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Data Models and Data Manipulation 
Languages: Complementary Semantics and Proof Theory 

Abstract 

We present briefly a language which integrates the 

description of a data model, data manipulation language and 

integrity constraints into one coherent framework, 

resembling that proposed by several recent papers in the 

field of semantic data models. We then give two for mal 

specifications of the semantics of the model and DML: one, 

based on states and sta·te transactions, intended for 

d·atabase implementors and programmers, and one, based on 

axioms and partial correctness assertions intended for 

verifiers who wish to show that the system maintains 

integrity constraints. Most significantly, we sketch the 

proof that the ded•u.cti ve theory is sound and compl.ete and 

hence "matches" the state transition semantics. 
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1. Introduction 

The proliferation of data models in the last decade and 

especially the increased sophistication of the so-called 

semantic data, models (see for example [Tsichritzis & 

Lochovsky81]) has led to problems which are reminiscent to 

those arising after the explosion in new programming 

languages during the 1960's. Because the description of the 

data models (DM' s) is usually presented in an informal, 

English discussion, potential database designers may not be 

clear exactly what a ·correct database must look like, and 

neither systems implementors of languages supporting these 

DM' s nor their users are sure of the exact meaning of the 

constructs, especially those in the data manipulation 

language (DML). Furthermore, the recent interest and 

importance of databa·se mappings makes it even more urgent 

tha.t DM' s be giv:en a clea•r, correct and comple·te 

description. As in the case of programming languages, the 

answer lies in formal descriptions of OM's, and their DML's, 

which should augment the informal discussions as final 

arbiters of what the model means~ 

Just as in programming languages where we want to 

describe the meaning of type declarations and groups of 

statements, in database management, we wish to present the 

semantics of schema declarations and DML's. In the case of 

databases the permanent nature and importance of the actual 

data, contrasted with the transient nature of transactions, 
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make it even more important to express conditions on what 

are the valid states of the database (e.g. keys must be 

unique in relational theory). 

In a landmark paper, Hoare and Lauer ([Hoare & 

Lauer73]) argued that by providing several formal 

descriptions of the semantics of programming languages, one 

may reath a wider audience of potential Language users. For 

example, even assuming that programs map machine states to 

other states, one can define the meaning of a program b to 

be ( i) the relation Rb of all initial-final state pairs 

(relational semantics) ( i i) the relation Pb of assertion 

pairs (a , P) such that if b is started in a state with a 

holding, and b halts then P is true in the final state 

(partial correctness semantics; and (iii) the predicate 

transformer [b] ( [Dijkstra76]) etc. As noted by Greif and 

M;eye,r ([Grief & M'eyer79]), in each case there may be several 

ways of specifying the semantics: inductively, deductively, 

axiomatically, etc. 

Th& multiplicity of descriptions is useful for various 

audiences. Thus the state vie·~ is closest to the needs of 

the database implementor. On the other hand, the partial 

correctness assertions (PCA' s) provide a useful tool for 

proving properties of the applications programs. In the 

database domain this ability may play a crucial role in 

dealing with integrity constraints ([Hammer & McLeod75]). 

One of the purported advantages of centralized databases is 
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the control over the "quality" of data and its correctness. 

Given constraints such as "all employees must earn no more 

than their managers", one could check after every database 

update to see if this ~onstraint is maintained. 

Alternatively, if access to the data base is restricted to 

take place through pre-defined transactions, we can prove 

once and for all that each transaction maintains the 

integrity constraints and then be assured that the integrity 

assertion is valid at all times without the need for further 

checks. The verification of such program properties is 

usually done using a proof theory (e.g. [Hoare69]). 

However, this must be shown to be at least consistent to the 

usual state-change semantics in order that the proofs have 

any connection with the actual implemented and running 

system. 

Alth.ough [ c:r ief &· Meye·r 7'9] i.nc:Hca•te tha·t the way in 

which the various semantics and presenta·tions depend on each 

other may be quite subtle (and were omitted in [Hoare & 

Lauer73]), the work of [Cook78] has indicated a very nice .J 

way to show the appropriation of the deductive theory: 

soundness and relative completeness. 

The goal of this paper is then two-fold. First, we 

present a data model which is the kernal of the TAXIS model 

[Mylopoulos, Bernstein, Wong80], but which closely resembles 

a number of other recently introduced models ([Smith & 

Smith79], [Codd79]), and we define the intended semantics 
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through a mathematical model with well-formedness 

constraints expressed both directly and through axioms in an 

assertion language which specify conditions on "admissible" 

database states. Secondly, we define a DML for expressing 

transactions over the above data model, and specify the 

semantics of the language constructs in two ways: 

relationally and through partial correctness assertions 

( PCA' s). For the latter purpose, we describe an extended 

assertion language for stating PCA's about programs and 

present a deductive theory of the Floyd-Hoare style for 

proving PCA's. Most significantly, we give the principle 

new steps required in showing that the proof theory is both 

sound and complete in the sense of Cook ([Cook78]), a step 

missing from many other specifications (e.g., [Gardarin & 

Melkanoff80]). 

As a result, among othe·rs, we give the first "'correct" 

axiomatization for For-loops, deal appropriately with 

attribute updates and obtain an assertion language whose 

proof theory can also use the aforementioned defining axioms 

of the data model. 

We conclude by briefly comparing our work with other 

semantic specifications for databases with similar goals to 

ours and summarizing our results. 
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2. The TAXIS Data Model 

2.1 The Schema 

TAXIS is an object-oriented language for describing 

databases and application programs, called transactions. As 

a modelling tool of some slice of reality, TAXIS assumes, as 

do most recent semantic models, that our conceptualization 

of the world is populated by objects which are inter­

related, and it is the goal of the database users to capture 

the current state of our world knowledge (i.e., what are the 

objects whose existence is asserted and how do they r.elate 

to each other). I.n TAXIS, relationships between objects 

will be expressed through (factual) properties which are 

functions (e.g., john's age is 24). 

The description of the database, and its current state 

is made more manageabl.e by describing f irs·t a schema to 

which all database states must conform. In TAXIS this is 

accomplished by defining classes to which objects must 

belong and specifying for each class its "definitional 

properties", i.e., the allowable properties which its 

instances may have, together with any restrictions which the 

property values must satisfy. 

Note that a class, like a relation ([Codd70]), plays a 

dual role: 
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as a set name, it defines an extension - collection of 

current instances. 

as a type definition mechanism, it restricts the 

description of its potential instances in terms of 

properties and property values. 

TAXIS allows for the description of several types of 

data classes. 

(a) a number of basic (built-in) classes such as INTEGER 

and STRING. 

(b) f init;.ely de.f ined classes, resembling PASCAL subrange 

and scalar types, defined using a syntax like 

define AGE : = cl 0::160 I} ; 

or 

de.f~ge SEX.:= cl male, female I} ; 

define DIGIT ={I '0','1', ... ,'9' I} 

(c) form defined classes, obtained by "concatenating" 

together strings of other classes, e.g. 

define PHONE NO. : z DIGIT \@ DIGIT \@ DIGIT \@ 

cl·-· I} @DIGIT@ DIGIT@ DIGIT@ 

DIGIT ; 

Note that in all of the above cases the set of 

instances of a class is fixed once and for all and the 

instances of the class have no properties. 
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(d) variable classes, resemble relations; they describe 

potential instances in the way that relation schemas or 

PASCAL record types do, by describing the properties 

(attributes) applicable to its instances and classes 

(domains) which act as the range of property values. 

For example, 

define variable-class PERSON with 

name: 
address: 
age: 
spouse: 

PERSON-NAME; 
ADDRESS-VALUE; 
AGE; 
PERSON 

In add'iti.on, one may make further restrictions on 

possible property values by 

specifying a subset of properties as keys (i.e., all 

instances of the cla,ss must have unique combination of 

key-property values) 

s·pecifying a subset of properties as immutable (i.e., 

not modifiable by upda·te operators) 

specifying an integrity constraint an arbitrary 

formula in the First Order Language to be defined 

below; For example, 

key (name, addr.ess) 

immutable (name, address, sex); 

! (Vx) (is(x,PERSON) :::l ·cx.spouse = X)) 
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TAXIS provide two special variable classes, ANY, which 

by definition, has as instances all instances of all other 

variable classes, and NONE, which has no instances. For 

descriptive purposes, if c is a variable class and p one of 

its properties with definitional property value (domain) D, 

then Coop can also be used to refer to D. 

The instances of classes in TAXIS are called tokens 

(tuples in the relational model) and, as mentioned, they 

have factual properties and values conforming to the 

definitional properties provided for by the classes which 

they belong to. If t is a token and p a property, top is 

used to refer to the value of property p for t. TAXIS has 

special token nothing to indicate "no value" (vs unknown for 

missing value, see [Mylopoulos & Wong80]) and special binary 

predicate is which evaluates to true iff its first argument 

is a token instance of the second argument, which is a 

class. A database state can then be defined extensionally 

by the is predicate, by storing all current instances of 

classes, and the property values for all these tokens. 
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2.2 Well-formed Database States 

The following is a list of conditions which all TAXIS 

database must satisfy in order to be well-formed. Like the 

uniqueness of keys for relational databases, these 

conditions are part of the definition of the TAXIS data 

model and hence must be captured in the semantic 

description. 

(1) Fer every token t and every property p there is at most 

one token a such that top = a. 

(2) For evezy propezty p and classes C,D such that Coop = 

D, it must hold that for every instance t of c, there 

is an object a such that top = a, and either a is 

nothing or a is an instance of D. 

(3) For every property p, and tokens t and a, if top = a 

th,en. th;e;re e•x .ts·,t e.Jtas!Sie'S· C ana c·o;01JP· s.uch th:a·t t is am 

instance of C and a is an instance of Coop. 

(4) No two instances of C may have the same combintion of 

values for the key properties and not all key 

properties can have nothing as value. 

(5) All tokens which are instances of variable classes are 

also instances of ANY; 
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(6) NONE has no instances. 

3 . An FOL for Describing the Database: L 
2 

In order to state conditions on the data model, 

including integrity assertious, and for later use in the 

DML, we define L2 , a First Order Language (FOL) with 

identify by specifying, as usual, the constants, variables, 

function symbols, predicate symbols, terms and well-formed 

formulas (WFF's) of the language. 

Constants and variables come in three sorts 

token 

cla-ss 

Constants: numbers, strings, , all scalars listed in 

finitely-defined classes or obtained by 

concatenation in form-defined classes. 

va,riables: n., m, x, y 

Constants: ANY, NONE, INTEGER, STRING, all class names 

de-fined; 

Variables: X, Y, Z 

property 

Constants: all properties mentioned in variable class 

definitions 

Variables: 
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Note that one cannot name directly tokens belonging to 

variable classes (tuples), but one can use tuple variables 

x,y ranging over the class ANY (viz surrogates in [Codd79]). 

Among the functions and predicates we include all the 

standard ones dealing with numbers and strings (e.g., +, -, 

;, *, mod, (, >, 1, substr, ... ). In addition, the factual 

property value function o maps tokens and properties to 

tokens, while oo, the definitional property value function, 

maps classes and properties to classes. Finally the 

predicate is relates tokens to classes, and equality = is 

a·ssumed to have its s.tandard meaning for all sorts. 

The terms of the language are defined recursively in 

the normal way with infix notation for all functions.' In 

addition we restrict "tuple expressions" of the form eop, 

when p is a prope·rty, so tha·t in all such cases e must have 

the form x or xop1 , or x·op 1op2 or .... w.here x is a tuple 

v;.ilriae,Ie ana· p 1 , p 2 , . . . a.r.e· prope·rty names. 

Atomic formulas are obtained by applying binary 

predicates is, •, <, > to terms, and WFF' s are defined by 

combining atomic formulas with logical connectives v, /\, ... , 
=>, .. , and quantifiers \1 and 3. 

Integrity constraints are then WFF 's in thi.s language 

L2 and an additional well-formedness condition on a TAXIS 
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database is that it must satisfy the constraints stated. 

4. Semantics of the TAXIS Data Models 

4.1 Interpretations 

To give the semantics of a data model involves mapping 

from the syntactic objects defined in Sections 2 and 3 into 

a domain of mathematical objects. The tranditional way of 

doing this is by defining the notion of nstaten. In our 

case, we start by defining a schema model DB as a 7-tuple: 

where 

B is the domain of- tokens, consisting of the union 

of 

Q - the natural numbers 

'* t - the strings ove·r alphabet t 

1' an infinite linearly ordered domain 

distinct from Q u r'* 

i - the special object in ~, greater than all 

other elements in ~-

is a domain of entities, containing two special 

elements 0 ,1 c c 

is a domain 

p-valiS a partial function from e X ~ e 
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A state a of a schema model DB is then a 3-tuple (delta,rr,~) 

where 

0 is a function from variables to e u e u ~ 

rr iS a partial fUnCtion ~ X ~ ~ e 

~ iS a relatiOn between e and e (i.e., a SUbSet Of eX e) 

An interpretation I is then a mapping from a TAXIS data 

schema into DB states as follows: 

I maps constant numbers and character strings into their 

A * normal meaning in r.r and I: 

l maps scalar constants into distinct elements of ~ 

I () = l 

I maps classes into distinct elements of e 
I (ANY) = 1 c 

I (NONE) = 0 c 

I (oo) • p-val 

I maps each property into a distinct element of ~ 

All standard numeric and string operations are mapped into 

the corresponding mathematical functions 

...... gets its usual interpretation 

An interpretation I of the schema is then extended to 

an interpretation Ia into DB state a = (O,rr,~) as 
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I (x) = O(x) for all variables x 
0 

I (is) = ... 
0 

I
0

(o) = TT 

The interpretation is then extended to terms, formulas 

and WFF's of following methods of Fregean 

4.2 Admissible Models 

At this point we can complete our definition of the 

TAX Is data model semantics by expressing well-formednes.s 

const.raints which must be satisfied by a·ll databases. We 

can do this by placing direct restrictions on the 

"admissible states and interpretations". 

For example, in addition to the obvious restrictions 

that numbers and character sequences be mapped in the. 

natural way to numer.als and s<trings and similarly for thei.r 

respective operations, we must have 

- in all states o, I (t) a 
... I (INTEGER) for any token 

expression t iff I
0

(t) E ~ 

- in all states o, I
0

(t) ... I(STRING) for any token 

* expression t iff I
0

(t) E t 

- if C is the finitely-defined clases {li::jl} where i and j 

are numerals, then iff 

14 
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are scalar constants, then I (t) .. I(C) iff 
0 . 

if c is the form-defined class C "C "···"C lc- 2c- c- n' 

I
0
(t) .. I(C) 

Li ... I(Ci) 

iff I 
0 

( t) = L l I L 2 I • • · I Ln 

then 

where 

- for every t in T, t ... lc iff t .. d for some d in e, and 

t ~ Oc for no t. 

The restrictions on property values from Section 2. 2 

can be stated as conditions on states: 

for every p in ~ and c, d in e s·uch that p-val( c, p) ... d, and 

t € ~. either "(t,p) = i or t ... c and there exists t' € e. 
t' ... d and "(t,p) = t'~ 

for every p in ~. t in ~. t' in e. if "(t,p) = t' then 

there e'xist classes C',d in e .such that p-val(c,p) = d, t ... 

c and either t' • i or t' ... d. 

- for every p in ~. "(i,p) - l; 

if Dis a variable class with key proper~ies q 1 ,q2 , ···,qr 

then for every t and t 1 such that t ... I (D), and t 1 
... 

I (D), "(t,I(q.)) ~ "(t 1 ,I(q.)) 
1 1 

"(t,I(q.)) ~ i for some i 
1 

for some i and 

if ~ is a WFF which is stated as an integrity constraint, 
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Finally, the variable o must map token variables into 

e, class variables into e, and property variables into ~-

Alternatively, one can impose these restrictions on 

interpretations and states indirectly by stating them as 

axioms in L2 and then considering as admissible only those 

interpretations which make the axioms true. In fact we will 

give axioms schemata which depend in part on the actual data 

model being defined in order to avoid second order 

expressions. 

Tl is(n, INTEGER) for every number n 

(Vx) (is ( x, INTEGER) ::J x=l V x=2 V ... ) 

T2 is ( s, STRING) e·xactly for sequences of characters 

enclosed in quotes 

T3 if C E {li::if}, then 

T4 if C- {I k 1 ,x2 ,···,kn I} then 

~ (X , C) " X • k l V X"" k 2 V • • • V X = kn 

TS if c- c1 @ c2 ... @em' then 

is ( x , c) .. ( ~x1 , · · · , xm) ( is ( x 1 , C 1 ) 1\ · · · 1\ 

iS ( X , C (\ X • X 1 I X 2 • • • I Xm) 
- m D'• 

T6 (Vq)(VY,Z)(Vu)(Yooq=Z 1\ is(u,Y) ::J 

[ (5jv) (is(v,Z) 1\ u
0

q=v) V u
0

q • nothing] 
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T7 (Vq) (Vu,v) (u
0

q = v ~ (~Y,Z) 

(Y
00

q = Z A is(u,Y) 

A (is(v,Z) V v = nothing)) and 

(Vq)(Vu) ( 1 (is(u,ANY) ~ u
0

q =nothing) and 

(Vq) 
0

q = nothing 

T8 : (Vu)((3Y)is(u,Y) "is(u,ANY)) 

(Vu ) ( 1 is ( u , NONE ) ) 

T9 if q 1 , ... ,qm are the key properties of class c then 
. 

(Vx.,y:) [is(x,C) A if:l(y,C) ~- - (xoq
1 

= yoq 1 A 

A x~oqm•yoqm) J A 1 (xoq·1 -= l. 1\ xoq2-=l.., ••• ) 

TlO : .p for every integrity constraint .p 

ln order to be completely r igor·ous, one would of course 

ha-ve to prove that the two preceding d:e·f initions of "·well-

fo.rmedness" a:re equiva,lent. In the inte•rest of brevity, 

this step will be omitted here. In addition to giving a 

second read.ing to our cond.itions, one which may be more 

understandable to some audiences, the axiomatic version will 

be useful when proving properties about the programs running 

on the database. 

5. The TAXIS DML 

One of the advantages of the TAXIS model is that it 

integrates transaction definition into the database design 
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framework. This is done by defining a relatively simple 

DML, consisting of a number of simple statements and rules 

for building compound ones. In these statements, one can 

use expressions whose syntax is identical to that specified 

Simple Statements 

1. no op -- nil. 

2. assignment -- <variable> := <token-expression>. 

3. token insertion-- insert x inC with p1 :e1 , ···,p ,e; 
- -- n n 

where x is a variable, C is one of the variable 

classes of the 

properties and 

schema, are all its 

e · · · e are token express ions. i' ' n 

The effect of this statement is that variable x is 

assigned as value a new token which is inserted 

int.o cl~sses C a•nd ANY and for wh i.ch x p . = e 
1 
.• 

(i)· 1 

4. token deletion --delete it; 

where t is a tuple expression. Its effect is to 

remove the token referred to by t from all 

classes, including ANY, and set all property 

references to t to ~. 

5. property update top := e; 

where t is a tuple expression, p a property name 

and e is a token expression; the effect is the 

obvious one of ensuring that top = e 

18 
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6. object retrieval 

where x is a variable, C, one of the variable 

classes defined, p
1

, ... ,pm are its key properties 

and e
1

, ... ,em are token expressions. The effect 

of this statement is to assign the variable as 

value the unique token instance of c with property 

values e 1 , ... ,em' if it exists, nothing otherwise. 

In TAXIS, one can define complex statements using a 

number of standard control structures: 

8. conditional if e t;hen s·
1 

eis·e s
2

; 

where e is (quantif ie·r free) formula in L
2

• 

9. For-loop -- for x in C do S od; 

where x is a· variable, C a cla-ss, and S a 

S'tat.ement; the operations in S are e·xecuted once 

fo·r. eve.·ry ins·tanee ejf C a<nd it is a·ssumed tha·t S 

does not alter the set of instances of c, and that 

the final effect of the loop is independent of the 

order in which one stepped through the instances 

of C. 

10. grouping-- beg~n s 1 ~ ... ,S end. 
- n --· 

Finally TAXIS allows assertions to be 

interspersed with the statements of the transactions; if any 

of the assertions fails during program execution, an error 

is considered to have occurred. 
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In order to limit the size of this paper, we have 

chosen not to deal with variable declaration, parameter 

passing and exception specification in TAXIS. In any case 

these features are totally standard and have been 

extensively studied elsewhere ([London et 

al.78],[Ernst],[Cook78],[Levin77]). 

In the remainder of the paper, we aim to give the 

semantics of TAXIS programs in terms of state transitions 

and then propose a set of axioms and rules of inference for 

proving assertions about programs. In order to gain 

confidence in the appropriateness of our rules, we will 

present proofs of soundness and completeness for some of the 

more novel constructs in the language. 

20 
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6 . Relational Sematics of TAXIS DML 

Let DB be a schema model for a TAXIS database and let I 

be an admissible interpretation as defined in Section 4 . 

Since TAXIS programs are assumed to be deterministic, then 

with every statementS we associate a partial function M1 (S) 

from valid states to states which represents the sematics of 

that program. [1] This is done recursively by defining M1 

for the primitive statements first. 

Let o be a·oB-state (O,u,~) and let 0 1 
• (0 1 ,U 1 ,~ 1 ) be 

M1 (S)o; then for 

Rl. s 5 nil, o' = o 

R2. S 5 x := a, then u 1 = u, ~~ • -, 

X O'===O [2) with 0 1 (X) = I
0

e 

R3 S 5 insert x in C with pi:e, 
X 

0 I === 0 [ 2] 
call it k; 

with 0 1 (X) = min{tlt € i'-{l}(t,ANY)·e~·} 

~I - ~ u { ( k, I (c) ) , ( k, I (ANY) ) } 
0 c . 

R4 s !!i de·lete X where X i.s assumed to a tuple expression 

Let k = O(x) (hence k ~ it); 
X 

then 0 I --= 0 with 0 1 (X) = l, 

.,.I - ... -{(k,c) I c in C} 

[1) If the resulting state is not valid, M(S) is assumed 
to be undefined at that point. 

[ 2) The not at ion f =~= q indicates that f and g are 
identical except possibly at argument w. 
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(k ,q) 
"' ===="with "'(k,q) = ~ for every q in ~; 

(Note that well-formedness requires that there be no k' 

such that "(k',q) =kino). 

RS. s = w·p := e 

Let k = I (w), k = I
0

(e) 
0 

then O' = 6,~· = ~, and 

"' (k,p) = k with 1T = 11' otherwise 

R6 S ~ get object x from C with pi = ei 

~· • ~, "' • " and 

6' •== 6 where 

l~
k if there is k such that k ~ I 

6'(y) = and 7T(k,pi) = I
0

(ei) 

otherwise ; 
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The meaning of compound statements is then defined 

t:ecut:sively by: 

RS M (if a then sl else 52) C1 

{ M (51) C1 if Icr(a) is true 

M (52) C1 if Icr(a) is false 

R9 M(fot: y in C do S od)o = o if thet:e is no k in r:? such 

RlO. 

that K ~I (C), 
0 

othen~ise let k , · · ·, k be 1 n 
a·ll the 

elements of f in increasing ot:det: such that ki ~ I
0

(C) 

M 

Define states o 1 , ···,on+l' o 1 , ···,on as follows: 

o -= o' 

0'. 
1 

begin 

{ 

= o. with I 
1 

(y) = k. 
1 

51; 52; 

M (51) 
. 

M (5 ) 
1 

C1 

0. 
1 

... , sn ~ a 

M begin 5
2

; 

if n = 1 

= 

5 end C1 n if u > 1 

Finally, asset:tions allow the pt:ogt:ams to pt:oceed only 

if they evaluate to tt:ue 

Rll M( !a)o -

{ 
iff I

0
(a) is true 

undefined otherwise 
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These rules are assumed to determine the standard 

relational semantics of TAXIS programs, utilizing 

terminology of [Grief & Meyer79]. 

7 Partila Correctress Semantics 

7.1 The Assert ion lanugages L 3 and L 4 

Following the tradition of Floyd-Hoare logic, we will 

define an assertion language for talking about properties of 

programs. This language has two parts : a language L3 for 

making statements about states and then L4 , a language for 

making 'partial correctness assertions' (peas) about 

programs in the traditional pre-, postcondition form. 

We will extend L2 L3 by allowing new symbols whenever 

o and is appear in L2 . In both cases we find i.t simpler to 

d,e·s,cr ibe the new f:.u•nrc.ti.om and p.redi.ca.te symbols a-l.lowecd. 

thr ou.gh s impl.e· · g:r.ammar s. 

The grammar 

E := o 

E :• E [E1 ,p,E2 ] for every property name p generates new 

function symbols which will be allowed to appear in L3 

wherever o appeared in L2 . The intended interpretation of a 

o [b,q,e,] p is for it to have value e if a=b and q=p, 

otherwise continue to be aop. 
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Similarly, the grarnrner 

M := is 

M := M [e D ] where e is any L3 term and D is a class 

generates new predicate symbols which are allowed to appear 

in 

L3 whenever is appeared in L2 _ 

Formally, we extend interpretation to 

interpretations of L
3 

by d.efining I
0 

(f) for f generated 

from E by 

if f = o then I (f) = 11 
0 

- if f 

where 

<§' ~,z·.l:,2'2.}e'i'f'Z:1 = lG, (a•} am:el: z2 = l.c:J.(pr) t:lil.en I.G, (e) 

e!Ji,Sie' lQft) 

In a similar vein, I 
0 

(m) is defined for predicates 

generated from M by 

if m -is then l 
0 

(m) - Io is .. ~ 

i.n 

if m - m [a.: e] , Io (m) = Io <iii> u { ( I
0

(a), I
0

(e)), 

( I
0

.(a,), r
0

(ANY))} 

- if m - m [-a] , I (m) • I (m) -
0 0 

- < o o <a> , d > I d in e 1 

The language L4 of partial correctness assertions is 

then defined to contain formulae of the form P{S}Q where P 

and Q are assertions from L3 and s is a TAXIS statement. 
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The infinitive meaning of the construct P{S}Q is tht 

whenever P holds in state o and the execution S holds in .. 
state o 1

, then Q holds in o 1 • Stated more precisely, we 

will say P {S }Q is valid under interpretation I into model 

DB: 
. 
. I P{S}Q iff for every DB-state o, if I

0 
(P) is true 

(written ~~ P
0

) the :I Q
0 

where 0 1 = M1(S)o, if 0 1 exists. 

For convenience, we shall henceforth assume a fixed 

interpreta,tion I and drop subscript I. 

In order to prove assertions about general programs one 

will provid:e a set of axi.G>ms and rules of inf.erence which 

will allow us to deduce formally ("prove") statements of the 

form P{S}Q. For each pr imi ti ve statement of TAXIS, we 

provide an a•xiG>m schema a·s fol.l.ow.s: 

A·l Q { nil } Q for any pr ed'i.ca,te Q 

A2 Q < ejx > { x : • e } Q 

A3 (Sj y) ( - (y - nothi.ng ) is (y, ANY)) 

r. <is [y,e], o [y,q
1

,e
1

J ••• [y,q ,e ] I o, y/x> . n n 

insert x inC with q. • e.} Q where y does not occur in Q 
- 1 1 
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AS. Q<o(w,p,e]/o>{wop:=e}Q 

A6. (3t) (toq. ""' e. ~ Q<t/x>) V 
l l 

- (3t) ( toq i ""' e i) ~ 

Q <nothing I x >){get object x from C with q. - -- ~ 
e. }Q 
~ 

For compound statements, we offer the following rules 
of inference (again schemata}:· 

A7. 

AS. 

A9. 

P{S1}Q,Q{S2 }R 

P{Si;S 2 }R 

P{if a then s 1 else s 2 }Q 

~V't:) (!.! ( t, z) :i ~ ( t, c) ) ~- .!.§. (X, z) ~ R { s} R <!.! [X, z] I.!.§. 

R<NONE/Z>{for x in C do S od} R~C/Z> 

where Z does not occur in s 

p { s . ; 52; •.. , s }Q 
··AlO. 1 

. n P{beginS1 ; ... ,Snend}Q 

All. P{!a}a A P for assertion a 

Finally, we add the inference rule 

27 



Al2 . P=>P ' , p ' { S} Q ' , Q '::::>Q 
P{S}Q 

The proof of some pea :P{S}Q will admit lines from the 

deductive theory of L3 (which includes the theory of numbers 

and the axioms of the data model TI to TID) as well as the 

theory of L4 (axioms and rules Al to AlO) and the rules of 

standard first order logic. 
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8. Soundness and Completeness of the Proof Theory 

In order to have confidence in the pea derived using 

the rules from the previous section, we must show that they 

conform to the semantics of the TAXIS programming language, 

described in Section 6. In other words, we have to prove 

that the theory is sound: 

if : P{S}Q then I=IP{S}Q . 

To do this, it is sufficient to verify all axioms and 

rules of inference presented. We will do so only for axiom 

A3 and rule A9; the other proofs are quite similar and 

straightforward. 

Assume a fixed interpretation I for the remainder of 

the p·r.oof. To ver i.fy a,x iom A3 , w.e ml!l,s,t s·how that i.f w.e I.e~t 

R be 

(3y) (-(y = ) 1\- is(y,ANY) 1\ Q < yjx, 

then I=IR{insert x inC with pi : ei}Q. Le·t a be any state 

where R is true and· let a' • M(insert x inC with p.:e.)a. 
-- 1 1 

To begin with note that in order to show that 

implies 
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where o and T are arbitrary states, it is sufficient to show 

that I
0 

and IT agree - everywhere except at 11 1 , • • • ,pn and 

that I (a.) = I ( 0.). In our case, by the assumption that 
0 l T l 

is true, there exists token j such that 0 (y) = j, 
0 

j p J., not j 1 I (ANY)) (and hence by the semantic 

restrictious in Section 4.2, not j 1 d for any d in C); 

furthermore, by definition of L
3

, I
0

(is[y:C]) = 

and I
0

(o[y,p1 ,e1 ] ... /o)=g 

Therefore, defining 

o" = (0","", 1 ") such that 6"(x) = j,""(j,p1 ) = I
0

(e 1 ) and 

... n = u { (j, I
0

(C)), (j, I
0

(ANY))} and o" = o otherwise, we get 

(by our note above) that I nCQ<x;x,is/is,o/o> 
0 

since 

1Ci7(Q;<y/x, is[y,C:]ji,s·,. ar[y,p1_,.e,
1
]' . .... Je.)) wa.s aiSI.S\\!llrn.ecd t0 l;):e· 

true. On the other, the s·ema..n.tics of in,s,e,rt (R3) show o' to 

be equivalent to o" since the replacement of j by k makes o" 

identical to o'. But then by our definition, Q is also true 

in o' since we only consider equivalent states. 

Next, to verify the soundness of rule A9, lat R be a 

predicate and let o be a state such that R<NONE/R> is true 

in o. Then, considering the definition of relational 

semantics R9 in Section 6, let T s o except that 

6T(Z) = d,d, a distinct value from all other classes and 

1 = ... 
T · 0 

But this means that Z has no instances in state T 

and I (R) msut be true because it has the same values for 
T 
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I
0

(NONE) and IT(z). (If R<NONE/z> was true in o then R could 

not have had expressions of the form Zoop). 

Letting k1 , · · ·, kn be the instances of C in o, define 

states T 1 , ... , T n+ 1 , T 1 , · · · , T n, T 1 , · · · , T n according to the 

following diagram 

insert y in Z Tn+l 

But then the predicate (V 

t)(is(t,z) :::1 is(t,C)) 1\ is(y,C) 1\ is(Y,e) 1\ is(y,Z) is also 

true in 'T1 , s that R<is[y,Z]/is> is true in 

T 
1 

by the premise of the inference rule. One can then 

repe.a·t the a•rg:nment in sta.tes T 2 , etc. until we reach T n+l 

wnce~J:.e R is, tJ:,e:e: a\f:lc:i: z };):a;s tm'e stame s;e)t e•f i\lil'Sit·a,J'lc·e!s· 0<f c 

doe•s in on+l since· s is not a:llowed to alte·r the s:et of 

instances of C. But the R<C/Z> is true in on+l since, as we 

noted before, R does not ha-ve express ions of the form 

Zooq • 
Conversely, one would want to have some confidence that 

all pca•·s which are true of a program can be derived u.sing 

the proof rules. That is we wish to show the completeness 

of our proof theory: 

if . I P{s}Q then P{s}Q. But of course, the 

incompleteness of the proof theory of numbers assures that 
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this cannot be the case. Instead we use 

Cook's definition of relative completeness: 

Let 

Sps(Q,S) = {r I there exists o such that F
1
Q(o) and m(S)o = r}. 

Then L3 is expressive relative to I and L2 if for every 

assertion Q and program S, there is an assertion Q in L
3 

which is true exact~y in the states in Sps(Q,S). We will 

denote Q by Sps(Q,S). 

A proof system for TAXIS program is then complete in 

the sense of Cook if fo·r eve·ry interpretation I such that L
3 

is expressive, F 1P{S}Q impli.es T P{S}Q where T is the 
ri rl 

set of all assertions L in L3 such that F 1L. 

Considering axioms Al to A6, note that for each 

primitive statement s
0 

and predica•te Q, the axioms pres·cril:>e 

a p.r.ed.tca·te wh.lch w.e can d:en0te a.s [ SllllQ, su.ch that 

[S 0 JQ{S
0

}Q. The important observation is that if a is any 

state such that Q is true in M(S
0

)a then [S
0

]Q must have 

been true in o. But then, if R is a predicate such that 

F IR{S 0 }Q, then whenever R is true in a, [S
0

]Q is also true 

in a, i.e., FIR~ [S
0

]Q. But then R ::1 [S
0

]Q is probable 

since we assume an oracle above provability in L3 and 

[S0 ]Q{S0 }Q by the axiom, leading to R{S
0

)Q by inference 

rule All. 

The inference rules are proven complete by induction on 

the size of the program s. We will consider only the novel 
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rule A9, since the others have already been treated in the 

literature [Cook 78]. The completeness of rule A9 is of 

independent interest since there are a number of proposed 

rules for For~loop ([Hoare & Wirth?],[London 78],[Gardarin & 

Melkanoff]) which are demonstrably incomplete [Borgida 81]. 

Consider then arbitrary predicates P and Q and 

statement sequenceS such that F
1
P{for x inC do S od}Q. In 

order to obtain P{for x in C do S od}Q, it is sufficient to 

find predicate R and variables Z,y not occurring free in S, 

P, or Q such that 

( i ) F I ( Vt) ( is ( t , z ) ::> i.s ( t, C) ) 1\ is ( y, C) 1\ - is ( y, Z) 

1\ R{S}R < is [y,Z]/is > 

(ii) F
1
P ::> R < none/Z > 

To this end, define R to be Sps(P, for x in Z do S od). 

Then, F P :::. R < NONE/Z > since by the summation of For­

loops, (R9), for x in NONE do S od !! nil and Sps(P,ni.l) = P . 

Also F R < C/Z > :::. Q by our assumption and definition of 

Sps. This leaves ( i) to be proven. Let o be any state 

where ( Yt ) ( is ( t , Z ) :::1 is ( t , C ) ) 1\ is ( y , C ) 1\ - is ( y , Z ) 1\ R is 

true. By definition of R as strongest post-condition, there 

exists such that p is true in and 

M(for x is z do s od)o0 = o and let o' = M(S<y/x>)o. 
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• Finally, define o
0 

to be identical to except that 

~ n = ~0 U {(I
0 

(y),I(Z))}, 
00 0 0 

and let 

• o" = M(for x in Z do S od)o
0

• Then, by definition of Sps, R 

• • must be true in a0 • Furthermore, o differs from o' only by 

the fact that y is an instance of Z in o". This is true 

because of our careful restrictions on the relationship 

between S,C,Z, namely 

(a) S is independent of Z (so it is not affected by is at 

Z) 

(b) s does not alter the value of y nor the instances of C 

(so is (y,C) in o 0 ). 

But then, if R is true in On , then R < is[y,Z]/is > 

must be true in o', concluding our proof. o 

We conclude by remarking that, as elsewhere (e.g. , 

[London 78]), we do not capture the complete aspects of 

implementation issues in our relational and pea semantics. 

In particular, constraints such as uniqueness of keys, non-

dangling references, etc., are not checked explicitly in the 

specifications in Sections 6 and 7. There is, however, no 

theoretical obstacle for incorporating them in the rules. 
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10. Conclusions 

We have presented in this paper the semantics of a 

kernel of the TAXIS database model and data manipulation 

language. This language is prototypical of the more recent 

data models ([Codd 80],[Chen 76]) and in addition integrates 

into one coherent framework the schema description, the DML 

and integrity assertions. We presented the "relational" 

semantics of the TAXIS model, by describing a mathematical 

model for its schema, including constraints on admissible 

database states, and by specifying the sta·te transition 

semantics of the DML cons.tructs. Based on this mathematical 

model of the semantics, we built up an exiomatization and 

proof theory with integrity partial correctness assertions 

about. TAXIS programs with axioms about the schema and the 

p·r0o·f theory of the First Ord:er Predicate Ca.lcu.lu.s with 

identity for integ.ers and str ing:s. 

and relative completeness of our 

gained some confidence that this 

inconsistent with the relational 

By proving the soundness 

proof theory, we have 

specification is not 

semantics and that it 

provides a useful tool for proving properties of programs of 

a DML. 

By omitting this last step, previous exiomatizations 

have fallen short of the derived standards. For example, 

the axiomatization of a DML in [Gardar in & Melkanoff 79], 

intended for a similar domain, is not complete and possibly 
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not sound. Their rule of inference for assignment, 

DO: Q < f/x > <e = f}Q , 

is either incomplete, by not dealing at all with triple 

attribute value updates such as z0age : = 20, or it is not 

sound since the assertion 

·-

provable by the rule DO, is not true when z0spouse = y. 

Also, the inference rule for For-loops 

(DS) 

is incomplete because although 

(true){for x st- do x age:= l}(Yy)(y0age v. 0) (*) 

is clearly valid, the only way to prove it would be to find 

such tha·t, among others, and 

y> (y0age " 0); but true ::l P1 means P1 is a tautology and 

yet, under any sensible interpretation true ::l (Y 

y)(y0age" 0, thus showing that no such P1 exists and that* 

is not provable. 

In conclusion, we feel that theoretical exercise such 

as that carried out above is an important aspect of the 

definition of data models and their manipulation languages, 

one which provides indispensable support for real-life 
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applications by presenting consistent and complementing 

views of the model aimed at diverse audiences such as 

systems designers, applications programmers, and verifiers. 

Acknowledgments 

We are grateful to Steven Cook, Charles Rackoff, and 

John Mylopoulos for revealing discussions and important 

pointers to the literature of program verification. 

Special thanks to Carole Agazzi for her excellent 

typing. 

References 

Borgida, A., "Variations on the theme of Floyd-Hoare axioms 
of For-loops", unpublished manuscript, DCS, University 
of Toronto, February 1981. 

Casanova, M. A., P. A. Bernstein, "A Formal 
Reasoning about Programs Accessing a 
Database", ACM Transactions on Programming 
and Systems,-r,3 (July 1980) .· 

System for 
Relational 

Languages 

Codd, E. F., "A Relational Model of Data for Large Shared 
Data Banks·", £!Q! 13,6 (June 1970) . 

Codd, E. F., "Extending the Relational Model of Data to 
Capture More Meaning", ACM Transactions on Database 
Systems, 4,4 (December 1979). 

Cook, S. A., "Soundness and Completeness of an Axiom System 
for Program Verification", SIAM J. Comput., 7,1 
(February 1978). 

37 



Earnst 

Gardarin, G., M. Melkanoff, "Proving Consistency of Database 
Transactions", Proc. 1979 VLDB (October 1979). 

Greif, I., A. R. Meyer, "Specifying the Semantics of While­
Programs: A Tutorial and Critique of a Paper by Hoare 
and Lauer", M.I.T. Laboratory of Computer Science, TM-
130 (April 1979). 

Hammer, M., D. McLeod, "Semantic Integrity in a Relational 
Database System", Proc. 1975 VLDB (August 1975). 

Hoare, C. A. R., "Axiomatic Basis for Computer Programming", 
12,10 (October 1969). 

Hoare, c. A. R., P. Lauer, "Consistent and Complementary 
Formal Theories of the Semantics of Programming 
Languages", Acta Informatica, 3, pp. 135-155, 1973. 

Hoare, C. A. R., N. W-irth, "An Axiomatic Definition of the 
Programming Language PASCAL", Acta Informatica, 2,4, 
1973. 

Levin, R., Program Structure for Exceptional Condition 
Handling, Ph.D. Thesis,-- DCS, Carnegie-Mellon 
University, 1977. 

Lond.on, R., et al., "'Proof Rules for the Programming 
Lang.uage EUCLID", Acta Informatica, 10, 1, 1981. 

Mylopoulos, J. , B·ernste in, P. A. , H. K. T. Wong, "A Lang,uag.e 
Feature for the Design of Inte.ractive Information 
Siys·tems", ACM Transaction on Database Systems, 5,3, 
1980. 

Mylopoulos, J., H. K. T. Wong, "Some Features of the TAXIS 
Data Model", Proc. 1980 VLDB, Montreal, 1980. 

Oppen, D., Program Verification and Logic, Ph.D. Thesis, 
DCS, University of Toronto, 1975. 

Smith, J. M., D. C. P. Smith, "Database Abstractions: 
Aggregation and Generalization", ACM Transactions on 
Database Systems, 2,4, 1977. 

Tsichritzis, D., F. Lochorsky, Data Models, Academic Press, 
to appear in 1981. 

38 

•• 



'\ 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or t.he Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



.;; .... ~ 
TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

.... - -i-




