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CONCEPT FORMATION PAGE 1 

1. Introduction 

Much of human learning can be viewed as a gradual process of concept formation. In 

this view, the agent observes a succession of objects or events from which he induces a 

hierarchy of concepts that summarize and organize his experience. This task is very similar 

to the problem of conceptual clustering as defined by Michalski and Stepp (1983), with the 

added constraint that learning be incremental. More formally: 

• Given: A sequential presentation of instances and their associated descriptions; 

• Find: Clusterings that group those instances in categories; 

• Find: An intensional definition for each category that summarizes its instances; 

• Find: A hierarchical organization for those categories. 

The goals of conceptual clustering are straightforward: to help one better understand the 

world and to make predictions about its future behavior. Concept formation has essentially 

the same goals, and differs mainly in the constraints it places on achieving them. 

In this paper, we focus on the concept formation task and examine some methods for 

incrementally forming clusters, concept descriptions, and concept hierarchies. vVe begin 

by attempting to abstract the features that are common to the existing work on concept 

formation and that set it apart from other approaches. After this, we review in some det~il 

three models of the concept formation process - Feigenbaum's (1963) EPAM, Lebowitz's 

(1985, 1987) UNIMEM, and Fisher's (1987a) COBWEB. Next we describe CLASSIT, an ex­

tension of Fisher's system, and report some experimental studies of the program's learning 

behavior. We close with some suggestions for future research and a summary of our main 

observations. 

2. Methods for Concept Formation 

The majority of machine learning research has focused on the broad area of concept 

learning. To many readers, the work on concept formation may seem a minor variation on 

better-known approaches, and it certainly has close ties to other work. However, methods 

for concept formation share a number of important features that, taken together, distin­

guish them from other efforts. In this section we identify those features that are common 

to the approach and that serve to separate it from alternative paradigms, particularly 

other methods tor conceptual clustering. In some sense, one can also view these features 

as "defining" the term concept formation. 
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2.1 Representing Knowledge in a Concept Hierarchy 

The most obvious common feature of concept formation methods is their organization 

of knowledge into a concept hierarchy. This type of data structure contains a set of nodes 

partially ordered by generality, and thus is similar to the is-a hierarchies used by some 

machine learning systems (Michalski & Stepp, 1983; Mitchell, Utgoff, & Banerji, 1983). 

Each node in a concept hierarchy represents a concept, but unlike most is-a hierarchies, 

each node also contains an intensional description of that concept. 

The hierarchical organization of acquired concepts is one distinctive feature of methods 

for concept formation (and conceptual clustering). In contrast, most work on learning 

from examples (Mitchell, 1982; Michalski & Stepp, 1983) focuses on learning one or a few 

concepts at a single level of abstraction. Methods for constructing decision trees (Quinlan, 

1986) are closer in spirit, but lack any explicit descriptions on the nodes themselves. 

2.2 Top-down Classification of Instances 

The presence of a concept hierarchy suggests a natural approach for classifying new 

instances that is shared by all concept formation systems. One simply begins at the most 

general (top) node and sorts the instance down through the hierarchy. This classificati0n 

method is very similar to that used by decision-tree systems. However, the scheme for 

determining which branch to follow need not be based on the result of a single attribute's 

value, and some concept formation systems allow the instance to follow more than one 

branch. Nor must the ins~ance always be sorted to a terminal node; in principle, the 

sorting process may stop at a node higher in the hierarchy. 

Once the instance has finished its descent, one can use the concept description at the 

selected node to make predictions about unseen aspects of the instance. Decision-tree 

systems typically make predictions about the class of the instance, but concept formation 

systems can make predictions about a wider range of features. This suggests measuring 

the performance of an acquired hierarchy in terms of its ability to make predictions about 

unseen attributes. 1 In principle, other methods for conceptual clustering could be evaluated 

along the same dimension, but few researchers have taken this approach. 

1 Although all of the concept formation systems we will examine assume attribute-value representations, 
the framework we outline can handle relational or structural descriptions as well. See Levinson (1984) for 
some initial work along these lines. 
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2.3 Unsupervised Nature of the Learning Task 

The unsupervised nature of the learning task leads to another common feature of 

concept formation systems - they must cluster instances without advice from a teacher. In 

other words, they must decide not only which instances each class should contain, but also 

the number of such classes. This is the most important feature separating work on concept 

formation (and conceptual clustering) from research on learning conjunctive concepts from 

examples (Winston, 1975; Mitchell, 1982). 

Techniques for inducing decision trees (e.g., Quinlan, 1986) come much closer to con~ 

cept formation methods on this dimension. Although supervised in the sense that they 

are given teacher-specified class information, these systems must determine their own sub­

classes, which equates to forming instance clusters. Rendell, Sechu, and Tcheng's (1987) 

work on probabilistic concept learning has a similar flavor. 

2.4 Integrating Learning and Performance 

We have defined the concept formation task to be incremental in nature. By incremen­

tal, we mean not only that the agent accepts instances one at a time, but also that it does 

not extensively reprocess previously encountered instances while incorporating the new 

one. Without this constraint, one could make any nonincremental method "incremental" 

simply by adding the new instance to an existing set and reapplying the nonincrement-al 

method to the extended set. Note that our definition of incremental does not forbid re­

taining all instances in memory, only the extensive reprocessing of those instances. In fact, 

most existing methods for concept formation retain at least some instances as terminal 

nodes in the concept hierarchy. 

This focu13. on incremental learning leads naturally to the integration of learning with 

performance. In any incremental system (Winston, 1975; Mitchell, 1982; Schlimmer & 

Fisher, 1986), action by the performance component (e.g., classifying an instance) drives 

the learning element (e.g., modifying a concept hierarchy). In contrast, nonincremental 

schemes (Michalski & Stepp, 1983; Quinlan, 1986) isolate the processes of learning and 

performance. Most research on both numerical taxonomy (Everitt, 1974) and conceptual 

clustering (Michalski & Stepp, 1983; Fisher, 1984) has taken a nonincremental approach. 

Thus, this dimension constitutes one major distinction between earlier approaches to clus­

tering and concept formation as we have defined it. 

The role of classification in concept formation systems exerts a strong influence on the 

nature of learni~g. vVe noted above that the performance component of these methods sort 

instances down through a concept hierarchy. As a result, it seems natural to acquire the 
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concept hierarchies in a top-down fashion as well. Thus, concept formation methods typi­

cally construct their hierarchies in a divisive manner, rather than using the agglomerative 

approach more common within the statistical clustering community. 2 

2.5 Learning as Incremental Hill Climbing 

The features described above seem almost to follow from the task of concept formation 

itself, but the final commonality has a different flavor. The models we describe in the 

following pages can all be characterized as incremental hill-climbing learners. We have 

elaborated on this notion elsewhere (Langley, Gennari, & Iba, 1987; Fisher, 1987a), and 

Schlimmer and Fisher (1986) described the basic idea (without using this term) even earlier. 

One can view concept formation as a search through a space of concept hierarchies, and 

hill climbing is one possible method for controlling that search. 

Hill climbing is a classic AI search method in which one applies all operator instanti­

ations, compares the resulting states using an evaluation function, selects the best state, 

and iterates until no more progress can be made. There are many variants on the ba­

sic algorithm, but these do not concern us here. The main advantage of hill climbing is 

its low memory requirement; since there are never more than a few states in memory, it 

sidesteps the combinatorial memory requirements associated with search-intensive meth­

ods. However, it also suffers from well-known drawbacks, such as the tendency to halt at 

local optima and a dependence on step size. 

We are using the term hill climbing in a nontraditional sense, focusing on some features 

and ignoring others. For instance, we do not require an incremental hill-climbing learner 

to have an explicit evaluation function, or even that it carry out a one-step lookahead. 

One can replace this approach with a strong generator that computes the successor state 

from new input, such as ari observed instance. For our purposes, the main feature of a hill­

climbing system is its limited memory. At each point in learning, the system may retain 

only one knowledge structure, even though this structure may itself be quite complex'. 

Thus, hill-climbing learners cannot carry out a breadth-first search (Mitchell, 1982) or a 

beam search (Michalski & Stepp, 1983) through the space of hypotheses, nor can they 

carry out explicit backtracking (Winston, 1975). They can only move "forward," revising 

their single knowledge structure in the light of new experience.3 

2 For one exception, see Hanson and Bauer's work on WITT (1986), an agglomerative clustering system 
that can operate incrementally. 

3 Some "strength-based" methods retain competing hypotheses in memory, gradually deleting some and 
adding others on the basis of their performance. Genetic algorithms (Holland, 1986; Grefenstette, 1987) 
follow this approach, as do Anderson and Kline's (1979) and Langley's (1987) work on production-system 
learning. One could view these methods as incremental hill-climbing learners, provided one treats the entire 
set of rules as a single "state." However, we believe this violates the spirit of our limited memory assumption. 
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The most important difference between incremental hill-climbing learners and their 

traditional cousins lies in the role of input. As we have seen, incremental learning methods 

are driven by new instances, and in the case of incremental hill-climbing systems, this 

means that each step through the hypothesis space occurs in response to (and takes into 

account) some new experience. More generally, each instance may lead to a number of 

learning steps (e.g., one for each level in the concept hierarchy). In other words, the learner 

does not move through the space of hypotheses until it obtains a new datum, and this alters 

the nature of the hill-climbing task. 

Recall that hill-climbing methods search an n-dimensional space over which some func­

tion f is defined. This function determines the shape of an n-dimensional surface, and the 

agent attempts to find that point with the highest f score. In traditional hill-climbing ap­

proaches, the shape of the surface is constant. In contrast, for systems that learn through 

incremental hill-climbing, each new instance modifies the contours of the surface. Like Si­

mon's (1969) wandering ant, the learner's behavior is controlled by the shape of its world. 

However, the hills and valleys of the hill-climbing learner's space are constantly changing 

as it gathers more information, altering the path it follows. 4 This feature of incremental 

hill-climbing is novel enough that it becomes unclear whether the limitations of traditional 

hill-climbing methods still hold. It also gives the potential for dealing with concept drift 

(Schlimmer & Granger, 1986), in which the environment actually changes over time. 

However, this dependence on new instances to control the search process can make 

memory-limited incremental learning methods sensitive to the order of instance presen­

tation. Initial nonrepresentative data may lead a learning system astray, and one would 

like it to recover when later data point the way to the correct knowledge structure. Thus, 

Schlimmer and Fisher (1986) have argued for including bidirectional learning operators 

that can reverse the effects of previous learning should new instances suggest the need. In 

the context of concept formation, one might include an operator not only for creating new 

subcategories, but also for deleting them should they not prove useful. Similarly, one might 

desire an operator not only for creating new disjunctive classes, but also one for combining 

classes if the distinction fares poorly. Such bidirectional operators can give incremental 

hill-climbing learners the effect of backtracking search without the memory required by 

true backtracking. Whether this approach works or not is an empirical question, but in 

Section 5 we will see evidence that it can help significantly. 

4 Note that this feature does not hold for nonincremental learners that use hill-climbing methods (Michalski 
& Stepp, 1983) or greedy algorithms (Quinlan, 1986); the shape of the surface over which these systems travel 
remains constant throughout the learning process. 
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2.6 Summary 

In this section we identified some common threads that run through a number of 

research efforts, and we borrowed the term concept formation to refer to this research 

area. The basic approach can be viewed as a form of conceptual clustering, but it also 

differs from "traditional" work in this area. The common features of concept formation 

methods include the hierarchical organization of concepts, top-down classification, and an 

unsupervised, incremental, hill-climbing approach to learning. 

We should emphasize that none of these features by itself makes work on concept 

formation unique. It shares many of these features with other methods for conceptual 

clustering, and there exist many supervised learning methods that process instances in­

crementally. Even the incremental hill-climbing approach has been widely used within the 

machine learning community, though it has not been labeled as such.5 However, when one 

takes all these features together, what emerges is a distinctive and promising approach to 

concept learning. 

3. Earlier Research on Concept Formation 

Before describing our own research on concept formation, we should review previous 

work on the problem. In this section we review three models of this process - Feigen­

baum 's EPAM, Lebowitz's UNIMEM, and Fisher's COBWEB. We will see that, with min?r 

exceptions, each system operates within the common framework described in the previous 

section. We will also see that each system addresses issues that its predecessor ignored. 

This does not mean later systems are superior to earlier ones, since they also ignore some 

issues addressed by their precursors. However, there has been clear progress on certain 

fronts, and we will focus on these. We describe each model in terms of its representation 

and organization of knowledge, its classification and learning methods, and its metric for 

evaluating the resulting concepts and hierarchies. 

3.1 Feigenbaum's EPAM 

Feigenbaum's EPAM (1963) can be viewed as an early model of incremental concept 

formation. 6 The system was intended as a psychological model of human learning on verbal 

memorization tasks, and it successfully explained a variety of well-established learning 

5 For example, recent work on supervised concept learning (Schlimmer & Fisher, 1986; Iba, Wogulis, & 
Langley, in press) has been within this paradigm, as has recent work on theory formation (Shrager, 1987; 
Rose & Langley, in press). Much of the work on grammar acquisition (Anderson, 1977; Berwick, 1979) 
has also occurred within the incremental hill-climbing framework. Even such diverse paradigms as neural 
networks and explanation-based learning share incremental hill-climbing as an. unstated assumption. 

6 For a more comprehensive treatment of EPAM and its extensions, see Feigenbaum and Simon (1984). 
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phenomena. These included the serial position effect, the conditions for multi-trial vs. 

one-trial learning, forgetting through oscillation and retroactive inhibition, and a number 

of other empirical generalizations. 

3.1.1 REPRESENTATION AND ORGANIZATION IN EPAM 

EPAM represents each instance as a conjunction of attribute-value pairs, along with 

an optional ordered list of component objects. Each component is in turn described as 

a conjunction of attribute-value pairs, with its own optional components, and so forth. 

For instance, the system might represent the nonsense syllable GAK as a list of three 

component objects - the first letter, the second letter, and the third letter. Each letter 

might itself be described in terms of lower-level components (e.g., the lines making it up), 

or it might be viewed as a primitive object having only attributes and no components. 

For simplicity, we will avoid examples that involve components and focus on single-level 

instances that can be described purely in terms of attribute-value pairs. 

EPAM represents and organizes its acquired knowledge in a discrimination network. 

Each nonterminal node in this network specifies some test, and each link emanating from 

this node corresponds to one possible result of that test. Some tests involve examining the 

value of an attribute, whereas others involve examining the category of a subobject, which 

can itself be learned. Each nonterminal node also includes a branch marked OTHER, which 

lets EPAM avoid specifying all possible results of the test at the outset. Each terminal no.de 

contains an image - a partial set of attribute-values (and component categories) expected 

to hold for instances sorted to that node. 

Consider the example discrimination network in Figure 1, which includes only attribute 

tests. This domain assumes instances composed of a single cell with three attributes -

surface color, number of nuclei, and number of tails. The root node in Figure 1 (a) contains 

a test on the attribute NUCLEI, and the two links emanating from this node are labeled ONE 

and OTHER. The leftmost successor is a terminal node and thus has an associated image; 

this contains the partial description NUCLEI = ONE /\. TAILS = ONE. (Note that color is 

unspecified.) The rightmost successor is nonterminal and thus has an associated test, this 

one involving the attribute COLOR. One link (labeled LIGHT) points to a successor node 

with image COLOR = LIGHT /\. NUCLEI = TWO. The other (labeled OTHER) leads to a 

successor node with image COLOR = DARK. 

3.1.2 CLASSIFICATION AND LEARNING IN EPAM 

As with all the concept formation systems we will examine, EPAM's classification pro­

cess is completely integrated with its learning method. Table 1 presents the top-level EPAM 

algorithm, which focuses on performance. As the system encounters each instance, it sorts 
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familiarization 

FIGURE 1. Examples of EPAM's learning methods. 

that instance through the discrimination network, starting at the top (root) node and 

proceeding until it reaches a terminal node. At each node, EPAM examines the instance's 

value on the test specified for that node. In the case of tests examining the category of a 

subobject, the model calls on itself recursively to determine the appropriate category; we 

have omitted this option from the table for the sake of clarity. If the category or attribute­

value equals that on one of the emanating branches, EPAM sends the instance down that 

branch; otherwise it goes down the OTHER branch. Eventually, the instance reaches a 

terminal node. For. example, in Figure 1 (a) a DARK CELL WITH ONE NUCLEUS AND TWO 

TAILS would reach the leftmost terminal node, whereas a DARK CELL WITH TWO NUCLEI 

AND TWO TAILS would reach the rightmost one. 

Once EPAM has "recognized" an object as an instance of a terminal node, it "recalls" 

the image associated with that node. At this point, the algorithm invokes one of two 

learning mechanisms. If the image matches the instance (i.e., if no attribute-value pairs 

differ), then familiarization occurs. As summarized in Table 2, this process selects an 

attribute that occurs in the instance but not in the image, and then adds the attribute 

(along with the instance's value) to the image. In this way, EPAM gradually makes its 

images more sp,~cific as it encounters more instances. Eventually, a given image may 

become so detailed that it effectively becomes equivalent to a particular instance. Given 
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TABLE 1 

The top-level EPAM algorithm. 

Input: The current node H in the discrimination network. 

An unclassified (attribute-value) instance I. 

Results: A discrimination net that classifies the instance. 

Top-level call: EPAM(Top-node, I). 

Variables: N and S are nodes in the hierarchy. 

EPAM(N, I) 

M is an image associated with a terminal node. 

A is an attribute test. 

V is the value of an attribute. 

Dis a set of attributes. 

If N is a terminal node, 

Then let M be the image associated with N. 

Let D be the set of tests on which I and M differ. 

If D is the empty set, 

Then Familiarize(M, I). 

Else Discriminate(Top-node, I, M, D, empty set). 

Else let A be the test associated with N. 

Let V be the value of instance I on test A. 

If N has a branch labeled V, 

Then let S be the successor of N by branch V. 

Else let S be the successor of N by branch OTHER. 

EPAM(S, I). 

PAGE 9 

the network in Figure 1 (a) and the instance COLOR = DARK /\ NUCLEI = ONE /\ TAILS 

ONE, familiarization would produce the network shown in Figure 1 (b ). 

If the image fails to match the instance (i.e., if any attribute-value pairs differ), then 

discrimination occurs instead. This process sorts the instance through the discrimination 

network a second time, looking for the first node at which the image and instance differ on 

a stored test. This can occur at a nonterminal node only if the instance was sorted down 

the OTHER branch leading from that node. If EPAM finds such a node, it creates two new 

branches, one based on the instance's value for the test and the other based on the image's 

value. 7 Each branch points to a new terminal node, and each image consists of the results 

of tests that lead to the node. In this way, EPAM gradually increases the breadth of its 

7 The reason for this second branch is not clear, since the branch based on the instance's value is enough 
to avoid repeating the misclassification. However, we have attempted to faithfully reconstruct Feigenbaum's 
model as he describes it. 
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discrimination network. The transition between Figure 1 (a) and ( d) gives an example of 

this type of discrimination, in this case invoked by the instance COLOR = LIGHT /\ NUCLEI 

= THREE /\ TAILS = ONE. 

If no such node exists, the system eventually sorts the instance back down to the 

terminal node where the mismatch originally occurred. EPAM creates two new branches 

in this case as well, along with corresponding terminal nodes. The discrimination process 

selects a test on which the image and instance differ and which has not yet been examined. 

This test's value for the instance becomes the label on one branch and OTHER becomes the 

label for the other. The image for the instance-based node contains the results of all tests 

leading to that node; the image for the image-based node contains the original image plus 

the value for the discriminating test. In this way, EPAM gradually increases the depth of 

its discrimination network. The transition between Figure 1 (a) and ( c) shows this type of 

learning in action, this time produced by the instance COLOR = DARK /\ NUCLEI = ONE 

/\ TAILS = TWO. Table 2 summarizes the overall discrimination process. 

3.1.3 SEARCH CONTROL IN EPAM 

In line with our discussion in Section 2, we can summarize EPAM's learning method in 

terms of search through a space of discrimination networks. Three basic operators make 

up this search: 

• Adding features to an image through familiarization; 

• Creating new disjunctive branches through discrimination; 

• Extending the network downward through discrimination. 

Although the search-based view has its advantages, it provides little insight when one ex­

amines EPAM's control scheme. The classification method is completely deterministic, and 

the learning algorithm has only two choice points. One of these occurs during familiar­

ization, when EPAM must decide which attribute to add to the image. The other occurs 

when discrimination must deepen the network to avoid a mismatch, when it must decide 

which attribute to select. One version of EPAM (Feigenbaum, 1963) preferred tests that 

had proven useful in previous discriminations. Other versions simply selected tests in a 

prespecified order. However, these decisions are minor in comparison to the choice between 

familiarization and discrimination, and between the branching and deepening variants of 

discrimination. ''These choices are completely determined by the data and the existing 

network. 
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TABLE 2 

Familiarization and discrimination in EPAM. 

Variables: I is an (attribute-value) instance. 

N and S are nodes in the hierarchy. 

M is an image associated with a terminal node. 

A is an attribute test. 

u and V are the values of attributes. 
D and L are sets of attributes. 

T is a set of attribute-values ((A, V), ... ) . 
Familiarize(M, I) 

Let L be those attributes in instance I not in image M. 

Select an attribute A from L. 

Let V be the value of A for I. 

Add the attribute-value pair (A, V) to the image M. 

Discriminate(N, I, M, D, T) 

If N is a terminal node, 

Then Deepen(N, I, M, D, T). 

Else let A be the attribute associated with node N. 

Let Ube the value of A for instance I. 

Let V be the value of A for image M. 

If U does not equal V, 

Then Add-branch(N, U, Union(T, (A, U))), 

Add-branch(N, V, Union(T, (A, V))). 

Else if N has a branch labeled V, 

Then let S be the successor of N by branch V. 

Else let S be the successor of N by branch OTHER. 

Discriminate(S, I, M, D, Union(T, (A, U))), 

Deepen(N, I, M, D, T) 

Select an attribute A from D. 

Remove the image M from node N. 

Associate the attribute A with node N. 

Let Ube the value of A for instance I. 

Let V be the value of A for image M. 

Add-branch(N, U, Union(T, (A, U))). 

Add-branch(N, OTHER, Union(M, (A, U))). 

Add-Branch(N, V, I) 

Create a successor node of ·n called S. 

Connect N to S with a branch having value V. 

Store the image I on S. 

PAGE 11 
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3.1.4 COMMENTS ON EPAM 

The EPAM model introduced some very important ideas into the machine learning 

literature. First, it set forth the notion of a discrimination network, and it specified an 

incremental method that integrated classification and learning. Second, it introduced the 

distinction between tests (for use in sorting) and images (for use in making predictions). 

One can view discrimination networks as precursors of the concept hierarchies used in later 

work, and images as the precursors of concept descriptions. EPAM's distinction between the 

process of recognition (classification) and recall (prediction) was also an important insight. 

Finally, it introduced the two learning mechanisms of discrimination and familiarization, 

w~ich it successfully used to explain aspects of human learning and memory. 

Despite its successes, EPAM also had some significant shortcomings. For instance, the 

system's method for selecting among attributes during discrimination and familiarization 

was somewhat ad hoc. Moreover, the model retained concept descriptions (images) only at 

terminal nodes, and so lacked a true concept hierarchy. Finally, it assumed that concepts 

(images) were "all or none" entities, rather than the more fluid structures suggested by 

recent psychological studies (Rosch, 1978). The last two criticisms are not really appro­

priate, since EPAM's goal was to model human memorization and not the broader area of. 

concept formation. However, our concern here is with models of the latter process, and so 

we have evaluated Feigenbaum's work in those terms. 

3.2 Lebowitz's UNIMEM 

One can view Lebowitz's UNIMEM (1985, 1986) as a successor to EPAM,8 since it shares 

many features with the earlier model, but also introduces some novel ideas. The motivation 

behind the two systems was also quite different. EPAM modeled empirical results from ver­

bal learning experiments, whereas Lebowitz focused on the acquisition and use of concepts 

for more complex tasks such as natural language understanding and inference. In addi­

tion, UNIMEM was cast within a broader framework called generalization-based memory. 

Another system that independently incorporated many of the same advances as UNIMEM, 

is Kolodner's CYRUS (1983). We will highlight similarities and differences between these 

systems as they become relevant. Our stress on UNIMEM is due primarily to Lebowitz's 

(1987) treatment of his system as conceptual clustering, a topic of primary interest for this 

paper. 

8 Actually, UNIMEM is a direct descendant of Lebowitz's (1980, 1983) IPP system. For a discussion of the 
differences between these two models, see Lebowitz (1987). 
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3.2.1 REPRESENTATION AND ORGANIZATION IN UNIMEM 

UNIMEM represents instances in the same manner as EPAM - as a conjunction of 

features or attribute-value pairs. In one sense, it is less general than the earlier model, 

since it cannot handle objects with components, though Wasserman (1985) has addressed 

this issue within the UNIMEM framework. However, Lebowitz's system is more general than 

Feigenbaum's in that it can handle numeric attributes in addition to nominal (symbolic) 

ones. Thus, an instance that describes a university would have some nominal attributes 

(e.g., location, academic-emphasis) and some numeric attributes (e.g., male/female ratio, 

average SAT score). In addition, nominal attributes can take on more than one value, 

letting the system represent sets. 

Lebowitz's approach diverges even more from Feigenbaum's in its representation and 

organization of concepts. In EPAM's network, only terminal nodes have associated images, 

but in UNIMEM both terminal and nonterminal nodes have concept descriptions. Each 

description consists of a conjunction of attribute-value pairs, with each value having an 

associated integer. This number measures what Lebowitz refers to as the confidence in 

that feature. Later, we will see that this corresponds to the idea of predictability, i.e., 

how well the feature can be predicted given an instance of the concept. In order to use 

consistent terminology, we refer to this count as the "predictability score" for a feature. 9 

Like its precursor, UNIMEM organizes knowledge into a concept hierarchy through 

which it sorts new instances. However, the details of this hierarchy differ from EPAl\tI's 

discrimination network. We have mentioned that Lebowitz's system stores concept de­

scriptions with each node in the hierarchy. Nodes high in the hierarchy represent general 

concepts, with their children representing more specific variants, their children still more 

specific concepts, and so on. Each concept has an associated set of instances stored with it; 

these can be -yiewed as terminal nodes in the hierarchy, though Lebowitz does not describe 

them in this fashion. Thus UNIMEM's terminal nodes are quite specific from the outset; 10 

this contrasts with EPAM's images, which converge on completely specified instances only 

after considerable learning. Another difference is that, unlike EPAM, each instance may be 

stored with multiple nodes, so that categories need not be disjoint. 

As in Feigenbaum's system, UNIMEM's network consists of nodes and links, with each 

of a node's links leading to a different child. However, in EPAM each link was labeled with 

the result of a single test. In contrast, UNIMEM allows each link to specify the results of 

9 Kolodner's (1983) CYRUS uses a similar concept representation scheme, but maintains a probability rather 
than an integer with each attribute value. We argue in the context of our COBWEB discussion that this is 
an important distinction. 
10 Actually, the system stores only those features not inherited from nodes higher in the hierarchy, but the 
effect is the same as storing completely specified instances. 
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multiple tests (i.e., to specify multiple features). This redundant indexing lets the system 

handle instances with missing attributes and, as we describe below, it allows a very flexible 

sorting strategy. In addition, each parent node retains a second set of integer scores, one for 

each feature that occurs on links leading from that node. This score specifies the number 

of links on which that feature occurs; thus it roughly measures the predictiveness of the 

feature, i.e., how well it can be used to predict instances of the various children. 

(root) 

feature score feature score 
light 3 dark 2 
two nuclei 3 two tails 4 

feature score 
one tail 2 

FIGURE 2. A sample UNIMEM hierarchy. 

Figure 2 presents a simple UNIMEM hierarchy after the system has created three concept 

nodes from six instances. For each node, we have shown its feature list and associated 

predictability scores. (For simplicity, we have omitted the predictiveness scores). These 

scores represent the number of times a feature has been reinforced by successive instances. 

Note that one instance is indexed into both top level nodes. This instance affects the 

predictability scores for both level one nodes, although it is only incorporated into one of 

them. 

3.2.2 CLASSIFICATION AND LEARNING IN UNIMEM 

Like other concept formation systems, UNIMEM integrates the processes of classification 

and learning. rt'~orts each instance through its concept hierarchy, modifying this hierarchy 

in the process. Table 3 summarizes the main steps in the algorithm. 
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TABLE 3 

The top-level UNIMEM algorithm. 

Input: The current node N of the concept hierarchy. 

The name of an unclassified instance I. 

The set of I's unaccounted features F. 

Results: A concept hierarchy that classifies the instance. 

Top-level call: Unimem(Top-node, I, F). 

Variables: N and Care nodes in the hierarchy. 

G, H, and Kare sets of features (attribute values). 

J is an instance stored on a node. 

S is a list of nodes. 

Unimem(H, I, F) 

Let G be the set of features stored on H. 

Let H be the features in F and G that match. 

Let K be the features in F that are not in G. 

Evaluate(N, H, K). 

If the quality of the match is not high enough, 

Then return the empty list. 

Else let S be the empty list. 

For each child C of node N that is not an instance, 

If C is indexed by a feature in K, 

Then let S be Union(S, Unimem(C, I, K)). 

If S is the empty list, 

Then for each instance J of node N, 

Let S be Union(S, Generalize(N, J, I, F)). 

If S is the empty list, 

Then store I as an instance of node N. 

Return N. 

PAGE 1.5 

As UNIMEM descends through its hierarchy, it uses the features (i.e., the attribute-value 

pairs) on each node and its emanating links to sort the instance. If the instance matches 

the description on the node closely enough, then it sends the instance down those links that 

mention features in the instance, and it continues the process with the relevant children. 

Both the number of features necessary for this match and the closeness of each value (for 

numeric attributes) are system parameters.11 Whether or not the instance successfully 

matches, UNIMEM calls on EVALUATE (which we discuss in Section 3.2.3) to modify the 

11 UNIMEM uses a distance metric to determine the degree of match between two numeric values. This is 
an important issue, to which we will return in Section 4. 
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node's scores. Note that, in some cases, the system may sort an instance down multiple 

paths in the hierarchy. 

Eventually UNIMEM reaches a node that matches the instance but none of whose 

children match. In this case, the system examines all instances currently stored with the 

node, comparing each of them in turn to the new instance. If an old instance shares 

enough features with a new one (another system parameter), the model creates a new, 

more general node based on these features and stores both instances as its children. Since 

UNIMEM compares the new instance to each of the stored instances, it can form multiple 

nodes in this manner. Table 4 summarizes the steps in this GENERALIZE process. 12 If 

none of the existing instances are similar enough to the new one, the system simply stores 

it with the current node, effectively creating a new disjunct. 

Note that when UNIMEM places an instance into more than one category, these cate­

gories overlap: they do not form disjoint partitions over the instances. In the literature on 

cluster analysis (Everitt, 1974), this approach has been called clumping. Lebowitz (1987) 

has argued that in some domains, overlapping concepts may describe the data more accu­

rately than disjoint partitions. In addition, clumping introduces flexibility into the search 

for useful categories. UNIMEM may initially decide to retain multiple categories and later 

decide to remove one or more of them. This gives the effect of a beam search while still 

working within the hill-climbing metaphor described in Section 2. The clumping strategy 

and its associated advantages are shared by CYRUS. 

3.2.3 EVALUATION AND PRUNING IN UNIMEM 

We have noted that UNIMEM retains two counts on nodes' features. The EVALUATE 

procedure shown in Table 4 updates these scores each time the system attempts to match 

an instance to a node's description. If a given feature in the instance matches a feature on 

the node, UNIMEM increments the predictability score for that feature. The increment for 

nominal attributes is one; the increment for numeric attributes is a function of the distance 

between the stored and observed values. If a given instance feature fails to match a node 

feature, the system decrements that feature's predictability score in a similar fashion. 

Also, whenever the system creates a new child of an existing node, it increments the 

predictiveness count for each feature that indexes the child. 

When the predictability score for a feature exceeds a (user-specified) threshold, UNIMEM 

permanently fixes that feature as part of the node's description, so that future instances 

12 Our description, of the UNIMEM algorithm (Tables 3 and 4) differs syntactically from that given by 
Lebowitz (1985, 1987). Our somewhat different view of his algorithm produced a different organization to 
the specification. We believe that our description is clearer and functionally equivalent to Lebowitz's. 
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TABLE 4 

UNIMEM's update and evaluation processes. 

Variables: N and C are nodes in the hierarchy. 

F, G, H, and Kare sets of features (attribute values). 

I and J are the names of instances. 

R, S, and T are scores on nodes' features. 

Generalize(N, J, I, F) 

Let G be the features in instance J. 

Let H be the features in F and G that match. 

If H contains enough features, 

Then create a new child C of node N. 

Index and describe C by the features in H. 

Remove J as an instance of N. 

Let G' be the features in G that are not in H. 

Store J as an instance of C with features G'. 

Let F' be the features in F that are not in H. 

Store I as an instance of C with features F'. 

Return C. 

Evaluate(N, H, K) 

For each feature F serving as an index to N, 

Update the predictiveness score R for F on N. 

If the score R is high enough, 

Then remove F as an index leading to N. 

For each nonpermanent feature F in H, 

Raise the predictability score S for Fon N. 

If S is high enough, 

Then make Fa permanent feature of N. 

For each nonpermanent feature G in K, 

Lower the predictability score T for G on N. 

If T is low enough, 

Then remove the feature G from N. 

If N has too few features, 

Then remove N from its parent's list of children. 

Remove all offspring.of N. 

'' 

PAGE 17 
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no longer affect it. More important, when a feature's score drops below another (user­

specified) threshold, the system removes that feature from the concept description. In this 

way, an initially specific concept may gradually become more and more general. However, 

it may also become so general that it has little usefulness in making predictions. Thus, 

when the number of features stored on a node becomes low enough (another parameter), 

UNIMEM removes the node from memory along with all links to its children. 

When the predictiveness score for a node's feature becomes too high (i.e., when the 

feature indexes too many children), UNIMEM removes that feature from links emanating 

from the node. In this way, concepts that were originally retrieved often may become 

accessed more selectively. However, if the system removes all indices to a child, that node 

is effectively forgotten, since there is no longer any way to sort instances to it. This is 

another way in which UNIMEM prunes its concept hierarchy. 

3.2.4 COMMENTS ON UNIMEM 

To summarize, UNIMEM can be viewed as carrying out a hill-climbing search through 

a space of concept hierarchies. This search process involves six basic operators: 

• Storing a new instance with a node (creating a new disjunct); 

• Creating a more general node based on the features shared by two instances; 

• Permanently fixing a feature in a node's description; 

• Deleting an unreliable feature from a node's description; 

• Deleting an overly general node (and its children); 

• Deleting a non-predictive index to a node's children. 

Lebowitz's approach to concept formation introduces a number of advances over EPAM. 

Each node in the UNIMEM hierarchy has an associated concept description, rather than just 

the terminal nodes. Moreover, each feature in these descriptions has associated weight.s; 

thus concepts are less "all or none." There is a clear evaluation of concepts and their com­

ponents, and the notions of predictiveness and predictability further clarify the distinction 

between recognition (classification) and recall (prediction). The system also introduced 

the possibility of multiple indices to a given concept, and provided one method for con­

structing nondisjoint hierarchies. Each of these general advances is also true of CYRUS, 

although their realization differs in some important respects from UNIMEM. 

However, UNIMEM also has significant drawbacks as a model of concept formation. 

The measures of predictiveness and predictability are informal and have no clear seman-
,, 

tics. The system also lacks a principled method for deciding between learning operators, 

being dependent on user-specified parameters to make such decisions. Lebowitz (1987) has 
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carried but initial studies on how these parameters affect the system's behavior, but much 

work remains before their full impact becomes clear. 

3.3 Fisher's COBWEB 

Fisher's (1987a, 1987b) COBWEB constitutes another algorithm for incremental con­

cept formation. As we will see below, this research builds heavily on Lebowitz's earlier 

approach, and it also borrows from Kolodner's (1983) work on CYRUS. Although Fisher 

does not present COBWEB itself as a psychological model, it has been heavily influenced by 

research in cognitive psychology on basic-level and typicality effects (Rosch, 1978). Briefly, 

experiments with humans suggest that some categories are more "basic" than others, being 

retrieved more rapidly and named more frequently. In addition, there is evidence that for a 

given category, some members are more "typical" than others, being retrieved more quickly 

and rated as better examples. Fisher (1987b) describes COBWEB/2, a related system that 

models these effects, but we will focus on the simpler COBWEB instead. 

3.3.1 REPRESENTATION AND ORGANIZATION IN COBWEB 

Like its predecessors, Fisher's system represents each instance as a set of attribute-value 

pairs. The mapping is closest to EPAM, since each attribute takes on only one value and 

since only nominal attributes are allowed. 13 As in UNIMEM, each concept node is described 

in terms of attributes, values, and associated weights, but here the similarity ends. One 

difference is that COBWEB stores the probability of each concept's occurrence. Another 

is that each node, from the most specific to the most general, includes every attribute 

observed in the instances. Moreover, associated with each attribute is every possible value 

for that attribute. Each such value has two associated numbers, which roughly correspond 

to Lebowitz's predictiveness and predictability scores. However, in COBWEB these scores 

have a formal grounding in probability theory. 

Fisher defines the predictiveness of a value v for category c as the conditional proba­

bility that an instance i will be a member of c, given that i has value v, or P( cja = v ). 

Similarly, he defines the predictability of a value v for category c as the conditional prob­

ability that an instance i will have value v, given that i is a member of c, or P(a =vie). 
Actually, COBWEB does not explicitly store predictiveness scores, since it can derive them 

from predictability and node probability using Bayes' rule. Smith and Medin (1981) have 

used the term probabilistic concepts to refer to concept representations that incorporate 

such conditional probabilities. 

13 In Section 4, we will see how COBWEB can be extended to handle both numeric attributes and instances 
involving multiple components. 
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P(N1)=4/4 P(vjc) 
TAILS ONE 0.50 

TWO 0.50 
COLOR LIGHT 0.50 

DARK 0.50 
NUCLEI ONE 0.25 

TWO 0.50 
THREE 0.25 

P(N2)=1/4 P(vjc) P(N3)=2/4 P(vjc) P(N6)=1/ 4 P(vlc) 
TAILS ONE 1.0 TAILS ONE 0.0 TAILS ONE 1.0 

TWO 0.0 TWO 1.0 TWO 0.0 
COLOR LIGHT 1.0 COLOR LIGHT 0.5 COLOR LIGHT 0.0 

DARK 0.0 DARK 0.5 DARK 1.0 
NUCLEI ONE 1.0 NUCLEI ONE 0.0 NUCLEI ONE 0.0 

TWO 0.0 TWO 1.0 TWO 0.0 
THREE 0.0 THREE 0.0 THREE 1.0 

~~ 
P(N4)=1/2 P(vjc) P(Ns)=l/2 P(vjc) 
TAILS ONE 0.0 TAILS ONE 0.0 

TWO 1.0 TWO 1.0 
COLOR LIGHT 1.0 COLOR LIGHT 0.0 

DARK 0.0 DARK 1.0 
NUCLEI ONE 0.0 NUCLEI ONE 0.0 

TWO 1.0 TWO 1.0 
THREE 0.0 THREE 0.0 

FIGURE 3. A sample COBWEB hierarchy with nodes numbered in order of creation. 

Figure 3 presents a sample concept hierarchy, including the probabilities associated 

with each concept and with its attributes' values. For instance, the top node (N1) has 

an associated probability of 1.0. It also states that its members have an equal chance of 

having one or two tails and an even chance of being light or dark. Concept N3 has a 50% 

chance of occurring, and its members so far have always had one tail and two nuclei, but 

have been evenly split among light and dark colors. The terminal nodes in the hierarchy -

N2, N4, Ns, and N6 - have less interesting probabilistic descriptions, since each is based on 

a single instance. However, note that the probability of each node's occurrence is specified 

relative to its parent, rather than with respect to the entire distribution. 

COBWEB's ~oncept hierarchy is similar to UNIMEM's in that each node has an associated 

"image," with more general nodes higher in the hierarchy and more specific ones below their 

parents. However, the system's terminal nodes are always specific instances that it has 
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encountered; unlike UNIMEM, it never deletes instances. In addition, the hierarchy divides 

instances into disjoint classes. More important, COBWEB links parents to their children 

only through is-a links. The system differs from both EPAM and UNIMEM in that it avoids 

explicit indices stated as tests on attributes' values. Thus, the sample hierarchy shown in 

Figure 3 has a different semantics than those we have seen earlier. This assumption leads 

to a novel method for sorting instances through the concept hierarchy. 

3.3.2 CLASSIFICATION AND LEARNING IN COBWEB 

The basic COBWEB algorithm is quite simple, as can be seen from the summanes 

in Tables 5 and 6. Again classification and learning are intertwined, with each instance 

being sorted down through a concept hierarchy and altering that hierarchy in its passage. 

The system initializes its hierarchy to a single node, basing the values of this concept's 

attributes on the first instance. Upon encountering a second instance, COBWEB averages 

its values into those of the concept and creates two children, one based on the first instance 

and another based on the second. 

Unlike EPAM and UNIMEM, Fisher's model does not use explicit tests or indices to 

retrieve potential categories. Instead, at each node COBWEB retrieves all children and 

considers placing the instance in each of these categories. Each of these constitutes an 

alternative clustering (a set of clusters with a common parent) that incorporates the new 

instance. Using an evaluation function that we describe in Section 3.3.3, it then sele~ts 

the best such clustering. COBWEB also considers creating a new category that contai~s 

only the new instance, and compares this clustering to the best clustering that uses only 

existing categories. 

If the clustering based on existing classes wins the competition, COBWEB modifies the 

probability of the selected category and the conditional probabilities for its attribute values. 

Thus, predictability scores for values occurring in the instance will increase, whereas those 

for values not occurring will decrease. Predictiveness scores change as well, but since 

the system does not actually store these, it does not update them explicitly. In addition, 

COBWEB continues to sort the instance down through the hierarchy, recursively considering 

the children of the selected category. Node N3 in Figure 3 shows the result of incorporating 

a new instance into an existing node. At an earlier stage, this had been a terminal node 

based on a single instance. However, the act of hosting a new instance has left its COLOR 

probabilities evenly divided and given it two children. 

If the clustering with the singleton class emerges as the winner, COBWEB creates this 

new category l\nd makes it a child of the current parent node. The system bases the 

values for this n~w concept's attributes on those found in the instance, giving them each 

predictability scores of one. In this case, classification halts at this step, since the new 
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TABLE 5 

The COBWEB algorithm. 

Input: The current node I ot the concept hierarchy. 

An unclassified (attribute-value) instance I. 

Results: A concept hierarchy that classifies the instance. 

Top-level call: Cobweb(Top-node, I). 

Variables: C, P, Q, and Rare nodes in the hierarchy. 

U, V, W, and X are clustering (partition) scores. 

Cobweb(N, I) 

If N is a terminal node, 

Then Create-new-terminals(N, I). 

Incorporate(N, I). 

Else Incorporate(N, I). 

For each child C of node N, 

Compute the score tor placing I in C. 

Let P be the node with the highest score W. 

Let R be the node with the second highest score. 

Let X be the score for placing I in a new node Q. 

Let Y be the score for merging P and R into one node. 

Let Z be the score for splitting P into its children. 

If W is the best score, 

Then Cobweb(P, I) (place I in category P). 

Else if X is the best score, 

Then initialize Q's probabilities using I's values 

(place I by itself in the new category Q). 

Else if Y is th~ best score, 

Then let 0 be Merge(P, R, N). 

Cobweb(O, I). 

Else if Z is the best score, 

Then Split(P, N). 

Cobweb(N, I). 

CONCEPT FORMATION 

concept is a terminal node. Node N6 in Figure 3 was created in this fashion, smce the 

instance it summarizes was sufficiently different from node Nz and NJ. 

Although in principle the above method provides everything needed to construct hier­

archies of probabilistic concepts, it can be sensitive to the order of instance presentation, 

creating different hierarchies from different orders of the same data. In particular, if the 
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TABLE 6 

Auxiliary COBWEB operations. 

Variables: N, O, P, and R are nodes in the hierarchy. 

I is an unclassified instance. 

A is a nominal attribute. 

V is a value of an attribute. 

Incorporate(N, I) 

Update the probability of category N. 

For each attribute A in instance I, 

For each value V of A, 

Update the probability of V given category N. 

Create-new-terminals(N, I) 

Create a new child M of node N. 

Initialize M's probabilities to those for N. 

Create a new child 0 of node N. 

Initialize O's probabilities using I's values. 

Merge(P, R, N) 

Make 0 a new child of N. 

Set O's probabilities to be P and R's average. 

Remove P and Ras children of node N. 

Add P and R as children of node 0. 

Return 0. 

Split(P, N) 

Remove the child P of node N. 

Promote the children of P to be children of N. 

PAGE 23 

initial instances are nonrepresentative of the entire population, one may get hierarchies 

with poor predictive ability. For example, if the first instances are all conservative con­

gressmen, the algorithm would create subcategories of these at the top level. When it 

finally encountered instances of liberal congressmen, it would create one category for them 

at the top level. However, it would still have all the conservative instances at this same 

level, when one would prefer them grouped under a separate category. 

COBWEB in:dudes two additional operators to help it recover from such nonoptimal 

hierarchies. At each level of the classification process, the system considers merging the 



PAGE 24 CONCEPT FORMATION 

FIGURE 4. Merging categories in COBWEB. 

two14 nodes that best classify the new instance. If the resulting clustering is better ( ac­

cording to the function described in Section 3.3.3) than the original, it combines the two 

nodes into a single category, though still retaining the original nodes as its children. This 

transforms a clustering of N nodes into one having N -1 nodes, as in the transition shown 

by Figure 4. 

The system also incorporates the inverse operation of splitting nodes. At each le':'~l, 

if COBWEB decides to classify an instance as a member of an existing category, it also 

considers removing this category and elevating its children. If this action leads to an 

improved clustering, the system changes the structure of its hierarchy accordingly. Thus, 

if one of N nodes at a given level has M children, splitting this node would give N + M -1 

nodes at this level, as depi.cted by the transition in Figure 5. 

3.3.3 EVALU.ATION IN COBWEB 

We have made numerous references to COBWEB's evaluation function, but we have yet 

to define this metric. We have also mentioned Fisher's concern with the basic-level phe­

nomena, but we have yet to show how the system has been influenced by these phenomena. 

The key to both issues involves category utility, a measure that Gluck and Corter (1985) 

have shown predicts the basic level found in psychological experiments. They derive this 

function by two paths, one using information theory and the other using game theory. 

COBWEB uses a slightly generalized version of Gluck and Carter's function to control 

its classification and learning behavior. Category utility favors clusterings that maximize 
'' 

14 Although one could consider merging all possible node pairs, such a strategy would be costly and unlikely 
to improve the resulting hierarchy. 
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FIGURE 5. Splitting categories in COBWEB. 

the potential for inferring information (Fisher, 1987b ). In doing this, it attempts to max­

imize intra-class similarity and inter-class differences, and it also provides a principled 

tradeoff between predictiveness and predictability. The basic measure assumes that con­

cept descriptions are probabilistic in nature. We do not have space to rederive this metric, 

but we can consider some of its characteristics. 

For any set of instances, any attribute-value pair, Ai = Vij, and any class, Cb one 

can compute P(Ai = VijlCk), the conditional probability of the value given membersh.ip 

in the class, or its predictability. One can also compute P( ck I Ai = Vij ), the conditional 

probability of membership in the class given this value, or its predictiveness. One can 

combine these measures of individual attributes and values into an overall measure of 

clustering quality. Specifically, 

LLLP(Ai = Vij)P(CklAi = Vij)P(Ai = VijlCk) (1) 
k j 

represents a tradeoff between predictability P(Ai = V'iilCk) and predictiveness P(CklAi = 

Vij) that has been summed across all classes (k), attributes (i), and values (j). The 

probability P( Ai = °Vij) weights the individual values, so that frequently occurring values 

play a more important role than those occurring less frequently. 

Using Bayes' rule, we have P(Ai = V'ij)P(CklAi = Vij) = P(Ck)P(Ai = V'ijlCk), letting 

us transform expression ( 1) into the alternative form 

'' L P(Ck) LL P(Ai = V'ijlCk) 2 (2) 
k J 
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Gluck and Corter have shown that the subexpression Ei L:j P(Ai = \lijlCk)2 is the expected 

number of attribute values that one can correctly guess for an arbitrary member of class 

Ck. This expectation assumes a probability matching strategy, in which one guesses an 

attribute value with a probability equal to its probability of occurring. Thus, it assumes 

that one guesses a value with probability P(Ai = \lijlCk) and that this guess is correct 

with the same probability. 

Gluck and Corter build on expression (2) in their derivation. They define category 

utility as the increase in the expected number of attribute values that can be correctly 

guessed, given a set of n categories, over the expected number of correct guesses without 

such knowledge. The latter term is simply (l::i I:j P(Ai = \lij)2), so one must subtract 

this from expression (2). The complete expression for category utility is thus 

L:f=l P(Ck) Ei L:j P(Ai = \lij1Ck)2 
- Ei L:j P(Ai = Vi1) 2 

K 
(3) 

Note that the difference between the two expected numbers is divided by I<, the number 

of categories. This division lets one compare different size clusterings, which must occur 

whenever one considers merging, splitting, or creating a new category. 

Since category utility is based on expected numbers of correct guesses about attributes' 

values, it suggests predictive ability as the natural measure of behavior. Fisher has tested 

COBWEB on both natural and artificial domains, measuring its performance by asking.it 

to predict missing attribute values on test instances. This approach is similar to Quinlan's 

(1986) methodology for evaluating supervised learning systems, except that one averages 

across many attributes rather than predicting a single one (the class name). In Section 4, 

we will extend this notion of prediction (and category utility) to domains involving numeric 

attributes. 

COBWEB is not the first inductive learning system that has employed an evaluation 

function based on information theory. The best-known work of this type is Quinlan's 

(1986) ID3 method for constructing decision trees. Machine learning researchers have 

explored many extensions and variations of this basic technique, including incremental 

versions (Schlimmer & Fisher, 1986). Rendell, Sechu, and Tcheng's (1987) PLS system 

also uses an information-theoretic metric to direct its divisive construction of disjunctive 

concept descriptions. In addition, Hanson and Bauer (1986) have used an information­

based function in their WITT clustering system, Cheeseman et al. (1988) have used a 

Bayesian approach in their nonincremental clustering system AUTOCLASS, and Anderson 
'' 

(in press) has used conditional probabilities in his recent work on incremental clustering. 
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3.3.4 COMMENTS ON COBWEB 

Like its predecessors, one can view COBWEB as carrying out a hill-climbing search 

through a space of concept hierarchies. In this case, there are four main operators: 

• classifying the object into an existing class; 

• creating a new class (a new disjunct); 

• combining two classes into a single class (merging); 

• dividing a class into several classes (splitting). 

The system employs an evaluation function - category utility - to determine which operator 

(and which instantiation) to employ at each point in the classification process. 

The use of a well-defined evaluation function constitutes an advance over previous work 

on concept formation, as does Fisher's reformulation of predictiveness and predictability 

in terms of conditional probabilities. The explicit inclusion of merging and splitting also 

seems desirable, since they should let COBWEB recover from nonrepresentative samples 

without losing its incremental, memory-limited flavor. 

However, Fisher's work also has some limitations. As implemented, COBWEB can 

handle only nominal attributes, whereas UNIMEM dealt with both symbolic and numeric 

data. The system also assumes that each instance consists of a single "object," and thus 

avoids issues of finding mappings between analogous components. Finally, COBWEB retains 

all instances ever encountered as terminal nodes in its concept hierarchy. Although this 

approach works well in noise-free, symbolic domains, it can lead to "overfitting the data" 

in noisy or numeric domains. In these cases, some form of pruning or cutoff seems in 

order. These and other com::erns led us to carry out the research described in the following 

section. 

4. Modeling the Formation of Object Concepts 

With these systems as background, we can turn to CLASSIT, a model of concept for­

mation that attempts to improve upon earlier work. This system has been most strongly 

influenced by COBWEB, differing mainly in its representation of instances, its represen­

tation of concepts, and its evaluation function. However, CLASSIT uses the same basic 

operators and the same control strategy that Fisher's system employs. Below we describe 

the new model, stressing its differences from earlier systems, and explaining our motiva-,, 

tions for introducing these differences. 
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4.1 Representation and Organization in CLASSIT 

Although symbolic or nominal attributes occupy an important role in natural language, 

they are less useful for describing the physical world. When describing a stick in English, 

one might say that stick is short or long, but our perceptual system can also distinguish 

two sticks that differ only slightly in length. This latter capability suggests that humans' 

representation of real-world objects can include detailed information about the quantitative 

features of those objects. A variety of real-world attributes can be described using real 

numbers, including features such as color, which are usually treated symbolically. Since 

we are concerned with the formation of physical object concepts, CLASSIT currently only 

accepts real-valued attributes as input. 15 In Section 6, we will discuss combining real­

valued and symbolic attributes. 

Physical objects can be represented with numeric attributes by describing each object 

as a set of components, each with a list of attributes such as height and width. Although 

this approach represents some relational information implicitly, (such as the adjacenc:y of 

components), it does not restrict the types of objects that can be described. Furthermore, 

this form of numeric representation seems a more plausible output from a perception 

system. 

The introduction of real-valued data requires an analogous extension in one's repre­

sentation of concepts. There are two obvious approaches to this problem. First, one can 

divide each numeric attribute into ranges; by 'discretizing' the continuous values, one c;~n 

retain the symbolic concept representation used in COBWEB. Lebowitz (1985) has taken 

this approach in one version of UNIMEM. Alternatively, one can represent concepts directly 

in terms of real-valued attributes. 

CLASSIT takes the second approach, retaining COBWEB's notion of storing a proba­

bility distribution with each attribute occurring in a concept. However, instead of stor­

ing a probability for each attribute value, (e.g., for a given concept C, P(smalljC) = 
0.3; P( largejC) = 0. 7), our model stores a continuous normal distribution (bell-shapE:d 

curve) for each attribute. CLASSIT expresses each distribution in terms of a mean (av­

erage) value and a standard deviation. 16 For instance, it might believe that the average 

length of a dog's tail is 1.1 feet and that its standard deviation is 0.65 feet. Attributes with 

15 Statisticians have developed methods for clustering objects described in terms of real-valued attributes; 
these are known as cluster analysis and numerical taxonomy (Everitt, 1974). Unfortunately, these methods 
are usually nonincremental. 
16 Standard deviation is defined as the square root of 'I:~ 1 (Xi - x) 2 / N. Note that this equation as written 
cannot be computed incrementally; all Xi values need to be present. However, one can transform this 
expression for incremental computation by expanding the squared term and storing the sum of squares. 
Specifically, each concept contains a count, a sum of values, and a sum of squares. From these, we compute 
the mean and the standard deviation when needed. 
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low standard deviations have narrow, tall distributions, whereas those with high standard 

deviations have wide, shallow distributions. 

CLASSIT organizes concepts into a hierarchy in the same manner as do UNIMEM and 

COBWEB. General concepts representing many instances are near the top of the tree, with 

more specific concepts below them. In general, concepts lower in the hierarchy will have 

attributes with lower standard deviations, since they represent more specific classes with 

greater within-group regularity. 

4.2 Classification and Learning in CLASSIT 

This new representation scheme requires no modification to COBWEB's learning op­

erators or basic control structure. Thus, CLASSIT includes the same four basic operators 

as its predecessor - one for incorporating an instance into a existing concept, another for 

creating a new disjunctive concept, a third operator for merging two classes, and a final 

one for splitting classes. As described in Tables 5 and 6, for every new instance, the algo­

rithm considers all four operators, computes the score of the evaluation function in each 

case, and selects that choice with the highest score. In Section 4.4, we will step through a 

detailed example of this procedure. 

However, CLASSIT makes a few important additions to the basic algorithm. For exam­

ple, rather than always descending to the leaves of the hierarchy as it classifies an instance, 

our system may decide to halt at some higher level node. When this occurs, the systt;).m 

has decided that the instance is similar enough to an existing concept that further descent 

is unnecessary and that it should throw away specific information about that instance. We 

define 'similar enough' with a system parameter, cutoff, that is based on our evaluation 

function. 

There are two advantages of this modification. First, Quinlan (1986) has shown that 

methods for building exhaustive decision trees tend to 'overfit' the data in noisy domains, 

leading to decreased performance. The same effect should occur with concept formation 

systems, unless they employ some form of cutoff. Second, a system that retains every 

instance builds too large a data structure for real applications. Forgetting certain instances 

should lead to both better performance and to greater efficiency. 

The representation of objects that CLASSIT uses requires another addition to the COB­

WEB algorithm. If instances are described as a set of components, how can the system 

correctly match instance components to concept components? For example, how can it 

know that the right front leg in the instance corresponds to the right front leg in the 'dog' 

concept? In ge~eral terms, this problem is that of finding an optimal match in a weighted 

bipartite graph. 
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The brute force solution to this problem is far too expensive for practical use: to 

calculate the worth of every possible correspondence for n components has an O(n!) time 

cost. Instead we have used a cheaper O(n2) time complexity heuristic algorithm. Using 

the variances for each attribute in the concept description, CLASSIT finds a match for 

that cylinder with the least associated variation. Using this as a constraint, the system 

then finds a match for the next most constrained component and so forth, continuing 

this process until all components in the concept description have been matched against 

components in the instance. This 'greedy' approach is not assured of finding the best 

match, but it is likely to find an acceptable one with minimal cost.17 

We have chosen to retain CoBWEB's learning operators because we believe they provide 

a good framework for concept formation. The hill-climbing search organization provides 

a robust method for learning while making minimal demands on memory. Rather than 

formulating new algorithms, our goal has been to extend the existing program to work in 

new domains and with a more general representational scheme. 

4.3 CLASSIT's Evaluation Function 

CLASSIT's use of real-valued attributes in both instances and concepts requires a gen­

eralization of category utility, COBWEB's evaluation function. In particular, the two in­

nermost summations in category utility ( eq. 3) need to be generalized for real-valued 

attributes: 
values 

2::: P(Ai = ViilCk) 2 

j 

values 
and I: P(Ai=°Vij) 2 

j 

Both of these terms are a sum of squares of the probabilities of all values of an attribute. 

The former uses probabilities given membership in a particular class, Cki while the latter 

is without any class information. The second term is equivalent to the probability at 

the parent, since that node includes all instances for the clustering and therefore has no 

information about class membership. 

In order for these terms to be applied to a continuous domain, summation must be 

changed to integration, and some assumption must be made about the distribution of 

values. Without any prior knowledge about the distribution of an attribute, the best 

assumption is that the distribution of values for each attribute follows a normal curve. 

Thus, the probability of a particular attribute value is the height of the curve at that value 

and the summation of the square of all probabilities becomes the integral of the normal 

distribution squared. For the first summation, the distribution is for a particular class, 

17 There also exists an O(n3 ) guaranteed algorithm for this problem, which we will describe in Section 6. 
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while the second must use the distribution at the parent. In either case, this integral 

evaluates to a simple expression: 

values 

L P(Ai = Vij) 2 

j J 1 -(=-=.E.)2 -- e (f dx 
o-2211' 

1 1 

where µ is the mean and O' is the standard deviation. Finally, since this expression is 

used for comparison only (see the COBWEB algorithm), the constant term 1/2.J"i can be 

discarded. 

In summary, one can replace the innermost summations from category utility with the 

term 1/o-. The revised evaluation function used by CLASSIT is: 

K 

where I is the number of attributes, K is the number of classes in the partition, O'ik is the 

standard deviation for a given attribute in a given class, and O'ip is the standard deviation 

for a given attribute in the parent node. 18 

This evaluation function is equivalent to the function used by COBWEB; it is a transfor­

mation of category utility. Unfortunately, this transformation introduces a problem when 

the standard deviation is zero for a concept. For any concept based on a single instance, 

the value of 1/ O' is therefore infinite. 

In order to resolve this problem, we have introduced the notion of acuity, a system 

parameter that specifies the minimum value for O'. This limit corresponds to the notion of 

a 'just noticeable difference' in psychophysics - the lower limit on our perception ability. 

Because acuity strongly affects the score of new disjuncts, it indirectly controls the breadth, 

or branching factor of the concept hierarchy produced, just as the cutoff parameter controls 

the depth of the hierarchy. 

4.4 A Detailed Example 

Now that we have examined CLASSIT's representation, control structure, and evalua­

tion function, we will demonstrate the system's behavior in more detail by stepping through 

a sample execution. For this example, we have constructed a very simple input domain. 

18 In our implementation, the attribute summations are divided by I. This is necessary because CLASSIT 
allows instances to have some missing attributes. 
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Imagine a set of rectangles that naturally divides into three classes: small, medium, and 

large. Each instance has only one component and is described with only three attributes; 

height, width, and a texture attribute. For this domain, the texture attribute is irrelevant 

to classification. Small rectangles have a mean height of 12.5 and width of 6.5; medium 

rectangles average 30 by 14 and large rectangles average 41 by 35. The texture attribute 

is allowed to vary from 5 to 40, independent of class. Note that the system is not given 

any class information - it is not told whether a given instance is small, medium, or large. 

Instead, these concepts must be induced from regularity in the data. This is precisely the 

task of unsupervised concept formation. 

We will now step through an execution as CLASSIT encounters the first six rectangles. 

The system begins with an empty concept hierarchy. Suppose the first instance is a small 

rectangle with values of 14 for height, 7 for width and 8 for texture. This instance is used 

to create the root node of the hierarchy, as shown in Figure 6( a). Since this initial concept 

is based on a single instance, it has the minimum value for its (J values. For this execution 

the acuity parameter specifies this minimum to be 1.0 for all attributes. 

(a) First instance: height = 14.0 
width= 7.0 
texture = 8.0 

P( Co)= 1/1 
attr mean O' 

Ht 14.00 1.00 
Wid 7.00 LOO 
Txt 8.00 1.00 

(b) Second instance: height = 12.0 
width= 7.0 
texture = 20.0 

P( Co)= 2/2 
attr mean O' 

Ht 13.00 1.00 
Wid 7.00 1.00 
Txt 14.00 6.00 

P( C1) = 1/2 P( C2) = 1/2 
at tr mean (J' attr mean (J' 

Ht 14.00 1.00 Ht 12.00 1.00 
Wid 7.00 1.00 Wid 7.00 1.00 
Txt 8.00 1.00 Txt 20.00 1.00 

FIGURE 6. Extending the CLASSIT hierarchy downward. 

For each concept created by the system, we have shown the mean and standard devi­

ation (O') for all attributes, as well as P(Ck), the probability of that concept within the ,, 
clustering. As noted earlier, concepts store cumulative sums and sum of squares in order 
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to recompute the standard deviation incrementally. Similarly, P( Ck) is computed on de­

mand by using counts stored at each concept. In order to make clear the semantics of our 

concepts, we have not shown these computational values in our figures. 

Figure 6(b) shows the entire concept hierarchy after the system classifies the second 

instance. Since every instance encountered is incorporated into the root node, there is only 

one decision point as the system classifies this instance: is it different enough from the 

first to warrant extending the hierarchy down a level and creating separate concepts for 

each instance? In this case, although the second instance is also a 'small' rectangle, the 

texture attribute is different enough from the first instance that CLASSIT creates a new 

level. Note that the O' scores for height and width at the root node are unchanged; this is 

because the standard deviations of these attributes remain lower than acuity. 

Third instance: height = 25.0 
width= 15.0 
texture = 24.0 

P( Ci) = 1/3 

attr mean ()" 

Ht 14.00 1.00 
Wid 7.00 1.00 
Txt 8.00 1.00 

P( Co)= 3/3 
attr mean o­
Ht 17.33 5.72 
Wid 9.67 3.77 
Txt 17 .33 6.80 

P( C2) = 1/3 
attr mean ()" 

Ht 12.00 1.00 
Wid 7.00 1.00 
Txt 20.00 1.00 

P( C3) = 1/3 
attr mean ()" 

Ht 25.00 1.00 
Wid 15.00 1.00 
Txt 24.00 1.00 

FIGURE 7. Adding a new disjunct to the CLASSIT hierarchy. 

Figure 7 shows the concept hierarchy after the system observes a third instance. After 

incorporating the instance into the root, the system must decide whether to add the 

instance into an existing child concept, or to make a new disjunct at level one. In this case, 

the choice with the highest category quality score is to create a new disjunct. Intuitively, 

this occurs because the instance is a medium sized rectangle; attributes height and width 

are sufficiently different from the existing classes to cause the creation of a new concept. 

Figure 8 shows the hierarchy after the system classifies a second medium sized rect­

angle. In this case, adding to an existing concept has a higher score than creating a new 

disjunct. This ,~nstance is therefore added to the existing "medium rectangle" concept 

( C3) at level one. The system also decides that the new instance is different enough from 
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Fourth instance: height = 28.0 
width= 13.0 
texture = 19.0 

P( C1) = 1/4 
attr mean (J' 

Ht 14.00 1.00 
Wid 7.00 1.00 
Txt 8.00 1.00 

CONCEPT FORMATION 

P( Co) = 4/4 
attr mean C1 

Ht. 19.75 6.87 
Wid 10.50 3.57 
Txt 17.50 5.93 

P( C2) = 1/4 P( C3) = 2/4 
attr mean 
Ht 12.00 
Wid 7.00 
Txt 20.00 

(J' attr mean 
1.00 Ht 26.50 
1.00 Wid 14.00 
1.00 Txt 21.50 

P( C4) = 1/2 
attr mean C1 

Ht 28.00 1.00 
Wid 13.00 1.00 
Txt t9.00 1.00 

(J' 

1.50 
1.00 
2.50 

P( Cs) = 1/2 
attr mean C1 

Ht 25.00 1.00 
Wid 15.00 1.00 
Txt 24.00 1.00 

FIGURE 8. Adding to an existing concept and extending the CLASSIT hierarchy. 

concept C3 to continue and extend the hierarchy to level two, creating a concept for each 

instance at that level. 

The fifth instance is a large rectangle, and the system chooses to create anot.her dis­

junct at level one. Figure 9 presents the hierarchy at this stage in the learning process. 

Remember that CLASSIT does not label this node as 'large' nor does it know that the 

fifth instance belongs to the large class. The system incorporates each instance into its 

hierarchy witpout the benefit of class information. 

Figure 10 shows the hierarchy after CLASSIT incorporates the final instance, a third 

'small' rectangle. This instance allows the system to merge two level one concepts into a 

more general concept describing all three 'small' rectangles. In more detail, the system 

proceeds as follows: it first considers adding the new instance to each of the four existing 

classes. In this case, the concept C1 in Figure 9 is the best candidate. CLASSIT then 

compares this score to that of making another level one disjunct. Finally the system 

considers merging the best and the second-best concepts into a new node; in our example, 

this last option has the best score. 19 

19 The split operator is only considered when CLASSIT is about to add to a concept that already has children. 
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Fifth instance: height = 41.0 
width= 36.0 
texture = 30.0 

P( Co)= 5/5 

attr mean O" 

Ht 20.00 10.49 
Wid 15.60 10.69 
Txt 20.20 7.22 
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P( C1) = 1/5 P( C2) = 1/5 P( Ca) = 2/5 P( Cs) = 1/5 

attr mean (f attr mean 
Ht 14.00 1.00 Ht 12.00 
Wid 7.00 1.00 Wid 7.00 
Txt 8.00 1.00 Txt 20.00 

(f attr mean 
1.00 Ht 26.50 
1.00 Wid 14.00 
1.00 Txt 21.50 

P( C4) = 1/2 
attr mean O" 

Ht 28.00 1.00 
Wid 13.00 1.00 
Txt 19.00 1.00 

(f attr mean 
1.50 Ht 41.00 
1.00 Wid 36.00 
2.50 Txt 30.00 

P( Cs)= 1/2 
attr mean O" 

Ht 25.00 1.00 
Wid 15.00 1.00 
Txt 24.00 1.00 

FIGURE 9. Creating another disjunct in the CLASSIT hierarchy. 

Sixth instance: height = 12.0 
width= 6.0 
texture = 7 .0 

P( Co) = 6/6 

attr mean O" 

Ht 22.00 10.57 
Wid 14.00 10.39 
Txt 18.00 8.23 

(f 

1.00 
1.00 
1.00 

P( C1) = 3/6 P( Ca)= 2/6 P( Cs)= 1/6 

attr mean (f attr mean (f attr mean (f 

Ht 12.67 1.00 Ht 26.50 1.50 Ht 41.00 1.00 
Wid 6.67 1.00 Wid 14.00 1.00 Wid 36.00 1.00 
Txt 11.67 5.91 Txt 21.50 2.50 Txt 30.00 1.00 

P( C1) = 2/3 P( C2) = 1/3 P( C4) = 1/2 P( Cs)= 1/2 

attr mean (f attr mean (f attr mean (f attr mean (f 

Ht 13.00 1.00 Ht 12.00 1.00 Ht 28.00 1.00 Ht 25.00 1.00 
Wid 6.50 1.00 Wid 7.00 1.00 Wid 13.00 1.00 Wid 15.00 1.00 
Txt 7.50 1.00 Txt 20.00 1.00 Txt 19.00 1.00 Txt 24.00 1.00 

,, 

FIGURE 10. Merging two concepts in the CLASSIT hierarchy. 
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The merge operator merely pushes existing categories down a level. CLASSIT must 

also consider what to do with the new instance at level two. In this execution, the system 

decides to incorporate it into an existing child concept, C1. At this point the cutoff 

parameter comes into play and the system decides that the new instance does not warrant 

its own concept at level three. This is hardly surprising, since the new instance is so close 

to the existing concept description that the standard deviations do not rise above acuity. 

In fact, the match among the three small rectangles is close enough so that the standard 

deviations for attributes height and width remain at acuity even for the new level one 

concept, C1. 

CLASS IT continues processing new instances in this manner, incrementally modifying 

both its concept descriptions and the structure of its concept hierarchy as it encounters new 

data. Unlike some incremental learning systems - such as Mitchell's (1982) version-space 

method - CLASSIT never achieves a final knowledge state; the system continues to learn as 

long as new instances are available. This behavior is the strength of an incremental model. 

For example, it allows a system to recover from concept drift; if the environment changes 

over time, the learner must continue to modify his conceptual structures in response to 

new data. 

4.5 A Summary of CLASSIT 

A principle motivation for the CLASSIT system was to model concept formation· in 

the domain of real-valued inputs. This has affected our representation and our evaluation 

function. As yet, we have worked only with real-valued attributes since we feel that this 

type of input more closely models the output of the human perceptual system. 

Since the same algorithm and four learning operators are used, CLASSIT retains the 

advantages of COBWEB. Both are incremental systems that integrate learning (concept 

formation and modification) and performance (classification), carrying out a hill-climbing 

search for an optimal concept hierarchy. 

5. Experimental Studies of CLASSIT's Behavior 

One important approach to evaluating any AI system involves experimentation - study­

ing the system's behavior under a variety of conditions. In this section, we present some 

experimental results that demonstrate CLASSIT's learning ability. We begin by introducing 

the domain we have used in most of these studies. After this, we report three experiments 

in which we vary aspects of CLASSIT, followed by another study in which we vary the reg­

ularity in the domain. In each case, we describe the independent and dependent variables 
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Horse Giraffe 

Cat Dog 

FIGURE 11. Typical instances for four categories of quadruped mammals. 

used in the ~xperiment, summarizing the results in graphs. We close by reporting the 

system's behavior on a real-world domain that involves numeric attributes. 

5.1 The Domain of Quadruped Mammals 

For our initial experiments, we designed an artificial domain involving four-legged 

mammals, each described as a set of eight cylinders. This approach let us control the 

environment while still retaining a reasonable approximation of physical objects. One 

can view our representation of objects as a simplification of Binford's (1971) generalized 

cylinders, which have received wide attention within the machine vision community. Also, ,, 

Marr (1982) has argued that such representations are reasonable approximations of the 
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output of the human visual system. 20 

As discussed earlier, CLASSIT assumes that each instance consists of a set of component 

objects, each described by a set of real-valued attributes. In the domain of quadruped 

mammals, each instance consists of eight cylindrical components: a head, a neck, a torso, 

a tail, and four legs. Each cylinder includes attributes such as height, radius, and location; 

there are a total of nine attributes per component, hence 72 attribute-value pairs per 

instance. We believe that real-world objects have at least this order of complexity and 

that a robust concept formation system should be able to handle instances of this form. 21 

In the runs described below, we assumed four basic categories that differed system­

atically only in the sizes of their cylinders. We will refer to these classes as cats, dogs, 

horses, and giraffes, since their relative sizes are roughly the same as those occurring for 

these real-world categories. Figure 11 shows a typical instance for each of these classes. 

One can view the prototype for a class as the 'Platonic form' or ideal for that class. To 

generate instances from a particular class, we use a template that defines the prototypical 

value for each attribute and a variance, specifying the degree to which that attribute will 

vary in the actual distribution of instances. Finally, each category has a probability that 

it will occur; some classes can be more common than others. 

In producing data for our experiments, we used the prototype for each basic category 

to generate each instance according to the following procedure: 

Randomly select a template C with probability P(C). 

For each component 0 in the prototype for C, 

For each attribute A of component 0, 

Let M be the typical value of A for 0 in template C. 

Let S be the variance of A for 0 in template C. 

Randomly select a value V for A according to a 

normal distribution with mean M and variance S. 

Thus, every instance is a member of one of the four categories, although CLASSIT is told 

neither the class name nor the number of classes. Each instance diverges from the ideal for 

20 We have developed CLASSIT within the context of the World Modeler's Project, a joint research effort 
between the University of California, Irvine, and Carnegie Mellon University. This project incorporates a 
simulated three-dimensional world, representing physical objects in terms of cylinders, spheres, circles, and 
polygons. Agents that interact with this environment perceive their surroundings directly in terms of such 
primitive shapes, along with their size, location, and orientation. Of course, CLASSIT need not assume such 
representations; it can be applied to any domain that one can express using numeric attributes. 
21 A more realistic description would represent physical objects at different levels of aggregation, as Marr 
(1982) has propose\'!. Thus, an animal might have four legs, with each leg having three components, etc. 
However, such multi-level representations introduce some difficult problems, which we discuss in Section 6. 
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that category, though some diverge more from this ideal than others and some attributes 

tend to vary more than others. Later we will examine CLASSIT's behavior on another 

artificial domain, but we will use the same basic method for generating data. 

5.2 Learning and Component Matching 

We have claimed that CLASSIT is a learning system, and learning is usually defined 

as some improvement in performance. Following Fisher (1987a), our first experiment 

examined the incremental improvement in the system's ability to make predictions. The 

dashed line in Figure 12 presents CLASSIT's learning curve as it incorporates instances 

from the domain of quadruped mammals into its concept hierarchy. 

The independent variable here is simply the number of instances seen. The dependent 

variable is the system's ability to predict a single missing attribute from all the other at­

tributes in an instance. We measured this variable after every five instances by 'turning 

off' the learning component and presenting CLASSIT with five randomly selected test in­

stances, each missing a single attribute. After classifying each instance, the system uses 

the selected category to predict the value of the missing attribute. The graph measures 

the pen:entage error between the predicted value and the ideal value for the instance's 

actual class. 22 The percentage error describes the absolute prediction error relative to the 

other categories present in the hierarchy. One hundred percent indicates that the system 

has confused the instance with the wrong category. Clearly, the system's performance 

improves with experience, starting at 40% error and moving down to less than 5% error 

after 35 instances. 

As described earlier, incremental algorithms tend to be sensitive to instance order­

ing. Although CLASSIT's split and merge operators allow some recovery from initial non­

representative orderings, learning curves still vary with different orderings. In order to 

minimize this effect, the measures in Figure 12 have been averaged over 15 runs involving 

different random orderings. Also, since the data is produced randomly from templates, 

different instances are used for each ordering. We have followed this procedure in all our 

experiments. 

In Section 4.2 we discussed CLASSIT's use of a greedy algorithm to match components 

m an instance to components in its concept descriptions, and it is this version that is 

summarized by the dashed line in Figure 12. Given the heuristic nature of this matching 

scheme, we were interested in how it would fare against a version that had the optimal 

22 Obviously, this measurement of error only makes sense for attributes that are relevant to classification; 
those attributes whose values differ across different classes. One cannot expect the system to correctly predict 
the value of an attribut.e that is irrelevant with respect to classification. Thus, we omitted only relevant 
attributes in measuring CLASSIT's improvement in predictive ability. 
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FIGURE 12. CLASSIT learning curves with greedy vs. oracle matching. 

match available. The solid line in the figure shows the learning curve for such a system, in 

which we supplied CLASSIT with the correct correspondence between concept and instance 

components. This 'oracle'-based variant improves its performance more quickly than the 

greedy.version, reaching an asymptotic level after only 20 instances. However, despite some 

major errors early on (due to mismatched components), the greedy algorithm gradually 

narrows the gap, converging on nearly the same performance as the oracle version after 35 

instances. This is a fairly impressive result for objects involving eight distinct components. 

In the remaining experiments, we report results only for the oracle version of CLASSIT; ·in 

order to factor out errors due to mismatches. 

5.3 The Effect of System Parameters 

We introduced the parameters for acuity and cutoff into CLASSIT only reluctantly, 

since such parameters encourage fine-tuning to achieve desirable behavior. To determine 

the effect of such tuning, we carried out the second experiment summarized in Figure 13. 

As in the previous study, the horizontal axis specifies the number of instances and the 

vertical (dependent) axis shows the average percentage error. However, this time there are 

four learning curves, one for each setting of the acuity and cutoff parameters. We have 

repeated the oracle curve from Figure 12, which was based on an acuity setting of 1.0 and 

cutoff setting of 0.2. 

In this experiment we examined two levels of the cutoff parameter - 0.2 and zero. The 

latter is the lowest possible setting, and effectively forces CLASSIT to retain all instances 

it has ever see:q. ,as terminal nodes in the hierarchy. Since the system always sorts a new 

instance as far down the hierarchy as possible, it will base its predictions on the values 
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FIGURE 13. The effect of acuity and cutoff on learning. 

for a singleton concept. Unless each instance actually represents a distinct category, this 

strategy should lead to an overfitting effect, similar to that Quinlan (1986) has observed 

with decision trees in noisy domains. 

Since we designed our quadruped data set to have only four generic categories, we would 

expect such overfitting on this domain as well. Indeed, the curves in Figure 13 confirm 

this prediction. Both learning curves for the no-cutoff condition appear to asymptote at 

a higher error rate than the curves in the cutoff condition. With a higher setting for this 

parameter (i.e., with cutoff in operation), the system constructs simpler hierarchies with 

more general concepts as terminal nodes, and thus is able to make better predictions. 

We also examined the effect of acuity, using two settings in this case as well. Unfor­

tunately, the role of acuity is not as clear. In principle, one would expect overfitting to 

occur for low v(l.lues of this parameter, since this excourages CLASSIT to form many dis­

juncts. This should lead to a larger number of singleton classes, and thus to idiosyncratic 
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predictions. However, this seems to occur only for extreme settings of the acuity param­

eter. Modifying the breadth of the hierarchy slightly does not have as strong an effect on 

prediction as does changing the depth of the tree with the cutoff parameter. Clearly, we 

need to carry out further studies to clarify the effect of this parameter. 

Since this parameter controls breadth, rather than depth, the effect of this parameter on 

prediction is much less pronounced than that for cutoff. However, we have seen variations 

in acuity produce degradations in other domains, so we need further studies to clarify the 

effect of this parameter. 

In principle, one can get underfitting as well as overfitting effects. This should result 

in cases where CLASSIT constructs too shallow a hierarchy or creates too few disjunctive 

categories. However, the former can occur only if the 'true' hierarchy contains multiple 

levels, and our quadruped data contains only one level of categories. For both parameters, 

one would expect a U-shaped curve, with high error from overfitting at one end of the 

spectrum and high error from underfitting at the other end. Clearly, we need additional 

experiments to test this prediction. 

5.4 The Effect of Merging 

We have discussed both CoBWEB's and CLASSIT's potential sensitivity to the ordering· 

of instances, and their use of merging and splitting operators to alleviate this effect. Our 

third experiment verifies that the merge operator has this predicted beneficial effect. Our 

technique was to 'lesion' the system: that is, create a version of CLASSIT that cannot ap­

ply the merge operator, and compare its performance to the complete system. Recall that 

these 'backtracking' operators are most useful when the system initially receives nonrep­

resentation instances. Therefore, for this experiment we arranged the order of instances 

by hand. 

Figure 14 shows the results of an experiment in which two versions of CLASSIT - one 

with merging and the other without - were given a very skewed ordering of instances from 

the quadruped domain. First we presented five instances of the 'horse' category, then five 

'giraffes', then five 'cats', then five 'dogs', then five more 'horses', and finally five more 

'giraffes'. Given such data, CLASSIT splits the initial horses into several classes at the top 

level, then creates new categories upon seeing the giraffes, cats, and dogs. The result is 

a skewed hierarchy, in which different types of horses are given the same status as the 

general classes of giraffes, cats, and dogs. The merge operator is designed to restructure 

such a hierarchy
1 

creating a new category for horses and bringing particular horses down 

to an appropriate (lower) level. 
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Since CLASSIT sorts an instance as far down the hierarchy as possible, the internal 

structure of the hierarchy will have little if any effect on prediction. For this reason, we 

have used a different dependent measure in Figure 14 - the number of top-level categories. 

This measure demonstrated precisely what one would expect. The number of categories at 

the top level continues to increase through instance 20. At this point, the new instanc~s 

of 'horse' lead the merging version of CLASSIT to combine the horse nodes at the top 

level into a single category. By instance 25, the number of top-level classes has decreased 

to around six, and by instance 30 it has reached four, the 'correct' number. Note that 

merging combines only two nodes at a time, so this decrease is due to a sequence of merge 

operations. In contrast, the non-merging version of CLASSIT incorporates the new horses 

into its existing categories, but retains the same top-level classes that the initially skewed 

data led it to create. 

5.5 The Effect of Overlap and Redundancy 

Having considered the effect of varying CLASSIT's components on its learning behavior, 

let us examine the influence of two interesting domain characteristics. The first involves 

the number of attributes that are relevant in the sense that their values vary systematically 

with category membership. Intuitively, the more relevant attributes, the more redundant 

the data. The second variable involves the degree to which there is overlap between cate­

gories' values on, an attribute; this corresponds to the percentage area that an attribute's 

probability distribution shares with the distribution from a neighboring class. Intuitively, 
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the less overlap between two categories' values on an attribute, the more distinguishable 

those classes are on that attribute. 

One would expect CLASSIT to have more difficulty in forming useful categories in the 

presence of highly overlapping attributes. The overlap between two distributions deter­

mines the probability that, on any given instance, the attribute value will fall in the region 

shared by both categories. In such cases, the attribute cannot be effectively used to de­

termine the category to which the instance should be assigned. However, one would also 

expect highly redundant data to mitigate this effect. The more relevant attributes, the 

more attributes are likely to have values falling outside the area of overlap. Thus, we can 

predict an interaction effect, with CLASSIT's learning behavior worsening with increased 

overlap between categories, but with increased numbers of relevant attributes lessening 

this effect. 

We tested this prediction in a fourth experiment. In this case we used a somewhat 

simpler artificial domain that let us independently control the two domain variables. Each 

instance consisted of five components with six attributes each, giving a total of 30 at­

tributes, and instances were generated from only three category templates. (Hence, we 

assume there should be only three top-level categories). We varied the number of relevant 

attributes from two to ten. This represents a large amount of irrelevant information; two 

thirds or more of the attributes are irrelevant to predicting an instance's class. In contrast, 

an instance from the quadruped domain had two thirds of its attributes relevant. We a:lso 

varied the amount of overlap between zero and fifty percent. 

Figure 15 presents the results of this experiment. For simplicity, we have not reported 

learning curves in this case. Instead, the dependent variable shows predictive ability (aver­

age percentage error) afte~ CLASSIT has viewed 30 instances. In all runs, we set acuity at 

1.0 and cutoff at 0.2. As before, we averaged each point over 15 different random orderings. 

The results are surprising. For higher numbers of relevant attributes, we see the 

expected interaction: increasing the number of relevant features helps more for higher 

levels of overlap, since they are worse to begin with. However, unexpected effects occur 

for lower redundancy settings, where even data with zero overlap leads to high error rates. 

Closer inspection suggests an explanation for this phenomenon. When there are only two 

relevant attributes (only one of which can be used on test instances), there are some 28 

irrelevant ones that vary independently of category. Even when the relevant attributes 

never fall into the overlap areas, the irrelevant ones almost certainly do; despite their 

small individua:l, contributions to category utility, their numbers overwhelm the small set 

of relevant features. 
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FIGURE 15. The effect of overlap and redundancy. 

Unfortunately, this experiment confounds the total number of relevant attributes with 

the percentage of relevant attributes. To test our explanation,. we must carry out further 

experiments in which we vary these two factors independently. This is an important 

direction for future work, and it may ultimately let us predict CLASSIT's behavior from 

domain characteristics. 

5.6 CLASSIT on a Natural Domain 

Our final study examined CLASSIT's behavior on a real-world domain, using data on 

cardiology patients (Detrano, 1988). In this data set, each patient has 13 measured or 

derived numeric attributes, along· with a "class" attribute - whether or not the patient has 

heart disease. \Jpfortunately, Detrano indicates that this class information does not have 

a high accuracy; he estimates a 20% error rate. 
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Since CLASSIT is an unsupervised learning system, we discarded the class name and 

presented the system only with the numeric attributes for each instance. We then measured 

performance in terms of whether the system created concepts that corresponded to the 

prespecified classes. In effect, we asked the system to rediscover the class information from 

regularity in the numeric data. After seeing only ten of the total 303 instances, CLASSIT 

created three top-level concepts, and it retained this structure for the entire learning run. 

Upon inspection, we found that one of these categories clearly corresponded to patients 

without heart disease; some 86.1 % of its members had this label in the original data. The 

other two classes corresponded to patients with heart disease, one more consistently than 

the other; the accuracy was 79. 7% and 66.6% for these groups. Overall, this represents a 

weighted average of 78.9% accuracy, which matches very well with the expected error rate 

of 20%. This is impressive, given that CLASSIT arrived at these categories without benefit 

of the class information. 

6. Directions for Future Research 

We believe that CLASSIT constitutes a promising framework for concept formation, and 

that it incorporates significant advances of earlier models. However, the existing system 

has a number of limitations that should be remedied in future efforts, and we discuss these 

below. We divide our treatment into issues of representation, matching, and learning. 

6.1 Extending CLASSIT's Representation 

CLASSIT is designed to operate on numeric attributes, and we feel this is appropriate 

for domains based on visual input. However, symbolic or nominal attributes also have 

their uses, and we need to extend the system to handle this form of data. Recall that 

Fisher designed COBWEB to operate on nominal representations, and that CLASSIT uses a 

nearly identical algorithm for classification and learning. Moreover, our system's evaluation 

function is equivalent to Fisher's category utility metric, though we have modified it to work 

with numeric attributes. Thus, we hope to use a mixed evaluation function that includes 

discrete conditional probabilities for symbolic attributes and variances for numeric ones. 23 

This should result in an integrated system that supports mixed forms of data. 

In our work to date, we have used a simple set of primitives for describing objects, 

including cylinders and polygons. Clearly, we need to extend our framework to more realis­

tic representations of the physical world. One approach would employ arbitrary polygons, 

which can be used to describe the surface characteristics on any three-dimensional object 

in arbitrary detail. However, this approach quickly leads to an unmanageable number of 
' 

23 This means that the 1/2.jir term from Section 4.3 must be retained. 
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components for moderately complex objects. Alternatively, one might use Binford's (1971) 

generalized cylinders to describe the volumetric aspects of objects. These require fewer 

components, but they introduce complex functional expressions to describe variations from 

a simple cylinder, and it would be difficult to extend CLASSIT to handle this scheme. 

A more promising approach involves Biederman's (1987) theory of geons, a set of 36 

primitive shapes that can represent a wide range of complex objects. We see no difficulty 

in replacing our cylinders and polygons with geons, combining them to form more complex 

structures just as we currently do with simpler shapes. As before, each primitive component 

would be described in terms of its basic shape, along with numeric parameters specifying its 

size, location, and orientation. Some geons would require additional attributes to specify 

relative lengths of edges, but this would not be a problem for CLASSIT. Biederman has 

presented evidence that humans use geons in recognizing physical objects, and we hope 

that our revised system would make predictions about the human classification process. 

6.2 Improving the Matching Process 

The process of matching components between instance and concept is central to CLAS­

SIT's behavior. Although the 'oracle' approach was useful for experimental studies, it is 

not appropriate for normal operation. The greedy algorithm works reasonably well, but it 

leads to slower learning than the oracle method. We need additional studies to determine 

the robustness of the greedy scheme but we should also look for improvements on t~is 

method. 

One approach involves making the greedy technique more heuristic in nature. The 

current version selects a component from the concept at random, finds the best matching 

component from the instance, selects another concept component at random, and so on. 

However, some components may have more diagnostic attributes than others, and matching 

against these·components first should improve the greedy method's chances for finding the 

optimal correspondences. 

We also plan to examine the Hungarian algorithm (Papademetriou & Steiglitz, 1982), 

a more expensive matching process that is guaranteed to find the optimal match. Given 

a bipartite graph with 2n nodes, along with some function for evaluating the quality of a 

match, the Hungarian method finds the best match in O(n3) time, as compared with O(n2 ) 

time for the greedy method. The algorithm works by creating an n x n cost matrix for 

all possible pairs of components and then solving an "n rooks" problem over this matrix. 

In general, we would expect this approach to perform better than the greedy algorithm. 

However, althoµ,gh it is guaranteed to find the optimal match according to CLASSIT's 

evaluation function, this need not agree with the 'correct' match. Thus, we expect the 
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resulting learning curve for this algorithm to fall somewhere between the two curves of 

Figure 12. Whether the n3 cost is prohibitive is an empirical question, but we guess that it 

is not, since n (the number of components) should seldom exceed ten for physical objects. 

6.3 Handling Missing Attributes and Components 

Another aspect of matching involves dealing with instances having missing attributes. 

The current version of CLASSIT already takes this possibility into account, dividing the 

summed 1 / u scores by the number of attributes present. We used this scheme in classifying 

instances with a single missing attribute in our experiments, but we need further studies 

of its behavior when many attributes have been omitted. 

In addition, entire components may be missing from an instance description. If we 

assume that CLASSIT's input is generated by a vision system, then components may be 

omitted because they are not visible. We may be able to use the same evaluation func­

tion in this case, simply treating the missing components as a set of missing attributes. 

However, we must still modify the component matching process to find a partial match 

between components in the instance and the concept. Although we do not have a complete 

specification, this modification seems feasible for either the greedy matching algorithm or 

the Hungarian algorithm. 

6.4 Multiple Levels of Aggregation 

Another research issue relates to the organization of complex objects with' multiple 

components. Marr (1982) has argued that the human visual system can generate descrip­

tions of physical objects at different levels of aggregation. Thus, a dog might be viewed as 

a single cylinder at one level, as eight connected cylinders for (torso, neck, head, tail, and 

legs) at a lower level, with each leg described as three cylinders (thigh, calf, and foot) at 

a still lower level. One difficulty with such a part-of hierarchy of objects lies in specifying 

the relation between different levels. We need to specify algorithms for moving from lower 

to higher levels that minimize information loss. 

Once we have extended CLASSIT's representation in this direction, we will also need to 

alter its evaluation function and its matcher. CLASSIT can deal with two levels (a compos­

ite object and its components), but it cannot handle the general n-level case. Although 

EPAM was designed to handle composite, multi-level instances, neither UNIMEM nor COB­

WEB retained this ability. Wasserman (1985) has described an extension to UNIMEM that 

takes a similar approach to EPAM, recursively sorting each component (and its compo­

nents) through_the concept hierarchy. However, EPAM does not address the problem of 

matching components at all (i.e., each component fills a unique slot), and 'Wasserman's 

;· 
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extension uses a 'greedy' matching strategy, the performance characteristics of which are 

not systematically evaluated. 

Adding multiple levels of description to the CLASSIT framework raises a number of 

questions. Should the system use all levels in classification or only some? EPAM preferred 

to use attributes of composite objects when these were sufficient for avoiding errors. If 

we represent different levels in the same language, how can CLASSIT determine analogous 

levels between an instance and a concept description? How can one adapt the component 

matching process to work at multiple levels? Finally, how can one match a complex instance 

to a complex concept when its components are structurally different, (e.g., a cylinder vs. a 

block), and how should one alter the concept description in such cases? We must find at 

least tentative answers to these questions before we can extend CLASSIT in this direction. 

6.5 Matching and Normalization 

We have designed CLASSIT with the domain of physical objects in mind, and this has 

led to our focus on composite instances and numeric attributes. In our experiments with 

the system, we have assumed that instances have the same location, orientation, and scale, 

but we must clearly abandon this simplification in future versions. Upon seeing a cat from 

a different angle than normal, one still recognizes it as a cat. Similarly, if one sees a cat in 

a different location, or even a cat of unusually large or small size, there is no recognition 

problem. Apparently, recognition focuses not on the absolute values of attributes, but .~n 

their relative values. 

One might store in a concept description all pairwise relations between component 

objects, but this is neither space efficient nor very plausible. A better approach involves 

selecting some scale, origin, and set of axes for the overall object concept, and then specify 

the scale, origin, and axes for each component relative to them. However, this raises a 

new issue: how can one determine these parameters for a new complex instance before it 

has been classified? We have not been able to devise a general algorithm that generates. a 

canonical representation regardless of viewing angle, location, and size. 

Instead, we hope to solve this normalization problem during the act of matching con­

cept to instance. Upon observing an instance with multiple components, an extended 

CLASSIT would first match one of these components and use it to hypothesize the scale, 

origin, and axes for the composite object. This will lead to predictions about the locations 

of other components, which may or may not be correct. Hypothesized coordinate systems 

would be rejected, and those with better predictive ability would be extended, eventu­

ally leading to {l-, completely normalized match. We plan to implement this normalization 

process in future versions of CLASSIT, though many details must still be specified. 
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6.6 Abstract Descriptions and Selective Attention 

Like Fisher's COBWEB, our system stores all known attributes on every concept descrip­
tion, even when they are neither predictive nor predictable. Earlier models of concept for­
mation were more selective. Feigenbaum's EPAM starts with very general descriptions and 
gradually makes its images more specific through a process of familiarization. Lebowitz's 
UNIMEM (1985) and Kolodner's CYRUS (1983) gradually make their descriptions less ~pe­
cific through a generalization process. We need to explore variants on our basic algorithm 
that let it generate more abstract concept summaries, though the exact method is an open 
question. 

A closely related problem is that CLASSIT inspects every attribute during the classifica­
tion process, even if they have no predictive value. An improved system would incorporate 
the idea of selective attention, in which one focuses only on some features, presumably 
the useful ones. Earlier models of concept formation have this ability, including EPAM, 
UNIMEM, and CYRUS, as well as Fisher's COBWEB/2 (1987a). The latter is encouraging, 
since it gives one path for incorporating attention into COBWEB, and thus into CLASSIT. 

Ideally, the modified system would learn to prefer some attributes over others. In the 
early stages this selection would be random, since it would not know a priori which features 
would be diagnostic. However, as the system gained experience, it would come to prefer 
some attributes to others. Actually, CLASSIT already keeps statistics that would support 
this process. Using Bayes' rule, one can compute the predictiveness of each attribute 
from the existing scores. For example, the attribute 'height' in Figure 10 is clearly m?.re 
predictive than 'texture' at the first level. This is reflected by the fact that the difference 
between the average 1 / <7 score and the parent's 1 /a score is much larger for height than 
for texture. 

In other words, CLASSIT's learning mechanism already supports such a focusing mech­
anism, and we need modify only the performance algorithm. The revised system would 
select only those attributes necessary to determine category membership with high prob­
ability. We could make this selection a deterministic function of predictiveness scores, 
but there is danger in this approach. If the initial instances are nonrepresentative or if 
the environment changes, the system might come to ignore attributes that later proved 
relevant. For this reason we prefer a probabilistic scheme, with more predictive attributes 
being selected more often, but even those with very low scores occasionally being sampled. 
We believe the addition of selective attention will make CLASSIT a more accurate model 
of human categorization and concept formation. 

7. Summary 

In this paper, we proposed a unifying framework for concept formation. We identified 
five features common to work on this task: that knowledge is represented in a concept 
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hierarchy, that classification occurs in a top-down manner, that learning is unsupervised, 
integrated with performance, and employs an incremental hill-climbing search. We feel the 
search metaphor is especially important in understanding concept formation; it suggests 
both operators for learning and heuristics for controlling those operators. 

We reviewed three concept formation systems (EPAM, UNIMEM, and COBWEB) that fit 
within our framework, along with a new system (CLASSIT) that builds on the earlier work. 
We have tried to emphasize the close relation between the systems, as well as the addi­
tions each makes over its predecessor. In particular, CLASSIT extends Fisher's approach 
to numeric attributes, can handle instances with multiple (unordered) components, and 
retains only some of the instances it encounters. 

Finally, we presented some experimental studies of CLASSIT's behavior. We found that 
for the artificial domain of quadruped mammals, the system significantly improved its per­
formance with experience, and that the greedy matching algorithm slowed down learning 
but did not seem to affect asymptotic performance. CLASSIT showed some sensitivity to its 
parameter settings, with low values for cutoff giving overfitting effects. We also presented 
evidence that the merge operator leads to more balanced hierarchies when the initial data 
is nonrepresentative. In examining the effects of domain characteristics, we found that 
more overlap between categories led to reduced improvement, and that more redundancy 
alleviated this effect. However, the relationship was more complex than we expected, and 
we need further experiments along these lines. Finally, we showed that when given real­
world data on heart disease, CLASSIT was able to formulate diagnostically useful categories 
even without class information. 

The representation, use, and acquisition of concepts is a complex, interconnected set 
of problems, and we cannot claim to have solved these problems in any absolute sense. 
However, we believe the basic approach we have described, and which is reflected in EPAM, 
UNIMEM, CYRUS, COBWEB, and CLASSIT, constitutes a promising thrust towards the 
computational understanding of categorization. We encourage other researchers to join 
in the effort, and to construct incremental models of concept formation that extend the 
initial results that have been achieved to date. 
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