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To tackle complex problems, engineers have increasingly looked to natural 

processes and creatures, as models and metaphors, for inspiration.  Darwinian evolution 

and social group behavior, two instances of optimization mechanisms in nature, have 

inspired the two main families of nature-inspired intelligent computing algorithms, i.e. 

evolutionary and swarm algorithms.  Although both families of algorithms are generally 

applied towards search and optimization problems, each has its own distinguishing 

features.  In this dissertation, a genetic algorithm and particle swarm optimizer, instances 

of each main family of nature-inspired intelligent computing algorithms, are implemented 

to optimize heat transfer devices such as heat sinks and compact heat exchangers.  These 

optimization methods are ideal for obtaining optimal designs of the constrained, multi-

parameter, multi-objective, and multi-model complex optimization problems faced by 

heat transfer device engineers.  However, the primary hurdle facing designers of such 
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heat transfer devices, which has precluded the use of these optimization methods, is the 

significant computational costs of performing direct numerical simulations (DNS), i.e. 

with CFD, of the flow and heat transfer in such heterogeneous (and porous), hierarchical 

devices with conjugate effects included and flow often in the turbulent regime.  This 

makes device simulations very costly and population-based optimization nearly 

impossible, which has resulted in most designs being based on ad hoc considerations, 

resulting in constrained performance, and thus accumulating financial losses for those 

manufacturing and operating the devices, and troubling environmental effects, i.e. 

excessive carbon emissions and thermal pollution, due to the accompanying energy 

losses.   

Breakthroughs in the past few decades in the modeling of transport phenomena in 

heterogeneous media with Volume Averaging Theory (VAT) have allowed engineers to 

fully simulate flow and heat transfer in thermal devices in mere seconds on a modern 

laptop, in comparison with the many hours it takes to do so with CFD, paving the way to 

thorough optimization studies of the multi-parameter devices.  VAT is a hierarchical 

modeling method in which the lower-scale governing equations are the Navier-Stokes 

and thermal energy equations in the fluid and solid phases, and the upper-scale governing 

equations are the VAT-based mass, momentum, and fluid and solid thermal energy 

transport equations.  The two sets of equations are rigorously connected by mathematical 

scaling (i.e. averaging) procedures and the result of such a model allows a nonlocal 

description of transport phenomena in heterogeneous thermal devices, with the 

morphology directly incorporated into the field equations and conjugate effects fully 
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treated.   

The upper-scale VAT-based governing equations in hierarchical and 

heterogeneous media are complicated and at first formidable, yielding additional integral 

and differential terms when compared to the transport equations in homogeneous media.  

Understanding these additional terms led to them being directly related to the local 

transport coefficients, i.e. heat transfer coefficient and drag coefficient, providing a 

rigorous yet intuitive method of closure to the complicated integro-differential equations, 

and yielding simple differential equations that are quickly solved with straight forward 

numerical methods.  Closure of the VAT-based equations can be obtained either 

theoretically, numerically, or experimentally, and past work has focused on numerical 

methods (i.e. CFD).  In this work novel experimental methods for obtaining closure are 

explored, developed, and then implemented for several surfaces.  With the VAT 

equations closed, rapid simulations can be performed, and thus the nature-inspired 

optimization methods can be exploited to guide the design to its optimal configuration. 
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1. INTRODUCTION 

Travkin and Catton [1] note that modeling transport phenomena in heterogeneous 

porous media presents significant challenges, even when subject to simplifications, e.g. 

the specification of medium periodicity or regularity.  They point out that employing 

linear or linearized models fails to intrinsically account for transport phenomena, 

“requiring dynamic coefficient models to correct for short-comings in the governing 

models,” and observe that “this problem has been treated by procedures that are mostly 

heuristic in nature” in the past [1].  Travkin and Catton [1-7] developed Volume 

Averaging Theory (VAT) for nonlinear and turbulent transport in heterogeneous and 

hierarchical media in a series of articles from the early 1990s to the early 2000s, the 

result of which includes a well-accepted hierarchical transport model and its associated 

closure theory, overcoming many of the short-comings present in existing models.  The 

VAT model for nonlinear and turbulent transport, although developed, has not been 

ambitiously exploited for optimization and design, and the closure theory has not been 

addressed experimentally, leaving significant gaps in the continuation of VAT’s 

development. 

The aim of this dissertation is to fill these gaps by 

1. developing, implementing, and validating experimental techniques for VAT 

closure evaluation; and 

2. exploiting the resulting closed VAT-based equations with intelligent design 

techniques, and applying them to important thermal engineering problems. 
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Realizing these goals results in a design tool with capabilities that far exceed those 

currently in practice in the field, i.e. those employing CFD and other porous media 

models.  Moreover, such a tool possesses far-reaching applicability to a vast array of 

engineering problems involving transport phenomena in heterogeneous media with 

significant scientific and social implications. 

After this introductory chapter, Chapter 1, the dissertation consists of three core 

chapters.  Chapter 2 concisely presents the VAT-based hierarchical physical model for 

nonlinear and turbulent transport, Chapter 3 addresses closure of the VAT model, and 

Chapter 4 describes population-based design efforts, the foundation of which is the 

closed VAT-based model.  Chapter 5 then offers conclusions.  The intuitive and concise 

outline of the dissertation is presented in Figure 1.1, and emphasizes the method behind 

Hierarchical Physical Modeling for Population-Based Heat Exchanger Design, which 

boils down to a three-step process. 

 

 

Figure 1.1: Dissertation outline 

 

The first step, i.e. formulating the physical model, is presented in Chapter 2, the 

outline of which is exhibited in Figure 1.2.  Chapter 2 presents the VAT-based governing 

equations employed to model transport phenomena in hierarchical and heterogeneous 
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porous media, e.g. heat exchangers and heat sinks.  These equations have been previously 

derived from fundamental equations using rigorous mathematical averaging techniques 

and are theoretically correct.  Their form however is complicated and not conducive to 

convenient numerical solution until closed.  The closure theory developed by Travkin and 

Catton, and summarized in [1], is then presented, so that it may be addressed in Chapter 

3.  Then, using the closure statements, the closed VAT-based governing equations are 

presented so that they may be employed for population-based design of heat exchangers 

and heat sinks in Chapter 4. 

 

 

Figure 1.2: Chapter 2 outline 

 

The next step in Hierarchical Physical Modeling for Population-Based Heat 

Exchanger Design, after the VAT-based transport model is presented, is to address the 

problem of closure.  Chapter 3, the outline of which is illustrated in Figure 1.3, addresses 

the closure problem using experimental techniques.  Based on the closure statements 

presented in Chapter 2, two novel experimental methods are devised to close the VAT-

based governing equations.  These methods are then implemented for a series of surfaces 

in order to obtain new closure correlations and validation of the new methods. 
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Figure 1.3: Chapter 3 outline 

 

With solutions to the closure problem addressed, the final step in Hierarchical 

Physical Modeling for Population-Based Heat Exchanger Design, is to develop and 

implement the design methods.  Chapter 4, the outline of which is shown in Figure 1.4, 

details population-based design of a heat exchanger and a heat sink modeled with VAT.  

Starting with the closed VAT-based governing equations, two population-based 

optimization algorithms are presented and applied to the VAT-based solution routines for 

a heat exchanger and a heat sink.  The results presented in this chapter demonstrate the 

power, and significant advantages, of Hierarchical Physical Modeling for Population-

Based Heat Exchanger Design, and highlight the capabilities of this method that are 

unmatched by existing tools, i.e. CFD and empirically-based porous media models. 
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Figure 1.4: Chapter 4 outline 

 

Chapter 5 proceeds to offer conclusions to the dissertation, contemplate the 

application of VAT-based modeling combined with population-based design to a 

multitude of new and important problems involving transport phenomena in 

heterogeneous porous media, survey existing challenges with VAT modeling that need to 

be addressed, and propose the incorporation of additional optimization strategies that 

exhibit promise as design methodologies.  Appendices including selected source codes 

are attached to the end of the dissertation.  A common theme throughout the dissertation 

is the flexibility and ready application of VAT to problems involving hierarchical 

transport phenomena in heterogeneous porous media.  This theme is made evident 

through the generality of the model presented in Chapter 2, the variety of surfaces 

examined in Chapter 3, the different problems considered in Chapter 4, and the 

discussions on future work in Chapter 5.  This aspect of VAT is perhaps its most 

significant, and the landscape of this dissertation is meant to exhibit and emphasize this. 
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2. HIERARCHICAL TRANSPORT MODEL 

The Volume Averaging Theory (VAT)-based fluid mechanics and thermal energy 

equations modeling fluid flow and heat transport within a heterogeneous porous medium 

are derived from the fundamental Navier-Stokes and thermal energy equations, which are 

the basis for studying fluid flow and thermal phenomena in porous media [7].  Work on 

VAT began in the 1960s with contributions by Anderson and Jackson [8], Slattery [9], 

Marle [10], Whitaker [11], and Zolotarev and Radushkevich [12], and continued with 

contributions by Slattery [13], Kaviany [14], Gray et al. [15], Whitaker [16, 17], Kheifets 

and Neimark [18], Dullien, [19] and Adler [20].  Travkin, Catton and coauthors [2-6] 

extended its application to nonlinear and turbulent transport in porous media and recently 

Nakayama and coauthors [21-24] have contributed to continuing VAT’s development.  

The following provides a discussion on the nature of VAT modeling that is based on 

discussions found in [1, 7]. 

The VAT method has become “a well-substantiated mathematical theory that 

addresses linear, non-linear, laminar and turbulent hierarchical transport in non-isotropic 

heterogeneous media, accounting for modeling level, interphase exchange and micro-

roughness” [1]. Models were developed for transport in porous media using an advanced 

averaging technique, a hierarchical modeling methodology, and fully turbulent models 

with Reynolds stresses and fluxes in every pore space [1-7].  The transport equations 

obtained using VAT involve additional terms that quantify the influence of the medium 

morphology, and the description of the porous medium structural morphology determines 

the importance of these terms and the range of application of closure schemes [1-7]. 
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The VAT-based equations are derived by averaging the Navier-Stokes and 

thermal energy equations over a specified Representative Elementary Volume (REV), as 

shown in Figure 2.1.  Due to the averaging process, the VAT-based governing equations 

yield additional integral and differential terms when compared to the homogenized or 

classical continuum mechanics equations.  Surmounting problems associated with a lack 

of understanding of these new, advanced integral-differential equations and an 

insufficient development of closure theory has posed a significant challenge.  Travkin 

and Catton [1] however made an effort to develop the closure theory and relate these 

additional terms to the local transport coefficients.  Once these additional terms are 

closed, the resulting equation set is relatively simple and its solution can be obtained 

using simple numerical methods that are quick enough to realize multiple-parameter 

optimization on the system level. 

 

 

Figure 2.1: Schematic of a Representative Elementary Volume (REV) 
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The application of VAT yields many desirable features as a tool to characterize 

the physical processes taking place in heterogeneous and multi-scale media.  VAT allows 

one to consider specific medium types and morphologies, and incorporates the 

morphology description directly into the governing field equations.  In addition to 

allowing the effects of interfaces to be included in the modeling, VAT allows separate 

and combined fields and their interactions to be described exactly (i.e. no assumptions 

about effective coefficients are required), and provides for the consideration of lower-

scale fluctuations of variables, cross-effects of different variable fluctuations, and 

interface variable fluctuation effects [1-7].  Independent treatment of convective turbulent 

energy transport in the fluid phase and diffusive energy transport in the solid phase, 

connected through the solid-fluid interface allows for more accurate modeling of the heat 

transfer mechanisms between the heterogeneous and porous solid structure and the fluid 

phases.  Moreover, the hierarchical physical description provided by the VAT governing 

equations connects properties and morphological characteristics to component features.  

Perhaps most importantly, the mathematically rigorous non-local description of 

hierarchical, multi-scale processes resulting from the application of VAT, provides the 

capability to perform a purposeful search for the optimal designs of spatially 

heterogeneous transport structures.   

In this chapter the governing equations are presented, starting with the 

fundamental lower-scale equations, and followed by the upper-scale VAT-based 

equations.  Details of the derivation of the VAT-based nonlinear equations are well 

documented and can be found in [1-7, 25, 26], so they are not presented here.  After the 
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VAT-based equations are presented, the closure statements are presented that 

mathematically connect the lower-scale phenomena to the upper-scale phenomena. 

2.1. Lower-Scale Governing Equations 

The Navier-Stokes and thermal energy equations in both the fluid and solid 

phases are the starting point and basis for studying flow and heat transfer in porous and 

heterogeneous media.  These equations constitute the lower-scale governing equations on 

which the VAT method is based. 

The lower-scale governing transport equations for steady-state turbulent flow 

follow.  The laminar flow statements are easily obtained from the turbulent flow 

statements.  In the fluid phase, the transport equations are 

 

 0j
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∂
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In the solid phase, without heat generation, the transport equation is  
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x x
 ∂ ∂
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. (2.4) 

 

2.2. Upper-Scale Governing Equations 

The VAT-based governing equations accounting for turbulent transport in 

heterogeneous porous media follow.  They constitute the upper-scale governing equations 

on which the work of this dissertation is focused.  The laminar flow statements are easily 

obtained from the turbulent flow statements.  These equations are derived from the lower-

scale governing equations using rigorous mathematical averaging techniques, the details 

of which are well documented [1, 7, 25-27]. 

2.2.1. Continuity Equation 

For incompressible, turbulent flow, the Reynolds averaged continuity equation is 

given in Equation (2.1).  Applying the volume averaging method, the averaged continuity 

equation in the fluid phase of the porous medium is written as 

 

 1 0
w

i if
i S

u u ds
x ∂

∂
+ ⋅ =

∂ ∆Ω ∫
 . (2.5) 

 

For no flow penetration through the interphase surfaces the continuity equation reduces to  

 

 0i f
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∂

. (2.6) 
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2.2.2. Momentum Equation 

The Reynolds averaged momentum equation is given in Equation (2.2) for steady 

flow conditions.  Applying the volume averaging method, the averaged turbulent flow 

momentum equation in the fluid phase of the porous medium is 
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 (2.7) 

 

In analogy to the viscous stresses in laminar flows, the turbulent stresses can be 

assumed to be proportional to the mean-velocity gradients.  For general flow situations 

the Reynolds stress can be expressed as 
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ν
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where Tν  is the mean eddy viscosity.  Further, assuming no flow penetration through the 

interphase surfaces, the momentum equation is reduced to 
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The mean eddy viscosity Tν  is determined using Prandtl’s mixing length theory, 

with 

 

 ( )T C l z bµν = , (2.10) 
 

where Cµ  is a constant, ( )l z  is the mixing length scale function defined by the assumed 

porous medium structure, and b  is the velocity scale [1, 7, 25, 26].  The turbulent 

kinetic energy b  is expressed as  

 

 ( )'2 '2 '21
2

b u v w= + + . (2.11) 

 

In order to determine Tν , an equation for the turbulent kinetic energy b  must be 

introduced and solved. 

2.2.3. Turbulent Kinetic Energy Equation 

According to Rodi [28], the equation for the mean turbulent fluctuation energy 

( )b z  can be written as 
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where DC , Cµ , and bσ  are empirical coefficients.  0.08DC Cµ ≈  and 1bσ =  appear to be 

reasonable values of the empirical constants [1, 7, 25, 26].  It can be concluded [1, 7, 25, 

26] that  
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It then follows that the equation for ( )b z  can be written as 
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2.2.4. Thermal Energy Equations 

2.2.4.1. Fluid Phase 

The steady-state turbulent thermal energy transport equation in the fluid phase is 

given in Equation (2.3).  Applying the VAT method, the averaged thermal energy 
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equation in the fluid phase of the porous medium for turbulent flow is 
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In analogy to the concept of eddy viscosity, the turbulent fluctuation terms in 

Equation (2.15) are taken as proportional to the mean temperature gradients.  Further, 

assuming no flow penetration through the interphase surface, the thermal energy equation 

in the fluid phase is reduced to  
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where Tk  is the turbulent heat conductivity. 

2.2.4.2. Solid Phase 

The steady-state thermal energy transport equation in the solid phase is given in 

Equation (2.4).  Applying the VAT method, the averaged thermal energy equation in the 

solid phase of the porous medium is 
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where 

 

 1ds ds= −
  . (2.18) 

 

2.3. Transport Coefficients and Closure Statements 

Nonlinear equations accounting for turbulent transport developed from VAT were 

presented in Equations (2.6), (2.9), (2.16), and (2.17).  To be closed, these equations 

require the evaluation of transport coefficient models.  The coefficients in the equations, 

as well as the form of the equations themselves, must be consistent to accurately model 

the processes and morphology of the porous medium [1-7]. The integral terms in the 

equations must be dropped or transformed in a rigorous fashion consistent with physical 

arguments regarding the porous medium structure, and flow and heat transfer regimes [1-

7].  Coefficient models used must be strictly connected to the porous medium 

morphology models, meaning that the coefficient values are determined in a manner 

consistent with the selected geometry [1-7]. 

It is apparent that the VAT-based transport equations have more integral and 

differential terms than the homogenized or classical continuum mechanics equations, e.g. 

Equations (2.1) - (2.4). The description of the porous media structural morphology 
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determines the importance of these terms and the range of application of the closure 

schemes. The natural way to close the integral terms in the transfer equations is to 

attempt to find the integrals over the interphase surface, or over outlined areas of this 

surface [1-7]. Closure models allow one to find connections between experimental 

correlations for bulk processes and the simulation representation, and then incorporate 

them into numerical procedures [1-7]. 

2.3.1. Friction Factor and Momentum Equation 

The VAT-based momentum equation, for turbulent steady-state flow and no flow 

penetration through the interphase surfaces, is given by Equation (2.9).  From a physical 

point of view, the integral terms represent momentum loss due to the friction resistance 

and form drag over the interphase surfaces.  The skin friction coefficient fc  is defined 

by, and conveniently decomposed as 
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where wτ  is the wall shear stress, wLτ  and wTτ  are the decomposed wall shear stresses 

for the laminar and turbulent regions respectively, and fLc  and dc  are the respective 

decomposed skin friction coefficients.  The form drag coefficient dpc  for flow over an 

obstacle is defined as 
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where wpA  is the cross-flow projected area.  It will prove convenient to group these drag 

coefficients into an overall drag coefficient dc .  Vadnjal [26] and Catton [7] wrote a 

general expression for dc , incorporating additional terms, as 
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where in [7, 26] it was explained that the first term is the form drag, the second term is 

the laminar contribution to skin friction, the third term is the turbulent contribution to 

skin friction, and the fourth term represents spatial flow oscillations which are a function 

of the porous medium’s morphology and tells one how the flow is being deviated from 

some mean value over the REV.  There are two possibilities of flow deviations in this 

term: one is solely due to flow time and space dependent oscillations, and the other is 

solely due to morphology variations in the direction of the flow.  Vadnjal and Catton [7, 

26] also wrote down a fifth term that they explained represents flow oscillations that are 

due to the Reynolds stresses and is a function of the porous medium’s morphology and its 

time averaged flow oscillations.  The closed momentum equation is then simply written 
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as 
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For constant morphological characteristics and flow field properties, and fully 

developed flow, Travkin and Catton [1] showed that the friction factor f  is directly 

related to the drag coefficient, and correlated, as  
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where A and B are constants corresponding to the morphology of the porous media, the 

Reynolds number is defined as 
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and the porous media length scale is 
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Past work [1, 7, 26, 29] was able to show that choosing the above form of f , in Equation 

(2.23), allows one to collapse capillary flow and flow in a bed of spheres, spanning the 
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physical description from globular to capillary geometry with a single length scale, i.e. 

hd .  See Appendix A for a discussion on the basis for using the length scale given in 

Equation (2.25).  The friction factor presented above has two distinctive terms, each 

corresponding to different pressure drop mechanisms. One is attributed to the viscous 

flow, that is linearly proportional to velocity and the other term is due to convection of 

the fluid momentum that is proportional to the velocity squared. 

2.3.2. Heat Transfer Coefficient and Thermal Energy Equations 

2.3.2.1. Fluid Phase Equation 

The VAT-based fluid phase energy equation is given by Equation (2.16).  The 

nature of the equation shows that the energy transferred from the surface is integrated 

over an area and then divided by an REV volume.  Therefore, the heat transfer coefficient 

is defined in terms of the porous medium’s morphology, usually described by the specific 

surface area and the porosity.  The number and the nature of the closure terms in the 

VAT-based governing equations were rigorously derived from the lower-scale governing 

equations and they are clearly defined. The heat transfer coefficient definition is written 

as 
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The first term represents smaller scale inter-phase heat transfer, the second term 
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represents spatial velocity and temperature fluctuations, and the third term represents 

larger scale heat transfer.  The second and third terms in Equation (2.26) can be neglected 

by assuming fully developed flow and using scaling arguments [26], respectively, 

significantly simplifying the scope of the closure problem.  The VAT-based fluid phase 

energy equation can now be closed and written simply as 

 

 ( ) ( )f f
f pf j f T w s f

j j j

T T
c m u m k k hS T T

x x x
ρ

 ∂ ∂∂
= + + − 

∂ ∂ ∂  

 
 . (2.27) 

 

The heat transfer coefficient is correlated in terms of the Nusselt number as 

 

 D 1 3Nu C Re Prh

f

hd
k

≡ = , (2.28) 

 

where C and D correspond to the type of porous media morphology.  A 1 3Pr  dependence 

is precedent for gas flows [30-32], which are prevalent in this dissertation, however this 

assumption should not be made for liquid flows. 

2.3.2.2. Solid Phase Equation 

The VAT-based energy equation for the solid phase is given by Equation (2.17).  

On the fluid side, the energy equation closure for the heat exchange integral terms is 

naturally described as heat flux transferred from the surface and is embodied in the heat 

transfer coefficient.  By performing an energy balance at the interface between the solid 

and fluid, see [26], one can see that the heat exchange from solid phase to fluid phase is 



21 
 

of equal magnitude, but with opposite sign to the heat exchange from fluid phase to solid 

phase and it is evident that the heat transfer coefficient is the connection between the two 

phases at the upper scale.  In the fluid, the energy transport is due to the laminar or the 

turbulent convective heat transport, depending on the flow regime, while on the solid side 

energy is transferred by conduction only.  From the interface energy balance, the VAT-

based solid phase energy equation can now be closed as 

 

 ( ) ( )1 0s
s w s f

j j

Tm k hS T T
x x
 ∂ ∂

− − − = ∂ ∂  

  . (2.29) 

 

2.4. Conclusions 

Applying the method of volume averaging to the lower-scale governing 

equations, Equations (2.1) - (2.4), has resulted in simple upper-scale field equations, 

Equations (2.6), (2.22), (2.27) and (2.29), with explicitly defined transport coefficients, 

Equations (2.21) and (2.26).  These simple upper-scale equations offer significant 

advantages, particularly for design and optimization efforts.  However, before the simple 

equations are obtained, the closure problem must be addressed by evaluating the 

explicitly defined transport coefficients.  Chapter 3 will explore experimental techniques 

to evaluate these transport coefficients, paving the way towards the simple VAT-based 

equations given in this chapter and allowing for intelligent design algorithms to operate 

on the hierarchical physical model.  
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3. EXPERIMENTAL CLOSURE OF THE VAT-BASED 

GOVERNING EQUATIONS 

In Chapter 2 a correct physical-mathematical representation of transport 

phenomena in heterogeneous hierarchical structures for which full conjugate effects are 

accounted is accurately formulated in the VAT-based governing equations, providing a 

fundamental understanding of the problem.  However, as was explained, the numerical 

tools available are not sufficient for the mathematical complexities present in solving the 

integro-differential VAT-based equations, i.e. Equations (2.9), (2.16), and (2.17), that 

represent the physical phenomena.  Therefore, evaluation of the lower-scale phenomena, 

through either numerical or experimental techniques, is relied upon to provide closure to 

the general upper-scale VAT-based equations and yield manageable equations that are 

simple enough to be readily solved yet rigorously formulated.   

Closure theories for transport equations in heterogeneous media have been the 

primary measure of advancement and for measuring success in research on transport in 

porous media [1].  It is believed that the only way to achieve substantial gains is to 

maintain the connection between porous medium morphology and the rigorous 

formulation of mathematical equations for transport [1].  As was explained in Chapter 1, 

Travkin and Catton related the complex closure statements directly to the local transport 

coefficients.  In general, there are different methods for obtaining closure to the VAT-

based governing equations describing transport phenomena within a heterogeneous 

structure.  For previously studied structures one can refer to published experimentally or 
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numerically derived correlations that are provided for fully-developed conditions 

provided that conjugate effects are properly taken into account, see Zhou et al. [29, 33].  

However, for a new surface that may hold promise for heat transfer augmentation that has 

not been studied in the past closure must be obtained anew, and it can be done through 

either conducting lower-scale numerical simulations (e.g. with CFD) and/or an 

appropriate experimental study. 

Recently Zhou et al. [33, 34], and in the past, Horvat and Mavko [35] and Vadnjal 

[36], have demonstrated the usefulness of commercial CFD packages in resolving the 

lower-scale and allowing direct calculations of the closure terms in the VAT-based 

governing equations to be made.  CFD software allows the user to close the integral terms 

in the transport equations in a natural way, that is, by integrating over the inter-phase 

surface, or of some other outlined areas.  Although CFD provides a convenient tool to 

obtain closure to the VAT-based equations, it has not replaced the value of experimental 

measurements in porous media studies and is incapable of accommodating many 

geometries.  Moreover, one typically needs experimental validation for numerical studies. 

Experimental results in porous media studies are indispensable.  However, 

obtaining them, particularly the internal heat transfer coefficient, can be quite challenging 

for complicated and intricate morphologies.  Because of the character of such structures a 

transient test technique is virtually mandatory to obtain the convective heat transfer data, 

and numerous researchers have employed variations of such a technique, see Appendix 

B.  Typically, in such transient tests a single fluid stream, under steady flow conditions, is 

subjected to an inlet fluid temperature perturbation.  The temperature perturbation could 
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be a step change or an oscillatory function.  The inlet and outlet stream temperatures are 

measured continuously over an interval of time and compared to the predictions of a 

model in order to determine the desired heat transfer information.  This so-called “single-

blow” method, and its variations, along with various other transient techniques have been 

investigated, to some degree, for nearly a century, as explained in a recent review on the 

subject [37]. 

It appears that none of the existing methods have taken advantage of the 

theoretically rigorous modeling approach to transport in heterogeneous porous media 

provided by the developments in Volume Averaging Theory (VAT).  VAT provides a 

correct description of experiments in heterogeneous media and yields clear expressions 

for local transport coefficients in porous media that are derived from fundamental 

equations using rigorous mathematical techniques, see Chapter 1.  In many of the existing 

studies, the homogeneous presentation of medium properties is used and explanation of 

experiments is done via bulk features.  Those bulk features describe the field as by 

classical homogeneous medium differential equations and the description of transport is 

not based on a theoretically correct development [1].   

In this chapter two novel inverse experimental techniques are presented for 

evaluating the closure statements, i.e. Equations (2.21) and (2.26).  Measurements of the 

closure statements are made for flow through random fiber matrices, staggered cylinder 

arrays, and packed particle beds.  Correlations are then obtained for the convective heat 

transfer and flow resistance, allowing the VAT-based equations modeling flow and heat 

transfer in heterogeneous porous media, Equations (2.9), (2.16) and (2.17), to be closed 
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and conveniently subjected to optimization and design efforts, as demonstrated in 

Chapter 4. 

3.1. Single-Blow Method for Random Fiber Matrices 

 
This section presents a new single-blow treatment that is based on the VAT model 

and applies it to regenerative random fiber matrix samples.  The goal is to (1) present a 

new general treatment of the experimental determination of heat exchanger design data, 

to (2) provide simple correlations for high porosity random fiber matrices for broad 

design applications, and to (3) illustrate how such measurements close the VAT-based 

equations governing transport phenomena in heterogeneous porous media.  The 

combined experimental and computational inverse method employed here for 

determining the internal heat transfer coefficient in the heterogeneous porous structure 

combines with simple pressure drop measurements to yield the relevant design data for 

eight different high porosity random fiber samples.  The design data is correlated based 

on the porous media length scale, Equation (2.25), and the transport coefficient 

correlations obtained are valid for gas flows over a Reynolds number range between 5 

and 70.  Finally, the correlations are related to the closure statements, Equations (2.21) 

and (2.26).    

3.1.1. Background 

In this section, Chapter 3.1, measurements of the internal heat transfer coefficient 

and friction factor for flow through high porosity random fiber matrices used as 
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regenerators are made that experimentally close the VAT-based equations governing 

transport phenomena in the porous media.  Many kinds of regenerators exist in practice, 

and they differ from each other in the layout of their internal structures, however they are 

typically characterized by a high porosity (>70%) core, in order to maintain lower friction 

factors.  Indeed, the main purpose of regenerators is to act as heat storage devices, while 

minimizing the amount of pumping power requirements.  In the field of transport in 

porous media, early investigations were performed for lower porosity media, ranging 

from 30% to 60%,  because of the wide presence of natural porous materials, well 

documented by Kaviany [14].  Interest in high porosity random fiber matrices [38, 39] 

has grown in the recent decades due to the need to improve heat exchange in several 

engineering applications, such as regenerators for Stirling engines [40-48], and transfer 

media for Phase Change Materials (PCM) used for heat storage [49].  The use of random 

fiber matrices is highly favorable in some applications, such as in electronic cooling 

systems and solar collectors.  Some advanced structures have been built and tested by 

Knowels [50], for NASA Stirling engine applications,  that were composed of several 

layers of different materials in order to optimize the overall performance.  High porosity 

random fiber structures such as those considered here present an important structure 

whose corresponding transport properties must be carefully considered.  

3.1.2. Experimental Method 

To measure the internal heat transfer coefficient, steady-state flow through the 

fiber matrix samples is achieved. The inlet fluid temperature is then subjected to a step 
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change in temperature via an upstream heater and a spring-loaded shuttle mechanism.  

The transient air exit temperature response is measured until steady state thermal 

conditions are realized.  A schematic of the experimental configuration is illustrated in 

Figure 3.1.  The samples are held within the shuttle and insulated with 2 mm thick 

ceramic tape enclosed in 6 mm thick closed-cell foam. The stainless steel regenerator 

holder, or shuttle, slides vertically over a lubricated closed-cell foam strip, which 

insulates the shuttle mechanism from the stainless steel structure, and two lubricated side 

teflon walls.  The entire test rig is placed on a wooden surface. 

 

 
Figure 3.1: Test rig schematic. 
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Eight different test sections, fabricated by five different manufacturers, are 

considered.  Their physical properties can be collected into two main groups as shown in 

Table 3.1. Samples A-F are made of stainless steel fibers, while samples G, and H are 

made of FrCr alloy.  The morphological characteristics of the samples are indicated in 

Table 3.2. 

 

 Sample 
(A,B,C,D,E,F) 

Sample 
(G,H) 

Fluid Phase 
(air, at 60 C°

) 
Insulation 

Mechanical ρ [kg m-3] 7.90×103 7.20×103 1.070 40 
μ [kg m-1 s-1] / / 1.99×10-5 / 

Thermal 
k [W m-1 K-1] 16.3 23.0 2.79×10-2 0.037 

pc  [J kg-1 K-

1] 
0.50×103 0.46×103 1.006×103 1.030 

Table 3.1: Physical properties of the materials. 

 

Case d  [µm] m  wS  [m-1] 
A 80 0.829 8,556.33 
B 22 0.865 24,484.76 
C 88 0.811 8,588.24 
D 22 0.935 11,780.20 
E 30 0.902 13,047.99 
F 25 0.906 15,054.77 
G 35 0.916 9,574.20 
H 30 0.905 12,720.53 

Table 3.2: Test sample properties, 1.3"L = , 1.0"D = . 

 

Sets of thermocouples positioned upstream and downstream of the test section, as 

shown in Figure 3.1, measure the transient air temperature response.  A flowmeter 

measures the air flow rate, and an air velocity transducer measures the air velocity 
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distribution at the inlet and outlet (under non-heating conditions).  An air heater heats the 

upstream air. 

Independent of the thermal measurements, cold-core pressure drop measurements 

are made.  A differential pressure transducer records the pressure drop across each of the 

test sections for the same range of flow rates considered in the thermal tests. 

3.1.3. Model and Computational Method 

3.1.3.1. Internal Heat Transfer Coefficient  

To determine the internal heat transfer coefficient in the fiber matrices a 

simulation of the transient experimental process, based on the VAT equations, is carried 

out.  The only unknown in the simulation is the heat transfer coefficient.  By matching 

the simulation’s results to those of the experiment the heat transfer coefficient can be 

deduced. 

To develop the model on which the simulation is based the following assumptions 

are made: 

1. Flow and heat transfer are one-dimensional 

2. Flow is incompressible and uniform 

3. Properties are constant (sufficiently low temperature differences are maintained) 

4. Fluid phase diffusion is negligible 

5. Natural convection processes are negligible 

6. Fibers are of circular cross-section 

7. Porosity m  is uniform   



30 
 

8. Specific surface area wS  is uniform and given by the relationship 

 ( )1
4w

m
S

d
−

= . (3.1) 

 

9. Effective thermal conductivity effK  is constant and determined from [51] 

Therefore, the transient VAT-based thermal energy governing equations for the fluid and 

solid phases are  
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and 
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respectively.  Here, it is worth noting that the effective thermal conductivity effK  has 

been defined over the entire cross-sectional area of the medium, rather than over the area 

of the solid phase.  This convention is simply for convenience. 

The fluid and solid phase temperatures are written in dimensionless form as 
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The spatial and temporal coordinates are expressed in dimensionless form as 

 

 * *, x tx t
L t

= = , (3.5) 

 

where 

 

 
L
u

τ =
 . (3.6) 

 

The fluid velocity is nondimensionalized as  

 

 * uu
U m

=


, (3.7) 

 

and * 1u =  from the uniform flow assumption. 

In writing the dimensionless VAT-based governing equations it is useful to use 

the following dimensionless parameters: 
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and 
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w
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L S L
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With the above development, the governing fluid and solid phase temperature 

equations can be simply expressed in dimensionless form as 
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and 
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respectively. 

The initial conditions corresponding to the experimental method are 
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and the boundary conditions are 
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With this physical model describing the thermal phenomena of the system a 
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numerical simulation can be performed provided that the heat transfer coefficient is 

known.  A computational method has been developed that allows one to deduce the heat 

transfer coefficient from this model and the experimental data with an iterative 

procedure.  The simulation is performed for a series of heat transfer coefficient values 

until the temperature response predicted by the simulation matches that obtained from the 

experiment.  This iteration procedure is illustrated in Figure 3.2.  Upon agreement of the 

simulation (with assumed h ) and experiment, the heat transfer coefficient is known. 

 

 
Figure 3.2: Iteration Procedure 

 

3.1.3.2. Friction Factor 

Measuring the pressure drop and friction factor in a heterogeneous porous heat 

transfer device, such as the compact regenerator matrix considered here, is relatively 

straight forward.  In the typical installation of a compact heat exchanger there is a flow 

contraction and expansion at the exchanger entrance and exit, respectively, which can 

introduce additional flow-stream pressure drops and rises that the designer must consider.  
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As per Kays and London [30], the entrance pressure drop is attributed to that which 

would occur due to flow area change alone, without friction, and to that due to the 

irreversible free expansion and momentum changes following the abrupt contraction.  

Similarly, the exit pressure rise is attributed to that which would occur due to flow area 

change alone, without friction, and takes into account the pressure loss due to the 

irreversible free expansion and momentum changes following an abrupt expansion.  In 

general, for a one-dimensional flow through a porous heat transfer device, Figure 3.3, an 

expression for the pressure drop is obtained by integrating the momentum equation.  

Kays and London [30] wrote the expression for total pressure drop through a compact 

heat exchanger as 

 

 ( ) ( )2 2 22 2
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1 1 1

1 1 2 1 1
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c e
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υ υ υυ σ σ
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The conventions employed in this expression are those of Kays and London [30].  To 

obtain the core friction factor one must separate contraction, expansion, and acceleration 

effects from the core losses.  The pressure drop through the core is then substituted into 

Equation (2.23) to obtain the desired friction factor f . 
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Figure 3.3: Heat exchanger core pressure drop.  Adapted from Kays and London 

[30]. 

 

For flow through fiber matrix configurations similar contractions and expansions 

occur throughout the matrix as at the entrance and exit.  Therefore, the entrance and exit 

contraction and expansion behavior is accounted for in the core friction factor and does 

not need separate treatment.  The cold-core pressure drop expression for fiber matrices is 

then simply 

 

 2
tot 2

h

f LP u
d

ρ∆ =  , (3.15) 

 

directly relating the measured pressure drop between the inlet and outlet to the friction 

factor. 

3.1.4. Experimental Results  

The following presents and discusses the experimental results obtained for the 
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random fiber matrices.  First the data obtained is considered and correlations are 

suggested.  Next the results obtained here are compared to those of other investigators.  

Finally, comments on the applicability of the correlations presented here are provided. 

3.1.4.1. Experimental Data and Correlations 

The method for obtaining the uncertainty associated with the thermal 

measurements in this study was outlined in [52] and involves propagating the 

uncertainties associated with the instrumentation through the numerical solution routine.  

The uncertainty associated with the thermal measurements obtained here is ± 8%, and 

that associated with the flow friction measurements is ± 5%. 

 



37 
 

 
Figure 3.4: Nusselt number data and correlation, for air 

 

The heat transfer data is presented in Figure 3.4 in terms of the Nusselt number 

and is correlated in the form of Equation (2.28) as 

 

 0.998 1/3
VATNu 0.103Re Pr= , (3.16) 

 

where C = 0.103 and D = 0.998.  This correlation predicts 71% of the data within 30% 

and is included in Figure 3.4.  A comparison of the experimental data with the correlation 

is shown in Figure 3.5.   
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Figure 3.5: Experimental Nusselt number values plotted against the correlation 

values, for air 

 

Similarly, the flow friction data is presented in Figure 3.6 in terms of the Fanning 

friction factor and is correlated in the form of Equation (2.23) as 

 

 
36.26 1.98

Re
f = + , (3.17) 

 

where A = 36.26 and B = 1.98.  This correlation predicts 78% of the data within 30% and 

is included in Figure 3.6.  A comparison of the experimental data with the correlation is 

shown in Figure 3.7.   
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Figure 3.6: Friction factor data and correlation 
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Figure 3.7: Experimental friction factor values plotted against the correlation values 

 

The VAT-based length scale defined in Equation (2.25) achieved reasonable 

success in collapsing the experimental flow friction and heat transfer data from the 

various samples to very simple correlations.  However, it is apparent that the correlations 

only serve as rough approximations for some of the data points.  It is suspected that the 

primary reason for the spread of data around the correlation predictions is due to internal 

morphology characteristic differences due to different fabrication methods among the 

different manufacturers and samples not correlated with hd .  An investigation into how 

sample fabrication methods affect internal morphology characteristics not characterized 
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by hd  along with the transport coefficients in high porosity random fiber matrices should 

be explored in future studies. 

One other observation is that the data obtained in this study was collected over a 

Reynolds number range of about 5 to 70.  Due to the very high specific surface areas of 

the samples (~104 m-1) the Reynolds numbers considered are relatively small, however 

the flow velocities in these tests were more moderate, ranging from about 0.5 to 3.0 m s-1.   

3.1.4.2. Comparisons to Existing Correlations 

Data and correlations from several sources are employed for comparisons to the 

correlations obtained in this study.  One such source, Kays and London [30], presented 

flow and heat transfer characteristics of several matrix surfaces (e.g. randomly stacked 

woven screens and spheres, along with plate-fin and glass ceramic matrices), some of 

which have found applications in regenerative heat exchangers.  The data of Kays and 

London was obtained by implementing a single-blow transient test technique similar to 

the one employed in the present study, whereby a step change in the inlet air temperature 

produced a transient outlet temperature response profile whose maximum slope allowed 

the heat transfer coefficient to be deduced from an analysis.  The major difference 

between their method and the present one is the transport modeling methodology used.  

The analysis they used was based on the early Anzelius and Schumann analysis of heat 

transfer to an idealized porous body [53, 54]. 

Gedeon and Wood [43] considered several wire mesh ( 0.6232 0.7810m = − ) 

and metal felt ( 0.688 0.8405m = − ) test samples typically employed in Stirling cycle 
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regenerators, and presented generic flow friction and heat transfer correlations for them.  

They obtained their data using an oscillating-flow test rig, rather than steady-flow tests.  

However, their previous work showed that their results are valid for both types of flows 

(provided the Valensi number, a dimensionless number that characterizes angular 

frequency, is not too large, i.e. greater than 20).  To measure pressure drop the cycle 

mean sample pumping dissipation was inferred from the PV work done by the piston, and 

to measure heat transfer characteristics the cycle average net heat flux down the 

regenerator was inferred from cooler heat rejection less PV power and heat leaks.  They 

expected their correlations to predict pressure drop to within about 10%±  and 27%±  for 

screens and felts respectively.  Moreover, while they expected their correlations to predict 

overall regenerator energy flux to within 10%±  at high Reynolds numbers around 1000, 

the accuracy decreased considerably at lower Reynolds numbers, due to thermal noise, to 

50%±  below a Reynolds number of about 5. 

In Gedeon’s Sage software user manual [55] correlations for several surfaces, 

including random fiber matrices are collected.  The correlations for random fiber matrices 

presented in [55] were obtained from data gathered from tests on eight different samples 

(that were funded from multiple sources), the details of which are reported in personal 

memorandums that are cited in [55].  The data on which the random fiber matrix 

correlations are based was gathered using the experimental method described by Gedeon 

and Wood [43], discussed above.   
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Figure 3.8: Nusselt number correlations 

 

It is these correlations, discussed above, against which we wish to compare 

Equations (3.16) and (3.17).  In Figure 3.8 and Figure 3.9 the correlations obtained here 

for Nusselt number and friction factor respectively are plotted with correlations and data 

from the other studies that considered, in addition to random fiber matrices, packed 

sphere beds, woven meshes, metal felts, and plate-fin packings.  The metal felt and 

woven screen plots shown in Figure 3.8 and Figure 3.9 are taken from [43], and a 

porosity of 0.80 is taken in both correlations as the samples tested on which the 

correlations are based did not possess porosities much higher than this.  The two plots 
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from [30], “501MOD” and packed spheres, are actually each based on only a single 

sample, the full properties of which are divulged in [30] (though the porosities of each are 

indicated in the figures).  The second plot for packed spheres along with the two plots for 

random fiber matrices are taken from [55] (it is noted in [55] that the correlation for 

packed spheres is based on unpublished data).  The two different random fiber matrix 

plots in each figure correspond to porosities of 0.85 and 0.90. 

 

 
Figure 3.9: Friction factor correlations 

 

Evident from Figure 3.8 and Figure 3.9 is that the present correlations are distinct 
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from the existing random fiber matrix correlations [55] in the Reynolds number range 

under consideration.  In particular, the Nusselt number correlation produced in this study 

predicts significantly more conservative heat transfer characteristics than that given in 

[55].  Such a difference may be due to the low accuracy, due to thermal noise, of the 

correlations obtained using the experimental method described in [43] at the lower 

Reynolds numbers considered here.  Alternatively, it may be due to differences in axial 

conduction models employed.  Moreover, the friction factor correlation produced in this 

study predicts lower values of the friction factor at lower Reynolds numbers and higher 

values of the friction factor at higher Reynolds numbers compared to the correlation 

given in [55].  The difference in friction factor correlations is less clear. 

3.1.4.3. Correlation Applications 

Equations (3.16) and (3.17), correlating heat transfer and flow friction losses, 

respectively, in high porosity random fiber matrices, from tests on eight distinct samples, 

are applicable to the Reynolds number range considered, Prandtl numbers in the gas 

range, and both steady and oscillatory flows [43].  The data gathered here indicates that 

the equations correlate 78% of the friction factor data and 71% of the Nusselt number 

data to within 30%.  While it is expected that the reliability of the correlations is 

decreased due to differences in internal characteristics across different manufacturers and 

samples not correlated with hd , single and simple correlations for both friction factor and 

Nusselt number for all the samples considered are proposed. 
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3.1.5. Conclusions 

In this section an inverse method for experimentally determining effective local 

transport coefficients in heterogeneous porous media based on a rigorously derived, 

hierarchical modeling methodology was outlined and implemented for a selection of high 

porosity random fiber matrix samples.  New design correlations for the Nusselt number 

and friction factor were obtained that may be used for regenerator design applications.  

With the illustration of this new experimental tool, and the production of new simple 

design correlations for high porosity random fiber matrices for regenerative heat transfer 

applications, within the context of the hierarchical VAT model, future VAT-based 

simulation studies of such devices may be pursued.  

3.2. Induction Heating Method for Cylinder Arrays 

In this section a unique treatment of the experimental determination of heat 

exchanger design data is considered that, although analogous to the method considered in 

Chapter 3.1, possesses some unique advantages over that and existing techniques.  This 

method was initially explored by Jones and Catton [56].  Here, in order to experimentally 

obtain the internal heat transfer coefficient, rather than implementing a fluid phase 

thermal perturbation, the solid phase is subjected to a step change in heat generation rate 

via induction heating, while the fluid flows through under steady flow conditions. Then, 

as before, the transient fluid phase temperature response is measured and the heat transfer 

coefficient is determined by comparing the results of another numerical simulation based 

on the VAT model with the experimental results.  The friction factor is determined 
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through pressure drop measurements, as was done in the previous section.  Several 

configurations of staggered cylinders in cross flow were selected for this study.  Results 

for the heat transfer coefficient and friction factor are compared to widely accepted 

correlations and agreement is observed, lending validation to this new experimental 

method and analysis procedure.   

3.2.1. Background 

Many of the previously developed transient testing methods used to measure 

convective heat transfer characteristics of complicated surfaces, including the method 

considered in the previous section, suffer from difficulties with the experimental 

implementation of the inlet fluid stream temperature perturbation.  In particular, this 

perturbation is often not ideal as represented in the corresponding model (e.g. a “step 

change” in fluid temperature is often not exactly that).  In this section a method is 

implemented that seeks to alleviate many of the inherent experimental inconveniences 

associated with other transient methods, and that still rigorously models the transport 

phenomena within the heterogeneous and hierarchical media with VAT.  Measurements 

of the internal heat transfer coefficient and friction factor for cross flow over staggered 

cylinders, i.e. tube banks or pin fins, are made, using this new method, that close the 

VAT-based equations governing transport phenomena in the porous medium.  

Applications of heat transfer to or from a bank of tubes or pin fins in cross flow include 

steam generation in a boiler, air cooling in the coil of an air conditioner, and heat sinking 

in electronics, to name just a few.   
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Once the VAT-based equations are closed, using the methods presented here, 

heterogeneous and hierarchical heat transfer devices such as the tube bank heat exchanger 

or pin fin heat sink, Figure 3.10, may be idealized simply as “homogeneous media” with 

two phases.  However, strictly speaking, VAT does not homogenize the porous media.  

The difference between homogenization and the use of VAT is in the closure.  As a result 

the equations look similar, but the VAT equations are rigorous when the closure is treated 

correctly, as is done here. 
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Figure 3.10: Conceptual illustration of the application of VAT with closure 
relationships to a) a pin fin heat sink, and b) a tube bank heat exchanger. 

 

3.2.2. Experimental Method 

To measure the internal heat transfer coefficient, in a staggered bank of cylinders 

using this new technique, steady-state flow across the bank is achieved. The cylinders are 

then subjected to a step change in heat generation rate via induction heating.  The 
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transient air exit temperature response is measured until steady state thermal conditions 

are realized.  It is evident that this process is analogous to that presented in the previous 

section.  A schematic of the experimental configuration is illustrated in Figure 3.11. 

 

 
Figure 3.11: Experimental diagram. 

 

The cylinders are plain steel.  The rectangular channel in which the staggered 

cylinder test sections are contained is a thermoplastic, and is well insulated.  The physical 

properties of the materials are tabulated in Table 3.3.   
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 Solid Phase  
(steel, at 100 C°

) 

Fluid Phase 
 (air, at 60 C°

) 

Wall  
(PVC, at 20 C°

) 

Mechanical ρ [kg m-3] 7.87×103 1.070 1.4×103 
μ [kg m-1 s-1]  1.99×10-5  

Thermal 
k [W m-1 K-1] 6.03×101 2.79×10-2 1.7×10-1 

pc  [J kg-1 K-1] 4.82×102 1.006×103 1.05×103 
Electrical and 

Magnetic† 
ρR [Ω m] 1.78×10-7   
μr [-] †† 5×101   

† The Curie temperature, CT , of the steel is 770 C° .  †† Approximate value. 
Table 3.3: Physical properties of the materials. 

 

Four different test sections are examined.  Their morphological characteristics are 

tabulated in Table 3.4. 

 

Test Section TS  [mm] LS  [mm] DS  [mm] D  [mm] H , W , L  [cm] 
1 4.242 4.623 5.086 1.702 4.445, 4.763, 4.623 
2 4.394 4.394 4.913 1.994 4.153, 4.864, 4.394 
3 5.240 5.041 5.681 3.175 5.237, 5.250, 5.041 
4 8.103 7.820 8.807 6.352 7.823, 8.382, 7.820 

Table 3.4: Dimensional test section configurations.  

 

Two thermocouple grids positioned upstream and downstream of the test section, 

as shown in Figure 3.12, measure the transient air temperature response.  A flowmeter 

measures the air flow rate, and an air velocity transducer measures the air velocity 

distribution at the inlet and outlet (under non-heating conditions).   
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Figure 3.12: Test section diagram. 

 

The cylinders are heated via high frequency (on the order of 102 kHz) induction 

heating.  The induction coil used was of the basic solenoidal type.  Spatially uniform 

heating of the test section was observed, with thermocouples attached to the ends of the 

cylinders, and carefully maintained throughout the tests. 

Independent of the thermal measurements, cold-core pressure drop measurements 

are made.  A differential pressure transducer records the pressure drop across each of the 

test sections for the same range of flow rates considered in the thermal tests. 

3.2.3. Model and Computational Method 

3.2.3.1. Internal Heat Transfer Coefficient  

Heat transfer in a staggered bank of cylinders is governed mainly by flow 

velocity, geometry, fluid physical properties, and thermal load [57].  To determine the 

internal heat transfer coefficient in the staggered cylinder banks a simulation of the 

experimental process, based on the VAT equations, is carried out, as was done in the 

previous section.  The only unknown in the simulation is again the heat transfer 
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coefficient.  By matching the simulation’s results to those of the experiment the heat 

transfer coefficient can be deduced. 

To develop the model on which the simulation is based, in addition to 

assumptions 1 – 5 of Chapter 3.1, the following assumptions are made: 

6. Heat is only generated in the cylinders 

7. Porosity m  is uniform and given by  

 

 1
4 T L

m π
χχ

= −  (3.18) 

 

8. Specific surface area wS  is uniform and given by 

 

 w
T L

S
D
π
χχ

=  (3.19) 

 

9. Effective thermal conductivity effK  is constant. 

Therefore, the thermal energy governing equation for the fluid phase is given again by 

Equation (3.2) and that for the solid phase is given as  

 

 ( ) ( ) ( )
2

eff 21 1s s
s ps w f s

T Tc m K hS T T Q m
t x

ρ ∂ ∂ ′′′− = + − + −
∂ ∂

    . (3.20) 

 

At steady-state, all energy generated by inductive heating is transferred to the gas 
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phase, assuming minimal lateral losses (due to radiation or natural convection, for 

example).  Therefore, one may use a characteristic temperature difference to scale both 

the solid and fluid temperatures that is defined as the fluid temperature response across 

the porous medium at steady state.  Performing an energy balance on the porous medium 

gives 

 

 s f p s f ff
Q V m c A T+′′′ ′′= ∆  . (3.21) 

 

Here we have defined the mass flux in terms of the solid and fluid cross-sectional areas 

(as we did for the effective thermal conductivity).  Solving the energy balance for the 

characteristic temperature difference fT∆  gives 

 

 ( )s
f

f p f pf fs f

1Q L mQ VT
m c A m c

′′′ −′′′
∆ = =

′′ ′′
+



 
, (3.22) 

 

where geometrical considerations have been employed.  The dimensionless fluid and 

solid phase temperatures are then written as 

 

 f in s in
f s

f f

, T T T T
T T

θ θ− −
= =

∆ ∆

 
. (3.23) 

 

This definition of dimensionless temperatures is particularly advantageous since it 

allows Q′′′  to drop out of the solid phase energy equation.  The spatial and temporal 
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coordinates are expressed in dimensionless form again as given by Equation (3.5), the 

fluid velocity is nondimensionalized as given by Equation (3.7), and so * 1u =  from the 

uniform flow assumption.  Again it is useful to use the dimensionless parameters given 

by Equations (3.8) and (3.9). 

With the above development, the governing fluid phase temperature in 

dimensionless form is again given by Equation (3.10) and the solid phase temperature 

equation is expressed in dimensionless form this time as 

 

 ( )
2

s s
f s* *2t x

θ θαβ θ θ β βγ∂ ∂
= − + +

∂ ∂
. (3.24) 

 

The initial conditions corresponding to this experimental method are given by 

Equation (3.12) and the boundary conditions this time are 

 

 ( ) ( ) ( )* * * *
s s*

f * *
* *

, ,
0, 0

0 1

x t x t
t

x x
x x

θ θ
θ

∂ ∂
= = =

∂ ∂
= =

. (3.25) 

 

A computational method has been developed, like the one described in the 

previous section, that allows one to deduce the heat transfer coefficient from this model 

and the experimental data with an iterative procedure, see Appendix D.  This new 

iteration procedure is illustrated in Figure 3.13.  Again, upon agreement of the simulation 

(with assumed h ) and experiment, the heat transfer coefficient is known. 
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Figure 3.13: Schematic of automated iteration procedure.  Each simulation 

corresponds to a different heat transfer coefficient value. 

 

3.2.3.2. Friction Factor 

Pressure drop across banks of staggered cylinders is governed by the flow 

dynamics between the cylinders and depends on the Reynolds number, geometry, and the 

number of transverse cylinder rows z  [57, 58].  For flow normal to banks of staggered 

cylinders, each row consists of similar contractions and expansions.  Therefore, the 

entrance and exit contraction and expansion behavior is accounted for in the core friction 

factor and does not need separate treatment, as was the case in the previous section for 

random fiber matrices.  The cold-core pressure drop expression for staggered banks of 

cylinders is then simply given by Equation (3.15). 

3.2.4. Discussion of Experimental Results  

In 1972 Whitaker [32] obtained a correlation for convective heat transfer in cross 

flow over staggered tube bundles by collecting previously obtained data from a number 
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of investigators and rescaling it based upon a length scale similar to Equation (2.25), 

differing by only a constant.  He found the correlation to be valid for tube bundles and, 

additionally, packed particle beds.  Whitaker’s heat transfer correlation, however, has a 

high uncertainty,  25%± , and is not valid for 0.65m ≥ , which precludes its use for 

some of the test sections considered here. 

Kays and London [30] present a relatively modest, yet still thorough, collection of 

their own heat transfer and flow friction design data for staggered tube bundles in cross 

flow in their widely cited 1985 monograph.  Kays and London tested seven staggered 

tube bank surfaces using a transient test technique particularly well suited – but limited – 

to cylinders in cross flow, and made some relatively modest efforts in correlating the 

data.  However, Kays and London stopped short of appreciably varying the geometric 

parameters and testing fluids other than air, and didn’t devote extensive effort towards 

correlating their data as these objectives were not within the scope of their work. 

Zukauskas and Ulinskas [57-60] established their correlations for convective heat 

transfer and flow friction losses based upon experiments in which they tested over 150 

tube banks of different pitches and diameters while varying the flow conditions and fluid 

physical properties.  The comprehensive correlations obtained by Zukauskas and 

Ulinskas for heat transfer and flow friction losses for cross flow over staggered tube 

banks are the most widely cited and trusted for this configuration.  The uncertainty in the 

correlation for the average heat transfer of a tube in an inner row of a staggered bank of 

smooth tubes provided by the Zukauskas and Ulinskas correlation is  15%± , however 

that for the friction factor does not seem to be reported.  It is apparent that the data 
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collected here should primarily be compared to the results of Zukauskas and Ulinskas in 

order to gauge the present method’s validity. 

It is well known that the tubes in the first few rows of a tube bank serve as 

turbulence generators, impacting the transport phenomena occurring in subsequent rows.  

Transport coefficients associated with the first few rows can be significantly different 

from those associated with inner rows.  Most investigators introduce a correction factor to 

account for this behavior, however different investigators report different row numbers 

required in order for flow and thermal conditions to stabilize.  Zukauskas and Ulinskas 

report the relationship between the friction factor and heat transfer coefficient in a bank 

of staggered cylinders with a finite number of rows, finite
Zf  and finiteh , and one with an 

infinite number of rows, Zf  and h , respectively.  For a staggered tube bank with ten 

rows, from Zukauskas and Ulinskas [59],  

 

 
finite finite

0.93  and  0.97Z

Z

f h
f h

≈ ≈ , (3.26) 

 

and these ratios are used below in plotting the results. 
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Table 3.5: Definitions employed by various investigators. 

 

The conventions used in the present VAT-based analysis, and those used by Kays 

and London, Zukauskas and Ulinskas, and Whitaker are summarized in Table 3.5.  In 

particular, we are presently interested in comparing the present experimental results with 

those of Zukauskas and Ulinskas.  Explicit conversion relationships between the VAT 

and Zukauskas and Ulinskas dimensionless numbers are given as 

 

 VAT Re Z&URe ReC= , (3.27) 
 

 VAT Z&Uff C f= , (3.28) 
 

and 

 

 VAT Nu Z&UNu NuC= , (3.29) 
 

where the conversion factors are tabulated in Table 3.6, and depend on the test section 
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geometry since maxV  may occur in either the transverse or diagonal plane, Figure 3.14.  

With these conversion relations the results of the present study may be directly compared 

to those of Zukauskas and Ulinskas. 
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Table 3.6: Dimensionless number conversion factors between the conventions of the 
present VAT-based analysis and those of Zukauskas and Ulinskas. 

 

 
Figure 3.14: The minimum intertube space in a staggered tube bank may occur in 
the transverse plane, i.e. 1A , or in the diagonal plane, i.e. 2A .  Adapted from [61]. 
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In Figure 3.15 experimental results for the heat transfer coefficient measured in 

this study, using the novel combined experimental and numerical technique described 

above, for the four test sections considered, are plotted in terms of Nusselt number and 

Reynolds number, following Zukauskas and Ulinskas’ conventions.  Also plotted in this 

graph for comparison purposes are heat transfer data collected by Kays and London, 

following Zukauskas and Ulinskas’ conventions, superimposed upon Zukauskas and 

Ulinskas’ heat transfer correlation with its stated uncertainty indicated.  In Table 3.7 the 

test section characteristics from Kays and London [30] are tabulated for easy reference 

and compared to those of the present study.  Evident from the graph in Figure 3.15 are 

the Reynolds number ranges considered for each test section.  To provide a more clear 

comparison between the experimental heat transfer data collected here and the heat 

transfer correlation of Zukauskas and Ulinskas, Figure 3.16 was prepared.  In this figure 

it is clearly indicated that the present experimental heat transfer results match well with 

the predictions of Zukaskas and Ulinskas.  In a similar fashion, Figure 3.17 was prepared 

to provide a clear comparison between the experimental flow friction data collected here 

and the flow friction correlation of Zukauskas and Ulinskas.  Like Figure 3.16, Figure 

3.17 clearly indicates that the present experimental flow friction results match with the 

predictions of Zukauskas and Ulinskas. 
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Figure 3.15: Nusselt number data plotted against Reynolds number. 

 

 

Test Section Tc  [-] Lc  [-] D  [mm] m  [-] wS  [m-1] VATD  [mm] 
1 2.49 2.72 1.702 0.884 272.649 12.969 
2 2.20 2.20 1.994 0.838 324.410 10.333 
3 1.65 1.59 3.175 0.700 377.687 7.414 
4 1.28 1.23 6.352 0.500 314.943 6.350 

S 1.50 - 
1.25(s) 1.50 1.25 6.350 0.581 263.861 8.810 

S 1.50 - 1.25 1.50 1.25 9.525 0.581 175.907 13.214 
S 1.25 - 1.25 1.25 1.25 9.525 0.497 211.089 9.424 
S 1.50 - 1.00 1.50 1.00 9.525 0.476 219.884 8.666 
S 1.50 - 1.50 1.50 1.50 9.525 0.651 146.589 17.762 
S 2.00 - 1.00 2.00 1.00 9.525 0.607 164.913 14.730 
S 2.50 - 0.75 2.50 0.75 9.525 0.581 175.907 13.214 
Table 3.7: Test section characteristics from the present study and from Kays and 

London [30]. 
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The method for obtaining the uncertainty associated with the thermal 

measurements was outlined in [52] and involves propagating the uncertainties associated 

with the instrumentation through the numerical solution routine.  The uncertainty 

associated with the thermal measurements obtained here is ± 8%, and that associated with 

the flow friction measurements is ± 5%. 

 

 
Figure 3.16: Experimental heat transfer results obtained in the present study 

compared to the correlation given by Zukauskas and Ulinskas [57]. 
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Figure 3.17: Experimental flow friction results obtained in the present study 

compared to the correlation given by Zukauskas and Ulinskas [58]. 

 

3.2.5. Conclusions 

In this section a new method for experimentally determining effective local 

transport coefficients in heterogeneous and hierarchical heat transfer devices was outlined 

and implemented for the simple case of cross flow over staggered cylinders, which is 

commonly implemented in heat sinking and compact heat exchanger devices.  It is 

expected that a more convenient and accurate tool for experimental closure of the VAT-

based equations modeling transport in heterogeneous and hierarchical media, which 

comes down to measuring the transport coefficients, will allow for easier modeling and 
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subsequent optimization of high performance compact heat exchangers and heat sinks for 

which design data does not already exist.  As was the case for the method considered in 

the previous section, the only information needed to determine the heat transfer 

coefficient is the basic material and geometric properties of the sample, the flow rate, and 

the transient fluid temperature response data.  The computational procedure alleviates the 

need for solid and fluid phase temperature measurements within the porous medium.  In 

the next section this same method is applied to measure the internal heat transfer 

coefficient in packed particle beds.  

3.3. Induction Heating Method for Particle Beds 

 
In this section, the non-intrusive induction heating transient testing method 

presented in Chapter 3.2 is applied to packed particle beds, like the ones used in heat and 

mass exchangers and in thermal storage applications.  Measured internal heat transfer 

coefficients in the core of randomly packed beds of uniform spherical particles are 

reported, and correlated in terms of the Nusselt number, over a Reynolds number range of 

20 to 500.   

3.3.1. Experimental Configuration 

The experimental configuration and procedure is nearly identical to that described 

in Chapter 3.2.  Here, randomly packed beds of uniform steel spheres through which air 

flows are considered.  The tube in which the packed bed is contained is a polyvinyl 

chloride (PVC) that is well insulated.  The physical properties of the materials for this 
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study are identical to those in the previous section, see Table 3.3.  A packed bed of 

identically sized polypropylene spheres is in contact with, and immediately upstream and 

downstream of, the heated test section, as illustrated in Figure 3.18.  The two packed bed 

segments of plastic spheres are of length l , where it was ensured that 10l d>  and l D> , 

and serve to eliminate fluid flow inlet and outlet effects, allowing a hydrodynamically 

fully developed flow to enter the heated test section.  Additionally, the two packed bed 

segments of plastic spheres ensure a uniform axial porosity in the heated section. 

 

 

Figure 3.18: Test section diagram, not shown to scale.  Item # 8 in Figure 3.11. 

 

Three different test sections were examined.  Their geometrical characteristics are 

tabulated in Table 3.8.   
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Test Section d  × 103 [m] D  × 102 [m] L  × 102 [m] l  × 102 [m] 
1 1.59 6.731 1.778 6.858 
2 3.18 6.731 3.226 7.163 
3 4.76 6.731 4.826 6.985 

Table 3.8: Geometrical characteristics of the test sections. 

 

Two thermocouple grids are positioned upstream and downstream of the porous 

medium to measure the transient gas phase temperature response, see Figure 3.18.  A 

rotameter measures the gas flow rate, and an air velocity transducer measures the gas 

velocity distribution at the outlet (under non-heating conditions).   

3.3.1.1. Inductively Heating a Packed Bed of Spheres 

The particle bed is heated via high frequency (on the order of 102 kHz) induction 

heating.  The induction coil used was of the basic solenoidal type and its geometric 

parameters, for each test section, are indicated in Table 3.9, where Cd  and CP  are the 

diameter and pitch of the induction coil, and CD  is the solenoid diameter.  The spatial 

uniformity of induction heating in a packed particle bed is not at first evident. 

 

Test Section # of coil turns CD  (cm) 
1 2 16.51 
2 3 16.51 
3 4 13.97 

Table 3.9: Induction coil parameters.  Copper coil, Cd  = 9.5 mm, and CP  = 1.27 cm.  
The coils are internally cooled with deionized water, flowing in a closed loop, from a 

water cooler. 

 

Rhee [62] examined the internal heat generation distribution in a randomly 
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packed bed of stainless steel spherical particles subjected to a high frequency induction 

heat source.  The particle bed was centered in a solenoidal work coil whose diameter, CD

, was approximately twice the diameter of the bed D .  The particle bed Rhee examined 

was dimensionally similar to those considered in the present study (i.e., d  = 6.35 mm, D  

= 104 mm, and L  = 26 or 52 mm).  Twenty thermocouples encased in thin glass tubes 

were distributed at various radial and axial locations in the bed.  The heat generation was 

determined from the transient temperature response during heating.  It was found that the 

difference between the mean value of the heat generation measurements and a single 

local value is less than 5%, indicating that the heat generation in the packed bed is nearly 

volumetrically uniform. 

Somerton [63] conducted a similar experiment in which he also used high 

frequency induction heating to heat a packed particle bed.  The primary difference 

between Somerton’s and Rhee’s experiments is that Somerton’s solenoidal copper work 

coil was tightly wrapped around the particle bed (i.e. CD D≈ ).  Somerton presented plots 

of the radial and axial heat generation distribution for a typical case.  It was found that the 

heat generation varied by about 7% in the radial direction.  In the axial direction it was 

observed that the heat generation “profile is very flat with a slight tapering off of the 

power at the ends.”  Cherng [64] conducted similar experiments on the uniformity of 

induction heating in a packed bed and came to a similar conclusion that the heat 

generation is essentially volumetrically uniform.  Additionally, we conducted 

measurements for our particular experimental setup using Rhee’s method [62] and 

observed essentially uniform heating.  It is therefore evident that an assumption of 
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spatially uniform heat generation in the packed bed is appropriate for the purposes of this 

study. 

Additionally, for each individual particle, the lumped thermal capacity model is 

valid provided that the sphere’s internal resistance to heat transfer (i.e. conduction) is 

small compared to its external resistance (i.e. convection).  The Biot number, Bi, 

characterizes the relative influence of internal and external resistances to heat transfer.  

For a sphere, Bi < 0.1 is a suitable criterion for assuming that the particle has a spatially 

uniform temperature [61, 65].  For the experiments considered here, the largest Biot 

number encountered Bimax, neglecting conduction between particles, may be calculated, 

from Test Section 3 at Re = 500 (see Results section), as  
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where the characteristic length is the ratio of the particle’s volume to its surface area.  

The lumped thermal capacity model is therefore applicable to each spherical particle in 

the bed for these experiments, indicating that a uniform temperature profile exists in each 

particle as it undergoes its transient thermal response. 

3.3.1.2. Distinguishing the Near-Wall and Core Regions in a Packed Bed of Spheres 

It is known that there exists a radial variation in void fraction within a randomly 

packed bed of uniform spheres.  In particular, Benenati and Brosilow [66] demonstrated 



70 
 

that void fraction is unity at the wall and follows a damped oscillatory function to an 

essentially constant value of 0.39 in the core of the bed, about four to five sphere 

diameters in from the wall.  This void fraction profile is due to the point contact between 

the spheres and the container wall, the highly ordered structure they attain near the wall, 

and the gradual influence of the random packing as the bed’s core is approached from the 

wall.  Martin [67] presented an algebraic expression for the void fraction profile.  

Investigators such as Achenbach [68] and Ziółkowska and Ziółkowski [69] have noted 

that this voidage profile leads to a bypass or channeling effect, that is, preferential flow 

near the wall of the packed bed, since pressure drop is strongly dependent upon porosity, 

and in particular, when the bed is heated, leads to a cold flow bypass in the near-wall 

region.  The effect of a cold flow bypass in our experiment, if not accounted for, is to 

decrease the measured value of the heat transfer coefficient.  Some researchers, such as 

Kays and London [30], specify that they are looking at an “infinite” packed bed, in which 

the wall effects are negligible.  Ziółkowska and Ziółkowski [69] give a criterion for 

determining the ratio of tube to particle diameter, D d , at which wall effects are 

negligible, namely, 120D d ≥ .  Such a criterion is not realized for some test rigs and for 

some experimental methods.  Moreover, many examples of packed beds used in 

industrial processes do not meet this requirement, preventing them from being modeled 

by a uniform radial porosity. 

 



71 
 

 

Figure 3.19: Near wall void fraction and preferential flow (velocity is scaled with 
centerline velocity) in a randomly packed bed of uniform spheres (spheres were not 
heated), Test Section 1, Re = 305.  Void fraction distribution taken from the formula 

given in Eq. (2), where C 0.39ε = , and min 0.23ε = . 

 

Measurements of the velocity profile in a randomly packed bed of uniform 

spherical particles were obtained and are presented, along with the void fraction profile, 

in Figure 3.19.  Note that this void fraction is not the same as the volume averaged 

porosity, m .  Schlünder [70] proposed that for a packed bed, which is finite in the 

radial direction, one may divide the area perpendicular to the flow direction into a near-

wall region and a core region.  One then assumes uniform voidage and flow in each 

section.  Schlünder’s success, and that of others ([71], for example), with this method has 

led us to consider analyzing the core of our packed bed as separate from the near wall 

region.  Schlünder defined the near-wall region to be within a distance of 0.5d  from the 

wall, because the average void fraction remains practically constant at 0.39 beyond this 

point, and is equal to 0.50 within.  From Figure 3.19 it is apparent that one may define a 

so called “near-wall region” within 4 sphere diameters from the wall, and a “core region” 



72 
 

beyond the near wall region.  Unlike Schlünder’s definition which is based on void 

fraction distribution considerations, the near-wall region definition used in this study is 

based on measured velocity profiles for the cases under consideration.  This definition of 

the near-wall and core regions will be taken in our analysis and is illustrated 

schematically in Figure 3.20. 

 

 

Figure 3.20: Modeling the near-wall bypass or channeling effect. 

 

Measurements of the velocity profile in our three test sections were made at 

several flow rates for each test section.  A calibrated air velocity transducer was used and 

103 measurements were made for each test section and each flow rate at various radial 

and circumferential locations 1.50 cm above the packed bed outlet. The Dupuit-

Forchheimer hypothesis [72] relates the interstitial velocity u  to the superficial or 

apparent velocity U , measured by the air velocity transducer, and the bed porosity, 

u U m= .  From these measurements we can determine the dependence of core 
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velocity on the overall measured flow rate for each test section. Figure 3.21 plots the ratio 

of core superficial velocity U  to upstream superficial velocity U ′  for our three test 

sections over the flow rate ranges considered for each test section.  The upstream 

superficial velocity is related to the overall flow rate through the test section ,m′  

measured by the rotameter, by 

 

 mU
Aρ
′

′ =
′


, (3.31) 

 

where A′  is the cross-sectional area of the test section.  The core superficial velocity may 

be expressed, similarly, as  

 

 m mU
Aρ ρ

′′
= =

 
, (3.32) 

 

where m  is the mass flow rate through the core of the test section, m′′  is the mass flux 

through the core of the test section, and A  is the cross sectional area of the core of the 

test section.  The ratio of core to upstream superficial velocities may be expressed as 

 

 
( )

U m
U m A

′′
=
′ ′ ′




, (3.33) 

 

where ( )m A′ ′  is the overall mass flux through the test section. It is apparent from our 

measurements that while the bypass effect is highly dependent upon the ratio of particle 
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to tube diameter, it depends little upon the flow rate.  In Table 3.10 the core to upstream 

superficial velocity ratio used to correct the rotameter readings for each flow rate is stated 

for each test section along with the uncertainty in its value. 

 

 

Figure 3.21: Measured ratio of core superficial velocity U  to upstream superficial 
velocity U ′  for the three test sections over the flow rate ranges in each.  minU ′  and 

maxU ′  respectively correspond to the minimum and maximum flow rates achieved in 
the experiment for each of the three test sections. 

 

 Test Section 1 Test Section 2 Test Section 3 
U U ′  0.83 0.74 0.66 

Table 3.10: Core to upstream superficial velocity ratios, 7%± . 

 

Just as the velocity is taken at the core of the packed bed for our analysis, the fluid 

temperature response is also taken at the outlet of the core of the packed bed.  The 
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thermocouple grid at the outlet allows several transient fluid temperature response 

measurements to be made across the packed bed core for each experimental run.  The 

average of these core flow temperature measurements are input into the solution 

algorithm.  The spread in their values is used in assessing uncertainty in the solution. 

Although turbulent flow within a packed bed on the lower scale is three-

dimensional and chaotic, dividing the packed bed into a near-wall and a core region has 

precedent as a successful strategy (as demonstrated in [70, 71]), and thus we have 

decided to adopt it. 

3.3.2. Model Assumptions and Effective Thermal Conductivity 

Assumptions 1 – 5 of Chapter 3.1 are adopted, along with the following 

assumptions: 

6. Heat is only generated in the steel spheres 

7. Porosity m  is uniform in the core with a value of 0.39, see [66]. 

8. Specific surface area wS  is uniform and given by 

 ( )6 1
w

m
S

d
−

=  (3.34) 

 

9. Effective thermal conductivity effK  is constant at 20 W m-1 K-1, see [73]. 

While only an approximate value of effK  is taken in assumption 9, it can be 

observed that the particular value of the effective thermal conductivity has negligible 
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influence on the determination of the internal heat transfer coefficient.  This can be 

observed in Figure 3.22, where the value of the effective thermal conductivity is varied 

over a wide range, yet the transient fluid temperature response profile is hardly affected 

by this variation.  Travkin and Catton [1] show this using fundamental arguments.  Figure 

3.22 can be compared to Figure 3.23, where the value of h  is varied over a considerably 

smaller range yet the temperature profiles are clearly distinguishable provided that h  is 

not too high.  For a high enough h  the two temperature model will break down, and this 

experimental method is not viable unless the surface area of the porous structure is 

decreased by decreasing L , or the product pmc  is increased by changing the working 

fluid.  Additionally, a scaling analysis shows that in the solid phase energy equation the 

conduction term is two orders of magnitude less than the transport and generation terms, 

for our experiments, and thus plays a small role in the solution.  

 

 

Figure 3.22: Variation of simδ  versus t̂  with effective thermal conductivity [W m-1 
K-1]. Nusselt number is unity, Re = 300. 
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Figure 3.23: Variation of simδ  versus t̂  with Nusselt number.  1 1
eff 20 W m  KK − −= , 

Re = 300. 

 

3.3.3. Results and Discussion 

The experimental heat transfer coefficient results for Test Sections 1, 2 and 3 are 

plotted in Figure 3.24. In Figure 3.25 the Nusselt number data is presented along with the 

well-known correlations for packed beds of spheres of Kays and London [30] and 

Whitaker [32], and the correlation of Nie et al. [31], all of which have been expressed in 

terms of the VAT conventions.  From our experimental data, we obtain the 

following new correlation for the Nusselt number as a function of the Reynolds and 

Prandtl numbers. 

 

 0.96 1 3Nu 0.057 Re Pr= . (3.35) 
 

This correlation is valid for Reynolds numbers between 20 and 500 and is expected to be 

valid at reasonable limits beyond this.  In Figure 3.26 this correlation is superimposed on 
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a graph of a multitude of porous media convective heat transfer correlations obtained 

from Travkin and Catton [1]. 

 

 

Figure 3.24: Experimental heat transfer coefficient data. 

 

 

Figure 3.25: Experimental data for Test Sections 1, 2, and 3.  Correlations are from 
Kays and London [30], Whitaker [32], and Nie et al. [31]. 
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Figure 3.26: Internal effective heat transfer coefficient in porous media, reduced 
based on VAT scale transformations, from experiments by 1, Kar and Dybbs [74] 
for laminar regime; 2, Rajkumar [75]; 3, Achenbach [68]; 4, Younis and Viskanta 
[76]; 5, Galitseysky and Moshaev [77]; 6, Kokorev et al. [78]; 7, Gortyshov et al. 

[79]; 8, Kays and London [30]; 9, Heat Exchangers Design Handbook [80]; 10, Nie 
et al. [31]; 11, Whitaker [32]; 12, Eq. (38).  Adapted from Travkin and Catton [1]. 

 

The uncertainties in the temperature and flow rate measurements were propagated 

using the code, and uncertainties in Nusselt number were obtained for various Reynolds 

numbers.  From this analysis, it is seen that the correlation, Equation (3.35), is accurate to 

within 15% for the range of Reynolds numbers under consideration. 

From Figure 3.25 it is apparent that the experimental results obtained in this study 

compare in magnitude reasonably with the established correlations for the internal heat 

transfer coefficient in packed beds of spheres.  The exponent in the Reynolds number 

obtained here, however, is higher than that in the established correlations.  Let us discuss 
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these correlations and how they compare with the present results in more detail. 

Whitaker’s correlation [32], reduced based on the VAT scale definitions,  

 

 
1 2 2 3

1 31 3 2 3Nu Re Re Pr
3 2 15 2
    = +    

     
, (3.36) 

 

was obtained from correlating a large amount of data for various packings from a wide 

range of researchers.  It has been used successfully as an approximation but is not 

intended to be the most accurate correlation for packed beds.  Our correlation sees good 

agreement with Whitaker’s, particularly at higher flow rates. 

Kays and London’s correlation [30],  

 

 0.7 1 3Nu 0.23Re Pr= , (3.37) 
 

written based on the definitions used in this paper, was obtained by implementing a 

standard single-blow transient testing technique to an “infinite” packed bed of spheres, 

whereby a step change in the inlet air temperature produced a transient outlet temperature 

profile whose maximum slope allowed h  to be deduced from an analysis.  The analysis 

used was based on the early Anzelius and Schumann analysis of heat transfer to an 

idealized porous body [53, 54].  This correlation sees reasonable agreement with 

Equation (3.35), particularly at lower flow rates. 

The results obtained in this study lie above those more recently obtained by Nie et 

al. [31] for a packed bed of spheres.  Their correlation for the Nusselt number is written, 
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based on the VAT definitions, as 

 

 0.8572 1 3Nu 0.0491Re Pr= . (3.38) 
 

Like the test sections examined in this study, they looked at packed beds for which near 

wall preferential flow was present (16 51D d≤ ≤ ).  Our correcting for the bypass effect 

played a role in Equation (3.35) being higher than their correlation.  

It can also be observed from Figure 3.25 that the results are independent of the 

size of the spheres.  This is evident in the considerable overlap of the results for each test 

section, seen over the Reynolds number range of about 100 to 400, and the application of 

a single correlation for all three test sections.  This observation allows broad application 

of Equation (3.35). 

3.3.4. Conclusions 

In this section the novel transient method discussed in Chapter 3.2 for 

determining the internal heat transfer coefficient in porous media was applied to a 

randomly packed bed of uniform spherical particles.  Near-wall preferential flow in a 

packed bed was experimentally observed and accounted for in the analysis by adopting 

methods that have previously shown success.  Experimental results for the Nusselt 

number over a Reynolds number range of 20 to 500 were obtained for the core of three 

different randomly packed beds of spheres, and a new correlation was presented.   This 

correlation is seen to be in reasonably good agreement with the results of other 

investigators.   
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It was observed here that the internal heat transfer coefficient is essentially 

independent of the effective thermal conductivity.  This observation allows the initial two 

parameter problem, i.e. h  and effK , to be approached as a one parameter problem, 

greatly simplifying the task. 

The presence of near-wall preferential flow in packed beds was noted.  It is 

suspected that this phenomenon may contribute to the smaller measured Nusselt number 

values in finite packeds beds compared to those in “infinite” packed beds.  A method was 

implemented to account for such near-wall preferential flow by looking solely at the core 

of the packed bed, as the core of a finite packed bed resembles an infinite packed bed in 

its structure. 

Additionally we observed the independence of the packed bed’s sphere diameters 

in our results.  This was also noticed by Nie et al. [31]. 

3.4. Conclusions 

Measurements obtained using the methods presented in this chapter allow for 

thermal-fluid modeling of heterogeneous and hierarchical heat transfer devices by closing 

the theoretically correct VAT-based governing integro-differential equations describing 

transport phenomena in porous media, i.e. Equations (2.9), (2.16), and (2.17).  Closure of 

the VAT-based equations has previously been directly related to the local transport 

coefficients [1-7], providing explicit and rigorously derived expressions for dc  and h , 

i.e. Equations (2.21) and (2.26), respectively .  It is these coefficients that are measured in 

this chapter, using two distinct and unique techniques, for random fiber matrices, 
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staggered cylinder arrays, and packed particle beds.  It is suggested that the experimental 

methods outlined here be used in the future to consistently obtain data and correlations 

for new and advanced high performance compact heat exchanger and heat sink surfaces 

whose geometries preclude direct internal measurements.  

Such experimental methods for convenient and accurate measurements of 

transport coefficients in heterogeneous and hierarchical devices that are based on a 

unified and theoretically correct model that starts with the Navier-Stokes and thermal 

energy equations for both the fluid and solid phases, allows for modeling and subsequent 

optimization of heat transfer devices, based on rigorously derived governing field 

equations, for which appropriate design data does not already exist.  With transport 

coefficient correlations obtained, VAT-based modeling and subsequent optimization 

based on the rigorously derived governing field equations may proceed, free of the 

burdening constraints inherent in CFD approaches or the modeling insufficiencies of 

others.  The following chapter addresses optimization based on the closed VAT 

equations. 
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4. OPTIMIZATION WITH VAT-BASED THERMO-FLUID 

MODELING 

In Chapter 3 experimental closure of the VAT-based governing equations, which 

were presented in Chapter 2, was addressed.  In this chapter the closed VAT-based 

governing equations are exploited to perform multi-parameter optimization and design of 

heat exchangers.  Population-based optimization routines are coupled to VAT-based 

numerical solvers to perform design.  Chapter 4.1 considers a two-stream heat exchanger 

modeled with VAT and optimized with a Genetic Algorithm (GA).  Chapter 4.2 

considers a heat sink modeled with VAT and utilizes a Particle Swarm Optimizer (PSO) 

to carry out the design.   

4.1. Finned-Tube Heat Exchanger Optimization with a 

Genetically Inspired Algorithm 

This chapter presents a new methodology for optimizing Finned-Tube Heat 

Exchangers (FTHEs) using a hierarchical physical model, i.e. VAT, and a Genetic 

Algorithm (GA) numerical optimizer. This method allows for multiple-parameter 

constrained optimization of FTHEs by design of their basic morphological structures.  A 

consistent model is used to describe transport phenomena in a FTHE based on VAT, 

which allows for the volume averaged conservation of mass, momentum, and energy 

equations to be solved point by point, with the morphology of the structure directly 

incorporated into the field equations and full conjugate effects included.  The VAT-based 
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FTHE solution algorithm is extremely fast running compared to CFD, but still able to 

present a detailed picture of the temperature fields in both of the fluid flows as well as in 

the solid structure of the heat exchanger. A GA is integrated with the VAT-based solver 

to carry out the FTHE numerical optimization, which is a ten parameter problem, and the 

FTHE is optimized subject to imposed constraints.  

4.1.1. Background 

Despite the crucial role of heat exchangers in industrial installations, there is still 

a great deal of empiricism in their design.  Although current guidelines provide an ad-hoc 

solution, a unified design approach based on simultaneous modeling of the thermal-

hydraulics and thermal-structural behavior has not been proposed beyond direct 

numerical simulation-based methods, which at this point are too computationally costly 

for designers.  As a consequence, designs are often overly constrained with a resulting 

economic penalty.  It is apparent that a more scientific procedure for the design and 

optimization of heat exchangers is needed.  

  Past work, while using GAs for multi-parameter optimization, has relied upon 

traditional methods of heat exchanger thermal modeling.  In one such study, Ozkol and 

Komurgoz [81] optimized the size of a heat exchanger for a given surface with the help 

of a GA.  They used the ε-NTU method and sought to minimize cost.  Similarly, Xie, 

Wang, and Sunden [82] applied a GA to optimize FTHEs using  the Log-Mean 

Temperature Difference (LMTD) method for the thermal design, and imposed pressure 

drop constraints.  Experimental transfer coefficient correlations were employed for both 
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the air and water sides, and the total weight and annual cost of the FTHE were minimized 

separately.  In a more detailed study, Domanski [83] describes a public-domain FTHE 

simulation software tool, EVAP-COND, a study continued in [84], and discusses its 

integration with an optimization routine in [85].  The heat exchanger performance is 

determined using a tube-by-tube segmented LMTD approach with empirical correlations 

employed for the heat transfer coefficients and pressure drops.  Similarly, Jiang, Aute, 

and Radermacher [86] describe a flexible design tool, CoilDesigner, that can also be 

integrated with optimization procedures [87], adopts a network viewpoint, and takes a 

segmented modeling approach using the ε-NTU method. 

Other investigators have employed direct numerical simulation-based methods 

coupled with GAs.  Mousavi, Hooman, and Mousavi [88] for example used a GA to 

optimize the structure of a finned channel, for a fixed flow rate, in terms of the location 

and size of the fins with the aim of minimizing pressure drop and maximizing heat 

transfer.  The fluid flow and temperature fields were obtained using the finite volume 

method, assuming two-dimensional, laminar, steady state flow with constant properties 

[89].  The GA found an optimum configuration, however, in this study the fins were 

considered perfectly conductive and of negligible thickness, so the solid side was not 

treated, and the conjugate problem was not solved. 

Although not employing a GA, Matos et al. [90] demonstrated what they labeled 

as “numerical and experimental double optimization” on the geometry of staggered 

circular and elliptical finned tubes.  Their objective was to find the optimal geometry in 

terms of tube-to-tube spacing, tube eccentricity, and fin-to-fin spacing, such that the 
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volumetric heat transfer density was maximized, subject to a volume constraint.  

Assuming incompressible, steady state, laminar flow with constant properties, three-

dimensional direct numerical calculations of the flow and temperature were performed 

using the finite element method.  The numerical calculations were experimentally 

validated and used to perform the parametric optimization.  Unfortunately, it is apparent 

that the cost of the direct numerical simulations and/or experimental trials prevented the 

possibility of a more thorough search of the domain, and only four eccentricities, four 

tube pitches, and two flow rates were considered (the number of fin-to-fin spacings 

considered was not reported). 

In a good example of properly accounting for the conjugate effects, Fabbri [91] 

considered heat transfer into a channel flow through a wall with a corrugated surface 

whose profile is periodic and described by a fifth order polynomial.  A finite element 

model solved the conjugate heat transfer problem assuming two-dimensional, laminar, 

steady-state, fully developed, incompressible flow with uniform properties.  Optimal 

corrugation profiles were obtained with a GA by maximizing the heat transfer for a given 

channel pressure drop and wall volume for two distinct Reynolds and Prandtl numbers.  

However, although the number of simulations was not reported, it is expected that the 

computational costs significantly limited the search ability of the GA. 

Foli et al. [92] used a multi-objective GA to optimize the performance of a micro 

heat exchanger by considering the shape of its channels.  They simultaneously 

maximized the heat transfer and minimized the pressure drop by searching for the 

optimal shape of the separator between the fluids, which was represented by two Non-
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Uniform Rational B-Splines (NURBS) with ten control points.  The governing flow and 

heat transfer equations were solved with commercially available CFD software and 

conjugate heat transfer effects between the solid and fluid were taken into account.  A 

Pareto Optimal Front (i.e. the set of all non-dominated solutions) was obtained, however, 

it was reported that a month of calculations were necessary to do so. 

In yet another example of the significant costs of using CFD for heat exchanger 

optimization, a multi-objective GA optimization on the tube shape in a tube bank heat 

exchanger using direct numerical simulation was detailed by Hilbert et al. [93].  A steady, 

two-dimensional, laminar flow model was employed, and the tube-side flow and heat 

transfer were ignored.  The tube shape was varied by adjusting four parameters that 

described it.  The objectives were to simultaneously maximize the heat transfer while 

minimizing the pressure loss.  A fully automatic optimization computer package would 

repeatedly call special software to generate both the tube geometry from input parameters 

and the appropriate simulation mesh, and the CFD program to perform the numerical 

simulation over the mesh.  Post-processing of the CFD results to obtain the objective 

function values was done with an in-house interfacing code.  The simulations were 

performed in parallel on a multi-node Linux PC cluster with 15 worker PCs, and the 

population of the GA was 30 and it operated for 20 generations.  Solution times on the 

order of 10 minutes and a Pareto optimal front were reported. 

Although they did not consider optimization, Hooman and Gurgenci [94] adopted 

a porous medium approach to turbulent transport in air flow over a finned tube bundle, 

and considered the effects of fin height and number density variations.  Using a 
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commercial CFD package that solves porous media turbulent transport equations given 

the porosity, permeability, and a form drag coefficient, they considered two dimensional, 

steady state, turbulent transport over the finned-tube bundle represented as a porous 

medium.  Once the porous media model was calibrated against experimental data it 

yielded reliable thermal predictions.  The governing equations used in [94] however were 

developed from ad hoc considerations and not a rigorous mathematical formulation, and 

the heterogeneous structure of the finned tube bundle was homogenized.   

The VAT model that is used in this section to optimize the thermal-hydraulic 

characteristics of FTHEs addresses many of the undesirable characteristics of the 

methods discussed above.  Its ability to directly incorporate the morphology description 

and quickly yield a non-local description of the temperature and flow fields in the FTHE, 

with full conjugate effects and turbulence modeling included, makes it an ideal tool for 

heat exchanger optimization. The ten-parameter Genetic Algorithm (GA) optimization 

starts with the developed VAT transport model for FTHEs.  This model is the basis for an 

optimization method that enables full exploitation of the possible parameter variations 

that are known to be beneficial to the heat exchanger performance.  With the use of VAT, 

heat exchanger modeling and optimization are based on theoretically correct governing 

field equations rather than the usual balance equations or the semi-empirical porous 

media models.  Before initiating the optimization procedure, what is to be optimized must 

be determined and the constraints must be set from physical and specified limitations.  

Presently, in this section, this is done somewhat arbitrarily due to the fact that different 

designers will have different objectives, so the present case study is meant to serve as a 
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demonstration.  Nonetheless, the method presented is general and may be easily adapted 

to the particular needs of individual designers. 

4.1.2. VAT Heat Exchanger Model 

Previous work has shown that flow and heat transfer in heat exchangers can be 

treated as phenomena in highly heterogeneous structures and that their behavior can be 

properly predicted with porous media modeling through applying the method of volume 

averaging to the Navier-Stokes and thermal energy equations for both the fluid and solid 

phases [1, 7].  Such VAT-based modeling directly incorporates the medium morphology 

characteristics into the governing field equations. Using different flow regime transport 

models and second order turbulence models, equation sets have been obtained for 

turbulent momentum transport and three-temperature heat transport in heterogeneous 

heat exchanger media while accounting for inter-phase exchange. Independent treatment 

of turbulent convective energy transport in the fluid phases and conductive energy 

transport in the solid phase, connected through the interfacial surfaces allows for more 

accurate modeling of the heat transfer mechanisms between heterogeneous structures and 

the fluid phases, and if one is to perform a geometric optimization, one must separate 

convection effects from conduction effects and solve a conjugate problem as is done in 

the present VAT model. 

The VAT-based model for transport in hierarchical and heterogeneous media that 

is presented allows for the representation of a Finned-Tube Heat Exchanger (FTHE), 

Figure 4.1.  VAT allows a FTHE to be analyzed as a multi-level device and results in a 
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non-local description of its hierarchical, multi-scaled transport processes.  The lowest 

level is the fluid-solid interface where the transport coefficients are determined.  The next 

level up in the hierarchy is the local fluid-solid interaction which is a conjugate problem 

with the heat transfer and drag coefficients acting as the connections between the solid 

and fluid. The uppermost level concerns the overall behavior of the device, on which the 

GA optimization study operates.  The VAT model lends itself to an analysis of a FTHE in 

a rigorous way, allowing the effect of the lowest level, the inner passage way surfaces, to 

impact the uppermost scale, the overall heat exchanger performance, all while including 

the full conjugate effects.  Its unique ability to allow a combination of direct general 

physical and mathematical statements with the convenience of segmented analysis, 

whereby overall physical processes or groups of phenomena are divided into selected 

sub-processes or phenomena that are interconnected, each to the others, by an adopted 

chain or set of dependencies, usually employed in heat exchanger design makes it an 

attractive tool.   

 

 

Figure 4.1: VAT-based porous media model of a FTHE. 
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In the present model, both the fin-side and tube-side flows are considered as 

separate “porous flows.”  Air is the fin-side gas, water is the tube-side liquid, and the 

exchanger is steel.  From Equation (2.22), the VAT-based momentum equation for the fin 

side is 
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and, similarly, that for the tube side is 
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While the air flows straight through the exchanger in the positive x - direction, the 

water follows an oscillatory path through the exchanger, Figure 4.2.  Such an oscillatory 

flow path is modeled as xN  porous channel flows, of cross-stream width x xL N , 

alternating in the positive and negative z  - directions.  As the water exits the exchanger 

on one side it adiabatically returns through the tube bend with pressure drop neglected in 

the tube bend here for simplicity.   
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Figure 4.2: Schematic of computational grid and coil circuitry. 

 

Because we are dealing with a conjugate heat transfer problem, the thermal 

energy equations for the solid and both fluid phases are required. From Equation (2.27), 

for the fin-side fluid the VAT-based thermal energy equation is written as 
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and, similarly, for the tube-side fluid it is written as 
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From Equation (2.29), for the solid phase the VAT-based thermal energy equation is 
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written as 
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As discussed in Chapter 2, closure of the general VAT-based integro-differential 

equations relies on the determination of four terms. These terms are locally averaged over 

each REV in the domain, and are the specific surface area of the fluid-solid interface, wS , 

the porosity, or the volume of the fluid divided by the total volume, m , and the 

momentum and heat transport coefficients, dc  and h , respectively.  

The local porosity and specific surface area are determined directly by the 

specified morphology of the engineered porous media structure.  The Representative 

Elementary Volume (REV) over which they are defined for the case of a FTHE is 

depicted in Figure 4.3.  From Zhou et al. [29], the porosity for the fin-side of the FTHE is 

written as 
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and that for the tube-side is written as 
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The specific surface area for the fin-side is given by 
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and that for the tube-side is given by 

 

 
2

i
w

x y

DS
P P
π

= . (4.9) 

 

 
Figure 4.3: Representative Elementary Volume (REV) for a Finned-Tube Heat 

Exchanger, [29]. 

 

The local interfacial transport coefficients, dc  and h , are also needed to close the 

VAT-based governing equations, and clear definitions of these terms are given by 
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Equations (2.21) and (2.26), respectively.  Collecting published experimental 

measurements of friction factor and heat transfer performance for the fin-side of FTHEs 

from Wang et al. [95], Zhou et al. [29] rescaled the data using the length scale given by 

Equation (2.25) and obtained simple correlations for the fin-side drag and heat transfer 

coefficients.  The drag coefficient, Equation (2.21), is related to the friction factor, see 

Equation (2.23), and for the fin-side is 

 

 
1 1

1

112.4 0.252
Redc f≈ = + . (4.10) 

 

Similarly, the Nusselt number on the fin-side is expressed as 

 

 0.6 1/3
1 1Nu 0.24Re Pr= . (4.11) 

 

For closure of the tube-side, all the scaling factors are equal to one (i.e. 
2h iD D= ) 

and the friction factor and Nusselt number correlations for fully-developed flow in a pipe 

are applicable for closure of the tube side VAT equations [29].  Techo et al. [96] 

correlated the friction factor for turbulent pipe flow as  

 

 
( )2

2

2
2

2

Re1.7372ln
1.964ln Re 3.8215dc f

−
   ≈ =   −   

. (4.12) 

         

As for the heat transfer coefficient, 2h , Whitaker [97] showed that the experimental data 
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for Nusselt number from a number of investigators for turbulent pipe flow is nicely 

correlated by the expression 

 

 0.83 0.42
2 2Nu 0.015Re Pr= . (4.13) 

 

At this point in the analysis the VAT-based model of FTHEs, Equations (4.1) – 

(4.5), is fully closed by Equations (4.6) – (4.13). With the closure expressions 

determined, the governing equation set is relatively simple and is numerically solved on a 

contemporary laptop in just seconds to yield a non-local description of the physical fields, 

thus opening the door to thorough optimization studies based on full simulations.  The 

details of the computational procedure used to solve the VAT-based governing equations 

were provided in [7] and constant physical properties are assumed in this study.  The 

proper grid size needed to obtain grid independent results with a uniform grid for several 

selected cases was established and then dynamically adjusted in proportion to the domain 

size (i.e. xL  and zL ) throughout the optimization procedure.  Moreover, only one row of 

tubes in the y - direction was considered for this case as symmetry allows the heat 

exchanger capability to be increased by increasing the number of rows in the y - 

direction. 

4.1.3. Genetic Algorithm Optimization 

A basic Genetic Algorithm (GA) is employed to perform the multiple (10) 

parameter constrained optimization on a plain Finned-Tube Heat Exchanger (FTHE).  
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The fitness function associated with the FTHE, ( )F x , is chosen to be  

 

 ( ) 1 maxF Q Qε= =x   , (4.14) 
 

i.e. the heat exchanger effectiveness.  This fitness function is to be maximized over the 

bounded 10n = -dimensional search space, 

 

 ( )1, , , , , , , , ,d x y x y f z zD S S N N S L mdd ≡x  , (4.15) 
 

where the parameters are bounded between minimum and maximum values, minx  and 

maxx  respectively, as shown in Table 4.1.  Although designers often find themselves 

selecting some of these parameters (e.g. D , dδ , fδ ) discretely from standard tables found 

in handbooks or production manuals, we have chosen to consider them as continuous 

variables so as not to restrict the study to a particular set of possible values.  If one wants 

to consider a discrete set of possible values for these variables it is simple to adapt the 

present method to do so.  The mass flow rate of the hot water, 2m , along with the inlet 

temperatures of the air, 1,inT , and water, 2,inT , are taken to be set values in this study at 

 

 1
2 1,in 2,in1.0 kg s ,  30 C,   and  60 Cm T T−= = ° = °  . (4.16) 
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x  minx  maxx  
D  (mm)  5.00 20.00 

dδ  (mm) 1.00 5.00 

xS  1.00 5.00 

yS  0.50 2.50 

xN  1 50 

yN  1 50 

fδ  (mm) 0.50 10.00 

zS  1.00 10.00 
zL  (mm) 50.00 1,500.00 

1m  (kg s-1) 1.00 40.00 
Table 4.1: Search parameters and their ranges. 

 

It is obvious that physical constraints on the search space should be implemented 

when performing the numerical optimization.  The physical constraints used here are 

tabulated in Table 4.2 and can be visualized in Figure 4.4.  Additionally, several 

optimization constraints are chosen to be implemented.  These constraints are also 

tabulated in Table 4.2, and in general are selected by the designer for a given objective. 

 

Physical Constraints  
2 1mmdD δ− ≥  (4.17) 

2 24 1mmx yP P D+ − ≥  (4.18) 

1mmxP D− ≥  (4.19) 
2 1mmyP D− ≥  (4.20) 

1mmp fF δ− ≥  (4.21) 
 Optimization Constraints  

60 kWTPP ≤  (4.22) 
300 kgW ≤  (4.23) 

Table 4.2: Physical and optimization constraints. 



100 
 

 
Figure 4.4: Geometrical constraints in (a) x y− , and (b) y z− planes. 

 

As the GA optimization routine commences, an initial population of FTHEs is 

generated by creating PN  individuals with randomly chosen values for each of their 

bounded n  parameters.  The fitness of each of these individuals is then determined and 

the evolutionary process may begin.  The population size PN  remains fixed throughout 

the evolutionary process spanning GN  generations.  During each generation, offspring 

are produced and stored until PN  children have been created.  Subsequently, the parent 

population is exterminated and replaced by the child population.  Elitism is enforced so 

that the fittest individual in the population will survive and be passed into the next 

generation. 

The reproductive cycle loop is nested within the generational cycle loop, see 

Figure 4.5.  A single iteration of the reproductive cycle consists of (1) selecting two 

parent heat exchangers, (2) constructing their respective chromosomes, (3) mating the 

parents together by combining their genetic material to produce two offspring 

chromosomes, allowing mutations on the offspring chromosomes to occur, and (4) 
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developing the offspring heat exchangers from their genetic make-up.   

 

 
Figure 4.5: Visual outline of the basic GA optimizer. 

 

Parent heat exchangers are selected for breeding stochastically using the 

commonly employed Roulette Wheel Algorithm (RWA) discussed by Goldberg [98] in 

which the probability of a parent being selected is proportional to its calculated fitness.   

 

 
Figure 4.6: Schematic of the genetic operators acting during the breeding process.  
(a) Two parent individuals are selected and paired for mating.  (b) A location on 
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their chromosomes is randomly selected for splitting.  (c) The crossover mechanism 
then occurs.  (d)  Subsequently, genetic mutations are allowed to take place. 

 

A single individual heat exchanger can be deconstructed into a chromosome-like 

structure (genotype), defining that individual’s physically observable parameters 

(phenotype), that will subsequently be subjected to the actions of several genetically 

inspired operators during the computational breeding process.  The complementary 

process of reconstructing an individual heat exchanger (obtaining its phenotype) from its 

defining genetic material (its genotype) allows the individual’s fitness to then be 

computed.  An individual heat exchanger’s chromosome is constructed by coding each of 

its n  defining parameters into a sequence of integers and joining together the n  

sequences to form a one-dimensional array, see Figure 4.6a.  Each element of this 

chromosomal array may be thought of as a gene having several possible alleles. 

Two parent heat exchangers are bred together by first performing a crossover 

operation on their chromosomes.  This operation produces two corresponding offspring 

chromosomes.  To perform the one-point crossover operation a single cutting point is 

randomly selected along the chromosomes and both parent chromosomes are split here, 

Figure 4.6b.  The chromosomal fragments on one side of the cutting point are 

interchanged and concatenated to the fragments on the other side, Figure 4.6c, resulting 

in two offspring chromosomes whose phenotypes can then be constructed.  The crossover 

operation does not always occur during breeding, occurring at a rate CP . 

Before an offspring chromosome is reconstructed into its corresponding 

phenotype however, each gene in the chromosome is subjected to mutation at the rate of 
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MP .  A gene affected by a mutation is replaced by a randomly selected value.  Although 

mutation can destroy a superior offspring, it is necessary to implement in order to 

preserve variability in the population, and to provide a mechanism to overcome 

premature convergence on secondary maxima in the search space.   

In this study the GA operation parameters are 100PN = , 500GN = , 0.90CP = , 

and 0.05MP = .  A detailed search for the optimal GA operation parameters was not 

carried out; however, the chosen values are typical, falling within the range typically 

employed, and perform satisfactorily.  Upon completion the GA optimizer yields ∗x  and 

( )F F∗ ∗= x , the best solution and its corresponding fitness, respectively. 

4.1.4. Results & Discussion 

The evolution of the best individual’s fitness in each generation is plotted in 

Figure 4.7 for five different trials along with the average of the trials.  From this figure it 

can be observed that as generations pass the computational implementation of natural 

selection leads to improved heat exchanger designs, as judged by the value of the fitness 

function.  Finally, after GN  generations the evolution ceases, and an optimal, or near-

optimal, FTHE is obtained.  Running on a 2.20 GHz Intel Core i7-2720QM CPU, the 

average time for the compiled Fortran GA optimization code (with 100PN =  and 

500GN = ), over the five trials, was 15.563 hours.   
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Figure 4.7: Fitness evolution of the best individual in each generation for five trials. 

 

The best solutions ∗x  and their corresponding fitness functions ( )F F∗ ∗= x  for 

the five trials are tabulated in Table 4.3.  As shown in the table, the final fitness functions 

F ∗  in the present constrained optimization problem varied only slightly among the five 

trials, reaching within 6 % of the theoretical optimum.  However, some of the search 

parameters ∗x  varied quite significantly due to the absence of additional constraints that 

would decrease the size of the search space.  That is, among the five trials, the GA 

identified nearly-equivalent optimums in different regions of the search domain. 
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  Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

∗x  

D  (mm) 8.41 7.56 7.34 7.36 8.12 
dδ  (mm) 1.02 3.20 2.95 3.02 1.41 

xS  1.72 2.74 4.48 4.47 1.41 

yS  2.23 2.47 1.49 1.03 2.46 

xN  23 11 5 7 23 

yN  19 39 47 48 15 

fδ  (mm) 0.50 0.50 0.50 0.51 0.50 

zS  6.41 4.45 4.87 4.95 4.20 

zL  (mm) 1,476 713 1,495 1,318 1,499 

1m  (kg s-1) 8.01 8.45 13.79 8.40 6.81 
F ∗

 ε  0.94 0.97 0.99 0.95 0.95 
Table 4.3: Parameter selection and corresponding fitness for the five trials. 

 

The fin thickness and pitch, fδ  and pF , and tube diameter and pitches, D , xP  

and yP , together characterize the lower-scale morphology of the fin-side flow, i.e. 1m  

and 
1wS , and along with the mass flow rate 1m , give rise to the Reynolds number 1Re , 

which determines the lower-scale fin-side transport coefficients, 
1dc  and 1h .  Similarly, 

the tube inner diameter and pitches, iD , xP  and yP , characterize the lower-scale 

morphology of the tube-side flow, i.e. 2m  and 
2wS , and along with the mass flow rate 

2m , give rise to the Reynolds number 2Re , which determines the lower-scale tube-side 

transport coefficients, 
2dc  and 2h .  It is the morphology and transport behavior on the 

lower-scale that effects the design of the upper-scale variables, such as the overall 

exchanger body dimensions, xL , yL , and zL , and the number of tube passes and rows, 
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xN  and yN , see Figure 4.8.  As depicted in Figure 4.8, the result of Trial 3 is an 

exchanger characterized by a relatively large face to the air flow, a large number of tube 

rows yN , and a small number of tube passes xN .  The tube-side porosity 2m  and 

specific surface area 
2wS  for Trial 3 are relatively low and give rise to a relatively high 

tube-side flow velocity and heat transfer coefficient.  The exchanger resulting from Trial 

4 shares very similar characteristics with that resulting from Trial 3, however the number 

of tube passes xN  is slightly increased and the face area to the air-flow is slightly 

decreased.  While the exchanger resulting from Trial 2 is similar in many respects to that 

resulting from Trials 3 and 4, its length in the z - direction is significantly shorter, 

resulting in a square-shaped face to the air-flow.  The exchanger resulting from Trial 5 on 

the other hand, unlike those resulting from Trials 2, 3, and 4, is characterized by a 

relatively small face to the air flow, a small number of tube rows yN , and a large number 

of tube passes xN .  The tube-side porosity 2m  and specific surface area 
2wS  are 

relatively high, and give rise to a relatively low tube-side flow velocity and heat transfer 

coefficient.  The exchanger resulting from Trial 1 shares very similar traits with that 

resulting from Trial 5, however the number of tube rows yN  is slightly increased.  It is 

interesting to note that for the five trials, despite the wide variation in tube-side 

morphology and transport characteristics (between Trials 2, 3, and 4 and Trials 1 and 5), 

the air-side did not see a wide variation in its porosity  1m , specific surface area 
1wS , 

flow velocity, or heat transfer coefficient. 
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Figure 4.8: Optimum heat exchanger body dimensions, xL , yL , and zL , drawn to 

scale with tube pass and row numbers, xN  and yN , indicated (tube diameters not 
drawn to scale) for the five trials. 

 

As was previously discussed, in the present analysis transport in each of the fluid 

phases is treated separately from that in the solid phase in order to account for conjugate 

effects, and it is the lower-scale transport coefficients on each side of the exchanger that 

connect the transport in the fluid phases to that in the solid phase.  In the present study fin 
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thickness fδ  was minimized in every trial; however tube-wall thickness dδ  was 

significantly increased in Trials 2, 3, and 4, relative to Trials 1 and 5, indicating the role 

that the solid-side effects play in the exchanger design.  For example, it is known that 

while decreasing the tube-wall thickness reduces the solid-side thermal resistance, 

increasing it can lead to increased fin-side surface area, thus reducing the overall thermal 

resistance between the fluids.  Such effects must be carefully balanced with other 

important considerations in the exchanger design, and the present method allows such a 

balance to be achieved. 

In any heat exchanger design process numerous constraints inevitably arise.  

Introducing further constraints into the optimization will reduce the size of the search 

domain until there may be only a single viable solution ∗x  remaining.  For the successful 

application of the tool presented here to a specific design problem, constraints must be 

clearly delineated at the outset by the designer.  For example, cost, certain dimensions, 

and manufacturability constraints all reduce the search domain of the problem.  As 

mentioned above, heat exchanger designers typically select components of their design 

from a production manual or handbook and such a finite selection of parameters 

considerably reduces the design search space.  Operational concerns also play a crucial 

role when specifying constraints.  For example, concerns for excessive tube-wall pressure 

on the tube-side, and fluid elastic instability [99, 100] on the fin-side play a prominent 

role in some heat exchanger designs, and designing to avoid these detrimental 

phenomena will result in additional constraints.  Table 4.4 tabulates some additional 

performance parameters of the optimum heat exchangers found at ∗=x x  for the five 
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trials considered in addition to their fitness, and includes the presently constrained 

quantities TPP  and W .  It is evident that the heat exchanger optimization procedure was 

bounded by the imposed constraints on these quantities and that for nearly every case 

these quantities were at or near the constraining values.  Thus, constraints play a crucial 

role in the design process, decreasing the size of the search domain, and must be 

identified for specific design requirements.   

 

Trial Q  
[kW] 

ε    
[-] 

PPε   
[-] 

Tε∆   
[°C-1] 

1PP  
[kW] 

2PP  
[kW] 

TPP  
[kW] 

W  
[kg] 

V  
[m3] 

1 118.54 0.94 2.89 9.62x10-2 40.99 0.07 41.06 297.23 0.1744 
2 121.32 0.97 2.02 6.75x10-2 47.51 12.41 59.92 297.93 0.1186 
3 123.77 0.99 2.06 6.88x10-2 56.92 3.04 59.96 299.79 0.1265 
4 119.34 0.95 2.07 6.89x10-2 52.03 5.74 54.77 296.87 0.1110 
5 119.92 0.95 2.02 6.75x10-2 59.03 0.22 59.25 300.00 0.1185 

Table 4.4: Heat exchanger performance at *x = x  for the five trials, 

max 125.58 kWQ = . 

 

As a final note, variability in convergence speed is evident in Figure 4.7.  In 

particular, while Trial 3 converges relatively quickly, Trial 1 converges relatively slowly.  

Such variability in convergence speed in this study was solely the result of a different 

initial population and random number seed.  Such effects must be carefully considered, 

and if, unlike the present case, the optimal fitness function value is unknown, a 

considerable number of function evaluations may be necessary to obtain confidence in a 

sufficiently near-optimal solution.  Due to its computational speed, the VAT-based 

method presented here allows optimal heat exchangers to be found that could not be 

obtained with CFD.  However, for specific problems the GA parameters should also be 
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tuned.  Domanski et al. [101] presented a study recommending population size and 

number of generations significantly smaller than those employed here (i.e. 40PN =  and 

200GN = ).  Implementing these settings or independently finding optimal settings 

would decrease the computational time further.  It is interesting to observe the evolution 

of the search parameters in parallel to that of the fitness function, and to observe the wide 

range in convergence speed from the perspective of the search parameters.  Figure 4.9 

depicts the evolution of the search parameters x , for each generation’s best individual in 

Trial 1 and Trial 3, where the search parameters have been scaled as 

 

 min

max min

−
−

x xx =
x x

, (4.24) 

 

and *=x x  at the conclusion of the evolution.  It is apparent that while the search 

parameters in Trial 3 quickly settle on a location in the domain, the search parameters in 

Trial 1 continue searching throughout the evolution.   The difference in convergence 

speed observed in Figure 4.7 and Figure 4.9 highlights the need for not only careful 

tuning of the GA parameters, but also a fast-running computational method based on the 

hierarchical modeling methodology presented here. 
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Figure 4.9: Evolution of x  for the best individual in each generation for a) Trial 1 

and b) Trial 3. 

 

4.1.5. Conclusions 

In this section a VAT model of a Finned-Tube Heat Exchanger is presented that 

provides the basis for an optimization method that enables full exploitation of the 
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possible parameter variations that are known to be beneficial and whose run-time 

significantly exceeds that of CFD.  In the heat exchanger model convection effects are 

separated from conduction effects and a conjugate problem is solved, allowing geometric 

optimization to be performed.  The heat exchanger modeling and optimization are based 

on theoretically correct governing field equations rather than the usual balance equations 

or ad hoc field equations.  This provides a unified design approach based on simultaneous 

modeling of the thermal-hydraulics and thermal-structural behavior.  This method is 

easily extended to other heat exchanger surface types.  To do so, one only needs to close 

the VAT-based equations, which amounts to knowing the morphology and transport 

coefficients for the structure. 

A Genetic Algorithm numerical optimizer is fully integrated with a simulation 

routine based on the VAT model of the Finned-Tube Heat Exchanger.  Ten parameters 

describing the Finned-Tube Heat Exchanger are simultaneously varied to optimize the 

heat exchanger’s effectiveness, subject to several constraints.  Upon completion, the 

optimization yields an optimized heat exchanger, specifying the selected values of the ten 

parameters that were varied, and the corresponding optimal heat exchanger effectiveness.  

Such a computational routine provides a valuable and one-of-a-kind tool for heat 

exchanger designers.  Future work can explore new surfaces, integrate other promising 

optimization methods, e.g. particle swarm optimization, simulated annealing, etc., and 

consider multiple-objective optimization methods, e.g. NSGA-II [102].  Moreover, tube-

side phase change, fin-side wet surface conditions, and flexibility in tube circuitry 

architectures can be incorporated into the model. 
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Computer aided numerical simulation as presented here cannot yet replace the 

experimental work, but with the aid of computer calculations, experiments can focus on 

achieving optimum properties. Model calculations can be used to examine the sensitivity 

of heterogeneous media performance to key parameters. This minimizes developmental 

costs and reduces the time required for product commercialization.  

 

4.2. Heat Sink Optimization with a Socially Inspired 

Algorithm 

In Chapter 4.1 a two-stream heat exchanger was considered.  In this section we 

consider a heat sink.  Cooling electronic chips to satisfy the ever-increasing heat transfer 

demands of the electronics industry is a perpetual challenge.  One approach to addressing 

this is through improving the heat rejection ability of air-cooled heat sinks, and nonlocal 

thermal-fluid-solid modeling based on Volume Averaging Thoery (VAT) has allowed for 

significant strides in this effort.  A number of optimization methods for heat sink 

designers who model heat sinks with VAT can be envisioned due to VAT’s singular 

ability to rapidly provide solutions, when compared to Direct Numerical Simulation 

(DNS) and Computational Fluid Dynamics (CFD) approaches.  The Particle Swarm 

Optimization (PSO) method appears to be an attractive multi-parameter heat transfer 

device optimization tool, however it has received very little attention in this field 

compared to its older population-based optimizer cousin, the Genetic Algorithm (GA), 

which was considered in Chapter 4.1.  The PSO method is employed in this section to 
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optimize smooth and scale-roughened straight-fin heat sinks modeled with VAT by 

minimizing heat sink thermal resistance for a specified pumping power.  Optimal designs 

are obtained with the PSO method for both types of heat sinks, the performances of the 

heat sink types are compared, and the performance of the PSO method is discussed with 

reference to the GA method.   

4.2.1. Background 

Past studies have considered different methods for the optimization of heat sink 

designs.  Much emphasis, in particular, has been placed on optimization with Genetic 

Algorithms (GAs).  While early work on GAs for general optimization problems was 

performed in the 1970s and 1980s by Holland [103], Goldberg [98], and others, GAs for 

electronics cooling applications didn’t begin to receive attention until the work of 

Queipo, Devarakonda, and Humphrey [104] in the mid-1990s.  Since then a number of 

heat sink optimization studies using GAs have been reported, with various modeling 

approaches.  Some investigators have used algebraic correlations of the heat sink 

performance, e.g. thermal resistance or entropy generation, as the model on which the 

GA operates [105-107].  Others have interfaced Direct Numerical Simulations (DNS) and 

Computational Fluid Dynamics (CFD) packages with GAs to perform optimization [91, 

104, 108].  Further, others have coupled porous media models with GAs to optimize heat 

sink designs [109-111]. 

Less emphasis, however, has been placed on heat sink design with Particle Swarm 

Optimization (PSO).  PSO was developed in the 1990s by Kennedy, Eberhart, and their 
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students [112-119], and began to receive attention for electronics cooling applications in 

the early 2000s.  In particular, CFD heat sink simulations have been interfaced with the 

PSO method to optimize heat sink designs in several recent studies [120-122].  Appendix 

C presents an abridged survey of studies that have employed population-based optimizers 

to design heat sinks (and heat exchangers). 

The heat sink modeling methods thus far employed with the PSO and GA 

optimization tools suffer from some undesirable characteristics.  Although those 

modeling methods using algebraic performance correlations yield fast performance 

evaluations, allowing the PSO and GA to thoroughly explore the design/solution space, 

these methods’ applicability are confined to the certain conditions from which they were 

derived and do not afford the flexibility that full simulations provide.  Full simulation 

modeling methods using DNS and CFD can provide detailed solutions of the flow and 

temperature fields for different flow regimes and arbitrary channel morphologies, and at 

first seem ideal as a model on which to perform optimization.  However, DNS and CFD 

solutions used for optimization typically either don’t include the conjugate heat transfer 

effects, i.e. the solid side, or carry a large computational burden when attaining the many 

solutions necessary that cripples the PSO and GA’s search abilities.  Some porous media 

models show promise for certain applications, however, the models typically employed 

are empirically-based, often don’t include conjugate effects, and don’t incorporate clearly 

defined transport coefficients.  The VAT-based hierarchical modeling methodology 

presented here to overcome these undesirable characteristics performs full thermal-fluid-

solid simulations that account for the flow regime and arbitrary channel morphologies, 
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includes full conjugate heat transfer effects, is general and rigorously derived from 

fundamental equations, incorporates clearly defined transport coefficient expressions, and 

provides fast computational times that allow PSO and GA optimizations to be easily 

realized with even modest computing hardware.  The VAT-based fluid mechanics and 

thermal energy equations modeling hierarchical momentum and heat transport within a 

heterogeneous porous medium, like a heat sink, were described in Chapter 2. 

The PSO method, as employed here, was discovered by Eberhart and Kennedy 

[112] while performing simulations of a simple social model, and since then it has proven 

itself to be both fast and robust in solving a wide range of nonlinear, non-differentiable, 

multi-modal optimization problems.  As Eberhart and Kennedy describe, it is a simple 

concept, can be implemented in just a few lines of computer code, requires only primitive 

mathematical operators, and is computationally inexpensive in terms of both memory 

requirements and speed.  PSO is part of a long line of biologically-inspired algorithms 

and can be thought to lie somewhere in between Genetic Algorithms (GAs) and Artificial 

Neural Networks (ANNs).  While evolution by natural selection (i.e. GAs) may take eons 

and neural processing (i.e. ANNs) may take milliseconds, social optimization (i.e. PSOs) 

occurs in the time frame of ordinary experience.  In PSO, they explain, individuals 

improve through cooperation and competition among themselves in the same way 

individuals in a flock, school, herd, or swarm profit from the discoveries and experiences 

of other members of the group during their search for desirable resources that are 

unpredictably distributed.  It is based on the premise that social sharing of information 

offers an evolutionary advantage.  Additionally, they observed that in a similar fashion to 
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the way birds and fish move through three-dimensional space to seek food and mates, 

avoid predators, and optimize their environment, humans adjust their beliefs and attitudes 

to conform to their peers and societal norms in an abstract multi-dimensional space.  

Therefore PSO also has roots in human learning patterns. 

In this study, the PSO method is implemented for optimizing heat sinks modeled 

with VAT.  Such a modeling methodology was incorporated with a GA to optimize a 

two-fluid stream heat exchanger in the previous section.  Here, both smooth surface and 

scale-roughened surface straight-fin heat sinks with tapered fins are considered, see 

Figure 4.10.  The results from the PSO method are compared to and verified against 

results from a GA.  The performance of these two types of heat sinks and the 

effectiveness of the nonlocal modeling coupled with a swarm-based design strategy are 

then discussed. 
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Figure 4.10: Illustration of a straight-fin heat sink with tapered, a) smooth and b) 

scale-roughed surface fins 

 

4.2.2. Heat Sink Transport Model 

The VAT-based steady-state, incompressible flow heat sink governing equations 

follow.  The continuity equation is trivial, see Equation (2.6).  From Equation (2.9), the 
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one-dimensional momentum equation is written as 
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From Equation (2.16), the two-dimensional thermal energy equation in the fluid phase is 

written as 
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From Equation (2.17), the two-dimensional thermal energy equation in the solid phase is 

written as 
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Zhou et al. [33] present correlations for dc  and h , developed from lower-scale 

CFD simulations, that close the VAT-based governing equations for the smooth and 
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scale-roughened surface straight-fin heat sinks considered here.  Having found closure for 

the surfaces under consideration, the governing equations become simple and solutions 

may be readily obtained numerically, opening the door to population-based optimization 

efforts. 

4.2.3. Computational Methods and Solution Procedure 

The VAT-based momentum, turbulent kinetic energy, and thermal energy 

equations are solved numerically with the finite difference method over the two-

dimensional x - z  plane.  In particular, statements for one-dimensional fully developed 

turbulent flow and two-dimensional, two-temperature heat transfer in a porous layer and 

heat transfer in a base plate are used.  Uniform gridding is employed in the base plate, 

when it is considered, and over most of the channel, however a higher density grid in the 

flow ( x ) direction is implemented near the channel inlet and outlet regions.  A flow chart 

of the solution algorithm is illustrated in Figure 4.11. 
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Figure 4.11: Flow chart of the VAT-based heat sink simulation routine 
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  After the problem is formulated and the variables are initialized, the velocity 

distribution for turbulent channel flow in porous media is simulated for incompressible, 

constant property flow, i.e. it is uncoupled from the thermal routine.  Subsequently, the 

two-dimensional, two-temperature statements modeling the turbulent heat transfer in the 

fluid phase and the conjugated heat transfer in the solid phase are solved using the 

velocity field and turbulence parameters as input.  To resolve the temperature fields there 

are several iterative loops, as indicated in Figure 4.11.  When the base plate is considered, 

an inner loop converges the fluid and solid channel temperatures using a form of ADI.  

Another inner loop converges the base temperature separately from the channel 

temperatures, given an interface temperature between the channel and base and a bottom 

base temperature or heat flux.  An outer loop then matches the interface heat flux and 

temperature between the base and channel by varying the interface temperature.  If the 

base plate is not considered then a simpler situation arises, and a single loop simply 

converges the fluid and solid channel temperatures.  When the VAT-based solution 

routine exits, the fully-developed velocity field and two-dimensional temperature fields 

are obtained, along with other relevant calculated quantities, e.g. the thermal resistance. 

During the optimization runs in this study the base plate is neglected, to provide 

quicker solution times, and a constant temperature boundary condition is imposed on the 

bottom of the channel.  The results of the optimization are then verified by including the 

base plate and solving for a uniform heat flux boundary condition on the bottom of the 

base plate.  This method stems from the assumption that the performance of a heat sink 
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with no base plate and a constant temperature boundary condition is related to the 

performance of a heat sink with a thin base plate and a uniform heat flux boundary 

condition.   

In this study the fluid is air and the heat sink is aluminum for all cases and several 

geometric parameters of the heat sink are kept fixed, as indicated in Figure 4.10.  

Additionally, appropriate flow and thermal boundary conditions are kept fixed 

throughout the study.  A fixed pumping power of 30W, and no-slip boundary conditions 

at the bottom and top of the channel fully specify the flow field through the given channel 

geometry.  To specify the thermal fields in both the solid and fluid phases, a uniform inlet 

air temperature of 30°C is implemented, along with an adiabatic condition at the top of 

the channel, and one of two lower thermal boundary conditions.  The lower thermal 

boundary condition is a 90°C isothermal one at the bottom of the channel during the 

optimization, where the base plate is neglected.  After the optimization, the designs are 

evaluated with a uniformly distributed 1kW heat source at the bottom of the baseplate as 

the lower thermal boundary condition.   

4.2.4. Particle Swarm Optimization 

The ability to quickly obtain solutions provided by the VAT-based modeling and 

solution routine outlined above allows for population-based optimization to proceed.  In 

the present study the multi-parameter, constrained optimization problem is formulated as 

follows.  The heat sink thermal resistance, ( )thR X , is to be minimized over the bounded 

search domain 
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 ( )base top, , ,f yX H Sδ δ≡ , (4.28) 
 

where the parameters are bounded between minimum and maximum values minX  and 

maxX  respectively, as shown in Table 4.5.  Tapering of the fins is allowed during the 

search and the fin thickness varies linearly with respect to the z -coordinate.  

Optimization should yield X ∗  and ( )th thR R X∗ ∗= , the optimal solution and its 

corresponding thermal resistance, respectively. 

 

Parameter Minimum Maximum 
Fin thickness at base, baseδ  (mm) 1.50 5.00 
Fin thickness at top, topδ   (mm) 1.50 5.00 

Fin height, fH  (mm) 10.00 23.90 
Pitch/fin thickness at base, yS   (-) 1.40 3.00 

Table 4.5: Design parameter ranges for the straight-fin heat sinks 

 

Each individual, i.e. heat sink design, in the PSO is treated as a particle, defined 

by its position, that flies through 4D = -dimensional hyperspace.  In general, the i th 

particle is represented as ( )1 2, ,...,I i i iDX x x x= , its best previous position as 

( )1 2, ,...,I i i iDP p p p= , and its velocity as ( )1 2, ,...,I i i iDV v v v= .  The index of the best 

particle in the neighborhood is n .  Each particle adjusts it flight according to 

 

 ( ) ( )1 2( ) - ( ) -id id id id nd idv w v c rand p x c Rand p x= × + × × + × × , (4.29) 
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 id id idx x v= + , (4.30) 
 

where 1c  and 2c  are two “learning factors”, ( )rand  and ( )Rand  are two independently 

generated random numbers in the range [ ]0,1 , and w  is the “inertia weight” [114].  

Equation (4.29) calculates the particle’s new velocity according to its weighted previous 

velocity and stochastic functions of the distance of its current position from its own best 

position and that of the group.  The particles then “fly” toward a new position according 

to Equation (4.30).  

The first term on the right side of Equation (4.29) is the particle’s previous 

velocity multiplied by an inertia weight.  The inertia weight is employed to control the 

impact of the previous history of velocities on the current velocity, and influences the 

tradeoff between global and local exploration.  A larger inertia weight facilitates global 

exploration while a smaller inertia weight facilitates local fine-tuning.  The second term 

on the right side of Equation (4.29) is the “cognition” part, representing the private 

thinking of the individual particle, and contributes to a stochastic change in velocity 

[123].  Conceptually, idp  resembles autobiographical memory, as each individual 

remembers its own experience, and the velocity adjustment associated with this term can 

be viewed as “nostalgia” in that the individual tends to return to the place that most 

satisfied it in the past.  The third term on the right side of Equation (4.29) is the “social” 

part, representing collaboration among the particles, and contributes to a stochastic 

change in velocity.  Conceptually, ndp  resembles publicized knowledge, or a group norm 
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or standard, which individuals seek to attain. 

 

 

Figure 4.12: Flow chart of PSO algorithm 

 

To implement the PSO, the particle population is initially randomized, as in the 

GA, and subsequently searches for optima by updating iteratively through time.  In every 
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iteration, each particle is updated by its attraction to its own best position idp , and that of 

its neighbors ndp , through Equations (4.29) and (4.30).  When a given criterion is 

satisfied, the iteration exits with what is taken to be the optimal solution.  A flow chart of 

the general PSO algorithm used here is shown in Figure 4.12, [124].  The algorithm 

employed here randomly finds SN  neighbors for each particle at each iteration, uses a 

well-tested random number generator, exits after a fixed number of iterations GN , and 

implements the settings tabulated in Table 4.6. 

 

PN  GN  SN  1c  2c  w  
20 150 5 2.00 2.00 1.00 

Table 4.6: PSO operation settings 

 

4.2.5. Results and Discussion 

Employing the VAT-based modeling and solution routine coupled with the PSO 

technique, smooth and scale-roughened straight-fin heat sinks are optimized by 

minimizing their thermal resistance while maintaining a constant pumping power.  

Boundary conditions and certain parameters are fixed as detailed above and other 

parameters are variable with search ranges tabulated in Table 4.5.  Results from the 

optimization of smooth surface and then scale-roughened surface fins are first considered 

in this subsection, followed by a discussion on the evolution of the nonlocal flow and 

temperature fields and an evaluation of the performance of the PSO method in relation to 

the GA method. 
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4.2.5.1. Smooth Surface Fins 

The first case considered is for a simple smooth surface straight-fin heat sink, 

Figure 4.10a.  The PSO evolves the optimal design so that the heat sink thermal 

resistance favorably evolves.  Ten independent PSO trials are run and the evolution of the 

optimal thermal resistance for the trials (thin grey lines) along with the average of the 

trials (thick black line) are plotted in Figure 4.13a.  The inset of Figure 4.13a shows 

closely the first few iterations before which all ten trials converge to the optimum.  By 

the 16th iteration, all ten trials agree on the same value for the optimal thR , i.e. 0.079 

°C/W without the base plate.  Alternatively, from the perspective of the design space, the 

ten independent PSO trials evolve scaled values of fH , yS , baseδ , and topδ  as illustrated 

in Figure 4.14a.  Here the search ranges of the four design parameters are scaled between 

0 and 1, where 0 is the minimum value and 1 is the maximum, see Table 4.5.  That is, 

 

 min

max min

X XX
X X

−
=

−
, (4.31) 

 

where X  is the scaled design space vector.  While the color-coded thin lines in Figure 

4.14a indicate the evolution of the optimal parameters for the ten independent trials, the 

color-coded thick lines indicate the average over the ten trials.  Evident from Figure 4.14a 

is that, in addition to all ten trials converging to a single optimal value *
thR , all ten trials 

also converge to a single optimal solution in the design space, *X , for the ten individual 

PSO runs. 
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Figure 4.13: Evolution of thermal resistance during the a) PSO and b) GA 

optimizations of a smooth surface straight-fin heat sink.  Thin, light colored lines 
indicate the individual trials while thick, dark colored lines indicate the average of 

the ten trials. 
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Figure 4.14: Evolution of the scaled design parameters during the a) PSO and b) GA 

optimizations of a smooth surface straight-fin heat sink.  Thin, light colored lines 
indicate the individual trials while thick, dark colored lines indicate the average of 

the ten trials. 
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As a comparison to the PSO, a GA is run for the same problem.  A basic single-

objective GA is employed that is inspired primarily by the work of Holland [125] and 

Goldberg [98].  The particular details of the GA being used here were presented in 

Chapter 4.1, where it was applied to a two-stream heat exchanger with ten design 

parameters.  The GA operation settings used in the present study are given in Table 4.7.    

The GA similarly evolves the optimal design over generations so that the heat sink 

thermal resistance favorably evolves, Figure 4.13b, although the GA operates based on 

genetic rather than social mechanisms.  It is apparent from Figure 4.13b, and emphasized 

in its inset, that convergence is not realized as quickly as for the PSO method.  Again, ten 

independent trials are run for the GA optimization.  The optimal thermal resistance for 

smooth surface straight-fin heat sinks found by the GA for all ten trials is also 0.079 

°C/W, and by the 247th generation, all ten individual GA trials have converged to this 

value.  Again, from the perspective of the design space, the GA evolves scaled values of 

fH , yS , baseδ , and topδ  as shown in Figure 4.14b.  Again, it is evident from this figure 

that all ten trials have converged to an optimal solution in the design space, *X , for the 

ten individual GA runs. 

 

PN  GN  CP  MP  
20 300 0.90 0.05 

Table 4.7: GA operation settings  

 

Table 4.8 tabulates the characteristics of the optimized smooth surface straight-fin 

heat sinks produced by both the PSO and the GA methods.  Included in this table is the 
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thermal resistance found by the PSO and GA without the base plate and an isothermal 

lower boundary condition, and that evaluated with the base plate and a uniform heat flux 

lower boundary condition.  Evident is the 9% increase in thermal resistance resulting 

from considering the base plate.  From Table 4.8, and from careful inspection of Figure 

4.14, one can observe that while the optimal thermal resistance value *
thR  and most of the 

optimal design parameter values *X  obtained by both the PSO and GA agree, the 

optimal value of fH  found by the GA is slightly smaller than that obtained by the PSO.  

In other words, the GA’s solution sacrifices side-fin surface area and fin conduction in a 

very small layer at the top of the channel for both a slight flow bypass and exposure of 

the top surface of the fins.  Although it results in a new design from that produced by the 

PSO its performance in terms of thR  is equivalent. 

 

Parameter Selected Value 
PSO GA 

Fin thickness at base, baseδ  (mm) 1.50 1.50 
Fin thickness at top, topδ  (mm) 1.50 1.50 

Fin height, fH  (mm) 23.90 23.66 
Pitch/fin thickness at base, yS  (-) 1.75 1.75 

Thermal Resistance, thR , without base plate (°C/W) 0.079 0.079 
Thermal Resistance, thR , with base plate (°C/W) 0.086 0.086 

Table 4.8: Characteristics of optimized smooth surface straight-fin heat sink for 
PSO and GA methods 
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4.2.5.2. Scale-Roughened Surface Fins 

The previous section considered smooth surface fins.  It has previously been 

shown that augmenting the fin surface with scales enhances the heat transfer without a 

significant increase in pressure drop [126]. Moreover, recent advances in three-

dimensional metal printing techniques [127] make such surfaces readily attainable.  A 

small or moderate increase in the heat transfer coefficient can more than offset even a 

large friction factor increase because flow velocity can then be decreased and friction 

power varies with as much as the cube of velocity [30].  The second optimization study 

uses the surface scales investigated by Chang et al. [126] and more broadly correlated by 

Zhou et al. [33], and employs a fixed scale diameter D  of 1.00mm and a fixed scale 

height e  of 0.10mm.  The parameters that are varied and their ranges are the same as for 

the smooth surface case, see Table 4.5.  That is, everything is the same as before except 

now the fin surfaces are augmented with a high performance surface, Figure 4.10b. 
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Figure 4.15: Evolution of thermal resistance during the a) PSO and b) GA 

optimizations of a scale-roughened straight-fin heat sink 
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The optimized configurations of the scale-roughened straight-fin heat sink 

obtained with the PSO and GA both give a thermal resistance of 0.056 °C/W when the 

base plate is neglected, which translates to 0.058 °C/W when the base plate is 

incorporated, a 4% increase.  The geometric parameters are evolved again in ten 

independent trials by the PSO and GA and the corresponding heat sink thermal resistance 

evolves as shown in Figure 4.15.  The ten individual PSO trials all converge to an 

optimum value of thR  within 13 iterations while the ten individual GA trials all converge 

within 187 generations.  From the perspective of the design space, the PSO and GA 

evolve scaled values of fH , yS , baseδ , and topδ  as shown in Figure 4.16.  Again, as for 

the case of the smooth surface straight-fin heat sink, in addition to all ten trials 

converging to an optimal value for thR , all ten trials have also converged to a single 

optimal solution in the design space for both the PSO and GA methods.  The primary 

difference in the optimal designs between the two types of heat sinks is that for the scale-

roughened surface straight-fin heat sink the fins have opened up slightly compared to the 

smooth surface heat sink. 

 



136 
 

 
Figure 4.16: Evolution of the scaled design parameters during the a) PSO and b) GA 

optimizations of a scale-roughened straight-fin heat sink 
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The characteristics of the optimized heat sink with surface scales found by both 

the PSO and the GA are compared in Table 4.9.  Again the GA favored a very slight by-

pass flow as for the smooth surface case.  By comparing Table 4.8 and Table 4.9 it is 

evident that the optimal scale-roughened straight-fin heat sink outperforms the optimal 

smooth surface heat sink in terms of thermal resistance by 33%. The higher performance 

of the scale-roughened surface compared to the smooth surface can be attributed to the 

frequent boundary layer interruption caused by the scales that precludes thickening of the 

boundary layer.   

 

Parameter Selected Value 
PSO GA 

Fin thickness at base, baseδ  (mm) 1.50 1.50 
Fin thickness at top, topδ  (mm) 1.50 1.50 

Fin height, fH  (mm) 23.90 23.78 
Pitch/fin thickness at base, yS  (-) 2.58 2.58 

Thermal Resistance, thR , without base plate (°C/W) 0.056 0.056 
Thermal Resistance, thR , with base plate (°C/W) 0.058 0.058 

Table 4.9: Characteristics of optimized scale-roughened surface straight-fin heat 
sinks for PSO and GA methods 

 

4.2.5.3. Evolution of the Nonlocal Velocity and Temperature Fields 

What distinguishes the present study from those in the past, as was discussed 

earlier, is that the population-based optimization methods employed here operate on full 

nonlocal simulations of turbulent flow and heat transfer within and between the fluid and 

solid phases of the heterogeneous and hierarchical medium.  The upper-scale governing 
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field equations are rigorously derived from fundamental lower-scale equations, and full 

conjugate effects are included.  Additionally, the local transport coefficients, such as the 

internal heat transfer coefficient that connects the fluid and solid phase thermal energy 

equations together, are clearly defined.  It is therefore relevant to observe the evolution of 

the nonlocal flow field and temperature fields in both the fluid and solid phases during a 

PSO trial.   
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The velocity and fluid and solid temperature fields evolve during a single trial of 

the PSO of a scale-roughened straight-fin heat sink as shown in Figure 4.17a-c. Figure 

4.17a illustrates the best solution after the first iteration, Figure 4.17b shows the best 

solution after the 4th iteration, and Figure 4.17c does so for the converged solution, i.e. 

after the 13th iteration.  Figure 4.17d displays the converged solution of the PSO for the 

smooth surface straight-fin heat sink as a comparison.  The temperature fields in the 

figure are scaled between 30°C and 120°C and the x  and z  direction coordinates 

indicate the position in the temperature contours in mm.  The velocity magnitude is 

indicated in m/s by the x  coordinate (i.e. 30x − ) as a function of the z  direction 

coordinate which is again indicated in mm.  Note in the figure that the solid phase 

temperature contours include the base plate while the fluid phase temperature contours do 

not as the fluid phase is only defined in the channel.  The details of the heat sink designs 

considered in Figure 4.17 are tabulated in Table 4.10 for easy reference.   

 

 
baseδ  topδ  fH  yS  thR  with base 

a) 2.43 2.00 16.46 1.67 0.081 
b) 2.16 1.50 23.90 1.73 0.068 
c) 1.50 1.50 23.90 2.58 0.058 
d) 1.50 1.50 23.90 1.75 0.086 

Table 4.10: Characteristics of the heat sinks considered in Figure 4.17. 

 

Evident from Figure 4.17a is that the solution after the first iteration, i.e. the best 

among PN  randomly selected designs, is far from favorable.  Table 4.10 indicates that 

the fins reach about 70% of the channel height, and that they are relatively thick from the 
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base to the top.  It may be observed from the velocity profile that a significant bypass 

flow results from this design.  Moreover, it may be observed that the fluid temperature 

fT  becomes very hot around the fins while the flow above the fins stays very cold and is 

not serving to remove heat.  Looking at the solid temperature field sT  one can see that 

very high temperatures persist.  Assuming that temperatures in the heat sink greater than 

90°C are unacceptable for the electronics being cooled, and indicating the 90°C contour 

with a dashed white line, it is evident that this design is far from acceptable, with the 

maximum temperature incurred being ,max 111.09 CsT = °  (and occurring in the bottom of 

the base plate at the outlet).  As a side note, one may observe that sT  is defined 

throughout the channel in Figure 4.17a even where the fins do not reach.  By referring 

back to Equations (4.26) and (4.27) this is reconciled by observing the influence of the 

local morphology functions, i.e. m  and wS , which above the fins are unity and null 

respectively. 

It is evident from Figure 4.17b that the solution resulting from the 4th iteration is 

noticeably improved from that previously considered.  In this design the fins rise to the 

full channel height, however the base of the fins is unnecessarily thick.  The velocity 

profile, now without a significant bypass flow, indicates that slightly higher flow 

velocities occur higher in the channel due to the thinning of the fins and opening of the 

cross flow area.  The fluid temperature does not incur very high local temperatures as was 

the case for the previous design.  Moreover, the solid temperature field is noticeably 

cooler than for the previous design, with the location of the 90°C contour line indicating 
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that the design is approaching an acceptable one.  The maximum temperature incurred for 

this design is ,max 98.37 CsT = ° . 

Figure 4.17c presents the solution for the optimized design.  In this design the fin 

height was maximized, the fin thickness from the base to the top was minimized, and the 

fin pitch was balanced.  The velocity profile is symmetric about the channel centerline 

and the fluid temperature stays cool throughout the domain, allowing the solid phase to 

remain cool while still providing sufficient heat flow.  From the absence of the 90°C 

contour line in Figure 4.17c, it is evident that the optimal design stays sufficiently cool.  

The maximum temperature incurred for the optimal design, in fact, is ,max 87.73 CsT = ° . 

As a comparison to the optimized scale-roughened straight-fin heat sink solution 

depicted in Figure 4.17c, Figure 4.17d provides the solution to the optimized smooth 

straight-fin heat sink.  The only differences between the two designs are the fin surface 

augmentation and the resulting fin pitch.  Evident from the figure is that a similar 

symmetric velocity profile results, with slightly lower magnitudes as a result of the 

smaller fin pitch, i.e. higher number of fins on the heat sink.  The fluid temperature field 

appears somewhat similar to that found for Figure 4.17b in terms of magnitude and 

distribution.  However, without the surface-scale augmentation, the temperature 

difference between the solid and fluid must be higher to provide the same heat removal 

ability, and in this case the entire solid temperature domain is greater than 90°C, with the 

maximum temperature incurred being ,max 116.19 CsT = ° .  Together Figure 4.17c and 

Figure 4.17d illustrate the benefits of augmenting the fin surface with scales. 
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4.2.5.4. Performance of the Particle Swarm Optimization Method 

Each optimization method, i.e. PSO and GA, delivers the same heat sink 

performance thR∗  for both heat sink types, i.e. smooth and scale-roughened fin surfaces.  

The time each takes to do so differs, however.  In this study the PSO finds the optimum 

significantly quicker than the GA does, ~10-1 seconds quicker in fact.  The performance, 

in particular the convergence speed, of both population-based optimization methods 

depends on the methods’ settings for a particular problem.  Since no effort was made to 

customize these settings in this study (rather, typically used or suggested values were 

employed for the settings, see Table 4.6 and Table 4.7) conclusions about which method 

is faster for this particular problem cannot be determined.  A future study could explore 

this by first optimizing each method’s settings for the problem and then comparing the 

two methods’ convergence speed.  Fortunately, the VAT-based nonlocal modeling 

method provides solutions very quickly, compared to DNS and CFD, affording designers 

the luxury of proceeding without fine-tuning the optimization methods’ operation 

parameters. 

As was noted above, the GA located optimal designs for both heat sink types with 

a very slight flow bypass arrangement that exposed the top surface of the fins.  Although 

the optimal heat sink thermal resistances found by the GA were equivalent to those found 

by the PSO, the solutions – or designs – were distinct.  The PSO’s superior convergence 

speed for the problem and settings considered here is at least partly due to its inclination 

to explore the solution domain’s boundaries relatively early in its search.  Since several 

of the optimal designs’ parameters lay on the boundary, the PSO settled on these without 
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much exploration of the rest of the domain.  The GA on the other hand operated more 

methodically and slowly, more thoroughly traversing the search domain in its search for 

the optimal design.  Although the GA ultimately selected baseδ and topδ  values at the edge 

of the domain, it settled on a value of fH  just short of the domain’s edge, and found no 

motivation to move this value to the edge of the domain, where the PSO had settled. 

Over the course of ten trials, on a 2.20 GHz Intel Core i7-2720QM CPU with 16.0 

GB of RAM and for the settings listed in Table 4.6, the compiled Fortran PSO code runs 

for an average of 6 minutes and 15.2 seconds with GN  changed from 150 to 16 for the 

smooth surface heat sink and 5 minutes and 37.5 seconds with GN  changed to 13 for the 

scale-roughened heat sink.  As a comparison, over the course of ten trials for the settings 

tabulated in Table 4.7 the compiled Fortran GA code runs for an average of 1 hour, 7 

minutes and 27.5 seconds, with GN  changed from 300 to 247 for the smooth surface heat 

sink and 1 hour, 2 minutes and 23.3 seconds with GN  changed to 187 for the scale-

roughened heat sink.  It is evident that either the PSO or the GA methods with standard 

settings provide optimal designs in a reasonable amount of time even on modest 

equipment due to their reliance upon the nonlocal physical modeling provided by VAT.  

As a comparison, running even a single heat sink simulation, never mind any kind of 

optimization endeavor, with CFD on the same equipment would cost hours. 

4.2.6. Conclusions 

In this section a VAT-based nonlocal model of transport phenomena in a porous 
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channel used to simulate flow and heat transfer in a heat sink for cooling electronic 

devices was the basis for a population-based optimization study.  The VAT-based 

simulation routine was coupled with a single objective PSO design tool in order to 

perform heat sink optimizations.  Results from the PSO method were compared to and 

verified against those from the GA method.  Two different types of straight-fin heat sinks 

were considered, i.e. one type with smooth surface fins and another with scale-roughened 

surface fins.  The performance of the two types of heat sinks was discussed as was the 

performance of the two methods of optimization. 

It was observed that both optimization methods deliver equivalent optimized heat 

sink designs in terms of heat sink thermal resistance, however judgment on which method 

performs better for this particular problem was reserved.  It was found that the nonlocal 

modeling based on VAT allows the PSO and GA methods to obtain optimal designs 

within several minutes and around an hour respectively on a modest lap top without 

customizing the optimization methods’ settings, providing more freedom in selecting 

computational design tools for heat sink designers.  Moreover, it was observed that 

augmenting the fins with scales improves the heat sink performance in terms of thermal 

resistance by 33%.  This study demonstrates that the nonlocal thermo-fluid-solid 

modeling provided by VAT opens the door to easily-implemented and thorough 

population-based optimization studies of heat sinks. 

4.3. Conclusions 

This chapter has demonstrated the power of modeling transport phenomena in 
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heterogeneous and hierarchical engineered devices with VAT.  First, a VAT-based two-

stream heat exchanger solution routine was coupled to a Genetic Algorithm (GA) to 

perform design.  Subsequently, a VAT-based heat sink solution routine was paired with a 

Particle Swarm Optimizer (PSO) to perform design.  Integrating VAT-based transport 

model solution routines with intelligent population-based design algorithms offers 

advantages to design engineers that existing tools cannot match.  Such a design 

methodology may be readily extended to diverse engineering problems involving 

transport phenomena in heterogeneous and hierarchical media. 
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5. CONCLUSIONS 

After introducing the subject of the dissertation and laying down its theoretical 

foundation in Chapters 1 and 2 respectively, experimental solutions to the closure 

problem of VAT-based modeling were provided in Chapter 3.  In particular, two unique 

experimental techniques for evaluating the closure statements were developed, 

implemented, and validated, while considering several different surfaces.  Subsequently, 

naturally-inspired optimization mechanisms coupled to closed VAT-based models were 

explored in Chapter 4.  In particular, two unique population-based optimization routines 

performed design on a heat exchanger and heat sink modeled with VAT. 

A consistent and important theme throughout the dissertation has been the 

flexibility and ready application of VAT-based modeling to problems involving 

hierarchical transport phenomena in heterogeneous porous media.  This has been made 

evident by the generality of the model presented in Chapter 2, the variety of surfaces 

considered in Chapter 3, and the different systems considered in Chapter 4.  The present 

chapter, Chapter 5, continues this theme by considering the potential for the application 

of VAT to a variety of new problems.  After the discussion on the potential of applying 

VAT to some new and important problems, a survey of some persistent challenges in 

VAT-based modeling that need to be addressed is provided, followed by a discussion on 

the application of some new and attractive design tools to VAT-based models. 

As was mentioned, VAT-based modeling readily lends itself to a wide array of 

problems involving hierarchical transport phenomena in heterogeneous porous media.  In 

addition to presenting equations for nonlinear and turbulent flow and heat transfer in a 
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porous layer, Travkin and Catton [1] also considered micro-scale and radiative heat 

transport in porous media.  The VAT-based equations provided by Travkin and Catton 

[1] are also well-suited to describe diffusive and convective transport of mass species in 

fixed bed catalytic reactors.  Travkin later published a website [128] wherein a number of 

applications for VAT are discussed.  For example, discussions at various degrees of depth 

are provided for the application of VAT-based modeling to the topics of urban air 

pollution, acoustics, ground water, magnetism, optics, electrodynamics, and medicine, 

among others [128]. 

Many additional potential and important applications for VAT-based modeling of 

hierarchical transport phenomena in heterogeneous porous media exist.  Hydrogen 

storage systems using various adsorption materials, for use in automobiles, provide an 

example.  Hydrogen storage systems are multi-level and hierarchical in nature, with all 

scales influencing the storage capability as well as the loading and unloading 

performance of the system.  Each level must be accounted for properly, from the lowest, 

atomic scale, to the individual adsorbent cluster, to a bed of clusters, up to the entire 

container.  Modeling such a system with VAT is a natural extension of the work 

performed in this dissertation and has yet to be performed.  Once the VAT-based model 

for the system is formulated and implemented in a solver, a tool is at hand for the design, 

control, and operation of hydrogen storage technologies. 

Similar to hydrogen storage systems, data centers are multi-level and hierarchical 

in nature, with all scales influencing the heat density, local temperature, and potential for 

failure.  From the lowest scale, the computer chip, all the way up to the server cabinet and 
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room, each level must be accounted for properly.  The heat sink considered in Chapter 4 

is just one level in this hierarchy.  Once a model and its solver are developed, numerous 

data center design objectives may be pursued, e.g. maximizing energy efficiency, 

minimizing failure rate, etc.  Finding optimal data center designs is not readily possible 

with current technologies, despite a number of commercial data center simulators, due to 

time constraints and modeling insufficiencies.  However modeling with VAT would 

provide a likely solution.  A VAT-based hierarchical model can incorporate many scales 

into a single set of equations and yield fast simulations, thus allowing the massive 

number of design variables that describe the data center at all scales to be optimized with 

intelligent design algorithms like those presented in this dissertation.  Such an application 

of VAT has yet to be implemented, despite the significant commercial value such a tool 

would possess. 

Exciting and promising new applications for VAT-based modeling of hierarchical 

transport phenomena in heterogeneous porous media extend beyond the examples 

discussed above.  For example, VAT-based modeling methods are well-suited for nuclear 

reactor and plant design.  Such a modeling effort would need to incorporate, beyond the 

momentum, heat, and mass transport physics discussed above, additional phenomena, 

such as radiative transport.  Moreover, recent interests, spear-headed by DARPA, have 

considered intra/inter-chip cooling.  A VAT-based hierarchical model for two-phase heat 

transfer in three-dimensional stacked electronic chip sets would be an ideal basis for the 

design of such a system, however it has yet to be implemented.  It is clear that even more 

potential and important applications of VAT-based modeling exist that have not been 
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mentioned here. 

To apply VAT-based modeling to solve the important problems introduced above, 

among others, developments in better understanding VAT, particularly its associated 

closure problem, must be achieved for the variety of problems and physics encountered.  

Moreover, it is also important that developments are made in improving the numerical 

tools for solving the VAT-based equations and pursuing design.  For example, improving 

the computational speed of the VAT equation numerical solver is a persistent desire.  

Currently, straight-forward finite difference methods are employed.  However, numerous 

methods exist that possess the potential for improved computational performance.  The 

Galerkin method solution is one such method that holds promise and should be explored. 

Extending the VAT model beyond one-dimensional flow is necessary for many 

important problems; however this has yet to be implemented.  Extending the VAT model 

in this way introduces new challenges that must be addressed.  In addition to developing 

a high performance solution procedure for such a model, understanding the closure terms 

for such multi-dimensional flows must be achieved.  Presently this has evaded a thorough 

understanding and treatment. 

Other challenges persist as well.  One such obvious challenge is extending the 

VAT-based model employed in this dissertation to account for new physical phenomena.  

As a very simple example, the VAT method has yet to even be applied to buoyant flows 

with variable properties.  Additionally, applying new boundary conditions to the 

governing field equations is crucial for the extension of VAT to, and treatment of, new 

systems.  However, the understanding of how to implement these boundary conditions is 
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poorly developed.   

The understanding of closure theory for VAT has seen substantial gains, and 

tools, such as CFD and experiments, have been developed to evaluate these closure 

statements.  However, understanding closure for new physics has yet to be developed.  

Moreover, Vadnjal [26] observed that the thermal boundary condition has no effect on 

the heat transfer coefficient.  Such a claim needs to be verified, and it may be done by 

starting with analytical solutions, i.e. capillary flow solutions. 

Beyond improvements in understanding and applying VAT-based modeling, 

improvements in design strategy implementation should be pursued.  In particular, design 

for the engineering problems introduced above is often characterized by multiple 

objectives.  Multiple-objective problems require one to seek a set of optimal solutions, 

i.e. Pareto-optimal solutions, rather than a single optimal solution, see Figure 5.1.  In the 

absence of any further information, none of these solutions are superior to any of the 

others, thus requiring one to seek as many Pareto-optimal solutions as possible.  Deb et 

al. [102] developed a popular constraint-handling Multi-Objective Evolutionary 

Algorithm (MOEA) that they labeled as the Nondominated Sorting Genetic Algorithm II 

(NSGA-II).  NSGA-II employs a computationally fast nondominated sorting procedure, 

an elitist strategy, a parameterless approach, and an effective constraint-handling method 

to obtain a diverse Pareto-optimal set in a single run.  Such a tool should be implemented 

with the VAT-based solution routines. 
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Figure 5.1: Pareto optimal front for a multiple objective optimization problem 

 

The NSGA-II initially creates a random parent population, assigning fitness (i.e. 

rank and crowding) to each solution, and sorts it based on nondomination.  Then, using 

selection, recombination, and mutation operators, an offspring population is spawned.  

Subsequent generations then proceed as follows.  A combined parent and offspring 

population is formed and then sorted by nondomination.  Combining the parent and 

offspring populations into a mating pool allows elitism to be enforced.  Solutions 

belonging to the best nondominated sets are chosen for the new parent population, which, 

through selection, crossover, and mutation operators, produces a new offspring 

population.  Selection is based on both nondomination rank and solution crowding.  The 

new parent and offspring populations are then combined and the process is repeated.  

This type of design strategy is one of several that should be coupled to VAT-based 

solvers and explored. 

Obvious from this discussion is that a significant amount of development and 
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work is demanded in the field of design using VAT-based modeling.  It is apparent that 

successful development of such tools will result in significant advantages for the design 

engineer of such systems.  This was demonstrated in Chapter 4 for two different systems, 

i.e. a heat exchanger and heat sink.  Pursuing development of VAT-based modeling and 

design is crucial, and the successful accomplishment of this will yield significant 

engineering and societal gains. 
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APPENDIX 

A VAT-Based Length Scale 

The following relates the discussion provided by Travkin and Catton [1] on the 

VAT-based length scale.  They demonstrated that modeling based on volume averaging 

theory (VAT) provides a basis for consistency to experimental procedures and to data 

reduction processes.  Travkin and Catton [1] suggested scaling parameters that allow a 

wide variety of different porous media morphologies to be normalized, which often 

eliminates the need for further experimental efforts [1, 7, 26, 29]. 

In particular, Travkin and Catton [1-7] demonstrated that globular morphologies 

can be described in terms of wS , m , and pd  and can generally be considered to be 

spherical particles with  
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They noted that this expression has the same dependency on equivalent pore diameter as 

found for a one-diameter capillary morphology, leading naturally to  
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This observation then led them to define the simple VAT-based porous media length 

scale, given in Equation (2.25), i.e. 
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that meets the needs of both major morphologies, i.e. capillary and globular.  Travkin and 

Catton [1] noted that this was also recognized by Whitaker [32] when he employed a very 

similar length scale, which only differed by a constant, to correlate heat transfer data for a 

wide variety of morphologies.   

B An Abridged Review of Transient Test Techniques 

In the literature on the subject, many transient test methods used to measure 

convective heat transfer characteristics are often described as “single-blow” transient test 

techniques.  In such single-blow tests, a single fluid stream, under steady flow conditions, 

is subjected to an inlet fluid temperature perturbation.  The temperature perturbation 

could be a step change or an oscillatory function, for example.  The inlet and outlet 

stream temperatures are measured continuously over an interval of time and compared to 

the predictions of a model in order to determine the desired heat transfer information.  

This single-blow method, and its variations, along with various other transient techniques 

for convective heat transfer measurements have been investigated since the 1920s. 

Hausen [129], Schumann [54], Locke [130], and Kohlmayr [131, 132] performed 
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much of the important early work on transient test methods for complicated heat transfer 

surfaces.  Since then, transient testing methods have seen progress due to a number of 

investigators.  The following presents an abridged review of a selection of these studies. 

Rodriguez and Mills [133] adapted the single-blow transient testing technique, 

with a step-change in the inlet stream temperature, to analyze perforated plate heat 

exchangers and similar discontinuous surfaces.  They formulated a set of coupled first 

order differential equations for the plate and fluid temperatures by applying energy 

balances to each of the plates in the exchanger.  These equations were then solved 

numerically for a set of perforated plate heat exchangers containing a range of plate 

numbers, number of transfer units, and axial conduction parameters.  Dimensionless 

maximum slopes were then presented in tabular form, allowing the heat transfer 

coefficient to be calculated from test data. 

Liang and Yang [134] conducted a modified single-blow experiment to determine 

the convective heat transfer coefficients of surfaces.  Accounting for the finite heat 

capacity of the heating screens used to implement the “step-change” in the inlet stream 

temperature, they modeled the fluid temperature jump as an exponential function.  They 

then obtained an analytical solution using Laplace transforms and determined the heat 

transfer coefficient through a curve-matching technique.  Their analysis unfortunately did 

not include axial conduction. 

Stang and Bush [135] investigated heat transfer performance in a heat exchanger 

core by applying a periodic method.  Realizing the experimental difficulty inherent in 

producing a step-change in the inlet fluid stream temperature, they implemented a more 
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experimentally convenient periodic inlet stream temperature fluctuation and measured the 

temperature response of the outlet flow stream.  They developed a mathematical model 

corresponding to such an inlet stream temperature condition, obtained test results for the 

periodic method, and conducted a critical comparison of the periodic method with the 

conventional single-blow method in which a step-change in the inflow stream 

temperature occurs.  They concluded their study by listing the advantages of the periodic 

method over the step-change method. 

Younis and Viskanta [76] experimentally investigated heat transfer by forced 

convection of air through porous ceramic foams using a single-blow transient technique.  

Employing a two-temperature model and implementing a step-change in the inlet air 

stream temperature, they obtained heat transfer coefficient correlations for a variety of 

foam specifications. 

Nie et al. [31] determined the convective heat transfer coefficient for flow through 

particle beds using a new technique.  Applying a step change to the inlet air stream 

temperature, the transient experimental temperature distribution in the bed and the 

temperature at the outlet were obtained for the time interval during which the bed 

temperature distribution was essentially linear.  These data were compared to a model in 

which the transient energy balance equations were integrated over the bed length and the 

specific time period in order to determine a correlation for the effective heat transfer 

coefficient in the bed. 
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C An Abridged Review of Heat Sink and Heat Exchanger 

Population-Based Optimization Studies 

In an early article on the subject, Queipo, Devarakonda and Humphrey [104] 

examined the potential for GAs in “complex thermoscience problems” wherein the high 

dimensionality and ranges of the associated variables and parameter spaces, along with 

the strong non-linearities embedded in the mathematical representations of the problems 

(that lead to sensitivity of solutions to variations in boundary conditions and parameter 

values), combine to render an exhaustive search for optimal solutions practically 

impossible.  They focused on the application of a GA to an electronics cooling problem 

in which they sought to simultaneously minimize the competing criteria of thermal failure 

rate and wiring length of eight electronic components that were convectively cooled and 

equally spaced along the bottom wall of a ventilated channel by searching for their 

optimal or nearly optimal arrangements.  Information about this study and those 

subsequently discussed are tabulated in Table C.1.  A finite-difference numerical 

procedure calculated the two-dimensional flow and temperature fields neglecting the 

solid side and determined the maximum surface temperatures of the heated components 

assuming steady-state conditions and constant properties.  Unfortunately solution times 

restricted the GA’s search ability, so the authors used its preliminary results as qualitative 

guidance for the design.  As a conclusion, they observed that new applications of GA-

based optimization of thermoscience problems will be “facilitated by the increasing 

availability of high performance computers, distributed computing environments, and 



178 
 

improved guidelines for the specification of the necessary GA parameters.”  However, 

they did not realize the potential impact of hierarchical physical modeling based on VAT 

to this field. 

Gosselin, Tye-Gingras, and Mathieu-Potvin [136] provided a review in 2009 on 

the subject of utilizing GAs for solving heat transfer problems.  Articles on this subject 

began to appear in the mid-1990s and the authors discussed a wide-range of studies 

covering thermal systems design, inverse heat transfer problems, and correlation 

development.  GA settings (i.e. the number of objectives, type of encoding, crossover and 

mutation rates, population size, stopping criteria, and presence of elitism) and problem 

information (i.e. the objective function(s), modeling approach, and number of design 

variables) were reported for applicable studies.  The authors noted that while GAs are 

robust, easy-to-use, unlikely to converge to local optima, able to explore a large portion 

of the design space, capable of searching over disjointed feasible domains, operable on 

irregular and non-differentiable functions, and easily parallelized, they can have slow 

convergence and imperfect repeatability.  Observing that the evaluation of the fitness 

function is typically the most time-consuming step of the GA procedure for complex 

thermo-fluid systems and acknowledging that a lot of work is needed to overcome this, 

they pointed towards parallel computation, approximating the fitness function with 

methods such as artificial neural networks (ANN) and response surface methodology 

(RSM) (rather than perform systematic simulations to evaluate each individual’s 

performance), and improving the GA settings (which have great influence on 

convergence speed and optimization success) as potential solutions.  However, like 
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Queipo et al. [104], they did not realize the ability of hierarchical physical modeling 

provided by VAT for heat exchanger and heat sink design.  They concluded that, as a 

“mature” optimization approach in the heat transfer field, an extensive description of the 

GA procedure is not warranted in new articles, and that more work should be done to 

evaluate and document the impact of different GA settings on the performance of the 

algorithm for heat transfer problems. 

Manivannan, Devi, and Arumugam [105] optimized the geometry of a flat plate 

heat sink in terms of not only the thermal resistance but also the electromagnetic emitted 

radiation of the heat sink.  Due to the proximity of the heat sink to the integrated circuits 

(ICs), radiofrequency (RF) fields can couple to the heat sinks and the heat sink fin can 

effectively behave as a monopole at high frequency, causing emitted radiation that can 

disturb nearby electronic devices and result in the device being out of compliance with 

regulations.  A regression model yielded algebraic equations predicting the thermal 

resistance and electromagnetic emitted radiation in terms of the heat sink length, width, 

base thickness, fin height, fin pitch, and fin thickness.  A single fitness function combined 

the two objectives and the optimization was carried out using the MATLAB GA. 

Mohsin, Maqbool, and Khan [106] used a GA to optimize cylindrical pin fin heat 

sinks with a uniform heat flux at the base by minimizing the entropy generation rate 

associated with heat transfer and frictional effects.  An expression for the dimensionless 

entropy generation rate was formulated using known correlations for Nusselt number and 

friction factor, and minimized by varying the pin height, diameter, and approach velocity, 

while imposing several constraints (such as fixing the heat sink volume) for different heat 
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sink configurations (i.e. inline or staggered), materials (i.e. enhanced plastic composites 

or aluminum), and pin fin densities.  They made several observations on the behavior of 

the minimum entropy generation rate as the search variables and settings changed, 

pointing to several trends. 

Ndao, Peles, and Jensen [107] undertook a multi-objective optimization and 

comparative study of several electronic cooling systems, considering, in particular, 

continuous parallel micro-channel heat sinks, inline and staggered pin-fin heat sinks, 

offset strip fin heat sinks, and single and multiple submerged impinging jets.  For each 

system they simultaneously minimized the total thermal resistance and pumping power 

consumption under constant pressure drop and heat source base area, and subsequently 

compared the optimum designs of each system.  Their physical model consisted of 

referenced, and their own developed, correlations for thermal resistance, heat transfer 

coefficient, and friction factor. The tradeoff between thermal resistance and pumping 

power consumption was noted, and they observed that the offset strip fin heat sink 

outperformed the other systems. 

Optimization of fractal-like branching flow networks in disk-shaped heat sinks 

was considered by Heymann, Pence, and Narayanan [137].  Inspired by the efficient 

transport characteristics of biological systems (e.g. circulatory systems), and assuming an 

analogy exists between metabolic and thermal transport processes, they indicated that 

channel wall temperature and pressure drop can be reduced by using multi-scaled 

branching flow networks.  For a series of heat fluxes, disk radii, and maximum wall 

temperatures, the length and width ratios between consecutive branch levels and the 
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terminal channel width that yielded minimal flow power or pressure drop were 

determined for specified numbers of branch levels and channels emanating from the inlet 

plenum.  The inlet fluid temperature and channel depth were fixed and fabrication 

constraints were imposed on the channel width and spacing and the inlet plenum radius.  

A one-dimensional model [138] that was previously validated [139, 140] was used for 

predicting pressure and wall temperature distributions.  The pressure distribution was 

found from the correlation and friction coefficient data provided by White [141], and the 

wall temperature distribution was obtained from Newton’s law of cooling with heat 

transfer coefficients found in [142].  Moreover, it was assumed that both hydrodynamic 

and thermal boundary layers reinitiate following each channel bifurcation and that a 

constant heat flux was applied on one wall with uniform temperature on the remaining 

walls (i.e. highly conductive solid).  Although they primarily used the gradient-based 

optimization method, a GA (in addition to a direct search) was employed for the heat sink 

optimization. 

Wildi-Tremblay and Gosselin [109] considered a heat sink composed of a stack of 

porous layers through which a coolant flows.  The thermal resistance (or hot spot 

temperature) was minimized by selecting the optimal porosity and material of each layer 

subject to global mass and cost constraints.  The porous layers were assumed to each 

have uniform characteristics (i.e. porosity, effective thermal conductivity, and 

permeability), and to be composed of bundles of small pores of fixed diameter parallel to 

the flow.  A pressure drop across the heat sink was specified, and Darcy’s law was used 

to calculate the one-dimensional velocity in each layer.  Assuming negligible thermal 
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diffusion in the flow direction and thermal equilibrium conditions, a single-temperature 

thermal energy model was employed to calculate the thermal resistance (with a specified 

heat flux at the base, adiabatic conditions at the top, and a uniform fluid inlet 

temperature) using a finite volume approach (without the need for iteration).  The finite 

volume code was then coupled to MATLAB’s GA tool to determine the optimal porosity 

and material of each of the ten layers composing the heat sink of a specified height and 

length.  It was observed that a lower porosity near the hot plate and a higher porosity 

away from the plate is favorable, and several optimal configurations were found in the 

design space. 

Kanyakam and Bureerat [122] considered the geometrical design of a square-pin-

fin heat sink subjected to a uniform heat load applied to the bottom of the base plate and a 

uniform vertical flow impinging from above the fins.  Using several MOEAs, including 

Population-Based Incremental Learning (PBIL), Strength Pareto Evolutionary Algorithm 

(SPEA), Particle Swarm Optimization (PSO), and Archived Multiobjective Simulated 

Annealing (AMOSA), they simultaneously minimized the heat sink junction temperature 

and the fan pumping power by varying the fin width and individual heights, inlet air 

velocity, base thickness, and number of fins in each array.  A CFD code evaluated the 

heat sink using a finite volume analysis assuming steady state, laminar, forced convection 

of a constant property, Newtonian fluid.  It was found that the PBIL yielded the best 

performance among the MOEAs considered and that allowing the individual pin-fin 

heights to be varied improves the heat sink’s performance. 

Jian-hui, Chun-xin, and Li-na [108] sought to design a plate-finned heat sink with 
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side and top bypass flow for minimum entropy generation rate by employing a multi-

parameter constrained optimization procedure that integrates Design of Experiment 

(DOE), Genetic Algorithm (GA), Response Surface Model (RSM), and Mixed Integer 

Optimization (MOST).  The heat sink is evaluated with a CFD code wherein the flow is 

three-dimensional, steady, turbulent ( k ε−  model), and incompressible with constant 

properties and negligible radiation heat transfer effects.  The blended or hybridized or 

combined optimization proceeds as follows.  First, the DOE selects a number of design 

candidates for the CFD code to evaluate, identifying significant design variables and their 

interactions, and reducing the search space.  Then, the GA, based on CFD evaluations, 

proceeds to facilitate the optimization and ensure a global optimization perspective.  

Next, the RSM is constructed from the results produced by the DOE and GA.  Finally, 

the MOST proceeds to optimize the design based on the surrogate model produced by the 

RSM.  Once the RSM model cannot be further improved a CFD simulation is performed.  

The RSM model is then updated with the new point and an optimization is performed 

again based on the updated RSM model.  This is repeated until convergence.  

Additionally, from the results of the CFD simulations performed during the optimization, 

correlations for the Nusselt number and friction factor in terms of geometrical and 

operational parameters are established. 

Rao and Patel [143] considered the geometrical optimization of a cross flow plate-

fin heat exchanger using Particle Swarm Optimization (PSO), minimizing the entropy 

generation rate for a specific heat duty requirement and space restrictions (total volume 

and total annual cost were also minimized independently).  The expression for entropy 
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generation rate was taken from Bejan [144] and was evaluated using the ε-NTU 

expression from Incropera and Dewitt [61] with heat transfer and friction factor relations 

adopted from Joshi and Webb [145].  Two application examples were considered, one 

taken from Mishra et al. [146] and the other from Xie et al. [147], both of which 

originally used a GA for the optimization.  The PSO results were validated by the 

previous GA results and the authors found that the PSO technique outperforms the GA 

technique, converging noticeable quicker.  Moreover, it was observed that by allowing 

the inertia weight to be variable in the PSO algorithm even faster convergence is realized. 

Leblond and Gosselin [111] employed a two-temperature, non – Local Thermal 

Equilibrium (non – LTE) model to optimize a heat sink composed of a stack of porous 

media layers in what was a sequel to the work of Wildi-Tremblay and Gosselin [109] 

who approached a very similar problem assuming LTE.  In [111] a hybridized GA, which 

implemented local search and database strategies, minimized the hot spot temperature 

with respect to the porosity, pore diameter, and material of each layer subject to global 

mass and cost constraints.  The porous media-layered heat sink was subjected to a 

constant heat flux at the base, and each layer was composed of a pile of uniformly 

aligned pores of equal diameter.  The unidirectional flow through the capillaries, imposed 

by a pressure drop across the heat sink, is laminar and governed by Darcy’s law.  It was 

assumed that thermal conductivity in the flow direction and viscous dissipation in the 

pores are negligible, the physical properties are constant, and the flow is thermally fully 

developed within each tube and subjected to a constant temperature boundary condition 

so that the Nusselt number can be set to about 4.  It was found that the optimal designs do 
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not operate in LTE and that assuming LTE may result in an underestimation of the hot 

spot temperature and in different final designs as well.  Moreover, it was observed that in 

the optimal designs porosity increases in layers found further away from the heat source, 

and that local search and the use of a database in the GA promoted faster convergence. 

Tye-Gingras and Gosselin [110] considered a heat sink composed of porous 

media layers, a fin, and massless deflectors that served to direct the flow and reduce the 

size of the inlets and outlets, assuming Local Thermal Equilibrium (LTE) as described in 

[109].  A GA was used to minimize the heat sink thermal resistance (or maximum 

temperature), subject to mass constraints, with respect to geometric design variables, i.e. 

the porosity of each layer, the materials (4 types) composing each layer and the fin, and 

the fin, deflector, and heat sink geometry.  The heat sink’s porous layers are assumed to 

be composed of randomly distributed pores, it is subjected to a uniform heat flux at the 

base, and a vertical flow into the top of the heat sink exits through the sides, driven by a 

fixed pressure drop and guided by the adiabatic deflectors.  They observed that as the 

mass constraint became stricter the GA selected a smaller fin and heat sink height, a 

larger deflector, and aluminum rather than copper for the material.  Additionally, they 

found it was more beneficial to remove mass by enlarging the massless deflector than by 

changing the material, and surprisingly, that the optimal thermal resistance was actually 

rather insensitive to the mass constraint.  Again, as in [109, 111], they found that the GA 

selected a higher porosity in layers further away from the hot plate.  
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Investigato
r Year Device System Model Conjugat

e Analysis 
Optimizatio
n Method 

Population
/Generatio

ns 

Search 
parameters 

Independe
nt 

Objectives 

Queipo et 
al. [104] 1994 

Electronic 
components 
convectivel
y cooled in 
a channel 

CFD, 2-D, 
steady, constant 

properties 
No MSGA 7/7 N/A 1 

Hilbert et 
al. [93] 2006 

Tube bank 
heat 

exchanger 
with tube 

shape 
varied 

Commercial 
CFD, 2-D, 

steady, laminar 
- Multi-

objective GA 30/20 4 2 

Manivannan 
et al. [105] 2011 

Flat plate-
fin heat 

sink 

Regression 
equations for 

thermal 
resistance and 

emitted 
radiation 

- MATLAB 
GA 30/200 6 1 

Mohsin et 
al. [106] 2009 

Cylindrical 
pin fin heat 

sink 

Correlations for 
heat transfer 
and pressure 
drop in an 

expression for 
entropy 

generation rate 

- GA 21/2,000 3 1 

Matos et al. 
[90] 2004 

Staggered 
circular and 

elliptical 
finned 
tubes 

FEM, 3-D, 
incompressible, 

steady state, 
laminar, 
constant 

properties, and 
experiments 

- Parametric N/A 3 1 

Foli et al. 
[92] 2006 

Micro-heat 
exchanger, 

channel 
shapes 

defined by 
NURBS 

Commercial 
CFD, 3-D, 
ideal gas 

Yes 
Multi-

objective GA 
(NSGA-II) 

100/500 10 2 

Mousavi et 
al. [88] 2007 Finned/baff

led channel 

FVM, 2-D, 
laminar, steady, 

constant 
properties 

No GA 32/1000 2 1 

Fabbri [91] 2000 
Corrugated 

wall 
channel 

FEM, 2-D, 
laminar, steady-

state, fully 
developed, 

incompressible, 
uniform 

properties 

Yes GA N/A 4 1 

Xie et al. 
[82] 2008 

Finned-tube 
heat 

exchanger 

LMTD, 
experimental 
correlations 

No GA 50/1,000 7 1 

Ozkol and 
Komurgoz 

[81] 
2005 Air-cooled 

exchangers ε-NTU No GA 250/400 3 1 

Ndao et al. 
[107] 2009 

Heat sinks 
and 

impinging 
jets 

Correlations for 
thermal 

resistance, heat 
transfer 

coefficient, and 
friction factor 

- MATLAB 
MOGA N/A 3-4 2 

Heymann et 
al. [137] 2010 Fractal-like 

branching 
(1-D, constant 

properties, - GA 
(gradient- 50/N/A 3 1 
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disk-shaped 
heat sink 

laminar, 
developing 

flow)? 

based, and 
direct) 

Wildi-
Tremblay 

and 
Gosselin 

[109] 

2007 

Layered 
porous 

media heat 
sink 

FVM, laminar 
Darcy 1-D 
flow, 2-D 

single 
temperature 
heat transfer 

No MATLAB 
GA 30/N/A N/A 1 

Kanyakam 
and 

Bureerat 
[122] 

2012 

Pin-fin heat 
sink with 
vertical 

flow 

CFD, steady, 
laminar, 
constant 

properties 

Yes 4 different 
MOEAs 25/35 21 2 

Jian-hui et 
al. [108] 2009 

Plate-finned 
heat sink 

with bypass 
flows 

CFD, 3-D, 
steady, 

turbulent 
( k ε− ), 

incompressible, 
constant 

properties 

Yes 
Combined 
DOE-GA-

RSM-MOST 
9/10 3 1 

Rao and 
Patel [143] 2010 

Cross flow 
plate-finned 

heat 
exchanger 

ε-NTU relation 
and 

experimental 
correlations 

- PSO 50/100 7/3 1 

Leblond 
and 

Gosselin 
[111] 

2008 

Layered 
porous 

media heat 
sink 

FVM, laminar 
Darcy 1-D 

flow, 2-D and 
two 

temperature 
heat transfer 

Yes Hybridized 
GA 20/N/A 9 1 

Tye-
Gingras and 

Gosselin 
[110] 

2008 

Layered 
porous 

media heat 
sink with a 

solid fin 
and flow 
deflectors 

FVM, laminar 
Darcy 2-D 
flow, 2-D 

single 
temperature 
heat transfer 

No GA 30/N/A 14 1 

Table C.1: Tabulation of the relevant characteristics of the population-based heat 
exchanger and heat sink optimization studies referenced in this dissertation. 

 

D Experimental Closure Source Code 

Main Body 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% From knowledge of physical properties, geometry, flow condition, 

% experimental data, a speficied error criteria, and two initial guesses 

% of the pore Nusselt number this code can estimate the actual pore Nusselt 

% number.  Accompanying the estimate for the actual pore Nusselt number is 

% its associated error, along with the corresponding heat transfer 
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% coefficient, pore Reynolds number, and solid phase heat generation rate. 

% A plot showing the experimental data juxtaposed with the iterated 

% simulations is given, along with a plot showing the experimental data 

% together with the final simulation corresponding to the estimated actual 

% pore Nusselt number.  Additionally, the fluid and solid phase temperature 

% spatial distributions are optionally available. 

 

% eps                        -- volumetric porosity [1] 

% L                          -- length of heated test section [m] 

% rho_f                      -- density of fluid [kg/m^3] 

% rho_s                      -- density of solid [kg/m^3] 

% mu_f                       -- dynamic viscosity of fluid [kg/m*s] 

% C_p_f                      -- specific heat of fluid [J/kg*K] 

% C_p_s                      -- specific heat of solid [J/kg*K] 

% k_f                        -- thermal conductivity of fluid [W/m*K] 

% k_eff                      -- effective thermal conductivity [W/m*K] 

% D                          -- cross section diameter [m] 

% d                          -- diameter of beads [m] 

% A_c                        -- cross section area [m^2] 

% V_dot                      -- volumetric flow rate [m^3/s] 

% U_sup_vel                  -- superficial velocity [m/s] 

% tau                        -- non-dimensional time constant [1] 

% alpha_divided_by_Nu_p      -- governing equation parameter divided by the pore 
Nusselt number [1] 

% beta                       -- governing equation parameter [1] 

% gamma_assumed              -- governing equation parameter assuming effective 
thermal conductivity is known [1] 

% time                       -- raw time data [s] 

% inlet_temp                 -- raw inlet temperature data [C] 

% outlet_temp                -- raw outlet temperature data [C] 

% theta_exp                  -- experimental non-dimensional gas temperature 
response at integer values of the non-dimensional time [1] 

% Nu_p                       -- pore Nusselt number [1] 



189 
 

% theta_sim                  -- simulated non-dimensional gas temperature response 
at integer values of the non-dimensional time [1] 

% error                      -- mean squared error between the two data sets [1] 

% size_of_theta              -- the vector size of theta_exp and theta_sim 

% E                          -- error criteria 

% Final_Nu_p                 -- the correct pore Nusselt number [1] 

% h                          -- heat transfer coefficient 

% char_temp_diff             -- characteristic temperature difference, the 
temperature increase, at steady-state, of the fluid [K] 

% Q_per_unit_solid_volume    -- the volumetric heat generation rate in the solid 
phase porous medium [J/s/m^3] 

% Q                          -- the heat generation rate in the solid phase porous 
medium [J/s] 

% V_s                        -- volume of solid phase 

% bb                         -- a logic variable that determines whether or not a 
solution for the pore Nusselt number has been found.  If a solution has not been 
found, this logic variable allows us to skip the step of calculating the heat 
tranfer coefficient h.  Also, it allows us to skip the step of making a final plot 
of the correct simulation with the experimental data. 

% kk                         -- index used to accumulate attempted pore Nusselt 
numbers and there corresponding errors 

% xx                         -- a logic variable used to stop the pore Nusselt 
number-determining iteration once either a satisfactory value has been found, or 
the iteration has gone on for too long 

% Re_p                       -- the pore Reynolds number [1] 

% S                          -- the specific surface area [1/m] 

% figure(1)                  -- plots theta_exp on the same graph as theta_sim for 
every pore Nusselt number attempted 

% figure(2)                  -- plots theta_exp on the same graph as theta_sim for 
the finally determined pore Nusselt number 

% figure(3)                  -- steady-state non-dimensional fluid temperature 
spatial distribution 

% figure(4)                  -- steady-state non-dimensional solid temperature 
spatial distribution 

 

clear 

clc 

 

% Physical Properties 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

rho_f = 1.0877; % kg/m^3, at 45C, 1 atm 

rho_s = 7830; % kg/m^3, at 300K,  Low Carbon Steel AISI 1010 

mu_f = 19.38*10^-6; % kg/m*s, at 45C, 1 atm 

C_p_f = 1006.8; % J/kg*K, at 45C, 1 atm 

C_p_s = 450; % J/kg*K,  at 300K,  Low Carbon Steel AISI 1010 

k_f = 0.0281; % W/m*K, at 45C, 1 atm 

k_eff = 1; %%%%%%%%%%%%%%%%%%%%GUESSED VALUE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Flow Condition and Geometry 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

V_dot = 0.005168; % m^3/s,        (10.95 cubic foot/minute = 0.005168 cubic 
meter/second) 

eps = 0.4;  % see Adnani pg 9 

L = 0.04826; % m             (1.9 inch = 0.04826 meter) 

d = 0.004763; % m,           (0.1875 inch = 0.0047625 meter) 

D = 0.06604; % m,             (2.6 inch = 0.06604 meter) 

A_c = (pi*D^2)/4; % m^2 

U_sup_vel = V_dot/A_c; % m/s 

V_s = A_c * L * (1 - eps); % m^3 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

[alpha_divided_by_Nu_p, beta, gamma_assumed, tau, Re_p, S] = 
Physical_Properties_and_Flow_Condition (eps, L, rho_f, rho_s, mu_f, C_p_f, C_p_s, 
k_f, k_eff, U_sup_vel, d); 

 

[time, inlet_temp, outlet_temp] = textread ('10.95_for_code.txt', '%f %f %f'); 

 

[theta_exp, size_of_theta, char_temp_diff] = Experimental_Data_Processing (time, 
inlet_temp, outlet_temp, tau); 
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figure(1) 

plot(theta_exp) 

hold on 

 

E = input('Enter your error criteria: '); 

 

Nu_p(1) = input('Enter your first guess for the pore Nusselt number: '); 

 

theta_sim = Equation_Solver(alpha_divided_by_Nu_p, beta, gamma_assumed, Nu_p(1), 
size_of_theta); 

 

error(1) = Mean_Squared_Error(theta_exp, theta_sim, size_of_theta) 

 

plot(theta_sim) 

 

if error(1) >= E 

 

    Nu_p(2) = input('Enter your second guess for the pore Nusselt number: '); 

 

    theta_sim = Equation_Solver(alpha_divided_by_Nu_p, beta, gamma_assumed, 
Nu_p(2), size_of_theta); 

 

    error(2) = Mean_Squared_Error(theta_exp, theta_sim, size_of_theta) 

 

    plot(theta_sim) 

 

end 

 

bb = 1; 

 

if error(1) < E 

 

    Final_Nu_p = Nu_p(1); 
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    fprintf('The first guess for the pore Nusselt number is correct, Nu_p = %f \n', 
Final_Nu_p) 

 

elseif error(2) < E 

 

    Final_Nu_p = Nu_p(2); 

 

 fprintf('The second guess for the pore Nusselt number is correct, Nu_p = %f \n', 
Final_Nu_p) 

 

else 

 

 kk = 2; 

 xx = 1; 

 

 while xx == 1; 

 

  Nu_p(kk+1) = Nu_p(kk) - error(kk)*(Nu_p(kk-1) - Nu_p(kk))/(error(kk-1) - 
error(kk)) 

 

  theta_sim = Equation_Solver(alpha_divided_by_Nu_p, beta, gamma_assumed, 
Nu_p(kk+1), size_of_theta); 

 

  error(kk+1) = Mean_Squared_Error (theta_exp, theta_sim, size_of_theta) 

 

        plot(theta_sim) 

 

  if error(kk+1) < E 

 

   Final_Nu_p = Nu_p(kk+1); 

 

            fprintf('The pore Nusselt number Nu_p is, %f \n', Final_Nu_p) 
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   xx = 0; 

 

  elseif kk+1 == 20 

 

   disp('Cannot converge to a solution for the pore Nusselt number') 

 

   xx = 0; 

 

            bb = 0; 

 

  end 

 

  kk = kk + 1; 

 

 end 

 

end 

 

if bb == 1  % if bb == 1 a solution has been found, if bb == 0 a solution was not 
obtained 

 

    h = (S * k_f * Final_Nu_p)/(4 * eps); 

 

    fprintf('The heat transfer coefficient is h = %f \n', h) 

 

    figure(2) 

    plot(theta_exp) 

    hold on 

    plot(theta_sim) 

 

end 
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Q_per_unit_solid_volume = (char_temp_diff * U_sup_vel * rho_f * C_p_f)/(L * (1 - 
eps)); 

 

Q = V_s * Q_per_unit_solid_volume; 

 

fprintf('The pore Reynolds number is Re_p = %f \n', Re_p) 

 

fprintf('The heat generation rate [Watts] in the solid phase porous medium is 
determined from experimental data to be, %f \n', Q) 

 

%%%%%%%%%%%%%%%%%%%%%%%% Steady-State Spatial Temperature Distribution 
%%%%%%%%%%%%%%%%%%%%%%%% 

 

if bb == 1  % a solution has been found, if bb == 0 a solution was not obtained 

 

    hh = input('Would you like to see the steady-state spatial distribution of 
solid and fluid temperature? (1 = yes, 0 = no) '); 

 

    if hh == 1 

 

        [solid_temp_distribution, fluid_temp_distribution, 
non_dimensional_spatial_coordinate] = 
Steady_State_Temperature_Distribution(alpha_divided_by_Nu_p, beta, gamma_assumed, 
Final_Nu_p, size_of_theta); 

 

        figure(3) 

 

        plot(non_dimensional_spatial_coordinate, fluid_temp_distribution) 

 

        figure(4) 

 

        plot(non_dimensional_spatial_coordinate, solid_temp_distribution) 

 

    end 
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end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 

 
Equation Solver 
 

function [theta_sim] = Equation_Solver(alpha_divided_by_Nu_p, beta, gamma_assumed, 
Nu_p, size_of_theta) 

 

% Equation_Solver calculates theta_sim from knowledge of alpha, beta, and 

% gamma_assmumed.  Alpha is determined from a user inputted Nu_p and 

% alpha_divided_by_Nu_p.  The size of theta_sim is determined from 

% size_of_theta. 

 

% Define variables: 

% theta_sim                  -- simulated non-dimensional gas temperature response 
at integer values of the non-dimensional time [1] 

% alpha_divided_by_Nu_p      -- governing equation parameter divided by the pore 
Nusselt number [1] 

% alpha                      -- governing equation parameter [1] 

% beta                       -- governing equation parameter [1] 

% gamma_assumed              -- governing equation parameter assuming effective 
thermal conductivity is known [1] 

% Nu_p                       -- pore Nusselt number [1] 

% size_of_theta              -- the vector size of theta_exp and theta_sim 

% delta_x                    -- non-dimensional spatial-coordinate step used in 
numerical simulation 

% delta_t                    -- non-dimensional temporal-coordinate step used in 
numerical simulation 

% G1                         -- convenientaly gathered group of constant terms in 
the gas phase finite difference equation 

% G2                         -- convenientaly gathered group of constant terms in 
the gas phase finite difference equation 

% G3                         -- convenientaly gathered group of constant terms in 
the gas phase finite difference equation 

% S1                         -- convenientaly gathered group of constant terms in 
the solid phase finite difference equation 
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% S2                         -- convenientaly gathered group of constant terms in 
the solid phase finite difference equation 

% S3                         -- convenientaly gathered group of constant terms in 
the solid phase finite difference equation 

% S4                         -- convenientaly gathered group of constant terms in 
the solid phase finite difference equation 

% MATRIX                     -- solution matrix 

% inverse_MATRIX             -- inverse of solution matrix 

% solution                   -- gives the spatial non-dimensional temperature 
distribution of both the gas and solid phase at 

%                               a certain point in time.  solution(1:40) gives the 
gas phase distribution at a certain point 

%                               in time, where solution(1) is the gas phase non-
dimensional temperature at the first nodal point 

%                               from the entrance nodal point, and solution(40) is 
the gas phase non-dimensional temperature at 

%                               the exit nodal point.  solution(41:81) gives the 
solid phase distribution at a certain point in 

%                               time, where solution(41) is the solid phase non-
dimensional temperature at the entrance nodal 

%                               point and solution(81) is the solid phase non-
dimensional temperature at the exit nodal point. 

% new_solution               -- essentially the same as "solution."  it's purpose 
is to facilitate the time iteration. 

 

alpha = Nu_p * alpha_divided_by_Nu_p; 

 

delta_x = 1/40;  %% delta_x = 1/40 corresponds to L/40 meters 

 

delta_t = 1;  %% delta_t = 1 corresponds to tau seconds 

 

% gas phase finite difference equation constants 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

G1 = delta_t; 

 

G2 = -(delta_x + delta_t + (delta_x * delta_t) * alpha); 
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G3 = delta_x * delta_t * alpha; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% solid phase finite difference equation constants 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

S1 = beta * gamma_assumed * delta_t / (delta_x)^2; 

 

S2 = - (1 + alpha * beta * (delta_t) + 2 * beta * gamma_assumed *delta_t / 
(delta_x)^2); 

 

S3 = S1; 

 

S4 = alpha * beta * delta_t; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

MATRIX = [ ]; 

 

inverse_MATRIX = inv(MATRIX); 

 

solution = zeros(81,1); %%% initial solution 

 

theta_sim = zeros(size_of_theta,1); 

theta_sim(1) = solution(40); 

 

for ii = 1:(size_of_theta - 1) 

 

    new_solution = inverse_MATRIX * [-delta_x * solution(1) ; -delta_x * 
solution(2) ; -delta_x * solution(3) ; -delta_x * solution(4) ;... 

                                     -delta_x * solution(5) ; -delta_x * 
solution(6) ; -delta_x * solution(7) ; -delta_x * solution(8) ;... 

                                     -delta_x * solution(9) ; -delta_x * 
solution(10) ; -delta_x * solution(11) ; -delta_x * solution(12) ;... 
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                                     -delta_x * solution(13) ; -delta_x * 
solution(14) ; -delta_x * solution(15) ; -delta_x * solution(16) ;... 

                                     -delta_x * solution(17) ; -delta_x * 
solution(18) ; -delta_x * solution(19) ; -delta_x * solution(20) ;... 

                                     -delta_x * solution(21) ; -delta_x * 
solution(22) ; -delta_x * solution(23) ; -delta_x * solution(24) ;... 

                                     -delta_x * solution(25) ; -delta_x * 
solution(26) ; -delta_x * solution(27) ; -delta_x * solution(28) ;... 

                                     -delta_x * solution(29) ; -delta_x * 
solution(30) ; -delta_x * solution(31) ; -delta_x * solution(32) ;... 

                                     -delta_x * solution(33) ; -delta_x * 
solution(34) ; -delta_x * solution(35) ; -delta_x * solution(36) ;... 

                                     -delta_x * solution(37) ; -delta_x * 
solution(38) ; -delta_x * solution(39) ; -delta_x * solution(40) ;... 

                                     -solution(41) - beta*delta_t ; -solution(42) - 
beta*delta_t ; -solution(43) - beta*delta_t ; -solution(44) - beta*delta_t ;... 

                                     -solution(45) - beta*delta_t ; -solution(46) - 
beta*delta_t ; -solution(47) - beta*delta_t ; -solution(48) - beta*delta_t ;... 

                                     -solution(49) - beta*delta_t ; -solution(50) - 
beta*delta_t ; -solution(51) - beta*delta_t ; -solution(52) - beta*delta_t ;... 

                                     -solution(53) - beta*delta_t ; -solution(54) - 
beta*delta_t ; -solution(55) - beta*delta_t ; -solution(56) - beta*delta_t ;... 

                                     -solution(57) - beta*delta_t ; -solution(58) - 
beta*delta_t ; -solution(59) - beta*delta_t ; -solution(60) - beta*delta_t ;... 

                                     -solution(61) - beta*delta_t ; -solution(62) - 
beta*delta_t ; -solution(63) - beta*delta_t ; -solution(64) - beta*delta_t ;... 

                                     -solution(65) - beta*delta_t ; -solution(66) - 
beta*delta_t ; -solution(67) - beta*delta_t ; -solution(68) - beta*delta_t ;... 

                                     -solution(69) - beta*delta_t ; -solution(70) - 
beta*delta_t ; -solution(71) - beta*delta_t ; -solution(72) - beta*delta_t ;... 

                                     -solution(73) - beta*delta_t ; -solution(74) - 
beta*delta_t ; -solution(75) - beta*delta_t ; -solution(76) - beta*delta_t ;... 

                                     -solution(77) - beta*delta_t ; -solution(78) - 
beta*delta_t ; -solution(79) - beta*delta_t ; -solution(80) - beta*delta_t ;... 

                                     -solution(81) - beta*delta_t]; 

 

    solution = new_solution; 

 

    theta_sim(ii+1) = solution(40); 

 

end 
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end 

 
Experimental Data Processing 
 

function [theta_exp, size_of_theta, char_temp_diff] = 
Experimental_Data_Processing(time, inlet_temp, outlet_temp, tau) 

 

% Experimental_Data_Processing takes the raw experimental data (time, 

% inlet-temp, and outlet_temp) and non-dimensionalizes the gas temperature 

% response.  The appropriate size of the non-dimensional gas temperature 

% response vector is then determined.  With this information and knowledge 

% of tau, the previously determined non-dimensional gas temperature 

% response is then converted into theta_exp, which gives the 

% non-dimensional gas temperature response at integer values of the 

% non-dimensional time.  The characteristic temperature difference is also 

% obtained from the experimental data. 

 

% Define variables: 

 

% theta_exp                  -- experimental non-dimensional gas temperature 
response at integer values of the non-dimensional time [1] 

% size_of_theta              -- the vector size of theta_exp and theta_sim 

% char_temp_diff             -- the characteristic temperature difference; defined 
as the temperature increase, at steady state, of the fluid [C] 

% time                       -- raw time data [s] 

% inlet_temp                 -- raw inlet temperature data [C] 

% outlet_temp                -- raw outlet temperature data [C] 

% tau                        -- non-dimensional time constant [1] 

% delta_t                    -- time interval between measurements [s] 

% max_temp                   -- maximum outlet temperature [c] 

% min_temp                   -- minimum outlet temperature [c] 

% N                          -- size of the outlet_temp, inlet_temp, or time 
vector; number of raw temperature data points or time data points [1] 

% nd_temp                    -- full set of non-dimensional temperatures [1] 
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% theta_exp                  -- reduced set of non-dimensional temperatures [1] 

% jj                         -- index 

% kk                         -- index 

 

%%%%%%% obtain initial information to perform non-dimensionalization 

 

delta_t = time(2) - time(1); 

 

max_temp = max(outlet_temp); 

 

min_temp = min(outlet_temp); 

 

NN = size(outlet_temp); 

N= NN(1);    %%%%%%%%%%%%% gives the size of the vector 

 

nd_temp = zeros(N,1); 

 

%%%%%%% non-dimensionalize the full set of temperature data 

 

for jj = 1:N 

 

    nd_temp(jj) = (outlet_temp(jj) - min_temp) / (max_temp - min_temp); 

 

end 

 

% determine the size of theta_exp and theta_sim 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

mm = time(N)/tau; 

 

mmm = floor(mm); 
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size_of_theta = mmm + 1; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

theta_exp = zeros(size_of_theta,1); 

 

%%%%%%% reduce the full set of non-dimensional temperature data to a set of non-
dimensional 

%%%%%%% temperatures at integer values of the non-dimensional time (0,1,2,3,...). 

 

for kk = 1:size_of_theta 

 

    F = (kk-1) * tau / delta_t; 

 

    a = floor(F); 

 

    b = F - a; 

 

    theta_exp(kk) = nd_temp(a+1) + b*(nd_temp(a+2) - nd_temp(a+1)); 

 

end 

 

char_temp_diff = outlet_temp(N) - outlet_temp(1); 

 

end 

 
Mean Squared Error 
 

function [error] = Mean_Squared_Error(theta_exp, theta_sim, size_of_theta) 

 

% Mean_Squared_Error calculates the the mean squared error between 

% the experimental (theta_exp) and simulated (theta_sim) non-dimensional 

% temperature responses. 
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% Define variables: 

 

% theta_exp          -- experimental non-dimensional temperature response at 
integer values of the non-dimensional time 

% theta_sim          -- simulated non-dimensional temperature response at integer 
values of the non-dimensional time 

% error              -- mean squared error between the two data sets 

 

error = 0; 

 

for jj = 1:size_of_theta 

 

    error = error + (theta_exp(jj) - theta_sim(jj))^2; 

 

end 

 
Physical Properties and Flow Condition 
 

function [alpha_divided_by_Nu_p, beta, gamma_assumed, tau, Re_p, S] = 
Physical_Properties_and_Flow_Condition (eps, L, rho_f, rho_s, mu_f, C_p_f, C_p_s, 
k_f, k_eff, U_sup_vel, d) 

 

% Physical_Properties_and_Flow_Condition obtains the governing equation 

% parameters alpha_divided_by_Nu_p, beta, and gamma_assumed, the 

% characteristic time scale tau, the pore Reynolds number Re_p, and the 

% specific surface area S from the physical properties, geometry, and flow 

% condition. 

 

% Define variables: 

 

% alpha_divided_by_Nu_p      -- governing equation parameter divided by the pore 
Nusselt number [1] 

% beta                       -- governing equation parameter [1] 

% gamma_assumed              -- governing equation parameter assuming effective 
thermal conductivity is known [1] 
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% tau                        -- non-dimensional time constant [1] 

% Re_p                       -- the pore Reynolds number [1] 

% S                          -- the specific surface area [1/m] 

% eps                        -- volumetric porosity [1] 

% L                          -- length of heated test section [m] 

% rho_f                      -- density of fluid [kg/m^3] 

% rho_s                      -- density of solid [kg/m^3] 

% mu_f                       -- dynamic viscosity of fluid [kg/m*s] 

% C_p_f                      -- specific heat of fluid [J/kg*K] 

% C_p_s                      -- specific heat of solid [J/kg*K] 

% k_f                        -- thermal conductivity of fluid [W/m*K] 

% k_eff                      -- effective thermal conductivity [W/m*K] 

% U_sup_vel                  -- superficial velocity [m/s] 

% d                          -- diameter of beads [m] 

 

% d_h                        -- hydraulic diameter [m] 

% chi                        -- hydraulic diameter to length ratio [1] 

% Pr                         -- Prandtl number [1] 

 

S = 6*(1-eps)/d;  % see David's personal notes for this relation.  it was derived 
from geometric considerations 

 

d_h = 4*eps/S; % [1]/[1/m] = [m] 

 

Re_p = (4 * rho_f * U_sup_vel)/(mu_f * S);  %[kg/m^3][m/s]/([kg/m*s][1/m] = [1] 

 

Pr = (C_p_f * mu_f) / (k_f); % [J/kg*K][kg/m*s]/[J/s*m*K] = [1] 

 

tau = eps * L / U_sup_vel; % [m]/[m/s] = [s] 

 

chi = d_h / L; % [m]/[m] = [1] 
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alpha_divided_by_Nu_p = 4 / (chi * Re_p * Pr); %[1] 

 

beta = (eps * rho_f * C_p_f) / ((1-eps) * rho_s * C_p_s); % [1] 

 

gamma_assumed = (k_eff * chi) / (k_f * eps * Re_p * Pr); % [1] 

 

end 

 
Steady State Temperature Distribution 
 

function [solid_temp_distribution, fluid_temp_distribution, 
non_dimensional_spatial_coordinate] = 
Steady_State_Temperature_Distribution(alpha_divided_by_Nu_p, beta, gamma_assumed, 
Final_Nu_p, size_of_theta) 

 

% Steady_State_Temperature_Distribution calculates the steady state 

% non-dimensional solid and fluid temperature spatial distributions from 

% knowledge of alpha, beta, and gamma_assmumed.  Alpha is determined from 

% the actual estimated pore Nusselt number and alpha_divided_by_Nu_p.  The 

% non-dimensional spatial coordinate nodal locations are also obtained. 

 

% alpha_divided_by_Nu_p                 -- governing equation parameter divided by 
the pore Nusselt number [1] 

% beta                                  -- governing equation parameter [1] 

% gamma_assumed                         -- governing equation parameter assuming 
effective thermal conductivity is known [1] 

% Final_Nu_p                            -- actual estimated pore Nusselt number 
used in this simulation 

% size_of_theta                         -- the vector size of theta_exp and 
theta_sim 

% solid_temp_distribution               -- solid phase steady-state temperature 
spatial distribution 

% fluid_temp_distribution               -- fluid phase steady-state temperature 
spatial distribution 

% non_dimensional_spatial_coordinate    -- non-dimensional spatial coordinate nodal 
locations [1] 

% alpha                                 -- governing equation parameter [1] 

% delta_x                               -- non-dimensional spatial-coordinate step 
used in numerical simulation 
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% delta_t                               -- non-dimensional temporal-coordinate step 
used in numerical simulation 

% G1                                    -- convenientaly gathered group of constant 
terms in the gas phase finite difference equation 

% G2                                    -- convenientaly gathered group of constant 
terms in the gas phase finite difference equation 

% G3                                    -- convenientaly gathered group of constant 
terms in the gas phase finite difference equation 

% S1                                    -- convenientaly gathered group of constant 
terms in the solid phase finite difference equation 

% S2                                    -- convenientaly gathered group of constant 
terms in the solid phase finite difference equation 

% S3                                    -- convenientaly gathered group of constant 
terms in the solid phase finite difference equation 

% S4                                    -- convenientaly gathered group of constant 
terms in the solid phase finite difference equation 

% MATRIX                                -- solution matrix 

% inverse_MATRIX                        -- inverse of solution matrix 

% solution                              -- gives the spatial non-dimensional 
temperature distribution of both the gas and solid phase at 

%                                       a certain point in time.  solution(1:40) 
gives the gas phase distribution at a certain point 

%                                       in time, where solution(1) is the gas phase 
non-dimensional temperature at the first nodal point 

%                                       from the entrance nodal point, and 
solution(40) is the gas phase non-dimensional temperature at 

%                                       the exit nodal point.  solution(41:81) 
gives the solid phase distribution at a certain point in 

%                                       time, where solution(41) is the solid phase 
non-dimensional temperature at the entrance nodal 

%                                       point and solution(81) is the solid phase 
non-dimensional temperature at the exit nodal point. 

% new_solution                          -- essentially the same as "solution."  
it's purpose is to facilitate the time iteration. 

% fluid_temp_distribution               -- steady state non-dimensional fluid 
temperature distribution 

% solid_temp_distribution               -- steady state non-dimensional solid 
temperature distribution 

 

non_dimensional_spatial_coordinate = transpose(0:0.0250:1);  %% spatial coordinate 
nodal locations separated a distance L/40 meters apart 
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alpha = Final_Nu_p * alpha_divided_by_Nu_p; 

 

delta_x = 1/40; 

 

delta_t = 1; 

 

G1 = delta_t; 

 

G2 = -(delta_x + delta_t + (delta_x * delta_t) * alpha); 

 

G3 = delta_x * delta_t * alpha; 

 

S1 = beta * gamma_assumed * delta_t / (delta_x)^2; 

 

S2 = - (1 + alpha * beta * (delta_t) + 2 * beta * gamma_assumed *delta_t / 
(delta_x)^2); 

 

S3 = S1; 

 

S4 = alpha * beta * delta_t; 

 

MATRIX = [ ]; 

 

inverse_MATRIX = inv(MATRIX); 

 

solution = zeros(81,1); %%% initial solution 

 

for ii = 1:(size_of_theta - 1) 

 

    new_solution = inverse_MATRIX * [-delta_x * solution(1) ; -delta_x * 
solution(2) ; -delta_x * solution(3) ; -delta_x * solution(4) ;... 

                                     -delta_x * solution(5) ; -delta_x * 
solution(6) ; -delta_x * solution(7) ; -delta_x * solution(8) ;... 
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                                     -delta_x * solution(9) ; -delta_x * 
solution(10) ; -delta_x * solution(11) ; -delta_x * solution(12) ;... 

                                     -delta_x * solution(13) ; -delta_x * 
solution(14) ; -delta_x * solution(15) ; -delta_x * solution(16) ;... 

                                     -delta_x * solution(17) ; -delta_x * 
solution(18) ; -delta_x * solution(19) ; -delta_x * solution(20) ;... 

                                     -delta_x * solution(21) ; -delta_x * 
solution(22) ; -delta_x * solution(23) ; -delta_x * solution(24) ;... 

                                     -delta_x * solution(25) ; -delta_x * 
solution(26) ; -delta_x * solution(27) ; -delta_x * solution(28) ;... 

                                     -delta_x * solution(29) ; -delta_x * 
solution(30) ; -delta_x * solution(31) ; -delta_x * solution(32) ;... 

                                     -delta_x * solution(33) ; -delta_x * 
solution(34) ; -delta_x * solution(35) ; -delta_x * solution(36) ;... 

                                     -delta_x * solution(37) ; -delta_x * 
solution(38) ; -delta_x * solution(39) ; -delta_x * solution(40) ;... 

                                     -solution(41) - beta*delta_t ; -solution(42) - 
beta*delta_t ; -solution(43) - beta*delta_t ; -solution(44) - beta*delta_t ;... 

                                     -solution(45) - beta*delta_t ; -solution(46) - 
beta*delta_t ; -solution(47) - beta*delta_t ; -solution(48) - beta*delta_t ;... 

                                     -solution(49) - beta*delta_t ; -solution(50) - 
beta*delta_t ; -solution(51) - beta*delta_t ; -solution(52) - beta*delta_t ;... 

                                     -solution(53) - beta*delta_t ; -solution(54) - 
beta*delta_t ; -solution(55) - beta*delta_t ; -solution(56) - beta*delta_t ;... 

                                     -solution(57) - beta*delta_t ; -solution(58) - 
beta*delta_t ; -solution(59) - beta*delta_t ; -solution(60) - beta*delta_t ;... 

                                     -solution(61) - beta*delta_t ; -solution(62) - 
beta*delta_t ; -solution(63) - beta*delta_t ; -solution(64) - beta*delta_t ;... 

                                     -solution(65) - beta*delta_t ; -solution(66) - 
beta*delta_t ; -solution(67) - beta*delta_t ; -solution(68) - beta*delta_t ;... 

                                     -solution(69) - beta*delta_t ; -solution(70) - 
beta*delta_t ; -solution(71) - beta*delta_t ; -solution(72) - beta*delta_t ;... 

                                     -solution(73) - beta*delta_t ; -solution(74) - 
beta*delta_t ; -solution(75) - beta*delta_t ; -solution(76) - beta*delta_t ;... 

                                     -solution(77) - beta*delta_t ; -solution(78) - 
beta*delta_t ; -solution(79) - beta*delta_t ; -solution(80) - beta*delta_t ;... 

                                     -solution(81) - beta*delta_t]; 

 

    solution = new_solution; 

 

end 
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fluid_temp_distribution = [0 ; solution(1:40)]; 

 

solid_temp_distribution = solution(41:81); 

 

end 

 

E Finned-Tube Heat Exchanger Subroutine 

   
SUBROUTINE FTHX(TEST,KSOLID,KFLUID,XMDOT,TF2IN,TF1IN,XINPUT,XOUTPUT,KP) 

! GEOMETRY 

! using method of designating a cross fin coil from "HeatCraft, Worldwide 
Refrigeration 

! Type K copper tube diameter                                6061-T6 Aluminum 

!   1/4"  = 9.525 mm,  wall thickness = 0.035 = 0.889  mm    1/4"  = 6.35 mm,  wall 
thickness = 0.035" = 0.889  mm 

!   5/16" = 7.94 mm,   wall thickness = 0.049 = 1.2446 mm    5/16" = 7.94 mm,  wall 
thickness = 0.058  = 1.4732  mm 

!   3/8"  = 12.7   mm, wall thickness = 0.049 = 1.2446 mm    3/8"  = 9.525mm,  wall 
thickness = 0.058  = 1.4732 mm 

!   1/2"  = 15.875 mm  wall thickness = 0.049 = 1.2446 mm    1/2"  = 12.7 mm,  wall 
thickness = 0.065  = 1.651  mm 

!   5/8"  = 19.05 mm   wall thickness = 0.049 = 1.2446 mm    5/8"  = 15.875 mm wall 
thickness = 0.065  = 1.651 mm 

!   3/4"  = 22.22 mm   wall thickness = 0.065 = 1.651  mm    3/4"  = 19.05 mm  wall 
thickness = 0.065  = 1.651 mm 

!   1"    = 28.575 mm  wall thickness = 0.065 = 1.651  mm     1"   = 25.4 mm   wall 
thickness = 0.065  = 1.651 mm 

!   1-1/2"= 41.275 mm  wall thickness = 0.072 = 1.8288 mm   1-1/2" = 38.1 mm   wall 
thickness = 0.065  = 1.651 mm 

!   Tubes can be 1) Smooth bore, 2) Rifle Bore or 3) Cross-Hatch: at this time only 
smooth bore tubes 

! 

!Fin length LZ is in the tube flow direction, the Z dimension 

!Fin widthe LY is the Y direction dimension 

!Fin height LX is the X direction lentgth 
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!Mounting position; Vertical; Air flow into YZ face   

!               or Horizontal; Airflow into  XZ face 

! 

! Number of tubes in X direction from (PX+1)*NTX =LX     

! Number of rows  in Y direction from (PY+1)*NTY =LY   

! 

! Fin pitch     12.5 mm = 2F/inch 

!                8.33mm = 3F/inch  

!                6.25mm = 4F/inch  

! Number of fins from  FP*(NFZ+1) = LZ   

!Need to allow for fin augmentation: 1) smooth, 2) louvered, 3) lanced, 4) Scales 
or 5)!Overall length  

! PD      PT      PXOPD   PYOPD  NTX      NTY     FT      FPOFT  LZ      RATIO   

! THIS PROGRAM WILL PRODUCE RESULTS FOR WHAT IS CALLED A VERTICAL FTHX BECAUSE ITS 
A TWO DIMENSIONAL PROBLEM AND CAN BE  

! ADDRESSED WITH THE PRESENT CODE. cOLUMNS OF TUBES IN THE AIR FLOW DIRECTION FORM 
ROWS. eACH ROW IS A SINGLE TUBE  

! WOUND UP AND DOWN FROM ONE END TO THE OTHER. SUCH DEVICES ARE MANUFACTURED WITH 
AS MANY AS 40 PASSES IN A ROW AND 10  

! OR SO ROWS. tHE ANALYSIS ONLY NEED TO TREAT ONE ROW AS SYMMETRY WILL ALLOW hx 
CAPABILITY TO BE INCREASED BY INCREASING  

! THE NUMBER OF TUBE ROWS. fOR A GIVE MASS FLOW, THERE IS SOME OPTIMIZATION HERE AS 
INCREASING THE NUMBER OF ROWS REDUCES 

! THE FLOW IN A TUBE ( A SET OF COLUMNS)AND COULD LEAD TO REDUCED PUMPING POWER.  

! 

! AT SOME POINT WE WILL HAVE TO CONSIDER THE OTHER ORIENTATION. IT IS THREE 
DIMENSIONAL AND IS IN CROSS FLOW. WILL BE MORE  

! COMPLICATED LEADING TO HAVE TUSE SOMETHING OTHER THAN GUASS SEIDEL. 

 

! THESE ARE THE PARAMETERS NEEDED TO DESCRIBE THE A VERTICAL FTHX.  

! FLOW PARAMTERS THAT CAN BE VARIED WILL BE ASSOCIATED WIT THE FLUID ACCOMPLISHING 
A GIVEN TASK; IN THIS CASE THE AIR FLOW 

! AND ITS TEMPRATURE. iT IS NOT CLEAR WHAT SHOULD BE OPPTIMIZED BUT WE WILL CHOOSE 
TO GET THE MOST HEAT TRANSFER FOR THE  

! LEAST PUMPING POWER. VOLUME AND WEIGHT COULD ALSO BE A CONSIDERATION. 

!  Read in variables, ALL LENGTHS IN MM  
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! XINPUT( 1) = PD     XOUTPUT( 1) = XINPUT( 1)    TUBE DAIMETER [mm] 

! XINPUT( 2) = PT     XOUTPUT( 2) = XINPUT( 2)    TUBE WALL THICKNESS [mm] 

! XINPUT( 3) = PXOD   XOUTPUT( 3) = XINPUT( 3)    PITCH IN FLOW DIRECTION DIVIDED 
BY TUBE DIAMETER 

! XINPUT( 4) = PYOD   XOUTPUT( 4) = XINPUT( 4)    PITCH IN CROSS FLOW DIRECTION 
DIVIDED BY TUBE DIAMETER  

! XINPUT( 5) = NTX    XOUTPUT( 6) = XINPUT( 6)    COLUMNS OF TUBES. NX IS THE 
NUMBER OF NODES AND MUST BE A MULTIPLE OF NTX, CHOSE NX = NTX*20 

! XINPUT( 7) = FT     XOUTPUT( 7) = XINPUT( 7)    FT IS THE FIN THICKNESS 

! XINPUT( 8) = FPOFT  XOUTPUT( 8) = XINPUT( 8)    FPOFT IS THE FIN PITCH OVER THE 
FIN THICKNESS 

! XINPUT( 9) = LZ     XOUTPUT( 9) = XINPUT( 9)    THE HEAT EXCHANGER HEIGHT 

! XINPUT(10) = RATIO  XOUTPUT(10) = XINPUT(10)    RATIO OF FIN SIDE MASS FLOW TO 
TUBE SIDE MASS FLOW 

! XINPUT(11) = MDOTH  XOUTPUT(11) = XINPUT(11)    HOT SIDE MASS FLOW [Kg/S]      

! XINPUT(12) = TF1IN  XOUTPUT(12) = XINPUT(12)    TF1IN IS FIN SIDE INLET 
TEMPRATURE [C]  

! XINPUT(13) = TF2IN  XOUTPUT(13) = XINPUT(13)    TF2IN IS HOT SIDE INLET 
TEMPERATURE 

!                     XOUTPUT(14) = PP1           FIN SIDE PUMPING POWER 

!                     XOUTPUT(15) = PP2           TUBE SIDE PUMPING POWER 

!                     XOUTPUT(16) = QX2           FIN SIDE TOTAL HEAT TRANSFER 

!                     XOUTPUT(17) = QZ2           TUBE SIDE TOTAL HEAT TRANSFER 

!                     XOUTPUT(18) = QMAX          QMAX = XMDOTH*WCPF*(TF2IN - 
TF1IN) 

!                     XOUTPUT(19) = HTEFF         HTEFF  = QX2/QMAX 

!                     XOUTPUT(20) = EFFECTIVENESS EFFECTIVENESS = QX2/PPT, PPT IS 
TOTAL PUMPING POWER 

!                     XOUTPUT(21) = EFFECTIVENESS/(T2FIN-TF1IN)  

!                     XOUTPUT(22) = VOLUME 

!                     XOUTPUT(23) = WEIGHT 

         

        IMPLICIT REAL*8 (A-H,O-Z) 

        PARAMETER (NZ=100)  ! NOTE THAT NX MUST BE A MULTIPLE OF THE NUMBER OF 
TUBES IN THE COLUMN 

        REAL*8 KS, LX, LZ, IPD, LY, NUT1,NUT2 



211 
 

        DIMENSION  
U1(1000,NZ),U2(1000,NZ),T1(1000,NZ),T2(1000,NZ),TS(1000,NZ),XOUTPUT(30),XINPUT(13),
& 

        
F(NZ),CD(1000,NZ),H1(1000,NZ),H2(1000,NZ),X(1000),Z(NZ),HH1(1000,NZ),HH2(1000,NZ),C
T1(1000,NZ),& 

        
CT2(1000,NZ),AJTS(1000,NZ),BJTS(1000,NZ),CJTS(1000,NZ),AITS(1000,NZ),BITS(1000,NZ),
CITS(1000,NZ),& 

 
 FJTS(1000,NZ),FITS(1000,NZ),CJTSS(1000,NZ),FJTSS(1000,NZ),CONV1(1000,NZ),CONV2(100
0,NZ),SW1(1000,NZ),& 

 
 SW2(1000,NZ),DH1(1000,NZ),DH2(1000,NZ),COEF(1000,NZ),CT2S(1000,NZ),CT1S(1000,NZ),X
M1(1000,NZ),XM2(1000,NZ),HX(1000),&  

  HZ(NZ), 
REP1(1000,NZ),REP2(1000,NZ),CD1(1000,NZ),CD2(1000,NZ),Y1(1000,NZ),Y2(1000,NZ),Y3(10
00,NZ),& 

        
FJT1(1000,NZ),FJT2(1000,NZ),FIT1(1000,NZ),FIT2(1000,NZ),FITSS(1000,NZ),CITSS(1000,N
Z) 

        CHARACTER TEST  

        PI = 3.14159265358979323846264338327950288419716939937510 

 

!---------------------------------------------------------------------------- 

!------------------ MATERIAL PROPERTIES ------------------------------------- 

!---------------------------------------------------------------------------- 

             ANU=20.92E-06           ! Air at 300K kiN ematic viscosity,[m**2/s] 

             ACPF=1009               ! Air at 300K specific heat [J/Kg.K] 

             AROF=.9950              ! Air at 300K deN sity [Kg/m**3] 

             AKF=30.0E-03            ! Air at 300K thermal conductivity [W/mK] 

             AAF=AKF/(ACPF*AROF)     ! THERMAL DIFFUSIVITY OF AIR 

             IF(KFLUID.EQ.1) GOTO 10 

             IF(KFLUID.EQ.2) GOTO 20 

    !   Fluid--Water 

       10    WNU=1.10E-6             !Water kinematic viscosity,[m**2/s] 

             WCPF=4186               !Water specific heat @290K [J/Kg.K] 

             WROF=999                !Water deN sity @290K [Kg/m**3] 

             WKF=0.57                !Water thermal coN ductivity [W/mK] 
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             WAF=WKF/(WCPF*WROF)     ! THERMAL DIFFUSIVITY of water 

             GOTO 40 

       20    CONTINUE 

      !   Freon at 300k 

       30    CONTINUE 

             WNU=0.195E-06 

             WCPF=9781 

             WROF=1305.8 

             WKF=72 

             WAF=WKF/(WCPF*WROF) 

             GOTO 40 

       40    CONTINUE 

             IF(KSOLID.EQ.1) GOTO 110 

             IF(KSOLID.EQ.2) GOTO 120 

             IF(KSOLID.EQ.3) GOTO 130 

             IF(KSOLID.EQ.4) GOTO 135 

             IF(KSOLID.EQ.5) GOTO 138 

             GOTO 140 

    !   Solid--Steel 

      110    CONTINUE 

             CPS=480.0           !Solid specific heat, steel [J/kg/K] 

             ROS=8055.0          !Solid density, steel [kg/m**3] 

             KS=15.0             !Solid thermal conductivity [W/mK], steel 

             GOTO 140 

      120    CONTINUE 

    ! SOLID--COPPER 

             CPS=385 

             ROS=8933 

             KS=401 

             GOTO 140 

      130    CONTINUE 

    ! SOLID ALUMINUM 



213 
 

             CPS=903 

             ROS=2702 

             KS=237 

             GOTO 140 

    ! VERY HIGH CONDUCTIVITY SOLID 

      135    CONTINUE 

             CPS=50 

             ROS=19300 

             KS=100000 

             GO TO 140 

     ! SILICON 

       138   CONTINUE        

             CPS=712.0         !Solid specific heat, Silicon [J/kg/K] 

             ROS=2330.0        !Solid density, Silicon [kg/m**3] 

             KS=148.0          !Solid thermal conductivity [W/mK], Silicon 

      140    CONTINUE 

             AS=KS/ROS/CPS 

 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!----------------------------------------------------------------------------              

  

!---------------------------------------------------------------------------- 

!--------------------OPEN OUTPUT FILES--------------------------------------- 

!---------------------------------------------------------------------------- 

                

             OPEN (32, FILE = 'OUTPUT.TXT') 

             OPEN (71, FILE = 'PARAMETERS.TXT') 

             OPEN (81, FILE = 'RESPONSE.TXT')   

              

!             OPEN (1801, FILE = 'TF1.DAT') 

!             OPEN (1802, FILE = 'TF2.DAT') 
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!             OPEN (1803, FILE = 'TS.DAT') 

!             OPEN (1804, FILE = 'U1.DAT') 

!             OPEN (1805, FILE = 'U2.DAT') 

              

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

 

!---------------------------------------------------------------------------- 

!-----------------------PROGRAM INPUTS--------------------------------------- 

!---------------------------------------------------------------------------- 

           

            NCASE = 1 

            NTEST = 0 

             

            IF (TEST.EQ.'Y'.OR.TEST.EQ.'y') NTEST=1 

            CONTINUE 

 

            IF(NTEST.EQ.1) THEN 

 !*************************TEST CASE INPUT VALUES ***************************        

                PD    =    12.70             !OUTER TUBE DIAMETER [mm] 

                XOUTPUT(1)  = PD 

                PT    = 1.65                 !TUBE WALL THICKNESS [mm] 

                XOUTPUT(2)  = PT 

                IPD   = PD - 2*PT            !inside pin  diameter [mm] 

                PXOPD = 2.50                 !THIS IS THE PITCH/DIAMETER OF THE 
SERPENTINE THAT MAKES UP THE COLUMNS [-] 

                XOUTPUT(3) = PXOPD 

                PYOPD = 2.16                 !THIS IS THE SPACING/DIAMETER OF THE 
ROWS OF SINGLE TUBES [-]  

                XOUTPUT(4) = PYOPD 

                PX    = PXOPD*PD             !tube  pitch in  X direction [mm] 

                PY    = PYOPD*PD             !tube  pitch in  Y direction [mm] 
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                NTX   = 50                   ! Columns of tubes [-] 

                XOUTPUT(5) = NTX 

                NX = 20*NTX 

                LX    = PX*NTX               ! Length of air flow passage [mm] 

                NTY   = 8                    ! Rows of tubes [-] 

                XOUTPUT(6) = NTY 

                LY    = PY*NTY               ! Width [mm] 

      

                FT    = 2.00                 !fin  
thickness;1.0/1.2/1.6/2.0/2.5/3.0 [mm] 

                XOUTPUT(7) = FT 

                FPOFT = 4.00                 !FIN PITCH TO THICKNESS RATIO [-] 

                XOUTPUT(8) = FPOFT 

                FP    = FPOFT*FT             !fin  pitch [mm] 

                FPI   = (1.0/FP)*25.4        !fins per INCH            

                LZ    = 1000.00              !HEIGHT OF UNIT [mm] 

                XOUTPUT(9) = LZ 

                XMDOTH = 1.00                !HOT SIDE MASS FLOW [KG/S] 

                RATIO = 1.00                 !XMDOTH*CPH/XMDOTC*CPC [-] 

                XOUTPUT(10) = RATIO           

                XOUTPUT(11) = XMDOTH           

                TF1IN = 30.00                !COLD INLET TEMPERATURE [C] 

                TF2IN = 60.00                !HOT SIDE INLET [C]  

                XOUTPUT(12) = TF1IN            

                XOUTPUT(13) = TF2IN            

                CONTINUE 

 !***********************END TEST CASE INPUT VALUES *************************        

                GO TO 25 

                 

            ELSE 

 !*********************USER-SELECTED INPUT VALUES (MM)*********************** 

                XOUTPUT( 1) = XINPUT( 1)         !PD 
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                    PD      = XINPUT( 1) 

                XOUTPUT( 2) = XINPUT( 2)         !PT 

                    PT      = XINPUT( 2) 

                    IPD     = PD - 2*PT              

                XOUTPUT( 3) = XINPUT( 3)         !PXOPD 

                    PXOPD   = XINPUT( 3)          

                XOUTPUT( 4) = XINPUT( 4)         !PYOPD 

                    PYOPD   = XINPUT( 4)          

                    PX      = PXOPD*PD             

                    PY      = PYOPD*PD             

                XOUTPUT( 5) = XINPUT( 5)         !NTX 

                    NTX     = XINPUT( 5) 

                    NX      = 20*NTX 

                XOUTPUT( 6) = XINPUT( 6)         !NTY 

                    NTY     = XINPUT( 6)          

                    LX      = PX*NTX 

                    LY      = PY*NTY 

                XOUTPUT( 7) = XINPUT( 7)         !FT 

                    FT      = XINPUT( 7)          

                XOUTPUT( 8) = XINPUT( 8)         !FPOFT 

                    FP      = FPOFT*FT                   

                XOUTPUT( 9) = XINPUT( 9)         !LZ 

                    LZ      = XINPUT( 9) 

                XOUTPUT(10) = XINPUT( 10)        !RATIO 

                    RATIO   = XINPUT( 10)         

                XOUTPUT(11) = XINPUT( 11)        !XMDOTH 

                    XMDOTH  = XINPUT( 11) 

                XOUTPUT(12) = XINPUT(12) 

                    TF1IN   = XINPUT(12)  

                XOUTPUT(13) = XINPUT(13) 

                    TF2IN   = XINPUT(13) 

 !*********************END USER-SELECTED INPUT VALUES (MM)*******************                     



217 
 

            END IF 

25     CONTINUE  

 

!******************WRITE OUT TO FILE = 71, "PARAMETERS.TXT"****************** 

    IF(NCASE.EQ.1)WRITE(71,*)'NCASE   PD      PT      PXOPD   PYOPD  NTX      NTY     
FT      FPOFT  LZ      RATIO   XMDOTH TF1IN   TF2IN' 

    WRITE(71,72)NCASE,(XOUTPUT(KK),KK=1,13) 

72          FORMAT(1X,I4,13F8.2) 

!*****************END WRITE OUT TO FILE = 71, "PARAMETERS.TXT"*************** 

 

!******************* CONVERT GEOMETRY INPUTS FROM MM TO M *******************  

    SC    =  0.001  

    PD    =  XOUTPUT(1)*SC          !TUBE DIAMETER [m] 

    PT    =  XOUTPUT(2) *SC         !TUBE WALL THICKNESS [m] 

    IPD   =  PD - 2*PT              !inside pin  diameter [m] 

    PXOPD =  XOUTPUT(3)             !THIS IS THE PITCH/DIAMETER OF THE SERPENTINE 
THAT MAKES UP THE COLUMNS [-] 

    PYOPD =  XOUTPUT(4)             !THIS IS THE SPACING/DIAMETER OF THE ROWS OF 
SINGLE TUBES [-] 

    PX    =  PXOPD*PD               !tube  pitch in  X direction[m] 

    PY    =  PYOPD*PD               !tube  pitch in  Y direction[m] 

    NTX   =  XOUTPUT(5)             !Columns of tubes [-] 

    LX    =  PX*NTX                 !Length of air flow passage [m] 

    NTY   =  XOUTPUT(6)             !Rows of tubes [-] 

    LY    =  PY*NTY                 !Width [m] 

    FT    =  XOUTPUT(7)*SC          !fin  thickness [m] 

    FPOFT =  XOUTPUT(8)             !FIN PITCH TO THICKNESS RATIO [-] 

    FP    =  FPOFT*FT               !fin  pitch [m] 

    FPI   = (1.0/FP)*(25.4*SC)      !fins per INCH            

    LZ    =  XOUTPUT(9)*SC          !HEIGHT OF UNIT [m] 

    RATIO =  XOUTPUT(10)            !RATIO OF XMDOTH*CPH/XMDOTC*CPC 

    XMDOTH=  XOUTPUT(11)            ![KG/S] 

    CONTINUE 

!******************************** END *************************************** 
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!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

    

 

!---------------------------------------------------------------------------- 

!------------------- POROSITY AND WETTED SURFACE AREA ----------------------- 

!----------------------------------------------------------------------------  

               

!WILL EVENTUALLY BE A FUNCTION  OF X,Z.  

!Current correlations from Zhou, F., et al. (2011). "Obtaining Closure for Fin-and-
Tube  

!Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)." Journal of Heat 
Transfer 133(11): 111802. 

       DO I = 1,NX 

           DO J = 1,NZ 

                XM1(I,J)  = 1-FT/FP-(PI*PD*PD*(FP-FT)/(4.0*PX*PY*FP))               
! Porosity fluid 1 [-] 

                XM2(I,J)  = PI*IPD*IPD/(4.0*PX*PY)                                  
! Porosity fluid 2 [-] 

                SW1(I,J)  = (2*PX*PY-2*PI*(PD/2)**2+PI*PD*(FP-FT))/(PX*PY*FP)       
! Surface wetted fluid 1 [1/m] 

                SW2(I,J)  = PI*IPD/(PX*PY)                                          
! Surface wetted fluid 2 [1/m] 

                DH1(I,J)   = 4.0*XM1(I,J)/SW1(I,J)                                   
! Hydraulic diameter of airside [m] 

                DH2(I,J)   = 4.0*XM2(I,J)/SW2(I,J)                                   
! Hydraulic diameter of WATER side [m]                 

                COEF(I,J) = 1.0 - XM1(I,J) - XM2(I,J) 

           END DO 

       END DO 

       CONTINUE 

 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 
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!---------------------------------------------------------------------------- 

 

 

!---------------------------------------------------------------------------- 

!------------------------------GRIDDING-------------------------------------- 

!----------------------------------------------------------------------------        

        

!WANT TO BE ABLE TO USE VARIABLE GRIDDING AND WILL PUT THIS IN TO A SUBROUTINE.  

            X(1) = 0.0 

        DO I=2,NX 

            X(I)=(LX/(NX-1))*(I-1)  ! spacing in the x direction [m]  

            HX(I-1) = X(I)-X(I-1)   ! [m] 

        END DO 

            HX(NX) = HX(NX-1) 

            

            Z(1) = 0 

        DO J=2,NZ  

            Z(J)=(LZ/(NZ-1))*(J-1)  ! spacing in the z direction [m]  

            HZ(J-1) = Z(J)-Z(J-1)   ! [m] 

        END DO 

            HZ(NZ) = HZ(NZ-1) 

 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

 

 

!---------------------------------------------------------------------------- 

!---------------------- FLOW CONDITIONS ------------------------------------- 

!----------------------------------------------------------------------------            

 

! If a balanced heat exchanger, Cc = Ch  
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! Input flow conditions 

! THIS WILL NEED TO BE A SUBROUTINE SO THAT FRICTION FACTOR AND FLOW RATES CAN BE 
RELATED. 

    XMDOTC = (XMDOTH/RATIO)*(WCPF/ACPF)     ![-]     

! CALCULATE INLET VELOCITIES OF HOT LIQUID         

    XNP = NTX           ! # OF PASSES OR # OF COLUMNS OF TUBES [-] 

             

!*****************TUBE SIDE INLET VELOCITIES**************             

            U2AVG = 0. 

        DO I = 1 , NX 

            U2(I,1) = (XMDOTH/(LX*LY)/XM2(I,1)/WROF)*XNP        ! HOT FLUID INLET 
VELOCITIES [m/s] 

            U2AVG   = U2AVG + U2(I,1)*HX(I)                 ![m/s] 

            REP2(I,1) = ABS(U2(I,1)*DH2(I,1)/WNU) 

        END DO 

!           U2AVG   = (U2AVG/LX)*XNP ! THIS IS PROF. CATTON'S ORIGINAL FORMULA - 
HOT FLUID AVERAGE VELOCITY 

            U2AVG   = (U2AVG/LX) !  

!**************************END**************************** 

 

!*****************FIN SIDE INLET VELOCITIES***************    

            U1AVG = 0. 

        DO J = 1, NZ 

            U1(1,J) = XMDOTC/(LZ*LY)/XM1(1,J)/AROF ! [m/s] 

            U1AVG   = U1AVG + U1(1,J)*HZ(J) 

            REP1(1,J) = ABS(U1(1,J)*DH1(1,J)/ANU) 

        END DO 

            U1AVG   = U1AVG/LZ 

!**************************END****************************             

 

!************************FLOW FIELD***********************             

        DO I = 1, NX 

            DO J = 1, NZ 
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                U1(I,J)    = U1(1,J)                    ![m/s] FLOW FIELD IS 
UNIFORM 

                U2(I,J)    = U2(I,1)                    ![m/s] FLOW FIELD IS 
UNIFORM 

                REP1(I,J)  = REP1(1,J)                  ![-] 

                REP2(I,J)  = REP2(I,1)                  ![-] 

                !FIN SIDE DRAG COEFFICIENT 

!                CD1(I,J)   = 13.9/REP1(I,J)+0.015 ! ORIGINAL; Drag on  Airside for 
Staggered tubes 

                CD1(I,J) = 112.4/REP1(I,J)+0.252 !FENG'S CORRELATION FOR THE AIR 
SIDE, FROM WANG'S CORRELATIONS 

                !TUBE SIDE DRAG COEFFICIENT 

                IF(REP2(I,J).LT.2300)THEN 

                       CD2(I,J)   = 64.0/REP2(I,J) ! REP2.LT.2300 

                END IF 

                IF(REP2(I,J).GT.10000) THEN     ! 10,000<RE<2.5XE08 

!                       FF         = 1.7372*LOG(REP2(I,J))/(1.964*LOG(REP2(I,J))-
3.8215) !ORIGINAL  

                       FF         = 1.7372*LOG(REP2(I,J)/(1.964*LOG(REP2(I,J))-
3.8215)) ! TECHO ET AL. 

                       CD2(I,J)   = 1/FF**2 

                END IF 

                IF(REP2(I,J).GT.2300.AND.REP2(I,J).LT.10000) THEN 

!                        FF         = 1.7372*LOG(REP2(I,J))/(1.964*LOG(REP2(I,J))-
3.8215) 

!                        FF        =   1.7372*LOG(REP2(I,J)/(1.964*LOG(REP2(I,J))-
3.8215)) ! 

!                        CH        = 1/FF**2 

                        AA        = 64.0/2300 

                        BB        = 1.0/(1.7372*LOG(10000.0/(1.964*LOG(10000.0)-
3.8215)))**2 ! 

!                        CD2(I,J)  = AA + (BB-AA)*REP2(I,J)/10000.0 !ORIGINAL 
FORMULA 

                        CD2(I,J)  = AA + (BB-AA)*(REP2(I,J)-2300)/(10000-2300) !, 
SIMPLE INTERPOLATION 

                END IF 

  

                CONV1(I,J) = AROF*ACPF*U1(I,J)*XM1(I,J)/HX(I)  
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                CONV2(I,J) = WROF*WCPF*U2(I,J)*XM2(I,J)/HZ(J) 

            END DO 

        END DO  

!**************************END****************************          

 

!********************FLOW PARAMETERS**********************  

! CALCULATE PRESSURE DROP AND PUMPING POWER 

            DP1 = CD1(1,1)*AROF*U1(1,1)**2*LX/DH1(1,1)/2.0  ! [N/m**2],[Pa] 

            !            F1  = DP1*LY*LZ 

            ETA1 = 1.0 !AIR SIDE BLOWER EFFICIENCY [-] 

            F1 = DP1*LY*LZ*XM1(1,1) ![N; Newtons] 

            PP1 = F1*U1(1,1)/ETA1    ! [W] 

             

!            ROD = PX/IPD 

!            XK  = 20.0/ROD + 2.5*(ROD-1.0) 

!            XK  = XK*CD2(1,1) 

!            CDB = 0.25*PI*CD2(1,1)*ROD + 1.5*XK    !something for tube bends 
separately. 

                        

            DPB=0. 

             

            DP2 = CD2(1,1)*WROF*U2(1,1)**2*((LZ+.05)*NTX)/DH2(1,1)/2.0 + DPB*(NTX-
1) ! [Pa] 

            ETA2 = 1.0 !LIQUID SIDE PUMP EFFICIENCY [-] 

            F2  = DP2*XM2(1,1)*LY*LX/XNP    ! [N] 

            PP2 = F2*U2(1,1)/ETA2           ! [W] 

             

            PPT = PP1 + PP2 ![W] 

             

            XOUTPUT(14)=PP1 

            XOUTPUT(15)=PP2 

        CONTINUE 

!**************************END****************************          
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!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!----------------------------------------------------------------------------  

 

 

!---------------------------------------------------------------------------- 

!-------------------------THERMAL CONDITIONS--------------------------------- 

!----------------------------------------------------------------------------         

          

                PR1 = ANU*ACPF*AROF/AKF ! PRANDTL NUMBER OF FLUID 1 

                PR2 = WNU*WCPF*WROF/WKF ! PRANDTL NUMBER OF FLUID 2 

        DO i=1,NX  

            DO j=1,NZ  

                T1(i,j)  =  TF1IN !temperature of fluid 1 [c] THIS IS THE FLOW 
THROUGH THE TUBE BANKS BETWEEN  THE FINS 

                T2(i,j)  =  TF2IN !temperature of fluid 2 [c] THIS IS THE TUBE FLOW 

                TS(i,j)  =  (TF2IN+TF1IN)/2.0 !temperature of solid [c]   THE SOLID 

                 

                Y1(i,j)  =  TF2IN 

                Y2(i,j)  =  TF2IN 

                Y3(i,j)  =  TF2IN 

                 

!                NUT1     =  (-
.171*(REP1(i,j)**.71)+.232*(REP1(i,j)**.72))*PR1**(1./3.) ! Nusselt Number of fluid 
1 

                NUT1     =  0.24*(REP1(i,j)**0.6)*PR1**(1./3.) !FENG'S CORRELATION 

                 

                IF(REP2(i,j).LT.2100) THEN 

                      NUT2     =  4.36; ! Nusselt Number of fluid 2, cappilary flow  

                ELSE 

                      NUT2     = 0.023*REP2(i,j)**0.8*PR2**0.3  ! DITTUS BOELTER 

                END IF 



224 
 

                HH1(i,j) =  NUT1*AKF/DH1(i,j)    ! heat transfer coefficient, fluid 
1 [W/m**2/K] 

                HH2(i,j) =  NUT2*WKF/DH2(i,j)        ! heat transfer coefficient, 
fluid 2 [W/m**2/K] 

                CT1S(i,j)=  HH1(i,j)*SW1(i,j) 

                CT2S(i,j)=  HH2(i,j)*SW2(i,j) 

             END DO 

        END DO 

 

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!----------------------------------------------------------------------------  

 

 

!---------------------------------------------------------------------------- 

!------------------------COEFFICIENTS---------------------------------------- 

!----------------------------------------------------------------------------          

 

     DO I = 1,NX 

         DO J = 1,NZ 

                 

                ZKS       = KS  ![W/mK] 

            IF(J.EQ.1)THEN 

                HBZ2  = HZ(1)**2     

                HBZ2M = HBZ2         

            ELSE 

                HBZ2M = HZ(J-1)*(HZ(J-1)+HZ(J))/2.0     ! [m**2] 

                HBZ2  = HZ(J)*(HZ(J-1)+HZ(J))/2.0       ! [m**2] 

            END IF 

                 

                XKS       = KS  ![W/mK] 

            IF(I.EQ.1) THEN 

                HBX2  = HX(1)**2 
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                HBX2M = HBX2 

            ELSE 

                HBX2M = HX(I-1)*(HX(I-1)+HX(I))/2.0     ! [m**2] 

                HBX2  = HX(I)*(HX(I-1)+HX(I))/2.0       ! [m**2] 

            END IF 

                AJTS(I,J) = COEF(I,J)*ZKS/HBZ2M         ! [W/m**3/K] 

                BJTS(I,J) = COEF(I,J)*ZKS/HBZ2          ! [W/m**3/K] 

                CJTS(I,J) = AJTS(I,J) + BJTS(I,J)       ! [W/m**3/K] 

                AITS(I,J) = COEF(I,J)*XKS/HBX2M         ! [W/m**3/K] 

                BITS(I,J) = COEF(I,J)*XKS/HBX2          ! [W/m**3/K] 

                CITS(I,J) = AITS(I,J) + BITS(I,J)       ! [W/m**3/K] 

                !  FLUID NUMBER 1   ***************************** 

                CT1(I,J)  = CONV1(I,J) + CT1S(I,J)      ! [W/m**3/K] 

                ! FLUID NUMBER 2 *******************************  

                CT2(I,J)   = CONV2(I,J)+ CT2S(I,J)      ! [W/m**3/K] 

                 

                CJTSS(I,J) = CJTS(I,J) + CITS(I,J) +CT1S(I,J) + CT2S(I,J)   ! 
[W/m**3/K] 

         END DO 

     END DO 

     CONTINUE  

      

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!----------------------------------------------------------------------------  

 

 

!---------------------------------------------------------------------------- 

!-----------------------------COMPUTATIONS----------------------------------- 

!----------------------------------------------------------------------------       

 

DO 1000     K = 1, 10000 
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    ! SOLID SIDE TEMPERATURE     

    DO I = 1, NX  

        DO J = 1, NZ  

             

            IF(I.EQ.NX)THEN 

                TSP = TS(I,J) 

            ELSE  

                TSP = TS(I+1,J)     ![C] 

            END IF 

             

            IF(I.EQ.1)THEN 

                TSM = TS(I,J) 

            ELSE 

                TSM = TS(I-1,J)     ![C] 

            END IF  

             

            IF(J.EQ.NZ) THEN 

                TSJP = TS(I,J) 

            ELSE 

                TSJP = TS(I,J+1)    ![C] 

            END IF 

             

            IF(J.EQ.1)THEN 

                TSJM = TS(I,J) 

            ELSE 

                TSJM = TS(I,J-1)    ![C] 

            END IF 

 

            Y2(I,J) = 
(AJTS(I,J)*TSJM+BJTS(I,J)*TSJP+AITS(I,J)*TSM+BITS(I,J)*TSP)/CJTSS(I,J) &      ![C]  

                 + CT1S(I,J)*T1(I,J)/CJTSS(I,J) + CT2S(I,J)*T2(I,J)/CJTSS(I,J) 
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        END DO 

    END DO 

!             DO J = 1,NZ 

!             Y2(NX,J) = Y2(NX-1,J) 

!             END DO 

!              

    CONTINUE 

 

! AIR SIDE TEMPERATURE 

     

    DO J = 1, NZ 

        DO I = 1, NX  

             

            IF(I.EQ.1) THEN 

                Y1(1,J) = TF1IN     ![C] 

            ELSE 

                Y1(I,J) = (CT1S(I,J)*Y2(I,J)/CONV1(I,J)+Y1(I-
1,J))/(1.0+CT1S(I,J)/CONV1(I,J))   ![C]  

            END IF 

         

        END DO 

    END DO  

    CONTINUE 

              

! LIQUID SIDE TEMPERATURE. HERE MUST DO SOMETHING WITH BOUNDARY CONDITIONS.  HERE 
IS WHERE GAMES ARE PLAYED TO GET MULTIPLE PASSES 

! FIRST SOME BOUNDARIES FOR THE PASSES: 

            

    NTR = NX/NTX    !NTR = 20    

     

    DO   NTC = NX,1,-NTR    !Move from right to left, delineate individual 
"serpentine pass" regions 

        IU = NTC 
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        IL = IU-NTR+1  

        DO I = IU,IL,-1     !Move from right to left within a single "serpentine 
pass" 

            LOGIC = NTC/NTR 

            IF((LOGIC/2)*2.EQ.LOGIC) THEN   !Even # of tube passes 

                ! UPWARD PASS   
********************************************************* 

                DO J = 1, NZ  

                    IF(J.EQ.1) THEN 

                        IF(NTC.EQ.NX)   Y3(I,1) = TF2IN     ![C] 

                        IF(NTC.LT.NX)   Y3(I,1) = Y3(I+NTR,1)   ! 

                    ELSE 

                       Y3(I,J) = (CT2S(I,J)*Y2(I,J)/CONV2(I,J)+Y3(I,J-
1))/(1.0+CT2S(I,J)/CONV2(I,J)) 

                    END IF 

                END DO 

!                              write(*,*)LOGIC,NTC,i,1,i+ntr,1 

                 CONTINUE 

            ELSE    !Odd # of tube passes 

                ! DOWNWARD PASS REVERSE DIRECTION  *************** 

!                         write(*,*)LOGIC,NTC,i,nz,i+ntr,nz 

                DO J = NZ,1,-1 

                    IF(J.EQ.NZ)THEN 

                        IF(NTC.EQ.NX)   Y3(I,NZ) = TF2IN        ! 

                        IF(NTC.LT.NX)   Y3(I,NZ) = Y3(I+NTR,NZ) 

                    ELSE 

                        Y3(I,J)  = 
(CT2S(I,J)*Y2(I,J)/CONV2(I,J)+Y3(I,J+1))/(1.0+CT2S(I,J)/CONV2(I,J))     

                    END IF 

                END DO   ! J  

            END IF 

        END DO ! I 

    END DO    ! NTC 

    CONTINUE 
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900 CONTINUE 

      

            

!    IF(K.EQ.(K/10)*10)THEN 

!    CONTINUE 

!    END IF 

    EPS = 0 

    DO I = 2, NX-1 

        DO J = 2, NZ-1 

            EPSTF1 = ABS( (T1(I,J)-Y1(I,J))/T1(I,J)) 

            EPSTS  = ABS( (TS(I,J)-Y2(I,J))/TS(I,J)) 

            EPSTF2 = ABS( (T2(I,J)-Y3(I,J))/T2(I,J)) 

            IF (EPS.LT.EPSTF1)THEN 

                EPS = EPSTF1 

            END IF 

            IF (EPS.LT.EPSTS)THEN 

                EPS = EPSTS 

            END IF 

            IF (EPS.LT.EPSTF2)THEN 

                EPS = EPSTF2 

            END IF 

        END DO 

    END DO 

    CONTINUE 

     

     

    DO I = 1, NX  

        DO J = 1, NZ  

            T1(I,J)  = Y1(I,J)  ![C] 

            TS(I,J)  = Y2(I,J)  ![C] 

            T2(I,J)  = Y3(I,J)  ![C] 

        END DO 
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    END DO 

     

     

    IF(K.EQ.(K/10)*10)THEN  ! REPORT EVERY 10 ITERATIONS 

         

        QX2 = 0.0                         

        DO J = 1, NZ 

            QX2 = QX2 + AROF*ACPF*U1(NX,J)*XM1(NX,J)*(T1(NX,J)-TF1IN)*HZ(J)  

        END DO 

        QX2 = QX2*LY    ![W] 

        XOUTPUT(16)= QX2 

         

        QZ2 = 0.0 

        DO I = 1,NTR  !GOES ACROSS THE OUTLET SECTION OF THE TUBE FLOW ON THE LEFT 
END 

            QZ2 = QZ2 +  WROF*WCPF*U2(I,1)*XM2(I,1)*(TF2IN-T2(I,1))*HX(I)    

        END DO 

        QZ2 = QZ2*LY    ![W] 

        XOUTPUT(17) = QZ2 

                 

        T1AVG=0         

        DO KK=1,NZ 

            T1AVG = T1AVG+T1(NX,KK) 

        END DO 

        T1AVG = T1AVG/NZ      

!        TAVG = (T2(1,1)+T2(2,1)+T2(3,1)+T2(4,1))/4.0 

        QX3 = XMDOTC*ACPF*(T1AVG-TF1IN) ![W] 

                 

        T2AVG=0         

        DO KK=1,NTR 

            T2AVG = T2AVG+T2(KK,1) 

        END DO 
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        T2AVG = T2AVG/NTR     

!        TAVG = (T2(1,1)+T2(2,1)+T2(3,1)+T2(4,1))/4.0 

        QZ3 = XMDOTH*WCPF*(TF2IN-T2AVG) ![W] 

         

         

 

    !****************REAL-TIME USER UPDATES*******************         

        WRITE(*,1550)NCASE,K,EPSTF1,EPSTS,EPSTF2 

        WRITE(*,1551)   QX2,QZ2,QX3,QZ3 

        WRITE(*,*)'AT TOP OF HX - J = ',NZ-1  

        WRITE(*,1552) X(1)*1000, X(NX/6)*1000, X(NX/3)*1000,     X(NX/2)*1000, 
X(2*NX/3)*1000,  X(5*NX/6)*1000,   X(NX)*1000 

        WRITE(*,*) 

        WRITE(*,1552) T1(1,NZ-1),T1(NX/6,NZ-1),T1(1.0*NX/3,NZ-1),T1(NX/2,NZ-
1),T1(2.0*NX/3,NZ-1),T1(5.0*NX/6,NZ-1),T1(NX,NZ-1)        

        WRITE(*,1552) TS(1,NZ-1),TS(NX/6,NZ-1),TS(1.0*NX/3,NZ-1),TS(NX/2,NZ-
1),TS(2.0*NX/3,NZ-1),TS(5.0*NX/6,NZ-1),TS(NX,NZ-1)   

        WRITE(*,1552) T2(1,NZ-1),T2(NX/6,NZ-1),T2(1.0*NX/3,NZ-1),T2(NX/2,NZ-
1),T2(2.0*NX/3,NZ-1),T2(5.0*NX/6,NZ-1),T2(NX,NZ-1)   

        WRITE(*,*) 

        WRITE(*,*)'AT CENTER OF HX - J = ',NZ/2 

        WRITE(*,1552) X(1)*1000, X(NX/6)*1000, X(NX/3)*1000,     X(NX/2)*1000, 
X(2*NX/3)*1000,   X(5*NX/6)*1000,  X(NX)*1000 

        WRITE(*,*) 

        WRITE(*,1552) 
T1(1,NZ/2),T1(NX/6,NZ/2),T1(1.0*NX/3,NZ/2),T1(NX/2,NZ/2),T1(2.0*NX/3,NZ/2),T1(5.0*N
X/6,NZ/2),T1(NX,NZ/2)        

        WRITE(*,1552) 
TS(1,NZ/2),TS(NX/6,NZ/2),TS(1.0*NX/3,NZ/2),TS(NX/2,NZ/2),TS(2.0*NX/3,NZ/2),TS(5.0*N
X/6,NZ/2),TS(NX,NZ/2)   

        WRITE(*,1552) 
T2(1,NZ/2),T2(NX/6,NZ/2),T2(1.0*NX/3,NZ/2),T2(NX/2,NZ/2),T2(2.0*NX/3,NZ/2),T2(5.0*N
X/6,NZ/2),T2(NX,NZ/2)   

        WRITE(*,*) 

        WRITE(*,*)'AT BOTTOM OF HX - J = ',2 

        WRITE(*,1552) X(1)*1000, X(NX/6)*1000, X(NX/3)*1000,X(NX/2)*1000, 
X(2*NX/3)*1000,   X(5*NX/6)*1000,   X(NX)*1000 

        WRITE(*,*) 
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        WRITE(*,1552) 
T1(1,2),T1(NX/6,2),T1(1.0*NX/3,2),T1(NX/2,2),T1(2.0*NX/3,2),T1(5.0*NX/6,2),T1(NX,2)        

        WRITE(*,1552) 
TS(1,2),TS(NX/6,2),TS(1.0*NX/3,2),TS(NX/2,2),TS(2.0*NX/3,2),TS(5.0*NX/6,2),TS(NX,2)   

        WRITE(*,1552) 
T2(1,2),T2(NX/6,2),T2(1.0*NX/3,2),T2(NX/2,2),T2(2.0*NX/3,2),T2(5.0*NX/6,2),T2(NX,2)   

        WRITE(*,*) 

        !**************************END****************************              

    END IF 

     

     

    CONTINUE 

    IF(K.GT.10.AND.EPS.LT.0.1E-05)THEN        

        GO TO 1500  ! EXIT CLAUSE 

    ELSE 

        GO TO 1000 

    END IF 

1000 CONTINUE  ! END OF ITERATIVE LOOP. CONTROLLED BY SETTING THE NUMBER OF 
ITERATIONS 

 

1500 CONTINUE 

! CALCULATE HEAT EXCHANGER EFFECTIVENESS 

      

      

     QMAX = XMDOTH*WCPF*(TF2IN - TF1IN)   

                                 

!    C1=XMDOTC*ACPF  ![W/K] AIR FLOW THERMAL CAPACITY 

!    C2=XMDOTH*WCPF  ![W/M] WATER FLOW THERMAL CAPACITY 

!     

!    IF (C1.LT.C2) THEN      ! 

!        CMIN=C1 

!        CMAX=C2 

!        ELSE 

!        CMIN=C2 
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!        CMAX=C1 

!    END IF    

                           

                                 

     XOUTPUT(18) = QMAX 

     HTEFF  = QX2/QMAX 

     XOUTPUT(19) = HTEFF 

     EFFECTIVENESS = QX2/PPT 

     XOUTPUT(20) = EFFECTIVENESS 

     EFFODT = EFFECTIVENESS/(T2FIN-TF1IN) 

     XOUTPUT(21) = EFFODT 

 

     WRITE(*,*) ' QX2/QMAX HEAT EXCHANGER EFFECTIVENESS = ',HTEFF 

     WRITE(*,*) '   QX2/PPT, EFFECTIVENESS              = ',EFFECTIVENESS 

     WRITE(*,*) '   QX2/PPT/DTMAX EFFECTIVENESS         = ',EFFODT 

 

1550 FORMAT(1X,'NCASE = ',I4,'   K =',I6,3E10.3) 

1551 FORMAT( 4X,'QX2 = ',E10.3,'  QZ2 = ',E10.3,'  QX3 = ',E10.3,' QZ3 = ',E10.3)  

1552 FORMAT(2x,7F11.2) 

1553 FORMAT(1X,'QX1 = ',E10.3,'  QZ1 = ',E10.3)  

     CONTINUE 

     VOLUME = LX*LY*LZ 

  XOUTPUT(22) = VOLUME 

!     WEIGHT = VOLUME*ROS*XM1(1,1)*XM2(1,1) 

        WEIGHT = VOLUME*ROS*(1-XM1(1,1)-XM2(1,1))   ! 

  XOUTPUT(23) = WEIGHT 

     

!---------------------------------------------------------------------------- 

!---------------------------------------------------------------------------- 

!----------------------------------------------------------------------------  
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!---------------------------------------------------------------------------- 

!----------------------------------OUTPUT------------------------------------ 

!----------------------------------------------------------------------------  

 

      

     !******************WRITE OUT TO FILE = 81, "RESPONSE.TXT"********************         

     IF(NCASE.EQ.1) WRITE(81, * )'NCASE  PPT       QX2               QZ2                
QMAX            HTEFF             EFFODT      VOL                WEIGHT' 

     WRITE(81,82)NCASE,PPT,QX2,QZ2,QMAX,HTEFF,EFFECTIVENESS/(TF2IN-
TF1IN),VOLUME,WEIGHT   

82   FORMAT(I4,12E12.4)  

     !*****************************END********************************************       

      

     !******************WRITE OUT TO FILE = 32, "OUTPUT.TXT"**********************         

     
WRITE(32,*)'***********************************************************************
********' 

     WRITE(32,*)' NCASE = ', NCASE 

     WRITE(32,*)'               FIN-TUBE HEAT EXCHANGER MORPHOLOGY   ' 

     WRITE(32,*)' TUBE OUTER DIAMETER    PD      [mm]    = ',PD*1000               
! 

     WRITE(32,*)' TUBE WALL THICKNESS    PT      [mm]    = ',PT*1000                

     WRITE(32,*)' TUBE INNER DIAMETER    IPD     [mm]    = ',(PD - 2*PT)*1000 

     WRITE(32,*)' TUBE PITCH(X)/DIAMETER PXOPD   [-]     = ',PXOPD              
!THIS IS THE PITCH/DIAMETER OF THE SERPENTINE THAT MAKES UP THE COLUMNS 

     WRITE(32,*)' TUBE PITCH(Y)/DIAMETER PYOPD   [-]     = ',PYOPD              
!THIS IS THE SPACING/DIAMETER OF THE ROWS OF SINGLE TUBES  

     WRITE(32,*)' TUBE PITCH(X)          PX      [mm]    = ',PX*1000            
!tube  pitch in  X direction[m] 

     WRITE(32,*)' TUBE PITCH(Y)          PY      [mm]    = ',PY*1000            
!tube  pitch in  Y direction[m] 

     WRITE(32,*)' COLUMNS OF TUBES(X)    NTX     [-]     = ',NTX        

     WRITE(32,*)' LENGTH(X)              LX      [mm]    = ',LX*1000 

     WRITE(32,*)' ROWS OF TUBES(Y)       NTY     [-]     = ',NTY  

     WRITE(32,*)' WIDTH(Y)               LY      [mm]    = ',LY*1000 

     WRITE(32,*)' FIN THICKNESS          FT      [mm]    = ',FT*1000 

     WRITE(32,*)' FIN PITCH(Z)/THICK     FPOFT   [-]     = ',FPOFT 



235 
 

     WRITE(32,*)' FIN PITCH              FP      [mm]    = ',FP*1000 

     WRITE(32,*)' FINS PER INCH          FPI             = ',(1.0/FP)*0.0254  

     WRITE(32,*)' HEIGHT(Z)              LZ      [mm]    = ',LZ*1000 

     WRITE(32,*)' HX VOLUME                      [m**3]  = ',VOLUME 

     WRITE(32,*)' HX WEIGHT                      [kg]    = ',WEIGHT 

         IF(KSOLID.EQ.1)WRITE(32,*)'            NATERIAL IS STEEL' 

         IF(KSOLID.EQ.2)WRITE(32,*)'            MATERIAL IS COPPER' 

         IF(KSOLID.EQ.3)WRITE(32,*)'            MATERIAL IS ALUMINUM' 

         IF(KSOLID.EQ.4)WRITE(32,*)'            MATERIAL IS VERY HIGH THERMAL 
CONDUCTIVITY' 

         IF(KSOLID.EQ.5)WRITE(32,*)'            MATERIAL IS SILICON' 

      

     WRITE(32,*)'*****************************************************************' 

     WRITE(32,*)'HOT FLUID MASS FLOW RATE           XMDOTH  [kg/s]  = ', XMDOTH  

     WRITE(32,*)'COLD FLUID MASS FLOW RATE          XMDOTC  [kg/s]  = ', XMDOTC         
!XMDOTH*WCPF/ACPF  BALANCED FLOW 

     WRITE(32,*)'HOT FLUID INLET TEMPERATURE        TF2IN   [C]     = ', TF2IN  

     WRITE(32,*)'COLD FLUID INLET TEMPERATURE       TF1IN   [C]     = ', TF1IN 

     WRITE(32,*)'FLOW THERMAL CAPACITY RATIO        RATIO   [-]     = ', RATIO             

     

      

     WRITE(32,*)'******************   FLOW PARAMETERS   ******************' 

     WRITE(32,*)'   TUBE SIDE VELOCITY          U2AVG [m/s] = ',U2AVG 

     WRITE(32,*)'   TUBE SIDE REYNOLDS NUMBER   REP2    [-] = ',REP2(1,1) 

     WRITE(32,*)'   TUBE SIDE PUMPING POWER     PP2     [W] = ',PP2             ! 
NOT SURE OF UNITS 

     WRITE(32,*)'   FIN SIDE VELOCITY           U1AVG [m/s] = ',U1AVG                 

     WRITE(32,*)'   FIN SIDE REYNOLDS NUMBER    REP1    [-] = ',REP1(1,1) 

     WRITE(32,*)'   FIN SIDE PUMPING POWER      PP1     [W] = ',PP1 

     WRITE(32,*)'**********************   THERMAL   **********************' 

     WRITE(32,*)' MAXIMUM POSSIBLE HEAT TRANSFER    QMAX    [W]     = ',QMAX 

     WRITE(32,*)' HEAT LOSS FROM HOT FLUID          QX2     [W]     = ',QX2 

     WRITE(32,*)' HEAT GAIN TO COLD FLUID           QZ2     [W]     = ',QZ2  

     WRITE(32,*)' HEAT LOSS FROM HOT FLUID          QX3     [W]     = ',QX3 
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     WRITE(32,*)' HEAT GAIN TO COLD FLUID           QZ3     [W]     = ',QZ3      

     WRITE(32,*)' QX2/QMAX EFFECTIVENESS,           HTEFF   [-]     = ',HTEFF 

     WRITE(32,*)' QX2/PPT EFFECTIVENESS,    EFFECTIVENESS   [-]     = 
',EFFECTIVENESS 

     WRITE(32,*)' QX2/PPT/DTMAX EFFECTIVENESS,      EFFODT  [1/C]   = 
',EFFECTIVENESS/(TF2IN-TF1IN) 

     WRITE(32,*)' ********************************************************' 

      

     WRITE(32,1552) X(1)*1000, X(NX/6)*1000, X(NX/3)*1000,     X(NX/2)*1000, 
X(2*NX/3)*1000,  X(5*NX/6)*1000,   X(NX)*1000 

     DO J = NZ,1,-10 

         WRITE(32,*)'ELEVATION = ',Z(J)*1000 

         WRITE(32,1552) 
T1(1,J),T1(NX/6,J),T1(1.0*NX/3,J),T1(NX/2,J),T1(2.0*NX/3,J),T1(5.0*NX/6,J),T1(NX,J)        

         WRITE(32,1552) 
TS(1,J),TS(NX/6,J),TS(1.0*NX/3,J),TS(NX/2,J),TS(2.0*NX/3,J),TS(5.0*NX/6,J),TS(NX,J)   

         WRITE(32,1552) 
T2(1,J),T2(NX/6,J),T2(1.0*NX/3,J),T2(NX/2,J),T2(2.0*NX/3,J),T2(5.0*NX/6,J),T2(NX,J)   

         WRITE(32,*) 

     END DO 

         J = 1 

         WRITE(32,*)'ELEVATION = ',Z(J)*1000 

         WRITE(32,1552) 
T1(1,J),T1(NX/6,J),T1(1.0*NX/3,J),T1(NX/2,J),T1(2.0*NX/3,J),T1(5.0*NX/6,J),T1(NX,J)        

         WRITE(32,1552) 
TS(1,J),TS(NX/6,J),TS(1.0*NX/3,J),TS(NX/2,J),TS(2.0*NX/3,J),TS(5.0*NX/6,J),TS(NX,J)   

         WRITE(32,1552) 
T2(1,J),T2(NX/6,J),T2(1.0*NX/3,J),T2(NX/2,J),T2(2.0*NX/3,J),T2(5.0*NX/6,J),T2(NX,J)   

         WRITE(32,*) 

 

     ! WRITE OUT FIELD TEMPERATURE AND VELOCITY VALUES 

        

!     DO J=1,NZ 

!         WRITE(1801,111) (T1(KK,J),KK=1,1000) 

!         WRITE(1802,111) (T2(KK,J),KK=1,1000) 

!         WRITE(1803,111) (TS(KK,J),KK=1,1000) 

!         WRITE(1804,111) (U1(KK,J),KK=1,1000) 
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!         WRITE(1805,111) (U2(KK,J),KK=1,1000) 

!     END DO 

!111  FORMAT(1x,1000ES15.6) 

 

     

    CONTINUE 

 RETURN       

    END 
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