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ABSTRACT

We use a fully coupled cosmological simulation including dark matter dynamics, multispecies hydrodynamics,
nonequilibrium chemical ionization, flux-limited diffusion radiation transport, and a parameterized model of star
formation and feedback (thermal and radiative) to investigate the epoch of hydrogen reionization in detail. In this
paper, the first of several application papers, we investigate the mechanics of reionization from stellar sources
forming in high-z galaxies, the utility of various formulations for the gas clumping factor on accurately estimating
the effective recombination time in the intergalactic medium (IGM), and the photon budget required to achieve
reionization. We also test the accuracy of the static and time-dependent models of Madau et al. as predictors of
reionization completion/maintenance. We simulate a WMAP7 ΛCDM cosmological model in a 20 comoving Mpc
cube, resolved with 8003 uniform fluid cells and dark matter particles. By tuning our star formation recipe to
approximately match the observed high-redshift star formation rate density and galaxy luminosity function, we
have created a fully coupled radiation hydrodynamical realization of hydrogen reionization, which begins to ionize
at z ≈ 10 and is completed at z ≈ 5.8 without further tuning. We find that roughly two ionizing photons per H
atom are required to convert the neutral IGM to a highly ionized state. After reionization concludes, we find that
the quantity ṅion × (1 Gyr)/nH is ∼9 at z = 5, in rough agreement with measurements of the ionizing emissivity by
Becker & Bolton. The complicated events during reionization that lead to this number can be generally described as
inside-out, but in reality, the narrative depends on the level of ionization of the gas one attributes as being ionized.
We find that the formula for the ionizing photon production rate needed to maintain the IGM in an ionized state
derived by Madau et al. should not be used to predict the epoch of reionization completion because it ignores history-
dependent terms in the global ionization balance which are not ignorable. We find that the time-dependent model
for the ionized volume fraction QH ii is more predictive, but overestimates the redshift of reionization completion
zreion by Δz ≈ 1. We propose a revised formulation of the time-dependent model that agrees with our simulation to
a few percent accuracy. Finally, we use our simulation data to measure the absorption of ionizing radiation due to
circumgalactic gas resolved on our mesh and find f̄esc(CGM) ≈ 0.7.
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Online-only material: color figures

1. INTRODUCTION

The Epoch of Reionization (EoR) is an active area of
observational, theoretical, and computational research. Obser-
vations constrain the tail end of hydrogen reionization to the
redshift range z = 6–8 (see reviews by Fan et al. 2006;
Robertson et al. 2010). These observations include the pres-
ence of Gunn–Peterson troughs in the Lyα absorption spectra
of high-redshift quasars (Songaila 2004; Fan et al. 2006), and
the evolution of Lyα emitter luminosity function (Stark et al.
2010; Schenker et al. 2014). Observations from the Wilkinson
Microwave Anisotropy Probe (WMAP) and Planck satellites tell
us that the universe was substantially ionized by z = 10, but
can say little about the reionization history or topology (Spergel
et al. 2003; Komatsu et al. 2009; Jarosik et al. 2011; Planck
Collaboration et al. 2013). High-redshift 21 cm observations
hold forth great promise of elucidating the details of this tran-
sition (Barkana & Loeb 2007; Pritchard & Loeb 2012), but the
results of these observations are still unknown.

It is believed that early star-forming galaxies provided the
bulk of the UV photons responsible for reionization (Ouchi et al.
2010; Robertson et al. 2010, 2013; Ellis et al. 2013; Schenker
et al. 2013), but early QSOs may have also contributed (Madau

et al. 1999; Bolton & Haehnelt 2007; Haardt & Madau 2012).
The “galaxy reionizer” hypothesis has been greatly strengthened
by the recent advances in the study of high-redshift galaxies
afforded by the IR-sensitive Wide Field Camera 3 on board
the Hubble Space Telescope (e.g., Robertson et al. 2010, 2013;
Bouwens et al. 2011a, 2011b; Schenker et al. 2012, 2013, 2014;
Oesch et al. 2014; Schmidt et al. 2014). Within uncertainties,
the luminosity function of z = 6 Lyman break galaxies appears
to be sufficient to account for reionization at that redshift from a
photon counting argument (Bolton & Haehnelt 2007; Robertson
et al. 2010; Bouwens et al. 2012), but insufficient at z = 8
(Schmidt et al. 2014). Among the observational uncertainties are
the faint-end slope of the galaxy luminosity function (Wise &
Cen 2009; Labbé et al. 2010; Bouwens et al. 2012), the spectral
energy distribution (SED) of the stellar population (Cowie et al.
2009; Willott et al. 2010; Haardt & Madau 2012), and the escape
fraction of ionizing photons (Wyithe et al. 2010; Yajima et al.
2011; Mitra et al. 2013). Among the theoretical uncertainties
are the number of ionizing photons per H atom required to bring
the neutral intergalactic medium (IGM) to its highly ionized
state by z = 6, the clumping factor correction to the mean IGM
recombination time (Pawlik et al. 2009; Raicevic & Theuns
2011; Finlator et al. 2012; Shull et al. 2012; Robertson et al.
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2013), and the contribution of Pop III stars and accreting black
holes to the early and late stages of reionization (Bolton &
Haehnelt 2007; Trac & Gnedin 2011; Ahn et al. 2012).

When assessing whether an observed population of high-z
galaxies is capable of reionizing the universe (e.g., Robertson
et al. 2013), observers often use the criterion derived by Madau
et al. (1999) for the ionizing photon volume density Ṅion
necessary to maintain the clumpy IGM in an ionized state:

Ṅion(z) = n̄H(0)

t̄rec(z)
= (1051.2 s−1 Mpc−3)

(
C

30

)

×
(

1 + z

6

)3 (
Ωbh

2
50

0.08

)2

, (1)

where n̄H(0) is the mean comoving number density of H atoms,
C ≡ 〈n2

H ii〉/〈nH ii〉2 is the H ii clumping factor (angle brackets
denote volume average over a suitably large volume that the
average is globally meaningful), and the remaining symbols
have their usual meanings. The origin of this formula is a
simple photon counting argument, which indicates that in order
to maintain ionization at a given redshift z, the number of
ionizing photons emitted in a large volume of the universe
multiplied by a characteristic recombination time, denoted t̄rec,
must equal the number of hydrogen atoms: Ṅion × t̄rec = n̄H(0).
The clumping factor enters as a correction factor to account for
the density inhomogeneities in the IGM induced by structure
formation. We note that t̄rec is not the volume average of the local
recombination time of the ionized plasma, as this would heavily
weight regions with the longest recombination times; i.e., voids.
A proper derivation of Equation (1) shows that t̄rec ∝ 〈t−1

rec 〉−1,
which weights regions with the shortest recombination times,
i.e., regions at the mean density and above.

Equation (1) is based on a number of simplifying assumptions
discussed by Madau et al. (1999), including the assumption
t̄rec 	 t . It is this assumption that allows history-dependent
effects to be ignored, and a quasi-instantaneous analysis of the
photon budget for reionization to be performed. The validity
of this assumption is naturally redshift-dependent, but it is also
dependent upon the adopted definition of t̄rec. A second comment
about Equation (1) is that it does not ask how many ionizing
photons per H atom are required to convert a neutral IGM to
a fully ionized one, only how many are required to maintain
the IGM in an ionized state. Because the recombination time is
short at high redshifts, it is expected that this number is greater
than one.

In this paper, we examine these and related topics within
the context of a fully coupled numerical simulation of
cosmic reionization based on a new flux-limited diffusion
(FLD) radiation transport solver installed in the Enzo code
(Norman et al. 2013; Bryan et al. 2014, hereafter Paper I).
Our approach self-consistently couples all the relevant physical
processes (gas dynamics, dark matter dynamics, self-gravity,
star formation/feedback, radiative transfer, nonequilibrium
ionization/recombination, heating and cooling) and evolves the
system of coupled equations on the same high-resolution mesh.
We refer to this approach as resolution matched, in contrast to
previous approaches which decouple and coarse-grain the ra-
diative transfer and ionization balance calculations relative to
the underlying dynamical calculation. Our method is scalable
with respect to the number of radiation sources, size of the
mesh, and the number of computer processors employed. This
scalability permits us to simulate cosmological reionization in
large cosmological volumes (L ∼ 100 comoving Mpc) while

directly modeling the sources and sinks of ionizing radiation,
including radiative feedback effects such as photoevaporation
of gas from halos, Jeans smoothing of the IGM, and enhanced
recombination due to small-scale clumping. In this paper, the
first of several application papers, we investigate in a volume of
modest size (L = 20 comoving Mpc) the mechanics of reioniza-
tion from stellar sources forming in high-z galaxies, the role of
gas clumping, recombinations, and the photon budget required
to complete reionization.

By analyzing this simulation, we are able to critically examine
the validity of Equation (1) as a predictor of when EoR
will conclude, and we can calculate the integrated number of
ionizing photons per H atom needed to ionize the simulated
volume γion/H = ∫

dtṄion/n̄H(0). Ignoring recombinations
within the virial radii of collapsed halos, we find γion/H ≈ 2.
We also examine whether modern revisions to Equation (1)
using alternatively defined clumping factors (Pawlik et al.
2009; Raicevic & Theuns 2011; Finlator et al. 2012; Shull
et al. 2012) are improvements over the original. We find that
they systematically overestimate the redshift of reionization
completion zreion because the condition t̄rec/t 	 1 is never
obeyed. We study the accuracy and validity of the time-
dependent analytic model of Madau et al. (1999), and find
that while it is in better agreement with the simulation, it also
overestimates zreion because it ignores important corrections to
the ionization term at early and late times.

This paper is organized as follows. In Section 2, we discuss
the design criteria for the simulation and briefly outline the ba-
sic equations and implementation of the FLD radiation transport
model, referring the reader to Paper I for a more complete de-
scription of the numerical algorithms and tests. In Section 3, we
present some general features of the simulation and demonstrate
its broad consistency with observed star formation rate density
and high-redshift galaxy luminosity function. In Section 4, we
examine the accuracy of different clumping factor approaches
to estimating the redshift of complete reionization. In Section 5,
we derive a global estimate for the circumgalactic absorption
of ionizing radiation from our simulation. In Section 6, we test
a simple analytic model for the evolution of the ionized vol-
ume fraction QH ii and present an improvement to the model
which better agrees with our simulation. In Section 7, we dis-
cuss the implications of our results on the current understanding
of reionization. Finally, in Section 8, we end with a summary of
our main results and conclusions.

2. METHOD

2.1. Simulation Goals and Parameters

We use the Enzo code (Paper I), augmented with a FLD
radiative transfer solver and a parameterized model of star
formation and feedback (Norman et al. 2013) to simulate
inhomogeneous hydrogen reionization in a 20 Mpc comoving
box in a WMAP7 ΛCDM cosmological model. We justify the use
of FLD in Section 2.3 below. Details of the numerical methods
and tests are provided in Paper I. Here we briefly describe
the simulation’s scientific goals and design considerations to
put it into perspective with other reionization simulations. For
completeness, the physical equations we solve and the treatment
of the ionizing sources and radiation field are included below.

Our principal goal is to simulate the physical processes oc-
curring in the IGM outside the virial radii of high-redshift
galaxies in a representative realization of inhomogeneous
reionization. We wish to simulate the early, intermediate, and
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late phases of reionization in a radiation hydrodynamic cos-
mological framework so that we may study the nonequilibrium
ionization/recombination processes in the IGM at reasonably
high resolution self-consistently coupled to the dynamics. In
this way, we can study such effects as optically thick heating
behind the I fronts (Abel & Haehnelt 1999), Jeans smoothing
(Shapiro et al. 1994; Gnedin 2000b), photoevaporation of dense
gas in halos (Shapiro et al. 2004), and nonequilibrium effects
in the low density voids. Because we carry out our simulation
on a fixed Eulerian grid, we do not resolve the internal pro-
cesses of protogalaxies very well. In this sense, our simulation
is not converged on all scales. Nonetheless, Equations (2)–(7)
are solved everywhere on the mesh self-consistently, including
ionization/recombination and radiative transfer inside proto-
galaxies. The escape of ionizing radiation from galaxies to the
IGM is thus simulated directly, and not introduced as a param-
eter. We use a star formation recipe that can be tuned to closely
reproduce the observed high-z galaxy luminosity function, star
formation rate density (SFRD), and redshift of reionization com-
pletion. This gives us confidence that we are simulating IGM
processes in a realistic scenario of reionization.

We simulate a WMAP7 (Jarosik et al. 2011) ΛCDM cos-
mological model with the following parameters: ΩΛ = 0.73,
Ωm = 0.27, Ωb = 0.047, h = 0.7, σ8 = 0.82, ns = 0.95, where
the symbols have their usual meanings. A Gaussian random field
is initialized at z = 99 using the Enzo initial conditions gener-
ator inits using the Eisenstein & Hu (1999) fits to the transfer
functions. The simulation is performed in a comoving volume of
(20 Mpc)3 with a grid resolution of 8003 and the same number
of dark matter particles. This yields a comoving spatial resolu-
tion of 25 kpc and dark matter particle mass of 4.8 × 105 M
.
This resolution yields a dark matter halo mass function that is
complete down to Mh = 108 M
, which is by design, since
this is the mass scale below which gas cooling becomes inef-
ficient. However, due to our limited box size, our halo mass
function is incomplete above Mh ≈ 1011 M
 (see Figure 4). In
a forthcoming paper, we will report on a simulation of identical
design and resolution as this one, but in a volume 64 times as
large, which contains the rarer, more massive halos. With regard
to resolving the diffuse IGM, our 25 kpc resolution equals the
value recommended by Bryan et al. (1999) to converge on the
properties of the Lyα forest at lower redshifts, is three times
better than the optically thin high resolution IGM simulation
described in Shull et al. (2012), and nearly four times better
than the inhomogeneous reionization simulation described in
Trac et al. (2008).

As described below in Section 2.4, we use a parameterized
model of star formation calibrated to observations of high-
redshift galaxies. The star formation efficiency parameter f∗
is adjusted to match the observed star formation rate density
in the interval 6 � z � 10 from Bouwens et al. (2011a).
The simulation consumed 255,000 core hours running on 512
cores of the Cray XT5 system Kraken operated by the National
Institute for Computational Science at ORNL.

2.2. Governing Equations

The equations of cosmological radiation hydrodynamics
implemented in the Enzo code used for this research are
given by the following system of partial differential equations
(Paper I):

∇2φ = 4πg

a
(ρb + ρdm − 〈ρ〉), (2)

∂tρb +
1

a
vb · ∇ρb = −1

a
ρb∇ · vb − ρ̇SF, (3)

∂tvb +
1

a
(vb · ∇) vb = − ȧ

a
vb − 1

aρb

∇p − 1

a
∇φ, (4)

∂te +
1

a
vb · ∇e = − 2ȧ

a
e − 1

aρb

∇ · (pvb)

− 1

a
vb · ∇φ + G − Λ + ėSF (5)

∂tni +
1

a
∇ · (nivb) = αi,jnenj − niΓph

i ,

i = 1, . . . , Ns (6)

∂tE +
1

a
∇ · (Evb) = ∇ · (D∇E) − ȧ

a
E

− cκE + η. (7)

Equation (2) describes the modified gravitational potential φ due
to baryon density ρb and dark matter density ρdm, where a is the
cosmological scale factor, g is the gravitational constant, and
〈ρ〉 is the cosmic mean density. The collisionless dark matter
density ρdm is evolved using the Particle Mesh method (equation
not shown above), as described in Hockney & Eastwood (1988)
and Paper I. Equations (3), (4), and (5) are conservation of mass,
momentum, and energy, respectively, in a comoving coordinate
system (Bryan et al. 1995, 2014). In the above equations, vb ≡
a(t)ẋ is the proper peculiar baryonic velocity, p is the proper
pressure, e is the total energy per unit mass, and G and Λ are
the heating and cooling coefficients, respectively. Equation (6)
describes the chemical balance between the different ionization
species (in this pape r, we used H i, H ii, He i, He ii, He iii
densities) and electron density. Here, ni is the comoving number
density of the ith chemical species, ne is the electron number
density, nj is the ion that reacts with species i, and αi,j are the
reaction rate coefficient between species i and j (Abel et al. 1997;
Hui & Gnedin 1997), and finally Γph

i is the photoionization rate
for species i.

2.3. Radiation Transport

Equation (7) describes radiation transport in the FLD approx-
imation in an expanding cosmological volume (Reynolds et al.
2009; Norman et al. 2013). E is the comoving gray radiation
energy density. The flux limiter D is a function of E, ∇E, and
the opacity κ (Morel 2000), and has the form:

D = diag (D1,D2,D3) , where (8)

Di = c
(
9κ2 + R2

i

)−1/2
, and (9)

Ri = max

{ |∂xiE|
E

, 10−20

}
. (10)
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In the calculation of the gray energy density E, we assume
Eν(x, t, ν) = Ẽ(x, t) χE(ν), therefore:

E(x, t) =
∫ ∞

ν1

Eν(x, t, ν) dν

= Ẽ(x, t)
∫ ∞

ν1

χE(ν) dν, (11)

which separates the dependence of E on coordinate x and time t
from frequency ν. Here χE is the SED taken to be that of a Pop II
stellar population similar to one from (Ricotti et al. 2002).

The validity and limitations of the FLD approximation
to modeling the transport of ionizing radiation for cosmic
reionization simulations is worthy of discussion. First note that
within the FLD approximation, the radiative flux F is parallel
to the gradient of the radiation energy density: F = −D∇E.
Therefore, radiation is guaranteed to propagate radially around
a point source, as it should. Inside an ionized bubble, the gas
is optically thin, and radiation streams radially at the speed of
light toward the I front where it is absorbed. FLD reproduces
this behavior precisely. In the limit that the opacity κ → 0, the
flux limiter D is formulated so that F → cEê∇E , where ê∇E

is the unit vector in the direction of ∇E, a result that is easily
verified from Equations (8)–(10). As a consequence of these
two properties, FLD is able to faithfully reproduce the flow of
radiation around isolated ionizing point sources. When FLD is
coupled with an accurate ionization kinetics solver, our method
accurately models the expansion of I fronts in uniform and
stratified media (Paper I). Thus, in a cosmological reionization
simulation, the early stages of I-front expansion are modeled
accurately by our method when the H ii regions are isolated.

As H ii regions expand, there can be two occurrences: (1)
H ii regions from two or more isolated sources merge; and (2) I
fronts sweep over dense, opaque clumps of gas casting a shadow
behind them. Both of these occurrences create inhomogeneities
and anisotropies in the radiation field. As FLD evolves the
radiation energy density, which is the zeroth angular moment
of the radiation intensity, it does not model anisotropies in the
radiation field. It is therefore important to gauge the magnitude
of the errors incurred in these two circumstances, and their
impact on large scale reionization simulations. In Paper I, we
document the performance of our method on two idealized test
problems which address these two circumstances individually.
We show that FLD obtains a shape and size for the consolidated
H ii region that is in better agreement to the adaptive ray
tracing results of Wise & Abel (2011) than the results obtained
using the variable tensor Eddington factor method of Petkova
& Springel (2009), who first introduced the test problem. We
note that none of the methods explicitly treat the transport of
ionizing recombination radiation, which would be important to
do for detailed comparisons. We also show that FLD accurately
predicts the photoevaporation time of a dense blob despite the
method’s inability to cast a shadow. A qualitative difference
between FLD and ray tracing occurs when an opaque cloud
is being ionized from one side. Ray tracing will leave a small
amount of neutral gas on the “night side” of the cloud due to
self-shielding, whereas this neutral gas is not present in a FLD
simulation since the cloud is illuminated from all sides once the
I front has swept over the cloud.

Intuitively, these small scale inhomogeneities and anisotropies
should become less important as overlap is approached and
neutral gas is illuminated from multiple directions. To illustrate
this, in the Appendix we compare FLD and ray tracing solutions

on a scaled cosmological reionization test problem with identical
mass and spatial resolution to the results presented in this paper.
The ray tracing calculation is carried out using the adaptive
ray tracing solver built into the Enzo code Moray (Wise &
Abel 2011). We find that the FLD and Moray simulations are
in good agreement with one another, with the FLD simulation
ionizing slightly faster than the Moray simulation at early times
but track one another at late times (Figure 32). A detailed
comparison of phase diagrams reveals small differences in the
H i fraction versus gas overdensity at early times which may be
indicative of FLD ionizing gas of moderate overdensities too
quickly. However, the temperature–density phase diagrams do
not show this effect. Our conclusion, based on these analyses,
is that despite small differences, both FLD and ray tracing
predict similar evolutions for the gas and that any effects due to
shadowing, or the lack thereof, are of minor consequence to the
progress of the global ionization state.

2.4. Star Formation and Feedback

Because star formation occurs on scales not resolved by our
uniform mesh simulation, we rely on a subgrid model which
we calibrate to observations of star formation in high-redshift
galaxies. The subgrid model is a variant of the Cen & Ostriker
(1992) prescription with two important modifications as de-
scribed in Smith et al. (2011). In the original Cen & Ostriker
(1992) recipe, a computational cell forms a collisionless “star
particle” if a number of criteria are met: the baryon density ex-
ceeds a certain numerical threshold; the gas velocity divergence
is negative, indicating collapse; the local cooling time is less
than the dynamical time; and the cell mass exceeds the Jeans
mass. In our implementation, the last criterion is removed be-
cause it is always met in large-scale, fixed-grid simulations, and
the overdensity threshold is taken to be ρb/(ρc,0(1 + z)3) > 100,
where ρc,0 is the critical density at z = 0. If the three remaining
criteria are met, then a star particle representing a large collec-
tion of stars is formed in that timestep and grid cell with a total
mass

m∗ = f∗mcell
Δt

tdyn
, (12)

where f∗ is an efficiency parameter we adjust to match obser-
vations of the cosmic SFRD (Bouwens et al. 2011a), mcell is the
cell baryon mass, tdyn is the dynamical time of the combined
baryon and dark matter fluid, and Δt is the hydrodynamical
timestep. An equivalent amount of mass is removed from the
grid cell to maintain mass conservation.

Although the star particle is formed instantaneously (i.e.,
within one timestep), the conversion of the removed gas into
stars is assumed to proceed over a longer timescale, namely
tdyn, which more accurately reflects the gradual process of star
formation. In time Δt , the amount of mass from a star particle
converted into newly formed stars is given by

ΔmSF = m∗
Δt

tdyn

t − t∗
tdyn

e−(t−t∗)/tdyn , (13)

where t is the current time and t∗ is the formation time of the
star particle. To make the connection with Equation (4), we have
ρ̇SF = ΔmSF/(VcellΔt), where Vcell is the volume of the grid cell.

Stellar feedback consists of the injection of thermal energy,
gas, and radiation to the grid, all in proportion to ΔmSF. The
thermal energy ΔeSF and gas mass Δmg returned to the grid are
given by

ΔeSF = ΔmSFc
2εSN, Δmg = ΔmSFfm∗, (14)
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where c is the speed of light, εSN is the supernova energy
efficiency parameter, and fm∗ = 0.25 is the fraction of the
stellar mass returned to the grid as gas. Rather than add the
energy and gas to the cell containing the star particle, as
was done in the original Cen & Ostriker (1992) paper, we
distribute it evenly among the cell and its 26 nearest neighbors
to prevent overcooling. As shown by Smith et al. (2011),
this results in a star formation recipe which can be tuned to
reproduce the observed SFRD. This is critical for us, as we use
the observed high-redshift SFRD to calibrate our reionization
simulations.

To calculate the radiation feedback, we define an emissivity
field η(x) on the grid which accumulates the instantaneous
emissivities ηi(t) of all the star particles within each cell. To
calculate the contribution of each star particle i at time t, we
assume an equation of the same form for supernova energy
feedback, but with a different energy conversion efficiency
factor εUV. Therefore,

η =
∑

i

εuv
ΔmSFc

2

VcellΔt
(15)

Emissivity η is in units of erg s−1 cm−3. The UV efficiency
factor εuv is taken from Ricotti et al. (2002) as 4π × 1.1 × 10−5,
where the factor 4π comes from the conversion from mean
intensity to radiation energy density. We note that Equation (15)
as written absorbs the customary ionizing escape fraction
parameter into εUV, and that since we are using an unattenuated
value for εUV we are in effect assuming fesc(ISM) = 1. However,
the results of our simulation would be identical if we had chosen
a more realistic value for the escape fraction, and adjusted the
intrinsic emissivity upward to compensate, so as to obtain the
same redshift of reionization completion.

2.5. Data Analysis

Due to the enormous amount of data produced by the
simulation (one output file is about 100 GB), we needed a
scalable tool suited to the task of organizing and manipulating
the data into human readable form. We use the analysis software
tool yt (Turk et al. 2011) specifically created for doing this type
of vital task. It is a python-based software tool that performs
“Detailed data analysis and visualizations, written by working
astrophysicists and designed for pragmatic analysis needs”
(http://icer.msu.edu/software-highlights/yt-project) yt is open
source and publicly available at http://yt-project.org.

3. GENERAL RESULTS

Here we first present the basic properties of the simulation
before delving into specific topics in subsequent sections. The
star formation and feedback parameters for this simulation are
f∗ = 0.1, fm∗ = 0.25, εSN = 10−5, and εUV = 1.38 × 10−4.
Figure 1 shows the reionization process as it proceeds through
the growth, percolation, and final overlap of ionized hydrogen
(H ii) regions driven by ionizing radiation from star-forming
galaxies. We plot the neutral hydrogen (H i) density on a
slice through the densest cell in the volume at redshifts z =
9.18, 8.0, 7.0, 6.1. At z = 9.18 several isolated quasi-spherical
I fronts are intersected by the slice plane. These grow and
have begun to merge by z = 8.0. By z = 7.0 the topology
is beginning to invert, in that there are now isolated peninsula
of H i gas embedded in an otherwise ionized IGM. By z = 6.1
the remaining neutral island has almost disappeared as it is

being irradiated from all sides. We can also see in the figure
small patches of extremely low H i density; these correspond
to bubbles of shock-heated gas near galaxies heated to above
106 K in temperature by supernova feedback.

Figure 2 plots the evolution of the ionized volume fraction
QH ii versus redshift. Here a cell is considered to be ionized if
ρH ii/ρH � 0.999 (In Section 3.1 we discuss the sensitivity of
this curve to level of ionization.) The first ionizing sources turn
on at z ∼ 10 in this simulation. The ionized volume fraction
rises rapidly, reaching 0.5 at z ≈ 6.8, 0.95 at z ≈ 6.0, and near
unity at z ≈ 5.8. We compare this evolution with the predictions
of the simple analytic model introduced by Madau et al. (1999)
in Section 6. For now, we only draw attention to the flattening
of the curve in the redshift interval 5.8 � z � 6. This is the
signature of neutral islands being ionized by I fronts converging
in three dimensions (3D), as opposed to being ionized by internal
sources.

Our simulation was not designed to complete reionization by a
certain fiducial redshift. Rather, we adjusted our star formation
efficiency parameter f∗ so that we can approximately match
the SFRD in (Bouwens et al. 2011a). Our SFRD is shown in
Figure 3, along with the Bouwens data, plotted without error
bars. This shows that our simulated universe is one that produces
approximately the same amount of stars in a given comoving
volume, albeit a bit low relative to the data. We also note that
the SFRD begins to flatten out at z ≈ 6.5, and even turns
over after overlap at z ≈ 5.8, rather than continue to rise as
indicated by the data points. This is an artifact of the small box
size as a simulation completed in a 80 Mpc comoving on a
side box with identical physics, mass, and spatial resolution
and star formation/feedback parameters does not show this
slowing down of the SFRD. This will be reported on in a
future paper.

To check whether our simulation is giving us a fair repre-
sentation of the universe, we plot several more quantities and
look for any anomalies. In Figure 4, we see that our halo mass
function at redshift of z ∼ 6 matches well with the Warren fit
implemented in yt (Warren et al. 2006; Turk et al. 2011). The
mass function captures halos down to ∼108 M
, which, as pre-
viously stated, was a simulation design criterion. The halos are
found by first running the parallelHOP halo finder installed in
yt (Skory et al. 2010), then taking the linked list of dark matter
particles for each halo and wrapping the region around them
in an ellipsoidal 3D container introduced in yt 2.4. The 3D
container enables the query of the fluid quantities of the halos,
such as baryonic, emissivity, and radiation contents, in addition
to the particle information. Since the dark matter particles used
are ∼5× 105 M
, the 108 M
 dark matter halos are considered
to be resolved (Trenti et al. 2010).

As a final check that our ionizing source population is not
wildly unrepresentative of the observed universe, in Figure 5 we
plot the luminosity function of our simulated galaxies at z = 6.1
alongside the observational data points from Table 5 of Bouwens
et al. (2007). The points in red are the bolometric luminosities
for our galaxy population calculated directly from the z = 6.1
halo catalog. To calculate the luminosity of a given halo, we
sum the emissivity field within the 3D ellipsoidal containers
defined by the halos’ dark matter particles. Our error bars are
taken using one standard deviation of luminosity in the mass
bins. Although this is not proof that our simulation is matching
observations exactly, it does lend support that our realization
of reionization is being driven by sources not too dissimilar to
those observed and is sufficient for the purposes of this study.
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Figure 1. H i density on slices through the 20 Mpc volume showing the growth, percolation, and final overlap of H ii regions. Panels show z = 9.18, 8.0, 7.0, and 6.1.
The box becomes fully ionized at z = 5.8 as the last neutral islands are overrun by the I fronts. Regions of extremely low H i density are shock-heated bubbles due to
supernova feedback.

(A color version of this figure is available in the online journal.)

Figure 2. Evolution of the ionized volume fraction vs. redshift for hydrogen
ionized to less than one neutral in 103 atoms. As redshift decreases, the volume
filling fraction grows rapidly until around redshift of 6, at which time the rate of
growth slows significantly as the last neutral island is ionized. The sensitivity
of this curve to the ionization level is discussed in Section 3.1.

(A color version of this figure is available in the online journal.)

Figure 3. Comparison of simulated and observed star formation rate densities
(SFRD) in units of M
 yr−1 Mpc−3 comoving. The blue curve labeled “This
Work” is from our 20 Mpc/8003 simulation, and “Bouwens et al. (2011)” are
observationally derived data points from Bouwens et al. (2011b) plotted without
error bars. The leveling off of the simulated SFRD is an artifact of the small
volume as a simulation carried out with identical physics, mass, and spatial
resolution but in 64 times the volume does not show this effect.

(A color version of this figure is available in the online journal.)
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Figure 4. Dark matter halo mass function from our simulation (blue line).
The green line is the fit from (Warren et al. 2006). Our low-mass halo mass
function (HMF) is reasonably complete down to Mhalo ≈ 108 M
; i.e., halos
believed to form stars efficiently due to atomic line cooling. Incompleteness at
the high-mass end is due to the limited volume sampled.

(A color version of this figure is available in the online journal.)

Figure 5. Bolometric luminosity function derived from our simulation data (red),
compared with observational data points (blue) from Bouwens et al. (2007).

(A color version of this figure is available in the online journal.)

3.1. Quantitative Language

Earlier works on reionization such as Valageas & Silk
(1999), Gnedin (2000a), and Miralda-Escudé et al. (2000),
Iliev et al. (2006) speak of a two-phase medium composed
of completely neutral and completely ionized hydrogen gas,
while more recent works (Ciardi et al. 2003; Zahn et al. 2007;
Shin et al. 2008; Petkova & Springel 2011; Finlator et al. 2012)
begin to consider the degree of ionization within ionized gas.
The simplification of considering a two-phase medium helps
reduce the simulation complexity and the language needed to
describe the results. However, as simulations become more
sophisticated, the two-phase paradigm becomes ill-suited to
convey the wealth of information contained in the larger and
more detailed simulations. New simulations are described, the
old paradigm lingers and causes ambiguities. As a case in point,
consider the ionized volume filling fraction versus redshift,

Figure 6. Volume filling fraction of ionized gas vs. redshift for three ionized
fraction thresholds. Top: linscale. Bottom: logscale. The three ionization levels
are “10%” in blue: fractional volume that have more than 1 ionized hydrogen
atom per 10 hydrogen atoms. “1E3” in green: fractional volume that have less
than 1 neutral hydrogen atom per 103 hydrogen atoms. “1E5” in red: fractional
volume that have less than 1neutral hydrogen atom per 105 hydrogen atoms.

(A color version of this figure is available in the online journal.)

one of the simplest quantitative metrics of any reionization
simulation. Within the framework of a two-phase medium, this
is uniquely defined at any redshift. For a simulation such as ours
which tracks the ionization state in every cell, the volume filling
fraction depends on the degree of ionization, as illustrated in
Figure 6.

This figure shows the evolution of the volume filling fraction
of ionized gas which exceeds a minimum local ionization
fraction fi ≡ ρH ii/ρH. The three thresholds are fi = 0.1, 0.999,
and 0.99999 and are labeled 10%, 1E3, 1E5, respectively in
Figure 6. We choose three specific levels not because we believe
that they are more important than others, but because it suits our
later narrative and gives a range of values. With the ionization
state tracked by the simulation, we see that it is now ambiguous
to ask at what redshift 50% of the volume is ionized. In our
simulation, this occurs at z ≈ 7, 6.8 and 6.5 for fi = 0.1, 0.999,
and 0.99999, respectively.

In the remainder of this paper, we will often report results
as a function of these three ionization fraction thresholds. To
make the text easier to read, we will use the terms “Ionized” to
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designate fi = 0.1, “Well Ionized” to designate fi = 0.999, and
“Fully Ionized” to designate fi = 0.99999 ionization levels.

3.2. Inside-out or Outside-in

Besides specifying the amount of ionized volume and levels of
ionization, another area where quantitative language is useful is
in the description of the reionization history. Since the Outside-
in model was proposed by Miralda-Escudé et al. (2000), there
is support gathering for the opposing view of the Inside-out
model by Sokasian et al. (2003), Furlanetto et al. (2004), and
Iliev et al. (2006), to name a few. In Finlator et al. (2009), the
authors go even further and add to the lexicon “Inside-outside-
middle,” trying to describe the rich details of a reionization
scenario. The basic Inside-out picture is that galaxies form in
the peaks of the dark matter density field and drive expanding
H ii regions into their surroundings (expansion phase). These
H ii regions are initially isolated, but begin to merge into larger,
megaparsec-scale H ii regions due to the clustering of the galaxy
distribution (percolation phase). Driven by a steadily increasing
global star formation rate and recombination time (due to cosmic
expansion) this process goes on until H ii regions completely
fill the volume (overlap phase). In this picture, rare peaks in the
density field ionize first while regions of lower density ionize
later from local sources that themselves formed later.

To investigate how reionization progresses in regions of
different density, in Figure 7 we plot the hydrogen neutral
fraction (ρH i/ρH) versus overdensity Δb ≡ ρb/〈ρb〉 in the left
column, and in the right column a slice of the gas temperature,
with redshift decreasing from top to bottom. One would expect
that if inside-out ionization is the case, the neutral fraction of
higher density region should drop down more quickly than lower
density regions. Below, we will describe each row of the figure
in more detail.

Looking at the redshift z = 10 row, we see in the gas
temperature slice that two isolated regions of ionization appear
due to UV feedback from new stars, indicated by the ∼104 K
gas. These regions correspond to places on the neutral fraction
versus overdensity phase plot where a small amount of volume
emerges around Δb of 10−1–101, reaching Well Ionized to Fully
Ionized levels. The T ∼ 107 K region corresponds to the extended
tail of very low neutral fraction gas in the left column, and
indicates gas shock heated by supernova feedback. Although
the cell count of shock heated gas will grow, it remains orders
of magnitude smaller compared to the photoionized regions that
we will emphasize. Even at this early stage, there are high-
density regions above Δb of 102–103 that are Well Ionized; this
is due to their close proximity to the ionizing sources, supporting
the Inside-out paradigm.

Looking at the next row of figures at a redshift of z = 7,
we see that the volume of Well Ionized regions has increased
greatly, and so has the shock heated region in the phase plot. We
also see that most, but not all, of the Δb > 102 cells have reached
the Well Ionized level. Although a large portion of the volume
is in the Well Ionized regime, the majority of the volume (the
red pixels) is still neutral, as we can see in the corresponding
temperature slice plot. Most of the volume is still well under
104 K, where we expect the temperature to hover around once
the ionization front has passed through the region and the gas
has had time to come into photoionization thermal equilibrium.

By a redshift of z = 6.1, we see from the left column that the
region that is ionized beyond the Fully Ionized level (an irony
in terms, which means there is definitely room for improvement

in the naming convention), dominates the simulation volume.
There are still some regions not yet consumed by the ionization
front, which is seen on the top of the neutral fraction plot and
on the right according to the temperature slice.

The next row at redshift of z = 5.5 is after the entire volume
has been swept over by ionization fronts. Most of the volume
is beyond the Well Ionized level, except for a few cells around
Δb ∼ 102. There are also some cells that are still neutral around
Δb ∼ 104. They remain neutral because their densities are so
high, leading to high recombination rates. Over time, these cells
will shift up and down the neutral fraction plot with waves of
star formation and supernova explosions since they are likely
close to the source of the radiation and kinetic energy.

The last row of Figure 7 is at redshift z ∼ 5, where we
can see that the previous few cells that have yet to reach Well
Ionized levels around Δb ∼ 102–103 have now disappeared. The
cells that have not reached Well Ionized level before are cells
where either the radiation is not strong enough due to shielding
effects or the density is so high the gas recombines quickly
even after being ionized. After the ionization front has passed
through and highly ionized the IGM, there is little material left
to shield against the radiation background and we see all but the
densest few cells become Well Ionized. The high-density region
reaching the same ionization level after the under dense void
would fit well with the description for the Outside-in model.
Note that the remaining cells that finally reached Well Ionized
levels are orders of magnitude smaller in total volume compare
to the rest of the cells at the same density. So if we call cells
of Δb ∼ 102 filaments, not all dense filaments get Well Ionized
until late in the EoR. Before the volume is filled with radiation,
these dense filaments are able to remain relatively neutral.

Unfortunately, the evolution of these redshift panels is not
enough to capture the propagation of radiation fronts from the
initial sources, but they do convey the overall ionization history
of the universe. The panels suggest that the region surrounding
the ionization sources, whether they are dense cores, filaments,
or voids, are all affected by the radiation on roughly the same
timescale. However, the degree to which they are ionized is
different. It is this difference that is the key to answering the
original question, whether the universe ionize inside-out or
outside-in.

When focusing on the ionization of the IGM, for a moment
let us neglect the Δb ∼ 104 cells that shift ionization level with
waves of star formation which comprise a very small fraction
of the volume. If we use the “Ionized” level to characterize
something as completely ionized and draw the line for neutral
fraction at 10%, then the universe reaches end of EoR before
z ∼ 5.5. Since radiation propagates from sources outward, that
would correspond to the Inside-out picture. If we were to instead
draw the completely ionized line at the “Well Ionized” level, then
we can see that even at z ∼ 5.5, there is a small peak in the
dense region of the phase diagram (Δb ∼ 2.4 × 102) that has
yet to reach below the line to be considered completely ionized.
This would correspond to the Outside-in picture which reaches
end of EoR sometime before z ∼ 5 (or Inside-outside-middle if
one uses the Finlator et al. 2009 terminology and considers the
neutral peak to be a part of the filaments). Finally, if we were
to draw the line at the “Fully Ionized” level, the universe has
yet to ionize even for regions that are only 10 times overdense.
Thus, the ionization history is a story with many perspectives,
and it really depends on how the story teller draws the line as
to whether Inside-out, Outside-in, or Inside-outside-middle is a
better qualitative description.
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Figure 7. Left: phase diagram of neutral hydrogen fraction versus baryon overdensity with decreasing redshift from top to bottom. Middle: slices of Log Temperature
[K] through a region that remained mostly neutral until just before overlap at redshift of ∼5.8. Right: slices of neutral hydrogen fraction through the same region as
before. Please refer to Section 3.2 for detailed description.

(A color version of this figure is available in the online journal.)
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4. CLUMPING FACTORS AND THE PHOTON BUDGET
FOR REIONIZATION

4.1. Clumping Factor Analysis of Madau

In this section, we begin our examination of Equation (1)
from Madau et al. (1999) as an accurate predictor of when
reionization completes, focusing on the clumping factor. The
evolution of the three clumping factors is shown in Figure 9.
While it is true that the Madau-type analysis was not designed
to predict the precise redshift for reionization completion, only
the ionization rate density needed to maintain the IGM in an
ionized state after reionization has completed, it is effectively
being used in this way when it is applied to galaxy populations
at increasingly higher redshifts z = 6–7 (see Fan et al. 2006;
Robertson et al. 2013). Our methodology is as follows. The
simulation supplies Ṅsim(z) ionizing photons, which increases
with decreasing redshift because the SFRD increases with
decreasing redshift. Equation (1) poses a minimum requirement
on the ionizing emissivity to maintain the IGM in an ionized state
at given redshift z. This requirement decreases with decreasing
redshift due to the strong z dependence. We look to see if the box
becomes fully ionized when these two curves cross; i.e., when
Ṅsim � Ṅion. In subsequent sections, we do this for more recent
definitions of the clumping factor that have been introduced by
various authors in roughly chronological order.

The clumping factor is introduced and used to estimate the
amount of recombination that radiation has to overcome in
order to keep the universe ionized (Gnedin & Ostriker 1997;
Valageas & Silk 1999; Madau et al. 1999; Fan et al. 2006). In a
homogeneous universe, the hydrogen recombination rate is also
homogeneous, and is a simple function of the mean density,
ionization fraction, and temperature. The clumping factor is a
correction factor to account for density inhomogeneities induced
by structure formation, although, in principle, inhomogeneities
in ionization fraction and temperature are also important. The
most common definition for the clumping factor is

C =
〈
n2

H ii

〉
〈nH ii〉2

, (16)

where the 〈〉 brackets denote an average over the simulation
volume. To see where this comes from, let us look at the change
of nH ii with respect to time due to recombinations:

∂nH ii

∂t
= −nenH iiαB(T )

∂nH ii

nH ii
= −∂tneαB(T )

∫ nf

ni

∂nH ii

nH ii
= −

∫ tf

ti

∂tneαB(T )

ln

(
nf

ni

)
= −(tf − ti)neαB(T ),

nf

ni

= exp(−trecneαB). (17)

In the last step, we have set (tf − ti) to be trec. This leads to

trec = [neαB(T )]−1 (18)

being the characteristic time when the fraction nf /ni = 1/e.
Using this expression for the recombination time, one can

rewrite the right-hand side of the equation as

∂nH ii

∂t
= −nH iineαB(T ) = −nH ii/trec

= −nH ii(1 + 2χ )nH iiαB(T )

= −n2
H ii(1 + 2χ )αB(T ), (19)

where, in the last two steps, following Madau et al. (1999), we
replace ne with (1 + 2χ )nH ii assuming helium is fully ionized.
Here χ is the cosmic fraction of helium. Taking the volume
average, we have:

〈
∂nH ii

∂t

〉
= −〈

n2
H ii(1 + 2χ )αB(T )

〉

= −〈
n2

H ii

〉
(1 + 2χ )αB

= −〈nH ii〉2(1 + 2χ )αBC

= −〈nH ii〉/t̄rec. (20)

In the above, we have made the oft-used assumption of a uniform
IGM temperature of 104 K, making the Case B recombination
coefficient, αB a constant. Note this is not physically justified,
but since the temperature of the IGM is not well determined
observationally, it is a useful approximation, and one that is
embedded in Equation (1). With this simplifying assumption,
when taking the volume average on both sides of the equation,
we may rewrite the result in the same form as the first line in
Equation (19). Therefore, the effective recombination time can
be written as

t̄rec = tMadau ≡ [(1 + 2χ )〈nH ii〉αBC]−1. (21)

This expression is the same as Equation (20) of Madau et al.
(1999) if we substitute 〈nH ii〉 for n̄H. In the case of a fully ionized
universe, these two quantities are equivalent. We note that tMadau
is not at all the volume average of trec but is 〈t−1

rec 〉−1C−1, which
weights regions with the shortest recombination times; i.e.,
regions at the mean density and above. If we now make the
ansatz Ṅion × t̄rec = n̄H(0), we may derive Equation (26) in
Madau et al. (1999), updated by Fan et al. (2006), repeated here
for convenience:

Ṅ(z) = 1051.2 s−1 Mpc−3

(
C

30

)(
Ωbh

2

0.02

)2 (
1 + z

6

)3

. (22)

This equation gives an estimate of the ionizing photon
production rate density (in units of s−1 Mpc−3 comoving) that
is needed to balance the recombination rate density (the right-
hand side of Equation (22)) in a completely ionized universe.
Values for C ranging ∼10–30 are often quoted from earlier
hydrodynamical simulations such as Gnedin & Ostriker (1997),
and ∼3 for more recent work following Pawlik et al. (2009),
Raicevic & Theuns (2011), Shull et al. (2012), Finlator et al.
(2012) and the methods there.

We follow these earlier studies using our own simulation data.
In Figure 8, we plot the ionizing photon production rate density
and recombination rate density from our fiducial simulation. The
curve in blue labeled Ṅsim is the photon production rate density
from the simulation, calculated using a time average of the
volume integrated ionizing emissivity η (Equation (15)) divided
by the average energy per photon which we obtain directly from
the SED. The other three curves plot Equation (22) for three
methods for calculating C: green uses the H ii density directly
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Figure 8. Ionizing photon production rate density and various estimates of
the recombination rate density vs. redshift. The blue curve labeled “Ṅsim”
is the measured photon production rate density averaged over the entire
simulation volume. The green curve labeled “ṘH ii” is the recombination rate
density estimate from using the clumping factor calculated with Equation (16)
substituted in Equation (22). The red curve labeled “Ṙb” is Equation (22)
evaluated using a clumping factor calculated from the baryon density. The black
curve labeled “Ṙdm” is using a clumping factor calculated with dark matter
density.

(A color version of this figure is available in the online journal.)

(Equation (16)); red uses the baryon density C = 〈ρ2
b 〉/〈ρb〉2;

and black uses the dark matter density C = 〈ρ2
dm〉/〈ρdm〉2. In all

cases no thresholding is being applied (the effect of thresholding
is examined in the next section); the averages are done over
every cell in the simulation including those inside the virial
radii of galaxies. The H ii curve drops sharply with decreasing
redshift because C is large when the H ii distribution is patchy.
The baryon and dark matter curves track one another for z > 6
because the clumping factors are nearly the same, but begin to
separate after overlap as the baryon clumping factor drops due
to Jeans smoothing.

Where the ionization and recombination rate density lines
cross is roughly when we expect the universe to become highly
ionized. If we define the end of the EoR as when 99.9% of the
volume has reached the Well Ionized level, then our simulation
reaches that point around z ∼ 5.8 according to Figure 6. The
Ṅsim curve crosses the ṘH ii curve at z ∼ 6.2. This is somewhat
reassuring since we are counting every ionizing photon emitted
and every recombination, at least insofar as Equation (22)
provides a good estimate of that. The recombination rate
density curves using clumping factors computed from the
baryon and dark matter densities curves cross the Ṅsim curve at
a somewhat higher redshift of z ≈ 6.6. By following the
original methodology of using the clumping factor to estimate
recombinations, we find that the clumping factor calculated with
the H ii density field to be the closest predictor for the end of
EoR in our simulation.

The photon budget that enabled us to reach different levels of
ionization is plotted in Figure 10. Here we plot the evolution of
the ionized volume fraction versus γion/H = ∫

dtṄsim/n̄H(0).
So, adopting the same definition for the end of EoR, we see that
we need ∼four photons per hydrogen atom to achieve it. This
cannot be considered a converged result because this estimate
includes the dense gas inside galaxies, which is not well resolved
in our simulation. Even though a small fraction of the baryons
reside inside galaxies, due to the short recombination time, many

Figure 9. Unthresholded clumping factors used in Figure 8. CH ii, Cb, Cdm

are calculated from the unthresholded H ii, baryon, and dark matter densities,
respectively.

(A color version of this figure is available in the online journal.)

Figure 10. Ionized volume fraction as a function of the number of ionizing
photons emitted per H atom averaged over the entire simulation volume
(including inside halos) for three different ionization levels: fi � 0.1 (blue
line); fi � 0.999 (green line); fi � 0.99999 (red line). Compare with Figure 14,
which excludes gas inside halos.

(A color version of this figure is available in the online journal.)

ionizing photons are required to keep the gas ionized. Since we
have not resolved the internal structure of galaxies, and higher
resolution would likely result in higher density gas, we must
consider γion/H = 4 a lower bound. We eliminate this issue in
the next subsection by excluding the dense gas in halos from the
calculation.

4.2. Quantitative Analysis of Recombinations

As the clumping factor method grew in popularity, various
authors have applied thresholds of one form or another to
improve upon its accuracy in predicting the recombination rate
density needed to maintain an ionized universe. When thresholds
are applied, parts of the volume are excluded from the photon
counting analysis. Pawlik et al. (2009), Raicevic & Theuns
(2011) and others limit the calculation of the clumping factor
to the low density IGM by using Δb thresholds, usually set at
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100. They threshold out gas in virialized halos and the self-
shielded collapsed objects because radiation does not penetrate
these objects, or they recombine too fast, which leaves them
neutral and not contributing to recombinations in the IGM. More
recently, Shull et al. (2012) has also thresholded out void regions
(Δb < 1), arguing that they do not contribute appreciably to the
total recombinations due to their long recombination times.

To investigate the contribution of gas of different density to
the total recombination rate density, in Figure 11, we plot three
quantities dealing with recombinations in our simulation. In the
left column,we have a two-dimensional (2D) distribution plot
of recombination rate density Ṙ = nH iineαB(T ) divided by
ionization rate density Γph

H inH i versus baryon overdensity Δb,
where

Γph

H i = cE

h

[∫ ∞

νH i

σH i(ν)χE(ν)

ν
dν

] / [∫ ∞

νH i

χE(ν) dν

]
. (23)

Here, σH i(ν) and νH i are the ionization cross section and
ionization threshold for H i, respectively, and h is Planck’s
constant (Paper I). In the middle column, we plot the relative
bin contribution to the total recombination rate density versus
Δb. We draw vertical lines at Δb = 1 and 100, and in the legend
box calculate the cumulative contribution to total reionizations
to those thresholds. In the right column, we plot the cell
recombination time divided by the Hubble time versus Δb.
All three columns evolve with decreasing redshift from top to
bottom.

At z ∼ 9, in the left column of Figure 11, we see that
even though there are regions of the volume that are in
approximate ionization equilibrium (indicated by the horizontal
distribution near 100), there is a wide distribution of cells far
out of equilibrium. The middle column shows that about 37%
of all recombinations happen below a Δb of 100, and about
3.2% happen below Δb of 1. The phase diagram in the right
column shows that there is a bimodal distribution of cells
in terms of their recombination time normalized by Hubble
time. The top concentration of cells are more neutral, having
long recombination times, and the lower concentration of cells
are photoionized, having smaller recombination times. The
recombination time is lower for the ionized cells simply because
there are more free electrons available to recombine with
protons. The blue cloud at low Δb and high trec/tHubble represents
the small number of cells that are shock heated to T > 106 K
by supernova feedback. Due to this high temperature, even
though there are more free electrons, their recombination times
remain long.

At z ∼ 7, more of the volume has reached the Well Ionized
level, and we see the size of the out of equilibrium distribution
shrink in the left column. The middle column shows about
40% of total recombinations are happening below Δb of 100,
and about 4.2% happens below Δb of 1. In the right column,
we see roughly equal numbers of cells in the upper (more
neutral) distribution as compared to the lower (more ionized)
distribution, whereas the top was much greater in numbers
before. As more cells become ionized to a high degree, their
recombination time will decrease and their cell counts will shift
to the lower distribution.

At z ∼ 6, looking at the left column, most of the cells are
now in equilibrium and the spread in the distribution out of
equilibrium continues to narrow. This is indicated by the peak
of the distribution in red, being near zero on the y-axis. The
middle column shows 30% and 3.8% recombinations below Δb

of 100 and 1, respectively. The right column shows that the

majority of the cells are now in the more ionized distribution
and have a low recombination time. This can be verified by
looking at the same redshift in Figure 7, where most of the cells
are at the Well Ionized level compared to fewer before.

At z ∼ 5.5, after the entire volume has become Well
Ionized, and the vertical spread of the distribution has collapsed
to about an order of magnitude away from equilibrium with
the vast majority of the cells in equilibrium. The fraction of
recombinations are 25% and 4% below Δb of 100 and 1,
respectively. Looking at the recombination time to Hubble time,
we no longer see the bimodal distribution of neutral cells and
highly ionized cells, we only see the bottom distribution of
highly ionized cells now. The small distribution of shock heated
gas is still present, but now seem more prominent with the
absence of the neutral distribution.

At z ∼ 5, in the left column, the few cells that are in the low
density void, which were recombining slower than ionizing are
now all near equilibrium. Cells that are higher in Δb are more
likely to be above equilibrium. In the middle column, we see the
fraction of recombinations are 16% and 2.9% for region below
Δb of 100 and 1, respectively. Not much has changed in the
recombination time column except there are fewer cells above
the Δb of 104, possibly due to effect of Jeans smoothing.

We see that there is no real one-to-one correspondence
between overdensity and the quantities we show on the
y-axis. That is because in a given panel we are only seeing
two dimensions of a multidimensional physical process that de-
pends on locality to sources of radiation, the behavior of said
sources at a given moment, the local density of neutral and ion-
ized gas, temperature, among others. It is helpful to discuss the
average behavior in any given overdensity as we have done, but
we should always keep in mind that the average may not be as
representative of the wider distribution as we may believe.

4.3. Investigating Thresholded Clumping Factor Analyses

4.3.1. Excluding Halos

We saw in Section 4.1 that using the unthresholded H ii den-
sity field to calculate C via Equation (16) yields a reasonably
good estimate of when reionization completes (Figure 8). This
is perhaps not surprising since we count every ionizing pho-
ton emitted and every recombination to the accuracy of Equa-
tion (22). Possible sources of disagreement between theory and
simulation are (1) inaccuracies in estimating the recombination
rate density using Equation (22), (2) breakdown of the “in-
stantaneous approximation” used to derive Equation (22) due
to history-dependent effects, (3) finite propagation time for I
fronts to cross voids, and (4) numerical inaccuracies. Regarding
possibility (4), we note that our mathematical formalism is pho-
ton conserving, and that our I-front tests in Paper I show that I
fronts propagate at the correct speed, which is an indication that
numerical photon conservation is good.

To investigate whether improved estimates of the recombi-
nation rate density will improve the agreement, we follow the
practice of some recent investigators (Pawlik et al. 2009; Raice-
vic & Theuns 2011) and threshold out dense gas bound to halos,
leaving only the diffuse IGM to consider. The motivation for
this is that since we are only interested in the photon budget
required to maintain the diffuse IGM in an ionized state, by
excluding the complicated astrophysics within halos we have a
simpler problem to model and resolve numerically.

To proceed, we must calculate the ionization and recombi-
nation rate densities outside of collapsed objects. We estimate
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Figure 11. Quantifying recombination information. The left column is a 2D distribution of recombination rate density divided by ionization rate density vs. overdensity.
The middle column is plot relative bin contribution to the total recombination rate density vs. overdensity bins. The lines show the cumulative of all previous bins.
The blue line is at Δb = 100 and the red line is at Δb = 1. The right column is plot of recombination time divide by Hubble time vs. overdensity. All three columns
evolve with decreasing redshift from top to bottom.

(A color version of this figure is available in the online journal.)
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Figure 12. Same quantities as Figure 8, except now the “ṄIGM” curve is the
number of ionizing photons that escape into the IGM (see Section 5). The
recombination rate densities with a subscript that begins with “t” are calculated
as described in the caption for Figure 8, except that the clumping factors are
computed excluding regions satisfying Δb > 100. The curve labeled ṘttH ii is
calculated from Equation (22) using the doubly thresholded clumping factor
CttH ii defined in Figure 13.

(A color version of this figure is available in the online journal.)

Figure 13. Thresholded clumping factors used in Figure 12. CtH ii, Ctb, Ctdm
are calculated using thresholded H ii, baryon, and dark matter density fields,
respectively, where only cells satisfying Δb < 100 contribute. CttH ii is calculated
from the H ii density, where only cells satisfying Δb < 100 and fi > 0.1
contribute.

(A color version of this figure is available in the online journal.)

the number of ionizing photons escaping halos by multiplying
Ṅsim(z) by a global escape fraction f̄esc(z) derived in Section 5
and plotted in Figure 21:

ṄIGM(z) = f̄esc(z)Ṅsim(z). (24)

The recombination rate density outside of halos is calculated
using Equation (22), where now the clumping factor is thresh-
olded such that only cells for which Δb < 100 contribute to
the sum. As in Figure 8, we plot three curves for the recom-
bination rate density calculated using Equation (22) using H ii,
baryons, and dark matter density fields. These are plotted in
Figure 12 as green, red, and black curves, respectively. The cor-
responding clumping factors are plotted in Figure 13. We see

Figure 14. Ionized volume fraction as a function of the number of ionizing
photons emitted per H atom averaged over the entire simulation volume
(excluding gas inside halos) for three different ionization levels: fi � 0.1
(blue line); fi � 0.999 (green line); fi � 0.99999 (red line). Compare with
Figure 10, which includes gas inside halos.

(A color version of this figure is available in the online journal.)

that the recombination rate density based on the singly thresh-
olded H ii (labeled ṘtH ii) and on the thresholded dark matter
(labeled Ṙtdm) curve cross the ionizing emissivity curve labeled
“ṄIGM” at z ≈ 6.7 in Figure 12, whereas the thresholded baryon
density curve (labeled Ṙtb) crosses “ṄIGM” at z ∼ 7.2. Taking
the doubly thresholded H ii curve as the best estimate for the re-
combination rate density, we find that restricting the analysis to
only IGM gas yields poorer agreement than the simpler, global
model of Madau, which at first blush is a perplexing result. By
thresholding out the gas in galaxies, we have isolated about the
subject in which we are interested: the ionization balance of the
IGM. Why then should the implied redshift of reionization com-
pletion become worse compared to the analysis in Section 4.1?
We defer addressing this question until later sections.

Finally, we ask how many ionizing photons per H atom are
required to convert the neutral gas residing outside halos to a
well ionized state. We repeat the analysis of Figure 10 and show
the result in Figure 14. We see that the effect of counting only
escaped photons on the photon budget is significant. Previously,
we summed Ṅsim(z) and divided by the total number of hydrogen
atoms in the simulation volume, and used that as our progress
variable. In Figure 14, we sum ṄIGM(z) and divide by the number
of hydrogen atoms in the thresholded volume and use that as our
progress variable. Instead of needing ∼four to ionize the IGM,
now we only need ∼two photons per hydrogen atom for 99.9%
of the universe to reach the Well Ionized level. This number
should not be confused with the quantity discussed by Bolton
& Haehnelt (2007), Becker & Bolton (2013) in connection with
the so-called photon-starved reionization scenario. The latter is
the ratio of the instantaneous ionizing emissivity per gigayear
per hydrogen atom, measured considerably after reionization is
completed. We discuss this topic further in Section 7.2.

4.3.2. Including Temperature Corrections

During the preparation of this paper, a new way of estimating
the recombinations in the IGM appeared in the literature. The
authors (Shull et al. 2012; Finlator et al. 2012) reformulated
the expression for the clumping factor taking the temperature
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Figure 15. Ionizing photon injection rate density in the IGM from the simulation
ṄIGM vs. the predictions of Equation (26), evaluated with two choices for the
clumping factor which take temperature corrections into account. The curve
labeled “ṘRR,T4” is from Equation (26), with T4 being the average temperature
in CRR region in units of 104 K. The curve “ṘRR” is calculated the same way
as ṘRR,T4 except now T4 is set to 1 in Equation (26), for an effective IGM
temperature of 104 K.

(A color version of this figure is available in the online journal.)

dependence of the recombination rate into account. We briefly
investigate their methods here. In order for the calculation
of the clumping factor to take only IGM gas that is ionized
but recombining, several additional thresholds were applied.
Equation (15) in Shull et al. (2012) is a new expression for the
clumping factor, similar in form to Gnedin (2000a),

CRR = 〈nenH iiαB(T )〉
〈ne〉〈nH ii〉〈αB(T )〉 (25)

with the following thresholds applied: 1 < Δb < 100, 300 K <
T < 105 K, Z < 10−6 Z
, xe > 0.05. Here, Z is metallicity and
xe is the ionized fraction. The reason that a lower limit threshold
is applied to the baryon overdensity, the authors argued, is
because very little recombinations happen there, due to the
low density. Shull et al. (2012) also provide a new formulation
for ionizing photon rate density that uses this definition of the
clumping factor, in their Equation (10),

dN

dt
= 4.6 × 1050 s−1 Mpc−3

×
(

(1 + z)

8

)3

T −0.845
4

(
C

3

)
. (26)

Here, T4 is the mean IGM temperature measured in units of
104 K.

Equation (26) is proposed as an improvement over
Equation (1). To see if this is the case, we used our data to
evaluate the clumping factor CRR and then used Equation (26)
to calculate ionizing photon rate density versus redshift needed
to maintain an ionized IGM. The result is shown in Figure 15.
The curve labeled ṘRR,T4 in green uses the average temperature,
in units of 104 K, of the region that satisfies the CRR thresholds
for T4 in Equation (26). The curve ṘRR uses 1 in place of T4
in Equation (26), essentially fixing the IGM temperature to a
constant 104 K. The green curve is lower than the red curve be-
cause the average temperature in the simulation is higher than
104 K. The blue curve labeled ṄIGM is as defined previously.

Figure 16. Evolution of the volume filling fraction with redshift of regions
satisfying the CRR thresholding criteria.

(A color version of this figure is available in the online journal.)

We see that Equation (26) predicts that reionization completes at
significantly higher redshifts than exhibited by the simulation,
calling into question the validity of the analysis.

We find it curious that as the clumping factor analysis
is refined through physically well-motivated modifications, it
yields predictions for the redshift of reionization completion
that become increasingly worse, moving to higher redshift
rather than lower redshift. This suggests that there is something
fundamentally wrong with the whole approach, and that the
seemingly good agreement found in Section 4.1 was fortuitous.
One worrisome aspect about the utility of Equation (26) is
that the fraction of the simulation volume included in the CRR
thresholds is actually quite small. This is illustrated in Figure 16.
The included volume grows from 3% at z = 9 to only 23% of the
simulation volume by overlap. One wonders about the validity
of making global statements about reionization based on such a
restricted sample of the IGM. It is also unclear how we should
interpret the redshift at which lines across in Figure 15. Should
we interpret it as the redshift below which an ionization rate
given by Equation (26) can keep the whole volume ionized, or
only the fraction of the volume satisfying the thresholds? If it is
the former, how do we account for the time it takes for I fronts
to cross neutral voids?

At this point, the reader may rightfully claim that the Madau-
type analysis was never meant to predict the precise redshift for
reionization completion, only the ionization rate density needed
to maintain the IGM in an ionized state after reionization has
completed. We would agree with that. However, it is effectively
being used in this way when it is applied to galaxy populations
at increasingly higher redshifts z = 6–7 (see Fan et al. 2006;
Robertson et al. 2013). Our investigations indicate that formulae
such as Equation (1) and (26) are not reliable estimates of when
reionization completes. In Section 7, we examine whether they
can be usefully applied at lower redshifts, as originally intended.

4.4. Comparing Clumping Factors

For ease of comparison, we collect all of the H ii clumping
factors used in the previous sections into one plot. The unthresh-
olded H ii calculated using Equation (16) is denoted CH ii. The
singly thresholded clumping factor is denoted CtH ii, in which
the threshold Δb < 100 is being applied. The curve labeled CRR
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Figure 17. Various clumping factors vs. redshift. CH ii is Equation (16) used
in ṘH ii curve in Figure 8, CtH ii is used in ṘtH ii curve in Figure 12, CttH ii is
clumping factor with two thresholds applied, Δb < 100 and Xe > 0.05, shown
here solely for comparison. CRR is the value of recombination rate clumping
factor from Equation (25) with the five thresholds applied.

(A color version of this figure is available in the online journal.)

plots the evolution of Equation (25) with the following thresh-
olds: 1 < Δb < 100, 300 K < T < 105 K, xe > 0.05. For
comparison, we also plot a doubly thresholded H ii clumping
factor denoted CttH ii with thresholds Δb < 100 and xe > 0.05,
which can be thought of as the clumping factor inside H ii re-
gions excluding the dense gas in halos.

We see a clear trend that as more thresholds are applied the
lower the value of the clumping factor goes. This is because
as more regions of the volume are excluded from the averaging
process the remaining regions are more homogeneous exhibiting
less variations. If no thresholds are applied, the H ii clumping
factor starts around 200 at z ∼ 9 (Figure 8). Such high values
arise because when the first couple of ionizing sources created
high H ii, they are localized and spread far apart, making the
H ii density very clumpy. As more of the universe is ionized,
the H ii density becomes more homogeneous. We see the single
and double thresholded H ii clumping factors become the same
after overlap with a value of ∼4.5 because the second threshold
xe > 0.05 is satisfied everywhere.

The clumping factor that is not based on the H ii density alone
is CRR. We see from Equation (25) that CRR depends on electron
number density, H ii number density, and the case B hydrogen
recombinationation coefficient αB(T ), which is itself dependent
on the gas temperature T (fit to Table 2.7 in Osterbrock & Ferland
2006 implemented in Enzo). αB(T ) depends on T to a negative
power and this causes Equation (25) to sometimes have a very
low numerator compared to the denominator. This as well as the
exclusion of gas in the voids leads to the low clumping factor
value of ∼two we see in the graph. It is very possible to have
a value that is smaller than unity, which can lead to even more
confusion with the original definition of the clumping factor
in Equation (16). There, the clumping factor can only have a
value of greater than one, and one occurs only in the case of
homogeneous distribution of the gas number density.

5. A GLOBAL ESTIMATE FOR CIRCUMGALACTIC
ABSORPTION OF IONIZING RADIATION

The ionizing escape fraction from galaxies is an important
parameter in models of reionization. Typically, one thinks

about the escape fraction as a property of individual galaxies,
determined by the absorption of ionizing radiation on small
scales in the interstellar medium (ISM). However it is interesting
to ask whether there is significant absorption in the denser
circumgalactic medium (CGM) surrounding galaxies. If we
write the total escape fraction as the product of escape fractions,
then fesc = fesc(ISM)fesc(CGM). Here we use our simulation
to derive an estimate of the globally averaged escape fraction
as a function of redshift due to the circumgalactic medium
f̄esc(CGM).

Recall from Section 2 that the halo escape fraction is not a
model input parameter, but is rather an output since the equation
of radiative transfer is solved throughout the computational
domain. Our halos are not well resolved internally, and so we are
underestimating the amount absorption of ionizing radiation on
galaxy ISM scales. However, if significant absorption occurs on
scales of the virial radius or larger, then that would be simulated
reasonably accurately. In the following, we assume that this is
the case, and present results that can be taken to be an upper
limit on the total escape fraction (ISM+CGM).

Rather than measure the escape fraction halo by halo and take
the average over all halos, we use a simpler method. Since we
know every ionization requires an ionizing photon, and we have
the ionization rate density as a field defined at every grid cell,
then we can estimate f̄esc(CGM) as follows (hereafter we drop
the CGM modifier with the reader’s understanding that this is
what we are estimating):

f̄esc(It ) =
∫

Vt

nH iΓ
ph

H id
3x

/ ∫
V

nH iΓ
ph

H id
3x, (27)

where Γph

H i is evaluated cell by cell via Equation (23), V is the
simulation volume, and Vt denotes the integration includes only
cells which satisfy Δb < 100. In other words, f̄esc is the ratio
of the number of ionizations in the IGM, as defined by the
overdensity threshold, to the total number of ionizations in the
volume. The modifier It refers to this method of estimating f̄esc
(a superior method is presented below).

The result is plotted in Figure 18. At high redshifts the escape
fraction is high and relatively constant at f̄esc ∼ 0.65–0.7.
As overlap is approached f̄esc drops considerably, reaching
values of ∼0.2 by z = 5. There is no obvious reason why
the escape fraction should drop so dramatically at the epoch of
overlap. To investigate this properly would require a statistical
analysis of individual halo escape fractions, which we defer
to a subsequent paper. Perhaps this is an artifact of how we are
estimating f̄esc. While it is true that every ionization requires and
ionizing photon, after overlap the volume becomes optically thin
to ionizing radiation, and it is not true that every ionizing photon
causes an ionization in the box. This is illustrated in Figure 19.

The curve labeled Ṅt is the actual ionization rate density
measured in the simulation averaged over the entire 20 Mpc
cubic volume satisfying the overdensity threshold Δb < 100;
i.e., precisely the numerator of Equation (27) divided by 203.
The curve labeled Ṙt is the recombination rate density averaged
over the same volume; i.e.,

Ṙt =
∫

Vt

nenH iiαB(T )d3x. (28)

We see that ionization rate density Ṅt grows with redshift
and reaches a maximum at z ≈ 6.5, and then drops by roughly
0.8 dex by overlap completion at z = 5.8. It continues to
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Figure 18. Estimate of the globally averaged ionizing radiation escape fraction
due to circumgalactic absorption f̄esc(It ) computed as the ratio of the volume-
integrated ionization rate in the IGM (Δb < 100) divided by the total ionization
rate (Equation (27)).

(A color version of this figure is available in the online journal.)

Figure 19. Evolution of the volume-averaged rate densities for (1) ionizing
photons injected into the IGM (ṄIGM), (2) gas photoionization (Ṅt ), and (3) gas
recombination (Ṙt ) integrated over the singly thresholded volume Vt defined
as Δb < 100. The ionization rate density curve tracks the photon injection rate
density curve at high redshifts, but begins to fall below it as the globally averaged
ionization parameter approaches unity (Figure 20). After overlap, in the photon
abundant regime, the ionization rate density is ∼20× the photon injection rate
density, but comes into balance with the recombination rate density.

(A color version of this figure is available in the online journal.)

decrease thereafter. The reason for this sudden drop is that
after overlap there are very few neutral atoms left to ionize
(nH i/nH ∼ 10−5).

This can be illustrated by considering the global ionization
parameter, which is the number of ionizing photons per neutral
H atom ΓIP = 〈nph〉/〈nH i〉 averaged over the entire volume.
Specifically, we integrate the gray radiation energy density
divided by the mean photon energy ε̄ over the singly thresholded
volume, and divide by the number of H i atoms in the same
volume:

ΓIP =
∫

Vt

(E/ε̄)d3x

/ ∫
Vt

nH id
3x. (29)

Figure 20. Redshift evolution of the global H i ionization parameter as defined
in Equation (29).

(A color version of this figure is available in the online journal.)

We see from Figure 20 that ΓIP grows from ∼10−3 at z = 10 to
unity at z ≈ 6.5 just before overlap. Thereafter ΓIP grows very
rapidly, reaching a value around 105 at the overlap redshift, and
leveling off at around 106 below that.

Returning to Figure 19, we see that the recombination rate
density Ṙt curve tracks the ionization rate density curve to
z ∼ 7, but is about 0.7 dex lower in magnitude, as it must
be if the ionized volume filling fraction is to grow. As overlap is
approached, ionizations and recombinations come into balance,
but the recombination rate density has dropped considerably
since it reached its maximum value at z ≈ 6.5. This is also the
redshift at which the ionization rate achieves a maximum, and
when the global ionization parameter reaches unity. We also
observe that the fesc curve in Figure 18 begins its precipitous
drop at this redshift. We believe all of these events signal the
rapid rise in the global ionization parameter below z = 6.5, and
not some change in the escape fraction of young galaxies.

Counting the fraction of all ionizations occurring outside
halos is not a reliable estimate of the escape fraction for ΓIP � 1
because it does not count the photons in the radiation field
that have nothing to ionize. Therefore we need to modify
Equation (27) to include photons that build up the radiation
field:

f̄esc =
∫

Vt

(
nH iΓ

ph

H i +
1

ε̄

dE

dt

)
d3x

/ ∫
V

(η/ε̄)d3x. (30)

Here the numerator is the rate at which ionizing photons
are causing ionizations in the IGM and building up the UV
background, and the denominator is volume-integrated ionizing
photon production rate.

Figure 21 plots f̄esc calculated according to Equation (30).
Each contribution to f̄esc is plotted separately, as well as the
sum. We see that f̄esc is roughly constant with redshift with
a value of around 0.6. We see that as the contribution due
to ionizations declines below z ∼ 7, the contribution due to
the change in radiation background intensity increases in a
compensating fashion. This confirms our earlier suspicions and
gives us a better estimate of the mean circumgalactic attenuation
of ionizing radiation from young galaxies.

To complete the picture, we plot in Figure 19 the number
density of ionizing photons escaping into the IGM, calculated as
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Figure 21. Redshift evolution of the globally averaged escape fraction contribu-
tion from circumgalactic absorption as estimated by the number of ionizations
occurring in the IGM and the buildup of the ionizing radiation background. The
curves labeled f̄esc(It ), f̄esc(Ė) plot the contributions of the first and second
terms in Equation (30), while the curve labeled f̄esc plots their sum.

(A color version of this figure is available in the online journal.)

ṄIGM = f̄escṄsim, where Ṅsim is the ionizing photon production
rate in the simulation, and f̄esc is the improved estimate for
the escape fraction calculated using Equation (30). We see that
at high redshifts the ṄIGM and Ṅt track each other closely.
This tells us two things. First, that reionization at high redshifts
when QH ii 	 1 is efficient, in the sense that every ionizing
photon emitted results in an ionization. Second, that our estimate
of f̄esc is reasonably accurate at these redshifts. However,
as redshift decreases, the two curves systematically begin to
deviate from one another in the sense that Ṅt < ṄIGM.
Beginning at z = 6.5, the ionization rate density begins to
decrease while the ionizing photon production rate into the IGM
continues to rise. After overlap the large disparity between the
ṄIGM and Ṅt curves can then be understood as indicating that
the IGM becomes photon abundant.

The ratio of ionization rate density and the photon injection
rate into the IGM is plotted in Figure 22. The ratio is unity
initially, and slowly decreases until z ≈ 7, and then drops rapidly
as overlap is approached. After overlap the ratio is about 0.05. In
other words, after overlap, the photon production rate is about 20
times the ionization rate in a volume-averaged sense. Since the
ionization and recombination rates are in balance after overlap,
we conclude that the volume averaged photon injection rate is
about 20 times the recombination rate.

6. AN IMPROVED MODEL FOR THE
EVOLUTION OF QH ii

In this section, we compare the evolution of the ionized
volume fraction QH ii from our simulation with the analytic
model introduced by Madau et al. (1999). We are motivated to
do this because, as we have seen from Section 4, Equation (1) is
not a useful predictor of when QH ii reaches unity. We therefore
want to investigate the accuracy of the time-dependent model
from which Equation (1) is derived as a limiting case.

Madau et al. (1999) derived the following ODE for the
evolution of QH ii (their Equation (20)):

dQH ii

dt
= ṅion

n̄H
− QH ii

t̄rec
, (31)

Figure 22. Ratio of the volume-integrated photoionization rate in the IGM Ṅt

to the integrated photon injection rate into the IGM ṄIGM, where the IGM is
defined as cells with Δb < 100. The ratio is near unity initially, remains high
until z ≈ 7 (QH ii ≈ 0.5), and then drops rapidly as overlap is approached and
the IGM becomes highly ionized.

(A color version of this figure is available in the online journal.)

where ṅion is the ionizing photon injection rate, n̄H is the
mean density of H atoms in the universe, and t̄rec is some
characteristic recombination time taking the clumpiness of the
IGM into account. For a constant clumping factor and comoving
emissivity, Madau et al. (1999) show that

QH ii(t) ≈ ṅion

n̄H
t̄rec. (32)

Setting Q = 1, one arrives at ṅion t̄rec = n̄H, the basis for
deriving Equation (1). Madau et al. (1999) state that this relation
should still be valid provided the clumping factor and comoving
emissivity are slowly varying on a timescale of t̄rec. We utilize the
differential form for our comparison because our emissivity is
not a constant value, nor is it slowly varying on a recombination
time as Q → 1, as we show below.

A practical issue when testing Equation (31) is how t̄rec should
be evaluated when Q < 1, and in particular when Q 	 1. In the
limit Q 	 1, one is dealing with isolated H ii regions evolving
under the influence of local conditions. Yet the definition for
t̄rec in Equation (21) invokes global values for C and 〈nH ii〉.
Should these quantitles be evaluated locally only within ionized
regions? Or are global estimates good enough? In particular,
since Madau et al. (1999)’s Equation (20) uses n̄H as a proxy
for 〈nH ii〉, what is the appropriate value for C to use?

A second practical issue is what to take for ṅion. This
is commonly understood to be the rate at which ionizing
photons are injected into the IGM (e.g., Haardt & Madau 2012,
Section 9.3), which in our parlance is ṄIGM. Or should we take
the actual ionization rate density measured in the simulation
Ṅt? As we saw in the previous section, these two rates diverge
as overlap is approached, and differ by more than an order of
magnitude after overlap (Figure 22).

To examine these issues, we plot in Figure 23 Q(z) from our
simulation, as well as theoretical curves obtained by integrating
Equation (31) under various assumptions. The curve labeled
Q(sim) is the ionized volume fraction from our simulation that
is at least 99.9% ionized (Well Ionized). The other four curves
are obtained by integrating Equation (31) setting ṅion = Ṅt for
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Figure 23. Top: comparison of the evolution of the ionized volume fraction Q
from our simulation with the analytic model introduced by Madau et al. (1999).
Q(sim) is calculated directly from counting the cells satisfying the Well Ionized
threshold of fi > 0.999. The other curves are calculated from integrating
Equation (33) with the different expressions for t̄rec in Term2, as described
in the text. Bottom: plot of Term1 and Term2 individually using the different
expressions for t̄rec.

(A color version of this figure is available in the online journal.)

various choices for t̄rec (we investigate the ṅion = ṄIGM case
at the end of this section.) The integral is approximated by
summing a piecewise linear interpolation of the two terms on
the RHS of Equation (31) using the trapezoidal rule:

Q(t) =
∫ t

t∗

dQ

dt
dt ≈

∑ dQ

dt
Δt

=
∑

i

(Term1 − Term2)iΔti , (33)

where t∗ is the time when the first star forms in the simulation.
The curve labeled Q(〈trec〉) uses the volume-averaged recom-

bination time (volume average of Equation (18)). The two curves
labeled Q(tMadau) use Equation (21) to evaluate t̄rec for C = 2
and 3, substituting n̄H for 〈nH ii〉 and assuming a constant T =
104 K for the IGM. The curve labeled Q(trec,eff ) uses the effective
recombination time definition

t̄rec = trec,eff ≡ 〈nH ii〉
〈nH iineαB(T )〉 . (34)

This particular definition makes the last line of Equation (20)
true trivially, with no assumption about the IGM temperature or
ionization state of the hydrogen. It involves no ad hoc clumping
factors, and represents the actual appropriately averaged recom-
bination time in the simulation. All the above volume-averaged
quantities have the threshold of Δb < 100 applied, and thus
exclude dense gas bound to halos. Several of the curves derived
from integrating dQ/dt reach values above unity at the end of
the overlapping phase. While it is physically impossible to have
Q > 1, it is not mathematically forbidden, and so we show
the complete curves because they give us some insight about
the relative contribution of the recombination term (Term2) as
compared to the ionization term (Term1).

The Q(〈trec〉) curve ionizes the quickest, reaching Q = 1
at z ∼ 6.5, which is substantially before the simulation which
achieves it at z ≈ 5.8. The reason for this, as we will analyze
shortly, is that recombinations play essentially no role in this
model. The Q(trec,eff) curve has the same shape as the Q(sim),
but is everywhere higher, and crosses Q = 1 at z ∼ 6.1. Given
that this integration uses the actual ionization rate density and
effective recombination time in the simulation, this discrepancy
demands an explanation. We address this below. Finally the
Q(tMadau) curves do not match the shape of the Q(sim) curve,
ionizing more quickly at early times, and exhibiting a maximum
value for Q at z ∼ 6.

To understand this behavior more fully, we plot in Figure 23
bottom the values for Term1 and Term2 in Equation (31). The
blue curve is Term1 of Equation (31). The other four curves
plot Term2 with their respective values for t̄rec. The ionization
curve dominates all the recombination curves at high redshifts,
and reaches a maximum at z ∼ 6.5. This is a partial reflection
of the plateauing and subsequent decline of the SFRD shown
in Figure 3. More fundamentally, it is a reflection of the rapid
drop in the neutral fraction of the IGM as overlap is approached.
The curve using the volume averaged recombination time 〈trec〉
yields such low values compared to the others that we multiply it
by 100 to make it more visible. Although this is not the relevant
recombination time to use, since it weights low-density regions,
it is effectively the limiting case t̄rec → ∞. We can therefore
interpret the blue curve in Figure 23(a) as an integration of
the ionization term only. It is significantly higher than the
Q(sim) curve, suggesting that recombinations are important in
the simulation at some level. The ionization term dominates the
recombination term by factors of 6–10 in the trec,eff curve until
just before overlap, and the two terms come into balance after
overlap. The two tMadau recombination curves are subdominant
to the ionization term until z ∼ 6, and at lower redshifts
they become dominant. This explains the turnaround in the
corresponding Q curves in Figure 23(a).

The differences in the magnitude of the recombination curves
in Figure 23(b), especially at higher redshifts, is directly
attributable to the magnitude of t̄rec. For completeness, we
plot t̄rec versus redshift in Figure 24, both unnormalized and
normalized by tHubble. In addition to the three curves for trec,eff
and tMadau for C = 2, 3, we also plot tMadau for C = CttH ii
and C = Ctdm. We see that all the curves with the exception
of the Madau formula curve using the thresholded dark matter
clumping factor exhibit an increasing recombination time with
decreasing redshift, in line with our expectations. The latter
curve shows the opposite trend, which is due to the fact that the
dark matter clumping factor increases with decreasing redshift,
even if it is thresholded to exclude halos (see Figure 12 bottom).
Among the remaining curves, the trec,eff has the highest values,

19



The Astrophysical Journal, 789:149 (29pp), 2014 July 10 So et al.

Figure 24. Top: recombination time vs. redshift, for various expressions for
t̄rec as described in the text. The curve labeled trec,eff is the characteristic
recombination time measured directly in the simulation. The curves labeled
tMadau evaluate Equation (21) for various choices for the clumping factor C.
Bottom: recombination time vs. redshift normalized by the Hubble time, for
various expressions for t̄rec.

(A color version of this figure is available in the online journal.)

and increases more sharply than the tMadau curves due to the
temperature of the IGM. To demonstrate that, we plot one
additional curve (dashed curve) for trec,eff evaluated assuming a
constant T = 104 K in the recombination rate coefficient.

We now comment on the often-made assumption in reion-
ization models that t̄rec 	 t . Madau et al. (1999) make this
assumption in order to derive Equation (1). It is this assumption
that allows for an instantaneous analysis of the photon budget to
maintain the universe in an ionized state while ignoring history
dependent effects. Referring to Figure 24(b) we see this is never
true for trec,eff and it is not true for tMadau at redshifts approaching
overlap for any sensible value of C. We therefore conclude that
history-dependent effects cannot be ignored, and that this is the
reason Equations (1), (22), and (26) mis-predict the epoch of
reionization completion. For the same reason, applying these
formulae at lower redshifts is highly suspect.

Returning to the discrepancy between the Q(sim) and
Q(trec,eff) curves in Figure 23(a), since the most sensible choice
for trec did not give us satisfactory agreement, we wondered what
the origin of the discrepancy could be. Since we have shown that

Figure 25. Improved agreement between theory and simulation. The green and
blue curves are as in Figure 23. The red curve is obtained by integrating modified
evolution equation for Q taking into account the overdensity effect of Inside-out
reionization (Equation (35)).

(A color version of this figure is available in the online journal.)

recombinations are relatively unimportant at high redshifts, but
that the discrepancy is already present at high redshifts, the only
possibility is that there is something wrong with the first term of
Equation (33). When looking at the derivation for Equation (31)
in Madau et al. (1999), it is stated that it “approximately holds
for every isolated source of ionizing photon in the IGM.” That
got us thinking that our calculation of n̄H may be off from what
is originally intended if it is a global average over the entire
simulation box. Since the original dQ/dt is derived from the
analytical Strömgren sphere model, it assumed a single ionizing
source at the center of the volume, and the average density of
the box is just the uniform density everywhere, we thought that
might be the discrepancy. In an Inside-out model, I fronts are
not initially propagating in a gas with an average density given
by n̄H , but somewhat higher density. Would agreement improve
if instead of using n̄H in the first term of Equation (31), we used
the local average density?

We therefore modify Equation (31) as follows:

dQ

dt
= ṅion

δbn̄H
− Q

t̄rec
, (35)

where we have introduced in the denominator of the first term
a factor δb � 1, which corrects for the higher mean density
within ionized bubbles. We measure δb from each redshift output
as follows: δb = 〈ρb〉t t /〈ρb〉t . The volume average 〈〉 with
subscript t is the usual Δb < 100 threshold, the double subscript
t t indicates the additional threshold of xe > 0.1. Thus δb is the
average baryon overdensity within Ionized regions excluding
gas inside halos. Figure 26 shows a plot of δb versus Q together
with a simple fitting formula which fits the data extremely well
over the domain 0.01 � Q � 1.

To see if this formulation improves agreement with our
simulated data, in Figure 25 we integrate Equation (35) again
setting ṅion = Ṅt and using trec,eff to evaluate the second term.
For comparison, we show the curve obtained setting δb = 1,
which repeats a curve already presented in Figure 23. Although
the simulated and integrated analytic model curves do not agree
exactly, the Q(δb, trec,eff) curve shows much better agreement
with the simulation, with error on the order of 1% instead
of 10%.
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By not assuming a constant emissivity and using the modi-
fied differential form in determining the volume filling fraction
of Equation (35), we are able to more accurately model
the evolution of the simulated volume filling fraction of H ii
to the Well Ionized level. For completeness, we plot in
Figure 27 the evolution of trec,eff used in the above integration,
including a reasonably good fit to the data.

Finally, we return to the question of what is the appropriate
choice for ṅion in Equation (35). This is commonly taken to be
the rate at which ionizing photons are injected into the IGM
(e.g., Haardt & Madau 2012, Section 9.3) because this can be
connected to the observed UV luminosity density ρUV by the
formula ṅion = fescξionρUV, where fesc is the escape fraction for
ionizing radiation, and ξion is the rate of ionizing photons per unit
UV (1500 Å) luminosity for the stellar population (Robertson
et al. 2013). However, we have obtained excellent agreement
between simulation and Equation (35) using the mean ionization
rate density in the IGM Ṅt , which differs from the ionizing
photon injection rate density ṄIGM as Q → 1. In Figure 28,
we show the result of integrating Equations (31) and (35) with
the choice ṅion = ṄIGM, as originally proposed by (Madau
et al. 1999). Also plotted in Figure 28 is Q(sim) (blue line) and
our best agreeing model (green line). The red line ignores the
δb correction, and deviates to the high side of Q(sim) almost
immediately, for reasons we discussed earlier. It crosses Q = 1
at z ≈ 6.6, which is too early by Δz = 0.8. The teal line
includes the δb correction, and tracks the Q(sim) closely to
z ≈ 7, and thereafter deviates on the high side. It crosses Q = 1
at z ≈ 6.4, which is too early by Δz = 0.6. Both curves show an
accelerated change in Q as z decreases, which is characteristic of
standard analytic ionization models (e.g., Haardt & Madau 2012,
Figure 14). By contrast, the simulation and our best fit model
using ṅion = Ṅt show a decelerated change in Q(z) as Q → 1.
This is clearly due to the fact that the ratio of ionizations to
emitted photons decreases as Q → 1, as illustrated in Figure 22.
The consequence of this flattening in the Q(z) curve is a delay in
redshift of overlap of Δz = 0.6–0.8, relative to the predictions of
Equations (35) and (31), respectively, using the photon injection
rate as the source term.

We have seen above that the ionization rate density is the
appropriate quantity to use to source the dQ/dt equation,
independent of δb corrections. Because the ionization rate
density is not directly observable, but since ṅion can be derived
from observables, we introduce a correction factor to convert
from one to the other. Defining

γ ≡
〈
nH iΓ

ph

H i

〉
ṅion

= Ṅt

ṅion
, (36)

where the angle brackets denote an average over the singly
thresholded volume (IGM), then we can recast Equation (35)
into a form useful for observers:

dQ

dt
= γ ṅion

δbn̄H
− Q

t̄rec
, (37)

where γ and δb are functions of Q. In Figure 29, we plot
data values for γ (Q) taken from our simulation, as well as
a simple power-law fit. The fit is not meant to be definitive,
but merely illustrative. More simulations need to be performed
under various circumstances, and better fits made, to see whether
our γ (Q) is approximately universal, or merely anecdotal.

7. DISCUSSION

7.1. Significance of our Main Results

We have carried out a fully coupled radiation hydrodynamic
cosmological simulation of hydrogen reionization by stellar
sources using an efficient FLD radiation transport solver cou-
pled to the Enzo code (Paper I). This method has the virtue
of a high degree of scalability with respect to the number of
sources, which allows us to simulate reionization in large cos-
mological volumes including hydrodynamic and radiative feed-
back effects self-consistently. In this paper, we have presented
the first results from a simulation in a cosmological volume of
modest size—20 Mpc comoving—to investigate the detailed ra-
diative transfer, nonequilibrium photoionization, photoheating
and recombination processes that operate during reionization
and dictate its progress. In a future paper, we apply our method
to larger volumes to examine the large-scale structure of reion-
ization, evolution of the bubble size distribution, etc.

The simulation presented here is carried out on a uniform
mesh of 8003 cells and with an equivalent number of dark
matter particles. As such, the mass resolution is sufficiently
high to evolve a dark matter halo population that is complete
down to (Mhalo ≈ 108 M
), which cools via H and He atomic
lines. However, a spatial resolution of 25 kpc comoving poorly
resolves internal processes within early galaxies, but does an
excellent job of resolving the Jeans length in the photoionized
IGM (Bryan et al. 1999). Our simulation is most appropriately
thought of as a high-redshift IGM simulation which evolves an
inhomogeneous ionizing radiation field sourced by star-forming
early galaxies. Star formation is modeled using a modified
version of the Cen & Ostriker (1992) recipe that can be tuned to
reproduce the observed SFRD (Smith et al. 2011). We have
tuned our simulation to roughly match the observed SFRD
(Bouwens et al. 2011a; Robertson et al. 2013) for z � 7, but, due
to the small box size, it somewhat underpredicts the SFRD for
z < 7. Our simulation also matches the observed z = 6 galaxy
luminosity function well, which gives us some confidence that
our ionizing source population is representative of the real
universe. However, a substantial fraction of our ionizing flux
comes from sources that are too faint to be observed; we defer a
discussion of this topic to Paper III in this series (G. C. So et al.,
in preparation).

Our goal was not to predict the precise redshift of ionization
completion, as this would depend on details such as the escape
fraction of ionizing radiation from galaxies and their stellar
populations that we do not model directly. Rather, our goal
was to examine the mechanics of reionization in its early,
intermediate, and late phases within a model which is calibrated
to the observed source population. Nonetheless, we present a
model in which reionization completes at z ≈ 6, consistent with
observations.

At early and intermediate times we find that reionization
proceeds “inside-out,” confirming the results of many previous
investigations (Gnedin 2000a; Razoumov et al. 2002; Sokasian
et al. 2003; Furlanetto et al. 2004; Iliev et al. 2006; Trac &
Cen 2007; Trac et al. 2008). However, at late times isolated
islands of neutral gas are ionized from the outside-in as they
have no internal sources of ionization. Even this characteriza-
tion is somewhat oversimplified when degree of ionization is
considered, as we discussed in Section 3.2. It accurately depicts
how reionization proceeds for a low degree of ionization (>0).
However, for high degrees of ionization, “inside-out-middle” is
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Figure 26. Mean baryon overdensity of ionized gas as a function of the ionized
volume-filling fraction Q. The blue points are measured in the simulation by
averaging over the doubly thresholded cells obeying Δb < 100 and xe > 0.1.
The red curve is a fit to the data.

(A color version of this figure is available in the online journal.)

more appropriate, as filaments lag behind low and high density
regions, as discussed by Finlator et al. (2009).

Our most interesting findings concerns the widely used ana-
lytic model of reionization introduced by Madau et al. (1999).
Both the instantaneous (Equation (1)) and time-dependent
(Equation (31)) versions of this model underpredict the time
(overpredict the redshift) when reionization completes, when
applied to our simulation. There are two reasons for this which
are related to the detailed mechanics of reionization at early and
late times, respectively. At early times, I fronts are propagating
in regions of higher density than the cosmic mean since the first
sources are highly biased. Higher densities translate into slower
bubble expansion rates, retarding QH ii(z) relative to a solution
which assumes the cosmic mean density (Figure 25). At late
times, which we loosely define as QH ii > 0.5, conversion of
ionizing photons into new ionized hydrogen atoms becomes in-
efficient. This can be seen by forming this ratio directly from the
simulation data (Figure 22), or by defining a global H i ioniza-
tion parameter (Equation (29) and Figure 20). The consequence
of this dropping ionization efficiency, which is as low as 0.05
at overlap in our simulation, is to further retard QH ii(z) relative
to a solution which assumes an ionization efficiency of unity
(Figure 28).

We have introduced a modified version of Madau et al.
(1999)’s time-dependent analytic reionization model in
Equation (37). Modifications that correct for the above-
mentioned effects apply to the source term only, not to the
recombination term. These corrections are therefore totally in-
dependent of issues like clumping factors and the temperature
of the IGM, which enter into the characteristic recombination
time of the IGM. The modifications are introduced as correc-
tion factors to the mean density of baryons in the vicinity of
ionizing sources at early times (δb), and the conversion effi-
ciency of ionizing photons emitted to H i photoionization rate
at late times (γ ). Fits of these two correction factors versus
QH ii are presented in Figures 26 and 29 for consumption by
other researchers. At this point, we do not know how general
these results are. However, we have indications based on another
simulation we have analyzed with a softer source SED that the

Figure 27. Analytic fit to trec,eff (red line), evaluated using simulation data (blue
points) via Equation (34).

(A color version of this figure is available in the online journal.)

Figure 28. Dependence of analytic models on the choice for ṅion. The red and
teal curves assume ṅion = ṄIGM; i.e., the photon injection rate into the IGM. The
green curve assumes ṅion = Ṅt ; i.e., the measured photoionization rate in the
IGM. The blue curve is Q(sim)–the measured ionized volume-filling fraction in
the simulation. The green and teal curves take into account the overdensity effect
of inside-out reionization (Equation (37)), while the red curve assumes δb = 1.
All models assume t̄rec = trec,eff as measured in the simulation (Figure 27).

(A color version of this figure is available in the online journal.)

functional forms are representative of this class of reionization
model.

The significance of these results to high-redshift galaxy
observers is the following. Setting QH ii = 1 and δb = 1 in
Equation (37), we derive

ṅion = 1

γ

n̄H

t̄rec
. (38)

This differs from the usual expression used to assess whether
a given ionizing photon injection rate can maintain an ionized
IGM by the factor 1/γ , which is a factor of ∼20 at overlap in
our simulation. If this result is correct, then it means that the
required UV luminosity density to maintain an ionized IGM has
been underestimated by a factor of approximately 20. However,
a more precise statement would be that the UV luminosity
density required to maintain the IGM in a highly ionized state;
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Figure 29. Ratio of the volume-averaged H i photoionization rate to photon
injection rate in the IGM as a function of Q. Data points are measured from the
simulation; the line is a simple power-law fit.

(A color version of this figure is available in the online journal.)

fn = 10−5 is 20 times higher than what has been previously
estimated. Lower levels of UV luminosity density than that
specified in Equation (38) could still maintain the IGM in an
ionized state, but one with a higher neutral fraction.

As we showed in Figure 24, the effective recombination time
at and after overlap in our model is comparable to the Hubble
time, whether we use the Madau formula to evaluate it for
reasonable values for the clumping factor, or we evaluate it
directly from our simulation data. This fact casts in doubt the
entire instantaneous photon counting argument, which is the
basis of Equation (1), and the equation becomes less useful
for the purposes to which it has been applied (e.g., Robertson
et al. 2013). It means that the ionization state of the IGM has a
memory on the timescale of t̄rec, which is always a significant
fraction of tHubble before overlap, and of the order of the Hubble
time after overlap. We therefore recommend observers use the
time-dependent version Equation (37) in future assessments of
high-redshift galaxy populations and their role in reionization.

7.2. Is Reionization Photon Starved?

Bolton & Haehnelt (2007) introduced the concept of photon-
starved reionization. They used observations of the Lyα opacity
of the IGM and the ionizing emissivity at z � 5 to estimate
the photo-ionization rate in the post-reionization IGM. They
inferred that the ionizing emissivity is roughly constant over the
redshift range 2–6 and corresponds to 1.5–3 photons emitted
per hydrogen atom over a period of the age of the universe at
z = 6. Becker & Bolton (2013) have revisited this topic and
using new measurements of the intensity of the UVB and the
global ionizing emissivity have revised this number upward by
roughly a factor of two. At z = 4.75, they estimate the number
of ionizing photons per hydrogen atom per gigayear is in the
range of 2–14, with a median value of 5. In Figure 30, we plot
this quantity as measured in our simulation. Our result is at the
high end of this range but within error bars. This agreement
is perhaps fortuitous, since our simulation does not include an
explicit escape factor. As discussed below, our limited resolution
prevents an accurate calculation of the absorption of ionizing
photons by the ISM of the galaxies themselves. However, we do
calculate a mean absorption due to circumgalactic gas resolved
on our mesh, and express this as fesc(CGM) ≈ 0.7 (Section 5).

Figure 30. Instantaneous number of ionizing photons escaping into the IGM
(ṄIGM) per hydrogen atom per gigayear as measured in our simulation. This
quantity has been estimated from observations by Becker & Bolton (2013), and
found to be in the range of 2–14, with median value of 5 at z = 4.75. Our result
is at the high end of this range but within error bars (but see discussion in the
text).

(A color version of this figure is available in the online journal.)

Current estimates for the total ionizing escape fraction of high-
redshift galaxies are very uncertain, but it likely far less than
this number by a factor of 5–10 (see the discussion in Wise
et al. (2014)). Incorporating this correction would reduce our
estimate proportionately. However, our SFRD underestimates
the observed value by 2.5 times at z = 5 due to finite box size
effects. Correcting for both effects would drop our estimate of
the number of ionizing photons per hydrogen atom per Gyr at
z = 5 by a factor of 2–4, closer to the median value of Becker
& Bolton (2013).

7.3. Limitations of the Simulation

We conclude this section with a brief discussion of the known
limitations of our simulation and a comparison of our results
with others in the published literature. First, we discuss the
limitations. The principal limitation is the use of a uniform
grid, which prevents us from resolving processes occurring
inside galaxy halos. The main defect this introduces is an
inability to calculate the ionizing escape fraction directly, as
is done in some high-resolution simulations; e.g., Wise &
Cen (2009), Fernandez & Shull (2011). In our simulation,
we calibrate our star formation recipe to match the observed
SFRD, and then use that that to calculate UV feedback cell-
by-cell via Equation (15). We use a value for εUV taken from
Ricotti et al. (2002) for an unattenuated low metallicity stellar
population. We underestimate the amount of internal attenuation
of ionizing flux due to our limited resolution within halos, and
we do not incorporate an explicit escape fraction parameter in
Equation (15). Effectively, we assume fesc(ISM) = 1. Using
a lower value for fesc would result in a lower overlap redshift
(Petkova & Springel 2011). Clearly, it would be desirable to
vary this parameter in future studies.

Our use of a uniform grid also prevents us from resolving
Lyman limit systems (LLS), which are an important source
of Lyman continuum opacity post-overlap. As discussed in
McQuinn et al. (2011), the evolution of the UVB intensity post-
overlap depends sensitively on the presence of such systems.
LLS are absent in our simulation, and therefore the post-overlap
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evolution is not trustworthy. Before overlap, the presence of
LLS may influence the duration of reionization epoch through
their contribution to the clumping factor of the IGM (McQuinn
et al. 2011). We are investigating this through a series of higher-
resolution simulations that will be reported on in a future work.

A second limitation of our simulation is that we have
presented only one realization in a relatively small box. Previous
studies have shown that H ii bubbles reach a characteristic size of
∼10 Mpc comoving in the late stages of reionization (Furlanetto
et al. 2004; Zahn et al. 2007; Shin et al. 2008). At 20 Mpc on
a side, our box is scarcely larger than this. Therefore, one can
ask how robust our results are to box size. We have addressed
this by carrying out a simulation of identical physics, spatial,
and mass resolution in a volume 64 times as large as the one
described in this paper. The simulation is carried out in a box
80 Mpc on a side on a uniform mesh of 32003 cells, and with
an equivalent number of dark matter particles. Results of this
simulation will be presented in a forthcoming paper (G. C. So
et al., in preparation). For the present, we merely state that
the QH ii(z) curve for the 8003 simulation falls within the ±1σ
band for the larger simulation, where this band is obtained by
subdividing the large simulation into 64 cubes of size 20 Mpc on
a side, and calculating the mean and standard deviation. While
the larger box begins to ionize at a slightly earlier redshift,
due to the presence of higher sigma peaks forming galaxies,
both simulations complete reionization at the same redshift,
zreion = 5.8. The QH ii(z) curve for the 8003 simulation is near
the lower edge of the band, which means that at intermediate
redshifts (7 � z � 8), where the difference is largest, the small
box simulation underestimates the fraction of the volume that is
ionized by about 20%, with differences smoothly decreasing to
lower and higher redshift.

A third limitation is that our SFRD systematically deviates
from observations below z ∼ 7, flattening and then decreasing
slightly, rather than continuing to rise (Figure 3). The large
box simulation does not show this effect, but rather tracks
the observed SFRD over the entire range of redshifts. The
difference in the mean SFRD between the large and small
box simulations increases smoothly from 0.1 dex at z = 9
to 0.3 dex at z = 6. The higher levels of star formation
in the large box simulation accounts for the higher ionized
volume fraction at intermediate redshifts. Nonetheless, the two
simulations complete reionization at virtually the same redshift,
which is a curious result which we address in a subsequent
paper.

Another limitation of our method is the use of FLD to trans-
port radiation. It is well known that FLD does not cast shadows
behind opaque blobs. This could potentially overestimate how
rapidly the IGM ionizes, and hence overestimate zreion. Of par-
ticular importance to the results presented in this paper is the
treatment of neutral gas in regions of moderate overdensities
10 � δb � 100. To investigate the importance of shadowing in
large-scale reionization simulations, in the Appendix we present
a detailed comparison of FLD and ray tracing results on a fully
coupled cosmological reionization test problem of our own de-
sign. We see some minor differences in the ionized volume and
mass fractions and phase diagrams at an early stage of reion-
ization for gas of moderate overdensities which could indicate
excess amounts of ionization by FLD compared to ray tracing.
However, we see these differences diminish as reionization pro-
gresses. We do not claim that our result is converged, as this is
beyond the limits of what is currently possible to simulate by our
method and others. However, the good agreement between FLD

and ray tracing at late times in our test problem demonstrates
that the results are reliable to the extent of the mass and spatial
resolution employed. Exploring the fate of denser gas embedded
in ionized regions will require simulations of higher resolution
to what we have presented, and are planned as follow-ons to the
present work.

7.4. Comparison with Other Self-Consistent Simulations

Finally, we compare our results to the results of several re-
cent fully coupled simulations of reionization including hy-
drodynamics, star formation, and radiative transfer. Petkova &
Springel (2011) simulated a (10 Mpc h−1)3 volume with the
Gadget-2 code coupled to a variable tensor Eddington fac-
tor moment method for the ionizing radiation field sourced
by star forming galaxies. They carried out a suite of simu-
lations with 2 × 1283 gas and dark matter particles, varying
the ionizing escape fraction and the mean energy per photon
from hot, young stars. They also performed one simulation at
2 × 2563 resolution to check for convergence. Our simulation
has 80/10 times superior mass resolution as their 1283/2563

simulations. Because Gadget is a Lagrangian code, our Eule-
rian simulation has 8/16 times lower resolution in the highest
density regions, but 4.46/2.23 times higher resolution at mean
density, and even higher resolution compared to the Gadget
simulations in low density voids. Our method also has a more
accurate adaptive subcycling timestepping scheme for the cou-
pled radiation-ionization-energy equations, obviating the need
to model nonequilibrium effects by means of a gas heating
parameter ε.

Morphologically, our results are qualitatively similar, as
are the neutral hydrogen fraction versus overdensity phase
diagrams. As might be expected from the two methods, the
phase diagrams show some differences at the highest and
lowest overdensities, which is likely a resolution effect. The
SFRD in the Petkova & Springel (2011) simulation is about
an order of magnitude higher than observed, making a direct
comparison on QH ii(z) somewhat problematic. However, since
they vary the ionizing escape fraction, we can roughly compare
their fesc = 0.1 case with our results. Their model completes
reionization at z ≈ 5 compared to our own which completes
at z ≈ 5.8. They plot the quantity log[1 − QH ii(z)], which
makes the end of reionization look abrupt. We plot QH ii(z),
which makes the end of reionization look slow. When we plot
log[1 − QH ii(z)] using our data, it looks very similar to their
curves, and shows a rapid plunge in the average neutral fraction
at late times. Petkova & Springel (2011) do not compare with
the predictions of the Madau et al. (1999) model, nor do they
investigate the evolution of clumping factors, recombination
times, or the number of photons per H atom to achieve overlap
as we do. We do not investigate the properties of the z = 3
IGM via Lyα forest statistics, as they do. Therefore, further
comparisons are not possible at this time.

Finlator et al. (2012) examined some of the same issues we
have, and hence a comparison with their results is informative.
They carried out a suite of Gadget-2 simulations in small
volumes (3, 6) Mpc h−1 coupled to a variable tensor Eddington
factor moment method. Unlike Petkova & Springel (2011), the
radiation transport is solved on a uniform Cartesian grid, rather
than evaluated using the smoothed particle hydrodynamics
formalism. The results presented in Finlator et al. (2012) use
2 × 2563 dark matter and gas particles, which, given their small
volumes, yields a similar mass resolution to our simulation,
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superior spatial resolution in high density regions, and slightly
coarser spatial resolution at mean density and below. However,
their radiation transport is done on coarse 163 mesh, which in
their fiducial run is 536 comoving kpc ≈20 times as coarse
as ours. Their simulation thus coarse-grains the radiation field
relative to the density field, which necessitates the introduction
of a sub (radiation) grid model for unresolved self-shielded gas
(i.e., Lyman limit systems). The effect of their subgrid model
is to remove some gas in the overdensity regime 1 � Δb � 50
in the calculation of the H ii clumping factor, thereby lowering
it. Since our radiation field is evolved on the same grid as the
density field, we have not included an explicit subgrid model for
unresolved self-shielded gas. Lyman limit systems, with neutral
column densities of ∼1017 cm−2, have a characteristic size of
10 physical kpc (Schaye 2001; McQuinn et al. 2011). At z = 6
this is 70 comoving kpc, which is resolved by three grid cells
in our simulation. While this is lower than one would ideally
like (5–10 cells), we believe we can make an apples-to-apples
comparison between our resolution-matched simulation results
and Finlator et al.’s results.

Our results are in broad agreement with those of Finlator
et al. (2012), with some minor quantitative differences. We
both find that the unthresholded baryon clumping factor Cb

significantly overestimates the clumping in ionized gas at
redshifts approaching overlap, and therefore that it should not
be used to estimate the mean recombination rate in the IGM. We
confirm their findings that properly accounting for the ionization
state and temperature of gas of moderate overdensities lowers
the clumping factor to less than ≈6 (in our case less than 5;
see Figure 17). Finlator et al. quote a value for CH ii of 4.9
at z = 6 taking self-shielding into account, which is in good
agreement with our value of CttH ii ≈ 4.8. However, they favor a
lower value for C of 2.7–3.3, taking temperature corrections into
account. This can be compared with our value for CRR ≈ 2.3,
which includes temperature corrections but also excludes gas
with Δb < 1. Including this low-density gas, as Finlator et al. do,
would raise this value somewhat since a larger range of densities
enter into the average. We conclude therefore that clumping
factors derived from our simulation are in good agreement with
those reported by Finlator et al. (2012).

We find that approximately two photons per hydrogen atom
(γ /H ≈ 2) are required to reionize gas satisfying Δb < 100–our
proxy for the fluctuating IGM. Finlator et al. (2012) quote a
model-dependent value for γ /H which depends on the redshift
at which the IGM becomes photoheated and thereby Jeans
smoothed (their Figure 7). For z = 6, γ /H ≈ 5, significantly
higher than our number evaluated directly from the simulation.
However, for z = 8, when our box is already significantly
ionized, γ /H ≈ 3. Because there are many model-dependent
assumptions that go into the Finlator et al. estimate, we consider
this reasonably good agreement. However, we point out that
our estimate is the first to be derived from a self-consistent
simulation of reionization with no subgrid models aside from
the star formation/radiative feedback recipe.

Finally, Finlator et al. (2012) compare QH i(z) = 1 − QH ii(z)
for their fiducial model with the time-dependent model of Madau
et al. (1999). They point out the sensitivity of the redshift of
overlap on the choice of clumping factor, which enters into
the recombination time, and showed that CH ii provides better
agreement with theory at early times than Cb, consistent with
our findings. Since small discrepancies in QH ii(z) at early times
are masked by plotting QH i(z), Finlator et al. did not discover
the need for our overdensity correction δb. Similar to us, they

found that even with the best clumping factor estimate the
analytic model predicts that reionization completes earlier than
the simulation by Δz ≈ 1. They ascribe this delay to finite
speed-of-light effects (which can only account for Δz = 0.1),
while we ascribe it to nonequilibrium ionization effects. Finlator
et al. (2012) did not propose modifications to the Madau et al.
(1999) model to improve agreement with simulation, as we do
in Equation (37).

8. SUMMARY AND CONCLUSIONS

We now summarize our main results.

1. We use a fully self-consistent simulation including self-
gravity, dark matter dynamics, cosmological hydrodynam-
ics, chemical ionization, and FLD radiation transport, to
look at the epoch of hydrogen reionization in detail. By
tuning our star formation recipe to approximately match
the observed high-redshift star formation rate density and
galaxy luminosity function, we have created a fully coupled
radiation hydrodynamical realization of hydrogen reioniza-
tion which begins to ionize at z ≈ 10 and completes at
z ≈ 5.8 without further tuning. While our goal is not the
detailed prediction of the redshift of ionization completion,
the simulation is a realistic enough to analyze in detail the
role of recombinations in the clumpy IGM on the progress
of reionization.

2. We find that roughly two ionizing photons per H atom are
required to convert the neutral IGM to a highly ionized
state.

3. Reionization proceeds initially “inside-out,” meaning that
regions of higher mean density ionize first, consistent with
previous studies. However the late stages of reionization
are better characterized as “outside-in” as isolated neutral
islands are swept over by externally driven I fronts. Interme-
diate stages of reionization exhibit both characteristics as I
fronts propagate from dense regions to voids to filaments
of moderate overdensity. In general, the appropriateness of
a given descriptor depends on the level of ionization of the
gas, and the reionization process is rather more complicated
that these simple descriptions imply.

4. The evolution of the ionized volume fraction with time
QH ii(z) depends on the level of ionization chosen to define a
parcel of gas as ionized. The curves for ionization fractions
fi = 0.1 and fi = 0.999 are very similar, but the curve
for fi = 0.99999 is significantly lower at a given redshift,
amounting to a delay of Δz ≈ 1 relative to the other curves
for QH ii 	 1, smoothly decreasing to 0 as the redshift of
overlap is approached.

5. Before overlap, 30%–40% of the total recombinations occur
outside halos in our simulation, where this refers to gas with
Δb < 100. After overlap, this fraction decreases to 20% and
continues to decrease to lower redshifts.

6. Before and after overlap, 3%–4% of the total recombina-
tions occur in voids (defined as Δb < 1.) While this is a
small fraction of all recombinations, it is about 10% of re-
combinations before overlap, increasing to about 20% by
z = 5. The contribution of voids to the ionization balance
of the IGM is therefore not negligible.

7. The formula for the ionizing photon production rate needed
to maintain the IGM in an ionized state derived by Madau
et al. (1999; Equation (1)) should not be used to predict
the epoch of reionization completion because it ignores
history-dependent terms in the global ionization balance
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that are not ignorable. While not originally intended for
this purpose, it is being used by observers to assess whether
increasingly higher redshift populations of star-forming
galaxies can account for the ionized state of the IGM. A
direct application of the formula to our simulation predicts
an overlap redshift of z = 7.4 compared to the actual value
of z = 5.8.

8. Estimating the recombination rate density in the IGM
before overlap through the use of clumping factors based
on density alone is unreliable because it ignores large
variations in local ionization state and temperature which
increase the effective recombination time compared to
density-based estimates. For a currently popular value of the
clumping factor C = 3 (Shull et al. 2012), the formula for
t̄rec from Madau et al. (1999; Equation (21)) underestimates
by two times at all redshifts the effective recombination
time measured directly from the simulation. If we adjust
C downward so that Equation (21) matches trec,eff from the
simulation, then it is too low by 60% at z = 6 due to the
aforementioned effects.

9. The assumption that t̄rec/t 	 1 which Madau et al. (1999)
assumed to derive Equation (1) is never valid over the
range of reionization redshifts explored by our simulation
(Figure 24). Depending on how t̄rec is evaluated, t̄rec/t
increases from 0.3–0.4 at z = 9.7 to �1 at overlap.
Nonetheless, Equation (1) remains true on a timescale t̄rec
after overlap. This means that observers should exercise
caution using an instantaneous ionizing photon production
rate in Equation (1) to determine whether the observed
source population is capable of maintaining the IGM in an
ionized state.

10. Retaining time-dependent effects is important for the cre-
ation of analytic models of global reionization. The analytic
model for the evolution of QH ii introduced by Madau et al.
(1999; Equation (31)) retains important time-dependent ef-
fects, and predicts well the shape of our simulated curve,
but overpredicts QH ii at all redshifts because it does not
take into account that reionization begins in overdense re-
gions consistent with the inside-out paradigm. It also as-
sumes every emitted ionizing photon results in a prompt
photoionization, which is not true in our simulation at late
times QH ii > 0.5. The Madau model, which ignores these
effects, predicts a universe which reionizes too soon by
Δz ≈ 1. When we introduce correction factors for these
effects into Equation (37) the simulation and model curves
agree to approximately 1% accuracy. We recommend re-
searchers use Equation (37) for future analytic studies of
reionization.

11. Finally, we present in Figures 26, 27, and 29 fitting
functions for the overdensity correction δb(Q), the effective
recombination time derived from our simulation, and the
ionization efficiency parameter γ (Q) which may be useful
for other researchers in the field.
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APPENDIX

COMPARING FLD AND RAY TRACING

In this Appendix, we compare the results of our Enzo+FLD
method on a cosmological reionization test problem to those
obtained using Enzo+Moray (Wise & Abel 2011), which im-
plements adaptive ray tracing for the transport of ionizing radia-
tion. We examine the evolution of the ionized mass and volume
as well as 2D histograms of H i and gas temperature versus
baryon overdensity using both methods to ascertain whether
FLD’s well-known inability to cast shadows has an influence on
the progress of reionization.

The test problem is a scaled down version of the simulation
described in Section 2.1, which is identical to it in all respects
except that the simulated volume is a cube 6.4 comoving Mpc
on a side, computed on a grid of 2563 cells and an equivalent
number of dark matter particles. The test problem thus has the
same mass and spatial resolution as the 20 comoving Mpc,
8003 simulation presented in the main body of the paper.
Initial conditions were generated in the same way as described
in Section 2.1 and used to initialize both Enzo+FLD and
Enzo+Moray simulations. Star formation and feedback is done
using the same method for both simulations as described in
Section 2.4; indeed, the same subroutine is called by both
simulations. For the purposes of this test problem, we assume a
monochromatic radiation field with photon energy hν = 21 eV.

The FLD simulation was evolved to a stopping redshift
of z = 5; it consumed 4.8 wall-hours on 256 cores of the
Stampede HPC cluster at the Texas Advanced Computing
Center. The ray tracing simulation was run to a stopping
redshift of z ≈ 7.5—before complete reionization—after it
had consumed nearly 200 wall-hours on 128 core AMD cluster
at Georgia Tech (Figure 31(a)). The FLD simulation is thus
more than 15 times faster than the Moray simulation on this
problem due to the large number of ionization sources and load
imbalance issues on a unigrid calculation, even after differences
in processor speed are taken into account. This makes FLD an
attractive alternative to ray tracing for large scale reionization
simulations.

In Figure 31(b), we plot the evolution of the stellar mass,
showing that the differences between the two numerical ra-
diative transfer approaches do not significantly affect the star
formation history in the simulation. The stellar masses agree to
within 10% at z ≈ 7.5 when the Moray calculation is termi-
nated.

In Figure 32(a), we show the evolution of the volume
and mass fractions of H i that is more than 10% ionized,
in the cosmological reionization test problem for the two
simulation methods. The Moray calculation is terminated when
the volume is ∼80% ionized because the computation becomes
very costly in cpu-time as the volume becomes transparent and
covered with rays. Generally, there is good agreement between
the two simulations, with the FLD solution ionizing slightly
faster than the ray tracing solution. The volume-weighted and
mass-weighted curves from the FLD simulation track one
another closely, whereas the mass-weighted curve slightly lags
the volume-weighted curve in the Moray simulation. This
could be an indication that higher density gas remains neutral
somewhat longer in the Moray simulation compared to the
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(a) (b)

Figure 31. (a) Wall time vs. redshift in cosmological reionization test problem as simulated with two different methods for the transport of ionizing radiation:
flux-limited diffusion (FLD) and adaptive ray tracing (Moray), run on two different clusters with different processors (see the text). (b) Evolution of stellar mass with
redshift.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 32. Evolution of the ionized fraction in the cosmological reionization test problem as simulated with two different methods for the transport of ionizing
radiation: flux-limited diffusion (FLD) and adaptive ray tracing (Moray). (a) Full evolution; (b) zoom-in of early stages of reionization. Volume-weighted (vw) and
mass-weighted (mw) curves are plotted for gas with an ionization fraction of �10%.

(A color version of this figure is available in the online journal.)

FLD simulation. In Figure 32(b) we show a blowup of the
early stages of reionization. We see that the FLD simulation
reionizes somewhat faster than the Moray simulation. However,
the difference in the ionized volume does not continue to grow,
as we can see from Figure 32(a). A possible explanation for this
behavior is that shadowing is important at early times when one
luminous source dominates the reionization process. However at
later times, when the ionized volume approaches unity, neutral
gas embedded in ionized regions is illuminated from multiple
directions, which is a circumstance FLD approximates well.

To investigate this further, we plot in Figure 33(a) 2D phase
diagram of H i faction versus baryon overdensity for the two
methods at three redshifts: z = 10, 9, 8. As redshift decreases,
more of the gas becomes ionized to form a cloud of points
at fH i ∼ 10−4–10−3 and Δb = 0.1–10. While the phase
diagrams are quite similar to one another in overall appearance
at each redshift, the differences are most apparent at z = 10,
where we see the ionized cloud extending to somewhat higher
overdensities in the FLD simulation as compared to the Moray

simulation. This could be an effect of shadowing at early times.
At later times these differences become less pronounced but still
present.

In Figure 34, we plot temperature–overdensity phase dia-
grams corresponding to the panels in Figure 33. Here the agree-
ment between the two simulations at all redshifts is very good.
The locus of points at the bottom edge of the cloud of heated gas
represents neutral gas at various overdensities. Interestingly, the
location of the tip of this locus at high overdensities Δb ≈ 100
agrees quite well for the two simulations, indicating that gas at
these densities remains neutral in both simulations. Although
the location of this tip is likely the consequence of virial heat-
ing and not photoheating, the fact that both simulations have it
argues against an interpretation that FLD overionizes dense gas.

Our conclusion, based on these analyses, is that despite small
differences at early times, both FLD and ray tracing predict
similar evolutions for the gas and that any effects due to
shadowing, or the lack thereof, are of minor consequence to
the progress of the global ionization state. Finally, FLD has a
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Figure 33. Phase diagram of neutral hydrogen fraction vs. baryon overdensity with decreasing redshift from left to right. Top row: FLD results; Bottom row: ray
tracing results.

(A color version of this figure is available in the online journal.)

Figure 34. Phase diagram of gas temperature vs. baryon overdensity with decreasing redshift from left to right. Top row: FLD results; Bottom row: ray tracing results.

(A color version of this figure is available in the online journal.)

substantial speed advantage over Moray, especially at late times
when a large fraction of the volume is transparent.

Note Added in Proof. As this paper went to press, the authors
were contacted by P. Madau, who questioned the cause for
the drop of ionization efficiency as overlap is approached, as
shown in Figures 19 and 22 and discussed in Section 5. He
suggested that this was due to “leakage” of photons from our
relatively small box as it became transparent and suggested
that a sufficiently large box would not show this effect. Since

we assume periodic boundary conditions that prevent leakage,
there must be another explanation. Moreover, a simulation with
the same resolution and physics model but in an 80 co-moving
Mpc box shows the same effect. Another possibility is that
there is not sufficient absorption of Lyman continuum radiation
by Lyman limit systems (LLS), which are unresolved in our
simulation. We are investigating this suggestion by performing
simulations of higher mass and spatial resolution. The reduced
ionization efficiency as overlap is approached results in the
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observed flattening the Q(z) curve with respect to the Madau
et al. (1999) analytic model, as shown in Figure 28 and discussed
in Section 6. It is an open question whether additional opacity
sources such as LLS would lead to better agreement. Until
this issue is settled, our Conclusion 10 must be viewed as
tentative.
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Miralda-Escudé, J., Haehnelt, M., & Rees, M. J. 2000, ApJ, 530, 1
Mitra, S., Ferrara, A., & Choudhury, T. R. 2013, MNRAS, 428, L1
Morel, J. E. 2000, JQSRT, 65, 769

Norman, M. L., Reynolds, D. R., So, G. C., & Harkness, R. P. 2013,
arXiv:1306.0645

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., et al. 2014, ApJ, 786, 108
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and

Active Galactic Nuclei (2nd ed.; Herndon, VA: University Science Books),
38

Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ, 723, 869
Pawlik, A. H., Schaye, J., & van Scherpenzeel, E. 2009, MNRAS, 394, 1812
Petkova, M., & Springel, V. 2009, MNRAS, 396, 1383
Petkova, M., & Springel, V. 2011, MNRAS, 412, 935
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013, arXiv:1303.5076
Pritchard, J. R., & Loeb, A. 2012, RPPh, 75, 086901
Raicevic, M., & Theuns, T. 2011, MNRAS, 412, L16
Razoumov, A. O., Norman, M. L., Abel, T., & Scott, D. 2002, ApJ, 572, 695
Reynolds, D. R., Hayes, J. C., Paschos, P., & Norman, M. L. 2009, JCoPh,

228, 6833
Ricotti, M., Gnedin, N. Y., & Shull, J. M. 2002, ApJ, 575, 33
Robertson, B. E., Ellis, R. S., Dunlop, J. S., McLure, R. J., & Stark, D. P.

2010, Natur, 468, 49
Robertson, B. E., Furlanetto, S. R., Schneider, E., et al. 2013, ApJ, 768, 71
Schaye, J. 2001, ApJ, 559, 507
Schenker, M. A., Ellis, R. S., Konidaris, N. P., & Stark, D. P. 2014,

arXiv:1404.4632
Schenker, M. A., Robertson, B. E., Ellis, R. S., et al. 2013, ApJ, 768, 196
Schenker, M. A., Stark, D. P., Ellis, R. S., et al. 2012, ApJ, 744, 179
Schmidt, K. B., Treu, T., Trenti, M., et al. 2014, ApJ, 786, 57
Shapiro, P. R., Giroux, M. L., & Babul, A. 1994, ApJ, 427, 25
Shapiro, P. R., Iliev, I. T., & Raga, A. C. 2004, MNRAS, 348, 753
Shin, M.-S., Trac, H., & Cen, R. 2008, ApJ, 681, 756
Shull, J. M., Harness, A., Trenti, M., & Smith, B. D. 2012, ApJ, 747, 100
Skory, S., Turk, M. J., Norman, M. L., & Coil, A. L. 2010, ApJS, 191, 43
Smith, B. D., Hallman, E. J., Shull, J. M., & O’Shea, B. W. 2011, ApJ, 731, 6
Sokasian, A., Abel, T., Hernquist, L., & Springel, V. 2003, MNRAS, 344, 607
Songaila, A. 2004, AJ, 127, 2598
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175
Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M., & Bunker, A. 2010, MNRAS,

408, 1628
Trac, H., & Cen, R. 2007, ApJ, 671, 1
Trac, H., Cen, R., & Loeb, A. 2008, ApJL, 689, L81
Trac, H. Y., & Gnedin, N. Y. 2011, ASL, 4, 228
Trenti, M., Smith, B. D., Hallman, E. J., Skillman, S. W., & Shull, J. M.

2010, ApJ, 711, 1198
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9
Valageas, P., & Silk, J. 1999, AAP, 347, 1
Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, ApJ, 646, 881
Willott, C. J., Delorme, P., Reylé, C., et al. 2010, AJ, 139, 906
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