
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Scaled Second Order Perturbation Corrections to Configuration Interaction Singles:  Efficient 
and Reliable Excitation Energy Methods

Permalink
https://escholarship.org/uc/item/5r35b0tj

Author
Rhee, Young Min

Publication Date
2009-03-13

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r35b0tj
https://escholarship.org
http://www.cdlib.org/


Scaled Second Order Perturbation Corrections to Configuration Interaction Singles: 

Efficient and Reliable Excitation Energy Methods 

 

Young Min Rhee and Martin Head-Gordon* 

 

Department of Chemistry, University of California and  

Chemical Sciences Division, Lawrence Berkeley National Laboratory,  

Berkeley, CA 94720 

 

 

Abstract 

Two modifications of the perturbative doubles correction to configuration interaction 

with single substitutions (CIS(D)) are suggested, which are excited state analogs of 

ground state scaled second order Møller-Plesset (MP2) methods.  The first approach 

employs two parameters to scale the two spin components of the direct term of CIS(D), 

starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is 

termed SCS-CIS(D).  An efficient resolution-of-the-identity (RI) implementation of this 

approach is described.  The second approach employs a single parameter to scale only the 

opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin 

(SOS) MP2 ground state, and is called SOS-CIS(D).  By utilizing auxiliary basis 

expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is 

described and implemented.  The parameters describing SCS-CIS(D) and SOS-CIS(D) 

are optimized based on a training set including valence excitations of various organic 

molecules and Rydberg transitions of water and ammonia, and they significantly improve 

upon CIS(D) itself.  The accuracy of the two methods is found to be comparable.  This 
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arises from a strong correlation between the same-spin and opposite-spin portions of the 

excitation energy terms.  The methods are successfully applied to the zincbacteriochlorin-

bacteriochlorin charge transfer transition, for which time-dependent density functional 

theory, with presently available exchange-correlation functionals, is known to fail.  The 

methods are also successfully applied to describe various electronic transitions outside of 

the training set.  The efficiency of SOS-CIS(D) and the auxiliary basis implementation of 

CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests. 
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I. Introduction 

Accurate characterization of excited states in large molecules remains a challenge 

in quantum chemistry.  Even though there are highly reliable methods applicable to 

single- and multi-reference regimes such as equation-of-motion (EOM)1,2 or linear 

response (LR)3-5 coupled cluster (CC)6 theories and complete active space second order 

perturbation theory (CASPT2),7 they can only be applied to very small systems due to 

their prohibitively expensive computational cost. 

For this practical reason, more efficient and consequently less robust methods are 

widely used at the present.  Various methods have been developed in both electron 

density-based and wavefunction-based theories.8  Time-dependent density functional 

theory (TDDFT),9,10 which uses the response of the electron density to a perturbation 

from an external electric field (i.e. light), is perhaps the most widely used approach at 

present.  Despite its low cost mean-field level computational effort (formally scaling ~N4 

or better with respect to the system size N), TDDFT has been shown to be reliable for 

many chemically interesting systems.8  However, it has a serious failure in the description 

of an important class of excitations.11  TDDFT calculations must use an approximation 

for the exchange-correlation (xc) functional, and no xc-functional at present is known to 

be efficient, reliable for various systems and free from the self-interaction-error.12  As a 

result, TDDFT with the approximate xc-functionals will lead to significant errors for non-

local electronic transitions such as charge transfer excitations, which are common in large 

molecules in organic, inorganic and biological chemistry, as well as Rydberg excited 

states and, very likely, excited states that have very little single excitation character. 
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Accordingly, it is natural to look to wavefunction-based alternatives in treating 

such systems. The most efficient excited state methods that consider electron correlations 

in this wavefunction-based regime are the CIS(D)13 and the approximate second order 

coupled-cluster (CC2)14 approach.  While both approaches have fifth order (~N5) formal 

scaling of computational cost, CIS(D) is more efficient for the calculation of large 

molecules because it does not require any time-consuming iterative search for the 

excitation amplitudes.  Nevertheless, the major drawback in applying CIS(D) is still its 

cost compared to TDDFT.  The formal scaling of CIS(D) is at least one power of system 

size more demanding than TDDFT (and even worse for large systems), and its prefactor 

tends to be large with numerous direct/semi-direct evaluations of electron repulsion 

integrals15,16 and their transforms between the atomic and molecular representations.  

This difficulty is partially remedied with the introduction of the resolution-of-the-identity 

(RI) approximation17,18 (or often termed as “density fitting” approximation19,20), which 

significantly reduces the size of the prefactor.21,22  However, the formal (~N5) scaling 

cannot be changed with the RI approximation, and RI-CIS(D) will still always be 

significantly slower than TDDFT for calculations of large molecules. 

In this article, we revisit CIS(D) theory with a detailed inspection of the 

expressions for its spin components, and their contributions to excitation energies.  By 

individually scaling the same-spin and opposite-spin components of CIS(D) terms, we 

show that a systematic improvement can be obtained relative to CIS(D) itself.  We call 

this approach the spin component scaled (SCS) CIS(D) method, as it is a natural 

generalization of the corresponding ground state SCS-MP2 method.23  We also show that 

a similar systematic improvement is achieved by using only the opposite-spin 
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components as was also shown to be the case for the MP2 ground state.24  An additional, 

and more important benefit of using this scaled opposite-spin (SOS) approach over SCS-

CIS(D) is its improved efficiency (~N4 as opposed to ~N5) through the use of a Laplace 

transform.25,26  This low-scaling characteristic allows SOS-CIS(D) to be applied to 

calculations on larger molecules than CIS(D) itself. 

As already alluded to above, scaling of spin components is by no means a new 

concept.  The idea was originated by Grimme who reported that the ground state energy 

of second order Møller-Plesset perturbation theory (MP2) can be systematically improved 

by separate scaling of same-spin and opposite-spin contributions to the correlation 

energies.23  This spin-component scaling scheme of the MP2 excitation amplitudes was 

later also applied to CIS(D), though only on the so-called indirect term (see next section), 

and some improvement was reported in the accuracy of low-lying valence excitation 

energy predictions.27  For ground state MP2, Jung et al. further developed this scaling 

idea by demonstrating that similar improvement can be attained with only the opposite 

spin component,24 while computational effort can be reduced from N5 to N4. The present 

work is a natural extension of these scaling ideas to excited state theories. 

The remainder of this paper is arranged as follows.  In Sec. II, we develop 

expressions for the SCS- and SOS-CIS(D) theories starting from the conventional CIS(D) 

method and its RI-approximated algorithm.  These theories are developed in close 

relationship with their ground state counterparts (SCS- and SOS-MP2),23,24 from which 

the empirical scaling factors can be directly transferred to the indirect term of CIS(D), 

which depends on ground state pair correlations.  During the development, additional 

empirical parameters are introduced for spin component scaling of the direct term, which 
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contains excited-state-specific pair correlations, to recover the total correlation effect on 

the excitation energies.  For SOS-CIS(D) theory, the equations are further developed to 

permit the implementation of an efficient fourth order algorithm.  In Sec. III, the 

empirical parameters for the direct terms are determined by using various valence 

transitions of organic molecules adopted by Grimme et al.27 and experimentally well-

characterized Rydberg transitions of water and ammonia.  In Sec. IV, numerical tests are 

performed for the proposed methods.  First, it is also shown that such parameters present 

systematic improvements over conventional CIS(D) in terms of the mean absolute errors 

in the excitation energies for both SCS-CIS(D) and SOS-CIS(D).  More importantly, it is 

shown that the new methods can present a balanced description between valence and 

Rydberg transitions, which has not been attained with either conventional CIS(D) or 

TDDFT using standard functionals.  Additionally, it is shown that the present method 

indeed is adequate in describing a well-known charge transfer transition, which is again 

not qualitatively correct using TDDFT with common functionals.  Finally, we describe 

the computational cost associated with the methods, and show that SOS-CIS(D) is 

applicable to large systems with more than 100 heavy atoms.  Concluding remarks follow 

in the last section of the paper. 

 

II. Theory 

In the following equations, i, j, … and a, b, … will represent occupied and virtual 

spin-orbitals, whereas p, q, … will denote both occupied and virtual orbitals.  When 

different spins have to be distinguished, we will use , ,i j …, , ,a b … to represent orbitals 

in the -space.  Because the distinctions between spin orbital equations and pure spatial 
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orbital equations are self-explanatory, the use of i, j, …, a, b, … for spatial orbitals in the 

-space will not pose any ambiguity.  In addition, we will use R, S, … to denote the 

auxiliary basis functions for the RI approximation.  When designating the computational 

costs, O/V/N/X will be used to represent the numbers of occupied molecular orbitals 

(MOs), virtual MOs, basis functions, and the corresponding auxiliary basis functions, 

respectively. 

 

A. CIS(D) Theory.  CIS(D) theory was designed to improve upon the intuitively 

hypothesized CIS-MP2 method.28  However, it can also be derived as a truncated 

solution13,29 of rigorous linear response coupled cluster theory.30  For completeness, we 

briefly overview the CIS(D) method below. 

When the Hartree-Fock ground state of a system is described by a single 

determinant  and when its single substitutions of any occupied spin orbital i to any 

unoccupied spin orbital a is denoted as 

0

a
i , the CIS excitation energy   is obtained as 

the solution to an eigenvalue equation 

1 0| |a
i H U ba

i    , (1) 

where HFH H E   and U1 is an operator that generates the CIS wavefunction from 0  

CIS 1 0
a a
i i

ia

U b     . (2) 

The correlation energy of the excited state corrected through second-order perturbative 

theory is then given by13,29 

CIS(D)
CIS 2 0 CIS 2 1 0| | | |E V U V T       U , (3) 
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where V is the fluctuation potential due to electron correlation, and T2 is the operator that 

generates the first-order Møller-Plesset wavefunction from 0  

2 0

1

4

1 ( || )
.

4

ab ab
ij ij

ijab

ab
ij

ijab a b i j

T a

ij ab

   

  

  
  




 (4) 

U2 is the operator that generates the first order excited state pair correlations:  

2 0

1 0

1

4

| |1
.

4

ab ab
ij ij

ijab

ab
ij ab

ij
ijab a b i j

U b

V U

    

  

  
  

   




 (5) 

Physically, the first term in eq 3 (the “direct” term) accounts for electron correlation 

effects that involve one electron that is active in the CIS excitation plus a second electron, 

thereby generating double excitations.  The second term (which we will refer to as the 

“indirect” term) accounts for the effect of electron correlations between pairs of electrons 

that are not directly involved in the CIS excitation – which is why it involves the product 

of the ground state doubles amplitudes with the CIS amplitudes.  After a little algebra, it 

can be shown that eq 3 can be transformed into 

 2

CIS(D) MP2 1

4

ab
ij

ijab a b i j

a b c c a a
i i ab i j ij i i

iab ijc ia

u
E E

b b R b b R b w

    
  

   

  



  
 (6) 

with the following definitions: 

( || ) ( || ) ( || ) ( || )ab c c b a
ij i j k k

c k

u ab cj b ab ci b ka ij b kb ij b          , (7) 

( | ) ca
ab jk

jkbc

R jc kb a  , (8) 
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( | ) ab
ij ik

jkab

R ja kb a  , (9) 

( || )a
i

jkbc

w jk bc a  ac b
ik jb

)

. (10) 

Eq 6 defines the second-order correction to the CIS excitation energy, , leading a 

total excitation energy that is . 

CIS(D)

CIS CIS(D) 

 

B. Resolution-of-the-identity in CIS(D) Theory.  Let us first introduce the 

auxiliary basis as a resolution-of-the-identity (RI) approximation in the CIS(D) theory. 

The RI approximation describes all electron-repulsion integrals (ERIs) in eqs 7 – 10 as 

1
RI( | ) ( | )( | ) ( |

,

PQ

R R
pq rs

R

pq rs pq P P Q Q rs

B B








 (11) 

with the B matrix defined as 

1/2( | )( | )R
pq

P

B pq P P R   . (12) 

From a computational point of view, it is advantageous to define three other related 

quantities: 

R b
ai i ab

b

V b  RB

RB

R



, (13) 

R a
ai j ij

j

O b  , (14) 

R R
ai ai aiD V O  . (15) 

With these definitions, it is easy to show that eq 7 can be transformed into 

ab P P P P P P P P
ij ai bj bi aj ai bj bi aj

P

u D B D B B D B D    . (16) 
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Eqs 8 – 10 can be obtained by combining the ERI  and the amplitude . RI( | )ia jb ab
ija

An efficient algorithm for this resolution of the identity formulation of CIS(D) 

theory is presented in Figure 1, where one can easily see that its cost scales with the fifth 

power of system size.  In addition, the disk transfer cost is fourth order, with the size of 

the storage space requirement scaling as third order.  In this algorithm, a batching scheme 

is introduced to minimize the cost for disk input-output (I/O), especially for  (Line 4).  

The I/O cost decreases with a larger batch size, and the maximum batch size can be easily 

calculated from the size of available memory and disk space.  One important point is that 

for a calculation of S excited states, the total cost grows as .   The algorithm 

possesses three additional fifth order steps related to the computation of , 

R
aiD

( |ia jb

2 22O V XS

RI) abR , 

and ijR , but these do not depend on S. 

It is interesting to note the possibility of a minor modification of the above 

algorithm.  Based on the formal similarity to RI-MP2 gradient theory,31,32 eqs 8 and 9 can 

be rearranged as 

P P
ab bk ak

kP

R B  , (17) 

P P
ij aj ai

aP

R B  , (18) 

where, following RI-MP2 gradient theory, the three-center two-particle density matrix is:  

1/2( | )( | )P ab
ai ij

jbQ

a jb Q P Q    . (19) 

This leads to an alternative working expression for  as well: a
iw

( | )a P P b
i bj ai j

jbP jkbc

w B b jc kb a     ac b
ik jb . (20) 
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The potential benefit of using P
ai  will be reduced disk IO cost.  While eqs 8 and 9 

require fourth order disk IO related to the storage of ERIs and the a-amplitudes (Line 17 

and 18 in Figure 1), the use of P
ai  would only require third order disk access for the 

calculations of abR  and ijR .  However, the CPU cost of calculating eq 19 will be O2V2X.  

In fact, this is larger than the combined cost of eqs 8 and 9 (O2V2N).  This additional CPU 

time will become more important as the system size grows.  Therefore, it is more 

desirable to generate abR  and ijR  based on the RI-approximated integrals without using 

P
ai .  However, the use of P

ai  will be crucial in the efficient implementation of the SOS-

CIS(D) theory as will be shown later. 

 

C. The SCS-CIS(D) Method.  We define SCS-CIS(D) theory in an analogy to 

the manner in which Grimme first proposed the corresponding ground state SCS-MP2 

method, by scaling the same-spin and opposite-spin components of the energy.  In 

addition to this split spin component treatment, an empirical damping factor  0 1  for 

the CIS excitation energy  is introduced for the direct term as 

         
    

     
         1 01 0SS

2 0

| || |1 1

4 4

abab
ij ijab ab

ij ij
ijab ijaba b i j a i jb

V UV U
U ,(21a) 

    
  

   
   



1 0OS
2 0

| |ab
ij ab

ij
ijab a b ji

V U
U . (21b) 

We will detail the role of  in a later section.  With the obvious components of the 

indirect term as in SCS-MP2, the spin-component scaling modification of eq 3 will 

become: 
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 
 

SCS-CIS(D) OS OS SS SS
CIS 2 2 0

OS OS SS SS
CIS 2 2 1 0

| |

| |

U U

T T

E V c U c U

V c T c T U

    

     .
 (22) 

With the independent scaling of U2-term and the use of the damping factor (), this 

equation differs significantly from a previous suggestion for defining SCS-CIS(D),27 

which left the first term of eq 3 unmodified, but replaced the second term as we have 

done in the above. 

When the ground state correlation energy contribution is separated as in eq 6, the 

SCS correlation correction to the CIS energy can be written as 

SCS-CIS(D) OS OS OS OS SS SS SS SS
U U T T U U T Tc w c w c w c w     , (23) 

with the obvious definition for each of the terms.  In practice, the opposite-spin (OS) and 

the same-spin (SS) component splitting of the U operator can be performed without any 

additional computational cost during the first summation in eq 6.  In contrast, the splitting 

of the T operator requires separate evaluations of OS and SS contributions to abR , ijR , 

and .  In closed-shell systems, this is attained at an additional cost of  (eqs a
iw 2 2O V N 8 

and 9).  However, compared to the leading cost of , this additional cost of SCS-

CIS(D) is negligible especially when excitation energies to multiple states are calculated 

at the same time. 

2 22O V XS

 

D. The SOS-CIS(D) Theory.  The opposite spin part of the CIS(D) correction 

can be extracted from eq 22 as 

OS-CIS(D) OS OS
CIS 2 0 CIS 2 1 0| | | |E V U V T       U . (24) 
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From the symmetry of  with respect to the permutation of indices, it is easy to show 

that the first term in this equation becomes 

ab
iju

 
    

    
   

2

OS
CIS 2 0| |

ab
ij

ijab a b ji

u
V U , (25) 

where we again use the empirical damping factor  0 1 , and have 

ab P P P P
bj bjij ai ai

P

u D B B D   . (26) 

Likewise, the second term in eq 24 can be expressed as 

OS OS-MP2
CIS 2 1 0| |

,

a b a b
i i ab i i ab

iab iab

c c c c a a a a
i j ij i ii j ij i i

ijc ijc ia ia

V T U E b b R b b R

b b R b b R b w b w

     

   

 

   
 (27) 

with 

( | ) ca
ab jk

jkc

R jc kb a  , (28) 

( | ) ab
ij ik

kab

R ja kb a  , (29) 

( | ) ( || )a ac b
i j jik ik

jkbc jkbc

w jb kc a b jk bc a b   ac b , (30) 

The beta spin intermediates, 
ab

R , ijR , and a
iw  are defined analogously.  Also,  

denotes the opposite spin component of MP2 correction.24 

OS-MP2E

This opposite-spin formalism can be transformed into a fourth order algorithm24 

through the use of a Laplace transform with discrete numerical quadratures26 

1

0
exp( ) exp( )tt

x dt xt xt
      (31) 

in conjunction with the RI approximation.  Firstly, eq 25 can be transformed as  
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    







             

         

 

     

( )
I

,

a b ji tP P P P Q Q Q Q
t bj bj bj bjai ai ai ai

t PQ ijab

P P P P Q Q Q Q t
t bj bj bj bjai ai ai ai

t PQ ijab

w D B B D D B B D e

D B B D D B B D e
 (32) 

with  and .  Let us denote terms from eq ( i a tR R
ai aiB B e   ) )( i a tR R

ai aiD D e   27 involving ijR  

and abR  as : IIw

II
a b a b c c c c
i i ab i j iji i i j ijab

iab iab ijc ijc

w b b R b b R b b R b b       R . (33) 

In addition, it is easy to show that the last terms in eq 27 that involve  can be 

expressed as  

a
iw

III ( )

( )

P Q P P Q
t P P Q cjck ck jk ck

t kc PQ jkc PQ

P Q P P Q
P P Q ck ck cj jk ck Q

kc PQ jkc PQ

w f f f B B B V

f f f B B B V B f

   

   




    



   ,

QB f




  

 

  

  
 (34) 

with the definitions: , R a
ij i aja

V b  RB a R
R iai aif b B   , a R

R iai aif b B     and their analogs 

in the -spin space. 

A fourth order algorithm can be implemented by carefully rearranging the order 

of summations in various terms.  When X, Y, and Z are defined as 

P Q
PQ ai

ai
aiX B B    , (35) 

P Q P Q
PQ ai ai ai

ai ai

Y D B D    
aiB , (36) 

P Q
PQ ai

ai
aiZ D D    , (37) 

together with their obvious -spin analogs, the first OS-CIS(D) correction term becomes 

             I
t

t PQ PQ QP PQ PQ QP PQ
t PQ

w e X Z Y Y Y Y Z X PQ . (38) 
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Also, in analogy to the RI-CIS(D) case, when P
ai  is introduced as 

P
ai t ai PQ

t Q

QB X      , (39) 

it is trivial to show that eqs 28 and 29 are equivalent to  

P P
ab ai bi

iP

R B  , (40) 

P P
ij aj ai

aP

R B  . (41) 

Finally, when G and H matrices are defined as  

P P
ck cj jk

jP

G B V

f

, (42) 

P
ck ck P

jP

H B    , (43) 

the last term of the OS-CIS(D) correction becomes 

   

   




    



   



  

 





III ( )

( )

t P P Q PQ ck ck
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 (44) 

By collecting the above expressions, the scaled opposite spin CIS(D) excitation energies 

are obtained as 

SOS-CIS(D) OS OS
CIS 2 0 CIS 2 1 0

I II III

| | | |

( ),
U T

U T

V c U V c T U

c w c w w

        
  

 (45) 

with two empirical scaling parameters,  and , where the latter is already fixed from 

the ground state SOS-MP2 energy, and the former is to be determined by comparing 

against either higher accuracy calculations or experiments. 

Uc Tc
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Of the various working expressions listed in the above, only eqs 36 and 37 need to 

be evaluated for each excited state and each Laplace quadrature point.  Accordingly, the 

computational cost of this method will be dominated by the evaluation of these two 

equations, requiring a total of 2OVX2ST operations, with S and T denoting the numbers of 

excited states and quadrature points, respectively.  The resulting overall algorithm is 

shown in Figure 2.  Comparing against the ground state SOS-MP2 method, we conclude 

that the cost per state (for S not too small) will be approximately twice the cost of the 

corresponding ground state SOS-MP2 calculation.  Also, it should be noted that the 

Laplace transform in our algorithm does not require any aggressive integral screening 

scheme,33 which is practically required for an efficient treatment of the same-spin 

component calculation. 

 

III. Optimizations of Parameters 

As shown in the previous section, the proposed methods require optimization of 

various parameters.  The most straightforward way will be to use experimental data in the 

determination of these parameters.  In this work, the extensive set of organic molecules 

adopted by Grimme and co-workers27 have been used again.  This set only includes 

valence transitions with   * and n  * characters.  To make the training set more 

complete, we have added well-characterized Rydberg transitions of water and ammonia.  

(See Table 1 for the complete list of the transitions.) 

In the calculations of organic molecules, molecular geometries were obtained at 

the HF/6-311G(d,p) level for the ground states and the CIS/6-311G(d,p) level for the 

excited states.  These levels of theory are roughly comparable in quality to DFT methods, 
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although there is a systematic tendency to make bondlengths slightly too short, and thus 

vibrational frequencies slightly too high.  To obtain 0-0 transition energies, corrections 

for zero-point energies must be computed for both the ground and the excited states.  

Frequencies obtained from analytic Hessians at the above levels of theory have been used 

for this purpose after scaling with a factor of 0.9.  In the correlated excitation energy 

calculations at the optimized geometries, the aug-cc-pVTZ basis34 was employed together 

with its corresponding auxiliary basis set.35  The CIS and HF components of the 

calculation were performed without the RI approximation. 

In the case of Rydberg states, 0-0 transitions may not be experimentally 

observable36 because of potentially large Franck-Condon shifts.  Accordingly, we have 

used vertical excitation energies37,38 for these transitions.  In the excitation energy 

calculations, we have used 6-311(2+,2+)G(d,p) basis together with the auxiliary basis of 

aug-cc-pVTZ.34  Even though this auxiliary basis was not specifically optimized for the 

Pople-style basis, the RI approximation error with the basis was always found to be 

smaller than 0.001 eV, similar to the report for the ground state energy calculations.31  All 

calculations were performed with a development version of Q-Chem 3.0.39 

 

A. Performance of RI-CIS(D).  Because the present SCS- and SOS-CIS(D) 

theories are based on CIS(D), it is natural to look to the performance of this method to get 

insight for possible improvements toward SCS- and SOS-CIS(D).  Figure 3 presents the 

errors (against the experimental values) of RI-CIS(D) for the molecules in the training set.  

Firstly, one can clearly see that there exists a systematic overestimation in the valence 

transitions: the method tends to give larger transition energies than experiment as 
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represented by its mean signed error (MSE) of 0.19 eV for these transitions.  In addition, 

but more notably, the method tends to severely underestimate the transition energies of 

the Rydberg transitions.  This underestimation is indeed a generic problem of the method.  

As the energy denominator in eq 5 becomes smaller, the magnitude of the direct term 

becomes larger.  Because the correlation correction from the direct term is always 

negative, an over-correction caused by small denominator (or large CIS) leads to this 

tendency of underestimation in the total transition energies.  This effect predominantly 

appears for Rydberg transitions because qualitatively they involve the lowest lying (most 

diffuse) virtual orbitals, and therefore the smallest energy denominators which are most 

sensitive to   When the new SCS- and SOS-CIS(D) methods were applied with   1 

(no damping), a similar defect was observed for these Rydberg transitions in the training 

set. 

This defect of an unbalanced description of valence and Rydberg excited states 

will be removed as one introduces higher correction terms of the coupled cluster theory.  

(Recall that CIS(D) may be expressed as a low order truncated solution of linear response 

coupled cluster theory.)  However, such an approach is not a realistic option for our 

present work, where the design of an efficient algorithm is under pursuit.  Instead, we 

recall that the problem is mostly remedied when the excitation energy is iteratively 

calculated in the quasi-degenerate variant CIS(D0) theory,29 where  is omitted in the 

calculation of the excitation amplitudes (eq ab
ijb 5).  The more balanced behavior of 

CIS(D0) theory is one motivation for the introduction of the empirical damping factor .  

A closely related motivation is the above discussion of the difference in the important 
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virtual orbitals between Rydberg excited states (low-lying) and valence states (higher 

lying antibonding orbitals). 

We stress that the use of the damping factor is likely to most improve the CIS(D) 

method when it is combined with spin component scaling.  Because the effect of damping 

will be to decrease the direct correlation correction (in other words, the U2-term will 

become less negative), it will tend to degrade the performance of CIS(D) for valence 

transitions.  We aim to compensate this potential problem through the use of scaling 

parameters. 

In theory, we can test the behavior of both SCS- and SOS-CIS(D) as a function of 

the  value.  Because different  values affect every individual component of the direct 

term in a different manner (Line 13 in Figure 1), such a test will require tremendous 

computational effort in the SCS-CIS(D) case.  In the SOS-CIS(D) case, however, only 

one set of calculations can be used to obtain excitation energies at all different  (Line 9 

in Figure 2).  For this practical reason, we will only use SOS-CIS(D) to obtain the 

optimal value of the damping factor. 

 

B. Numerical Quadratures for Laplace Transform.  For the SOS-CIS(D) 

method, we need to define the quadrature scheme used to evaluate the Laplace transform.  

Here, we employed the same scheme previously reported with SOS-MP2 theory,24 the 

ground state counterpart of SOS-CIS(D).  Specifically, 10 numerical quadrature points 

were obtained by minimizing the integrated error 

   
 


max

min

2
2 1

exp( )
x

ttx
dx xt

x

  (46) 
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according to Wilson and Almlöf40 with xmin = 0.01 and xmax = 400 a.u.  The 

         CIS
a b i jx  values for all the molecules tested in this work actually fell in 

this range for all possible  values (  0 1).  The contribution to the excitation energy 

after the seventh quadrature point was found to be negligible (less than 0.001 eV) in all 

test results as was found previously for the ground state case.24  Because the contribution 

from the seventh quadrature point appeared to be considerably smaller than the overall 

uncertainty level of SOS-CIS(D) (discussed later), one might consider a reduction in the 

number of quadrature points to improve the efficiency.  To preserve the consistency with 

the ground state description, however, we did not try this in the present work. 

In fact, the above scheme will not be the most efficient strategy for the numerical 

integration of the Laplace transform.  The best accuracy with the least number of points is 

expected if the points and weights are actually determined for the given system,40 

potentially with two separate quadrature schemes for the direct term and the indirect term.  

In addition, different quadrature schemes33,41 may further reduce the computational cost.  

We do not consider such possibilities in this work for the following reasons.  First, 

system-specific optimal quadrature points will surely depend on the energy eigenvalues 

of canonical molecular orbitals and potentially on CIS excitation energies when  is non-

zero.  This dependency will introduce an undesirable complication when analytic 

gradients of the ground and excited state surfaces are considered.42  Also, using different 

quadratures for the direct and the indirect terms will result in different  matrices in the 

terms, increasing the associated computational cost. For the time being, our present 

approach based on simple least-square Gaussian quadrature achieves sufficient accuracy 

and efficiency (~ 0.001 eV error with only seven quadrature points).  

B
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C. Determination of Damping Factor.  Now that the quadrature scheme is 

defined, we can determine the optimal damping factor as follows.  For any given  value, 

SOS-CIS(D) method has two adjustable empirical parameters.  Of the two, the parameter 

related to the indirect term with the T2 operator will be transferred from the counterpart 

ground state theory (SOS-MP2) for consistency (namely, = 1.3).24  This leaves only 

the parameter related to the U2 operator.  From eq 

Tc

45, we can obtain  according to Uc

    exp CIS
I (U Tc w c w wII III ) . (47) 

Here, exp denotes the experimental excitation energies.  The root-mean-square (RMS) 

error of the fit,  ( ) , can be used as an indicator of the fidelity of SOS-CIS(D) as a 

function of . 

Figure 4 shows this RMS error based on the reference transitions at various 

damping factors.  It is interesting to see that the optimal  value is obtained as zero.  In 

fact, this finding is in accordance with the result of CIS(D0): removing  from eq 5 leads 

to a more balanced description between valence and Rydberg transitions.  This complete 

damping will have another advantage from a mathematical point of view.  The Laplace 

transform in eq 31 is only valid when the denominator x is positive definite.  With the 

complete damping, the lower bound of x becomes equal to twice the HOMO-LUMO gap, 

which is positive semi-definite, just as in ground state SOS-MP2 theory. 

 

D. Determination of Scaling Parameters.  With the determination of the 

damping factor shown in the above, the scaling parameter of SOS-CIS(D) has been 
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already obtained as = 1.51 with an RMS fit error of 0.17 eV.  The four adjustable 

parameters of SCS-CIS(D) can be determined in a similar fashion at the given damping 

factor ( = 0).  The parameters related to the indirect terms with the T2 operator will be 

again transferred from the counterpart ground state theory (SCS-MP2).  For the 

parameterization, we can use a divariate regression approach to determine the best fit 

values of  and  based on eq 

Uc

SS
U

OS
Uc c 23: 

      OS OS SS SS exp CIS OS OS SS SS
U U U U T T T Tc w c w c w c w , (48) 

together with the ground state parameters  = 6/5 and  = 1/3 from SCS-MP2.23  

With the electronic transitions listed in Table 1, the parameters are obtained as  = 1.67 

and  = 0.36 with an RMS fit error of 0.17 eV. 

OS
Tc

SS
Tc

OS
Uc

SS
Uc

At first, it may be surprising that this fit leads to an unphysical negative scaling 

parameter.  Moreover, RMS fit error from SCS-CIS(D) is practically the same as in SOS-

CIS(D) even though there are more fitting parameters in this case.  However, this is quite 

understandable from the dependence of the same-spin and opposite-spin components of 

both direct and indirect terms as shown in Figure 5.  Because there is a strong correlation 

between the same-spin and opposite-spin parts, the two-parameter adjustment will only 

be a slight improvement over the one-parameter scaling scheme.  Furthermore, 

optimizing coefficients of such linearly dependent variables constitutes a condition of 

overfitting, leading to a potential misbehavior of the adjusted parameters.  Certainly, the 

appearance of a negative coefficient is indeed just such a problem.  When  was set to 

be zero (limiting value within the physically meaningful range), the best fit was found 

with  = 1.54.  With these parameters, the RMS fit error was 0.18 eV.  Again, this 

SS
Uc

OS
Uc
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minute degradation ( 0.01 eV) in the RMS fit error is an evidence that the improvement 

upon using a two-parameter fit of SCS-CIS(D) does not have a physical origin, at least 

with respect to the data set we have employed. 

 

IV. Performance Analysis 

A. Comparison between Scaling Methods.  It will be interesting to directly 

compare the proposed scaling methods against the original CIS(D) method.  Table 1 

presents the transition energies of various electronic transitions from the training set from 

these methds.  The excitation energies listed in the table are visually compared in Figure 

6.  One can clearly see that both SCS-CIS(D) and SOS-CIS(D) show good agreement 

with experiment for a wide range of transition energies (2 – 12 eV).  More direct 

comparison of the two methods can be made with Figure 7, where their errors within the 

training set are presented visually.  The improvement is clear when it is compared with 

the performance of RI-CIS(D) in Figure 3.  The mean absolute errors (MAEs) of SCS- 

and SOS-CIS(D) are both 0.13 eV, while the MAE of RI-CIS(D) is 0.30 eV.  (It is 

interesting to note that these numerical performances are comparable or better than 

TDDFT for the molecules in the test set.27)  For RI-CIS(D), as explained in the previous 

section, there exist systematic overestimations for valence transitions and systematic 

underestimations for Rydberg transitions: the method tends to give larger transition 

energies than experiment as represented by its mean signed errors (MSEs) of 0.19 eV in 

the subset of valence transitions and 0.54 eV in the subset of Rydberg transitions.  This 

systematic error is directly corrected in the SCS- and SOS-CIS(D) approaches by 

adjustment of the empirical scaling factors and the damping parameter: the MSE of the 
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proposed methods for valence and Rydberg transitions are only 0.02 eV and 0.08 eV, 

respectively. 

Accordingly, it can be concluded that the benefits of the new methods over 

conventional CIS(D) are the correction of its systematic errors, and the improvement of 

the efficiency through the use of RI approximation.  From the above observations of the 

errors of the two proposed methods, and from the fact that the optimal value of  is 

found to be physically unimportant (in turn, it was set to be zero), we expect that the 

benefit of using SCS-CIS(D) approach over SOS-CIS(D) will be marginal.  In the case of 

SOS-CIS(D), the efficiency improvement will be more dramatic for large molecules as it 

can be implemented with a fourth order scaling algorithm.  The actual cost analysis will 

be discussed in a later part of this section. 

SS
Uc

Even though the reduced error is a desirable feature of SCS- and SOS-CIS(D) in 

comparison with the unscaled CIS(D) approach, this improvement is expected from the 

formulation of the two methods.  However, the potential of describing various transitions 

in a balanced way will be an important feature in real applications of the proposed 

methods.  Such applications outside of the training set will also be discussed later. 

From Table 1, we can also compare our approach to producing a spin-component 

scaled CIS(D) method against the previous suggestion.27  This earlier approach27 scaled 

the indirect term using the ground state SCS-MP2 parameters, as we do, but did not scale 

the direct term (in terms of our eq 23, it is the special case where c  = 1.00 and c  = 

1.00 together with  = 1.00).  The results for this incompletely optimized form of SCS-

CIS(D) from Table 1 show systematic deviations that are similar to CIS(D) itself.  The 

MSE and the MAE in the valence transitions for this scaling of only the indirect term of 

U
OS

U
SS
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SCS-CIS(D) were reported to be both 0.22 eV,27 showing that the systematic error 

associated with CIS(D) is still present.  The MSE for Rydberg transitions is found to be 

0.59 eV, which is a similar tendency to CIS(D) itself.  Overall, the MAE of this 

previous suggestion is 0.32 eV.  The reduction of the MAE to 0.13 eV in our fully 

optimized SCS-CIS(D) reflects elimination of the systematic component of the error 

when the direct term is scaled, and the value of optimizing the damping factor. 

 

B. Application to a Charge Transfer Transition.  As described in Introduction, 

the major motivation for a development of low cost CIS(D)-like methods is to attain a 

methodology that is applicable to large systems for which the more widely-used TDDFT 

approach fails.  Therefore, it will be important to demonstrate that the present method is 

indeed reliable for such a system.  One such example is the zincbacteriochlorin-

bacteriochlorin (ZnBC-BC) complex model (shown in Figure 8), previously examined by 

Dreuw and Head-Gordon.11 

Figure 9 presents potential energy curves for the lowest charge transfer excited 

state from vertical excitation energies at various distances between the ZnBC and BC 

moieties.  The same basis set (6-31G*) and geometries reported in ref 11 have been 

adopted for this calculation.  For comparison, results from SCS-CIS(D), SOS-CIS(D), 

RI-CIS(D), CIS, and TDDFT/B3LYP are shown in the figure.  From the figure, it is 

apparent that TDDFT fails for charge transfer excitations as was already reported 

(significant underestimation of the energy and incorrect asymptotic behavior).11  In 

contrast, all other (wave-function based) methods give correct asymptotic behavior (~ 

1/R).  Apparently, CIS tends to overestimate the transition energies, while all correlation 
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corrected CIS(D) variants give essentially the same results (within the uncertainly level 

of the methods).  From these results, we can ascertain the appropriateness of the proposed 

methods in the description of charge transfer transitions. 

Interestingly, when the four spin components (eq 23) of RI-CIS(D) were 

individually inspected, it was found that they have very weak dependence on the 

monomer separation R in the inspected range (less than 0.02 eV difference).  This 

insensitivity is the reason for the agreement of all the CIS(D) variants and for the correct 

1/R behavior of CIS.  Namely, electron correlation effects do not strongly influence the 

asymptotic 1/R behavior, as they essentially serve as a constant shift in this region.  In 

fact, this presents another justification of the hybrid scheme to obtain the correct excited 

state curve by combining both DFT and CIS results.8,11  However, the situation will 

change at short R.  The error of CIS is due to the difference in the correlations on the 

ground and the excited electronic states.  (Namely, if the correlations are the same on the 

two states, CIS will give the correct result.)  When the monomers are in close contact, the 

electron correlation will strongly depend on the separation R, and it will be highly likely 

that the dependence on the excited state is considerably different from that on the ground 

state case.  In such a region, the shape of the potential curve from CIS may be 

considerably different from the results obtained with CIS(D) methods. 

 

C. Comparison with Coupled-Cluster Results and Experiment.  To obtain a 

further detailed benchmark of the proposed methods, it will be useful to compare their 

results with highly reliable (and highly computationally expensive) coupled cluster 

numbers.  Table 2 presents the vertical excitation energies calculated from SCS-CIS(D) 
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and SOS-CIS(D) for various small molecules together with the results from EOM-

CC(2,3)43 or EOM-CCSDT-3.44,45  Overall, one can see that the scaled results are in good 

agreement with the coupled-cluster numbers.  One important outlier from this trend is the 

symmetric (1Ag) excited state of butadiene.  It is well known that this state has a 

significant contribution from double-excitations,46 as is also exemplified by 39.4% 

doubles’ contribution obtained with EOM-CC(2,3) amplitudes.  When the doubles’ 

contribution becomes large, any perturbative scheme that uses CIS state as its reference 

becomes unreliable.47  Clearly, this is a limitation of the present methods.  When this 

outlier is excluded from the list, both SCS-CIS(D) and SOS-CIS(D) present an error level 

(mean absolute error of 0.16 eV) that is similar to the one previously obtained with the 

training set (i.e. comparing against experimental data for molecules in Table 1). 

Similar agreement is also found when the two methods are compared against 

experimental results beyond the training set.  Table 3 shows the scaled excitation energies 

in comparison with well-characterized experimental transition energies.48-50  Except for 

two outliers from CH2O (21A1 and 31A2), both SCS-CIS(D) and SOS-CIS(D) show good 

agreements with experiment with MAE of 0.17 eV.  Interestingly, these two outliers 

again can be well explained theoretically: both states mix strongly with other nearly 

degenerate states (the largest mixing angles obtained with the theta diagnostic47 are 16.4 

and 16.1 for these states, whereas other states of CH2O in the table have mixing angles  

of 1 – 6).  This is another case where a perturbative treatment using a CIS reference 

state may fail.  To obtain a proper description of such states, a quasi-degenerate 

perturbation correction approach14,29 is necessary.  
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D. Timing.  In this section, we shall address two main issues.  First is the impact 

of the use of the auxiliary basis on timings for evaluation of CIS(D) and SCS-CIS(D), 

and second is the comparison between the SCS and SOS approaches, which scale 

differently with system size.  The first issue can be addressed by the timings shown in 

Table 4.  In the left-hand column are CIS(D) timings produced using semidirect methods 

based on exact evaluation of 4-center 2-electron integrals, as described previously.29  In 

the second column are SCS-CIS(D) timings computed using the auxiliary basis 

algorithms described and implemented in this work.  It is evident that while the formal 5th 

order scaling is identical in the two algorithms, the use of the auxiliary basis expansions 

provides a dramatic reduction in the value of the prefactor – which is reduced by between 

one and two orders of magnitude.  This strongly supports the value of the auxiliary basis 

approach to CIS(D) and SCS-CIS(D) excitation energies. 

Turning to the second issue, we recall from the results discussed in previous 

subsections that SCS-CIS(D) and SOS-CIS(D) are comparable in terms of the accuracy 

of the excitation energies obtained.  Thus, use of SOS-CIS(D) will be potentially 

preferable based on the expectation of reduced computational cost from its fourth order 

scaling characteristics.  However, because its prefactor will be larger than SCS-CIS(D) 

mainly due to the additional loop for the Laplace quadrature points, it will be important to 

explore the cross-over point between the two methods. 

In fact, the cross-over point can be estimated from the nominal costs of the two 

methods.  Because the leading costs of SCS- and SOS-CIS(D) are 2O2V2XS and 2OVX2ST 

(where O is the number of occupied orbitals, V is the number of virtuals, X is the number 

of auxiliary functions, S is the number of states requested, and T is the number of 
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quadrature points), it is easy to see that the two methods will cross over when O ~ TX/V.  

Given that the number of quadrature points (T = 7) is fixed and the ratio X/V is rather 

insensitive to the basis set quality (ranging between 2 – 4 depending on the size of the 

basis), the cross-over point for any given system will mainly depend on the number of 

occupied orbitals (O), or the size of the system, and apparently will be in the vicinity of 

15 to 30 occupied orbitals. 

The comparison of the actual processor times of the two methods for various 

molecules in Table 1 is presented in Figure 10 (and Table 4).  As can be easily inferred 

from the above explanation, the ratio grows linearly with the number of occupied orbitals.  

Also, the two methods actually cross over at O ~ 25 with the aug-cc-pVTZ basis we have 

used.  Therefore, we can conclude that SOS-CIS(D) will be faster for molecules above 

this size than SCS-CIS(D) or RI-CIS(D).  Indeed, the calculations of ten excited states for 

ZnBC-BC complex (55 heavy atoms, O = 199, and 918 basis functions with 6-31G* basis 

set) required 50 CPU hours on a single 2.0 GHz Opteron processor with SOS-CIS(D).  

(In comparison, SCS-CIS(D) required 140 CPU hours.)  Therefore, we conclude that 

SOS-CIS(D) will be significantly easier to apply to systems with more than 100 heavy 

atoms in combination with reasonable basis sets than either CIS(D) or SCS-CIS(D). 

 

V. Concluding Remarks 

We have developed new scaled excited state methods by individually considering 

the different spin components of the correlation energies in conventional CIS(D) theory.  

These methods, SCS-CIS(D) and SOS-CIS(D), are the excited state counterparts of the 

recently proposed ground state methods, SCS-MP223 and SOS-MP2.24  While the two 
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methods present comparable reliability in reproducing the experimental excitation 

energies, SOS-CIS(D) offers the key advantage of reduced cost through the use of the 

Laplace transform to attain fourth order, rather than fifth order scaling with system size. 

SOS-CIS(D) has a number of desirable aspects as a practical method for large 

molecular systems.  First, with only one empirical excited-state scaling parameter, 

excitation energies of at least CIS(D) quality can be obtained.  Indeed significant 

improvements are obtained for Rydberg excited states.  One scaling parameter can be 

applied universally for many different organic molecules (system-independent) as 

demonstrated by a wide range of calcualtions.  In addition, as a self-interaction-free 

wavefunction-based methodology, the theory is applicable to transitions with charge 

transfer characteristics without any problems associated with approximate exchange-

correlation functionals of density-based methods.  Most importantly, the theory can be 

implemented with computational complexity that scales only with the fourth power of the 

system size. 

As in the case of other theories, the present method will have limitations in certain 

cases.  Because the method is based on CIS(D), it may be inappropriate for systems 

where CIS(D) itself fails.  Important examples are the cases where the single reference 

picture is not a valid description of the ground state,51 or where there is a near-degeneracy 

in the excited states of a given system,29 or where the excited state has significant 

contributions from double excitations or higher.  (In fact, such difficulties are generic 

problems of many of presently available ab initio methods for excited states.)  However, 

when the method is carefully applied, SOS-CIS(D) will be useful for many molecular 

systems.  With its attractive features of reliability and efficiency described above, the 
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method may constitute a promising technique for characterizing electronic transitions in 

large molecular systems. 

There are also a number of interesting possible extensions based on the twin 

successes of the tests reported here, and the reduced scaling of the algorithm.  CIS(D) 

itself is based on non-degenerate perturbation theory (diagonalize via CIS then perturb 

with correlation).  The quasi-degenerate generalizations of CIS(D)29 could be usefully 

reformulated using the scaled opposite spin (SOS) approach to yield an iterative fourth 

order scaling method that would be resistant to quasi-degeneracies.  In a similar vein, the 

quasi-degenerate CC2 method could readily be recast to yield a fourth order scaling SOS-

CC2 approach that would be applicable to larger systems.  These cases are particularly 

interesting because based on our treatment of the SOS-MP2 gradient,42 we suspect that 

they can be recast to avoid storage of fourth order amplitudes.22  We hope to report on 

this development in due course. 
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Tables 

TABLE 1:  List of electronic transitions adopted in the parameter optimizations.  
Transition energies with various methods are also presented in comparison with 
experimental values.  Energies are in eV units. 

 Molecule No. Symmetry     CIS 
SCS-

CIS(D) 
SOS-

CIS(D) 
RI-

CIS(D) 
SCS-

CIS(D)´a 
Exp.b 

* Hexatriene 1 1Bu 4.67 4.83 4.87 4.85 4.93 4.93 
Benzene 2 1B1u 5.99 6.07 6.03 6.33 6.35 6.03 
 3 1B2u 5.84 4.77 4.75 5.10 4.91 4.72 
 4 1E1u 7.55 7.34 7.31 7.18 7.22 6.87 
Phenol 5 1A 5.57 4.51 4.49 4.79 4.57 4.51 
Benzaldehyde 6 1A 5.24 5.12 5.09 5.33 5.46 5.12 
Styrene 7 1A 4.57 4.81 4.79 4.94 4.92 4.88 
 8 1A 5.53 4.54 4.52 4.79 4.68 4.31 
Octatetraene 9 1Bu 4.17 4.24 4.28 4.25 4.38 4.41 
Naphthalene 10 1B2u 4.46 4.46 4.44 4.61 4.60 4.45 
 11 1B3u 4.91 3.99 3.96 4.28 4.10 3.96 
Azulene 12 1B1 2.33 1.56 1.52 1.97 1.83 1.77 
Indole 13 1A 4.99 4.86 4.83 4.99 5.08 4.54 
 14 1A 5.33 4.46 4.43 4.68 4.77 4.37 
p-Diethynylbenzene 15 1B2u 5.46 4.34 4.32 4.59 4.46 4.25 
Biphenylene 16 1B3u 4.39 3.56 3.53 3.74 3.74 3.55 
trans-Stilbene 17 1Bu 3.77 3.91 3.89 4.03 4.18 4.00 
Anthracene 18 1B2u 3.52 3.34 3.32 3.42 3.55 3.43 
Pyrene 19 1B2u 4.12 3.87 3.82 3.98 4.03 3.81 
 20 1B3u 4.33 3.33 3.28 3.56 3.47 3.44 

          
n* Acetone 21 1A2 4.95 3.89 3.94 4.10 3.85 3.76 

Thioacetone 22 1A2 3.14 2.15 2.20 2.42 2.37 2.33 
 23 3A2 2.54 2.02 2.06 2.20 2.24 2.14 
Acrolein 24 1A 4.47 3.35 3.42 3.51 3.66 3.21 
 25 3A 3.70 3.15 3.22 3.25 3.31 3.01 
2-Cyclopenten-1-one 26 1A 4.81 3.54 3.59 3.66 3.73 3.36 
 27 3A 4.20 3.38 3.42 3.46 3.56 3.22 
s-Tetrazine 28 1B1u 3.15 2.19 2.20 2.39 2.72 2.25 
Benzaldehyde 29 1A 4.56 3.37 3.42 3.51 3.65 3.34 
 30 3A 3.83 3.18 3.23 3.27 3.37 3.12 
DMABN 31 1A2 5.26 4.01 3.98 4.20 4.32 3.95 

 
trans-Azobenzene 32 1A2 2.33 2.21 2.24 2.49 2.85 2.60 

          
Rydberg Water 33 1B1 8.64 7.20 7.24 6.98 6.92 7.49 

 34 1A2 10.32 9.10 9.13 8.74 8.67 9.20 
 35 1A1 10.91 9.67 9.71 9.30 9.25 9.73 
 36 1B1 11.30 9.78 9.81 9.24 9.17 10.00 
 37 1A1 11.57 9.92 9.95 9.30 9.23 10.17 
 38 1B2 12.65 11.60 11.63 11.07 11.02 11.50 
 39 1A1 13.47 12.25 12.28 11.56 11.50 12.10 
Ammonia 40 1A2 7.34 6.28 6.32 6.13 6.09 6.38 
 41 1E 8.78 7.85 7.88 7.55 7.51 7.91 
 42 1A1´ 9.31 8.25 8.28 7.89 7.85 8.26 
 43 1A2 9.88 8.76 8.79 8.31 8.27 9.25 

States 

         
Mean signed error   0.75 0.01 0.00 0.01 0.02  
Mean absolute error   0.81 0.13 0.13 0.30 0.32  

 

a With spin component scaling only on the indirect term.  Excitation energies of valence transitions are 
from ref 27. 
b Experimental data are taken from the compilations of ref 27 (organic molecules), ref 37 (water), and ref 
38 (ammonia). 
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TABLE 2:  List of vertical excitation energies of molecules with varying sizes. SCS- 
and SOS-CIS(D) results are compared with equation-of-the-motion coupled-cluster 
results.  Transition energies are in eV units. 

Molecule 
Excited state 

symmetry 
Transition 
character 

SCS-
CIS(D) 

SOS-
CIS(D) 

EOM-
CC 

COa 1   * 10.19 10.21 10.13b 
 1   * 10.02 10.05 10.03b 
 1   *   8.81   8.87   8.70b 
CH2O

a 1A2 n  *   3.85   3.92   4.09b 
C2H4

a 1B3u   *   8.08   8.11   8.20b 
CH3CHOa 1A˝ n  *   4.16   4.21   4.53b 
 1A´   *   6.93   6.96   7.15b 
trans-Butadienea 1Bu   *   6.46   6.48   6.72b 
 1Ag   *   7.73   7.73   6.84b 
Cyclopentadienec 1B1   *   5.93   5.94   5.90d 

 

a Geometries were optimized at MP2/6-311(+,+)G(d,p) level.  For CO, CH2O, C2H4, and CH3CHO, the 
excitation energies were calculated with the same 6-311(+,+)G(d,p) basis.  For RI-approximated integrals 
in these molecules, an auxiliary basis set corresponding to aug-cc-pVTZ was used.  For trans-butadiene, 
6-31+G(d) basis was used in conjunction with the auxiliary basis of aug-cc-pVDZ.  

b EOM-CC(2,3) results. 
c Geometry is from ref 45.  The same basis set in the reference (cc-pVDZ) was also adopted. 
d EOM-CCSDT-3 result taken from ref 45. 
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TABLE 3:  Comparison of theoretical and experimental excitation energies for 
valence (V) and Rydberg (R) transitions of various molecules.  Transition energies 
are in eV units. 

Moleculea 
Excited state 

symmetry 
Transition 
Charactera RI-CIS(D)b SCS-CIS(D)b SOS-CIS(D)b Exp.a 

CH2O 1A2 V 4.03 3.85 3.92 4.07 
 1B2 R 6.44 7.06 7.11 7.11 
 1B2 R 7.27 7.91 7.95 7.97 
 1A1 R 9.01 9.27 9.31 8.14 
 1A2 R 7.49 8.21 8.26 8.37 
 1B2 R 8.21 9.06 9.10 8.88 
 1A2 V 9.44 10.03 10.07 9.22 
       
C2H4 1B3u R 7.19 7.38 7.38 7.11 
 1B1g R 7.82 8.04 8.04 7.80 
 1B1u V 8.02 8.05 8.08 7.60 
 1B2g R 7.84 8.09 8.09 8.01 
 1Ag R 8.16 8.38 8.38 8.29 
 1B3u R 8.66 8.95 8.94 8.62 
 1B1g R 9.10 9.41 9.41 9.34 
 1B1u R 9.15 9.43 9.43 9.33 
 1B3u R 9.19 9.43 9.43 8.90 
 1B1g V 8.81 8.98 9.06 9.20 
       
CH3CHO 1A˝ V 4.33 4.15 4.20 4.28 
 1A´ R 6.15 6.83 6.86 6.82 
 1A´ R 6.84 7.60 7.63 7.46 
 1A´ R 7.37 8.00 8.03 7.75 
 1A´ R 7.58 8.48 8.50 8.43 
 1A´ R 7.90 8.74 8.77 8.69 
       
trans-C4H6 1Bg R 6.14 6.40 6.39 6.22 
 1Bu V 6.26 6.35 6.37 5.91 
 1Au R 6.58 6.89 6.88 6.66 
 1Bu R 7.04 7.28 7.28 7.07 
 1Ag R 7.19 7.48 7.47 7.40 
 1Bg R 7.20 7.55 7.54 7.36 
 1Bg R 7.26 7.59 7.58 7.62 
 1Bg R 7.39 7.73 7.71 7.72 
 1Au R 7.68 8.06 8.05 8.18 
 1Au R 7.89 8.29 8.28 8.00 

 

a Experimental numbers and R/V assignments are from compilations of ref 48 (CH2O and CH3CHO), ref 49 
(C2H4), and ref 50 (C4H6).  Geometries were optimized at an MP2/6-31G(d) level. 
b Excitation energies were calculated with the 6-311(2+,2+)G(d,p) basis.  For RI-approximated integrals, an 
auxiliary basis set corresponding to aug-cc-pVTZ basis was adopted.  
 

 38



TABLE 4:  CPU times for calculating 10 excited state energies of various molecules.a 

CPU time (min) 
Molecule 

No. of 
basis CIS(D)b SCS-CIS(D) SOS-CIS(D) 

Acrolein (C3H4O) 276c 65 3 4 
Thioacetone (C3H4S) 326c 225 7 8 
Hexatriene (C6H8) 460c 942 23 25 
Styrene (C8H8) 552c 4944 57 55 
Azulene (C10H8) 644c   - 126 109 
Anthracene (C14H10) 874c   - 504 352 
Pyrene (C16H10) 966c   - 809 528 
ZnBC-BC (C46H36N8Zn) 918d   - 8372 3010 

 

a Measured with a 2.0 GHz Opteron processor. 
b Without RI approximation. 
c With aug-cc-pVTZ basis. 
d With 6-31G(d) basis. 
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      Disk IO cost CPU cost 
 Loop over i-batch (batch size: B) 
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B
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P  block OVX 
2  Read 

� 

D
ai

P  block OVXS 
  Loop over j-batch (batch size: B) 
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Bbj
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(ia | jb)  on disk: (b, j, a, i) ← (b, a, j, i) O2V2 
16  Re-order 
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aij
ab  on disk : (b, j, a, i) ← (b, a, j, i) O2V2 

  Loop over i (i ∈ i-batch) 
   Loop over a (a ∈ VIRT) 
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Figure 1.  Algorithm for RI-CIS(D) theory and its cost.  SCS-CIS(D) can be 

implemented by separately evaluating same-spin and opposite-spin components at Lines 

9, 12, 19, and 20.  Loops for the excited states (for Lines 10 – 14 and Line 20) are 

omitted for visual clarity.  For CPU cost, only fifth order scaling routines are noted. 



 41 

      Disk IO cost CPU cost 
 Loop over t (t ∈ quadrature points, size: T) 
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Figure 2.  Algorithm for SOS-CIS(D) theory and its cost.  For CPU cost, only fourth 

order scaling routines are noted.  For visual clarity, spin designations are omitted except 

on Line 10 (See text for detailed equations with spin designations). 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Errors of RI-CIS(D) with respect to experimental transition energies for π → 

π* (gray bars), n → π* (white bars), and Rydberg (black bars) transitions.  The transition 

numbers are listed in Table 1. 
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Figure 4. The variation of RMS fit error in SOS-CIS(D) as a function of damping 

parameter λ. 
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Figure 5.  Correlations between same-spin and opposite-spin components in the direct 

term (

� 

w
U

SS versus 

� 

w
U

OS , marked with ) and in the indirect term (

� 

w
T

SS versus 
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w
T

OS , marked 

with ×). 
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Figure 6. Correlations of transition energies from experiments and (a) SCS-CIS(D) and 

(b) SOS-CIS(D) theories for the molecules in the training set.  The dotted line represents 

an ideal correlation line with slope 1. 
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Figure 7.  Errors of SCS-CIS(D) and SOS-CIS(D) with respect to experimental transition 

energies for π → π* (gray bars), n → π* (white bars), and Rydberg (black bars) 

transitions.  The transition numbers are listed in Table 1. 
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Figure 8.  ZnBC-BC complex (upper panel) and its model (lower panel).  The model is 

generated by individually aligning ZnBC and BC molecules to the matching part within 

the complex.  R denotes the centroid-to-centroid distance.  ΔR is its displacement, with 

zero displacement defined as the distance at the original phenylene-linked complex.  At 

zero displacement, the distance is given as R = 12.8 Å with the closest hydrogen atom 

pair separated by 3.76 Å.  Geometries of ZnBC-BC, ZnBC, and BC were taken from ref 

11. 
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Figure 9.  Potential energy curves of the lowest singlet charge transfer states of the 

ZnBC-BC complex model calculated with SCS-CIS(D) (), SOS-CIS(D) (×), RI-CIS(D) 

(), CIS (), and TDDFT (--).  The ground state curve is also shown () as obtained 

from SOS-MP2.  ΔR is explained in Figure 8 with the model complex.  The dotted line 

shows the Coulombic interaction curve, f(R) = −e2/(4πε0R) without any fitting (only 

shifted vertically so that the asymptotic vertical transition energy is the same as the 

difference between the ionization energy of ZnBC and the electron affinity of BC). 
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Figure 10.  Ratio of CPU times of fifth order scaling SCS-CIS(D) and fourth order 

scaling SOS-CIS(D) as a function of the number of occupied orbitals.  The organic 

molecules listed in Table 1 were used with 10 singlet excited state calculations.  CPU 

time for convergence of self-consistent field (SCF) and CIS amplitude iterations is 

omitted in the estimation of the ratio. 
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