
UC Irvine
ICS Technical Reports

Title
Models of incremental concept formation

Permalink
https://escholarship.org/uc/item/5r51t42n

Authors
Gennari, John H.
Langley, Pat
Fisher, Douglas

Publication Date
1988-06-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r51t42n
https://escholarship.org
http://www.cdlib.org/

A I (i·r 1 ·1 r:,

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Models of

Incremental Concept Formation

John H. Gennari
<-

Pat Langley

Douglas Fishert

Irvine Computational Intelligence Project

Department of Information and Computer Science

University of California, Irvine, CA 92717

Technical Report 88-16

June 6, 1988

t Current address: Department of Computer Science, Vanderbilt University, Nashville, TN 37235

?'!
l .·

I \.)

I I
I '

The ideas in this paper have resulted from many fruitful discussions with members of the UCI World

Modelers Group. We would particularly like to acknowledge the criticism and encouragement provided by

Wayne Iba, Kevin Thompson, Patrick Young, and David Benjamin. Dennis Kibler, David Nicholas, Rick

Granger and Jaime' Carbonell also contributed important ideas. This research was supported by Contract

MDA 903-85-C-0324 from the Army Research Institute.

'(/

' ' ,,,

';,_;

,;',

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered}

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report No. 3

4. TITLE (and Subtitle} 5. TYPE OF REPORT & PERIOD COVERED

Annual Report 7 /87-6/88
Models of Incremental Concept Formation

6. PERFORMING ORG. REPORT NUMBER

UCI-ICS Technical Report 88-16
7. AUTHOR(sJ

John H. Gennari
8. CONTRACT OR GRANT NUMBER(sJ

Pat Langley MDA 903-85-C-0324
Douglas Fisher

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Information & Computer Science
University of California, Irvine, CA 92717

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Army Research Institute June 6, 1988
5001 Eisenhower Avenue 13. NUMBER OF PAGES

Alexandria, Virginia 22333 54
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

To appear in Artificial Intelligence.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

machine learning discrimination network
concept formation concept hierarchy
conceptual clustering probabilistic concepts
incremental learning category utility

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

OVER

,,

DD 1 j~~M.,3 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT

Given a set of observations, humans acquire concepts that organize those observations and
use them in classifying future experiences. This type of concept formation can occur in the
absence of a tutor and it can take place despite irrelevant and incomplete information.
A reasonable model of such human concept learning should be both incremental and
capable of handling the type of complex experiences that people encounter in the real
world. In this paper, we review three previous models of incremental concept formation
and then present CLASSIT, a model that extends these earlier systems. All of the models
integrate the process of recognition and learning, and all can be viewed as carrying out
search through the space of possible concept hierarchies. In an attempt to show that
CLASSIT is a robust concept formation system, we also present some empirical studies of
its behavior under a variety of conditions.

,,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE {When Data Entered}

CONCEPT FORMATION PAGE 1

1. Introduction

Much of human learning can be viewed as a gradual process of concept formation. In

this view, the agent observes a succession of objects or events from which he induces a

hierarchy of concepts that summarize and organize his experience. This task is very similar

to the problem of conceptual clustering as defined by Michalski and Stepp (1983), with the

added constraint that learning be incremental. More formally:

• Given: A sequential presentation of instances and their associated descriptions;

• Find: Clusterings that group those instances in categories;

• Find: An intensional definition for each category that summarizes its instances;

• Find: A hierarchical organization for those categories.

The goals of conceptual clustering are straightforward: to help one better understand the

world and to make predictions about its future behavior. Concept formation has essentially

the same goals, and differs mainly in the constraints it places on achieving them.

In this paper, we focus on the concept formation task and examine some methods for

incrementally forming clusters, concept descriptions, and concept hierarchies. vVe begin

by attempting to abstract the features that are common to the existing work on concept

formation and that set it apart from other approaches. After this, we review in some det~il

three models of the concept formation process - Feigenbaum's (1963) EPAM, Lebowitz's

(1985, 1987) UNIMEM, and Fisher's (1987a) COBWEB. Next we describe CLASSIT, an ex­

tension of Fisher's system, and report some experimental studies of the program's learning

behavior. We close with some suggestions for future research and a summary of our main

observations.

2. Methods for Concept Formation

The majority of machine learning research has focused on the broad area of concept

learning. To many readers, the work on concept formation may seem a minor variation on

better-known approaches, and it certainly has close ties to other work. However, methods

for concept formation share a number of important features that, taken together, distin­

guish them from other efforts. In this section we identify those features that are common

to the approach and that serve to separate it from alternative paradigms, particularly

other methods tor conceptual clustering. In some sense, one can also view these features

as "defining" the term concept formation.

PAGE 2 CONCEPT FORMATION

2.1 Representing Knowledge in a Concept Hierarchy

The most obvious common feature of concept formation methods is their organization

of knowledge into a concept hierarchy. This type of data structure contains a set of nodes

partially ordered by generality, and thus is similar to the is-a hierarchies used by some

machine learning systems (Michalski & Stepp, 1983; Mitchell, Utgoff, & Banerji, 1983).

Each node in a concept hierarchy represents a concept, but unlike most is-a hierarchies,

each node also contains an intensional description of that concept.

The hierarchical organization of acquired concepts is one distinctive feature of methods

for concept formation (and conceptual clustering). In contrast, most work on learning

from examples (Mitchell, 1982; Michalski & Stepp, 1983) focuses on learning one or a few

concepts at a single level of abstraction. Methods for constructing decision trees (Quinlan,

1986) are closer in spirit, but lack any explicit descriptions on the nodes themselves.

2.2 Top-down Classification of Instances

The presence of a concept hierarchy suggests a natural approach for classifying new

instances that is shared by all concept formation systems. One simply begins at the most

general (top) node and sorts the instance down through the hierarchy. This classificati0n

method is very similar to that used by decision-tree systems. However, the scheme for

determining which branch to follow need not be based on the result of a single attribute's

value, and some concept formation systems allow the instance to follow more than one

branch. Nor must the ins~ance always be sorted to a terminal node; in principle, the

sorting process may stop at a node higher in the hierarchy.

Once the instance has finished its descent, one can use the concept description at the

selected node to make predictions about unseen aspects of the instance. Decision-tree

systems typically make predictions about the class of the instance, but concept formation

systems can make predictions about a wider range of features. This suggests measuring

the performance of an acquired hierarchy in terms of its ability to make predictions about

unseen attributes. 1 In principle, other methods for conceptual clustering could be evaluated

along the same dimension, but few researchers have taken this approach.

1 Although all of the concept formation systems we will examine assume attribute-value representations,
the framework we outline can handle relational or structural descriptions as well. See Levinson (1984) for
some initial work along these lines.

CONCEPT FORMATION PAGE 3

2.3 Unsupervised Nature of the Learning Task

The unsupervised nature of the learning task leads to another common feature of

concept formation systems - they must cluster instances without advice from a teacher. In

other words, they must decide not only which instances each class should contain, but also

the number of such classes. This is the most important feature separating work on concept

formation (and conceptual clustering) from research on learning conjunctive concepts from

examples (Winston, 1975; Mitchell, 1982).

Techniques for inducing decision trees (e.g., Quinlan, 1986) come much closer to con~

cept formation methods on this dimension. Although supervised in the sense that they

are given teacher-specified class information, these systems must determine their own sub­

classes, which equates to forming instance clusters. Rendell, Sechu, and Tcheng's (1987)

work on probabilistic concept learning has a similar flavor.

2.4 Integrating Learning and Performance

We have defined the concept formation task to be incremental in nature. By incremen­

tal, we mean not only that the agent accepts instances one at a time, but also that it does

not extensively reprocess previously encountered instances while incorporating the new

one. Without this constraint, one could make any nonincremental method "incremental"

simply by adding the new instance to an existing set and reapplying the nonincrement-al

method to the extended set. Note that our definition of incremental does not forbid re­

taining all instances in memory, only the extensive reprocessing of those instances. In fact,

most existing methods for concept formation retain at least some instances as terminal

nodes in the concept hierarchy.

This focu13. on incremental learning leads naturally to the integration of learning with

performance. In any incremental system (Winston, 1975; Mitchell, 1982; Schlimmer &

Fisher, 1986), action by the performance component (e.g., classifying an instance) drives

the learning element (e.g., modifying a concept hierarchy). In contrast, nonincremental

schemes (Michalski & Stepp, 1983; Quinlan, 1986) isolate the processes of learning and

performance. Most research on both numerical taxonomy (Everitt, 1974) and conceptual

clustering (Michalski & Stepp, 1983; Fisher, 1984) has taken a nonincremental approach.

Thus, this dimension constitutes one major distinction between earlier approaches to clus­

tering and concept formation as we have defined it.

The role of classification in concept formation systems exerts a strong influence on the

nature of learni~g. vVe noted above that the performance component of these methods sort

instances down through a concept hierarchy. As a result, it seems natural to acquire the

PAGE 4 CONCEPT FORMATION

concept hierarchies in a top-down fashion as well. Thus, concept formation methods typi­

cally construct their hierarchies in a divisive manner, rather than using the agglomerative

approach more common within the statistical clustering community. 2

2.5 Learning as Incremental Hill Climbing

The features described above seem almost to follow from the task of concept formation

itself, but the final commonality has a different flavor. The models we describe in the

following pages can all be characterized as incremental hill-climbing learners. We have

elaborated on this notion elsewhere (Langley, Gennari, & Iba, 1987; Fisher, 1987a), and

Schlimmer and Fisher (1986) described the basic idea (without using this term) even earlier.

One can view concept formation as a search through a space of concept hierarchies, and

hill climbing is one possible method for controlling that search.

Hill climbing is a classic AI search method in which one applies all operator instanti­

ations, compares the resulting states using an evaluation function, selects the best state,

and iterates until no more progress can be made. There are many variants on the ba­

sic algorithm, but these do not concern us here. The main advantage of hill climbing is

its low memory requirement; since there are never more than a few states in memory, it

sidesteps the combinatorial memory requirements associated with search-intensive meth­

ods. However, it also suffers from well-known drawbacks, such as the tendency to halt at

local optima and a dependence on step size.

We are using the term hill climbing in a nontraditional sense, focusing on some features

and ignoring others. For instance, we do not require an incremental hill-climbing learner

to have an explicit evaluation function, or even that it carry out a one-step lookahead.

One can replace this approach with a strong generator that computes the successor state

from new input, such as ari observed instance. For our purposes, the main feature of a hill­

climbing system is its limited memory. At each point in learning, the system may retain

only one knowledge structure, even though this structure may itself be quite complex'.

Thus, hill-climbing learners cannot carry out a breadth-first search (Mitchell, 1982) or a

beam search (Michalski & Stepp, 1983) through the space of hypotheses, nor can they

carry out explicit backtracking (Winston, 1975). They can only move "forward," revising

their single knowledge structure in the light of new experience.3

2 For one exception, see Hanson and Bauer's work on WITT (1986), an agglomerative clustering system
that can operate incrementally.

3 Some "strength-based" methods retain competing hypotheses in memory, gradually deleting some and
adding others on the basis of their performance. Genetic algorithms (Holland, 1986; Grefenstette, 1987)
follow this approach, as do Anderson and Kline's (1979) and Langley's (1987) work on production-system
learning. One could view these methods as incremental hill-climbing learners, provided one treats the entire
set of rules as a single "state." However, we believe this violates the spirit of our limited memory assumption.

CONCEPT FORMATION PAGE 5

The most important difference between incremental hill-climbing learners and their

traditional cousins lies in the role of input. As we have seen, incremental learning methods

are driven by new instances, and in the case of incremental hill-climbing systems, this

means that each step through the hypothesis space occurs in response to (and takes into

account) some new experience. More generally, each instance may lead to a number of

learning steps (e.g., one for each level in the concept hierarchy). In other words, the learner

does not move through the space of hypotheses until it obtains a new datum, and this alters

the nature of the hill-climbing task.

Recall that hill-climbing methods search an n-dimensional space over which some func­

tion f is defined. This function determines the shape of an n-dimensional surface, and the

agent attempts to find that point with the highest f score. In traditional hill-climbing ap­

proaches, the shape of the surface is constant. In contrast, for systems that learn through

incremental hill-climbing, each new instance modifies the contours of the surface. Like Si­

mon's (1969) wandering ant, the learner's behavior is controlled by the shape of its world.

However, the hills and valleys of the hill-climbing learner's space are constantly changing

as it gathers more information, altering the path it follows. 4 This feature of incremental

hill-climbing is novel enough that it becomes unclear whether the limitations of traditional

hill-climbing methods still hold. It also gives the potential for dealing with concept drift

(Schlimmer & Granger, 1986), in which the environment actually changes over time.

However, this dependence on new instances to control the search process can make

memory-limited incremental learning methods sensitive to the order of instance presen­

tation. Initial nonrepresentative data may lead a learning system astray, and one would

like it to recover when later data point the way to the correct knowledge structure. Thus,

Schlimmer and Fisher (1986) have argued for including bidirectional learning operators

that can reverse the effects of previous learning should new instances suggest the need. In

the context of concept formation, one might include an operator not only for creating new

subcategories, but also for deleting them should they not prove useful. Similarly, one might

desire an operator not only for creating new disjunctive classes, but also one for combining

classes if the distinction fares poorly. Such bidirectional operators can give incremental

hill-climbing learners the effect of backtracking search without the memory required by

true backtracking. Whether this approach works or not is an empirical question, but in

Section 5 we will see evidence that it can help significantly.

4 Note that this feature does not hold for nonincremental learners that use hill-climbing methods (Michalski
& Stepp, 1983) or greedy algorithms (Quinlan, 1986); the shape of the surface over which these systems travel
remains constant throughout the learning process.

PAGE 6 CONCEPT FORMATION

2.6 Summary

In this section we identified some common threads that run through a number of

research efforts, and we borrowed the term concept formation to refer to this research

area. The basic approach can be viewed as a form of conceptual clustering, but it also

differs from "traditional" work in this area. The common features of concept formation

methods include the hierarchical organization of concepts, top-down classification, and an

unsupervised, incremental, hill-climbing approach to learning.

We should emphasize that none of these features by itself makes work on concept

formation unique. It shares many of these features with other methods for conceptual

clustering, and there exist many supervised learning methods that process instances in­

crementally. Even the incremental hill-climbing approach has been widely used within the

machine learning community, though it has not been labeled as such.5 However, when one

takes all these features together, what emerges is a distinctive and promising approach to

concept learning.

3. Earlier Research on Concept Formation

Before describing our own research on concept formation, we should review previous

work on the problem. In this section we review three models of this process - Feigen­

baum 's EPAM, Lebowitz's UNIMEM, and Fisher's COBWEB. We will see that, with min?r

exceptions, each system operates within the common framework described in the previous

section. We will also see that each system addresses issues that its predecessor ignored.

This does not mean later systems are superior to earlier ones, since they also ignore some

issues addressed by their precursors. However, there has been clear progress on certain

fronts, and we will focus on these. We describe each model in terms of its representation

and organization of knowledge, its classification and learning methods, and its metric for

evaluating the resulting concepts and hierarchies.

3.1 Feigenbaum's EPAM

Feigenbaum's EPAM (1963) can be viewed as an early model of incremental concept

formation. 6 The system was intended as a psychological model of human learning on verbal

memorization tasks, and it successfully explained a variety of well-established learning

5 For example, recent work on supervised concept learning (Schlimmer & Fisher, 1986; Iba, Wogulis, &
Langley, in press) has been within this paradigm, as has recent work on theory formation (Shrager, 1987;
Rose & Langley, in press). Much of the work on grammar acquisition (Anderson, 1977; Berwick, 1979)
has also occurred within the incremental hill-climbing framework. Even such diverse paradigms as neural
networks and explanation-based learning share incremental hill-climbing as an. unstated assumption.

6 For a more comprehensive treatment of EPAM and its extensions, see Feigenbaum and Simon (1984).

CONCEPT FORMATION PAGE 7

phenomena. These included the serial position effect, the conditions for multi-trial vs.

one-trial learning, forgetting through oscillation and retroactive inhibition, and a number

of other empirical generalizations.

3.1.1 REPRESENTATION AND ORGANIZATION IN EPAM

EPAM represents each instance as a conjunction of attribute-value pairs, along with

an optional ordered list of component objects. Each component is in turn described as

a conjunction of attribute-value pairs, with its own optional components, and so forth.

For instance, the system might represent the nonsense syllable GAK as a list of three

component objects - the first letter, the second letter, and the third letter. Each letter

might itself be described in terms of lower-level components (e.g., the lines making it up),

or it might be viewed as a primitive object having only attributes and no components.

For simplicity, we will avoid examples that involve components and focus on single-level

instances that can be described purely in terms of attribute-value pairs.

EPAM represents and organizes its acquired knowledge in a discrimination network.

Each nonterminal node in this network specifies some test, and each link emanating from

this node corresponds to one possible result of that test. Some tests involve examining the

value of an attribute, whereas others involve examining the category of a subobject, which

can itself be learned. Each nonterminal node also includes a branch marked OTHER, which

lets EPAM avoid specifying all possible results of the test at the outset. Each terminal no.de

contains an image - a partial set of attribute-values (and component categories) expected

to hold for instances sorted to that node.

Consider the example discrimination network in Figure 1, which includes only attribute

tests. This domain assumes instances composed of a single cell with three attributes -

surface color, number of nuclei, and number of tails. The root node in Figure 1 (a) contains

a test on the attribute NUCLEI, and the two links emanating from this node are labeled ONE

and OTHER. The leftmost successor is a terminal node and thus has an associated image;

this contains the partial description NUCLEI = ONE /\. TAILS = ONE. (Note that color is

unspecified.) The rightmost successor is nonterminal and thus has an associated test, this

one involving the attribute COLOR. One link (labeled LIGHT) points to a successor node

with image COLOR = LIGHT /\. NUCLEI = TWO. The other (labeled OTHER) leads to a

successor node with image COLOR = DARK.

3.1.2 CLASSIFICATION AND LEARNING IN EPAM

As with all the concept formation systems we will examine, EPAM's classification pro­

cess is completely integrated with its learning method. Table 1 presents the top-level EPAM

algorithm, which focuses on performance. As the system encounters each instance, it sorts

PAGE 8 CONCEPT FORMATION

familiarization

FIGURE 1. Examples of EPAM's learning methods.

that instance through the discrimination network, starting at the top (root) node and

proceeding until it reaches a terminal node. At each node, EPAM examines the instance's

value on the test specified for that node. In the case of tests examining the category of a

subobject, the model calls on itself recursively to determine the appropriate category; we

have omitted this option from the table for the sake of clarity. If the category or attribute­

value equals that on one of the emanating branches, EPAM sends the instance down that

branch; otherwise it goes down the OTHER branch. Eventually, the instance reaches a

terminal node. For. example, in Figure 1 (a) a DARK CELL WITH ONE NUCLEUS AND TWO

TAILS would reach the leftmost terminal node, whereas a DARK CELL WITH TWO NUCLEI

AND TWO TAILS would reach the rightmost one.

Once EPAM has "recognized" an object as an instance of a terminal node, it "recalls"

the image associated with that node. At this point, the algorithm invokes one of two

learning mechanisms. If the image matches the instance (i.e., if no attribute-value pairs

differ), then familiarization occurs. As summarized in Table 2, this process selects an

attribute that occurs in the instance but not in the image, and then adds the attribute

(along with the instance's value) to the image. In this way, EPAM gradually makes its

images more sp,~cific as it encounters more instances. Eventually, a given image may

become so detailed that it effectively becomes equivalent to a particular instance. Given

CONCEPT FORMATION

TABLE 1

The top-level EPAM algorithm.

Input: The current node H in the discrimination network.

An unclassified (attribute-value) instance I.

Results: A discrimination net that classifies the instance.

Top-level call: EPAM(Top-node, I).

Variables: N and S are nodes in the hierarchy.

EPAM(N, I)

M is an image associated with a terminal node.

A is an attribute test.

V is the value of an attribute.

Dis a set of attributes.

If N is a terminal node,

Then let M be the image associated with N.

Let D be the set of tests on which I and M differ.

If D is the empty set,

Then Familiarize(M, I).

Else Discriminate(Top-node, I, M, D, empty set).

Else let A be the test associated with N.

Let V be the value of instance I on test A.

If N has a branch labeled V,

Then let S be the successor of N by branch V.

Else let S be the successor of N by branch OTHER.

EPAM(S, I).

PAGE 9

the network in Figure 1 (a) and the instance COLOR = DARK /\ NUCLEI = ONE /\ TAILS

ONE, familiarization would produce the network shown in Figure 1 (b).

If the image fails to match the instance (i.e., if any attribute-value pairs differ), then

discrimination occurs instead. This process sorts the instance through the discrimination

network a second time, looking for the first node at which the image and instance differ on

a stored test. This can occur at a nonterminal node only if the instance was sorted down

the OTHER branch leading from that node. If EPAM finds such a node, it creates two new

branches, one based on the instance's value for the test and the other based on the image's

value. 7 Each branch points to a new terminal node, and each image consists of the results

of tests that lead to the node. In this way, EPAM gradually increases the breadth of its

7 The reason for this second branch is not clear, since the branch based on the instance's value is enough
to avoid repeating the misclassification. However, we have attempted to faithfully reconstruct Feigenbaum's
model as he describes it.

PAGE 10 CONCEPT FORMATION

discrimination network. The transition between Figure 1 (a) and (d) gives an example of

this type of discrimination, in this case invoked by the instance COLOR = LIGHT /\ NUCLEI

= THREE /\ TAILS = ONE.

If no such node exists, the system eventually sorts the instance back down to the

terminal node where the mismatch originally occurred. EPAM creates two new branches

in this case as well, along with corresponding terminal nodes. The discrimination process

selects a test on which the image and instance differ and which has not yet been examined.

This test's value for the instance becomes the label on one branch and OTHER becomes the

label for the other. The image for the instance-based node contains the results of all tests

leading to that node; the image for the image-based node contains the original image plus

the value for the discriminating test. In this way, EPAM gradually increases the depth of

its discrimination network. The transition between Figure 1 (a) and (c) shows this type of

learning in action, this time produced by the instance COLOR = DARK /\ NUCLEI = ONE

/\ TAILS = TWO. Table 2 summarizes the overall discrimination process.

3.1.3 SEARCH CONTROL IN EPAM

In line with our discussion in Section 2, we can summarize EPAM's learning method in

terms of search through a space of discrimination networks. Three basic operators make

up this search:

• Adding features to an image through familiarization;

• Creating new disjunctive branches through discrimination;

• Extending the network downward through discrimination.

Although the search-based view has its advantages, it provides little insight when one ex­

amines EPAM's control scheme. The classification method is completely deterministic, and

the learning algorithm has only two choice points. One of these occurs during familiar­

ization, when EPAM must decide which attribute to add to the image. The other occurs

when discrimination must deepen the network to avoid a mismatch, when it must decide

which attribute to select. One version of EPAM (Feigenbaum, 1963) preferred tests that

had proven useful in previous discriminations. Other versions simply selected tests in a

prespecified order. However, these decisions are minor in comparison to the choice between

familiarization and discrimination, and between the branching and deepening variants of

discrimination. ''These choices are completely determined by the data and the existing

network.

CONCEPT FORMATION

TABLE 2

Familiarization and discrimination in EPAM.

Variables: I is an (attribute-value) instance.

N and S are nodes in the hierarchy.

M is an image associated with a terminal node.

A is an attribute test.

u and V are the values of attributes.
D and L are sets of attributes.

T is a set of attribute-values ((A, V), ...) .
Familiarize(M, I)

Let L be those attributes in instance I not in image M.

Select an attribute A from L.

Let V be the value of A for I.

Add the attribute-value pair (A, V) to the image M.

Discriminate(N, I, M, D, T)

If N is a terminal node,

Then Deepen(N, I, M, D, T).

Else let A be the attribute associated with node N.

Let Ube the value of A for instance I.

Let V be the value of A for image M.

If U does not equal V,

Then Add-branch(N, U, Union(T, (A, U))),

Add-branch(N, V, Union(T, (A, V))).

Else if N has a branch labeled V,

Then let S be the successor of N by branch V.

Else let S be the successor of N by branch OTHER.

Discriminate(S, I, M, D, Union(T, (A, U))),

Deepen(N, I, M, D, T)

Select an attribute A from D.

Remove the image M from node N.

Associate the attribute A with node N.

Let Ube the value of A for instance I.

Let V be the value of A for image M.

Add-branch(N, U, Union(T, (A, U))).

Add-branch(N, OTHER, Union(M, (A, U))).

Add-Branch(N, V, I)

Create a successor node of ·n called S.

Connect N to S with a branch having value V.

Store the image I on S.

PAGE 11

PAGE 12 CONCEPT FORMATION

3.1.4 COMMENTS ON EPAM

The EPAM model introduced some very important ideas into the machine learning

literature. First, it set forth the notion of a discrimination network, and it specified an

incremental method that integrated classification and learning. Second, it introduced the

distinction between tests (for use in sorting) and images (for use in making predictions).

One can view discrimination networks as precursors of the concept hierarchies used in later

work, and images as the precursors of concept descriptions. EPAM's distinction between the

process of recognition (classification) and recall (prediction) was also an important insight.

Finally, it introduced the two learning mechanisms of discrimination and familiarization,

w~ich it successfully used to explain aspects of human learning and memory.

Despite its successes, EPAM also had some significant shortcomings. For instance, the

system's method for selecting among attributes during discrimination and familiarization

was somewhat ad hoc. Moreover, the model retained concept descriptions (images) only at

terminal nodes, and so lacked a true concept hierarchy. Finally, it assumed that concepts

(images) were "all or none" entities, rather than the more fluid structures suggested by

recent psychological studies (Rosch, 1978). The last two criticisms are not really appro­

priate, since EPAM's goal was to model human memorization and not the broader area of.

concept formation. However, our concern here is with models of the latter process, and so

we have evaluated Feigenbaum's work in those terms.

3.2 Lebowitz's UNIMEM

One can view Lebowitz's UNIMEM (1985, 1986) as a successor to EPAM,8 since it shares

many features with the earlier model, but also introduces some novel ideas. The motivation

behind the two systems was also quite different. EPAM modeled empirical results from ver­

bal learning experiments, whereas Lebowitz focused on the acquisition and use of concepts

for more complex tasks such as natural language understanding and inference. In addi­

tion, UNIMEM was cast within a broader framework called generalization-based memory.

Another system that independently incorporated many of the same advances as UNIMEM,

is Kolodner's CYRUS (1983). We will highlight similarities and differences between these

systems as they become relevant. Our stress on UNIMEM is due primarily to Lebowitz's

(1987) treatment of his system as conceptual clustering, a topic of primary interest for this

paper.

8 Actually, UNIMEM is a direct descendant of Lebowitz's (1980, 1983) IPP system. For a discussion of the
differences between these two models, see Lebowitz (1987).

CONCEPT FORMATION PAGE 13

3.2.1 REPRESENTATION AND ORGANIZATION IN UNIMEM

UNIMEM represents instances in the same manner as EPAM - as a conjunction of

features or attribute-value pairs. In one sense, it is less general than the earlier model,

since it cannot handle objects with components, though Wasserman (1985) has addressed

this issue within the UNIMEM framework. However, Lebowitz's system is more general than

Feigenbaum's in that it can handle numeric attributes in addition to nominal (symbolic)

ones. Thus, an instance that describes a university would have some nominal attributes

(e.g., location, academic-emphasis) and some numeric attributes (e.g., male/female ratio,

average SAT score). In addition, nominal attributes can take on more than one value,

letting the system represent sets.

Lebowitz's approach diverges even more from Feigenbaum's in its representation and

organization of concepts. In EPAM's network, only terminal nodes have associated images,

but in UNIMEM both terminal and nonterminal nodes have concept descriptions. Each

description consists of a conjunction of attribute-value pairs, with each value having an

associated integer. This number measures what Lebowitz refers to as the confidence in

that feature. Later, we will see that this corresponds to the idea of predictability, i.e.,

how well the feature can be predicted given an instance of the concept. In order to use

consistent terminology, we refer to this count as the "predictability score" for a feature. 9

Like its precursor, UNIMEM organizes knowledge into a concept hierarchy through

which it sorts new instances. However, the details of this hierarchy differ from EPAl\tI's

discrimination network. We have mentioned that Lebowitz's system stores concept de­

scriptions with each node in the hierarchy. Nodes high in the hierarchy represent general

concepts, with their children representing more specific variants, their children still more

specific concepts, and so on. Each concept has an associated set of instances stored with it;

these can be -yiewed as terminal nodes in the hierarchy, though Lebowitz does not describe

them in this fashion. Thus UNIMEM's terminal nodes are quite specific from the outset; 10

this contrasts with EPAM's images, which converge on completely specified instances only

after considerable learning. Another difference is that, unlike EPAM, each instance may be

stored with multiple nodes, so that categories need not be disjoint.

As in Feigenbaum's system, UNIMEM's network consists of nodes and links, with each

of a node's links leading to a different child. However, in EPAM each link was labeled with

the result of a single test. In contrast, UNIMEM allows each link to specify the results of

9 Kolodner's (1983) CYRUS uses a similar concept representation scheme, but maintains a probability rather
than an integer with each attribute value. We argue in the context of our COBWEB discussion that this is
an important distinction.
10 Actually, the system stores only those features not inherited from nodes higher in the hierarchy, but the
effect is the same as storing completely specified instances.

PAGE 14 CONCEPT FORMATION

multiple tests (i.e., to specify multiple features). This redundant indexing lets the system

handle instances with missing attributes and, as we describe below, it allows a very flexible

sorting strategy. In addition, each parent node retains a second set of integer scores, one for

each feature that occurs on links leading from that node. This score specifies the number

of links on which that feature occurs; thus it roughly measures the predictiveness of the

feature, i.e., how well it can be used to predict instances of the various children.

(root)

feature score feature score
light 3 dark 2
two nuclei 3 two tails 4

feature score
one tail 2

FIGURE 2. A sample UNIMEM hierarchy.

Figure 2 presents a simple UNIMEM hierarchy after the system has created three concept

nodes from six instances. For each node, we have shown its feature list and associated

predictability scores. (For simplicity, we have omitted the predictiveness scores). These

scores represent the number of times a feature has been reinforced by successive instances.

Note that one instance is indexed into both top level nodes. This instance affects the

predictability scores for both level one nodes, although it is only incorporated into one of

them.

3.2.2 CLASSIFICATION AND LEARNING IN UNIMEM

Like other concept formation systems, UNIMEM integrates the processes of classification

and learning. rt'~orts each instance through its concept hierarchy, modifying this hierarchy

in the process. Table 3 summarizes the main steps in the algorithm.

CONCEPT FORMATION

TABLE 3

The top-level UNIMEM algorithm.

Input: The current node N of the concept hierarchy.

The name of an unclassified instance I.

The set of I's unaccounted features F.

Results: A concept hierarchy that classifies the instance.

Top-level call: Unimem(Top-node, I, F).

Variables: N and Care nodes in the hierarchy.

G, H, and Kare sets of features (attribute values).

J is an instance stored on a node.

S is a list of nodes.

Unimem(H, I, F)

Let G be the set of features stored on H.

Let H be the features in F and G that match.

Let K be the features in F that are not in G.

Evaluate(N, H, K).

If the quality of the match is not high enough,

Then return the empty list.

Else let S be the empty list.

For each child C of node N that is not an instance,

If C is indexed by a feature in K,

Then let S be Union(S, Unimem(C, I, K)).

If S is the empty list,

Then for each instance J of node N,

Let S be Union(S, Generalize(N, J, I, F)).

If S is the empty list,

Then store I as an instance of node N.

Return N.

PAGE 1.5

As UNIMEM descends through its hierarchy, it uses the features (i.e., the attribute-value

pairs) on each node and its emanating links to sort the instance. If the instance matches

the description on the node closely enough, then it sends the instance down those links that

mention features in the instance, and it continues the process with the relevant children.

Both the number of features necessary for this match and the closeness of each value (for

numeric attributes) are system parameters.11 Whether or not the instance successfully

matches, UNIMEM calls on EVALUATE (which we discuss in Section 3.2.3) to modify the

11 UNIMEM uses a distance metric to determine the degree of match between two numeric values. This is
an important issue, to which we will return in Section 4.

PAGE 16 CONCEPT FORMATION

node's scores. Note that, in some cases, the system may sort an instance down multiple

paths in the hierarchy.

Eventually UNIMEM reaches a node that matches the instance but none of whose

children match. In this case, the system examines all instances currently stored with the

node, comparing each of them in turn to the new instance. If an old instance shares

enough features with a new one (another system parameter), the model creates a new,

more general node based on these features and stores both instances as its children. Since

UNIMEM compares the new instance to each of the stored instances, it can form multiple

nodes in this manner. Table 4 summarizes the steps in this GENERALIZE process. 12 If

none of the existing instances are similar enough to the new one, the system simply stores

it with the current node, effectively creating a new disjunct.

Note that when UNIMEM places an instance into more than one category, these cate­

gories overlap: they do not form disjoint partitions over the instances. In the literature on

cluster analysis (Everitt, 1974), this approach has been called clumping. Lebowitz (1987)

has argued that in some domains, overlapping concepts may describe the data more accu­

rately than disjoint partitions. In addition, clumping introduces flexibility into the search

for useful categories. UNIMEM may initially decide to retain multiple categories and later

decide to remove one or more of them. This gives the effect of a beam search while still

working within the hill-climbing metaphor described in Section 2. The clumping strategy

and its associated advantages are shared by CYRUS.

3.2.3 EVALUATION AND PRUNING IN UNIMEM

We have noted that UNIMEM retains two counts on nodes' features. The EVALUATE

procedure shown in Table 4 updates these scores each time the system attempts to match

an instance to a node's description. If a given feature in the instance matches a feature on

the node, UNIMEM increments the predictability score for that feature. The increment for

nominal attributes is one; the increment for numeric attributes is a function of the distance

between the stored and observed values. If a given instance feature fails to match a node

feature, the system decrements that feature's predictability score in a similar fashion.

Also, whenever the system creates a new child of an existing node, it increments the

predictiveness count for each feature that indexes the child.

When the predictability score for a feature exceeds a (user-specified) threshold, UNIMEM

permanently fixes that feature as part of the node's description, so that future instances

12 Our description, of the UNIMEM algorithm (Tables 3 and 4) differs syntactically from that given by
Lebowitz (1985, 1987). Our somewhat different view of his algorithm produced a different organization to
the specification. We believe that our description is clearer and functionally equivalent to Lebowitz's.

CONCEPT FORMATION

TABLE 4

UNIMEM's update and evaluation processes.

Variables: N and C are nodes in the hierarchy.

F, G, H, and Kare sets of features (attribute values).

I and J are the names of instances.

R, S, and T are scores on nodes' features.

Generalize(N, J, I, F)

Let G be the features in instance J.

Let H be the features in F and G that match.

If H contains enough features,

Then create a new child C of node N.

Index and describe C by the features in H.

Remove J as an instance of N.

Let G' be the features in G that are not in H.

Store J as an instance of C with features G'.

Let F' be the features in F that are not in H.

Store I as an instance of C with features F'.

Return C.

Evaluate(N, H, K)

For each feature F serving as an index to N,

Update the predictiveness score R for F on N.

If the score R is high enough,

Then remove F as an index leading to N.

For each nonpermanent feature F in H,

Raise the predictability score S for Fon N.

If S is high enough,

Then make Fa permanent feature of N.

For each nonpermanent feature G in K,

Lower the predictability score T for G on N.

If T is low enough,

Then remove the feature G from N.

If N has too few features,

Then remove N from its parent's list of children.

Remove all offspring.of N.

''

PAGE 17

PAGE 18 CONCEPT FORMATION

no longer affect it. More important, when a feature's score drops below another (user­

specified) threshold, the system removes that feature from the concept description. In this

way, an initially specific concept may gradually become more and more general. However,

it may also become so general that it has little usefulness in making predictions. Thus,

when the number of features stored on a node becomes low enough (another parameter),

UNIMEM removes the node from memory along with all links to its children.

When the predictiveness score for a node's feature becomes too high (i.e., when the

feature indexes too many children), UNIMEM removes that feature from links emanating

from the node. In this way, concepts that were originally retrieved often may become

accessed more selectively. However, if the system removes all indices to a child, that node

is effectively forgotten, since there is no longer any way to sort instances to it. This is

another way in which UNIMEM prunes its concept hierarchy.

3.2.4 COMMENTS ON UNIMEM

To summarize, UNIMEM can be viewed as carrying out a hill-climbing search through

a space of concept hierarchies. This search process involves six basic operators:

• Storing a new instance with a node (creating a new disjunct);

• Creating a more general node based on the features shared by two instances;

• Permanently fixing a feature in a node's description;

• Deleting an unreliable feature from a node's description;

• Deleting an overly general node (and its children);

• Deleting a non-predictive index to a node's children.

Lebowitz's approach to concept formation introduces a number of advances over EPAM.

Each node in the UNIMEM hierarchy has an associated concept description, rather than just

the terminal nodes. Moreover, each feature in these descriptions has associated weight.s;

thus concepts are less "all or none." There is a clear evaluation of concepts and their com­

ponents, and the notions of predictiveness and predictability further clarify the distinction

between recognition (classification) and recall (prediction). The system also introduced

the possibility of multiple indices to a given concept, and provided one method for con­

structing nondisjoint hierarchies. Each of these general advances is also true of CYRUS,

although their realization differs in some important respects from UNIMEM.

However, UNIMEM also has significant drawbacks as a model of concept formation.

The measures of predictiveness and predictability are informal and have no clear seman-
,,

tics. The system also lacks a principled method for deciding between learning operators,

being dependent on user-specified parameters to make such decisions. Lebowitz (1987) has

CONCEPT FORMATION PAGE 19

carried but initial studies on how these parameters affect the system's behavior, but much

work remains before their full impact becomes clear.

3.3 Fisher's COBWEB

Fisher's (1987a, 1987b) COBWEB constitutes another algorithm for incremental con­

cept formation. As we will see below, this research builds heavily on Lebowitz's earlier

approach, and it also borrows from Kolodner's (1983) work on CYRUS. Although Fisher

does not present COBWEB itself as a psychological model, it has been heavily influenced by

research in cognitive psychology on basic-level and typicality effects (Rosch, 1978). Briefly,

experiments with humans suggest that some categories are more "basic" than others, being

retrieved more rapidly and named more frequently. In addition, there is evidence that for a

given category, some members are more "typical" than others, being retrieved more quickly

and rated as better examples. Fisher (1987b) describes COBWEB/2, a related system that

models these effects, but we will focus on the simpler COBWEB instead.

3.3.1 REPRESENTATION AND ORGANIZATION IN COBWEB

Like its predecessors, Fisher's system represents each instance as a set of attribute-value

pairs. The mapping is closest to EPAM, since each attribute takes on only one value and

since only nominal attributes are allowed. 13 As in UNIMEM, each concept node is described

in terms of attributes, values, and associated weights, but here the similarity ends. One

difference is that COBWEB stores the probability of each concept's occurrence. Another

is that each node, from the most specific to the most general, includes every attribute

observed in the instances. Moreover, associated with each attribute is every possible value

for that attribute. Each such value has two associated numbers, which roughly correspond

to Lebowitz's predictiveness and predictability scores. However, in COBWEB these scores

have a formal grounding in probability theory.

Fisher defines the predictiveness of a value v for category c as the conditional proba­

bility that an instance i will be a member of c, given that i has value v, or P(cja = v).

Similarly, he defines the predictability of a value v for category c as the conditional prob­

ability that an instance i will have value v, given that i is a member of c, or P(a =vie).
Actually, COBWEB does not explicitly store predictiveness scores, since it can derive them

from predictability and node probability using Bayes' rule. Smith and Medin (1981) have

used the term probabilistic concepts to refer to concept representations that incorporate

such conditional probabilities.

13 In Section 4, we will see how COBWEB can be extended to handle both numeric attributes and instances
involving multiple components.

PAGE 20 CONCEPT FORMATION

P(N1)=4/4 P(vjc)
TAILS ONE 0.50

TWO 0.50
COLOR LIGHT 0.50

DARK 0.50
NUCLEI ONE 0.25

TWO 0.50
THREE 0.25

P(N2)=1/4 P(vjc) P(N3)=2/4 P(vjc) P(N6)=1/ 4 P(vlc)
TAILS ONE 1.0 TAILS ONE 0.0 TAILS ONE 1.0

TWO 0.0 TWO 1.0 TWO 0.0
COLOR LIGHT 1.0 COLOR LIGHT 0.5 COLOR LIGHT 0.0

DARK 0.0 DARK 0.5 DARK 1.0
NUCLEI ONE 1.0 NUCLEI ONE 0.0 NUCLEI ONE 0.0

TWO 0.0 TWO 1.0 TWO 0.0
THREE 0.0 THREE 0.0 THREE 1.0

~~
P(N4)=1/2 P(vjc) P(Ns)=l/2 P(vjc)
TAILS ONE 0.0 TAILS ONE 0.0

TWO 1.0 TWO 1.0
COLOR LIGHT 1.0 COLOR LIGHT 0.0

DARK 0.0 DARK 1.0
NUCLEI ONE 0.0 NUCLEI ONE 0.0

TWO 1.0 TWO 1.0
THREE 0.0 THREE 0.0

FIGURE 3. A sample COBWEB hierarchy with nodes numbered in order of creation.

Figure 3 presents a sample concept hierarchy, including the probabilities associated

with each concept and with its attributes' values. For instance, the top node (N1) has

an associated probability of 1.0. It also states that its members have an equal chance of

having one or two tails and an even chance of being light or dark. Concept N3 has a 50%

chance of occurring, and its members so far have always had one tail and two nuclei, but

have been evenly split among light and dark colors. The terminal nodes in the hierarchy -

N2, N4, Ns, and N6 - have less interesting probabilistic descriptions, since each is based on

a single instance. However, note that the probability of each node's occurrence is specified

relative to its parent, rather than with respect to the entire distribution.

COBWEB's ~oncept hierarchy is similar to UNIMEM's in that each node has an associated

"image," with more general nodes higher in the hierarchy and more specific ones below their

parents. However, the system's terminal nodes are always specific instances that it has

CONCEPT FORMATION PAGE 21

encountered; unlike UNIMEM, it never deletes instances. In addition, the hierarchy divides

instances into disjoint classes. More important, COBWEB links parents to their children

only through is-a links. The system differs from both EPAM and UNIMEM in that it avoids

explicit indices stated as tests on attributes' values. Thus, the sample hierarchy shown in

Figure 3 has a different semantics than those we have seen earlier. This assumption leads

to a novel method for sorting instances through the concept hierarchy.

3.3.2 CLASSIFICATION AND LEARNING IN COBWEB

The basic COBWEB algorithm is quite simple, as can be seen from the summanes

in Tables 5 and 6. Again classification and learning are intertwined, with each instance

being sorted down through a concept hierarchy and altering that hierarchy in its passage.

The system initializes its hierarchy to a single node, basing the values of this concept's

attributes on the first instance. Upon encountering a second instance, COBWEB averages

its values into those of the concept and creates two children, one based on the first instance

and another based on the second.

Unlike EPAM and UNIMEM, Fisher's model does not use explicit tests or indices to

retrieve potential categories. Instead, at each node COBWEB retrieves all children and

considers placing the instance in each of these categories. Each of these constitutes an

alternative clustering (a set of clusters with a common parent) that incorporates the new

instance. Using an evaluation function that we describe in Section 3.3.3, it then sele~ts

the best such clustering. COBWEB also considers creating a new category that contai~s

only the new instance, and compares this clustering to the best clustering that uses only

existing categories.

If the clustering based on existing classes wins the competition, COBWEB modifies the

probability of the selected category and the conditional probabilities for its attribute values.

Thus, predictability scores for values occurring in the instance will increase, whereas those

for values not occurring will decrease. Predictiveness scores change as well, but since

the system does not actually store these, it does not update them explicitly. In addition,

COBWEB continues to sort the instance down through the hierarchy, recursively considering

the children of the selected category. Node N3 in Figure 3 shows the result of incorporating

a new instance into an existing node. At an earlier stage, this had been a terminal node

based on a single instance. However, the act of hosting a new instance has left its COLOR

probabilities evenly divided and given it two children.

If the clustering with the singleton class emerges as the winner, COBWEB creates this

new category l\nd makes it a child of the current parent node. The system bases the

values for this n~w concept's attributes on those found in the instance, giving them each

predictability scores of one. In this case, classification halts at this step, since the new

PAGE 22

TABLE 5

The COBWEB algorithm.

Input: The current node I ot the concept hierarchy.

An unclassified (attribute-value) instance I.

Results: A concept hierarchy that classifies the instance.

Top-level call: Cobweb(Top-node, I).

Variables: C, P, Q, and Rare nodes in the hierarchy.

U, V, W, and X are clustering (partition) scores.

Cobweb(N, I)

If N is a terminal node,

Then Create-new-terminals(N, I).

Incorporate(N, I).

Else Incorporate(N, I).

For each child C of node N,

Compute the score tor placing I in C.

Let P be the node with the highest score W.

Let R be the node with the second highest score.

Let X be the score for placing I in a new node Q.

Let Y be the score for merging P and R into one node.

Let Z be the score for splitting P into its children.

If W is the best score,

Then Cobweb(P, I) (place I in category P).

Else if X is the best score,

Then initialize Q's probabilities using I's values

(place I by itself in the new category Q).

Else if Y is th~ best score,

Then let 0 be Merge(P, R, N).

Cobweb(O, I).

Else if Z is the best score,

Then Split(P, N).

Cobweb(N, I).

CONCEPT FORMATION

concept is a terminal node. Node N6 in Figure 3 was created in this fashion, smce the

instance it summarizes was sufficiently different from node Nz and NJ.

Although in principle the above method provides everything needed to construct hier­

archies of probabilistic concepts, it can be sensitive to the order of instance presentation,

creating different hierarchies from different orders of the same data. In particular, if the

CONCEPT FORMATION

TABLE 6

Auxiliary COBWEB operations.

Variables: N, O, P, and R are nodes in the hierarchy.

I is an unclassified instance.

A is a nominal attribute.

V is a value of an attribute.

Incorporate(N, I)

Update the probability of category N.

For each attribute A in instance I,

For each value V of A,

Update the probability of V given category N.

Create-new-terminals(N, I)

Create a new child M of node N.

Initialize M's probabilities to those for N.

Create a new child 0 of node N.

Initialize O's probabilities using I's values.

Merge(P, R, N)

Make 0 a new child of N.

Set O's probabilities to be P and R's average.

Remove P and Ras children of node N.

Add P and R as children of node 0.

Return 0.

Split(P, N)

Remove the child P of node N.

Promote the children of P to be children of N.

PAGE 23

initial instances are nonrepresentative of the entire population, one may get hierarchies

with poor predictive ability. For example, if the first instances are all conservative con­

gressmen, the algorithm would create subcategories of these at the top level. When it

finally encountered instances of liberal congressmen, it would create one category for them

at the top level. However, it would still have all the conservative instances at this same

level, when one would prefer them grouped under a separate category.

COBWEB in:dudes two additional operators to help it recover from such nonoptimal

hierarchies. At each level of the classification process, the system considers merging the

PAGE 24 CONCEPT FORMATION

FIGURE 4. Merging categories in COBWEB.

two14 nodes that best classify the new instance. If the resulting clustering is better (ac­

cording to the function described in Section 3.3.3) than the original, it combines the two

nodes into a single category, though still retaining the original nodes as its children. This

transforms a clustering of N nodes into one having N -1 nodes, as in the transition shown

by Figure 4.

The system also incorporates the inverse operation of splitting nodes. At each le':'~l,

if COBWEB decides to classify an instance as a member of an existing category, it also

considers removing this category and elevating its children. If this action leads to an

improved clustering, the system changes the structure of its hierarchy accordingly. Thus,

if one of N nodes at a given level has M children, splitting this node would give N + M -1

nodes at this level, as depi.cted by the transition in Figure 5.

3.3.3 EVALU.ATION IN COBWEB

We have made numerous references to COBWEB's evaluation function, but we have yet

to define this metric. We have also mentioned Fisher's concern with the basic-level phe­

nomena, but we have yet to show how the system has been influenced by these phenomena.

The key to both issues involves category utility, a measure that Gluck and Corter (1985)

have shown predicts the basic level found in psychological experiments. They derive this

function by two paths, one using information theory and the other using game theory.

COBWEB uses a slightly generalized version of Gluck and Carter's function to control

its classification and learning behavior. Category utility favors clusterings that maximize
''

14 Although one could consider merging all possible node pairs, such a strategy would be costly and unlikely
to improve the resulting hierarchy.

CONCEPT FORMATION PAGE 25

FIGURE 5. Splitting categories in COBWEB.

the potential for inferring information (Fisher, 1987b). In doing this, it attempts to max­

imize intra-class similarity and inter-class differences, and it also provides a principled

tradeoff between predictiveness and predictability. The basic measure assumes that con­

cept descriptions are probabilistic in nature. We do not have space to rederive this metric,

but we can consider some of its characteristics.

For any set of instances, any attribute-value pair, Ai = Vij, and any class, Cb one

can compute P(Ai = VijlCk), the conditional probability of the value given membersh.ip

in the class, or its predictability. One can also compute P(ck I Ai = Vij), the conditional

probability of membership in the class given this value, or its predictiveness. One can

combine these measures of individual attributes and values into an overall measure of

clustering quality. Specifically,

LLLP(Ai = Vij)P(CklAi = Vij)P(Ai = VijlCk) (1)
k j

represents a tradeoff between predictability P(Ai = V'iilCk) and predictiveness P(CklAi =

Vij) that has been summed across all classes (k), attributes (i), and values (j). The

probability P(Ai = °Vij) weights the individual values, so that frequently occurring values

play a more important role than those occurring less frequently.

Using Bayes' rule, we have P(Ai = V'ij)P(CklAi = Vij) = P(Ck)P(Ai = V'ijlCk), letting

us transform expression (1) into the alternative form

'' L P(Ck) LL P(Ai = V'ijlCk) 2 (2)
k J

PAGE 26 CONCEPT FORMATION

Gluck and Corter have shown that the subexpression Ei L:j P(Ai = \lijlCk)2 is the expected

number of attribute values that one can correctly guess for an arbitrary member of class

Ck. This expectation assumes a probability matching strategy, in which one guesses an

attribute value with a probability equal to its probability of occurring. Thus, it assumes

that one guesses a value with probability P(Ai = \lijlCk) and that this guess is correct

with the same probability.

Gluck and Corter build on expression (2) in their derivation. They define category

utility as the increase in the expected number of attribute values that can be correctly

guessed, given a set of n categories, over the expected number of correct guesses without

such knowledge. The latter term is simply (l::i I:j P(Ai = \lij)2), so one must subtract

this from expression (2). The complete expression for category utility is thus

L:f=l P(Ck) Ei L:j P(Ai = \lij1Ck)2
- Ei L:j P(Ai = Vi1) 2

K
(3)

Note that the difference between the two expected numbers is divided by I<, the number

of categories. This division lets one compare different size clusterings, which must occur

whenever one considers merging, splitting, or creating a new category.

Since category utility is based on expected numbers of correct guesses about attributes'

values, it suggests predictive ability as the natural measure of behavior. Fisher has tested

COBWEB on both natural and artificial domains, measuring its performance by asking.it

to predict missing attribute values on test instances. This approach is similar to Quinlan's

(1986) methodology for evaluating supervised learning systems, except that one averages

across many attributes rather than predicting a single one (the class name). In Section 4,

we will extend this notion of prediction (and category utility) to domains involving numeric

attributes.

COBWEB is not the first inductive learning system that has employed an evaluation

function based on information theory. The best-known work of this type is Quinlan's

(1986) ID3 method for constructing decision trees. Machine learning researchers have

explored many extensions and variations of this basic technique, including incremental

versions (Schlimmer & Fisher, 1986). Rendell, Sechu, and Tcheng's (1987) PLS system

also uses an information-theoretic metric to direct its divisive construction of disjunctive

concept descriptions. In addition, Hanson and Bauer (1986) have used an information­

based function in their WITT clustering system, Cheeseman et al. (1988) have used a

Bayesian approach in their nonincremental clustering system AUTOCLASS, and Anderson
''

(in press) has used conditional probabilities in his recent work on incremental clustering.

CONCEPT FORMATION PAGE 27

3.3.4 COMMENTS ON COBWEB

Like its predecessors, one can view COBWEB as carrying out a hill-climbing search

through a space of concept hierarchies. In this case, there are four main operators:

• classifying the object into an existing class;

• creating a new class (a new disjunct);

• combining two classes into a single class (merging);

• dividing a class into several classes (splitting).

The system employs an evaluation function - category utility - to determine which operator

(and which instantiation) to employ at each point in the classification process.

The use of a well-defined evaluation function constitutes an advance over previous work

on concept formation, as does Fisher's reformulation of predictiveness and predictability

in terms of conditional probabilities. The explicit inclusion of merging and splitting also

seems desirable, since they should let COBWEB recover from nonrepresentative samples

without losing its incremental, memory-limited flavor.

However, Fisher's work also has some limitations. As implemented, COBWEB can

handle only nominal attributes, whereas UNIMEM dealt with both symbolic and numeric

data. The system also assumes that each instance consists of a single "object," and thus

avoids issues of finding mappings between analogous components. Finally, COBWEB retains

all instances ever encountered as terminal nodes in its concept hierarchy. Although this

approach works well in noise-free, symbolic domains, it can lead to "overfitting the data"

in noisy or numeric domains. In these cases, some form of pruning or cutoff seems in

order. These and other com::erns led us to carry out the research described in the following

section.

4. Modeling the Formation of Object Concepts

With these systems as background, we can turn to CLASSIT, a model of concept for­

mation that attempts to improve upon earlier work. This system has been most strongly

influenced by COBWEB, differing mainly in its representation of instances, its represen­

tation of concepts, and its evaluation function. However, CLASSIT uses the same basic

operators and the same control strategy that Fisher's system employs. Below we describe

the new model, stressing its differences from earlier systems, and explaining our motiva-,,

tions for introducing these differences.

PAGE 28 CONCEPT FORMATION

4.1 Representation and Organization in CLASSIT

Although symbolic or nominal attributes occupy an important role in natural language,

they are less useful for describing the physical world. When describing a stick in English,

one might say that stick is short or long, but our perceptual system can also distinguish

two sticks that differ only slightly in length. This latter capability suggests that humans'

representation of real-world objects can include detailed information about the quantitative

features of those objects. A variety of real-world attributes can be described using real

numbers, including features such as color, which are usually treated symbolically. Since

we are concerned with the formation of physical object concepts, CLASSIT currently only

accepts real-valued attributes as input. 15 In Section 6, we will discuss combining real­

valued and symbolic attributes.

Physical objects can be represented with numeric attributes by describing each object

as a set of components, each with a list of attributes such as height and width. Although

this approach represents some relational information implicitly, (such as the adjacenc:y of

components), it does not restrict the types of objects that can be described. Furthermore,

this form of numeric representation seems a more plausible output from a perception

system.

The introduction of real-valued data requires an analogous extension in one's repre­

sentation of concepts. There are two obvious approaches to this problem. First, one can

divide each numeric attribute into ranges; by 'discretizing' the continuous values, one c;~n

retain the symbolic concept representation used in COBWEB. Lebowitz (1985) has taken

this approach in one version of UNIMEM. Alternatively, one can represent concepts directly

in terms of real-valued attributes.

CLASSIT takes the second approach, retaining COBWEB's notion of storing a proba­

bility distribution with each attribute occurring in a concept. However, instead of stor­

ing a probability for each attribute value, (e.g., for a given concept C, P(smalljC) =
0.3; P(largejC) = 0. 7), our model stores a continuous normal distribution (bell-shapE:d

curve) for each attribute. CLASSIT expresses each distribution in terms of a mean (av­

erage) value and a standard deviation. 16 For instance, it might believe that the average

length of a dog's tail is 1.1 feet and that its standard deviation is 0.65 feet. Attributes with

15 Statisticians have developed methods for clustering objects described in terms of real-valued attributes;
these are known as cluster analysis and numerical taxonomy (Everitt, 1974). Unfortunately, these methods
are usually nonincremental.
16 Standard deviation is defined as the square root of 'I:~ 1 (Xi - x) 2 / N. Note that this equation as written
cannot be computed incrementally; all Xi values need to be present. However, one can transform this
expression for incremental computation by expanding the squared term and storing the sum of squares.
Specifically, each concept contains a count, a sum of values, and a sum of squares. From these, we compute
the mean and the standard deviation when needed.

CONCEPT FORMATION PAGE 29

low standard deviations have narrow, tall distributions, whereas those with high standard

deviations have wide, shallow distributions.

CLASSIT organizes concepts into a hierarchy in the same manner as do UNIMEM and

COBWEB. General concepts representing many instances are near the top of the tree, with

more specific concepts below them. In general, concepts lower in the hierarchy will have

attributes with lower standard deviations, since they represent more specific classes with

greater within-group regularity.

4.2 Classification and Learning in CLASSIT

This new representation scheme requires no modification to COBWEB's learning op­

erators or basic control structure. Thus, CLASSIT includes the same four basic operators

as its predecessor - one for incorporating an instance into a existing concept, another for

creating a new disjunctive concept, a third operator for merging two classes, and a final

one for splitting classes. As described in Tables 5 and 6, for every new instance, the algo­

rithm considers all four operators, computes the score of the evaluation function in each

case, and selects that choice with the highest score. In Section 4.4, we will step through a

detailed example of this procedure.

However, CLASSIT makes a few important additions to the basic algorithm. For exam­

ple, rather than always descending to the leaves of the hierarchy as it classifies an instance,

our system may decide to halt at some higher level node. When this occurs, the systt;).m

has decided that the instance is similar enough to an existing concept that further descent

is unnecessary and that it should throw away specific information about that instance. We

define 'similar enough' with a system parameter, cutoff, that is based on our evaluation

function.

There are two advantages of this modification. First, Quinlan (1986) has shown that

methods for building exhaustive decision trees tend to 'overfit' the data in noisy domains,

leading to decreased performance. The same effect should occur with concept formation

systems, unless they employ some form of cutoff. Second, a system that retains every

instance builds too large a data structure for real applications. Forgetting certain instances

should lead to both better performance and to greater efficiency.

The representation of objects that CLASSIT uses requires another addition to the COB­

WEB algorithm. If instances are described as a set of components, how can the system

correctly match instance components to concept components? For example, how can it

know that the right front leg in the instance corresponds to the right front leg in the 'dog'

concept? In ge~eral terms, this problem is that of finding an optimal match in a weighted

bipartite graph.

PAGE 30 CONCEPT FORMATION

The brute force solution to this problem is far too expensive for practical use: to

calculate the worth of every possible correspondence for n components has an O(n!) time

cost. Instead we have used a cheaper O(n2) time complexity heuristic algorithm. Using

the variances for each attribute in the concept description, CLASSIT finds a match for

that cylinder with the least associated variation. Using this as a constraint, the system

then finds a match for the next most constrained component and so forth, continuing

this process until all components in the concept description have been matched against

components in the instance. This 'greedy' approach is not assured of finding the best

match, but it is likely to find an acceptable one with minimal cost.17

We have chosen to retain CoBWEB's learning operators because we believe they provide

a good framework for concept formation. The hill-climbing search organization provides

a robust method for learning while making minimal demands on memory. Rather than

formulating new algorithms, our goal has been to extend the existing program to work in

new domains and with a more general representational scheme.

4.3 CLASSIT's Evaluation Function

CLASSIT's use of real-valued attributes in both instances and concepts requires a gen­

eralization of category utility, COBWEB's evaluation function. In particular, the two in­

nermost summations in category utility (eq. 3) need to be generalized for real-valued

attributes:
values

2::: P(Ai = ViilCk) 2

j

values
and I: P(Ai=°Vij) 2

j

Both of these terms are a sum of squares of the probabilities of all values of an attribute.

The former uses probabilities given membership in a particular class, Cki while the latter

is without any class information. The second term is equivalent to the probability at

the parent, since that node includes all instances for the clustering and therefore has no

information about class membership.

In order for these terms to be applied to a continuous domain, summation must be

changed to integration, and some assumption must be made about the distribution of

values. Without any prior knowledge about the distribution of an attribute, the best

assumption is that the distribution of values for each attribute follows a normal curve.

Thus, the probability of a particular attribute value is the height of the curve at that value

and the summation of the square of all probabilities becomes the integral of the normal

distribution squared. For the first summation, the distribution is for a particular class,

17 There also exists an O(n3) guaranteed algorithm for this problem, which we will describe in Section 6.

CONCEPT FORMATION PAGE 31

while the second must use the distribution at the parent. In either case, this integral

evaluates to a simple expression:

values

L P(Ai = Vij) 2

j J 1 -(=-=.E.)2 -- e (f dx
o-2211'

1 1

where µ is the mean and O' is the standard deviation. Finally, since this expression is

used for comparison only (see the COBWEB algorithm), the constant term 1/2.J"i can be

discarded.

In summary, one can replace the innermost summations from category utility with the

term 1/o-. The revised evaluation function used by CLASSIT is:

K

where I is the number of attributes, K is the number of classes in the partition, O'ik is the

standard deviation for a given attribute in a given class, and O'ip is the standard deviation

for a given attribute in the parent node. 18

This evaluation function is equivalent to the function used by COBWEB; it is a transfor­

mation of category utility. Unfortunately, this transformation introduces a problem when

the standard deviation is zero for a concept. For any concept based on a single instance,

the value of 1/ O' is therefore infinite.

In order to resolve this problem, we have introduced the notion of acuity, a system

parameter that specifies the minimum value for O'. This limit corresponds to the notion of

a 'just noticeable difference' in psychophysics - the lower limit on our perception ability.

Because acuity strongly affects the score of new disjuncts, it indirectly controls the breadth,

or branching factor of the concept hierarchy produced, just as the cutoff parameter controls

the depth of the hierarchy.

4.4 A Detailed Example

Now that we have examined CLASSIT's representation, control structure, and evalua­

tion function, we will demonstrate the system's behavior in more detail by stepping through

a sample execution. For this example, we have constructed a very simple input domain.

18 In our implementation, the attribute summations are divided by I. This is necessary because CLASSIT
allows instances to have some missing attributes.

PAGE 32 CONCEPT FORMATION

Imagine a set of rectangles that naturally divides into three classes: small, medium, and

large. Each instance has only one component and is described with only three attributes;

height, width, and a texture attribute. For this domain, the texture attribute is irrelevant

to classification. Small rectangles have a mean height of 12.5 and width of 6.5; medium

rectangles average 30 by 14 and large rectangles average 41 by 35. The texture attribute

is allowed to vary from 5 to 40, independent of class. Note that the system is not given

any class information - it is not told whether a given instance is small, medium, or large.

Instead, these concepts must be induced from regularity in the data. This is precisely the

task of unsupervised concept formation.

We will now step through an execution as CLASSIT encounters the first six rectangles.

The system begins with an empty concept hierarchy. Suppose the first instance is a small

rectangle with values of 14 for height, 7 for width and 8 for texture. This instance is used

to create the root node of the hierarchy, as shown in Figure 6(a). Since this initial concept

is based on a single instance, it has the minimum value for its (J values. For this execution

the acuity parameter specifies this minimum to be 1.0 for all attributes.

(a) First instance: height = 14.0
width= 7.0
texture = 8.0

P(Co)= 1/1
attr mean O'

Ht 14.00 1.00
Wid 7.00 LOO
Txt 8.00 1.00

(b) Second instance: height = 12.0
width= 7.0
texture = 20.0

P(Co)= 2/2
attr mean O'

Ht 13.00 1.00
Wid 7.00 1.00
Txt 14.00 6.00

P(C1) = 1/2 P(C2) = 1/2
at tr mean (J' attr mean (J'

Ht 14.00 1.00 Ht 12.00 1.00
Wid 7.00 1.00 Wid 7.00 1.00
Txt 8.00 1.00 Txt 20.00 1.00

FIGURE 6. Extending the CLASSIT hierarchy downward.

For each concept created by the system, we have shown the mean and standard devi­

ation (O') for all attributes, as well as P(Ck), the probability of that concept within the ,,
clustering. As noted earlier, concepts store cumulative sums and sum of squares in order

CONCEPT FORMATION PAGE 33

to recompute the standard deviation incrementally. Similarly, P(Ck) is computed on de­

mand by using counts stored at each concept. In order to make clear the semantics of our

concepts, we have not shown these computational values in our figures.

Figure 6(b) shows the entire concept hierarchy after the system classifies the second

instance. Since every instance encountered is incorporated into the root node, there is only

one decision point as the system classifies this instance: is it different enough from the

first to warrant extending the hierarchy down a level and creating separate concepts for

each instance? In this case, although the second instance is also a 'small' rectangle, the

texture attribute is different enough from the first instance that CLASSIT creates a new

level. Note that the O' scores for height and width at the root node are unchanged; this is

because the standard deviations of these attributes remain lower than acuity.

Third instance: height = 25.0
width= 15.0
texture = 24.0

P(Ci) = 1/3

attr mean ()"

Ht 14.00 1.00
Wid 7.00 1.00
Txt 8.00 1.00

P(Co)= 3/3
attr mean o­
Ht 17.33 5.72
Wid 9.67 3.77
Txt 17 .33 6.80

P(C2) = 1/3
attr mean ()"

Ht 12.00 1.00
Wid 7.00 1.00
Txt 20.00 1.00

P(C3) = 1/3
attr mean ()"

Ht 25.00 1.00
Wid 15.00 1.00
Txt 24.00 1.00

FIGURE 7. Adding a new disjunct to the CLASSIT hierarchy.

Figure 7 shows the concept hierarchy after the system observes a third instance. After

incorporating the instance into the root, the system must decide whether to add the

instance into an existing child concept, or to make a new disjunct at level one. In this case,

the choice with the highest category quality score is to create a new disjunct. Intuitively,

this occurs because the instance is a medium sized rectangle; attributes height and width

are sufficiently different from the existing classes to cause the creation of a new concept.

Figure 8 shows the hierarchy after the system classifies a second medium sized rect­

angle. In this case, adding to an existing concept has a higher score than creating a new

disjunct. This ,~nstance is therefore added to the existing "medium rectangle" concept

(C3) at level one. The system also decides that the new instance is different enough from

PAGE 34

Fourth instance: height = 28.0
width= 13.0
texture = 19.0

P(C1) = 1/4
attr mean (J'

Ht 14.00 1.00
Wid 7.00 1.00
Txt 8.00 1.00

CONCEPT FORMATION

P(Co) = 4/4
attr mean C1

Ht. 19.75 6.87
Wid 10.50 3.57
Txt 17.50 5.93

P(C2) = 1/4 P(C3) = 2/4
attr mean
Ht 12.00
Wid 7.00
Txt 20.00

(J' attr mean
1.00 Ht 26.50
1.00 Wid 14.00
1.00 Txt 21.50

P(C4) = 1/2
attr mean C1

Ht 28.00 1.00
Wid 13.00 1.00
Txt t9.00 1.00

(J'

1.50
1.00
2.50

P(Cs) = 1/2
attr mean C1

Ht 25.00 1.00
Wid 15.00 1.00
Txt 24.00 1.00

FIGURE 8. Adding to an existing concept and extending the CLASSIT hierarchy.

concept C3 to continue and extend the hierarchy to level two, creating a concept for each

instance at that level.

The fifth instance is a large rectangle, and the system chooses to create anot.her dis­

junct at level one. Figure 9 presents the hierarchy at this stage in the learning process.

Remember that CLASSIT does not label this node as 'large' nor does it know that the

fifth instance belongs to the large class. The system incorporates each instance into its

hierarchy witpout the benefit of class information.

Figure 10 shows the hierarchy after CLASSIT incorporates the final instance, a third

'small' rectangle. This instance allows the system to merge two level one concepts into a

more general concept describing all three 'small' rectangles. In more detail, the system

proceeds as follows: it first considers adding the new instance to each of the four existing

classes. In this case, the concept C1 in Figure 9 is the best candidate. CLASSIT then

compares this score to that of making another level one disjunct. Finally the system

considers merging the best and the second-best concepts into a new node; in our example,

this last option has the best score. 19

19 The split operator is only considered when CLASSIT is about to add to a concept that already has children.

CONCEPT FORMATION

Fifth instance: height = 41.0
width= 36.0
texture = 30.0

P(Co)= 5/5

attr mean O"

Ht 20.00 10.49
Wid 15.60 10.69
Txt 20.20 7.22

PAGE 35

P(C1) = 1/5 P(C2) = 1/5 P(Ca) = 2/5 P(Cs) = 1/5

attr mean (f attr mean
Ht 14.00 1.00 Ht 12.00
Wid 7.00 1.00 Wid 7.00
Txt 8.00 1.00 Txt 20.00

(f attr mean
1.00 Ht 26.50
1.00 Wid 14.00
1.00 Txt 21.50

P(C4) = 1/2
attr mean O"

Ht 28.00 1.00
Wid 13.00 1.00
Txt 19.00 1.00

(f attr mean
1.50 Ht 41.00
1.00 Wid 36.00
2.50 Txt 30.00

P(Cs)= 1/2
attr mean O"

Ht 25.00 1.00
Wid 15.00 1.00
Txt 24.00 1.00

FIGURE 9. Creating another disjunct in the CLASSIT hierarchy.

Sixth instance: height = 12.0
width= 6.0
texture = 7 .0

P(Co) = 6/6

attr mean O"

Ht 22.00 10.57
Wid 14.00 10.39
Txt 18.00 8.23

(f

1.00
1.00
1.00

P(C1) = 3/6 P(Ca)= 2/6 P(Cs)= 1/6

attr mean (f attr mean (f attr mean (f

Ht 12.67 1.00 Ht 26.50 1.50 Ht 41.00 1.00
Wid 6.67 1.00 Wid 14.00 1.00 Wid 36.00 1.00
Txt 11.67 5.91 Txt 21.50 2.50 Txt 30.00 1.00

P(C1) = 2/3 P(C2) = 1/3 P(C4) = 1/2 P(Cs)= 1/2

attr mean (f attr mean (f attr mean (f attr mean (f

Ht 13.00 1.00 Ht 12.00 1.00 Ht 28.00 1.00 Ht 25.00 1.00
Wid 6.50 1.00 Wid 7.00 1.00 Wid 13.00 1.00 Wid 15.00 1.00
Txt 7.50 1.00 Txt 20.00 1.00 Txt 19.00 1.00 Txt 24.00 1.00

,,

FIGURE 10. Merging two concepts in the CLASSIT hierarchy.

PAGE 36 CONCEPT FORMATION

The merge operator merely pushes existing categories down a level. CLASSIT must

also consider what to do with the new instance at level two. In this execution, the system

decides to incorporate it into an existing child concept, C1. At this point the cutoff

parameter comes into play and the system decides that the new instance does not warrant

its own concept at level three. This is hardly surprising, since the new instance is so close

to the existing concept description that the standard deviations do not rise above acuity.

In fact, the match among the three small rectangles is close enough so that the standard

deviations for attributes height and width remain at acuity even for the new level one

concept, C1.

CLASS IT continues processing new instances in this manner, incrementally modifying

both its concept descriptions and the structure of its concept hierarchy as it encounters new

data. Unlike some incremental learning systems - such as Mitchell's (1982) version-space

method - CLASSIT never achieves a final knowledge state; the system continues to learn as

long as new instances are available. This behavior is the strength of an incremental model.

For example, it allows a system to recover from concept drift; if the environment changes

over time, the learner must continue to modify his conceptual structures in response to

new data.

4.5 A Summary of CLASSIT

A principle motivation for the CLASSIT system was to model concept formation· in

the domain of real-valued inputs. This has affected our representation and our evaluation

function. As yet, we have worked only with real-valued attributes since we feel that this

type of input more closely models the output of the human perceptual system.

Since the same algorithm and four learning operators are used, CLASSIT retains the

advantages of COBWEB. Both are incremental systems that integrate learning (concept

formation and modification) and performance (classification), carrying out a hill-climbing

search for an optimal concept hierarchy.

5. Experimental Studies of CLASSIT's Behavior

One important approach to evaluating any AI system involves experimentation - study­

ing the system's behavior under a variety of conditions. In this section, we present some

experimental results that demonstrate CLASSIT's learning ability. We begin by introducing

the domain we have used in most of these studies. After this, we report three experiments

in which we vary aspects of CLASSIT, followed by another study in which we vary the reg­

ularity in the domain. In each case, we describe the independent and dependent variables

CONCEPT FORMATION PAGE 37

Horse Giraffe

Cat Dog

FIGURE 11. Typical instances for four categories of quadruped mammals.

used in the ~xperiment, summarizing the results in graphs. We close by reporting the

system's behavior on a real-world domain that involves numeric attributes.

5.1 The Domain of Quadruped Mammals

For our initial experiments, we designed an artificial domain involving four-legged

mammals, each described as a set of eight cylinders. This approach let us control the

environment while still retaining a reasonable approximation of physical objects. One

can view our representation of objects as a simplification of Binford's (1971) generalized

cylinders, which have received wide attention within the machine vision community. Also, ,,

Marr (1982) has argued that such representations are reasonable approximations of the

PAGE 38 CONCEPT FORMATION

output of the human visual system. 20

As discussed earlier, CLASSIT assumes that each instance consists of a set of component

objects, each described by a set of real-valued attributes. In the domain of quadruped

mammals, each instance consists of eight cylindrical components: a head, a neck, a torso,

a tail, and four legs. Each cylinder includes attributes such as height, radius, and location;

there are a total of nine attributes per component, hence 72 attribute-value pairs per

instance. We believe that real-world objects have at least this order of complexity and

that a robust concept formation system should be able to handle instances of this form. 21

In the runs described below, we assumed four basic categories that differed system­

atically only in the sizes of their cylinders. We will refer to these classes as cats, dogs,

horses, and giraffes, since their relative sizes are roughly the same as those occurring for

these real-world categories. Figure 11 shows a typical instance for each of these classes.

One can view the prototype for a class as the 'Platonic form' or ideal for that class. To

generate instances from a particular class, we use a template that defines the prototypical

value for each attribute and a variance, specifying the degree to which that attribute will

vary in the actual distribution of instances. Finally, each category has a probability that

it will occur; some classes can be more common than others.

In producing data for our experiments, we used the prototype for each basic category

to generate each instance according to the following procedure:

Randomly select a template C with probability P(C).

For each component 0 in the prototype for C,

For each attribute A of component 0,

Let M be the typical value of A for 0 in template C.

Let S be the variance of A for 0 in template C.

Randomly select a value V for A according to a

normal distribution with mean M and variance S.

Thus, every instance is a member of one of the four categories, although CLASSIT is told

neither the class name nor the number of classes. Each instance diverges from the ideal for

20 We have developed CLASSIT within the context of the World Modeler's Project, a joint research effort
between the University of California, Irvine, and Carnegie Mellon University. This project incorporates a
simulated three-dimensional world, representing physical objects in terms of cylinders, spheres, circles, and
polygons. Agents that interact with this environment perceive their surroundings directly in terms of such
primitive shapes, along with their size, location, and orientation. Of course, CLASSIT need not assume such
representations; it can be applied to any domain that one can express using numeric attributes.
21 A more realistic description would represent physical objects at different levels of aggregation, as Marr
(1982) has propose\'!. Thus, an animal might have four legs, with each leg having three components, etc.
However, such multi-level representations introduce some difficult problems, which we discuss in Section 6.

CONCEPT FORMATION PAGE 39

that category, though some diverge more from this ideal than others and some attributes

tend to vary more than others. Later we will examine CLASSIT's behavior on another

artificial domain, but we will use the same basic method for generating data.

5.2 Learning and Component Matching

We have claimed that CLASSIT is a learning system, and learning is usually defined

as some improvement in performance. Following Fisher (1987a), our first experiment

examined the incremental improvement in the system's ability to make predictions. The

dashed line in Figure 12 presents CLASSIT's learning curve as it incorporates instances

from the domain of quadruped mammals into its concept hierarchy.

The independent variable here is simply the number of instances seen. The dependent

variable is the system's ability to predict a single missing attribute from all the other at­

tributes in an instance. We measured this variable after every five instances by 'turning

off' the learning component and presenting CLASSIT with five randomly selected test in­

stances, each missing a single attribute. After classifying each instance, the system uses

the selected category to predict the value of the missing attribute. The graph measures

the pen:entage error between the predicted value and the ideal value for the instance's

actual class. 22 The percentage error describes the absolute prediction error relative to the

other categories present in the hierarchy. One hundred percent indicates that the system

has confused the instance with the wrong category. Clearly, the system's performance

improves with experience, starting at 40% error and moving down to less than 5% error

after 35 instances.

As described earlier, incremental algorithms tend to be sensitive to instance order­

ing. Although CLASSIT's split and merge operators allow some recovery from initial non­

representative orderings, learning curves still vary with different orderings. In order to

minimize this effect, the measures in Figure 12 have been averaged over 15 runs involving

different random orderings. Also, since the data is produced randomly from templates,

different instances are used for each ordering. We have followed this procedure in all our

experiments.

In Section 4.2 we discussed CLASSIT's use of a greedy algorithm to match components

m an instance to components in its concept descriptions, and it is this version that is

summarized by the dashed line in Figure 12. Given the heuristic nature of this matching

scheme, we were interested in how it would fare against a version that had the optimal

22 Obviously, this measurement of error only makes sense for attributes that are relevant to classification;
those attributes whose values differ across different classes. One cannot expect the system to correctly predict
the value of an attribut.e that is irrelevant with respect to classification. Thus, we omitted only relevant
attributes in measuring CLASSIT's improvement in predictive ability.

PAGE 40

50

40

30

20

10

0

5

\
\

\
\

\ r.... ',

10 15

',

20

...., ___ ,
'

25 30

CONCEPT FORMATION

Greedy matching

Oracle matching

' ' ' .., ___ ... ___ ... ___ ,

35 40 45 50

Number of instances seen

FIGURE 12. CLASSIT learning curves with greedy vs. oracle matching.

match available. The solid line in the figure shows the learning curve for such a system, in

which we supplied CLASSIT with the correct correspondence between concept and instance

components. This 'oracle'-based variant improves its performance more quickly than the

greedy.version, reaching an asymptotic level after only 20 instances. However, despite some

major errors early on (due to mismatched components), the greedy algorithm gradually

narrows the gap, converging on nearly the same performance as the oracle version after 35

instances. This is a fairly impressive result for objects involving eight distinct components.

In the remaining experiments, we report results only for the oracle version of CLASSIT; ·in

order to factor out errors due to mismatches.

5.3 The Effect of System Parameters

We introduced the parameters for acuity and cutoff into CLASSIT only reluctantly,

since such parameters encourage fine-tuning to achieve desirable behavior. To determine

the effect of such tuning, we carried out the second experiment summarized in Figure 13.

As in the previous study, the horizontal axis specifies the number of instances and the

vertical (dependent) axis shows the average percentage error. However, this time there are

four learning curves, one for each setting of the acuity and cutoff parameters. We have

repeated the oracle curve from Figure 12, which was based on an acuity setting of 1.0 and

cutoff setting of 0.2.

In this experiment we examined two levels of the cutoff parameter - 0.2 and zero. The

latter is the lowest possible setting, and effectively forces CLASSIT to retain all instances

it has ever see:q. ,as terminal nodes in the hierarchy. Since the system always sorts a new

instance as far down the hierarchy as possible, it will base its predictions on the values

CONCEPT FORMATION PAGE 41

50

.,.. - - ~ Acuity is 1.0; Cutoff is 0.0

40 .. - - .. Acuity is 0.5; Cutoff is 0.0

.... --• Acuity is 1.0; Cutoff is 0.2

30 Acuity is 0.5; Cutoff is 0.2

20

10
~" ~' -----~ ',', ---ttr------el" ', "'"--:- _..,. ____ - ---- - --

0

5 10 15 20 25 30

Number of instances seen

FIGURE 13. The effect of acuity and cutoff on learning.

for a singleton concept. Unless each instance actually represents a distinct category, this

strategy should lead to an overfitting effect, similar to that Quinlan (1986) has observed

with decision trees in noisy domains.

Since we designed our quadruped data set to have only four generic categories, we would

expect such overfitting on this domain as well. Indeed, the curves in Figure 13 confirm

this prediction. Both learning curves for the no-cutoff condition appear to asymptote at

a higher error rate than the curves in the cutoff condition. With a higher setting for this

parameter (i.e., with cutoff in operation), the system constructs simpler hierarchies with

more general concepts as terminal nodes, and thus is able to make better predictions.

We also examined the effect of acuity, using two settings in this case as well. Unfor­

tunately, the role of acuity is not as clear. In principle, one would expect overfitting to

occur for low v(l.lues of this parameter, since this excourages CLASSIT to form many dis­

juncts. This should lead to a larger number of singleton classes, and thus to idiosyncratic

PAGE 42 CONCEPT FORMATION

predictions. However, this seems to occur only for extreme settings of the acuity param­

eter. Modifying the breadth of the hierarchy slightly does not have as strong an effect on

prediction as does changing the depth of the tree with the cutoff parameter. Clearly, we

need to carry out further studies to clarify the effect of this parameter.

Since this parameter controls breadth, rather than depth, the effect of this parameter on

prediction is much less pronounced than that for cutoff. However, we have seen variations

in acuity produce degradations in other domains, so we need further studies to clarify the

effect of this parameter.

In principle, one can get underfitting as well as overfitting effects. This should result

in cases where CLASSIT constructs too shallow a hierarchy or creates too few disjunctive

categories. However, the former can occur only if the 'true' hierarchy contains multiple

levels, and our quadruped data contains only one level of categories. For both parameters,

one would expect a U-shaped curve, with high error from overfitting at one end of the

spectrum and high error from underfitting at the other end. Clearly, we need additional

experiments to test this prediction.

5.4 The Effect of Merging

We have discussed both CoBWEB's and CLASSIT's potential sensitivity to the ordering·

of instances, and their use of merging and splitting operators to alleviate this effect. Our

third experiment verifies that the merge operator has this predicted beneficial effect. Our

technique was to 'lesion' the system: that is, create a version of CLASSIT that cannot ap­

ply the merge operator, and compare its performance to the complete system. Recall that

these 'backtracking' operators are most useful when the system initially receives nonrep­

resentation instances. Therefore, for this experiment we arranged the order of instances

by hand.

Figure 14 shows the results of an experiment in which two versions of CLASSIT - one

with merging and the other without - were given a very skewed ordering of instances from

the quadruped domain. First we presented five instances of the 'horse' category, then five

'giraffes', then five 'cats', then five 'dogs', then five more 'horses', and finally five more

'giraffes'. Given such data, CLASSIT splits the initial horses into several classes at the top

level, then creates new categories upon seeing the giraffes, cats, and dogs. The result is

a skewed hierarchy, in which different types of horses are given the same status as the

general classes of giraffes, cats, and dogs. The merge operator is designed to restructure

such a hierarchy
1

creating a new category for horses and bringing particular horses down

to an appropriate (lower) level.

CONCEPT FORMATION

10

8

6

4

2

0

5 10 15

- ---- -------.

without merging

with merging

20 25

Number of instances seen

30

FIGURE 14. The effect of merging on hierarchy structure.

PAGE 43

Since CLASSIT sorts an instance as far down the hierarchy as possible, the internal

structure of the hierarchy will have little if any effect on prediction. For this reason, we

have used a different dependent measure in Figure 14 - the number of top-level categories.

This measure demonstrated precisely what one would expect. The number of categories at

the top level continues to increase through instance 20. At this point, the new instanc~s

of 'horse' lead the merging version of CLASSIT to combine the horse nodes at the top

level into a single category. By instance 25, the number of top-level classes has decreased

to around six, and by instance 30 it has reached four, the 'correct' number. Note that

merging combines only two nodes at a time, so this decrease is due to a sequence of merge

operations. In contrast, the non-merging version of CLASSIT incorporates the new horses

into its existing categories, but retains the same top-level classes that the initially skewed

data led it to create.

5.5 The Effect of Overlap and Redundancy

Having considered the effect of varying CLASSIT's components on its learning behavior,

let us examine the influence of two interesting domain characteristics. The first involves

the number of attributes that are relevant in the sense that their values vary systematically

with category membership. Intuitively, the more relevant attributes, the more redundant

the data. The second variable involves the degree to which there is overlap between cate­

gories' values on, an attribute; this corresponds to the percentage area that an attribute's

probability distribution shares with the distribution from a neighboring class. Intuitively,

PAGE 44 CONCEPT FORMATION

the less overlap between two categories' values on an attribute, the more distinguishable

those classes are on that attribute.

One would expect CLASSIT to have more difficulty in forming useful categories in the

presence of highly overlapping attributes. The overlap between two distributions deter­

mines the probability that, on any given instance, the attribute value will fall in the region

shared by both categories. In such cases, the attribute cannot be effectively used to de­

termine the category to which the instance should be assigned. However, one would also

expect highly redundant data to mitigate this effect. The more relevant attributes, the

more attributes are likely to have values falling outside the area of overlap. Thus, we can

predict an interaction effect, with CLASSIT's learning behavior worsening with increased

overlap between categories, but with increased numbers of relevant attributes lessening

this effect.

We tested this prediction in a fourth experiment. In this case we used a somewhat

simpler artificial domain that let us independently control the two domain variables. Each

instance consisted of five components with six attributes each, giving a total of 30 at­

tributes, and instances were generated from only three category templates. (Hence, we

assume there should be only three top-level categories). We varied the number of relevant

attributes from two to ten. This represents a large amount of irrelevant information; two

thirds or more of the attributes are irrelevant to predicting an instance's class. In contrast,

an instance from the quadruped domain had two thirds of its attributes relevant. We a:lso

varied the amount of overlap between zero and fifty percent.

Figure 15 presents the results of this experiment. For simplicity, we have not reported

learning curves in this case. Instead, the dependent variable shows predictive ability (aver­

age percentage error) afte~ CLASSIT has viewed 30 instances. In all runs, we set acuity at

1.0 and cutoff at 0.2. As before, we averaged each point over 15 different random orderings.

The results are surprising. For higher numbers of relevant attributes, we see the

expected interaction: increasing the number of relevant features helps more for higher

levels of overlap, since they are worse to begin with. However, unexpected effects occur

for lower redundancy settings, where even data with zero overlap leads to high error rates.

Closer inspection suggests an explanation for this phenomenon. When there are only two

relevant attributes (only one of which can be used on test instances), there are some 28

irrelevant ones that vary independently of category. Even when the relevant attributes

never fall into the overlap areas, the irrelevant ones almost certainly do; despite their

small individua:l, contributions to category utility, their numbers overwhelm the small set

of relevant features.

CONCEPT FORMATION

100

90

80

70

60

50

40

30

20

10

0

~
o,\ . \ .. , .. , ·., .. , .. , .. , .. ,

.. , .. ,
.. , .. ,

'1

2

')
')
')

\
\
\
\
\
\
\
\

..........

..
·.

..

4

.. --- ...

o· · · · · · · · ·o

" ' ' ' '

..,,

6

' ' ' '
... ...

' '

50.0% overlap

24.4% overlap

15.4% overlap

' '

No overlap

PAGE 45

-----------:-e,

8 10

Number of relevant attributes

FIGURE 15. The effect of overlap and redundancy.

Unfortunately, this experiment confounds the total number of relevant attributes with

the percentage of relevant attributes. To test our explanation,. we must carry out further

experiments in which we vary these two factors independently. This is an important

direction for future work, and it may ultimately let us predict CLASSIT's behavior from

domain characteristics.

5.6 CLASSIT on a Natural Domain

Our final study examined CLASSIT's behavior on a real-world domain, using data on

cardiology patients (Detrano, 1988). In this data set, each patient has 13 measured or

derived numeric attributes, along· with a "class" attribute - whether or not the patient has

heart disease. \Jpfortunately, Detrano indicates that this class information does not have

a high accuracy; he estimates a 20% error rate.

PAGE 46 CONCEPT FORMATION

Since CLASSIT is an unsupervised learning system, we discarded the class name and

presented the system only with the numeric attributes for each instance. We then measured

performance in terms of whether the system created concepts that corresponded to the

prespecified classes. In effect, we asked the system to rediscover the class information from

regularity in the numeric data. After seeing only ten of the total 303 instances, CLASSIT

created three top-level concepts, and it retained this structure for the entire learning run.

Upon inspection, we found that one of these categories clearly corresponded to patients

without heart disease; some 86.1 % of its members had this label in the original data. The

other two classes corresponded to patients with heart disease, one more consistently than

the other; the accuracy was 79. 7% and 66.6% for these groups. Overall, this represents a

weighted average of 78.9% accuracy, which matches very well with the expected error rate

of 20%. This is impressive, given that CLASSIT arrived at these categories without benefit

of the class information.

6. Directions for Future Research

We believe that CLASSIT constitutes a promising framework for concept formation, and

that it incorporates significant advances of earlier models. However, the existing system

has a number of limitations that should be remedied in future efforts, and we discuss these

below. We divide our treatment into issues of representation, matching, and learning.

6.1 Extending CLASSIT's Representation

CLASSIT is designed to operate on numeric attributes, and we feel this is appropriate

for domains based on visual input. However, symbolic or nominal attributes also have

their uses, and we need to extend the system to handle this form of data. Recall that

Fisher designed COBWEB to operate on nominal representations, and that CLASSIT uses a

nearly identical algorithm for classification and learning. Moreover, our system's evaluation

function is equivalent to Fisher's category utility metric, though we have modified it to work

with numeric attributes. Thus, we hope to use a mixed evaluation function that includes

discrete conditional probabilities for symbolic attributes and variances for numeric ones. 23

This should result in an integrated system that supports mixed forms of data.

In our work to date, we have used a simple set of primitives for describing objects,

including cylinders and polygons. Clearly, we need to extend our framework to more realis­

tic representations of the physical world. One approach would employ arbitrary polygons,

which can be used to describe the surface characteristics on any three-dimensional object

in arbitrary detail. However, this approach quickly leads to an unmanageable number of
'

23 This means that the 1/2.jir term from Section 4.3 must be retained.

CONCEPT FORMATION PAGE 47

components for moderately complex objects. Alternatively, one might use Binford's (1971)

generalized cylinders to describe the volumetric aspects of objects. These require fewer

components, but they introduce complex functional expressions to describe variations from

a simple cylinder, and it would be difficult to extend CLASSIT to handle this scheme.

A more promising approach involves Biederman's (1987) theory of geons, a set of 36

primitive shapes that can represent a wide range of complex objects. We see no difficulty

in replacing our cylinders and polygons with geons, combining them to form more complex

structures just as we currently do with simpler shapes. As before, each primitive component

would be described in terms of its basic shape, along with numeric parameters specifying its

size, location, and orientation. Some geons would require additional attributes to specify

relative lengths of edges, but this would not be a problem for CLASSIT. Biederman has

presented evidence that humans use geons in recognizing physical objects, and we hope

that our revised system would make predictions about the human classification process.

6.2 Improving the Matching Process

The process of matching components between instance and concept is central to CLAS­

SIT's behavior. Although the 'oracle' approach was useful for experimental studies, it is

not appropriate for normal operation. The greedy algorithm works reasonably well, but it

leads to slower learning than the oracle method. We need additional studies to determine

the robustness of the greedy scheme but we should also look for improvements on t~is

method.

One approach involves making the greedy technique more heuristic in nature. The

current version selects a component from the concept at random, finds the best matching

component from the instance, selects another concept component at random, and so on.

However, some components may have more diagnostic attributes than others, and matching

against these·components first should improve the greedy method's chances for finding the

optimal correspondences.

We also plan to examine the Hungarian algorithm (Papademetriou & Steiglitz, 1982),

a more expensive matching process that is guaranteed to find the optimal match. Given

a bipartite graph with 2n nodes, along with some function for evaluating the quality of a

match, the Hungarian method finds the best match in O(n3) time, as compared with O(n2)

time for the greedy method. The algorithm works by creating an n x n cost matrix for

all possible pairs of components and then solving an "n rooks" problem over this matrix.

In general, we would expect this approach to perform better than the greedy algorithm.

However, althoµ,gh it is guaranteed to find the optimal match according to CLASSIT's

evaluation function, this need not agree with the 'correct' match. Thus, we expect the

PAGE 48 CONCEPT FORMATION

resulting learning curve for this algorithm to fall somewhere between the two curves of

Figure 12. Whether the n3 cost is prohibitive is an empirical question, but we guess that it

is not, since n (the number of components) should seldom exceed ten for physical objects.

6.3 Handling Missing Attributes and Components

Another aspect of matching involves dealing with instances having missing attributes.

The current version of CLASSIT already takes this possibility into account, dividing the

summed 1 / u scores by the number of attributes present. We used this scheme in classifying

instances with a single missing attribute in our experiments, but we need further studies

of its behavior when many attributes have been omitted.

In addition, entire components may be missing from an instance description. If we

assume that CLASSIT's input is generated by a vision system, then components may be

omitted because they are not visible. We may be able to use the same evaluation func­

tion in this case, simply treating the missing components as a set of missing attributes.

However, we must still modify the component matching process to find a partial match

between components in the instance and the concept. Although we do not have a complete

specification, this modification seems feasible for either the greedy matching algorithm or

the Hungarian algorithm.

6.4 Multiple Levels of Aggregation

Another research issue relates to the organization of complex objects with' multiple

components. Marr (1982) has argued that the human visual system can generate descrip­

tions of physical objects at different levels of aggregation. Thus, a dog might be viewed as

a single cylinder at one level, as eight connected cylinders for (torso, neck, head, tail, and

legs) at a lower level, with each leg described as three cylinders (thigh, calf, and foot) at

a still lower level. One difficulty with such a part-of hierarchy of objects lies in specifying

the relation between different levels. We need to specify algorithms for moving from lower

to higher levels that minimize information loss.

Once we have extended CLASSIT's representation in this direction, we will also need to

alter its evaluation function and its matcher. CLASSIT can deal with two levels (a compos­

ite object and its components), but it cannot handle the general n-level case. Although

EPAM was designed to handle composite, multi-level instances, neither UNIMEM nor COB­

WEB retained this ability. Wasserman (1985) has described an extension to UNIMEM that

takes a similar approach to EPAM, recursively sorting each component (and its compo­

nents) through_the concept hierarchy. However, EPAM does not address the problem of

matching components at all (i.e., each component fills a unique slot), and 'Wasserman's

;·

CONCEPT FORMATION PAGE 49

extension uses a 'greedy' matching strategy, the performance characteristics of which are

not systematically evaluated.

Adding multiple levels of description to the CLASSIT framework raises a number of

questions. Should the system use all levels in classification or only some? EPAM preferred

to use attributes of composite objects when these were sufficient for avoiding errors. If

we represent different levels in the same language, how can CLASSIT determine analogous

levels between an instance and a concept description? How can one adapt the component

matching process to work at multiple levels? Finally, how can one match a complex instance

to a complex concept when its components are structurally different, (e.g., a cylinder vs. a

block), and how should one alter the concept description in such cases? We must find at

least tentative answers to these questions before we can extend CLASSIT in this direction.

6.5 Matching and Normalization

We have designed CLASSIT with the domain of physical objects in mind, and this has

led to our focus on composite instances and numeric attributes. In our experiments with

the system, we have assumed that instances have the same location, orientation, and scale,

but we must clearly abandon this simplification in future versions. Upon seeing a cat from

a different angle than normal, one still recognizes it as a cat. Similarly, if one sees a cat in

a different location, or even a cat of unusually large or small size, there is no recognition

problem. Apparently, recognition focuses not on the absolute values of attributes, but .~n

their relative values.

One might store in a concept description all pairwise relations between component

objects, but this is neither space efficient nor very plausible. A better approach involves

selecting some scale, origin, and set of axes for the overall object concept, and then specify

the scale, origin, and axes for each component relative to them. However, this raises a

new issue: how can one determine these parameters for a new complex instance before it

has been classified? We have not been able to devise a general algorithm that generates. a

canonical representation regardless of viewing angle, location, and size.

Instead, we hope to solve this normalization problem during the act of matching con­

cept to instance. Upon observing an instance with multiple components, an extended

CLASSIT would first match one of these components and use it to hypothesize the scale,

origin, and axes for the composite object. This will lead to predictions about the locations

of other components, which may or may not be correct. Hypothesized coordinate systems

would be rejected, and those with better predictive ability would be extended, eventu­

ally leading to {l-, completely normalized match. We plan to implement this normalization

process in future versions of CLASSIT, though many details must still be specified.

PAGE 50 CONCEPT FORMATION

6.6 Abstract Descriptions and Selective Attention

Like Fisher's COBWEB, our system stores all known attributes on every concept descrip­
tion, even when they are neither predictive nor predictable. Earlier models of concept for­
mation were more selective. Feigenbaum's EPAM starts with very general descriptions and
gradually makes its images more specific through a process of familiarization. Lebowitz's
UNIMEM (1985) and Kolodner's CYRUS (1983) gradually make their descriptions less ~pe­
cific through a generalization process. We need to explore variants on our basic algorithm
that let it generate more abstract concept summaries, though the exact method is an open
question.

A closely related problem is that CLASSIT inspects every attribute during the classifica­
tion process, even if they have no predictive value. An improved system would incorporate
the idea of selective attention, in which one focuses only on some features, presumably
the useful ones. Earlier models of concept formation have this ability, including EPAM,
UNIMEM, and CYRUS, as well as Fisher's COBWEB/2 (1987a). The latter is encouraging,
since it gives one path for incorporating attention into COBWEB, and thus into CLASSIT.

Ideally, the modified system would learn to prefer some attributes over others. In the
early stages this selection would be random, since it would not know a priori which features
would be diagnostic. However, as the system gained experience, it would come to prefer
some attributes to others. Actually, CLASSIT already keeps statistics that would support
this process. Using Bayes' rule, one can compute the predictiveness of each attribute
from the existing scores. For example, the attribute 'height' in Figure 10 is clearly m?.re
predictive than 'texture' at the first level. This is reflected by the fact that the difference
between the average 1 / <7 score and the parent's 1 /a score is much larger for height than
for texture.

In other words, CLASSIT's learning mechanism already supports such a focusing mech­
anism, and we need modify only the performance algorithm. The revised system would
select only those attributes necessary to determine category membership with high prob­
ability. We could make this selection a deterministic function of predictiveness scores,
but there is danger in this approach. If the initial instances are nonrepresentative or if
the environment changes, the system might come to ignore attributes that later proved
relevant. For this reason we prefer a probabilistic scheme, with more predictive attributes
being selected more often, but even those with very low scores occasionally being sampled.
We believe the addition of selective attention will make CLASSIT a more accurate model
of human categorization and concept formation.

7. Summary

In this paper, we proposed a unifying framework for concept formation. We identified
five features common to work on this task: that knowledge is represented in a concept

CONCEPT FORMATION PAGE 51

hierarchy, that classification occurs in a top-down manner, that learning is unsupervised,
integrated with performance, and employs an incremental hill-climbing search. We feel the
search metaphor is especially important in understanding concept formation; it suggests
both operators for learning and heuristics for controlling those operators.

We reviewed three concept formation systems (EPAM, UNIMEM, and COBWEB) that fit
within our framework, along with a new system (CLASSIT) that builds on the earlier work.
We have tried to emphasize the close relation between the systems, as well as the addi­
tions each makes over its predecessor. In particular, CLASSIT extends Fisher's approach
to numeric attributes, can handle instances with multiple (unordered) components, and
retains only some of the instances it encounters.

Finally, we presented some experimental studies of CLASSIT's behavior. We found that
for the artificial domain of quadruped mammals, the system significantly improved its per­
formance with experience, and that the greedy matching algorithm slowed down learning
but did not seem to affect asymptotic performance. CLASSIT showed some sensitivity to its
parameter settings, with low values for cutoff giving overfitting effects. We also presented
evidence that the merge operator leads to more balanced hierarchies when the initial data
is nonrepresentative. In examining the effects of domain characteristics, we found that
more overlap between categories led to reduced improvement, and that more redundancy
alleviated this effect. However, the relationship was more complex than we expected, and
we need further experiments along these lines. Finally, we showed that when given real­
world data on heart disease, CLASSIT was able to formulate diagnostically useful categories
even without class information.

The representation, use, and acquisition of concepts is a complex, interconnected set
of problems, and we cannot claim to have solved these problems in any absolute sense.
However, we believe the basic approach we have described, and which is reflected in EPAM,
UNIMEM, CYRUS, COBWEB, and CLASSIT, constitutes a promising thrust towards the
computational understanding of categorization. We encourage other researchers to join
in the effort, and to construct incremental models of concept formation that extend the
initial results that have been achieved to date.

PAGE 52 CONCEPT FORMATION

References

Anderson, J. R. (1977). Induction of augmented transition networks. Cognitive Science,
1, 125-157.

Anderson, J. R. (in press). The status of cognitive architectures in a rational analysis. In
K. VanLehn (Ed.), Architectures for Intelligence. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R., & Kline, P. J. (1979). A learning system and its psychological implica­
tions. Proceedings of the Sixth International Joint Conference on Artificial Intelligence
(pp. 16-21). Tokyo, Japan: Morgan Kaufmann.

Berwick, R. (1979). Learning structural descriptions of grammar rules from examples.
Proceedings of the Sixth International Joint Conference on Artificial Intelligence (pp.
56-58). Tokyo, Japan: Morgan Kaufmann.

Biederman, I. (1987). Matching image edges to object memory. Proceedings of the IEEE
First International Conference on Computer Vision (pp. 384-392). London: Computer
Society Press.

Binford, T. 0. (1971). Visual perception by computer. Paper presented at the IEEE
Conference on Systems and Control, Miami, FL.

Cheeseman, P., Kelly, J., Self, M., & Stutz, J. (1988). Automatic bayesian induction of
classes. Proceedings of the Second Annual Artificial Intelligence Research Forum (pp.
224-239). Palo Alto, CA: NASA Ames Research Center.

Detrano, R. (1988). International application of a new probability algorithm for the dia.g­
nosis of coronary artery disease. Unpublished manuscript.

Everitt, B. (1974). Cluster analysis. London: Heinemann Educational.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In E. A. Feigen­
baum & J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill.

Feigenbaum, E. A., & Simon, H. (1984). EPAM-like models of recognition and learning.
Cognitive· Science, 8, 305-336.

Fisher, D. (1984). A hierarchical conceptual clustering algorithm (Technical Report 85-21).
Irvine: University of California, Department of Information and Computer Science.

Fisher, D. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, 139-172.

Fisher, D. (1987b). Knowledge acquisition via incremental conceptual clustering. Doc­
toral dissertation, Department of Information and Computer Science, University of
California, Irvine.

Gluck, M., & Corter, J. (1985). Information, uncertainty and the utility of categories.
Proceedings pf the Seventh Annual Conference of the Cognitive Science Society (pp.
283-287). Irvine, CA: Lawrence Erlbaum.

CONCEPT FORMATION PAGE 53

Grefenstette, J. (1987). Multilevel credit assignment in a genetic learning system. Pro­
ceedings of the Second International Conference on Genetic Algorithms (pp. 202-209).
Hillsdale, NJ: Lawrence Erlbaum.

Hanson, S., & Bauer, M. (1986). Machine learning, clustering and polymorphy. In L.
Kanai & D. Lemmer (Eds.), Uncertainty in Artificial Intelligence. New York: North
Holland.

Holland, J. (1986). Escaping brittleness: The possibilities of general purpose algorithms
applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M.
Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). Los
Altos, CA: Morgan Kaufmann.

Iba, W., Wogulis, J., & Langley, P. (in press). Trading off simplicity and coverage in
incremental concept learning. Proceedings of the Fifth International Conference on
Machine Learning. Ann Arbor, MI: Morgan Kaufmann.

Kolodner, J. (1983). Maintaining organization in a dynamic long-term memory. Cognitive
Science, 7, 243-280.

Langley, P. (1987). A general theory of discrimination learning. In D. Klahr, P. Lan­
gley, & R. Neches (Eds.), Production System Models of Learning and Development.
Cambridge, MA: MIT Press.

Langley, P., Gennari, J., & Iba, W. (1987). Hill climbing theories of learning. Proceedings
of the Fourth International Workshop on Machine Learning (pp. 312-323). Irvine,
CA: Morgan Kaufmann.

Lebowitz, M. (1980). Generalization and memory in an integrated understanding system.
Doctoral dissertation, Department of Computer Science, Yale University, New Haven,
CT.

Lebowitz, M. (1983). Generalization from natural language text. Cognitive Science, 7,
1-40.

Lebowitz, M. (1985). Categorizing numeric information for generalization. Cognitive
Science, 9, 285-309.

Lebowitz, M. (1986). Concept learning in a rich input domain: Generalization based mem­
ory. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:
An artificial intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Ma­
chine Learning, 2, 103-138.

Levinson, R. (1984). A self-organizing retrieval system for graphs. Proceedings of the
National Conference on Artificial Intelligence (pp. 203-206). Austin, TX: Morgan
Kaufmann.

Marr, D. (1982)~ Vision: A computational investigation into the human representation
and processing of visual information. San Francisco, CA: W. H. Freeman.

PAGE 54 CONCEPT FORMATION

Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artiE.cial intelligence approach. Los Altos, CA: Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Mitchell, T. M., Utgoff, P. E. & Banerji, R. B. (1983). Learning by experimentation:
Acquiring and refining problem-solving heuristics. In R. S. Michalski, J. G. Carbonell,
& T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los
Altos, CA: Morgan Kaufmann.

Papademetriou, C., & Steiglitz, K. (1982). Combinatorial optimization. Englewood Cliffs,
NJ: Prentice Hall.

Quinlan, R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Rendell, L., Seshu, R., & Tcheng, D. (1987). More robust concept learning using dynamically­
variable bias. Proceedings of the Fourth International Workshop on Machine Learning
(pp. 66-78). Irvine, CA: Morgan Kaufmann.

Rosch, E. (1978). The principles of categorization. In E. Rosch & B. B. Lloyd (Eds.),
Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum.

Rose, D., & Langley, P. (in press). A hill-climbing approach to machine discovery. Pro­
ceedings of the Fifth International Conference on Machine Learning. Ann Arbor, MI:
Morgan Kaufmann.

Schlimmer, J., & Fisher, D. (1986). A case study of incremental concept induction. Pro­
ceedings of the Fifth National Conference on ArtiE.cial Intelligence (pp. 496-501).
Philadelphia, PA: Morgan Kaufmann.

Schlimmer, J., & Granger, R. (1986). Beyond incremental processing: Tracking concept
drift. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 502-
507). Philadelphia, PA: Morgan Kaufmann.

Shrager, J. (1987) Theory change via application in instructionless learning. Machine
Learning, 2, 247-276. ·

Simon, H. A.· (1969). The sciences of the artiflcial. Cambridge, MA: MIT Press.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard
University Press.

Wasserman, K. (1985) Unifying representation and generalization: Understanding hierar­
chically structured objects. Doctoral dissertation, Department of Computer Science,
Columbia University, New York.

Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston
(Ed.), The psychology of computer vision. New York: McGraw-Hill.

