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Abstract  

 
For many behaviors we rely on our senses, which inform the brain about the 

world around us, such as the spatial location of an object we would like to grasp or the 

motion of a target that we intend to follow with our eyes. In order to execute an 

appropriate movement, neural responses in sensory areas must be read out and 

transformed into signals meaningful to premotor and motor areas so an accurate motor 

command can evolve. I used smooth pursuit eye movements to study the sensory-motor 

transformation of visual signals about object motion into an appropriate motor command 

for accelerating the eyes. I found that fluctuations in single neuron responses in visual 

area MT are predictive of deviations in eye speed during pursuit initiation, which 

suggests that responses in MT contribute to noise in the motor output. Further, the 

relationship between the sensory and motor variability revealed constraints about the 

neural mechanisms underlying the transformation of MT signals into a command for eye 

speed: if downstream noise is low, a modified vector averaging computation involving 

opponent signals between oppositely tuned neurons could explain the relationship 

between responses of single neurons in area MT and eye speed at the initiation of pursuit.  

In addition to smooth pursuit eye movements, we studied MT responses during 

drifts in eye movements of fixation. I found that deviations in sensory responses not only 

predict variation in pursuit initiation, but that deviations in eye velocity during fixation 

also modulate the neural responses in MT. I showed that firing rates in MT are modulated 

because tiny changes in eye velocity generate image motion on the retina. These results 
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demonstrate that image motion due to miniature eye movements is large enough to affect 

the responses of visual neurons beyond the retina or early cortical visual areas.  

This thesis has underscored how tightly sensory and motor systems are 

interwoven; visual area MT, in particular, forms an important link between the processing 

of visual signals and the generation of motor commands for smooth pursuit eye 

movements.  
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Vision is an active process by which we take up information about our 

environment. We see because light enters the eyes through the pupils and reaches the 

retina. On the retina cells that are photosensitive convert light into electrical signals that 

inform the brain about our visual environment. These signals are processed by various 

sub-cortical and cortical structures to provide the basis for visual perception. The 

physical properties of our eyes such as the diameter of the pupil limit the visual field, 

which is the extent of the environment from which we can absorb photons and therefore 

see. While the visual field is quite wide, humans and primates have highly accurate vision 

only in a small region at the center of the visual field called the fovea. As a consequence, 

humans and primates actively use a combination of head and eye movements to direct 

their foveae to objects of interest. Eye movements not only increase our visual range, 

they are also implicated in various other important functions enhancing our visual 

abilities. 

Eye movements affect vision by shifting the image that falls onto the retina and 

vision in turn guides eye movements by providing information about the visual 

environment. This complex interaction between the visual and oculomotor system is 

essential for guiding active vision, yet the neural mechanisms underlying this interaction 

remain poorly understood.  In this thesis, in an effort to explore the integration of the 

visual and oculomotor systems, I first investigated how small eye movements during 

fixation affect sensory processing of visual inputs in chapter 2. In chapter 3 I investigated 

how sensory signals constrain motor performance during smooth pursuit eye movements. 

 The oculomotor system provided an excellent model system to investigate 

complex interactions between sensory signals and motor behavior. Eye movements are a 
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simple motor behavior as the eyes are each controlled by only 6 muscles. The pathways 

controlling eye movements and those, for example, controlling reaching have common 

properties and therefore our knowledge of the oculomotor system might lead to a deeper 

understanding of more complex behaviors such as reaching arm movements (Lisberger, 

2010). In addition to serving as a model system, eye movements themselves are highly 

relevant because both humans and primates rely heavily on vision to interact with the 

environment.  

Eye movements of fixation are small involuntary movements that play an 

important functional role in maintaining vision (Martinez-Conde, Macknik, & Hubel, 

2004). They occur during instances when we hold our gaze still and we are completely 

unaware of them. Drifts, in particular, are the slow, low frequency eye movements 

occurring during fixation (Adler & Fliegelman, 1934; Ratliff & Riggs, 1950; Skavenski, 

Robinson, Steinman, & Timberlake, 1975). Visual neurons decrease their responses when 

the visual input is constant over a period of time. This adaptation of neural responses 

leads to perceptual fading when a visual image lies still on the retina (Ditchburn & 

Ginsborg, 1952). Eye movements during fixation prevent adaptation of visual neurons 

and therefore fading by jittering a stationary image on the retina. 

Although the eye movements of fixation are important for enabling normal vision, 

they generate image motion on the retina, which the brain must convert into a stationary 

perception of the world. It is unclear how the brain compensates for these visual motion 

signals and at what level of visual processing this compensation occurs. An important 

step towards understanding the neural mechanisms underlying perceptual stabilization is 
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to learn how neurons in different visual areas respond during eye movements of fixation 

and how these signals could be used to eliminate global motion of the visual world.  

Neurons in extrastriate area MT are sensitive to motion in a visual stimulus and I 

therefore investigated whether these neurons are modulated specifically by the small 

image motions generated by drifts. MT neurons signal the direction and speed of visual 

motion (Albright, 1984; Maunsell & Van Essen, 1983) and their responses have been 

shown to influence the perception of motion (Britten, Newsome, Shadlen, Celebrini, & 

Movshon, 1996; Salzman, Britten, & Newsome, 1990; Zohary, Shadlen, & Newsome, 

1994). Although this visual area had been studied extensively in the past, it had almost 

exclusively been investigated using motion stimuli much faster than the image motion 

generated by drifts. In my recordings, I found that MT neurons clearly respond during 

drifts in a direction-specific way. These neural signals in MT could potentially play an 

important role in the compensation for retinal motion generated by eye movements 

during fixation. My results demonstrate that motion signals during fixation are not 

eliminated in early visual areas as had been suggested in previous studies. These findings 

are an important step in establishing the contribution of early visual areas and MT in 

discounting motion induced by drifts. They must be taken into account in future models 

explaining perceptual stabilization of image motion generated by fixational eye 

movements.  

Chapter 3 investigated the role of visual signals in generating smooth pursuit eye 

movements. Smooth pursuit eye movements are the voluntary movements that allow us 

to keep the image of a moving target centered on our foveae. The smooth pursuit system 

relies on the visual motion input provided by area MT to estimate the speed and direction 
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of a moving target. It then transforms these motion signals into an appropriate motor 

command for the eye muscles so the speed and direction of the eyes match the target 

motion. 

Measuring correlations between fluctuations in neural and behavioral responses 

revealed a close link between sensory area MT and pursuit behavior. Our results suggest 

that fluctuations in visual motion signals provided by MT affect the eye speed of pursuit 

and thereby contribute to noise in the motor output. Further, the correlations we measured 

provide a significant and novel insight into possible mechanisms by which sensory 

signals from MT are transformed to yield an accurate motor command for pursuit.  

We have demonstrated that miniature eye movements modulate sensory responses 

and that these, in turn, predict variability in motor behavior on a trial-by-trial basis. These 

findings show how intricately sensory and motor systems are linked in the neural 

processing of visual signals and the production of oculomotor behavior. Our recordings 

of single neural responses suggest that visual area MT might play a central role in the 

neural mechanisms underpinning active vision. 
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Abstract 

Our eyes are constantly in motion. Even as we hold our gaze still, small eye 

movements jitter the image of the world on our retinae. It is known that these eye 

movements of fixation enable us to see normally by preventing the fading of a visual 

image due to adaptation of visual neurons. However, at the same time, they require the 

brain to convert a moving retinal image into a stable perception of the world. Little is 

understood about which brain areas respond during eye movements of fixation and how 

they are involved in achieving perceptual stabilization. Of the fixational eye movements 

that have been studied few have focused on drifts which are the slow movements 

occurring in between microsaccades. In order to gain insight into the process of visual 

stabilization we asked whether neurons in MT, a cortical area sensitive to visual motion, 

respond during drifts. We found that drifts elicit remarkably large responses in MT 

neurons due to the image motion they generate on the retina. Despite the fact that most 

neurons in our sample had preferred speeds much larger than the image speeds generated 

by drifts, almost all of them were modulated during drifts when these induced visual 

motion along the preferred direction of the neurons. Our results clearly show that neurons 

respond to drifts beyond early visual areas and that MT can specifically inform other 

areas about the direction of the small image motions induced by drifts. The signals 

provided by MT could then be used to eliminate global motion signals arising from eye 

movements during fixation. 
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Introduction 

 Our eyes move constantly and thereby create a retinal image of the world that is 

never still. Large, voluntary movements called saccades allow us to direct a particular 

part of an image onto our fovea, the area of the retina that is capable of the highest acuity 

visual processing. Much smaller eye movements occur during periods of fixation between 

saccades (Ditchburn & Ginsborg, 1953; Martinez-Conde, Macknik, & Hubel, 2004; 

Ratliff & Riggs, 1950). Based on their dynamics, the eye movements of fixation are 

categorized into three groups. Microsaccades are fast, jerk-like movements that are 

similar to saccades, but smaller in amplitude (Barlow, 1952; Hafed, Goffart, & Krauzlis, 

2009; Steinman, Haddad, Skavenski, & Wyman, 1973; Zuber & Stark, 1965). They occur 

several times per second with a frequency that depends on the task at hand. Drifts are 

loosely defined as the slow movements occurring in between microsaccades (Adler & 

Fliegelman, 1934; Ratliff & Riggs, 1950; Skavenski, Robinson, Steinman, & Timberlake, 

1975; Spauschus, Marsden, Halliday, Rosenberg, & Brown, 1999). Tremor consists of 

high-frequency low amplitude oscillations (30-100 Hz, depending on the study), 

superimposed on drifts (Adler & Fliegelman, 1934; Ditchburn & Ginsborg, 1953; 

Eizenman, Hallett, & Frecker, 1985; Ratliff & Riggs, 1950; Riggs, Armington, & Ratliff, 

1954; Riggs & Ratliff, 1951; Spauschus et al., 1999). 

We are unaware of our small eye movements made during fixation, but they play 

an important role in visual perception. Psychophysical evidence suggests that fixational 

eye movements prevent fading of images by constantly jittering the retinal locus of the 

image from a stationary object, precluding adaptation of neural responses to a static 
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visual scene (Ditchburn & Ginsborg, 1952). Fixation eye movements also appear to 

improve perception of fine spatial detail (Rucci, Iovin, Poletti, & Santini, 2007). 

Although the different types of fixational eye movements in concert seem to play an 

important part in visual perception, the role of each type of eye movement is unclear. 

The eye movements of fixation also create a challenging problem for the brain: 

the ever-moving retinal image must be converted into perception of stability in the world. 

The brain meets this challenge flawlessly under normal circumstances, when we are 

unaware of the continuous image motion generated by the movements of our eyes. It 

seems likely that compensation for retinal image motion is an active process, because it 

can be made to fail under certain laboratory conditions, such as in the jitter illusion when 

we perceive the retinal image motion generated by our fixational eye movements 

(Murakami & Cavanagh, 1998). As a first step toward understanding how the brain 

stabilizes percepts in spite of motion of the retinal image, we must learn how the 

responses of neurons in visual areas are affected by the eye movements of fixation. If, for 

example, a motion area did not respond to the eye movements of fixation, we could 

conclude that the expected responses had been nulled at an earlier stage. If a motion area 

did respond to the eye movements of fixation, then we would obtain information about 

the representation of the resulting image motions to inform analysis of how the visual 

signals are nulled in downstream circuits. 

In all visual brain areas that have been examined, neurons respond to retinal 

image motion generated by the eye movements of fixation. For example, the lateral 

geniculate nucleus, the primary visual cortex (V1), and extrastriate cortical area MT 

respond to the image motion caused by microsaccades (Bair & O'Keefe, 1998; Leopold 



 12 

& Logothetis, 1998; Martinez-Conde, Macknik, & Hubel, 2000, 2002; Reppas, Usrey, & 

Reid, 2002). It seems plausible that the same mechanisms responsible for “saccadic 

suppression” could provide perceptual stability in spite of microsaccades (Brooks & 

Fuchs, 1975; Burr & Morrone, 2010; Burr, Morrone, & Ross, 1994; Campbell & Wurtz, 

1978; Matin, Clymer, & Matin, 1972; Thiele, Henning, Kubischik, & Hoffmann, 2002). 

However, slow eye movements pose different problems, and perception does seem to be 

affected by the eye movements of smooth pursuit (Kerzel, Aivar, Ziegler, & Brenner, 

2006; Schutz, Braun, Kerzel, & Gegenfurtner, 2008; Turano & Heidenreich, 1999; van 

Beers, Wolpert, & Haggard, 2001). In area V1 (Kagan, Gur, & Snodderly, 2008; 

Snodderly, Kagan, & Gur, 2001), a subset of neurons responds vigorously during fixation 

between microsaccades. To understand why these responses do not lead to perceptual 

instability, it is critical to analyze the image motions that drive the responses, determine 

whether responses to motion are transmitted beyond V1, and understand the 

representation of the image motions of fixation in the cortical motion pathways.  

Extrastriate area MT provides a central representation of visual motion 

information that is critical for both perception (Newsome & Pare, 1988) and smooth 

pursuit eye movements (Newsome, Wurtz, Dursteler, & Mikami, 1985). Therefore, we 

decided to study the responses of MT neurons during the slow oscillations of eye velocity 

that occur during fixation and between microsaccades. Slow drifts drive firing rates when 

a visual stimulus is located in the receptive field of an MT neuron. The neural responses 

are direction selective, but do not depend on the speed preference of the neurons. Because 

MT responds to miniature deviations in image motion caused by drifts in eye velocity, 

the slow eye movements of fixation should engender percepts that the stationary world is 
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moving. We outline several mechanisms that could operate downstream from MT to keep 

the perception of a stationary, stable world.   
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Materials and Methods 

Subjects  

We recorded eye movements and neural responses from two adult male rhesus 

monkeys (Macaca mulatta, 7-13 kg). After initial training, monkeys were implanted with 

hardware to allow head restraint and scleral search coils to record eye movements, as 

described in detail elsewhere (Ramachandran & Lisberger, 2005). For one control 

experiment, we obtained eye movement data from both eyes of an additional male adult 

rhesus monkey who had bilateral scleral search coils. In an additional surgical procedure, 

we mounted titanium or cilux recording chambers (Crist instruments, Hagerstown, MD) 

over a 20 mm circular opening in the skull to allow access to MT for neural recordings.  

For each experimental session, monkeys sat in a primate chair with their heads 

immobilized and received fluid rewards for accurately fixating or tracking visual targets 

presented on a screen in front of them. Experiments were conducted five times per week 

and lasted about 5 hours. All surgical and experimental procedures were approved in 

advance by the Institutional Animal Care and Use Committee of the University of 

California, San Francisco and were in strict compliance with the NIH Guide for the Care 

and Use of Laboratory Animals. 

Visual stimuli  

All experiments were conducted in a nearly dark room. Visual stimuli were 

presented on an analog oscilloscope (Hewlett Packard 1304A) with a refresh rate of 250 

Hz. The oscilloscope was driven by 16-bit digital-to-analog converters on a digital signal 
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processing board in a PC. The display was positioned 20.5 cm from the monkey and 

subtended a 67° horizontal by 54° vertical visual angle.  

First we mapped the receptive field of the neurons we were recording from while 

the monkey was required to maintain fixation within one degree of a bright spot which 

was presented at the center of the screen. After manually locating the receptive field, the 

direction and speed tuning of each neuron was measured by placing a patch of random 

dots in the receptive field of the neuron. Patches matched the size of the receptive fields 

of the neurons we recorded from and were either 5°x5° with 50 dots, or 8°x8° large with 

128 dots placed at random locations within their aperture. During each stimulus 

presentation dots moved coherently in a given direction at a given speed for 300 ms and 

vanished for 200 ms before reappearing at the same location, but moving either at a 

different speed (speed tuning) or in a different direction (direction tuning). For each 

mapping trial either 5 randomly interleaved directions or speeds were presented before 

the monkey received a reward for maintaining proper fixation.   

All data reported in this paper came from the fixation portion at the beginning of a 

pursuit task. These trials began when a 0.3x0.3° square appeared in the center of the 

screen as the fixation target. The change in fixation target cued the monkey that the task 

had changed. Following an arbitrary time between 500-900 ms a 5x5° or 8x8° patch of 

random dots appeared in the receptive field of the neuron for a randomized time between 

300-900 ms. The random dot patch was the same as the one we used for mapping, 

however in this segment the dots were stationary. This fixation segment with a static 

patch in the receptive field was used for computing the spike-triggered averages and 

Fourier transforms of firing rates and eye movements. In these analyses data was aligned 
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to the onset of the patch. After the interval containing the static patch, the dots began 

moving coherently within the fixed aperture of the patch for 100 ms and the fixation 

target disappeared at the same time, cueing the monkey to pursue the patch. This segment 

was used to study the effects of fixational eye movements on neural responses at the 

onset of a motion stimulus. For this purpose, data were aligned to the beginning of 

stimulus motion. Even though the monkey had been cued to pursue the motion target, the 

monkey did not yet initiate pursuit during this segment because of the delay between 

motion and pursuit onset, which enabled us to study the effects of fixational eye 

movements. Presenting the stationary dots before introducing motion allowed us to 

separate the MT response to the onset of a visual motion from the response to the onset of 

light in the receptive field. Typically, 4-6 target motions, each consisting of different 

stimulus speeds or directions, were randomly interleaved. Subjects usually completed 

2000-3600 pursuit trials in each daily experiment. For all analyses, trials were included 

only if the subject maintained fixation within 1 degree of the fixation point and no 

microsaccade occurred. 

MT recording 

We recorded 104 neurons in visual area MT in three hemispheres of two monkeys 

(52 neurons from left and right hemispheres in monkey Y, 52 neurons from right only in 

monkey J). We used a Thomas microdrive (Thomas Mini-Matrix 05, Thomas Recording, 

Giessen, Germany) to lower quartz-shielded tungsten electrodes vertically into MT with 

impedances from 1 to 4 MΩ. MT was identified based on stereotaxic coordinates, 

directional and speed response properties of neurons, receptive field sizes, retinotopic 

organization, and surrounding cortical areas (Maunsell & Van Essen, 1983). We typically 
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recorded from neurons with receptive field centers within the central 5º of the visual 

field. 

Electrical signals were amplified and digitized for on-line spike sorting and spikes 

were initially assigned to single neurons by using a template matching algorithm (Plexon 

MAP, Plexon Inc., Dallas, TX). After the experiment we used a combination of visual 

inspection of waveforms, projections onto principal components, template matching, and 

refractory period violations in Offline Sorter (Plexon Inc, Dallas, TX) to sort and assign 

spikes to well isolated single units. After sorting, waveforms were converted to 

timestamps with 1 ms precision for analysis. Firing rates were obtained by convolving 

spikes trains with a Gaussian window (SD 10ms). 

 To obtain the tuning properties of each cell, we fit speed and direction tuning 

curves with Gaussian functions: 
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(s – speed, θ – direction, R0 – baseline firing rate, a – amplitude of speed tuning curve,  A 

– amplitude of direction tuning curve, ps – preferred speed,  pd – preferred direction, c – 

width of speed tuning curve, C – width of direction tuning curve, and d – skew parameter 

of speed tuning curve). The angle θ-pd was restricted to [-π, π] degrees. 
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Behavioral data 

Eye position and velocity signals were sampled and stored at 1000 Hz. Velocity 

signals were obtained by passing eye position signals through an analog differentiator. 

The circuit differentiated frequency content from 0 to 25 Hz and filtered higher 

frequencies with a roll-off of 20 dB/decade. Before analysis, each trial record was 

inspected and rejected if a saccade or microsaccade occurred within the time window 

chosen for analysis (epoch without patch: 350 ms, static patch: 600 ms, dynamic patch: 

200 ms). For analyses of Fourier and principle components, as well as spike-triggered 

averages, we excluded the first 130 ms after the onset of the random dot patch in order to 

ignore spikes that were triggered by the onset of a visual stimulus rather than eye 

movements. For each target motion, we counted the number of spikes across trials 130-

600 ms after stimulus onset and included the data set if we had a total of at least 200 

spikes per cell.  

To test whether the oscillations in eye velocity occurred along a given direction, 

we determined the principle components of velocity for each experiment. Principle 

components analysis can tell us two things: (1) the first principle component tells us the 

direction along which most variance in eye velocity occurs. This direction was consistent 

whether we used raw data, or digitally filtered data with a low-pass (< 25 Hz), or band-

pass filter (3-7 Hz). (2) The magnitude of the two Eigen values tells us how strongly eye 

velocity is modulated along each principle component. If the Eigen values are equal in 

magnitude, the eye velocities are isotropic, whereas if one value is much higher, the eyes 

move mainly along one direction. We report the degree of isotropy in terms of the ratio of 

the first and the second principle component (PC1/PC2). 



 19 

Fourier transforms were computed on traces that were first multiplied with a 

symmetric Henning filter and then zero padded. The Fourier transform was calculated for 

each trial and then averaged for each experiment. 

Spike-triggered averaging 

We calculated the spike-triggered averages (STAs) of image velocity and position 

which were generated by eye movements during fixation. This allowed us to look at the 

average movement surrounding a spike of a given neuron: 
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Where image(t) stands for either image velocity or position, ti is the time of 

occurrence of a spike, τ is the temporal lag between the spike and movement parameter, 

and N is the total number of spikes (Dayan, 2001). The amplitude of the STA of velocity 

was calculated as the peak minus the trough occurring before the spike. 



 20 

Results 

The smooth eye movements of fixation 

During epochs of fixation between microsaccades, monkeys show smooth drifts 

in eye movements that appear as oscillations in the eye velocity traces. In figure 2.1 (left 

panel), for example, the horizontal and vertical eye velocity in a single trial showed 

oscillations with a period of about 300 ms and additional fluctuations at higher 

frequencies. The peak-to-peak amplitudes of the oscillations in eye velocity were less 

than 2 deg/s, and were somewhat larger in vertical versus horizontal eye velocity in this 

example.  

 

 

 
Figure 2.1 

Left panel: Eye velocity traces and spikes for one example trial during 600ms of fixation. 

Top row: spikes are represented by vertical lines at the time of occurrence. Middle and 

bottom row: horizontal and vertical eye velocity as a function of time. Trials are aligned to 
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the onset of a stationary random dot patch in the receptive field of the neuron. Right panel: 

Two-dimensional histogram of eye velocity during fixation for all experiments for monkey 

Y.  

 

The distribution of smooth eye velocities during fixation was centered near zero 

with the overwhelming majority of the observations falling between -0.75 and +0.75 

deg/s. In figure 2.1 (right panel), each pixel shows the number of observations of a given 

pair of horizontal and vertical eye velocities. We sampled eye velocity in 1 ms steps in 

the intervals between microsaccades in each trial across all experiments in our dataset, 

and then combined all observations into a single distribution. The distribution deviates 

slightly from circular and is biased in the first and third quadrants, indicating a slight 

tendency for the smooth eye velocities of fixation to be right and up, or left and down.  

Principle component analysis confirmed the slight directional bias in the smooth 

eye velocities of fixation and showed that it was present in almost all experimental 

sessions. In figure 2.2, each symbol shows data from a different experimental session and 

represents the end of a vector, where the direction of the vector shows the direction of the 

first principle component and the length of the vector indicates the amplitude ratio of the 

second/first principle component. Most of the symbols plot in the up-right quadrant, 

indicating a uniform direction of the first principle component along the up-right/down-

left axis. Most plotted at an amplitude of approximately 2, indicating that the first 

principle component was twice as large as the second. Averaging across all experimental 

sessions separately for the two monkeys revealed that the direction of the first principle 

component was 26 and 49 deg for monkey Y and J. The amplitude ratio averaged 2.0 and 
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1.75 in monkeys Y and J. The quantitative findings in figure 2.2 were virtually 

unchanged when we filtered the eye velocity traces to remove higher frequencies (both 

for 25 Hz low pass and 3-7 Hz band pass).  

 

 

 

Figure 2.2.  

Direction of eye velocity during epochs of drifts. Each point represents data from one 

experiment. Direction was determined by the direction of the principle component that 

explained most variance in eye velocity. The distance of each point to the center of the plot 

describes the ratio of variance explained by the first and second principle components 

(PC1/PC2).  

 

Responses of MT neurons during the smooth eye movements of fixation 
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Our behavioral task was designed to study the responses of MT neurons under 3 

conditions that differed in the nature of the visual stimulus. The task began with an 

interval when the monkey was required to fixate a spot target on an otherwise dark screen 

(Figure 2.3, left panel). In most neurons, firing rate is low during fixation with a dark 

background because of the lack of visual stimulation in the receptive field. In the next 

interval, the monkey continued to fixate but a patch of static random dots appeared in the 

receptive field (Figure 2.3, center panel). The onset of the visual stimulus in the receptive 

field of the neuron caused a strong transient response in most neurons, followed by firing 

at a slightly higher rate than with a dark background. In the final interval, the dots within 

the patch moved coherently in a given direction at a specified speed. MT neurons 

responded to the motion with a large transient change in firing rate followed by an 

elevated sustained response. In our analysis, we take advantage of the specifics of the 

three stimulus conditions to understand when and how the smooth eye velocities duration 

fixation affect neural responses in visual area MT.  
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Figure 2.3.  

Example MT response during the three different epochs of fixation. The top row shows the 

visual stimulus during each interval and the bottom row the average MT response for one 

neuron. Left column: A fixation point was presented at the center of the screen for a 

random time between 500-900ms. During this time the monkey initiated fixation. Middle 

column: A patch of static random dots appeared in the receptive field (circle) of the neuron 

for a random time between 300-900ms. Right column: The dots started moving in one of 

several directions and speeds for 100ms.  

 

Fourier analysis of the eye velocity between microsaccades revealed oscillations 

at low frequencies around 4-5 Hz (Figure 2.4). The amplitude of the oscillations was 

approximately 0.2 deg/s for horizontal and vertical eye velocity in both monkeys. Many 

neurons showed corresponding modulations in firing rates at the same low frequencies. 
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The Fourier transforms were calculated on responses collected during fixation of the 

static patch, during which the only source of retinal image velocity were drifts in eye 

movements. Because MT neurons are known to respond to visual motion in their 

receptive field it is likely that the modulation in firing rates is caused by the small 

oscillations in image velocity, an issue we will address below. 

Eye velocity contained further peaks at higher frequencies which were not present 

in neural responses. The additional peak in eye velocity was centered around 15 Hz and 

was most pronounced for horizontal eye speed in monkey Y. However, neural responses 

were not modulated at this frequency. Because the eye signals were passed through an 

analog filter, high frequency tremor is suppressed in our eye velocity traces. In contrast to 

the behavioral signal, spike trains were unfiltered and recorded at a resolution of 1000 

Hz. Therefore spike trains could contain high frequency modulations which would appear 

in the Fourier transforms if these were present. However, whether we looked at the 

frequency content of firing rates or spike trains, no significant modulation at higher 

frequencies appeared and neural responses decayed rapidly with increasing frequencies. 

This suggests that high frequency movements contribute little to the overall power in the 

neural response during the time intervals and stimulus conditions we inspected. 
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Figure 2.4.  

Frequency content of eye velocity and MT responses during fixation. The Fourier transform 

of horizontal and vertical eye velocity, as well as MT firing rates is shown for data recorded 

during fixation of the static patch. Each black trace corresponds to one experiment. Top 

row shows data for monkey Y, bottom row for monkey J. 

 

In one monkey equipped with binocular scleral search coils, we verified that the 

low frequency oscillation at 4-5 Hz was positively correlated between the two eyes. The 

black traces in figure 2.5 show the autocorrelation in horizontal (Figure 2.5A) and 

vertical (Figure 2.5B) eye velocity for both eyes. The negative troughs surrounding the 

peak in the autocorrelation again revealed the low frequency oscillation which appeared 

in the Fourier transforms. This oscillation appeared in the cross-correlation of horizontal 
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and vertical eye velocity between both eyes (red trace) as well with the same sign and 

following the same time course as in the autocorrelation. The peak of the cross-

correlation between both eyes had a value of 0.70 and 0.69 for horizontal and vertical eye 

velocity. The positive peak in the cross-correlation at zero lag together with the fact that 

the cross-correlation followed the same slow oscillation as the autocorrelation with equal 

sign demonstrates that the low frequency oscillations arise from conjugate rather than 

vergence eye movements. 

 

 

 
Figure 2.5.  

Cross-correlation of horizontal (A) and vertical (B) eye velocity between both eyes. Left-

Left and Right-Right refer to the autocorrelation of eye velocity of the left and right eye. 

Left-Right is the cross-correlation between the left and right eye. 
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Spike-triggered averages (STAs) provided direct evidence that MT neurons 

respond to the small fluctuations in image velocity caused by the eye movements of 

fixation. The STA describes the image velocity that on average surrounds each spike. 

Because MT neurons respond preferentially to motion along a preferred axis (Albright, 

1984; Lisberger & Movshon, 1999; Maunsell & Van Essen, 1983; Rodman & Albright, 

1987; Snowden, Treue, & Andersen, 1992), we separated image velocity into 

components parallel and orthogonal to the preferred direction of each cell.  

Figure 2.6 shows that spikes were consistently preceded by a positive deviation in 

image velocity of about 0.2 deg/s in the preferred direction of cells (Figure 2.6, left 

column). The shape of the STAs demonstrates again that the drifts in eye velocity are 

oscillatory in nature. Indeed, reliably across experiments and monkeys the STAs have 

multiple positive and negative peaks. Subsequent positive or negative peaks are separated 

by about 200 ms, which corresponds to an oscillation with a frequency of 5 Hz, 

consistent with the findings of the frequency analysis in figure 2.4. The eye velocity 

orthogonal to the preferred direction did not contain clear structure (Figure 2.5, right 

column). 
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Figure 2.6.  

Spike-triggered averages of image velocity during fixation of the static patch. Top row: 

Each trace is the spike-triggered average for one neuron for monkey Y. Zero marks the 

time of spike occurrence. The STAs were calculated separately for image velocity in and 

orthogonal to the preferred direction of each cell. Bottom row: The average STA across 

neurons is shown for both directions and both monkeys. 

 

The latency between image velocity and spike occurrence suggests that the eye 

movements drive the MT response rather than the other way around. The latency as 

indicated by the peak of the STA is 58 and 67 ms for monkey Y and J. This is in the 

realm of visual latencies of MT neurons, especially considering that latencies of MT 
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responses are longer for slow speeds (Lisberger & Movshon, 1999). Normalizing the 

STAs to reveal the cross correlation between image velocity and spikes, showed that the 

peak correlation coefficients between image velocity and spikes are 0.23 and 0.21 for 

monkey Y and J. Therefore, taking into account the latency of the neural response, image 

velocity and therefore eye movements account for approximately 4% of the variance in 

MT firing rates during fixation. 

All neurons responded to small fluctuations in image velocity, independent of 

their tuning properties. Even though MT neurons are tuned for the speeds of faster target 

motions (Lagae, Raiguel, & Orban, 1993; Lisberger & Movshon, 1999; Maunsell & Van 

Essen, 1983; Rodman & Albright, 1987), the amplitude of the STAs did not depend on 

the preferred speeds of the neurons (Figure 2.7). This means that virtually all MT cells, 

no matter whether their preferred speed was 1 or 40 deg/s, responded to the image 

velocity generated by drifts in the eye movements of fixation. It is important to note, 

however, that the amplitude of the STA is limited by the amplitude of the drifts.  

The sensitivity of the neurons to drifts was further independent of the shape of the 

speed tuning curves (Figure 2.7). Most cells in our sample had Gaussian shaped tuning 

curves (tuned cells) with low firing rates for slow speeds and only one fifth of the tuning 

curves resembling low pass filters (Lagae et al., 1993; Orban, Kennedy, & Bullier, 1986; 

Orban, Kennedy, & Maes, 1981). Because low pass cells respond well to stimuli with 

small speeds, one might expect to observe larger STA amplitudes in these cells. 

However, the STA amplitudes were independent of the shape of the tuning curves in 

addition to being independent of the preferred speed of cells. Even tuned cells which 

have low firing rates for the image velocities caused by drifts had significant STA 
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amplitudes for image velocity in the preferred direction, but not orthogonal to it. 

Therefore, even when firing rates are low as was the case for most of our cells during 

drifts, the spikes that are generated contain information about direction of motion. 

 

 

 

Figure 2.7.  

The amplitudes of STAs are independent of the preferred speeds of the neurons. For each 

cell we plotted the amplitude of the spike-triggered average of image speed along the 

preferred direction as a function of preferred speed.  

 

Analysis of the image speeds and firing rates during fixation revealed a consistent 

relationship between the fluctuations in retinal image speed and the modulations in firing 

rates during fixation (Figure 2.8, left panel), even before the stimulus moved. To perform 
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this analysis, we combined the data across neurons and grouped trials according to the 

image velocity generated by fixation eye movements in the 50 ms time interval from 200 

to 250 ms after the appearance of a stationary visual stimulus. We then averaged the eye 

velocity and firing rate within each group to obtain the families of traces that appear in 

Figure 2.8A and C. As expected, given how the traces were grouped, the eye velocity for 

the difference groups peaks at different values 225 ms after the appearance of the visual 

stimulus. The firing rates peak about 60 ms later, consistent with the latencies found in 

the STAs. The values of the peaks in firing rate varied across groups, in the same 

sequence as the peaks in image velocity. Modulations were larger for image motion in the 

preferred versus null direction, and the peak/trough of firing rate varied from 5 to 35 

spikes/s as the image velocity varied from -0.6 to 0.7 deg/s.  

The smooth eye movements of fixation also affected the responses of MT neurons 

to the onset of target motion (Figure 2.8B and D). To perform this analysis, we again 

grouped trials according to the image velocity, now in the 50 ms interval from 25 ms 

before to 25 ms after the onset of target motion, and averaged the eye velocity and firing 

rate within each group. Comparison of the firing rates across groups revealed that the 

latency of MT responses was delayed in relation to the image velocity present at the time 

the target started to move, with null-direction image motion causing increases in response 

latency. In contrast, the peak of the firing rate response of MT neurons was largely 

unaffected by small deviations in image velocity due to the eye movements. 
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Figure 2.8.  

Image velocity generated by drifts modulates firing rates in MT neurons. A and C, neural 

and behavioral responses during fixation of the static patch. Trials were grouped according 

to deviations in image velocity 200-250 ms after patch onset. We only considered image 

velocity in the preferred direction of cells. For each group, trials were averaged across 

experiments and monkeys. C, average image velocity for each group. A, average firing rate 

for the same groups as in C. B and D, same analysis as in C and D except trials were aligned 

to motion onset in the patch at 0 ms (see figure 2.3, right panel) and were grouped by 

deviations in image velocity due to eye movements -25 to 25 ms around motion onset. Image 

velocity in D does not include stimulus velocity. Experiments were included in which the 

stimulus moved within 90 degrees of the preferred direction of the neurons. 
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The firing rate modulations that we observed during the eye movements of 

fixation are caused by the visual motion signals generated by the eye movements, not by 

extra-retinal inputs. In figure 2.9, we have subtracted the firing rates for the group with 

the smallest absolute image motions from the firing rates for each other group, and then 

plotted the peak firing rate of each group as a function of the peak image velocity. For 

analysis of the intervals shown in figure 2.8A, there was a strong relationship between the 

evoked firing rate and image velocity when the visual stimulus was stationary in the 

receptive field of the neuron under study (Figure 2.9A, open circles). In contrast, the 

relationship was much shallower, and barely present, if we conducted the same analysis 

on an interval with a fixation point but without a stationary stimulus in the receptive field 

of the neuron (Figure 2.9A, open triangles). While this residual modulation could 

potentially reflect extra-retinal inputs to MT, it is likely caused by weak visual 

stimulation in the receptive field. We conducted our experiments in dim light and 

therefore faint reflections of objects in the room generated a weak visual stimulus on the 

screen. A further reason for weak modulations might be the sampling of our MT neurons. 

We recorded from parafoveal MT where many neurons have receptive fields adjacent to 

or slightly overlapping with the bright spot that served as the fixation point. As with the 

reflections, the single spot can provide a suboptimal motion stimulus during eye 

movements that can elicit weak neural responses.  
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Figure 2.9.  

Neural responses are substantially modulated by image velocity. Incremental firing rates 

are plotted against image velocity for the groups shown in figure 2.8. A, Firing rates are 

shown for the three different stimulus conditions described in figure 2.3: no stimulus in the 

receptive field (RF), sustained response with static patch in the RF, and peak transient 

response to the onset of the static patch (labeled contrast onset). For each group we 

averaged trials across experiments and monkeys. Error bars indicate standard errors of the 

mean. B, Incremental firing rates at the onset of the transient response to motion. We 

averaged experiments depending on whether the dots moved below, at, or above preferred 

speed (PS) of the neurons.  

 

The image velocity at the time of appearance of a stationary stimulus also had 

only a weak effect on the peak of the transient firing rate caused by the appearance of a 

stationary stimulus (Figure 2.9A, filled circles). This is likely due to the fact that the 
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onset of luminance provides a strong visual stimulus during which the neurons are 

insensitive to small deviations in retinal speed. 

Figure 2.9B shows that the effect of image motion during fixation on responses to 

subsequent stimulus motion cannot be attributed simply to effects of eye velocity drifts 

on the image speed at the onset of the image motion. Even though figure 2.8B indicates 

that the eye movements of fixation appear to affect the latency of the neural transients, 

differences in latencies result in differences in magnitude at each time during the initial 

firing rate response. The effect of image motion due to the eyes on firing rates 45 ms after 

motion onset are strong, but do not depend on whether the speed of the stimulus was 

above or below the preferred speed of the neuron. This observation is important because 

we would expect a direct effect of small eye movements on the magnitude of image 

motion to cause the relationships in figure 2.9B to have a positive versus negative slope 

depending on whether image speed is on the rising or falling arm of the neuron’s tuning 

curve.  
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Figure 2.10.  

Population response to drifts. Firing rates relative to mean firing rate are plotted against 

preferred speed for each cell. Black dots show responses to image velocity of 0.5 deg/s, blue 

dots responses to 0 deg/s, red dots to image velocity of -0.5 deg/s. 

 

To understand why the smooth eye movements of fixation cause orderly 

responses in MT neurons but are not seen perceptually, we will need to document the 

population response in area MT during the smooth eye movements of fixation. To do so, 

we have repeated the grouping analysis, but now analyzing each neuron separately. For 

each neuron, we have averaged the eye velocity and firing rate for groups of trials in 

which the image speed 200 to 250 ms after the onset of the stationary stimulus was within 

0.1 deg/s of -0.5, 0, of +0.5 deg/s. Then we measured the peak firing rate approximately 
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60 ms later, and plotted 3 symbols for each neuron showing the firing rate response as a 

function of the neuron’s preferred speed. For image speeds of about -0.5 or +0.5 deg/s 

(Figure 2.10, black versus red symbols), the firing rates were almost uniformly higher or 

lower than for image speeds of 0 deg/s (blue symbols). Importantly, the population 

response did not show a clear peak at any preferred speed, as it would have for image 

motion created by faster stimulus motions. Thus, the population response to the smooth 

eye movements of fixation appears to signal the direction, but scantly the speed of image 

motion.  
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Discussion 

We found that drifts in fixation eye movements elicit responses in single neurons 

in visual area MT. During drifts eyes usually move slower than 0.75 deg/s and despite 

these small amplitudes, responses to drifts were found in almost all neurons in our 

sample, independent of their preferred speeds or the shape of their tuning curves. This is 

unlike findings in V1 where neurons responding to drifts generally have low preferred 

speeds (Kagan et al., 2008). MT neurons responded only when drifts generated image 

velocity in their preferred direction. The size of the neural modulation was remarkably 

large: across the population a difference in image velocity of just over 1 deg/s generated 

an average difference in firing rate of over 30 Hz. Finally, we showed that the majority of 

the modulation in the neural response is due to the visual motion generated by eye 

movements rather than extra-retinal signals due to corollary discharge. 

Our results demonstrate that drifts generate sufficient image velocity to elicit 

neural responses in the visual pathway. Drifts might thereby play an important role in 

preventing adaptation of neurons when we hold our gaze still on a static visual scene 

(Steinman et al., 1973). Microsaccades might certainly contribute to the maintenance of 

vision as well and could be necessary for the maintenance of eccentric vision where it is 

possible that drifts are too small to generate responses in larger receptive fields. Most 

likely drifts and microsaccades act in concert to maintain vision (Ditchburn & Ginsborg, 

1952; Gerrits & Vendrik, 1974; Martinez-Conde et al., 2004; Riggs, Ratliff, Cornsweet, 

& Cornsweet, 1953; Rucci & Desbordes, 2003). Visual fading occurs as fast as 80 ms and 

therefore drifts could be crucial for enabling vision during time periods where we make 
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few microsaccades (Coppola & Purves, 1996). This happens, for example, during high-

acuity tasks such as threading a needle, where the frequency of microsaccades decreases 

to approximately 0.4(Bridgeman and Palca, 1980, Ko et al., 2010). In addition to 

preventing perceptual fading, fixational eye movements have been implicated in other 

functions, for example improving discrimination of fine spatial detail (Rucci et al., 2007). 

It remains to be seen how drifts in particular contribute to any of these functions. 

Irrespective of the possible contributions of fixational eye movements to visual 

perception, the constant motion of the eyes during fixation creates a challenging problem 

for the brain. The visual system must convert a continuously moving retinal image into a 

stable perception of the outside world. One possibility is that the brain first estimates the 

image velocity caused by eye movements of fixation and then subtracts it from the 

observed retinal velocities. In principle, there are two ways to estimate the image velocity 

caused by eye movements. First, the brain could rely on an estimate of eye velocity to 

extract the resulting image velocities. If eye movements are generated centrally, as was 

shown for microsaccades (Hafed et al., 2009), this could be achieved through an 

efference copy signal. Second, image velocity could be estimated directly from visual 

signals by extracting the global motion affecting all points of the image. In fact, the jitter 

illusion provides evidence that the stabilization of the retinal image relies on visual rather 

than extra-retinal signals (Murakami & Cavanagh, 1998). In order for this model to work, 

the brain must precisely estimate the magnitude and direction of motion due to all 

fixational eye movements, even for the miniature drifts during fixation. Our data shows 

that the population of MT neurons is capable of estimating the direction of motion despite 
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the very low retinal speeds involved and thereby might play a crucial role in providing 

the appropriate signal for stabilizing our visual perception. 

Another way to eliminate image motion caused by eye movements could rely on 

center-surround antagonism found in many visual neurons. In the salamander retina, for 

example, cells have been found that are excited by a motion stimulus in the center of the 

receptive field but are completely silent when the coherent stimulus extends to the 

surround (Olveczky, Baccus, & Meister, 2003). In MT, about half of the neurons have 

large antagonistic surrounds (Allman, Miezin, & McGuinness, 1985a, 1985b; Born, 

2000; Raiguel, Van Hulle, Xiao, Marcar, & Orban, 1995; Tanaka et al., 1986). Global 

motion provides coherent motion across the entire visual field, stimulating both the center 

and surround of neurons simultaneously. This might cause potential neural responses to 

be canceled out by the antagonistic relationship between the center and surround. For 

these neurons, it remains to be seen whether global motion due to fixational eye 

movements elicits any response. In our study we presented small stimuli in the center of 

the receptive fields of MT neurons, thereby excluding surround effects. However, at least 

for humans, when we look at the fixation point and the static patch appears on the screen, 

it does not jitter. Thus another mechanism, aside from the inhibitory surround must be 

involved in eliminating visual motion signals due to drifts. Even if in the antagonistic 

subpopulation global motion signals are eliminated during normal vision, the rest of MT 

might still be affected by fixational eye movements and these responses would have to be 

compensated for at a later stage. 

In a Bayesian framework stabilization of vision due to fixational eye movements 

could be obtained by a simple mechanism that has previously been proposed for 
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explaining perceptual phenomena. Perception as well as smooth pursuit eye movements 

have a bias towards underestimating the speed of low-contrast stimuli (Lisberger & 

Westbrook, 1985; Spering, Kerzel, Braun, Hawken, & Gegenfurtner, 2005; Stone & 

Thompson, 1992; Thompson, 1982; Tychsen & Lisberger, 1986). Various studies have 

been able to explain these observations assuming that the brain has a prior towards zero 

speed (Hurlimann, Kiper, & Carandini, 2002; Stocker & Simoncelli, 2006; Weiss, 

Simoncelli, & Adelson, 2002). Applying a prior towards zero speed downstream from 

MT could diminish the readout of motion signals to such a degree that we interpret the 

very low speeds generated by drifts as stationary. 

Whatever the mechanism for stabilizing the retinal signals due to fixation eye 

movements, it appears to occur at or after the level of MT. Indeed, we show that at least a 

subpopulation of neurons does respond to drifts. This observation is in contrast to 

conclusions of previous studies which have suggested that the effects of eye movements 

are removed from the visual signals before they reach MT (Pitkow, Sompolinsky, & 

Meister, 2007; Sasaki, Murakami, Cavanagh, & Tootell, 2002). 

The fact that MT neurons respond to drifts could have an impact on various neural 

response properties, such as the magnitude and variance of firing rates as well as neuron-

neuron correlations. During fixation of a stationary stimulus the increase in firing rate for 

image velocity along the preferred direction is larger than the decrease in firing rate 

caused by image velocity in the non-preferred direction, likely resulting in a net increase 

in firing rate because of drifts. Further, the variance of neurons in MT is known to be 

weakly correlated. During fixation of a stationary stimulus, a portion of that correlation is 

likely to arise from the common visual signal generated by drifts and it remains to be 
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seen how large that contribution is. Future studies can elucidate the impact of drifts by 

comparing neural responses to stimuli with and without retinal image stabilization and 

can avoid contamination by drifts by stabilizing a stimulus on the retina when this is 

needed. Finally, it is unknown whether drifts affect steady-state responses during fixation 

of dynamic stimuli, the circumstances under which MT is most commonly studied in 

laboratories.  

Despite the fact that MT is rarely studied in the context of stationary stimuli, this 

situation is most similar to holding our gaze still during natural vision of static scenes. 

This is an action we repeat many times over the course of an hour or even minutes. 

Knowing that MT carries visual signals in these situations might therefore be an 

important piece to understanding the achievement of normal vision.  
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Abstract 

The precision of a movement is necessarily limited by the precision of the motor 

command issued to the muscles that execute that movement. What limits the precision of 

the motor command? Because neural noise can propagate across synapses, the precision 

of the motor command might be inherited from upstream brain areas that play a critical 

role in providing signals to form an appropriate motor command. Here we asked whether 

sensory neurons contribute to noise in motor behavior by analyzing trial-by-trial 

fluctuations in single neurons in visual area MT during smooth pursuit eye movements. 

Fluctuations in sensory responses to repeated presentations of identical stimuli were 

correlated with deviations in eye speed at the initiation of pursuit. These correlations 

were strongest at the onset of both the neural and behavioral responses and depended on 

the direction of the stimulus relative to the preferred direction of the neurons. The 

observed correlation structure was inconsistent with common readout models of speed 

such as standard vector averaging or maximum likelihood estimation. Instead, we 

demonstrate that modifications of standard vector averaging involving motion opponent 

signals can account for the patterns of correlations. We also discuss a possible role of 

correlations in the timing of the neural and behavioral responses in shaping the structure 

of neuron-behavioral correlations. Further, we show that the variance of many neurons is 

only moderately larger than the variance in eye speed during pursuit initiation, which 

together with the existence of neuron-behavior correlations suggests that limited noise is 

added downstream from MT as the motor command is formed. Our results indicate that 

sensory noise propagates through the smooth pursuit system and contributes to variability 

in the oculomotor response. 
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Introduction 

Movements are variable, no matter how often we practice them. The source of 

motor variation remains a matter of debate and could involve a number of neural and 

non-neural processes. Indeed, each movement results from a complex chain of events that 

begins with the processing of sensory inputs and ends with the contraction of the muscles 

that generate the desired movement. Any step along this chain could contribute to the 

variability of the final movement.  

In the simplest case, motor variation could arise due to limitations in the ability of 

muscles to execute a precise, desired motor command. However, while variation in the 

force of muscular contraction is likely to add to motor variation, it is scarcely the sole 

contributor. At least in part, muscle variability is a consequence of variability in the 

motor commands themselves, as represented in the firing of motor neurons (Faisal, Selen, 

& Wolpert, 2008; Harris & Wolpert, 1998; van Beers, Haggard, & Wolpert, 2004). In 

turn, variability in motor commands could be inherited from upstream areas involved in 

planning the movement (Churchland, Afshar, & Shenoy, 2006; Medina & Lisberger, 

2007; Schoppik, Nagel, & Lisberger, 2008) or areas representing the sensory evidence 

that guides the formation of the motor plan (Osborne, Hohl, Bialek, & Lisberger, 2007; 

Osborne, Lisberger, & Bialek, 2005). Understanding where and how motor variability 

arises is likely to shed light on fundamental questions of the nature of the neural code 

underlying the formation of a motor command.  

As we interact with our environment, sensory neurons inform the brain about the 

world around us. Motor pathways must interpret these signals to generate precise 
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behaviors. Because the responses of single neurons are variable, downstream areas must 

pool signals across many sensory neurons in order to obtain an accurate estimate of the 

sensory parameters necessary for guiding our movements. In addition, the frame of 

reference in which sensory neurons encode parameters is generally different than that 

used by motor neurons to control the muscles (Groh, 2001; Lisberger, 2010). Therefore 

neural pathways controlling behaviors that rely on our senses are required to transform 

the pooled responses of the sensory neurons into a meaningful signal for the motor 

neurons. Studying the transformation of variability along a sensory-motor pathway 

informs us about possible computations underlying the conversion of sensory signals into 

a command for motor behavior. 

Similar questions have been addressed in the context of simple perceptual 

decisions, which are variable from trial to trial for repeated presentations of identical 

stimuli (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Britten, Shadlen, 

Newsome, & Movshon, 1992; Dodd, Krug, Cumming, & Parker, 2001; Leopold & 

Logothetis, 1996; Logothetis & Schall, 1989; Newsome, Britten, & Movshon, 1989; 

Nienborg & Cumming, 2009; Purushothaman & Bradley, 2005; Ress & Heeger, 2003; 

Uka & DeAngelis, 2004). It was shown that the strength of inter-neuronal correlations, 

the size of the relevant neural pool, and the rules employed to read out the responses of 

upstream areas all have an impact on the propagation of neural noise (Shadlen, Britten, 

Newsome, & Movshon, 1996; Zohary, Celebrini, Britten, & Newsome, 1994). These 

factors may apply to motor systems as well. However, in contrast to discrete perceptual 

decisions, movements are continuous in nature and often operate on much faster time 

scales than have been studied in perceptual tasks. 
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Here we study the sensory contributions to motor variability in the smooth pursuit 

system. Smooth pursuit eye movements allow us to track an object with our eyes by 

keeping its image centered on the fovea, the high-acuity region of the retina. The pursuit 

system provides an excellent model for studying sensory-motor integration, the process 

by which the brain uses sensory information about the environment to guide motor 

responses. For smooth pursuit, both the sensory stages as well as the various areas 

involved in producing the motor command are relatively well understood (Krauzlis, 

2004; Lisberger, 2010; Lisberger, Morris, & Tychsen, 1987). In the first ~120 ms of the 

smooth pursuit response, the eyes are driven purely by feed-forward sensory signals 

(Lisberger & Westbrook, 1985). These signals are provided by visual area MT, thus an 

ideal candidate for testing whether sensory neurons contribute to variability in the motor 

output. 

We recorded responses from single neurons in area MT during smooth pursuit eye 

movements and asked whether trial-by-trial variability in MT responses predicts 

corresponding variability in pursuit eye velocity. Fluctuations in MT responses were 

correlated with fluctuations in the speed of pursuit eye movements and were strongest at 

the onset of both the neural and the behavioral responses. This result suggests that 

sensory noise can propagate through the brain to contribute to motor variability in the 

oculomotor system. Moreover, neuron-behavior correlations depended on the 

characteristics of the stimulus motion relative to the tuning properties of the MT neurons. 

Correlations were consistently positive when the stimulus moved in the preferred 

direction of the neurons and mostly negative when the stimulus moved in the opposite 

direction. Using a simulated population of MT neurons, we derived the predicted neuron-
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behavior correlation structure for various models that have been suggested in the past for 

reading out speed from MT. Common models such as standard vector averaging or 

maximum likelihood were unable to explain the observed correlation structure in our 

data. Instead a modified vector averaging computation comparing opponent motion 

signals was necessary to reproduce the measured pattern of MT-pursuit correlations. 

Further, the variance in eye speed was approximately just ten times larger than the 

variance of single neuron responses in MT. This poor noise reduction along with the 

existence of MT-pursuit correlations suggests that limited noise is added downstream 

from MT during pursuit initiation.  
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Materials and Methods 

Subjects 

Eye movement traces and neural recordings were obtained from two adult male 

rhesus monkeys (Macaca mulatta, 7 and 13 kg). After basic training, monkeys were 

implanted with stainless steel or titanium head holders for head fixation and scleral 

search coils for recording eye movements. Technical details have been described 

previously (Ramachandran & Lisberger, 2005). Titanium or cilux recording chambers 

(Crist instruments, Hagerstown, MD) were mounted over a 20 mm circular opening in the 

skull to allow access to MT for neural recordings. For each experimental session, 

monkeys sat in a primate chair and received fluid rewards for accurately fixating or 

tracking visual targets presented on a screen in front of them. All surgical and 

experimental procedures were approved in advance by the Institutional Animal Care and 

Use Committee of the University of California, San Francisco and were in strict 

compliance with the NIH Guide for the Care and Use of Laboratory Animals. 

Visual stimuli  

All experiments were conducted in a nearly dark room. Visual stimuli were 

presented on an analog oscilloscope (Hewlett Packard 1304A) with a refresh rate of 250 

Hz. The oscilloscope was driven by 16-bit digital-to-analog converters on a digital signal 

processing board in a PC. The display was positioned 20.5 cm from the monkey and 

subtended a 67° horizontal by 54° vertical visual angle.  

For mapping receptive fields of neurons in MT, a small bright spot was presented 

at the center of the screen. The monkey was required to maintain gaze within one degree 
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of this fixation point. After manually locating the receptive field, the direction and speed 

tuning of each neuron was measured by placing a patch of moving random dots in the 

receptive field of the neuron. Random dot patches approximately matched the size of the 

receptive fields of the neurons and were 5 x 5° or 8 x 8° large apertures containing dots 

placed at random locations with a density of 2 dots/deg2. During each stimulus 

presentation, dots moved coherently in a given direction at a specified speed for 300 ms 

and vanished for 200 ms before reappearing at the same location, but moving either at a 

different speed (speed tuning) or in a different direction (direction tuning). Five different 

directions or speeds were presented in random order within a single behavioral trial 

before the monkey received a reward for maintaining proper fixation. 

Pursuit trials began with a small square of 0.3 x 0.3° appearing in the center of the 

screen serving as the fixation target (Figure 3.1). The square shape of the fixation target 

cued the monkey to expect a pursuit trial. Following a random delay of 500-900 ms, a 5 x 

5° or 8 x 8° static random dot patch appeared in the receptive field of the neuron. After 

another random delay of 300-900 ms, the dots began moving coherently. Both delays 

were drawn from uniform distributions. The delay between dot onset and dot motion 

allowed us to isolate the MT response to motion from the transient caused in many 

neurons by the onset of a visual stimulus. The onset of dot motion coincided with the 

disappearance of the fixation target, cueing the monkey to pursue the patch.  

Crucially, the first 100 ms after fixation target disappearance consisted of 'local 

motion' only, i.e. the dots moved within a static aperture. This segment of local motion, 

which is barely discriminable from en bloc “global” motion of dots and aperture, evokes 

pursuit responses equal to those elicited by global motion as long as the local and global 
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motion vectors are identical (Osborne et al., 2007). Adding this segment allowed us to 

keep the stimulus in the receptive field of the neuron during the delay between motion 

and pursuit onset. After 100 ms of local motion, the aperture started moving at the same 

speed and in the same direction as the dots, typically for 250-500 ms depending on the 

speed of the target. Monkeys received fluid rewards for keeping their eyes within 3-5° of 

target position throughout the pursuit portion of the trial. The exact fixation requirement 

depended on the speed and the size of the pursuit target as well as the starting location of 

the patch relative to the fixation target.  

These parameters of target motion had to be adjusted depending on the receptive 

field location and properties of the neuron under study. We ensured that the chosen 

parameters allowed saccade-free pursuit initiation, and we were not concerned about the 

exact location of the eye within the patch during pursuit. Typically, 4-6 stimulus 

conditions, each with different directions or speeds of motion, were randomly interleaved 

in a block of trials. Each stimulus condition was balanced by another condition in which 

the target moved at equal speed and opposite direction to prevent anticipatory pursuit 

responses. Monkeys usually completed 2000-3600 pursuit trials in each daily experiment. 

MT recording 

We recorded responses of 104 neurons in visual area MT of two monkeys (52 

neurons each in monkeys Y and J). We used a Thomas microdrive (Thomas Mini-Matrix 

05, Thomas Recording, Giessen, Germany) to lower quartz-shielded tungsten electrodes 

vertically into MT. Electrode impedances ranged from 1 to 4 MΩ. MT was identified 

based on stereotaxic coordinates, directional and speed response properties of neurons, 

receptive field sizes, retinotopic organization, and surrounding cortical areas (Desimone 
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& Ungerleider, 1986; Maunsell & Van Essen, 1983). We typically recorded from neurons 

with receptive field centers within the central 5º of the visual field. 

Electrical signals were amplified and digitized for on-line spike sorting and spikes 

were initially assigned to single neurons by using a template-matching algorithm (Plexon 

MAP, Plexon Inc., Dallas, TX). After the experiment, we used a combination of visual 

inspection of waveforms, projection onto principal components, template-matching, and 

refractory period violations in Offline Sorter (Plexon Inc, Dallas, TX) to sort and assign 

spikes to well isolated single units. After sorting, waveforms were converted to 

timestamps with 1 ms precision for analysis. Firing rates were obtained by convolving 

spikes trains with a Gaussian window of 10 ms standard deviation. 

To obtain the tuning properties of each cell, we fit speed and direction tuning 

curves with Gaussian functions (Lisberger & Movshon, 1999): 
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Direction tuning curve: 
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(s – speed, θ – direction, R0 – baseline firing rate, a – amplitude of speed tuning curve, A 

– amplitude of direction tuning curve, ps – preferred speed,  pθ – preferred direction, σs – 

width of speed tuning curve, σθ – width of direction tuning curve, and d – skew parameter 

of speed tuning curve). The angle θ - pθ was restricted to be within [-π, π] degrees. 
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Behavioral data 

Eye position and velocity signals were sampled and stored at 1000 Hz. Velocity 

traces were smoothed with a zero-phase, 25 Hz, 2-pole digital Butterworth filter. Before 

analysis, each trial record was inspected and rejected if a saccade occurred within the 

time window chosen for analysis. Data sets contained at least 80 and typically 300 

repetitions of each trial condition. 

MT-pursuit correlations were calculated to characterize the relationship between 

the trial-by-trial variation in the firing rates of single neurons and the trial-by-trial 

variation eye speed during pursuit initiation. Experiments usually contained a small 

number of interleaved target motions, and we computed the MT-pursuit correlations for 

each target motion separately. Although we only included trials that did not contain 

saccades or microsaccades during fixation, we observed that small fluctuations in fixation 

eye velocity can contribute to neuron-behavior correlations. Therefore, we removed 

temporal autocorrelations in eye speed to report the fraction of MT-pursuit correlations 

that was not related to fixation eye movements. We removed correlations between 

fixation and pursuit eye speed only and left MT responses untouched because this method 

quantified most accurately the true MT-pursuit correlations in our data. The alternative 

approach of removing correlations between MT firing rates and fixation eye speed 

introduces errors that could affect the value of the MT-pursuit correlations because firing 

rates are not Gaussian distributed at motion onset. However, our results did not change 

qualitatively when we removed correlations with fixation eye velocity both from pursuit 

eye speed and neural responses. 
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To account for temporal auto-correlations in eye speed, we built linear predictions 

of eye speed during the initial pursuit response (80-120 ms after motion onset) based on 

eye speed during fixation (-40 to 40 ms relative to motion onset). These predictions were 

subtracted from the initial pursuit response to obtain a "decorrelated" or residual eye 

speed, which was then used to calculate MT-pursuit correlations. To construct the linear 

prediction, we chose the time interval during fixation that was maximally predictive of 

pursuit eye speed; however, our results were insensitive to the exact fixation time 

window chosen as long as it included the time interval around motion onset. For time 

intervals occurring later than 120 ms after pursuit onset the filter had little predictive 

power and removing predictions had no significant effect on the results.  

The linear filter we constructed is the analytical solution to a multilinear 

regression between fixation and pursuit eye speed and is optimal in the least squared 

sense. This method has been applied previously in other contexts (Warland, Reinagel, & 

Meister, 1997). One assumption of this method is that the independent variables, in our 

case eye velocity at different times during fixation, are uncorrelated with each other. To 

minimize the correlation between sequential time points in eye velocity, we 

downsampled our data by calculating the mean over 20 ms time bins. To confirm that this 

was sufficient, we calculated filters based on ridge regression and the predictions were 

virtually identical. 

Predictions were obtained in the following way: Vfix is the matrix describing eye 

velocity during fixation with trials in rows and time points in columns, i

jh  is the 

horizontal, and i

j
v  the vertical eye speed during trial i at time point j. Vpurs describes 
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horizontal and vertical pursuit eye speeds ( i

ph  and i

p
v ) during 80-120 ms after motion 

onset. Because we considered only residuals, there is no constant term in Vfix. 
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Pursuit predictions were obtained by calculating the filter f: 

 f = (Vfix
TVfix)-1·(Vfix

TVpurs) (3) 

 Vpurs
pred = Vfix·f (4) 

 Vpurs
decorr = Vpurs - Vpurs

pred (5) 

Finally, for calculating correlations with firing rates, we converted the horizontal and 

vertical components of Vpurs
decorr into the absolute value of decorrelated eye speed. 

Simulations 

Model population. We simulated a population of correlated, noisy MT neurons 

with preferred speeds that uniformly tiled the log space between 0.5 and 512 deg/sec and 

preferred directions evenly distributed between -180 and 180 degrees. The simulations 

underlying all plots in this paper were based on a pool of Nps x Npd neurons, with Nps = 

Npd  = 60, where Nps describes the number of different preferred speeds and Npd the 

number of different preferred directions. The mean response Rmean of each neuron was 
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determined by the sum of the baseline activity R0 and the product of the direction and 

speed tuning curve.  

  

R
mean

(! ,s) = R
0
+ g * exp "

1

2

log(
s

ps
)

#
s

$

%

&
&
&
&

'

(

)
)
)
)

2

+
! " p!
#!

$

%
&

'

(
)

2

*

+

,
,
,
,
,

-

.

/
/
/
/
/

0

1

2
2

3

2
2

4

5

2
2

6

2
2

  (6) 

The parameters s and θ describe the stimulus speed and direction, ps and pθ the 

preferred speed and preferred direction of the neuron. The amplitude g as well as the 

bandwidth σs of the speed tuning and σθ of the direction tuning was kept constant across 

the neural population. (R0 = 1, σs = 1.5, σθ = 40, g = 10). The angle θ - pθ was restricted 

to be within the interval [-π, π].  

On every trial we added to each neuron’s mean response correlated noise drawn 

from a normal distribution with the variance scaled to the mean response. The expected 

correlation structure rij between neurons i and j was:  
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The parameters rmax (peak correlation), τs and τθ (width of the correlation structure as a 

function of speed and direction) were chosen so that the neuron-neuron correlations in the 

model MT population matched the experimental data measured previously (Huang & 

Lisberger, 2009) (rmax = 0.78, τs = 2, τθ = 40). We followed the methods of Shadlen et al. 
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(1996) to produce correlated deviates on each trial that on average produced the neuron-

neuron correlation described by the equation above. 

We used the following decoding models to test the neuron-behavior correlation 

structure predicted from the model MT population responses: 

Standard vector averaging (Groh, Born, & Newsome, 1997; Lisberger & Ferrera, 1997; 

Priebe & Lisberger, 2004; Salinas & Abbott, 1994):  
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s is the readout of speed, and Ri the response of the ith neuron. 

Vector averaging, opponent (Churchland & Lisberger, 2001; Huang & Lisberger, 2009; 

Yang & Lisberger, 2009): Opponent vector averaging was implemented by weighting 

responses in the numerator by the sine and cosine of preferred direction. The use of the 

trigonometric functions naturally creates opponency between neurons that prefer opposite 

directions. Horizontal and vertical eye speeds sh and sv were decoded separately before 

combining these values to the total speed s. 
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Vector averaging, numerator opponent (Churchland & Lisberger, 2001): This readout 

differs from opponent vector averaging by its denominator. 
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The constant k ensures that the readout scales with stimulus speed. 

Maximum likelihood (Deneve, Latham, & Pouget, 1999): Under the assumption of a 

uniform prior, we computed the likelihood function for speed readout as: 
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where a is the vector of neural responses on a given trial, ( , )s !
mean

R  is a vector 

describing the mean response of the population determined by equation (6) above, and C 
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is the matrix describing the structure of the covariance among neurons in our model 

population.  

Correlated latencies: As a control, we also used our experimental data to evaluate the 

MT-pursuit correlations that would be expected if the temporal onset of the neural 

response were correlated with the temporal onset of the pursuit response. Within each 

stimulus condition, we first shuffled the eye velocity and firing rate across trials to 

remove MT-pursuit correlations. Then, we introduced a coherent latency shift in both 

firing rate and eye speed for each trial by drawing values from a Gaussian distribution of 

zero mean and 5 ms standard deviation. Finally, we computed the MT-pursuit 

correlations using our original analysis procedure. Using shuffled data to test the latency 

hypothesis had two advantages: shuffling eliminated any correlations in our data while 

naturally leaving variance in timing onset in both the neural and speed traces. Thus the 

realigned data contained a correlated (shared) and an uncorrelated (noisy) component 

between firing rate and eye speed, similar to the timing that presumably exists in the real 

data. Because it is difficult to determine the onset of pursuit and neural responses with 1 

ms precision from single trial traces, we did not attempt the alternative of performing the 

MT-pursuit correlation analysis after aligning data to the onset of both firing rate and 

pursuit for each trial. 
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Results 

We used a modified step-ramp pursuit task (Osborne et al., 2007; Rashbass, 1961) 

to study correlations between firing rates of single neurons in visual area MT and speed 

of smooth pursuit eye movements. A patch of random dots, which elicits robust responses 

in MT neurons, served as our pursuit target. Each trial consisted of three distinct epochs 

(Figure 3.1). First, the dots appeared in the MT receptive field and remained stationary 

for a variable amount of time (left). Next, the dots started moving locally within the 

receptive field while the aperture containing the dots remained stationary (local motion, 

middle). Finally, the aperture itself began moving at the same speed as the dots (right). 

The short epoch of local motion is effective at driving an initial pursuit response 

(Osborne et al., 2007; Priebe, Churchland, & Lisberger, 2001) and ensured that the patch 

was centered on the receptive field of the neuron until the eyes started moving. On each 

trial, both the speed and direction of motion of the dots were chosen randomly from a set 

of target motions falling either on the peaks or the flanks of the direction- and speed-

tuning curves of the neuron under study. 

 



 70 

 

 

Figure 3.1.  

The pursuit task. Left: Once the monkey acquired fixation on a point (FP) at the center of 

the screen, a patch of random dots appeared in the receptive field of the neuron. This patch 

remained stationary for a randomized amount of time between 300-800ms (fixation 

segment). Middle: The fixation point disappeared, cueing the monkey to initiate pursuit. At 

the same time the dots started moving coherently for 100ms within the static aperture of the 

patch (local motion segment). Right: The patch moved at the same speed and in the same 

direction as the dots for a fixed time between 250-700ms, depending on the speed used in a 

particular experiment (global motion segment). The speed and direction of motion of the 

dots were the same during the local and global motion segment. 
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Even though our task provided compelling visual motion and the monkeys 

performed the behavioral task diligently, both eye movements and neural responses were 

somewhat variable from trial-to-trial for repeated presentations of identical stimuli and 

under identical instructions. Figure 3.2 shows simultaneous recordings of eye speed and 

spikes of a single MT neuron for five repetitions of the same stimulus.  

 

 

 

 

Figure 3.2.  

Simultaneous recordings of smooth pursuit eye movements and neural responses. Example 

eye velocity traces are plotted as a function of time with trials aligned to stimulus motion 

onset at 0ms. Below the eye traces we plotted spikes for the same trials as above with 

matching colors indicating data collected on the same trials. 
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MT-pursuit correlations 

Firing rates in MT were, in fact, correlated with eye speed on a trial-by-trial basis, 

and the correlations persisted after filtering to remove the effects of oscillations in eye 

speed during fixation (Figure 3.3). We computed correlations between firing rates 

(vertical axis) and eye speed (horizontal axis) averaged over short time-bins (20 ms) 

covering the time period around the onset of target motion. We first calculated 

correlations across trials collected under identical stimulus conditions, and then averaged 

the MT-pursuit correlations across conditions. For both monkeys, we observed strong 

positive correlations between the onset of the neural response to motion (20-60 ms after 

motion onset) and the beginning of the pursuit response (80-120 ms after motion onset). 

Because the neural responses precede the eye movement at these time points, the 

observed correlations are consistent with a causal influence of MT responses on eye 

speed. As we will discuss below, we observed these positive correlations only for stimuli 

moving at or around the preferred direction of the MT neuron. 

For the same stimuli, we observed negative correlations during pursuit initiation 

when the neural response lagged the eye movements (Figure 3.3). These correlations are 

likely the result of a combination of effects due to the motion of the eyes during pursuit 

initiation. The faster the eyes catch up to the target, the slower the retinal image speed 

becomes and the sooner the stimulus moves outside of the MT receptive field. Both of 

these factors decrease MT responses, resulting in a negative correlation between eye 

speeds and firing rates. The timing of these negative correlations is inconsistent with a 
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causal role of MT responses on eye movements and will therefore not be discussed 

further. 

 

 

 

Figure 3.3.  

Neuron-behavior correlations. Average correlation matrix between firing rate and eye 

speed for monkey J for targets moving within 90 degrees of preferred direction of neurons. 

The correlation matrix is the correlation coefficient between firing rate and eye speed 

between all time points in both the neural and behavioral response. Time in firing rate is 

shown on the vertical axis and time in eye speed runs along the horizontal axis. The values 

of the correlation coefficients are indicated in color. Points above the diagonal correspond 

to firing rates that precede eye movements. Left panel: Correlation matrix calculated on 

original data. Right panel: Correlation matrix after correlations between fixation and 

pursuit eye speed have been removed. 
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Removal of eye velocity temporal correlations 

We have conducted some control analyses because the interpretation of the 

observed positive correlations is complicated by the presence of fixational eye 

movements that affect MT responses to motion onset as well as eye speed at the initiation 

of pursuit (Figure 3.4). Even during what appears to be steady fixation, the eyes are not 

stable, but rather oscillate at a frequency of about 4-5 Hz (Chapter 2). The eye 

movements of fixation introduce some variation in the eye velocity at the time of pursuit 

initiation that is correlated with variation in eye velocity during fixation. To illustrate the 

correlation (Figure 3.4A), we binned all individual trials in 13 groups according to the 

eye velocity at the time the visual stimulus started to move. We computed the residual 

eye velocity for each trial, defined as the actual minus the mean for its particular 

stimulus. We then averaged residual eye velocity along the preferred direction of the 

neuron under study and firing rate within each of the 13 groups of trials.  

In Figure 3.4A, the ordering of eye velocity at the onset of stimulus motion agrees 

well with the order of the same eye velocity traces in the interval from 80 to 120 ms after 

the onset of stimulus motion, which is the interval that revealed strong MT-pursuit 

correlations. In addition, the variation in eye velocity across the 13 groups of trials during 

fixation is related to the responses of MT neurons to the onset of target motion in the 

same groups of trials. In the interval from 40-80 ms after stimulus motion onset (Figure 

3.4C), MT responses are shifted toward later times as the eye velocity during fixation 

varies from decreasingly positive to zero to increasingly negative. Firing rate in the 13 

groups follows the same order as eye velocity during fixation. Presented as residuals 
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relative to the mean firing rate across all trials (Figure 3.4D), the latency shifts amount to 

systematic changes in the magnitude of MT firing in the interval from 20 to 60 ms after 

the onset of stimulus motion.  

 

 

 

Figure 3.4.  
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Removing correlations due to small fluctuations in eye velocity during fixation. Eye velocity 

was projected onto the preferred direction of neurons in order to visualize the effect of 

fixation eye movements on firing rates and pursuit eye speed. Top row: Residual eye 

velocity - trials were grouped and averaged based on fluctuations in eye speed at the onset 

of motion in the stimulus (0 ms). The pursuit response begins around 80ms, but is not 

evident in the residual eye velocity traces because for each stimulus condition the average 

eye velocity was subtracted from every trial. Second row: Residual pursuit eye velocity - 

autocorrelations between fixation and pursuit eye speed were removed from pursuit eye 

velocity. Third row: Firing rates as a function of time for the same groups of trials as the 

first two rows. Bottom row: Firing rates grouped as above with mean firing rate subtracted. 

 
 

We showed in Figure 3.3 that the eye movements of fixation contributed little to 

the MT pursuit correlations, and that a strong correlation persisted after we used a 

filtering procedure to remove the effect of eye velocity during fixation on eye velocity 

during the initiation of pursuit (compare Figures 3.3A and B). Figure 3.4B verifies that 

the decorrelation procedure worked. Here, the traces in the interval from -50 to 75 ms 

relative to the onset of target motion are the raw eye velocities measured in the 13 groups 

of trials during fixation. The higher magnification traces in the interval from 80 to 140 ms 

after the onset of target motion show that decorrelation abolished the ordering of the 13 

groups of eye velocity during the initiation of pursuit, indicating that the correlation 

between the eye velocity of fixation and the eye velocity of the initiation of pursuit has 

been eliminated. Therefore, the existence of MT-pursuit correlations after decorrelation 

implies that the correlations are not caused by the small eye movements of fixation and 
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must be attributed to other mechanisms.  For the remainder of the paper, we show only 

results obtained after decorrelation.  

Structure of MT-pursuit correlations 

 MT neurons are tuned for the direction of stimulus motion and respond 

preferentially to visual motion along a particular axis, which is specific to each neuron 

(Albright, 1984; Lisberger & Movshon, 1999; Maunsell & Van Essen, 1983; Rodman & 

Albright, 1987; Snowden, Treue, & Andersen, 1992). In addition, neural responses in MT 

depend on the speed of visual motion (Lagae, Raiguel, & Orban, 1993; Lisberger & 

Movshon, 1999; Maunsell & Van Essen, 1983; Rodman & Albright, 1987). To define the 

structure of MT-pursuit correlations, we next analyze how the magnitude and sign of the 

MT-pursuit correlations depends on the relationship between the direction and speed of 

target motion, versus the preferred direction and speed of the neuron under study.  

The magnitude and sign of the MT-pursuit correlations depended on the direction 

in which the stimulus moved relative to the preferred direction of a given neuron. We 

divided up the first 120 ms of the neural and pursuit responses into three consecutive 40 

ms intervals and analyzed each interval separately (Fig. 3.5, top row). During the first 40 

ms, the firing rates of a large percentage of neurons were positively correlated with eye 

speed when the target moved in the preferred direction of a neuron (mean neuron-

behavior correlation coefficient rNB = 0.097, 42.44% significant). Firing rates had a slight 

tendency to be negatively correlated when the target moved in the opposite direction 

(mean rNB -0.034, 16.79% significant). During later time intervals, we observed fewer 
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significant correlations and the difference between motion in the preferred versus the 

opposite direction decreased. 

In contrast to the findings for direction, the correlation coefficients depended little 

on the speed of the stimulus relative to the preferred speed of neurons. However, for all 

time intervals considered, the MT-pursuit correlation structure hardly depended on 

stimulus or preferred speed of the neurons (Figure 3.5, bottom row). As we will show 

below, models for decoding MT make specific predictions about the MT-pursuit 

correlation structure as a function of the tuning properties of MT neurons and we can 

compare these predictions with the correlations we measured. 
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Figure 3.5.  

MT-pursuit correlations as a function of the tuning properties of MT neurons. Correlation 

coefficients between firing rate and eye speed are plotted against the difference between 

preferred and target direction (top row) and against target speed as a percentage of 

preferred speed (bottom row). Each dot represents the correlation coefficient for one 

stimulus condition and neuron, and data is plotted for both monkeys. The lag between 

firing rate and eye speed was kept constant at 60 ms for all time intervals. The three 

columns describe correlations during subsequent time intervals with the time of pursuit eye 

speed labeled at the top. 

 



 80 

 
Decoding model predictions 

As described in the Methods, we created a population of model MT neurons that 

had the mean tuning curves, response variance, and noise correlations found in our 

recordings from area MT (Huang & Lisberger, 2009). We ran 1000 simulated trials for 

target motion at 16 deg/s, and created a separate instantiation of the model MT 

population for each trial. We next applied several different decoding computations 

described in the prior literature to each trial, and obtained estimates of target speed using 

the different decoding computations. Finally, we computed the trial-by-trial correlation 

between the responses of the model MT neurons and the estimates of target speed for 

each model neuron and each decoding computation.   

To represent the structure of the MT-pursuit correlations in our data and compare 

them with the predictions of the different decoding computations, we developed the 

graphs shown in figure 3.6. Neurons were placed in bins according to their preferred 

speed and preferred direction, relative to target speed and direction. In figure 3.6A, the 

colors of each pixel indicate the mean MT-pursuit correlation in our data for neurons with 

the preferred speed and direction signified by the location of the pixel along the y-axis 

and x-axis. Figure 3.6A contains a non-white pixel only for the bins where we recorded 

neurons. In the other panels, which show the MT-pursuit correlations predicted by 

different decoding computations, we have colored only the pixels for which we had data 

in figure 3.6A, to allow a fair visual comparison. A glance at figure 3.6 reveals that the 

procedures used to obtain figure 3.6E and F did a reasonable job of reproducing the MT-

pursuit correlations in our data, while the procedures used to obtain figures 3.6B, C, and 

D failed qualitatively. We elaborate below.  
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Standard vector averaging (Groh et al., 1997; Lisberger & Ferrera, 1997; Priebe & 

Lisberger, 2004; Salinas & Abbott, 1994) finds the center of mass of the responses of all 

MT neurons along the axis of preferred speed.  The predicted MT-pursuit correlations for 

vector averaging (Figure 3.6B) were positive for neurons with preferred speeds higher 

than target speed and negative for model neurons with preferred speeds lower than target 

speed. In contrast to the predictions of standard vector averaging, the MT-pursuit 

correlations in our data did not change signs depending on whether the preferred speed of 

the neuron was above or below target speed. Given that our implementation of standard 

vector averaging ignores the direction tuning of the neurons, comparison with the data 

along the axis of preferred direction would not be meaningful.   

We can understand intuitively the predictions of decoding with standard vector 

averaging. Vector averaging estimates speed based on the center of mass of the active 

neural population. On trials where neurons with low preferred speeds have higher firing 

rates than average, the center of mass is pulled towards lower preferred speeds resulting 

in smaller speed estimates and negative MT-pursuit correlations. On trials where neurons 

with high preferred speeds have higher firing rates than their average, the center of mass 

of the population is pulled towards higher preferred speeds resulting in higher speed 

estimates and positive MT-pursuit correlations. The MT-pursuit correlation crosses zero 

when preferred speed is the same as target speed because an increase or decrease in the 

firing rate of these neurons does not move the center of mass of the population response. 

Due to the presence of baseline activity in our simulated population, all neurons were 

active and therefore contributed to the speed estimate even if their preferred directions 

were opposite to the target direction. 
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 Opponent vector averaging (Churchland & Lisberger, 2001; Huang & 

Lisberger, 2009; Yang & Lisberger, 2009) predicted the same MT pursuit correlations as 

did standard vector averaging for model neurons with preferred directions within 90 

degrees of target direction (Figure 3.6C). The MT-pursuit correlations in our data (Figure 

3.6A) did not resemble the predictions of opponent vector averaging. However, the 

reversal of MT-pursuit correlations for neurons with preferred directions far from versus 

near the direction of target motion suggests that a decoding computation with directional 

opponency may be successful at predicting our data. For the opponent vector averaging 

decoder, the combination of direction opponency in the decoder and the non-zero 

baseline rates of our model MT population create a reversal of the sign of the predicted 

MT-pursuit correlations for model neurons with preferred directions that differed from 

target direction by more than 90 degrees  

A maximum likelihood decoder (Deneve et al., 1999) predicted a similar neuron-

behavior correlation structure as standard vector averaging (Figure 3.6D), at least for 

model neurons with preferred directions within 90 degrees of target direction. In this 

range of preferred directions, the predictions from maximum likelihood decoding 

disagreed with the data. Initially, we were surprised that a maximum likelihood decoder 

that was privy to the structure of the neuron-neuron correlations would predict any MT-

pursuit correlations at all.  We expected the decoder to effectively eliminate shared noise 

in the MT population. As a consequence, we had expected that fluctuations from 

individual units would not propagate to the output and MT-pursuit correlations would be 

abolished. Instead, MT-pursuit correlations still appear, although they are smaller than 

those resulting from a maximum likelihood decoder that ignores neuron-neuron 
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correlations (data not shown). Therefore a maximum likelihood decoder that knows about 

the neuron-neuron correlation structure can reduce the effect of shared noise, but cannot 

remove it entirely. 

 

 

 

Figure 3.6.  

MT-pursuit correlation structure of the data (A, earliest pursuit interval) compared to the 

predictions of various decoding models (B-E) and the presence of correlated timing (F). All 

panels show the value of correlation coefficients between firing rates and eye speed (i.e. 

speed readout) in color. Correlation coefficients are plotted against preferred speed as a 

percentage of target speed along the vertical axis and the difference between preferred and 

target direction along the horizontal axis. The model corresponding to each predicted 

correlation structure is indicated at the bottom of each panel. The correlation coefficients 
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shown are averages across all data points falling into a given bin. For the ‘data’ and 

‘correlated timing’ panels correlation coefficients are averaged across both monkeys. 

 
A vector averaging decoding model with direction opponency only in the 

numerator predicted the MT-pursuit correlation structure that most closely resembled our 

data (Figure 3.6E). There still were some differences, for example the relatively low MT-

pursuit correlations predicted for model neurons with low preferred speeds and preferred 

directions within 90 degrees of target direction, and the large magnitude of the negative 

correlations for model neurons with preferred directions that differed from target 

direction by more than 90 degrees. In this model, the numerator is the same as for 

opponent vector averaging, but all neurons contribute to the denominator in a positive 

manner independent of their preferred directions. The presence of opponency only in the 

numerator effectively decouples any interaction between the numerator and the 

denominator. In the standard and opponent vector averaging decoders, in contrast, the 

interaction between the numerator and denominator is responsible for the speed 

dependency of the predicted MT-pursuit correlations. The most striking feature of our 

MT-pursuit correlation data is the absence of this speed dependency (Figure 3.5D, E, F).  

Our analysis is based on the well-supported premise that there is a sensory source 

of pursuit variation, that the source resides in correlated noise in MT responses, and that 

the correlated noise is of an appropriate structure and amplitude to lead to the observed 

variation in the initiation of pursuit (Huang & Lisberger, 2009; Medina & Lisberger, 

2007; Osborne et al., 2005; Schoppik et al., 2008). If, in spite of these findings, we 

assume that the variation in pursuit arises downstream from the locus where the 
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representation of motion in MT is decoded to estimate target direction and speed, then 

there is an alternative explanation for our data.  Suppose that the latency of onset of MT 

responses and pursuit eye velocity are variable from trial to trial and that they shift to 

some degree together. Because we are analyzing firing rate and eye velocity in a fixed 

temporal window relative to the onset of target motion, coordinated latency shifts would 

cause MT-pursuit correlations. As shown in figure 3.6F, the structure of the MT-pursuit 

correlations predicted by the time shift hypothesis is qualitatively similar to that seen in 

our data. We will return to this issue in the Discussion.   

Correlations between neurons in the MT population are necessary for observing 

MT-pursuit correlations of the magnitude of those we measured in our data. Figure 3.7 

shows the same decoders as in figure 3.6 applied to a simulated population of MT units 

with the same properties as the population in figure 3.6, except that the noise of each unit 

is independent of the noise of all other units. As can be seen, MT-pursuit correlations are 

nearly non-existent without correlated noise in the MT population. 
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Figure 3.7.  

Predicted MT-pursuit correlations plotted as in figure 3.6 resulting from an MT population 

without neuron-neuron correlations between units. The MT-pursuit correlations for the 

data and the prediction of the correlated timing are identical as in figure 3.6 because they 

are not based on the simulated MT population and serve as reference. For ease of 

comparison we left the scale of the colorbar the same as in figure 3.6. 

 

 

Noise Reduction 

Individual MT neurons are noisy with a variance approximately equal to their 

mean spike count (Churchland et al., 2010). The standard doctrine is that averaging 
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across neurons reduces the noise in the behavior driven by MT responses, while noise 

correlations among neurons limit the noise reduction (Shadlen et al., 1996). Thus, noise 

reduction provides a complement to MT-pursuit correlations in our attempt to establish 

the sources of variation in pursuit behavior and the mechanisms that transform the MT 

population response into estimates of target velocity for driving the initiation of pursuit. 

To explore this axis of our data and the predictions of the different decoding 

computations, we have analyzed the amount of noise reduction between the response of 

each MT neuron in our sample and the associated eye movements.  

To compare neural to behavioral noise, it was necessary to convert eye speed into 

the same units as firing rate. For each trial in the collection of responses to a single target 

motion, we converted eye speed 100 ms after the onset of pursuit to an estimate of target 

speed as:  

 
 

!T
i
' =
!E
i
(t = 100)

!E(t = 100)

!T  (16) 

where the dots over the symbols indicate speed, T and E refer to the target and the eye, i 

indexes the trials, and the denominator is the mean across all trials. Then, we converted 

the estimate of target speed for each trial to the units of firing rate by projecting through 

the mean speed tuning curve for the neuron under study, as illustrated in figure 3.8A. We 

performed this analysis only for MT neurons with preferred directions within 90 degrees 

of the direction of target motion.   
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Figure 3.8.  

Noise reduction between single neurons in MT and pursuit eye speed. A, left: Eye speed is 

converted to an estimate of target speed by comparing it to the mean response (equation 

16). A, right: Speed estimate is converted into units of firing rate by using the speed-tuning 

curve. We computed variance reduction for eye speed 200ms after motion onset. The tuning 

curve is based on firing rates 25-140ms after motion onset, the time interval relevant for 

guiding the eyes at 200ms. B: Noise reduction between eye speed and firing rate for each 
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cell, trial condition, and both monkeys. Noise reduction is plotted as a function of preferred 

speed in percent of target speed. Data is included only for trial conditions in which the 

difference between preferred and target direction was less than 90 degrees. C: predicted 

noise reduction of each decoder. ML: maximum likelihood. VA opponent: opponent vector 

averaging. VA: vector averaging. VA num opponent: vector averaging with opponent 

numerator.  

 
 

The variance of eye speed, transformed into units of spikes/s as outlined above, 

clustered around 10% of the variance of firing rate across our sample of MT neurons 

(Figure 3.8B, open symbols). Simple averaging of N independent neurons would predict 

a noise reduction of 1/N, so the improvement in variance would be expected to be much 

larger for simple, linear averaging of the MT population responses. Given that all 

practical decoding models are highly non-linear, we performed the same analysis of the 

data obtained from the computer simulations used to create figure 3.6.  

Each model produced a range of values of noise reduction at each value of 

preferred speed, because of the different response amplitudes and variances of neurons 

with different preferred directions.  The predicted noise reduction agreed well with the 

data for the vector averaging model with opponency in the numerator (red band in figure 

3.8B, area delimited by red curves in figure 3.8C). Figure 3.8C shows that the noise 

reduction was similar for the fully opponent vector averaging decoder (black curves) and 

the numerator opponent vector averaging model (red curves). Noise reduction was better 

for the standard vector averaging model (green curves) and best for the maximum 

likelihood model (light gray shading). The two opponent vector averaging models made 
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predictions that agreed well with our MT recordings, while the maximum likelihood 

decoder predicted noise reduction that exceeded what we measured.  
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Discussion 

We found that under identical stimulus conditions, trial-by-trial fluctuations in the 

activity of single neurons in visual area MT are correlated with variation in eye speed at 

pursuit initiation. Our results are a strong indication that fluctuations in MT responses 

contribute to variation in the motor output. Although correlations do not prove causality, 

our interpretation is motivated by the fact that the initiation of smooth pursuit eye 

movements relies on signals from MT (Lisberger, 2010; Newsome, Wurtz, Dursteler, & 

Mikami, 1985). The MT-pursuit correlations were strongest and positive when the target 

moved in the preferred direction of the neurons and slightly negative when the targets 

moved in the opposite direction. Simulation of a population of MT neurons showed that 

this correlation structure is consistent with a modified vector averaging readout 

containing an opponent structure between neurons with opposite direction tuning. 

Further, we found that the variance in eye speed is approximately a tenth of the variance 

of single MT neurons during pursuit initiation. Considering the large number of MT 

neurons that could be read out by downstream areas, the difference in variance observed 

between single sensory neurons and the motor output is quite small. 

Assuming a fixed number of neurons contributing to the readout, there are two 

possible explanations for the small difference in variance between MT neurons and eye 

speed. First, pooling MT responses could effectively eliminate sensory noise and the 

noise in the motor behavior would thus arise purely from downstream areas. Second, 

shared noise cannot be removed by pooling neural responses because of the presence of 

weak neuron-neuron correlations in MT (Bair, Zohary, & Newsome, 2001; Huang & 
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Lisberger, 2009) and therefore the noise propagates across synapses, contributing to 

fluctuations in the motor output. The first explanation is inconsistent with the observed 

strong MT-pursuit correlations, while the second explanation agrees with our findings. 

This implies that errors in sensory estimation of speed lead to the formation of an 

imprecise motor command on individual trials. Considering that signals must travel 

across multiple synapses from MT to reach the motor neurons, it is remarkable that 

fluctuations in individual sensory neurons co-vary with the motor behavior. Our 

conclusions are in line with the results of previous studies that have suggested that motor 

noise has a sensory source for pursuit eye movements (Medina & Lisberger, 2007; 

Osborne et al., 2005; Schoppik et al., 2008).  

The structure of MT-pursuit correlations can be interpreted in several ways, 

depending on the assumptions made about noise added downstream from MT. We first 

discuss the possibility that no noise is added downstream from MT, consistent with the 

findings of several previous studies (Huang & Lisberger, 2009; Medina & Lisberger, 

2007; Osborne et al., 2005; Schoppik et al., 2008). If downstream noise is nearly non-

existent, simulations of a realistic MT population have shown that various aspects of 

smooth pursuit eye movements naturally arise from the properties of the neural 

population in MT. These include accounting for the mean and the variance of eye speed 

(Churchland & Lisberger, 2001; Huang & Lisberger, 2009; Priebe & Lisberger, 2004), 

and the magnitude of MT-pursuit correlations we measured. In this scenario, the structure 

of MT-pursuit correlations informs us about how speed is read out from MT by 

constraining possible decoding mechanisms of the population of MT neurons.   
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Our simulations showed that different models for decoding speed from MT make 

specific predictions about the expected structure of MT-pursuit correlations as a function 

of the tuning properties of the MT neurons. Of the decoders we tested, only a modified 

form of vector averaging, including direction-opponency, could reproduce the pattern of 

MT-pursuit correlations seen in the experimental data. In contrast to other 

implementations of vector averaging, this decoder computes an approximation of, rather 

than the exact center of mass of the neural population. As a consequence, the resulting 

MT-pursuit correlations are nearly flat as a function of the preferred speeds of the 

neurons, similar to what we observed in our data.  

The measured pattern of MT-pursuit correlations appears inconsistent with a 

readout mechanism that has optimal precision. Previous work on optimal decoding has 

suggested that the contribution of a sensory neuron to a perceptual estimate depends on 

the nature of the task and on the relationship between the neuron’s tuning preferences and 

the properties of the stimulus (Jazayeri & Movshon, 2006). For example, in a two-

alternative direction discrimination task, the difference in the angle between the two 

alternatives determines which neurons contribute most to the estimate of direction. The 

largest contribution comes from the most responsive neurons for coarse discriminations, 

while fine discriminations depend on neurons that are stimulated on the flanks of their 

tuning curves (Britten et al., 1996; Cohen & Newsome, 2009; Jazayeri & Movshon, 

2006; Purushothaman & Bradley, 2005). In the case of pursuit, the brain must identify the 

correct speed of the target stimulus from a continuum, rather than discriminating between 

a few discrete speeds. The maximum likelihood solution to this problem predicts that 

neurons stimulated at the flanks of their speed tuning curves should contribute most to the 
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speed readout, as in fine discriminations. Our data, however, are inconsistent with this 

theoretical prediction, as we found no effect of preferred speed on MT-pursuit 

correlations.  

The discrepancy between the observed correlations and the prediction of an 

optimal readout might reflect a fundamental difference between slow perceptual 

decisions that allow a subject to integrate evidence over as much as seconds, and fast 

motor responses that are initiated within less than 100 milliseconds. In the case of pursuit 

initiation, the first spikes after motion onset might provide only a rough, sub-optimal 

estimate of speed that is used for an inexact, but quick initiation of movement. Consistent 

with this idea, the variance of the pursuit response is high at the onset of pursuit initiation 

(Osborne et al., 2007). Fast motor responses, unlike perceptual decisions, might thus 

inherently prioritize speed over precision at least until an initial estimate of the required 

sensory parameters is obtained.  

If we instead suppose, in contrast to the assumptions made so far, that substantial 

noise is added downstream from MT, and that the decoder and the downstream noise 

fulfill specific requirements, then there is an alternative explanation for the structure of 

MT-pursuit correlations. This structure could arise from correlations in the latencies of 

the neural and behavioral responses. In this case, the latencies of neural responses in MT 

would have to be correlated with each other, so that temporal fluctuations in the onset of 

the neural responses would propagate to influence the timing of pursuit initiation. In 

addition, the noise added downstream would have to be of an appropriate magnitude to 

explain the variance in the behavior, as well as being low dimensional, spanning the 

dimensions of latency, speed, and direction to match the properties of noise during 
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pursuit initiation (Osborne et al., 2005). Moreover, the noise would have to originate 

upstream from the FEF and the cerebellum as previous studies have shown that very little 

noise is added downstream from these areas during pursuit initiation (Medina & 

Lisberger, 2007; Schoppik et al., 2008).  

Although it is possible that timing contributes to MT-pursuit correlations to some 

degree, it seems implausible that the entire structure of neuron-behavior correlations 

arises from correlated latencies, because it is unlikely that downstream noise would fulfill 

all the constraints outlined above. Even if latency contributed to the observed 

correlations, this contribution would be difficult to tease apart from that of the decoder 

for several reasons. Ideally, to eliminate any effects of latency on MT-pursuit 

correlations, the neural and behavioral data should be realigned to response onset on a 

trial-by-trial basis before computing correlations. However, this would require estimates 

of the latency of pursuit and MT response onset of far greater accuracy than can be 

achieved in practice. In addition, it is likely that the latency and magnitude of neural 

responses are correlated with each other and that the effects of each cannot be considered 

separately. For example, strong, depolarizing membrane potentials will lead to both high 

firing rates and short response latencies producing correlations in time and magnitude of 

the neural response. Moreover, during pursuit initiation, the motor response itself 

contains correlations between the latency and speed of the eye movements (Osborne et 

al., 2005), which cannot be removed.  

The MT-pursuit correlations in our task likely arise due to feed-forward 

propagation of neural variability from MT to the motor output. We measured the largest 

correlations in a 40 ms time window at the very beginning of the neural and behavioral 
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responses. During this time, MT responses are independent of the attentional state of the 

subject, as modulation of firing rates by attention does not occur until later in the neural 

response (Cook & Maunsell, 2004). Therefore, MT-pursuit correlations cannot be 

attributed to changes in attention on different trials throughout the experiment. We 

cannot, however, exclude the contribution of other cognitive factors to MT-pursuit 

correlations, like the overall level of alertness, as long as these affect the onset of the 

neural and behavioral responses. In contrast to our task, much longer timescales, usually 

on the order of seconds, have been used to link neural activity in MT to upcoming 

decisions in perceptual tasks. Although neuron-behavior correlations in that case might 

well be driven by feed-forward signals, attentional modulations potentially could 

contribute to correlations as has been suggested recently, because later time points of the 

response are included in the analysis (Cohen & Newsome, 2009; Nienborg & Cumming, 

2009).  

Our findings demonstrate that neuron-behavior correlations provide important 

information about the contribution of a brain area to a particular behavior. Knowledge 

about neuron-behavior correlations constrains possible decoding models beyond their 

ability to replicate the mean and variance of a perceptual task or motor behavior. 

Ultimately, analogous experiments measuring neuron-neuron and neuron-behavior 

correlations across different areas will be necessary to understand how a final behavior 

emerges from local computations along a given neural pathway. 
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Linear predictions of pursuit eye velocity 

This appendix is a supplement to chapter 3 and provides further detail on the 

structure of the temporal autocorrelations in eye velocity around pursuit initiation and the 

construction of the linear predictions that we used to remove them. First, we show the 

magnitude of the fluctuations during fixation that give rise to deviations in pursuit eye 

velocity and then provide an example of a typical correlation structure for one experiment 

and stimulus condition. We further discuss how the predictions for pursuit eye velocity 

depend on the temporal parameters of the linear filter and show how we obtained the 

optimal parameters that we used to remove the autocorrelations in eye velocity. 

Temporal correlations in eye velocity 

Even under stringent fixation requirements, eye velocity is variable across 

identical repetitions of the same stimulus and across time during a single trial, both 

during fixation and pursuit initiation. An example of the variability in eye velocity during 

fixation and pursuit initiation is shown in figure 4.1 (left panel). Variability in eye 

velocity occurs naturally and cannot be suppressed. Fluctuations in eye velocity during 

fixation induce image velocity on the retina which can potentially alter the perception of 

motion in the pursuit target. We therefore only included trials in our analysis that were 

free of saccades or microsaccades. The remaining eye movements during fixation are 

tremor and drifts as described in chapter 2 and are small in amplitude (Martinez-Conde, 

Macknik, & Hubel, 2004). Despite the fact that in our data deviations in eye velocity are 

small during fixation, these movements give rise to fluctuations in eye velocity of similar 

magnitude during pursuit initiation (Figure 4.1, right panel).  
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Figure 4.1.  

Variability in eye velocity during fixation and pursuit. Left panel: Typical smooth pursuit 

eye movement traces in response to repeated presentation of an identical pursuit stimulus. 

Eye speed along the direction of target motion is plotted against time. Right panel: Residual 

eye velocity (i.e. deviations from mean eye velocity) in the direction of target motion as a 

function of time. Trials were grouped and averaged according to magnitude of residual 

speed before motion onset (first gray bar). The second gray bar indicates the time of pursuit 

onset. 
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Pursuit eye velocity is correlated with eye velocity during fixation predominantly 

in the direction of target motion which is also the direction in which the eyes move 

during pursuit. Our pursuit stimulus moved on a two-dimensional screen located in front 

of the subject. In order to look at temporal correlations, we divided up eye velocity into a 

component parallel and orthogonal to the direction of target motion. For eye speed 

parallel to target motion, the initial pursuit response was negatively correlated with eye 

speed immediately before the onset of motion in the stimulus (Figure 4.2, left panel). 

This correlation was strongest at the onset of pursuit and decayed with time throughout 

pursuit initiation. In addition to the negative correlation, pursuit eye speed was positively 

correlated with fixation eye speed approximately 100 ms before motion onset. The 

oscillation between positive and negative correlations throughout fixation is due to the 

oscillatory nature of drifts in eye movements described in chapter 2. For eye velocity 

orthogonal to stimulus direction, there is little correlation between eye speed during 

fixation and pursuit. This is expected as the eyes hardly move along this direction (Figure 

4.2, right panel). 
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Figure 4.2.  

Typical correlation matrix of eye speed parallel (left) and orthogonal (right) to stimulus 

direction for a single target motion during one experiment. Each pixel shows the correlation 

coefficient between eye speed at two different time points which are indicated on the 

horizontal and vertical axes. Trials are aligned to target motion onset at 0ms. For reference 

we plotted the mean eye speed in the corresponding direction above each correlation 

matrix. Pursuit is initiated 80-100 ms after motion onset. 

 
 
Predicting pursuit eye velocity 

We constructed linear filters for predicting pursuit from fixation eye velocity by 

using methods that have been applied to similar problems (Warland, Reinagel, & Meister, 

1997). To find the best prediction of pursuit velocity we first divided up eye velocity into 
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components parallel and orthogonal to target motion and then explored the temporal 

parameters used to create the filter and thereby the pursuit predictions. We outlined the 

derivation of the filters in chapter 3 and briefly repeat the equations below: 

Vfix - matrix describing eye velocity during fixation with trials in rows and time 

points in columns 

i

j
v  -  eye speed in direction of target motion for trial i and time point j 

i

j
ov  -  eye speed orthogonal to target direction for trial i and time point j  

Vpurs -  pursuit eye velocity (either parallel or orthogonal to target motion) 

Vpurs
pred - predicted pursuit eye velocity (either parallel or orthogonal to target 

motion, same direction as Vpurs) 
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First we calculated the filter f describing the relationship between pursuit and 

fixational eye velocity and then used it to obtain the prediction of pursuit velocity: 

f = (Vfix
TVfix)-1·(Vfix

TVpurs)     (1) 

Vpurs
pred = Vfix·f      (2) 

The prediction of pursuit eye velocity is the solution to a multilinear regression 

between fixation and pursuit eye velocity. The independent variables of the regression 
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consist of the time points of eye velocity during fixation while pursuit eye velocity makes 

up the dependent variable. As described in chapter 3, we minimized correlations between 

the independent variables by downsampling eye velocity by 20ms. Subtracting the 

predicted from actual pursuit velocity, as we did in chapter 3 and using the equations 

above, removes correlations between fixation and the residual portion of pursuit eye 

velocity. 

Evaluating linear predictions of pursuit eye speed 

For evaluating the predictive power of the linear filters, we derived filters based 

on two thirds of the trials for each experiment and tested the predictions on the remaining 

third of the trials. We used the coefficient of determination to obtain the percent of 

variance of the actual pursuit speed that is explained by the predicted pursuit speed.  
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The coefficient of determination has no lower bound and takes on negative values 

when the linear prediction is inadequate. We therefore replaced negative values with 

zeros before computing averages across experiments, because in that case the model has 

no predictive power and zero percent of variance is explained by the prediction.  

Across experiments the predictions of pursuit velocity depended on temporal 

parameters in a stereotyped manner consistent with our observation that the correlation 

structure of eye velocity was similar across experiments. We evaluated the predictions by 
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changing both which and how many time points of fixation were included to derive the 

filter (equation 1). Because the temporal structure of the predictions did not depend on 

the target speed or direction used in a particular experiment, we averaged the percent of 

variance explained by the prediction across all experiments, stimulus conditions, and 

monkeys (Figure 4.3). 

 

 

Figure 4.3.  
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Percent of variance of pursuit eye speed predicted by eye speed during fixation. Top row: 

Variance explained for pursuit 80-120 ms after motion onset. Percent of variance is 

indicated in color and for each set of temporal parameters was averaged across 

experiments, target motions, and monkeys and shown in color. The vertical axis indicates 

the end time of the filter (i.e. the last time point of fixation considered). The horizontal axis 

describes the length of the filter (i.e. how many time points of fixation were used to calculate 

the filters). Left column: percent of pursuit variance explained for speed in target direction. 

Right column: percent of pursuit variance explained for speed orthogonal to target 

direction. Bottom row: Variance explained for pursuit 120-160 ms after motion onset. 

Filters were computed on velocity that was downsampled by 20ms and 0 ms indicates the 

time of motion onset in the stimulus. 

 
The linear predictions of pursuit reflected several features of the correlation 

structure in eye velocity shown in figure 4.2: First, filters including time points right 

before motion onset were most predictive of pursuit eye velocity. This is consistent with 

the existence of substantial negative correlations between eye speed before motion onset 

and during pursuit initiation. Second, when time points closer to pursuit onset were 

included in the filter, the predictions were more accurate. This is simply a reflection of 

the correlations between fixation and pursuit decaying with greater temporal lags. Third, 

predictions were more accurate for eye velocity in the direction parallel rather than 

orthogonal to target motion. This is unsurprising because almost all of the motion of the 

eyes was in the direction of target motion and correlations were weaker for motion 

orthogonal rather than parallel to target motion. Lastly, the largest proportion of pursuit 

speed that could be explained was for the first interval of pursuit initiation, 80–120 ms 
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after motion onset. Later time intervals of pursuit were less correlated with fixational eye 

movements and, on average, filters had little predictive power later throughout pursuit 

initiation. 

For speed in the direction of target motion and pursuit at 80-120ms after motion 

onset, the optimal filter was 80ms in length and took into account time points from -40ms 

to +40ms around motion onset. On average, it predicted 12.7% ± 6.4% of pursuit 

variance across all experiments and target motions. For speed orthogonal to the direction 

of motion and using the same filter parameters the linear predictions explained 8.6% ± 

6.0% of pursuit variance. For speed 120-160ms after motion onset, filters predicted only 

2.2% and 2.6% of pursuit variance for motion parallel and orthogonal to target direction 

when we used the same temporal parameters as above. The predictive power of the filters 

was negligible further into pursuit initiation (data not shown).  

In summary, given that the optimal filter was based on fixation at least 40ms 

before the beginning of the pursuit response, we were able to show that significant long-

range temporal correlations exist between eye speed during fixation and pursuit initiation. 

We have shown that a small but significant fraction of pursuit speed can be predicted by 

fluctuations of the eyes during fixation. 
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In this thesis we investigated interactions between the processing of visual and 

oculomotor signals by analyzing responses in visual area MT during different types of 

eye movements. Our neural recordings showed that cells in visual area MT are 

exquisitely sensitive to small changes in image velocity caused by eye movements during 

fixation. In turn, small fluctuations in firing rates of individual MT neurons are predictive 

of deviations in eye speed at the initiation of smooth pursuit eye movements. These 

findings demonstrate that the neural mechanisms underlying sensory processing and the 

production of motor behavior are tightly interwoven. 

The ability of the brain to produce high acuity vision and precise motor behavior 

in spite of the complex interactions between the sensory and motor systems is 

remarkable. First, the constant motion of the eyes requires the brain to convert an ever-

changing retinal image into a stable perception of the world. Second, the brain must 

accurately extract information about the environment from the non-stationary visual 

signals provided by the retina. For example, parameters such as the speed and direction of 

an object must be retrieved in the presence of the global motion generated by eye 

movements. This is particularly important for behaviors such as smooth pursuit eye 

movements which rely on visual motion signals to produce precise motor outcomes 

(Lisberger & Westbrook, 1985). Our results strongly suggest that small changes in 

sensory responses lead to slightly different motor actions. Therefore small errors in the 

estimation of sensory parameters are likely of consequence for precise behaviors relying 

on sensory input. Our brain, however, masters the mutual interactions between the 

sensory and motor systems effortlessly, allowing us to generate precise actions in spite of 

the constantly changing retinal input. 
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Various different types of eye movements generate image motion on the retina 

and in principle a single mechanism could be responsible for stabilizing all motion 

signals due to eye movements. Our findings, however, suggest that different neural 

mechanisms are involved in eliminating retinal image motion elicited by the various eye 

movements. During saccadic eye movements, for example, visual perception is impaired 

and we are unaware of any retinal motion despite the high velocities and large retinal 

displacements produced by these eye movements. This phenomenon of visual impairment 

is termed saccadic suppression and is thought to arise due to decreases in neural 

responses for the duration of the saccade. Evidence of diminished firing rates has been 

found in visual area MT where a subpopulation of neurons is selectively silenced during 

saccades, but not under identical retinal image motion during passive viewing (Thiele, 

Henning, Kubischik, & Hoffmann, 2002). In contrast to saccades, drifts have a very 

different velocity profile. They are slow, small movements of low frequency content. We 

found that almost all MT neurons are modulated during drifts with no evidence of 

suppression of neural responses. Therefore other neural mechanisms that do not involve 

silencing of neurons must be involved in eliminating retinal image motion due to drifts. 

 Although we found that MT neurons carry signals during drifts that are 

potentially useful for perceptual stabilization of the visual world, many open questions 

remain as to how neural responses from various visual areas are combined to eliminate 

retinal motion due to eye movements. Studies using a visual illusion called the jitter 

illusion have shown that perceptual stabilization relies on visual signals due to image 

motion rather than extraretinal input about the eye movements. The jitter illusion takes 

advantage of adaptation of visual neurons to disrupt the neural mechanisms that stabilize 
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the retinal image during fixation. This disruption causes the subjects to see the image 

motion generated by their eye movements while they view a static visual stimulus. The 

development of a similar paradigm in primates where the subject could report the 

perception of motion would allow recordings of neural responses during normal vision 

and the perception of the illusion. Comparison of neural signals during normal vision and 

the perception of the illusion could provide deep insight into the visual areas and neural 

mechanisms involved in compensating for image motion generated by eye movements of 

fixation. 

 Neurons in visual area MT can be classified by their functional properties and it 

remains to be seen if the different cell types are involved in diverse mechanisms. In 

particular, MT neurons can be classified as being either component (CDS) or pattern 

direction selective (PDS) based on their responses to sinusoidal gratings and plaids. It is 

thought that the functional properties of PDS cells arise from an additional stage of 

motion processing within MT. In accordance with this theory, visual motion responses of 

CDS cells have been shown to have shorter latencies than those of PDS cells (Smith, 

Majaj, & Movshon, 2005). Short response latencies are essential for producing behaviors 

such as smooth pursuit eye movements, which require fast reactions times. It is therefore 

possible, that CDS neurons play an important role in initiating pursuit. Future 

experiments differentiating between different cell types will be necessary for elucidating 

whether, for example, CDS and PDS cells are both involved in and play different roles in 

producing smooth pursuit eye movements.  

 Our studies of MT have focused on the initiation of pursuit, which is the time 

during which smooth pursuit behavior relies only on visual motion input and feedback is 
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not yet available to correct for errors in the motor output (Lisberger, 2010; Lisberger & 

Westbrook, 1985). In contrast, extraretinal signals play an important role for the 

maintenance of pursuit when retinal image velocity of the pursuit target is small. In MT, 

a subpopulation of neurons responds substantially during ongoing pursuit even when the 

motion of the eyes closely matches target motion (Newsome, Wurtz, & Komatsu, 1988). 

The neural responses during this time period are thought to be elicited by retinal image 

motion due to the small discrepancies between eye and target motion. An interesting 

question arises as to whether the smooth pursuit system actively reads out these MT 

signals during the maintenance of pursuit to actively correct for errors in matching the 

motion of the eye to the speed and direction of the target.  

Most areas involved in generating smooth pursuit eye movements are well 

known; their neural responses have been studied to explain their role in both the initiation 

and maintenance of pursuit. These studies have involved studying the effects of 

microstimulation and lesions, relating the mean and variance of neural responses to the 

mean and variance of the motor behavior, and finally quantifying neuron-behavior 

correlations to study sources of noise along the pursuit pathway and constrain existing 

models for pooling neural signals to generate pursuit behavior (Lisberger, 2010). Results 

from all these areas along the pursuit pathway can be combined to form a complete 

quantitative model for the generation of smooth pursuit behavior. Such a model would 

provide deep insight not only into the production of smooth pursuit eye movements but 

likely into the generation of a variety of sensory-motor behaviors in primates.  
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