.0]

Gastric Bypass 2 0 0 0 0 2 0 0 42.00 [39.0–45.0] 3.00 [3.0–3.0]

Gestational Diabetes 4 0 1 0 0 2 1 0 33.35 [32.2–33.9] 0.06 [0.1–0.1]

Monogenic Diabetes 2 2 1 0 0 2 1 0 33.55 [24.6–41.7] 17.50 [12.0–22.0]

Cystic Fibrosis 3 2 0 0 0 4 1 0 31.10 [29.3–33.0] 5.00 [2.0–7.0]

Other-Diabetes 6 6 2 0 0 7 3 0 33.95 [26.0–44.5] 4.00 [2.0–13.5]

Other-No Diabetes 6 6 0 0 1 8 3 0 17.52 [14.8–23.0] N/A

Pregnancy 4 0 2 1 1 0 0 0 29.45 [21.4–37.0] N/A

Total 161 211 65 2 5 246 52 2

Table 1. nPOD donors genotyped by UFDIchip. Data are presented as number of male and female donors 
and number of donors per reported race/ethnicity for each clinical group, along with age (years) and diabetes 
duration (years). AAb+ : islet autoantibody positive without T1D, T1D: Type 1 diabetes, T1D Medalist: T1D 
duration > 50 years15,16, Transplant: Medical history of T1D and pancreas transplant recipient, T2D: Type 2 
diabetes, N/A: not applicable, IQR: interquartile range.
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DNa isolation. DNA was extracted from frozen spleen or, for a limited number of cases in which spleen was 
unavailable, frozen pancreas, pancreatic lymph node, or small intestine were used. DNA isolation was performed 
using the Qiagen DNeasy Blood and Tissue DNA isolation kit according to the manufacturer’s instructions. Purity 
and concentration of extracted DNA were assessed with the Epoch Microplate Spectrophotometer (BioTek).

UFDIchip design. 372 nPOD donors (Table 1, Phenotype_data.txt27) were genotyped at 985,971 unique 
loci on a custom SNP array termed the UFDIchip13 (Fig. 1b). The base array is the AxiomTM Precision Medicine 
Research Array (Thermo Fisher Scientific), to which all content from the ImmunoChip v228 was added, as well as 
all previously reported credible T1D risk variants3 (Fig. 2, UFDIchip_library_file.xlsx27). The array also includes 
dense coverage of the highly polymorphic HLA region, which allows for accurate imputation of HLA haplotypes 
to 4-digit resolution.

Genotype processing and analysis. UFDIchip plates were processed on an Affymetrix GeneTitan instru-
ment with external sample handling on a BioMek FX dual arm robotic workstation. Axiom™ Analysis Suite 
software (v3.0, Thermo Fisher Scientific) was used to process raw CEL file data to plink text files. The software 
includes quality control (QC) procedures at the sample, plate, and SNP levels. These QC threshold parameters 
were set to Axiom™ Analysis Suite default stringency (“Best Practices Workflow” using “Human.legacy.v5” set-
tings). Under these settings, samples were included in analysis if dish QC (DQC) ≥ 0.82 and if QC call rate ≥ 97%. 
Plates were considered acceptable for analysis if average QC call rate ≥ 98.5% for passing samples. Best probe set 
was identified per SNP, with the SNP call rate threshold set to 95%. A screen for discordance from reported sex 
via X chromosome heterozygosity was then performed using plink v1.929. All data passed these QC screens and 
raw CEL files and a binary plink file containing processed data (GRCh37/hg19) from all cases are stored in the 
database of Genotypes and Phenotypes (dbGaP)27. Subsequent analyses included relatedness estimation using 
KING30, genetic ancestry imputation using ADMIXTURE18, HLA imputation using AxiomTM HLA Analysis 
Software19, imputation to 300 M SNPs and indels using the Trans-Omics for Precision Medicine (TOPMed) ref-
erence cohort with the Michigan Imputation Server31, and calculation of a T1D GRS21,22.

Validation of technical replicates. DNA from 24 nPOD donors were run in duplicate on the UFDIchip. 
SNP call rates were compared between technical replicates using Bland-Altman analysis. Reproducibility of gen-
otype calls between technical replicates were evaluated by kinship coefficient using KING30 (v2.1.2) software.

Fig. 2 University of Florida Diabetes Institute (UFDI) chip design. The UFDIchip contains probes from the 
following modules of the AxiomTM Precision Medicine Research Array (PMRA, Thermo Fisher Scientific): 
imputation genome-wide association study (GWAS) grid, human leukocyte antigens (HLA), killer cell 
immunoglobulin-like receptors (KIR), expression quantitative trait loci (eQTL), and fingerprinting/sample 
tracking. Custom additions to the UFDchip included single nucleotide polymorphisms (SNPs) from the 
following categories: ImmunoChip v2, credible type 1 diabetes (T1D) causal variants3, and investigator-initiated 
markers of interest.

https://doi.org/10.1038/s41597-023-02244-6
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Relatedness. Genotyping data from the nPOD cohort with unknown and from the 1000 Genomes phase 
3 cohort32 with known family relationships were merged and analyzed for genetic relatedness using KING30 
(v2.1.2) software. The integrated relationship inference command was used to infer up to third-degree relatives. 
Relationships between nPOD case pairs and between 1000 Genomes pairs were represented by plotting estimated 
kinship coefficients. Kinship coefficients of unrelated 1000 Genomes pairs were randomly downsampled to the 
number of nPOD subject pairs to allow for data visualization.

Genetic ancestry. Data from unrelated subjects from the 1000 Genomes phase 3 cohort32 were filtered for 
SNPs that overlap with the UFDIchip array using plink v1.929. The data were pruned for linkage disequilibrium 
(LD) by removing SNPs with R2 > 0.1, screening within a 50 SNP block and proceeding by steps of 10 SNPs. 
This yielded 1000 Genomes genotypes for 320,005 SNPs, which were used to run an unsupervised analysis using 
ADMIXTURE software18 (v1.3.0) with k set to five populations. Each of the five groups represented a unique 
continental population from 1000 Genomes and as such, were assigned: 1) African (AFR), 2) Admixed American 
(AMR), 3) East Asian (EAS), 4) European (EUR), and 5) South Asian (SAS)32. The 372 nPOD cases were then 
projected onto the reference population to estimate ancestry proportions. Dimensionality reduction of the 
resulting Q-values (ancestry proportions) was performed using principal component analysis (PCA) to enable 
visualization.

HLA Imputation. AxiomTM HLA Analysis Software (v1.2.0.38)19 was used to impute 2-digit and 4-digit HLA 
genotypes, along with probability scores for the imputed calls. Concordance with nPOD HLA typing results8 was 
assessed at HLA-A, HLA-DRB1, HLA-DQA1, and HLA-DQB1. The typed result was considered ground truth 
when the imputed result was discordant.

Imputation accuracy for each of these loci [Acc(L)] was calculated as previously reported33, substituting the 
dosage for the probability score that is provided by AxiomTM HLA Analysis Software19:

=
∑ +=Acc L

P A P A
n

( )
( 1 ) ( 2 )

2
i
n

i i L i i L1 , ,

where Pi is the probability for imputed alleles A1i,L and A2i,L for donor i at locus L. Imputed alleles were consid-
ered concordant when they were included in the donor’s set of typed alleles at locus L, and discordant when they 
were not in the set of typed alleles at locus L. For discordant alleles, Pi was set to 0. The summation of probabil-
ities for the total number of donors assessed, n, was then divided by the total number of alleles tested, 2n. The 
accuracy score ranges from 0, for no concordant calls, to 1, for complete concordance with probabilities of 1 for 
all alleles.

Concordance was calculated at the 2-digit and 4-digit level for genotypes related to T1D risk or protection, 
as determined in primarily White cohorts34–36. These included HLA-A*02:01, HLA-A*24:02, HLA-DRB1*03:01 
(DR3), HLA-DQA1*05:01–HLA-DQB1*02:01 (DQ2), HLA-DRB1*04:xx (DR4), HLA-DQA1*03:01–
HLA-DQB1*03:02 (DQ8), HLA-DRB1*08:01 (DR8), HLA-DQA1*04:01–HLA-DQB1*04:02 (DQ4), 
HLA-DRB1*15:xx (DR15), HLA-DQA1*01:02–HLA-DQB1*06:02 (DQ6), and HLA-DQA1*03:01–
HLA-DQB1*03:01 (DQ7), where xx is any sub-allele. The following formula was used:
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A A
A A

1 2
1 2

i
n
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i
n
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where the number of imputed alleles A1i,L and A2i,L matching the genotype of interest for donor i at locus L was 
summed across all donors, n, and divided by the number of typed alleles A1t,L and A2t,L matching the genotype 
of interest for donor i at locus L summed across all donors. The accuracy score ranges from 0, for no concordant 
calls, to 1, for complete concordance.

Donor-level imputation accuracy [Acc(S)] was calculated as:

=
∑ +=Acc S

P A P A

n
( )

( 1 ) ( 2 )

2
j
n

j j S j j S1 , ,

Clinical Group Female Male
Black/African 
American

American Indian/
Alaska Native Asian

White/
Caucasian

Hispanic/
Latinx Multiracial

Age (Median 
[IQR])

Diabetes Duration 
(Median [IQR])

No Diabetes 4 9 2 1 0 8 2 0 19.00 [7.8–24.5] N/A

AAb+ 12 22 5 0 0 21 8 0 25.17 [22.0–36.4] N/A

T1D 62 73 21 0 0 105 9 0 24.00 [17.5–32.6] 10.00 [5.0–19.0]

Transplant 0 6 0 0 0 4 2 0 42.34 [37.2–53.2] 28.00 [20.0–36.0]

Gestational Diabetes 4 0 1 0 0 2 1 0 33.35 [32.2–33.9] 0.06 [0.1–0.1]

Monogenic Diabetes 2 2 1 0 0 2 1 0 33.55 [24.6–41.7] 17.50 [12.0–22.0]

Other-Diabetes 5 6 2 0 0 7 2 0 34.00 [29.0–47.0] 3.50 [1.5–14.2]

Total 88 118 32 1 0 148 25 0

Table 2. nPOD donors subjected to WES. Data are presented as number of male and female donors and 
number of donors per reported race/ethnicity, along with age (years) and diabetes duration (years). AAb+ : islet 
autoantibody positive, T1D: Type 1 diabetes, N/A: not applicable, IQR: interquartile range.
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where Pj is the probability for imputed alleles A1j,S and A2j,S at each HLA locus j of donor S. Concordance was 
determined as described above, and Pj was set to 0 for discordant alleles. The total number of loci tested, n, was 
4 per donor (HLA-A, HLA-DRB1, HLA-DQA1, and HLA-DQB1). The accuracy score ranges from 0, for no 
concordant calls, to 1, for complete concordance with probabilities of 1 for both alleles at each locus for donor S.

T1D GRS calculation. We computed polygenic T1D genetic risk scores, referred to as GRS121,22, GRS237, 
and African-Ancestry (AA)-GRS38. GRS1 is calculated using dosages of risk genotypes for 30 T1D-associated 
SNPs21. Genotypes were obtained by imputing to the TOPMed (v r2)31 panel (R2 > 0.97). rs2187668 was not 
found in TOPMed, thus, a suitable proxy SNP from GRS237, rs9273369, was used instead. The HLA component 
of GRS1 was calculated using the Polygenic Risk Score (PRS) Toolkit for HLA (v0.22a) developed by Sharp et 
al.37. The non-HLA component of GRS1 was then calculated via weighted sum, using odds ratios from Oram 
et al.21. The HLA and non-HLA scores were summed and normalized as described in Oram et al.21. GRS2 is 
calculated using dosages of risk genotypes for 67 T1D-associated SNPs37. Genotypes were obtained by imputing 
to the TOPMed (v r2)31 panel (R2 > 0.97). rs2476601, rs1281934, rs9273342, rs9271346, rs1233320, rs16822632, 
rs116522341, rs559242105, and rs371250843 were not found in TOPMed, thus, suitable proxy SNPs rs6679677, 
rs1281943, rs9273032, rs9271347, rs1233320, rs17840116, rs9268500, rs3129197, and rs9266268 were respectively 
used instead. The HLA component of GRS2 was calculated using the PRS Toolkit for HLA (v0.22a) developed 
by Sharp et al.37. The non-HLA component of GRS2 was then calculated via weighted sum, using odds ratios 
from Sharp et al.37 and added to the HLA component. AA-GRS is calculated using dosages of risk genotypes 
for 7 T1D-associated SNPs38. Genotypes were obtained by imputing to the TOPMed (v r2)31 panel (R2 > 0.96). 
rs2187668 and rs34303755 were not found in TOPMed; thus, suitable proxy SNPs rs9273369 and rs9268838 
were respectively used instead. The AA-GRS was then calculated via weighted sum, using odds ratios from 
Onengut-Gumuscu et al.38.

WES. For 207 nPOD donors (Table 2, Phenotype_data.txt27), WES libraries were generated as previously 
described39 (Fig. 1c) using the Agilent SureSelect Human All Exon kit (Agilent Technologies, CA, USA). 
Procedures and quality control (QC) measures were performed following manufacturer’s recommendations. 
Briefly, 180–280 bp fragments were generated from genomic DNA by sonication (Covaris) with exonuclease 
and polymerase subsequently utilized to convert remaining overhangs into blunt ends. The DNA fragments 
were adenylated on the 3′ ends followed by ligation of adapter oligonucleotides. Successfully ligated DNA frag-
ments were enriched by PCR. Following hybridization with biotin-labelled probes, exons were captured with 
streptavidin-coated magnetic beads. After a wash, probes were digested. Libraries were enriched and index tags 
added by PCR. Amplified exon libraries were purified using AMPure XP (Beckman Coulter), quantified by 

Fig. 3 UFDIchip data are highly replicable and nPOD donors are unrelated. (a) Bland-Altman plot showing 
average vs. difference in QC call rates for n = 24 technical replicates. Horizontal dashed lines indicate 95% 
limits of agreement. (b) Relatedness analysis was performed using KING software30 for genotyping data 
from 372 nPOD donors, 24 of which were run in technical replicate, along with 2,504 1000 Genomes phase 3 
cohort32 subjects, known to include some closely related individuals. Relatedness assessed via estimated kinship 
coefficients. Kinship coefficients from nPOD donor pairs were compared to those from 1000 Genomes subject 
pairs including inferred parent-offspring (PO), first-degree siblings (FS), second-degree relatives (2nd), third-
degree relatives (3rd), and unrelated (UN). Bars represent median and interquartile range (IQR). Horizontal 
dashed lines indicate lower cutoffs for duplicate samples (kinship coefficient = 0.354) and second-degree 
relatives (kinship coefficient = 0.0884). Kruskal-Wallis test with Dunn’s multiple comparisons test for nPOD 
& nPOD (different subjects) versus all inferred 1000 Genomes subject relationship types or nPOD technical 
replicates.
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Agilent high sensitivity DNA kit using an Agilent Bioanalyzer 2100, then sequenced via Illumina Novaseq. 6000 
(Illumina, CA, USA). Burrows-Wheeler Aligner (BWA, v0.7.17) was utilized to map the paired-end clean reads 
to the GRCh37/hg19 human reference genome40. Genome Analysis Toolkit (GATK, v4.1.2.0) was employed for 
SNP/InDel detection41. Annotate Variation (ANNOVAR, v20191024) was used for variant annotation42. Other 
variant annotations were performed using American College of Medical Genetics (ACMG) Classification43, 
Sorting Intolerant from Tolerant (SIFT) Function Prediction (SIFT4G)44, PolyPhen-2 Function Prediction (v 
2.2.2)45, Combined Annotation Dependent Depletion (CADD, v1.6) Score46, Genome Aggregation Database 
(gnomAD, v2.1.1) frequency47, Human Gene Mutation Database (HGMD professional 2020.2)48, ClinVar 
(accessed August 31, 2020)49 and Centogene Mutation Database (CentoMD, v5.8)50. All data passed these QC 
screens and are stored in dbGaP27.

UFDIchip and WES comparison. For 167 nPOD donors, both UFDIchip- (Table 1, Phenotyp_data.txt27) 
and WES-based (Table 2, Phenotype_data.txt27) genotyping were performed. Biallelic autosomal variants detected 

Fig. 4 Diverse genetic ancestries of nPOD donors. (a) An unsupervised ADMIXTURE model for five 
population classes was built with the 1000 Genomes phase 3 cohort32 using linkage disequilibrium-pruned 
SNPs that overlap with the UFDIchip. Stacked bar plots of the proportion of the ancestry group assigned to 
each 1000 Genomes donor are shown grouped by major continental populations [African (AFR): yellow; 
Admixed American (AMR): red; East Asian (EAS): green; European (EUR): blue; South Asian (SAS): violet]. 
Four genetic ancestry classes were assigned to 1000 Genomes continental populations based on their high 
proportion in those groups (AFR, EAS, EUR, SAS). The fifth class was almost entirely found in the Admixed 
American group and was thus assigned to AMR. (b) While all five continental populations occupy distinct 
principal component (PC) space, a portion of AMR subjects are in proximity to EUR, suggesting shared genetic 
ancestry. (c) All 372 nPOD donors (black) were projected onto the 1000 Genomes reference. Americans of 
AFR Ancestry in SW USA (ASW, n = 112); African Caribbeans in Barbados (ACB, n = 123); Gambian in 
Western Divisions in the Gambia (GWD, n = 180); Mende in Sierra Leone (MSL, n = 128); Yoruba in Ibadan 
(YRI, n = 186); Esan in Nigeria (ESN, n = 173), Luhya in Webuye, Kenya (LWK, n = 116); Puerto Ricans from 
Puerto Rico (PUR, n = 115); Mexican Ancestry from Los Angeles, USA (MXL, n = 107); Colombians from 
Medellin, Colombia (CLM, n = 115); Peruvians from Lima, Peru (PEL, n = 130); Japanese in Tokyo, Japan 
(JPT, n = 105); Han Chinese in Beijing, China (CHB, n = 108); Southern Han Chinese (CHS, n = 171); Chinese 
Dai in Xishuangbanna, China (CDX, n = 109); Kinh in Ho Chi Minh City, Vietnam (KHV, n = 124); Finnish 
in Finland (FIN, n = 105); Utah Residents (CEPH) with Northern and Western European Ancestry (CEU, 
n = 183); British in England and Scotland (GBR, n = 107); Iberian Population in Spain (IBS, n = 162); Toscani in 
Italia (TSI, n = 112), Punjabi from Lahore, Pakistan (PJL, n = 158); Gujarati Indian from Houston, Texas (GIH, 
n = 113); Bengali from Bangladesh (BEB, n = 114); Indian Telugu from the UK (ITU, n = 118); Sri Lankan Tamil 
from the UK (STU, n = 128). Figure adapted from Kaddis, et al.53.
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in both assays and with at least one minor allele count (MAC) in the WES data were filtered using plink v1.929, result-
ing in 27,852 variants for comparison. Per-SNP intra-assay concordance levels were calculated across all subjects.

Data Records
UFDIchip array data are stored in dbGaP27 as raw CEL files and compiled processed data from all donors depos-
ited as binary plink files (hg19). All genotyped donors, as well as their age, sex, reported race, diabetes status and 
duration, are provided in Phenotype_data.txt27 with additional donor information available on the nPOD Data 
Portal (https://portal.jdrfnpod.org/, accessed October 21, 2022).

WES data are stored in dbGaP27, including raw exome sequencing data files (fastq format) or hg19 aligned 
exome sequencing data (bam format), in addition to processed variant files (vcf format). A spreadsheet listing 
variants and associated annotations per donor, as described in the methods, was also submitted (csv format). 
All donors subjected to WES, as well as their age, sex, reported race, diabetes status and duration, are listed in 
Phenotype_data.txt27 with additional donor information available on the nPOD Data Portal (https://portal.
jdrfnpod.org/, accessed October 21, 2022).

T1D-Associated 
Genotype34–36 T1D effect Locus

NGS-derived 
2-Digit HLA

NGS-derived 
4-Digit HLA n#

Concordance with 
Imputed HLA#

A2 Risk A 02
200 0.995

0201 169 0.982

A24 Risk A 24
60 0.983

2402 57 0.965

DR3 Risk DRB1 03
136 0.978

0301 128 0.992

DQ2 Risk

DQA1 05
204 0.985

0501 191 0.969

DQB1 02
198 0.995

0201 147 0.898

DR4 Risk DRB1 04

171 0.971

0401 96 0.917

0402 6 0.833

0403† 1 1.000

0404 32 0.781

0405 13 0.923

0407 18 0.667

DQ8 Risk

DQA1 03
192 0.969

0301 183 0.973

DQB1 03
265 0.996

0302 139 0.993

DR8 Risk DRB1 08
23 1.000

0801 11 1.000

DQ4 Risk

DQA1 04
29 0.931

0401 29 0.931

DQB1 04
31 0.935

0402 31 0.935

DR15 Protective DRB1 15

83 1.000

1501 60 1.000

1503 17 0.941

DQ6 Protective

DQA1 01
235 0.983

0102 117 0.983

DQB1 06
132 1.000

0602 77 1.000

DQ7‡ Protective

DQA1 03
192 0.969

0301 183 0.973

DQB1 03
265 0.996

0301‡ 97 0.979

Table 3. Imputed HLA concordance with typed HLA for T1D-associated genotypes. For the 372 nPOD donors 
evaluated, the number of alleles (n) and concordance rate are displayed for donors carrying specified genotypes 
associated with risk or protection from T1D, as determined by high-resolution four-digit HLA typing by 
next generation sequencing (NGS)8,12. †DRB1*04:03-DQ8 is protective; ‡DQ7 (DQA1*03:01-DQB1*03:01) is 
protective in DR4 haplotypes; #Calculations assume that typed HLA is accurate over imputed HLA.
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technical Validation
Quality control assessment of the UFDIchip genotype array. As of this report, 372 nPOD donors 
have been genotyped on the UFDIchip and the resulting data are accessible on dbGaP (see Data Records). All 
array results were subjected to basic QC analyses that assessed donor-level DQC; donor-, plate-, and SNP-level 
call rate; and sex concordance. Donor DQC or call rate failures were re-processed with freshly extracted DNA 
when necessary. nPOD samples were batch-processed with data from living donors20 to facilitate calling of 
low-frequency variants51, resulting in 942,466 high quality genotypes passing the SNP call rate threshold. The 
nPOD cohort demonstrated SNP call rates of 99.58 [99.19–99.84] (median [interquartile range (IQR)]). All 
nPOD samples were assessed for concordance between reported and imputed sex according to level of X chro-
mosome heterozygosity using plink v1.929. For all nPOD cases, imputed sex matched reported sex. Thus, all 372 
nPOD samples passed basic QC measures. Additionally, 24 nPOD samples were run in technical replicate to 
assess assay reproducibility. Call rates between the technical replicates differed minimally, with 0.087 ± 0.640% 
bias (mean ± standard deviation, Fig. 3a). Importantly, the kinship coefficients between the 24 technical replicates 
were 0.499 [0.496–0.499] (median [IQR]), suggesting near identical genotype calls (Fig. 3b).

Relatedness estimation. Next, relatedness between donors was assessed. Due to the nature of donor organ 
procurement, it is highly improbable, although not impossible, that nPOD donors may be related. A relatedness 

Fig. 5 HLA imputation accuracy is decreased in non-European donors. Donor-level HLA imputation accuracy 
[Acc(S)] was calculated for HLA-A, HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci by comparing to next 
generation sequencing (NGS)-based HLA typing. Acc(S) is shown for (a) all 372 nPOD donors, (b) for donors 
grouped by reported race, and (d) for donors grouped by highest proportion of genetic ancestry. African (AFR), 
Admixed American (AMR), East Asian (EAS), European (EUR), South Asian (SAS). Bars represent median and 
interquartile range (IQR). Kruskal-Wallis test with Dunn’s multiple comparisons test.

Fig. 6 GRS2 and AA-GRS show improved performance over GRS1 at distinguishing T1D from no diabetes 
in non-White donors. (a) GRS1, (b) GRS2, and (c) AA-GRS of all 372 nPOD donors grouped by self-reported 
White/Caucasian (blue), Hispanic/Latinx (red), and Black/African American (yellow) no diabetes versus 
T1D donors. Bars represent median and interquartile range (IQR). Two-way ANOVA with Sidak’s multiple 
comparisons test.
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analysis of the 372 nPOD donors (69,006 possible pair combinations) using KING software30 found that all of 
these donor pairs were inferred to be unrelated (>third-degree relatives). For comparison, we also assessed the 
relatedness of 2,504 1000 Genomes phase 3 cohort32 subjects. While this set was designed to consist of unre-
lated individuals, it unintentionally included a few first-, second-, and third-degree relatives32. When relatedness 
between nPOD donor pairs was compared to relatedness between 1000 Genomes32 subject pairs, nPOD donor 
pairs showed significantly smaller kinship coefficients than inferred parent-offspring (PO), full sibling (FS), 2nd 
degree relative, and 3rd degree relative pairs from 1000 Genomes (Fig. 3b), suggesting that nPOD donors are not 
closely related. Note that nPOD donor pairs had significantly larger kinship coefficients than inferred unrelated 
(UN) pairs from 1000 Genomes32 (Fig. 3b), potentially due to increased similarity in genetic ancestry52 between 
subjects in the nPOD cohort than in the 1000 Genomes cohort, which was specifically designed to sample indi-
viduals with diverse genetic ancestry. Beyond confirming expected relatedness in the nPOD cohort, this validates 
that users of this resource may employ population-level quantitative trait locus (QTL) analysis methods with 
these genetic data.

alignment with genetic ancestry. To further validate the UFDIchip data, we used the 1000 Genomes 
phase 3 cohort32 to build a reference model for genetic ancestry using ADMIXTURE software18 (Fig. 4a,b), 
projected all 372 nPOD donors onto this model to impute ancestry (Fig. 4c), and compared those results with 
reported race. Using methods modified from Kaddis, et al.53, we plotted PCA results of ancestry proportions and 
observed that each of the five major continental populations in the 1000 Genomes cohort (AFR, AMR, EAS, 
EUR, and SAS)32 clustered to occupy distinct PC space (Fig. 4b). This suggested that the five ancestry popula-
tions computed by ADMIXTURE were representative of the five continental populations from 1000 Genomes32. 
The ancestry proportions of 1000 Genomes32 continental populations were almost entirely represented by a sin-
gle ancestry group, with the exception of admixed populations including Admixed Americans (AMR), as well 
as the subcontinental populations, Americans of African ancestry in SW USA (ASW) and African Caribbeans 
in Barbados (ACB, Fig. 4a,b), as previously observed32. Next, the nPOD cohort was projected onto the 1000 
Genomes reference, revealing overlap with AFR, AMR, EAS, and EUR groups in PC space (Fig. 4c). Donors were 
then assessed for agreement between reported race and genetic ancestry, showing that the highest AFR, AMR, 
EAS, and EUR ancestry proportions were observed in donors reported as Black/African American, Hispanic/
Latinx, Asian, and White/Caucasian respectively (UFDIchip_admixture.xlsx27), which is consistent with other 
U.S.-based admixture studies54,55. Notably, racial identity is complex and the method of estimating proportions of 
continental genetic ancestries may not adequately reflect genetic diversity56. With this limitation in mind, these 
analyses accomplish the aims of: 1) ADMIXTURE model validation using UFDIchip array data and 2) qualifi-
cation of the genetic ancestry results as an alternative or additional covariate to reported race for users of this 
resource (UFDIchip_admixture.xlsx27)57.

HLA imputation accuracy and concordance. The nPOD cohort was HLA typed using next genera-
tion sequencing (NGS) at HLA-A, HLA-DRB1, HLA-DQA1, and HLA-DQB18 to identify donors with geno-
types that are associated with T1D risk or protection34–36. This enables an extra level of QC and validation of the 
UFDIchip array data by comparing typed to genetically imputed HLA genotypes. Imputation accuracy at each 
locus, Acc(L), was calculated assuming typed results were correct if discordant with imputed results. Overall, 
Acc(L) was >0.93 for low-resolution HLA (2-digit) and >0.90 for high-resolution HLA (4-digit) for the four loci 
tested (UFDIchip_HLA_imputation_accuracy.xlsx27).

Next, we assessed concordance between typed and imputed HLA for T1D risk (A2, A24, DR3, DQ2, DR4, 
DQ8, DR8, and DQ4) or protective (DR15, DQ6, and DQ7) genotypes34–36 (Table 3). At 2-digit resolution, all 
tested loci were greater than 93% concordant (median [IQR]: 98.5% [97.4%–99.8%], Table 3). At 4-digit resolu-
tion, HLA concordance was predictably lower (median [IQR]: 97.1% [92.5%–99.3%]), with notable discordance 
in the less common HLA-DRB1*04:xx genotypes (Table 3). Importantly, 4-digit genotypes that convert 2-digit 
risk to protective genotypes, such as HLA-DRB1*04:03 and HLA-DQB1*03:01, were accurately imputed with 
greater than 97.9% concordance (Table 3).

Data validation at the sample level was assessed using a sample imputation accuracy score, Acc(S), for 2-digit 
HLA at the four typed loci. Acc(S) was 0.984 [0.946–0.998] (median [IQR]), indicating high performance of the 
imputation methodology per sample (Fig. 5a). HLA imputation may be inaccurate when rare HLA genotypes 
and ancestrally diverse populations are underrepresented in the reference cohort33,58,59. In agreement with this 
notion, a breakdown of nPOD donors by reported race or by top genetic ancestry proportion suggests that 

Case ID Gene DNA Variant Protein Variant Zygosity gnomAD Frequency CADD Score

6033 KCNJ11 c.868G > A Val209Met Het 0.002% 23.5

6166 LMNA c.898G > A Asp300Asn Het 0% 28.8

6176 HNF1A c.29C > T Thr10Met Het 0.002% 22.2

6243 GLIS3 c.1863C > G His621Gln Het 0.001% 20.4

6264 INSR c.3034G > A Val1012Met Het 0.80% 26.1

6320 GATA6 c.1366C > T Arg456Cys Het 0% 31

Table 4. Gene variants previously published. Six nPOD donors were previously identified to have variants 
in monogenic diabetes-associated genes67. See Fig. 7. gnomAD: Genome Aggregation Database, CADD: 
Combined Annotation Dependent Depletion.
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imputation accuracy could potentially be improved with greater reference cohort diversity (Fig. 5b,c). Donors 
with reported race of White had significantly higher HLA imputation accuracy than those reported as Black or 
Hispanic/Latinx (Fig. 5b). Similarly, donors whose highest genetic ancestry proportion were EUR had higher 
imputation accuracy than donors whose were AFR or AMR (Fig. 5c). Notably, 4-digit HLA imputation showed 
100% concordance for the 24 nPOD subjects run in technical replicate on the UFDIchip.

T1D polygenic GRS performance using UFDIchip data. Polygenic risk scores summarize genetic 
risk for T1D as a continuous value by aggregating estimated risk at HLA and non-HLA loci21,22,37,38. The orig-
inal reports of GRS1 described its utility for discerning T1D from other forms of diabetes including T2D21,60 
and MODY22. We previously observed that a similar GRS robustly discriminated living controls from T1D sub-
jects reported as White but was less effective for non-White subjects, highlighting a need for diversity in risk 
modeling20,53. Shortly thereafter, GRS2 was developed to incorporate the impact of interactions between HLA 
haplotypes on T1D risk, showing improved discrimination of European ancestry T1D from control subjects37. 
Additionally, an AA-GRS was created to account for ancestry-specific T1D risk loci, with enhanced performance 
at distinguishing T1D from control subjects in AFR populations38. We therefore attempted to validate these pre-
vious findings regarding the ability of GRS1, GRS2, and AA-GRS to differentiate controls from T1D subjects by 
using the 372 nPOD cases subjected to genotyping. Indeed, White T1D donors (0.287 [0.264–0.303], median 
[IQR]) had significantly higher GRS1 values than White No Diabetes donors (0.231 [0.195–0.256], Fig. 6a). 
While Hispanic/Latinx T1D donors (0.283 [0.274–0.303]) also showed significantly higher GRS1 values than 
Hispanic/Latinx No Diabetes donors (0.233 [0.223–0.257]), Black T1D and No Diabetes donors were unable 

Fig. 7 WES data identify previously published monogenic diabetes-associated gene variants in nPOD donors. 
Six nPOD donors were previously identified to have variants in monogenic diabetes-associated genes67: 
(a) KCNJ11, (b) LMNA, (c) HNF1A, (d) GLIS3, (e) INSR, and (f) GATA6. Alignment data viewed using the 
Integrative Genomics Viewer (IGV) software63. See Table 4 for specific gene variant information. Note that the 
WES reads are sometimes of the complement strand depending on gene orientation.
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to be distinguished by GRS1 due to low scores in T1D donors (0.250 [0.234–0.261], Fig. 6a). In contrast, GRS2 
values were significantly higher in Black T1D donors (11.62 [10.05–12.78]) than Black No Diabetes donors 
(8.83 [6.75–10.36]), although Black T1D donor GRS2 values remained significantly lower than those of White 
T1D donors (14.38 [12.94–15.16], Fig. 6b). While the AA-GRS likewise succeeded at differentiating Black T1D 
donors (5.634 [4.061–8.001]) from Black No Diabetes donors (1.751 [0.804–3.964]), no significant differences 
remained between Black T1D and White T1D donors (Fig. 6c). Taken together, these results indicate that the 
nPOD cohort UFDIchip array data represent a validated resource for genetic studies of T1D. Additionally, we 
provide GRS1, GRS2, and AA-GRS genotypes and calculated scores to the community for future studies (GRS1_
GRS2_AAGRS_TOPMed_Imputed.xlsx27). Note that these scores differ from those provided in Kaddis, et al.53, 
due to updating the reference cohort for imputation from the Haplotype Reference Consortium (HRC)61 cohort, 
with predominantly European ancestry, to the TOPMed31 reference, with diverse genetic ancestry.

WES. 207 nPOD donors were also queried for rare variants using WES and associated data are accessible 
on dbGaP (see Data Records). Standard QC measures were performed to minimize adapter contamination, 
low-quality reads, error rate, and sequencing bias. To further validate data quality, we measured concordance 
between genotype calls from the UFDIchip and WES (N = 167 donors). Indeed, 27,852 autosomal biallelic vari-
ants with at least one minor allele count (MAC) in the WES data showed a concordance of 98.8% [92.2%–99.7%] 
(median [IQR]) with UFDIchip calls.

Six of the nPOD donors were previously reported to have genetic variants with possible clinical impact in 
KCNJ11, LMNA, HNF1A, GLIS3, INSR, and GATA6 using a custom-designed NGS panel that included 140 
genes implicated in monogenic diabetes62. These genetic variants were validated with WES (Table 4) and visual 
exploration of the data using the Integrative Genomics Viewer (IGV)63 confirmed reads for each variant (Fig. 7). 
WES captures genomic DNA sequence in exons and the intronic sequence adjacent to exons. This enables the 
discovery of variants that directly alter the protein coding portion of mRNA (missense, nonsense, insertion/
deletions) and also some regulatory intronic sequences, such as splice sites. Variants in genes associated with 
autoimmune diabetes (AIRE, FOXP3, IL2RA, ITCH, LRBA, SKAP2, STAT1, and STAT3) or MODY and neonatal 
diabetes (GCK, HNF1A, HNF4A, HNF1B, ABCC8, KCNJ11, and INS)39,64–66 were observed in 141 nPOD cases 
with T1D (Fig. 8a). Monogenic forms of diabetes are rare, and the vast majority of the detected variants are not 
expected to have functional or clinical consequences.

Fig. 8 Variants in genes associated with monogenic diabetes observed in nPOD donors with T1D. Variants in 
genes associated with autoimmune diabetes (orange: AIRE, FOXP3, IL2RA, ITCH, LRBA, SKAP2, STAT1, and 
STAT3), or MODY and neonatal diabetes (blue: GCK, HNF1A, HNF4A, HNF1B, ABCC8, KCNJ11, and INS)39,64–66 
were observed from WES data of 141 nPOD cases with T1D. (a) Distribution of variant types. (b) Frequency 
of variants in the Genome Aggregation Database (gnomAD)47. (c) Variants with a Combined Annotation 
Dependent Depletion (CADD) score > 2046, predicting the variant is deleterious to protein function. (d) 
Combining these tools can help identify variants that are predicted to be both rare (<0.01%) and deleterious. 
Total number of variants shown above bars.
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Fig. 9 HNF1A and STAT1 gene variants observed in nPOD donors with T1D. STAT1 (orange, Autoimmune 
diabetes gene) and HNF1A (blue, MODY/Neonatal diabetes gene)39,64–66 variants observed from WES data of  
141 nPOD cases with T1D. (a) Variant types, (b) frequency distribution of variants, (c) variants with CADD 
score ≥ 20, and (d) variants with CADD score ≥ 20 and gnomAD frequency < 0.01%. Note that there are two potential 
monogenic diabetes variants in (d), one in HNF1A and one in STAT1. Total number of variants shown above bars.

Fig. 10 Suggested workflow for evaluating variants in monogenic diabetes genes observed in WES data. 
Note that functional studies are needed for potential monogenic diabetes variants that have not already been 
previously validated.

Case ID Gene DNA Variant Protein Variant Zygosity gnomAD Frequency CADD Score

6205 HNF1A c.142 G > A p.E48K Het 0.009% 22.1

6261 STAT1 c.77_80dupACAG p.S27fs*26 Het 0.003% 24.9

Table 5. Potential monogenic diabetes variants. Monogenic diabetes gene variants predicted to be rare and 
deleterious. See Figs. 8–9. gnomAD: Genome Aggregation Database, CADD: Combined Annotation Dependent 
Depletion.
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There are several databases and tools available to help with the identification and interpretation of genetic 
variants. For example, the frequency of a variant in the general population can be estimated using the gno-
mAD, which contains data from 140,000 + exomes and genomes from unique, unrelated individuals spanning 
six global ancestries47. Additionally, the CADD score can be used to predict severity of impact of the variants 
based on a variety of criteria such as sequence context, evolutionary constraint, and functional predictions46. 
As expected, the variants observed in T1D cases were distributed across a spectrum of functional classes, with 
only a few predicted to be both rare (frequency < 0.01%) and deleterious (CADD score ≥ 20, Fig. 8b–d). As 
an example of how these tools can be used, variants in the monogenic diabetes genes HNF1A and STAT1 were 
analysed in the nPOD donors classified as T1D. One variant for each gene was predicted to be rare and delete-
rious based on the thresholds set for the gnomAD frequency and CADD score (Fig. 9, Table 5). The thresholds 
set for these and other bioinformatic tools are determined by each investigator, and are often informed by the 
clinical phenotype of the patient and previous knowledge about the gene’s disease association. Other variant 
annotations from tools including ACMG Classification43, SIFT Function Prediction44, PolyPhen-2 Function 
Prediction45, HGMD48, ClinVar49, and CentoMD50 are available for all 207 nPOD donors on dbGaP (see Data 
Records). A suggested workflow for evaluating genetic variants for potential clinical significance is shown in 
Fig. 10. Importantly, while computational tools facilitate interpretation, confidence in the functional or clinical 
relevance of the genetic variants reported herein requires rigorous experimentation.
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The associated data are openly available with unrestricted access.
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