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JOURNAL OF MATHEMATICAL PSYCHOLOGY 33, 1-35 (1989) 

Constant Volume Operators and Lateral Inhibition 

JOHN I. YELLOTT, JR. 

Cognitive Sciences Department, 

University of Calijornia, Irvine 

Constant volume (CV) operators are nonlinear image processing operators in which the 
area covered by the pointspread function around each point in the input image varies inver- 
sely with the light intensity at that point. This operation is designed to make spatial resolution 
increase with retinal illuminance, but it proves to have unexpected side-effects that mimic 
other important properties of human spatial vision, including Mach bands and Weber’s law. 
Mach bands are usually attributed to lateral inhibition in the retina, and when retinal image 
processing is modeled by a linear operator they imply such inhibition, since they cannot be 
produced by a nonnegative impulse response. CV operators demonstrate that Mach bands 
and other high-pass filter effects can be created by purely positive pointspread functions, i.e., 
without inhibition. This paper shows in addition that if one attempts to combine lateral 
inhibition with a CV operation, the results are dramatically wrong: the edge response always 
contains Mach bands that bulge in the wrong direction. Thus within the nonlinear theoretical 
framework provided by CV operators, lateral inhibition is neither necessary nor sufficient for 
modeling Mach bands and other high-pass filter properties of spatial vision. 0 1989 Academic 

Press. Inc. 

1. INTRODUCTION 

1.1. Overview 

Much of current visual theory is based on operators that transform an input 
image Z(x, y) into an output image O[Z](x, y) by convolving Z with some impulse 
response-in other words, shift-invariant linear operators. In particular, a standard 
device for modeling the retinal stage of early visual processing is a circular- 
symmetric linear operator of the form 

x’, y’) S[ (x - x’)* + ( y - y’)*] dx’ dy’, (1) 

where the impulse response has a profile like a Mexican sombrero, e.g., S= a 
difference-of-Gaussians (Enroth-Cugell and Robson, 1966), or S = the negative 
Laplacian of a Gaussian (Marr and Hildreth, 1980). For such impulse responses 
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2 JOHN I. YELLOTT, JR. 

the linear operation represented by (1) creates a low-frequency falloff in the 
modulation transfer function and, as a consequence, “edge enhancement” (i.e., the 
response to a luminance step is not monotonic, but contains a local minimum on 
the low side of the edge and a local maximum on the high side). Both effects resem- 
ble important properties of human spatial vision: the low-frequency falloff exhibited 
by psychophysical spatial contrast sensitivity functions (Shade, 1956; Van Nes and 
Bouman, 1967), and the Mach bands seen at edges (Mach, 1865; Ratliff, 1965). 

These perceptual phenomena have generally been attributed to a process of 
lateral inhibition in the retina. That process is represented in the linear model (1) 
by the presence of negative lobes in the impulse response-the brim of the som- 
brero. Within the framework of linear systems theory these negative lobes are the 
only natural way to create Mach bands and other high-pass filter effects, because 
the edge response of a shift-invariant linear operator must be monotonic if its 
impulse response is entirely nonnegative. 

To see explicitly why this is so, suppose the input image I in (1) is a vertical edge 
of the form Z(x’, y’) = L for x’ Q 0; Z(x’, y’) = L + D for x > 0. Then the output 
image is 

OC~l(X? Y) = jm j” L . S[ (x - x’)~ + (x - y’)‘] dx’ dy’ 
--‘u -m 

cc m  

+ 
I I 

(L+D).S[(x-x’)~+(Y-y’)2]dx’dy’ 
-cc 0 

=/= Cc I s S[X’~ + ~‘~1 dx’ dy’ 
-cc -cc 

+Ds” ja S[(x-x’)~+(Y-~‘)~]dx’dy’ 
-cc 0 

where V is the total volume under the impulse response S[X’~ + ~‘~1. If the impulse 
response is nonnegative the integral in the last line is a nondecreasing function of x, 
so the profile of the edge response can only contain Mach bands if S is sometimes 
negative. 

So when retinal image processing is modeled by linear operators, Mach bands 
and lateral inhibition seem inseparably linked in an if-and-only-if relationship. But 
that relationship is binding only for linear operators. This paper deals with a class 
of simple nonlinear operators-“constant volume” (CV) operators-that produce 
Mach bands without inhibition (i.e., with purely positive pointspread functions) 
and simultaneously model a surprising range of additional visual phenomena 
(Cornsweet and Yellott, 1985; Yellott, 1987). The fact that CV operators can create 
Mach bands and other high-pass filter effects without lateral inhibition has already 



CONSTANT VOLUME OPERATORS 3 

been established in the earlier papers just cited. The main original point of the 
present paper is to show that for this class of operators, lateral inhibition is not 
simply unnecessary for creating these effects, but also rather dramatically ins@ 
ficient: we show that combining lateral inhibition with a CV operation leads to an 
edge response whose Mach bands bulge in the wrong direction (as illustrated in 
Fig. 8). In other words, if one begins by thinking about retinal image processing in 
terms of CV operators rather than linear operators, the same perceptual 
phenomena that force one to postulate lateral inhibition in the linear case acquire 
exactly the opposite significance: instead of implying lateral inhibition, they rule it 
out. 

This incompatibility between lateral inhibition and the CV operation is 
demonstrated in Sections 3.6 (for deterministic input images) and 4.3 (for images 
with Poisson noise). The rest of the paper puts these results in context by reviewing 
properties of CV operators that were originally derived in the two earlier papers. 
First Section 1.2 outlines the class of visual phenomena that CV operators are 
intended to model. Then Section 2 defines CV operators, including the important 
Gaussian case, and compares them to linear operators. Section 3 describes the 
consequences of applying CV operators to deterministic images, and Section 4 
describes their consequences for images containing Poisson noise-images that 
model the quantum catches of photoreceptors. That section also shows how CV 
operators are motivated by signal detectability considerations combined with the 
statistical properties of light. 

It should be noted that the theory of CV operators is still in rudimentary form: 
as we shall see, many mathematical problems remain to be solved. One purpose of 
this paper is to call these problems to the attention of mathematical psychologists. 
Readers interested in them are referred to Yellott (1987) for a fuller discussion. 

1.2. Psychophysical Motivation 

From a psychophysical standpoint, CV operators are interesting because they 
show that a single fixed-parameter mechanism can duplicate most of the properties 
of spatial vision that are usually attributed to retinal processes, including the 
changes in those properties that are produced by changes in the prevailing 
illumination level. As that level rises from starlight to normal room light (i.e., by a 
factor on the order of 106), human spatial vision undergoes three major changes. 

First, spatial resolution improves: the spatial contrast sensitivity function (CSF) 
shifts to the right along the spatial frequency axis (Van Nes and Bouman, 1967) so 
that the highest resolvable frequency (i.e., visual acuity) increases roughly as the 
square root of retinal illuminance. (Figure 3 in Thomas, 1975, illustrates this 
growth for grating acuity. Figures 11.2 and 11.3 in Pirenne, 1967, make the same 
point for acuity measured with Landolt rings.) 

Second, the shape of the CSF changes from that of a low-pass filter to that of a 
bandpass filter. (Van Nes and Bouman, 1967, show that for mean retinal illuminan- 
ces below .1 td the CSF decreases monotonically with frequency. For illuminances 
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above 1 td, sensitivity peaks around 3 cycles/deg and falls off monotonically for 
higher and lower frequencies.) 

Third, the visibility of objects becomes independent of their absolute luminance 
and comes to depend only on their contrast against the background (e.g., Barlow, 
1957; Glezer, 1965). That is, the detectability of a luminance change from Z to Z+ cl 
in some region of the visual field eventually depends only on the contrast c, once Z 
is sufficiently high. (“Sufficiently” depends on the size of the region: smaller regions 
require a larger Z value.) This third fact of vision is, of course, Weber’s law, and one 
of its corollaries is that the visibility of objects is independent of their illumination 
and depends only on their reflectance-a valuable property for visual systems 
subject to the vicissitudes of the sun. 

(None of these changes can be attributed simply to the transition from rod to 
cone vision. Pirenne (1967, Fig. 11.3) shows that acuity grows with retinal 
illuminance for both the rod and the cone systems separately. Hess and Nordby 
(1986) show that observers who possess only rod vision still have a CSF that 
changes from low pass to bandpass as mean illuminance rises, so that change can- 
not be due entirely to the rodcone transition. Aguilar and Stiles (1954) show that 
increment thresholds in rod vision only start to obey Weber’s law at background 
levels above .Ol td; and Glezer (1965) shows for fovea1 (pure cone) vision that 
Weber’s law emerges only above a background level that is higher the smaller the 
test spot.) 

Linear operators offer no natural account of these illuminance-related changes in 
the properties of spatial vision. Linear models do predict some growth in spatial 
resolution with retinal illuminance simply because increased illuminance improves 
the signal-to-noise ratio of the photoreceptor quantum catch. But that improvement 
can only cause the spatial CSF to translate upwards (in the convential log-log 
plot); it cannot predict the horizontal shift along the spatial frequency axis that also 
occurs. To achieve such a shift in a linear model the width of the impulse response 
must decrease as retinal illuminance rises, and of course linear operators do not 
automatically adjust themselves in that fashion-some additional mechanism must 
be postulated to make them do so. The same is true of the change from low-pass to 
bandpass filter characteristics: for a linear operator this change implies that the 
shape of the impulse response is different at different light levels. In other words, a 
fixed-parameter linear operator can only model the CSF at a single mean 
illuminance level, and nonlinear mechanisms must be evoked to account for the 
way the CSF changes from one level to another. 

In much the same way, Weber’s law can only be incorporated into linear models 
by grafting on a nonlinearity, e.g., a compressive transformation at the level of the 
photoreceptors. But one such appendage is not enough: another must be added to 
explain why Weber’s law only begins to hold above a certain luminance level, and 
another still to explain why the scope of Weber’s law should depend on the size of 
the detection target. 

So viewed from the standpoint of linear systems theory, spatial vision appears to 
undergo a complex set of unrelated changes as the illumination level rises from 
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starlight to daylight. Are these changes really as unrelated (and unmotivated) as 
they seem from a linear perspective? CV operators show that from another perspec- 
tive, all of them can be viewed as consequences of a single operation whose “real 
purpose” is to maximize spatial resolution in the face of photon noise. Essentially, a 
CV operator is simply a mechanism that adjusts the area of the pointspread 
function to match the prevailing light level (in a signal detectability sense explained 
in Section 4Fa mechanism that causes spatial resolution to rise with retinal 
illuminance. Intuitively one might expect that the only consequence of this 
operation would be the increase in acuity that is built into it from the start. 
However, it turns out (rather surprisingly) that the same operation automatically 
gives rise to edge enhancement and other high-pass filter effects, and also to 
Weber’s law-including that law’s dependence on luminance and target size. And 
when applied to images with photon noise, it causes the CSF to change shape from 
low pass to bandpass as retinal illuminance rises from scotopic to mesopic levels. In 
other words, all of the basic properties of spatial vision reviewed earlier can be 
duplicated by a single fixed-parameter CV operator-a single image processing 
operation, motivated by the intrinsic noisiness of light. 

The basic idea of CV operators is that each point in the input image creates a 
pointspread function whose area varies inversely with the input image intensity at 
that point. This mechanism was originally suggested by the psychophysical fact that 
the size of the spatial summation area (Ricco’s area) in the human retina shrinks as 
the mean luminance level rises. (Barlow, 1958, shows this for the extrafovea retina. 
Glezer, 1965, shows it for the fovea.) Consequently we originally referred to this 
class of operators as “intensity dependent spatial summation” operators (in 
Cornsweet and Yellott, 1985). However, in this paper (and in Yellott, 1987) I adopt 
the name “constant volume” operator, following a suggestion by Bosman (Bosman 
et al., 1985). This name seems appropriate because it captures the fundamental 
difference between our nonlinear operators and linear operators. As noted in 
Section 2.3, the latter can be thought of as “constant area” operators. 

2. THE STRUCTURE OF CONSTANT VOLUME OPERATORS 

2.1. Definition 

In the same way that (1) defines a continuous linear operator 0, a continuous 
constant volume operator 0 is defined as 

ocm~, Y) = ,_“, ,_s, WY Y’) 

x S[Z(x’, y’) . {(x - x’)~ + (y - Y’)~}] dx’ dy’, (2) 

where Z(x’, y’) is an input image (I is nonnegative, since it represents light inten- 
sity), O[Z](x, y) is the corresponding output image (sometimes denoted 
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O[Z(x’, y’)](x, y), when the arguments of Z must be identified explicitly), and S is a 
real-valued function (of a single real variable) called the “spread function” of the 
operator 0. We assume that S[x2 + y2] is integrable over the x, y plane. A given 
CV operator is entirely characterized by its spread function, just as a linear 
operator is characterized by its impulse response. Formally it is possible for S to 
take on both negative and positive values, but as we shall show, for image proces- 
sing purposes S must be nonnegative to produce sensible results. 

Figure 1 illustrates the structure of discrete CV operators-the kind that could 
actually grow in a retina or be constructed by an engineer. An input image (here, a 
sharp edge) is recorded by an array of photoreceptors, and each receptor gives rise 
to a pointspread function whose height at the center is directly proportional to its 
quantum catch, but whose volume is a constant independent of the catch. That is, if 
the quantum catch of the receptor centered at position (x’, y’) is Z, the pointspread 
function created by that receptor (i.e., the value contributed to each output point 
(x, y)) is I. S[Z{ (x -x’)* + (y - y’)‘)]. Integrating this pointspread function over 
the x, y plane yields a constant value I’, (the volume under S[x2 + y2]) that is 
independent of I. Consequently the “equivalent area” under the pointspread 
function generated by each photoreceptor (i.e., the volume V, divided by the center 
height I. S[O]) is inversely proportional to the input intensity I. The output image 
O[Z](x, v) is simply the sum of the pointspread functions generated by all the 
photoreceptors. Equation (2) thus represents the continuous case of this operation, 
i.e., the limiting case where the receptors are negligibly small. 

2.2. Saturation 

The major difference between the discrete and continuous cases is that in the dis- 
crete case a CV operator can “saturate.” Saturation occurs when the input intensity 
at a photoreceptor becomes so large that the pointspread function is narrower than 

input images 

. * 
output . * . . . * * l *........ 
image * . 

* 

FIG. 1. Structure of a discrete constant volume operator with a Gaussian spread function. 
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the receptor itself. Once this level is reached the receptor outputs the same value for 
all higher input intensities. If the entire input image exceeds the saturation level, the 
output for all input images is a uniform field, so the CV operator creates total 
blindness beyond that point. This saturation effect has no analog in the case of 
continuous CV operators, where the receptor is treated as an infinitesimal point. 

Saturation thus forces one to exercise some discretion about generalizing from 
continuous CV operators to their discrete analogs. But this is only a problem at 
high light levels. All the results reported here assume input images that are 
uniformly below the saturation level, so that the continuous model (2) gives 
physically meaningful results. The potential working range of any CV operator can 
be deduced from the basic fact that when the light level rises by a factor L, the area 
covered by the pointspread shrinks by the factor l/L. If the area of the pointspread 
function for a l-photon quantum catch is A( 1) times the area of one receptor, then 
A(L), the area for a catch of L quanta, covers ,4(1)/L receptors. So saturation is 
complete when L = A( 1). The next section gives an example of the working range of 
a specific CV operator. 

2.3. The Gaussian Constant Volume Operator 

Figure 1 illustrates the Gaussian CV operator, i.e., the case where the spread 
funtion S is given by 

S[x* + y*] = (1/2rto*) exp[( - 1/20*)(x* + r’)]. 

For this CV operator the output image O[Z](x, y) is 

x exp[( - 1/2a*) Z(x’, .v’){(x--x’)‘+ (y- Y’)~}] dx’ dy’. (3) 

Here the constant pointspread volume V,v = 1.0. This case is uniquely convenient 
from an analytic standpoint because the Gaussian is the only separable function 
that is circularly symmetric, so that one can solve Eq. (2) explicitly for a large class 
of input images. In this paper we focus on the Gaussian case because it is the only 
CV operator whose properties have been worked out for both deterministic 
(Cornsweet and Yellott, 1985) and photon-noisy (Yellott, 1987) images. However, 
for the deterministic case one can show that the general properties of CV operators 
are largely independent of the exact choice of S, and this is almost certainly true for 
noisy images as well, although for the most part that remains to be proved. 

The parameter u in (3) determines the equivalent area covered by the 
pointspread for every input intensity I: that area is 27ca*/Z. Once this area is fixed 
for any Z value (say, Z= l), it is fixed for all values, and the numerical properties of 
the Gaussian CV operator are completely determined. 

To calculate the saturation level of the Gaussian CV operator we can use the fact 
that 99% of the volume of a circular-symmetric Gaussian probability density 
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function is enclosed by a circle of radius 3.03~. If the distance unit is photoreceptor 
diameters, then the effective area covered by the Gaussian pointspread for a quan- 
tum catch of one photon (i.e., A(1) from the last section) is 7r(3.030)‘, so the 
operator will be completely saturated once the quantum catch/receptor reaches that 
value. Yellott (1987) shows that c must be around 100 receptor diameters to match 
human psychophysical data. For that c the saturation level is 288, 426, or as a 
conservative order of magnitude value, lo5 quanta/receptor. 

2.4. Constant Volume and Constant Area Operators 

Before describing the properties of CV operators, let us compare their basic 
structure with that of linear operators (see Fig. 2). A linear operator such as (1) 
describes an operation in which each photoreceptor (say, the receptor at location 
(x’, y’)) gives rise to a pointspread function of the form 1. S[(x - x’)* + (y - y’)*], 
where I is the input intensity at (x’, y’). If the volume under S (i.e., the integral of 
S[x* + y*] over the x, y plane) is V,, then the volume under the pointspread 
function for input intensity I is I. V,, and the center height of the pointspread is 
I. S[O]. So for linear operators it is the area under the pointspread function (i.e., 
volume/center height) that remains constant across all values of the input intensity. 
Thus the names “constant volume” for operators of the form (2) and “constant 
area” for operators of the form (1) capture the only essential structural difference 
between image processing by CV operators and image processing by shift-invariant 
linear operators. Figure 2 illustrates this point by showing on the left the 
pointspreads generated for a low- and a high-intensity input value by a CV 
operator (here, the Gaussian case), and on the right, the pointspreads generated for 
the same low and high values by a linear operator (here, the linear operator whose 
impulse response is a difference-of-Gaussians). 

lo 
PO 

Ftc. 2. Comparison between constant volume operators (left side, Gaussian spread function) and 
shift-invariant linear operators (right side, difference-of-Gaussians impulse response). CV operators 
cause the pointspread area to vary inversely with the input intensity at each point. A linear operator 
causes the pointspread area to remain constant across all input intensities. 
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3. PROPERTIES OF CV OPERATORS FOR DETERMINISTIC INPUT IMAGES 

3.1. Overview 

This section describes the consequences of applying CV operators to deter- 
ministic images. We have shown in earlier papers (Cornsweet and Yellott, 1985; 
Yellott, 1987) that CV operators create edge enhancement (Mach bands) and other 
high-pass filter effects without lateral inhibition, i.e., with pointspread functions that 
are never negative. The main point of the present paper is to show that for CV 
operators, lateral inhibition is not simply unnecessary for modeling visual high-pass 
filter effects, but also inadaquate, in the sense that a CV operator based on a spread 
function with negative lobes (e.g., a difference-of-Gaussians) creates output images 
that are qualitatively incompatible with the facts of vision. That point is 
demonstrated for deterministic images in Section 3.6. Sections 3.2-3.5 set the stage 
for this demonstration by reviewing the basic properties of CV operators applied to 
deterministic input images. Unless otherwise noted, these preliminary results are all 
derived in the two earlier papers, so we include here only a few illustrative proofs. 
The material in Section 3.6 is new, and there we give a complete treatment. 

3.2. Response Compression 

For any CV operator, all uniform field input images (i.e., Z(x’, y’) = Z > 0) give 
rise to the same uniform output image. (This is easily shown by setting Z(x’, y’) in 
(2) equal to any constant Z and making the change of variables u = (x’ - x) 0, 
u = (y’ - v) ,/?.) For the Gaussian case the constant output level is 1.0. In general 
it is the volume under the spread function S[x2 + y’]. 

So for all CV operators every uniform field input image, whatever its intensity, 
yields the same output value. For the Gaussian operator it can also be shown 
(Yellott, 1987) that all possible input images are compressed into the same narrow 
range of output values: the output range is 0 to 2.1+0.7(ln[a]). (For IJ= 100, the 
upper limit is 5.3.) From a design standpoint this is an important feature. A major 
problem for all visual systems, both biological and artificial, is that the luminance 
of natural scenes varies over the course of a day by at least 8 log units. This enor- 
mous dynamic range cannot be transmitted directly from an eye to a brain, or from 
a TV camera to a computer-it must be somehow compressed. Linear operators 
offer no solution to this problem: at best they can only compress the output to 
purely uniform fields by making it identically zero. CV operators automatically 
cause the outputs for all potential input images to fall in the same narrow range of 
values. Moreover this is not accomplished by simply resealing the output (i.e., by 
simply changing the gain). Instead, as input luminance rises, the output image 
values remain in the same numerical range, but these numbers carry an increasing 
amount of information about high spatial frequencies in the input image. 

(An important open problem is to show that all CV operators create response 
compression, regardless of the form of the spread function. It should be noted that 
the proof of this for the Gaussian case assumes physically possible input images, 
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whose values must be nonnegative integers since they represent numbers of absor- 
bed photons. This excludes input images of the form 1(x, y) = l/(x2 + y’), which 
could cause infinite output values.) 

3.3. Sinusoidal Grating Response: Bandpass Filtering 

For input images consisting of low-contrast sinusoidal gratings (i.e., Z(x’, y’) = 
L( 1 + m . cos 2zfx’), with m < 0.1) the output of the Gaussian CV operator is 
approximately sinusoidal (with an error on the order of m’) and takes the form 
1 + g(flfi) . m . cos 2rcfx, where the function g is given by Eq. (4). Thus for 
gratings with contrasts in the neighborhood of psychophysical detection thresholds, 
one can define a modulation transfer function (MTF, output contrast/input con- 
trast as a function of the input spatial frequency f). The fact that the modulation 
transfer function here takes the form g(fl,/%) implies that visual acuity (defined by 
any high-frequency cutoff of the MTF) varies as the square root of the mean 
illuminance level L. 

Figure 3 shows the MTF of the Gaussian CV operator for five mean illuminance 
levels, plotted in the conventional way on log-log coordinates. In this plot the 
MTF shifts bodily to the right as L increases: the peak frequency is proportional to 
,,,6. Remarkably, the MTF for the Gaussian CV operator at any fixed mean 
luminance has the same form as that of a linear operator whose impulse response is 
the negative LaPlacian of a Gaussian: Marr and Hildreth’s (1980) famous “Del’-G” 
operator. That is, the MTF for the Gaussian CV operator is 

g(f/&) = 2n*~‘(f/JZ)~ exp[ -2rt202(.f/&)*]. (4) 

Thus it creates a low-frequency falloff in the MTF (i.e., acts like a bandpass 
linear filter) despite the fact that its pointspread functions are never negative. In 

output/input contrast 

1 

I 

mean input intensity 

.l 1 10 100 1000 

.OOOl ,001 .Ol .l 1 

spatial frequency kycleshxeptd 

FIG. 3. Modulation transfer functions (Eq. (4)) of the Gaussian CV operator (a = 100) at different 
mean input intensity levels (for deterministic input images). 
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other words, it mimics the effects of lateral inhibition even though it involves no 
inhibition-only positive spatial summation. 

The MTFs in Fig. 3 differ from psychophysical CSFs in two important respects: 
they fail to exhibit a change from low-pass to bandpass filter characteristics as 
mean illuminance rises, and the peak value of the MTF is the same at all illuminan- 
ces, whereas the peak sensitivity in the human CSF grows from about 10 (threshold 
contrast = 10%) to more than 100 (threshold contrast < 1 Oh) as mean illuminance 
rises from absolute threshold to 100 td. As we see in Section 4, both of these effects 
prove to be natural consequences of CV operators once photon noise is taken into 
account. 

3.4. Edge Responses: Mach Bands and Weber’s Law 

The fact that the MTFs in Fig. 3 exhibit low-frequency attenuation suggests that 
CV operators should create Mach bands, and this proves to be true in quite a 
remarkable way. Figure 4 shows the output of a Gaussian CV operator when the 
input image is a sharp edge, i.e., a step from illuminance L to L + D. Three response 
profiles are shown, for steps from 1 to 1.5, 10 to 15, and 100 to 150 quanta/input 
point. Thus the contrast at the edge is same for all three input images, but the mean 
illuminance increases by a factor of 10 from one to the next. Two facts are evident: 
the edge response contains Mach bands in all cases, and the maximum and 
minimum values of the output are the same for all three input images. All that 
changes with the mean illuminance are the widths of the Mach bands, and the 
locations of their peak and trough: those extreme values move closer to the edge 
itself as L increases. In other words, the amplitude of the edge response obeys 
Weber’s law. This is a general property of CV operators, regardless of their spread 
function. 

input image=step at 0 from 
_ 1.1 

a: 100 to 150 
b: 10 to 15 ab c 
c: 1 to 1.5 

1 0.9 

I 1 
0 150 

distance in photoreceptor diameters 

I 
300 

FIG. 4. Edge response profiles for the Gaussian CV operator (a = 100) at different input intensity 
levels (Eq. (5) with L = 1, 10, and 100, and D/L = 0.5). The Mach bands have a constant peak amplitude 

because D/L is constant: this is the Weber’s law property of CV operators. 
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To explore this point a bit, consider first the Gaussian CV operator. Suppose the 
input image is a vertical edge separating two uniform fields, i.e., Z(x’, y’) = Z(x’) = L 
for x’ < 0; Z(x’) = L + D for x’ > 0. (CV operators are invariant under translations 
and rotations, so it is sufficient to consider only this special case.) For this input 
image the output image (i.e., the solution to (3)) is quickly found to be 

wmx~ Y) = Wx/o) J=z + NC - (x/a) JUT 
where N is the cumulative normal distribution function: 

(5) 

N[z] = 1’ (l/J%) exp[( - 1/2)x*] dx. 
-cc 

(Since the output image O[Z](x, y) varies only with x, we write it as O[Z](x) in 
what follows.) Then differentiation shows that the maximum of (5) occurs at 
x=x max = u ,/( l/D) ln( 1 + D/L), and the value of that maximum is 

ocm%nax )=N[J(l+L/D)ln(l+D/L)]+N[-J(L/D)ln(l+D/L)] 

which is a function only of the Weber fraction D/L. The same sort of argument 
shows that this is also true of the minimum value of the edge response. Thus if the 
output of this CV operator is fed into an edge detecting mechanism that registers an 
edge whenever its input exceeds the baseline input value by some criterion amount, 
that mechanism would behave according to Weber’s law. 

Of course in psychophysical experiments, Weber’s law only starts to hold when 
the background luminance exceeds some critical level-a level that is inversely 
related to the size of the detection target. We will see in a moment that this is 
exactly the behavior predicted by CV operators, once we take into account the fact 
that actual detection targets have a finite size, rather than consisting of infinitely 
extended edges. First, however, we will show how the Weber law just obtained for 
the Gaussian CV operator can be generalized to all CV operators. 

For this purpose we need a technical result which plays a fundamental role in the 
analysis of CV operators-a result we call the “Scaling Theorem.” It describes the 
effect of multiplying the input image by a constant, as would happen if the 
illumination falling on a scene changed while the reflectances of objects in the scene 
remained the same. 

THEOREM 1. For any positive constant c and any input image Z(x’, y’) the output 
of any CV operator satisfies the relationship 

O[c .Z(x’, y’)l(x, Y) = oczwl~~ Y7JaX dG Y 6). (6) 

(Zn other words, multiplying all the input intensity values by a factor c has the same 
effect as expanding the input image by the factor J c along both axes (or contracting 
it, when c < 1 ), applying 0 to that image, and then undoing the expansion by shrink- 
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ing the output image by the factor I/&!. H ence the name Scaling Theorem: changing 
the illumination level changes the spatial scale of the operator-high spatial frequen- 
cies at high light levels are treated like low spatial frequencies at low levels.) 

Proof From the definition (2) the right side of (6) is 

x {(x’-x&)2+( y’ - y A)‘}] dx’ dy’. 

Making the change of variables u = x1/&, v = y’/&, we have 

cZ(u, v).S[cZ(u, v){(x-u)‘+ (y-v)~}] dudv 

which is the left side of (6). 1 

This simple theorem is the key to a general treatment of CV operators. As an 
illustration, we use it to show the following: 

THEOREM 2. Suppose Z(x’, y’) is an input image consisting of a straight edge 
separating a untform field of intensity L from a field of intensity L + wL. Then for 
any CV operator the maximum and minimum values of the output to Z(x’, y’) are 
independent of L and depend only on the Weber fraction w. 

Proof Because CV operators are invariant under translations and rotations, it 
is sufficient to consider only vertical edges of the form Z(x’, y’) = Z(x’) = L for 
x’ < 0; Z(x’) = L + WL for x’ > 0. Suppose V(x’) is a vertical edge image defined by 
V(x’) = 1 for x’ < 0; V(x’) = 1 + w  for x’ > 0. Assume that the maximum value of 
the output O[ V(x’)](x) occurs at x=x,,, and that the minimum value occurs at 
x = xmin. Let Z(x’) = L for x’ G 0 and L + WL for x’ > 0. Then Z(x’) = L. V(x’), and 
so from Theorem 1 we have 

ww)l(x) = OCL. VW)l(x) = wwh/mx J-u 
= O[ V(x’)](x J-L,. 

(The last equality holds because here V(x’/&) = V(x’).) The maximum value of 
the last expression in this string of equalities occurs at x fi = x,,,, and its 
minimum at x ,/% = Xmin, and so the maximum (minimum) output to Z(x’) occurs 

at x=x,,, /fi (x= x,Jfi) and has the same value there that the output to 
V(X’) has at x,,, (xrnin). I 

Note that we have also shown that for all CV operators, the distance between the 
locations of the peak and trough of the Mach band and the edge itself both 
decrease as I/,,&’ m effect, the width of the Mach bands varies as l/fi. 
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3.5. Increment Threshold and t.v.i. Curves 

We have just seen that the maximum and minimum values of a CV operator’s 
response to an edge obey Weber’s law, but the propositions of these extreme values 
change with the background illuminance level, moving closer to the edge as that 
level increases. Now consider a typical increment threshold experiment in which a 
target of some fixed size (e.g., a square) and illuminance L + D is surrounded by a 
background of illuminance L. We measure the value of D required for the target to 
be just detectable and repeat this measurement for different values of L to obtain a 
“threshold vs intensity” (t.v.i.) curve, usually plotted as log (threshold D) vs log(L). 
Weber’s law holds when this t.v.i. curve becomes a straight line with slope 1.0. 

Figure 5 shows what the Gaussian CV operator implies for such an experiment. 
Each graph shows the output response profile for a square target of fixed width and 

L=.O 1 
D=l 
w= 100 

L=10 
D=8 

W=lOO I 

D=2600 
W=lOO 

FIG. 5. Response profiles for the Gaussian CV operator applied to a square spot of intensity L + D 
surrounded by a background of intensity L. Spot width is held constant at 100, and D is adjusted to 
produce a constant peak response value of 1.15. At low background levels (top graph) the response is 

simply a broad shallow bump. At moderate levels (middle graph) it resembles a classical sombrero- 
shaped receptive field. At sufftciently high levels (bottom graph) the response has the same value inside 
the spot as outside; only the Mach bands at the edges signal the presence of the spot. Once this level is 
reached the spot’s visibility is governed by Weber’s law. 
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intensity L + D surrounded by a background of intensity L. (Equation (4.6) in 
Yellott, 1987, gives an analytic expression for the response to such targets.) The 
three graphs correspond to three different values of the background: L = 0.1 in the 
top panel, L = 10 in the middle panel, and L = 100 in the lowest panel. The D value 
in all three cases was adjusted to make the maximum value of the output equal to a 
constant, as though we were finding the increment threshold for each background 
intensity. (The threshold value was arbitrarily chosen to be 1.15, but that was only 
a matter of convenience-the form of the results would be the same for any 
threshold value.) One can see that at the lowest background level the response to 
the target is simply a broad bump, with no evident edge enhancement: the Mach 
bands are so broad and shallow as to be invisible. As the background level rises the 
Mach bands become narrower, and the response to the target spot begins to look 
like the profile of a classic center-surround receptive field. Finally, at the highest 
background level, the Mach bands have become sufficiently narrow that they do 
not overlap at all. Now the response in the center of the target is at the uniform 
field value, and the maximum response occurs at the peaks of the Mach bands, 
where as we have seen it is governed by Weber’s law. So for this background level, 
and all higher ones, the increment threshold for this target will obey Weber’s law. 

Figure 6 shows the t.v.i. curve for this target (width W= 100 receptor diameters), 
and two others, one smaller (W= lo), the other larger ( W= 1000). (“Threshold” 
was arbitrarily defined by a peak response value of 1.15.) All three curves contain 
an early region where increment threshold does not change with background inten- 
sity (as though threshold were limited by “dark light,” although in fact there is 
none here), and then beyond some background level each curve bends upwards and 
eventually asymptotes in a straight line with slope l.&-Weber’s law. The only effect 
of target area is that the smaller the target, the higher the background level must be 
before Weber’s law starts to hold. So the CV operator duplicates the general form 
of t.v.i. curves obtained in psychophysical increment threshold experiments. 

Of course from a psychophysical standpoint these results are only suggestive, 

-4-3-2-1 0 123456 

LOG (BACKGROUND INTENSITY) 

FIG. 6. Threshold vs background intensity curves for deterministic test spots of different sizes. 
( W, spot width in receptor diameters. See text for details.) 

480/33/l-2 
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because we have not yet included photon noise in our analysis-there is nothing in 
the model so far to limit detection, so we cannot make meaningful comparisons 
between CV predictions and experimental results. However, as we see in Section 4, 
when photon noise is taken into account, the t.v.i. curves predicted by the Gaussian 
CV operator have the same general form as those in Fig. 6: for any test spot the 
t.v.i. curve obeys Weber’s law above some level of background illuminance, and 
larger spots reach the Weber range sooner than smaller ones. 

3.6. CV Operators and Lateral Inhibition 

So far we have concentrated on CV operators with nonnegative spread functions, 
i.e., operators that model a retinal process of purely positive spatial summation, 
with no lateral inhibition. We have seen that such operators duplicate the high-pass 
tilter effects, such as Mach bands, that are usually attributed to lateral inhibition, 
and at the same time automatically model two major visual phenomena associated 
with changes in the prevailing light level: improvement in spatial resolution with 
increasing mean luminance, and the emergence of Weber’s law. Computer 
simulation indicates that these effects are all robust under changes in the exact form 
of the basic spread function S, so that it does not matter greatly whether S is 
Gaussian or exponential or any other plausible form, so long as it is nonnegative. A 
natural question at this point is whether it even matters that S be nonnegative. 
Examination of the proof of Theorem 1 (the scaling Theorem) shows that it does 
not depend on that assumption, and since Theorem 2 follows from Theorem 1, it is 
also true that the edge response of a CV operator will continue to obey Weber’s law 
even is S is sometimes negative. Cornsweet and Yellott (1985) derive the general 
form of the CV modulation transfer function from the Scaling Theorem as well, and 
show that it is always a function of the ratio f/A, causing its high-frequency 
cutoff to increase as J- L. So a CV operator with a sometimes-negative spread 
function will also imply that ,grating acuity should improve as the square root of 
mean retinal illuminance. So one might suspect that a sensible model for early 
visual processing could be constructed by combining the familiar concept of lateral 
inhibition with the CV notion of a pointspread function whose area varies inversely 
with the input intensity. 

Somewhat surprisingly, this is not the case. In fact exactly the opposite is true: 
for CV operators, the assumption of lateral inhibition leads to consequences that 
are blatantly at odds with the facts of visual perception and that would be quite dis- 
astrous in an artificial image processing system. We demonstrate this first for the 
special case in which the spread function is a difference-of-Gaussians and then show 
that the defects of that operator are common to all CV operators in which the 
spread function consists of a positive central region surrounded by a negative zone. 

Consider first a CV operator in which the spread function S is a difference-of- 
Gaussians, as illustrated in Fig. 7. Specifically, we suppose that 

S[x2 + y’] = (1/2x)( l/a)* exp[ ( - l/2)( 1/a)2 (x2 + y’)] 

- (1/27~)(1/8)* expC(- W)(l/PY (x2 + Y*)I; 
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j :. 
high intensity i i 

FIG. 7. A CV operator with lateral inhibition: the spread function S is a difference-of-Gaussians. 

i.e., S is the difference between two bivariate normal densities with standard 
deviations a and j?. This function has been widely used to model lateral inhibition 
in the retina (e.g., for modeling the receptive fields of X-type ganglion cells in 
Enroth-Cugell and Robson, 1966, and many subsequent papers.) For that purpose 
we require /I > LY. (Marr and Hildreth, 1980, show that when p = 1.6a, a difference- 
of-Gaussians is practically indistinguishable from their Del’-G function.) We con- 
sider the CV operator generated by this spread function, which we will call D1,B: 

D,,&W~ r’)k Y) = Se jou 4x’, Y)’ (1/2n) --m -02 

. 
[ 

(l/a’) exp[( - l/Za’) .Z(x’, y’) 

~{(~-x’)~+(y--y’)~)]-(l/P~)-exp[-(1/2/?*)~Z(x’, y’) 

. {(x - x’)~ + ( y - y’)‘} ] 1 dx’ dy’. (7) 

Now if we denote the Gaussian CV operator (3) with scale parameter D by G,, it is 
evident from inspection that D,,, can be expressed in terms of G,: 

D,JCU(X, y) = G,CU(x, y) - G@[Z](x, y). 63) 

Consequently from results already obtained for the Gaussian CV operator G, we 
can immediately write down the response of the difference-of-Gaussians CV 
operator D,, for the same input images. In particular, using (5) we obtain the 
following edge response (i.e., the output to Z(x’, v’) = L for x’ < 0, Z(x’, y’) = L + D 
for x’>O): 

(9) 
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FIG. 8. Bottom graph, edge response protile of a lateral inhibitory CV operator (difference-of- 
Gaussians pointspread). The top graph illustrates the input image profile. The middle graph shows the 
response of a non-inhibitory (Gaussian pointspread) CV operator to the same edge. 

The lower part of Fig. 8 shows this edge response for the case c1= 1, B = 2. The 
input edge here is a step from L = 10 to L + D = 100, illustrated at the top, and the 
curve in the middle is the Gaussian CV edge response (the response of G,). One 
sees immediately that the difference-of-Gaussians edge response is grotesque: it con- 
tains an extra pair of Mach bands bulging in the wrong direction! Analysis of 
Eq. (9) shows that these “wrong-way” Mach bands always appear for any a, B pair 
with a > /I. 

Figure 9 illustrates a second (closely related) pathological consequence of com- 
bining lateral inhibition with a CV operation. It shows the modulation transfer 
function of D,, ( g a ain, the case a = 1, fl= 2) for three values of the mean 
illuminance L. We see that these MTFs all contain a range of negative values, 

output/input contrast 
1 

I 

(linear scale) 

-11 

FIG. 9. Modulation transfer functions of the difference-of-Gaussians CV operator (Eq. (10)) at three 
different input intensity levels. Note the contrast reversal at low spatial frequencies. 
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meaning that for spatial frequencies in that range (which for this operator runs 
from 0 to 0.15 fi) the output to a sinusoidal grating input image is a sinusoid of 
the same frequency, but with reverse contrast-peaks in the input turn into troughs 
in the output, and vice versa. To show analytically how this comes about we apply 
(8) to a low-contrast sinusoidal grating, i.e., to an input image of the form 
Z(x’, y’) = L . ( 1 + m . cos 27rfx’), with m < 0.1. From the fact that the Gaussian CV 
operator response to this image is 1 + g(fcr/fi) . m . cos 2nfx, where g is given by 
Eq. (4) it follows that the response of the difference-of-Gaussians CV operator to 
the same image is [g(fa/&) - g(fpl&)] .rn .cos 2-nfx. So the MTF of D,, is 

(2n2f 2/L). [a’ .exp( -2z2a2f ‘/L) - /I’ .exp( -2x2f12f 2/L)] (10) 

which is negative for f < [(L/II’@’ - a*)] ln(/?/a). So all difference-of-Gaussian 
CV operators (i.e., all scale parameter pairs a, /I with /I > a) cause a contrast rever- 
sal for low spatial frequencies, (And since Marr and Hildreth’s Del*-G function is 
effectively equivalent to a difference-of-Gaussians with fl= 1.6a, the same will be 
true of it as well.) 

Of course the difference-of-Gaussians family does not exhaust the set of all 
possible spread functions that might be used to model lateral inhibition. However, 
the following result shows that any spread function consisting of a positive 
(excitatory) central region surrounded by a negative (inhibitory) region will create 
wrong-way Mach bands in its edge response. 

THEOREM 3. Suppose a spread function S[x2 + y2] is positive for ,/m< C 
(C> 0), and negative for dm> C, and the input image Z is an edge of the form 
Z(x’, y’) = L for x’d0; Z(x’, y’) = L + D for x’> 0, with D > 0. Let V denote the 
volume under the spread function S, and R(x) the profile of the output image created 
when the CV operator with spreadfunction S is applied to Z (i.e., R(x) = O[Z](x, 0)). 
Then R(0) = V; lim,, o. R(s) = V; and R(x) < V for x> Cl&. Similarly, 
lim x _ _ o. R(x) = V, and R(x) > V for x < - C/G. 

(In other words, the profile of the edge response along the x axis is V at the edge 
itself and asymptotically V again at + co, dips below V on the high side of the edge 
for C/,,h < x < 00, and rises above V on the low side of the edge for x < -c/A. 
Thus the edge response of any lateral inhibitory CV operator always contains the 
kind of wrong-way Mach bands illustrated in the bottom panel of Fig. 8.) 

Proof The edge response profile R(x) is 

R(x) = i_“- 1: cn LS[L{(x’-x)‘+ Y’~}] dx’dy’ 

+lp jm (L+D)S[(L+D){(x’-x)~+ y’}]dx’dy’. (11) 
-m 0 
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Now in the first integral make the change of variables u = (x’ - x) &, v = y’ fi, 
and in the second the same change using J= instead of fi. Then we have 

The first integral here is 

-rm i_, s[u2 + 0’1 du dv 

and consequently we can write the edge response in form 

R(X) = v+ j-_l, j,” ,/‘3 S[u2 + u’] du dt. 

So the profile R(x) is V at x = 0, and its limit as x + + co (or - 00) is also V. 
For 0 < x < co, R(x) equals I’ plus the integral of S[u2 + u2] over the vertical strip 
defined by -xds<u< -xfi, -cocovvco. If -x&d-C this strip 
falls entirely within the region where S is negative, so the integral is negative and 
R(x) < I/. Thus for x 2 C/J%, R(x) < R(0) = R(a), Q.E.D. The same argument 
applied for x < 0 shows that there will be a symmetrical wrong-way Mach band on 
the low side of the edge. 1 

So for deterministic input images, all CV operators based on lateral inhibitory 
spread functions create an edge response containing Mach bands bulging the wrong 
way. Section 4.3 shows that this is also true of the expected response to a Poisson 
noisy edge. 

4. CV OPERATORS AND PHOTON-NOISY IMAGES 

4.1. Overview 

Now we consider input images in which the deterministic values Z(x’, y’) are 
replaced by random variables Q(x’, y’) corresponding to the quantum catches at 
each photoreceptor during some fixed period of time. The Q(x’, v’) are assumed to 
be mutually independent, and each has a Poisson distribution with expected value 
q(x’, v’) = E{Q(x’, y’)}. The mean value function q will be referred to as the 
“expected input image.” The output image O[Q](x, y) is now a spatial stochastic 
process, and interest centers on its mean and variance at each point. The mean 
value function E(O[Q](x, y)} will be called the “expected output image.” 
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Our main concern here is to show that for Poisson noisy input images, CV 
operators with nonnegative spread functions create results consistent with the 
properties of human spatial vision, whereas spread functions with negative lobes 
lead to distinctly nonvisual results. The first point has already been demonstrated in 
an earlier paper (Yellott, 1987). That paper derives expressions for the mean and 
variance of the Gaussian CV operator’s response to uniform fields and for its expec- 
ted response to sinusoidal gratings and circumscribed test spots. These results allow 
one to determine the input image parameters (grating contrast, etc.) needed to dis- 
criminate test images from uniform fields, and consequently to compare those 
parameter values to the results of psychophysical experiments. The main results of 
that analysis are illustrated here in Figs. 10, 11, and 12. Altogether, they show that 
a Gaussian CV operator applied to noisy images duplicates the major qualitative 
properties of human spatial vision (as outlined earlier in Section 1.2) for retinal 
illuminance levels ranging from absolute threshold (ca. lop4 td) to lo3 td. In that 
range it causes the CSF to rise and shift rightwards along the spatial frequency axis 
(Fig. lo), so that acuity rises overall by a factor on the order of 100, and peak con- 
trast sensitivity grows from 10 to more than 100. It also causes the CSF to change 
shape from low pass to bandpass as the mean quantum catch rises above 1 quan- 
tum/receptor, so that Mach bands begin to appear at edges for retinal illuminances 
above 0.1 td (Fig. 11). And it causes spot detectability (the increment threshold) to 
obey the deVries-Rose law at low background levels and Weber’s law at high 
levels, with the emergence of Weber’s law coming sooner the larger the test spot 
(Fig. 12). 

l/threshold contrast 

1000 

mean quanta/receptor 

1 5 10 100 1000 

1 
.ooo 1 .oo 1 .Ol .l 

spatial frequency (cycles/receptor) 

I 
1 

FIG. 10. Spatial contrast sensitivity functions of the Gaussian CV operator applied to photon-noisy 
sinusoidal gratings at different mean illuminance levels. A given curve shows the input contrast 
(sensitivity = l/contrast) needed to produce a tixed level of detectability (peak d’= ,,6) in the output 

image as a function of input frequency. 
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FIG. 11. Expected response profiles for the Gaussian CV operator (u = 100) applied to photon-noisy 
edges (dotted curves) compared with its response to deterministic edges (solid curves). The input image 

is a step at zero from mean illuminance L quanta/receptor to L + D. When L is 10 or more the expected 
response. for noisy input images coincides with the deterministic response (bottom graph). As L falls 

below 10 the expected response to noisy edges falls below the deterministic response (middle graph), and 
eventually its Mach bands disappear (top graph). 

The derivation of these properties of the Gaussian CV operator in Yellott (1987) 
relies extensively on two general results established there: 

(1) At moderate to high light levels (when q(x’, y’) is uniformly 2 10 quanta) 
the expected output image E{G,[Q](x, y)} is effectively the same as G,[q](x, y), 
i.e., the output image obtained by applying G, to the corresponding expected input 
image. (Figure 11 illustrates this point.) In other words, despite its nonlinearity the 
CV operator commutes with the expectation operator, as long as the light level is 
not too low. So for these input images, all of the results derived for the Gaussian 
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LOG BACKGROUND INTENSITY 
(MEAN QUANTA/RECEPTOR) 

FIG. 12. Increment threshold vs background intensity (t.v.i.) predictions of the Gaussian CV 
operator G,, applied to photon-noisy images. Solid circles show the predictions for a 9” (diameter) test 

spot. The solid line is Aguilar and Stiles’ (1954) t.v.i. curve for a 9” test spot detected by rods. The G,m 
predictions are generated by calculating the increment needed to achieve a d’ of 6 at the response peak. 
(This d’ was chosen to make G,,’ s t.v.i. curve coincide with Aguilar and Stiles’ at L = 100. The predicted 

threshold at L = 0 assumes a dark light of 10-4.4 mean quanta/photoreceptor. The dark light has no 
effect on the other predicted values.) Empty circles show G,,’ s t.v.i. predictions for a smaller (0.8”) test 
spot. Note that the smaller spot requires a higher background intensity to reach its Weber’s law range 

(L = 100 vs L = 10 for the 9” spot). 

CV operator in the deterministic case can be carried over intact to the Poisson 
noisy case. 

(2). At very low light levels (q(x, y) uniformly 60.1 quantum) the Gaussian 
CV operator becomes equivalent to the shift-invariant linear operator whose 
impulse response is the Gaussian spread function S(r2) = [ 1/(2na2)] exp( - r2/2a2). 
Thus at low light levels G, acts like a linear filter. 

Section 4.3 shows that these two properties are also true of the difference-of- 
Gaussians CV operator D,,. Consequently at moderate to high light levels that 
operator’s expected output image for an edge input will contain wrong-way Mach 
bands, just as it does in the deterministic case, and the CSF will become negative 
(contrast reversal will occur) for low spatial frequencies. And at low light levels 
D,, becomes equivalent to a linear operator with a difference-of-Gaussians impulse 
response, so its predicted CSF will exhibit low-frequency attenuation (bandpass 
filtering) in the illuminance range where the human CSF resembles that of a low- 
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pass filter. Thus for photon-noisy input input images at both high and low light 
levels, combining a difference-of-Gaussians spread function with the CV operation 
leads to output images that are qualitatively inconsistent with the facts of spatial 
vision. And Section 4.3 shows that these defects are common to all CV operators 
with spread functions that embody lateral inhibition. 

Before turning to these points we first show how photon noise itself provides a 
rationale for CV operators. 

4.2. Photon Noise and CV Operators 

As Rose (1942, 1948) and deVries (1943) pointed out many years ago, the ran- 
dom nature of photon absorption imposes an ultimate limit on contrast detection in 
any visual system. If the illuminance (mean quantum catch per photoreceptor per 
unit time) in some portion of an image is Z, the actual quantum catch in an area 
containing R receptors over any time interval T is a Poisson random variable with 
mean and variance equal to ZRT. If one patch of retina containing R receptors 
receives illuminance Z, and another patch of the same size receives illuminance 
Z+ cl (c > 0), the “brighter” patch can only be identified in any given time period if 
its actual quantum catch is larger. Using the normal approximation to the Poisson 
distribution it is quickly shown that for this minimal condition to be satisfied with a 
failure rate on the order of 1 %, one needs a mean total quantum catch per time 
period on the order of 

ZR > 10/c’. (12) 

Thus reliable detection of 100% contrast requires a mean total catch on the 
order of 10 quanta, 10% contrast requires 1000, etc. Current estimates indicate that 
the mean quantum catch of a single primate photoreceptor is about 4 photons per 
second per troland of retinal illuminance. (Baylor, Nunn, and Schnapf, 1984). 
Visually, a full second is rather a long interval: the temporal integration period of 
photoreceptors is more like a quarter-second at the very most. So as a rule of 
thumb we can say that individual receptors catch an average of one quantum per 
“visual time unit” for each troland of retinal illuminance. The working range of the 
human visual system spans about 10 log units, from 1O-4 to lo6 td. Over that range 
the contrast threshold (for large targets) never exceeds 100% and generally is much 
lower (ca. 20% above lo-’ td, and 10% or less at higher levels) (e.g., Aguilar and 
Stiles, 1954.) When these parameters are combined with Eq. (12), it is obvious that 
over most of its operating range the visual system must be detecting contrast on the 
basis of the summed quantum catch of many photoreceptors: it must pool at least 
lo5 receptors to detect 100% contrast at 1O-4 td, at least 25,000 to detect 20% at 
lop2 td, etc. It is only when the mean illuminance reaches 1000 td that 1% contrast 
can be detected on the basis of the quantum catch of a single receptor. 

Spatial summation can thus be seen as a mechanism that is forced on the visual 
system by the statistics of light itself: it raises the effective quantum catch to an 
acceptable level by increasing the effective collection area. At the same time, 
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however, spatial summation limits spatial resolution, since two points cannot be 
resolved if both fall inside a common summation area. So while contrast sensitivity 
considerations dictate a large summation area, spatial resolution considerations dic- 
tate a small one. The signal detection requirement expressed by (12) suggests how 
this conflict should be resolved: to maximize spatial resolution across different light 
levels while maintaining a constant reliability of detection for any given contrast 
level, the quantum collection area R should vary inversely with the light level I. 
This is what CV operators are designed to accomplish automatically-in effect by 
causing each photoreceptor to vote on the proper size of the collection area, based 
on its own quantum catch. 

The striking point, of course, is that a mechanism designed simply to match the 
spatial summation area to the prevailing light level (that is, to the prevailing signal- 
to-noise ratio of the photoreceptor quantum catch) should prove to automatically 
create edge enhancement and Weber’s law-effects that are usually thought of as 
quite unrelated to photon noise. 

Figures 13 and 14 illustrate how effective CV operators are at taming photon 
noise. The left hand panels in both figures show scan lines across simulated photon- 
noisy input images of a 50% contrast vertical edge at different light levels. The 
input image in each case was a 256 x 256 pixel image in which the value at each 
pixel was a Poisson random variable with a mean of L for pixels to the left of center 
(i.e., the left half of each image), and L + D for pixels to the right of center. The 
ratio D/L was held constant at 0.5, and L ranged from 0.1 (in the top left panel of 
Fig. 13) to 10,000 (in the bottom left panel of Fig. 14). The figures show the actual 
pixel values along two horizontal lines across the input images. One can see that for 
L values below 10 (Fig. 13) the edge itself is essentially invisible in the input image, 
and even at L = 100 the jump in mean quantum catch to the right of the edge is still 
obscured by noise. The right hand panels show scan lines across the same images 
after they have been processed by the Gaussian CV operator (with rr = 100 pixels). 
For L=O.l and 1, where the operator is effectively linear, the output image has a 
monotonically increasing profile, so the only effect of the operator is to smooth out 
the noise. One can see that it does this quite effectively. (Yellott, 1987, shows that 
the variance of G,[Q](x, y) for any Poisson-noisy input image never exceeds 
4.54/o*. For u = 100 this means that the standard deviation is at most 0.02, at any 
point in the output image, versus an average value on the order of 1.0. Computer 
simulations such as the one illustrated in Figs. 13 and 14 indicate that for most 
input images the actual output noise level is about 10 times smaller than this upper 
bound-the standard deviation is on the order of 0.002 rather than 0.02. For 
uniform field inputs it can be shown that the exact expression for the variance of 
G,CQltx, Y) is (1/8~~*)Cl- exp( -2L)l, where L is the expected number of 
quanta at each input point. This means the output standard deviation for uniform 
fields is at most 0.002. It seems likely that this is also true for edge input images, but 
no analytic expression is known for the output variance in that case-or indeed, for 
any input image except uniform fields. (This is another important open problem.) 

Once the input image quantum catch levels reach 10 or more mean quanta per 
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FIG. 13. Scan lines across Poisson noisy input images (left panels) and across their output images 
after application of the Gaussian CV operator G ,m (right panels). The input images were noisy vertical 
edges with a mean value of L to the left of center and L + D to the right of center, with D/L = 0.5 in all 
cases. Image size = 256 x 256 pixels. The left panels show the actual pixel values along two representative 
horizontal lines across the input image. Solid horizontal lines in the left panels indicate the mean input 
intensity level (i.e., L + D/2). In the top two panels the ordinate scale is the actual quantum catch: the 

scale for the upper scan line is shown on the left, and for the lower scan line on the right. In the bottom 
left panel the ordinate scale unit is 20% of the mean value: i.e., tick marks indicate L + D/2 plus or 

minus 20%, 40%, etc. The right hand panels show the output image values across the same two 
horizontal scan lines as those on the left. Solid horizontal lines here indicate the expected value of the 
edge response at the edge itself. In the bottom panel the tick marks indicate increments of 0.025 above 
and below 1.0. 

26 
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L = 1000 D = 500 

FIG. 14. Continuation of Fig. 13 at higher light levels, 

pixel (Fig. 13, bottom panel, and all panels of Fig. 14) the CV operator’s nonlinear 
properties are fully expressed-Mach bands begin to appear at edges, and their 
maximum and minimum values obey Weber’s law. In this range the expected edge 
response is given by Eq. (5). The maximum and minimum values of that response 
do not depend on the 0 parameter of the operator, but only on the contrast D/L. 
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Since the output image variance is bounded by 4.54/02, the output signal-to-noise 
ratio at the peak of the edge response can be made as large as desired by adjusting 
0. In other words the Gaussian CV operator allows us to preset the detectability of 
fixed contrast edges (i.e., a fixed D/L ratio) at any desired level, and that level will 
remain constant across all illumination levels (i.e., for all values of L). Thus the 
visibility of any given reflectance ratio between an object and its background can be 
held constant despite changes in the prevailing illumination. 

4.3. Lateral Inhibitory CV Operators and Photon-Noisy Images 

Our goal now is to show that when the input image contains Poisson noise, any 
CV operator based on a lateral inhibitory spread function will create output images 
that are inconsistent with the facts of perception. The demonstration here follows 
the same pattern as that given in Section 3.6 for deterministic images: first we show 
that the difference-of-Gaussian CV operator D,, will not work, and then we show 
that its defects are common to all CV operators whose spread functions have a 
positive central region surrounded by a negative zone. As before, we focus on the 
edge response. 

As noted in Section 4.1, the Gaussian CV operator G, behaves quite differently 
for photon-noisy images at high and low light levels. At high levels its expected out- 
put images are essentially the same as those created in the deterministic case. More 
precisely, one can show (rather laboriously) the following: 

THEOREM 4. If the expected input image q(x’, y’) is > 10 quanta for all (x’, y’), 
then 

E{G,CQl(x, y) = Wqlk Y) (13) 

with an error of at most .045. 

(Recall that the uniform field response of G, is 1.0, so the error in (13) is on the 
order of 5% at most. Computational experience shows that it decreases very 
quickly as q increases above 10.) 

Proof. Yellott (1987, Theorem 1). 1 

Now suppose the input image Q is an edge: q(x), y’) = L for x’ < 0; q(x’, y’) = 
L + D for x’ > 0, with D > 0. If L 2 10, Theorem 4 combined with Eq. (8) allows us 
to write 

W~,~CQ~(X~ Y)) = WWQl(x, Y) - G,L-Qlk Y,> 

= GCqlk Y) - G,Cqlb Y) 

= D,,Cqlk Y ), (14) 
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where D,Jq](x, y) is the deterministic edge response given explicitly by Eq. (9) 
and illustrated in Fig. 8. So for high light levels the expected edge response of D,,, 
will contain the wrong-way Mach bands shown in that figure. 

At very low light levels Mach bands are not present perceptually (Ratliff, 1965). 
Figure 11 shows that this fact is consistent with the Gaussian CV model: its Mach 
bands disappear when the expected quantum catch falls below 0.1 quantum/ 
receptor. Yellott (1987) shows that when L and L + D are both small enough that 
their squares can be treated as zero, the expected edge response of G, becomes 

WdQl(x, Y,} = L + D ~Nxb). (15) 

Consequently under the same conditions we have 

Wu,aCQlb, A> = D. [W/a) - W/P)l. (16) 

Equation (16) is the edge response of a linear operator whose impulse response is a 
difference-of-Gaussians. It contains Mach bands whose maximum and minimum 
fall at 

x= ~J2[a*/?*/(/?*-c?)] ln(/?/cr). 

So at low light levels the CV operator D,, creates Mach bands, although none are 
present perceptually. 

It remains now to show that the defects of the expected edge response of the dif- 
ference-oi-Gaussians CV operator are shared by any CV operator whose spread 
function embodies lateral inhibition. For the low-light defect this point is 
immediately obvious. Suppose that both L and L + D are < 0.1. Then the 
probability of a quantum catch greater than 1 at any point is less than 0.005, so 
almost all photoreceptors catch either 1 quantum or none. If the receptor at (x’, y’) 
catches no quanta, it creates no pointspread function, and if it catches one it gives 
rise to the pointspread function S[(x - x’)’ + (y - y’)‘]. Other pointspreads occur 
with negligible probability. So the effect of the CV operator at these light levels is 
essentially the same as that of the linear operator whose impulse response is 
S[x* + y*]. (All this can be shown rigorously, but the point seems so intuitively 
clear that we spare the reader an elaborate calculation.) Consequently if the spread 
function S contains negative lobes that would create Mach bands in the edge 
response of a linear operator, it will also create such Mach bands in the edge 
response of a CV operator once the light level becomes sufficiently low. And that, of 
course, is precisely what one does not want a model to predict. 

Now consider high light levels. For the difference-of-Gaussians CV operator the 
proof that wrong-way Mach bands will appear in the edge response at these levels 
was easy because of Theorem 4, i.e., because of the fact that for the Gaussian 
operator G, (and consequently D,, as well) E{O[Q](x, ~)x0[E{Q>](x, y). If 
this property could be shown to hold for all CV operators, regardless of the 
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spread function, then we could simply apply the deterministic-case Theorem 3 to 
the expected edge response for Poisson-noisy images and thereby show that all 
spread functions containing a positive central zone and a negative surround must 
create wrong-way Mach bands at high light levels. Unfortunately we have no proof 
that Theorem 4 holds for arbitrary spread functions. (This is perhaps the single 
most important open problem in the theory of CV operators.) Consequently we 
must take a longer route to obtain the following analog to Theorem 3: 

THEOREM 5. Sup ose the spreadfunction S[x2 + y2] is positive for ,/m < C 
and negative for ti x + y > C; and that the expected input image is the edge 
q(x, y) = L for x < 0, q(x, y) = L + D for x > 0, with D > 0. And suppose L is 
large enough that the cumulative Poisson distribution function P(Q Gm) = 
CF= 0 Lk( l/k!) exp( -L) can be replaced by the distribution function of a normal ran- 
dom variable with mean and variance L. Let R(x) denote the profile of the expected 
output image along a line perpendicular to the edge, and V the volume under the 
spread function S[x2 + y’]. Then R(0) = V= lim,, *m R(x); R(x) < V for x > C; 
and R(x) > V for x c - C. 

(In other words, when the expected quantum catch/receptor is on the order of 30 
or more, the expected edge response of a lateral inhibitory CV operator will always 
contain wrong-way Mach bands.) 

Proof For this input image the expected output image is 

E{WQlk Y,} =E I_,, j_s, Q(x’~ Y’) 
[ 

x S[Q(x’, y’){ (x - x’)‘+ (y - Y’)~}] dx’ dy’ 1 
=jm 5” f kS[k{(x-x’)‘+(y- y’)*}l 

--m -00 k=l 

x Lk( l/k!) exp( - L) dx’ dy’ 

Let Zl denote the first integral in the last equation, and 12 the second. Making the 
change of variables u = (x’ -x) &, v = (y’ - y) 4, we have 

II = kz, Lk(l/k!) exp( -L) fl:, r:” SCu2 + v21 du do (17) 
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and 

z2= -f (~+D)“(l/k!)exp(-L-D)[~ ~~~x~S[u2+u2]dudu 
k=l -02 

=kt, v‘+wk (l/k!) 

v/i; 
S[u* + Y* -J du du 1 

= V[l -exp(-L-D)] 

- kzr(L+D)k(l/k!)jm I-?Y[u*+c’]dudu. 
-cc --SC 

(18) 

Adding (17) and (18) we obtain the expected edge response: 

E(O[Ql(x,y)}=R(x)=V[1-exp(-L--D)]+ f (l/k!) 
L k=l 

x [Lkexp(-L)-(L+D)kexp(-L-D)] 

cc 
X 

I 1‘ 

-.TJi; 
S[u* + u’] du do . 

1 
(19) 

-03 -02 

Setting x = k co in (19) yields 

R(-co)= Y[l-exp(-L)]z V for large L 

and 

R(m)= V[l--exp(-L-D)]= V. 

Setting x = 0 we have 

R(0) = ( V/2)[2 - exp( -L) - exp( -L - D)] z V. 

So for L values in the range assumed by the theorem the edge response equals the 
volume constant Vat x= + co and at x=0. Now we need to show that R(x) dips 
below V for x > C (i.e., a wrong-way Mach band begins at that point) and rises 
above V for x < -C. We show the former explicitly and then appeal to symmetry 
to prove the latter. Let V(x, k) denote the integral in (19), i.e., 

V(x,k)= Im [--?S[uz+u2]dudu, 

and let 

s(x, j) = j’= 
- CT2 

jI.12 S[u2 + u’l du du 

480/33/l-3 



32 

so that 
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V(x, k)= 2 s(x, j). 
j=k 

We note that for x > C, s(x, i) is negative for all j> 1, since in that case S[u* + II*] 
is negative throughout the vertical strip -x m 6 u 6 -x fi. Now let 

d(k) = ( l/k!)[Lk exp( -L) - (L + D)k exp( -L - D)]; 

i.e., d(k) is the difference between P(Q = k) when Q is Poisson with mean L and 
P( Q = k) when Q is Poisson with mean L + D. Then Eq. (19) can be rewritten as 

R(x)= V[l -exp(-L-D)] + f d(k) V(x, k) 
k=l 

= V[l-exp(-L-D)]+ 2 d(k) 2 ~(x,k) 
k=l j=k 1 

d(k) f s(x, k) 1 (for large L) 
,=k 

s(x, k) i d(j) 1 . (20) 
j=l 

Now when L is large enough to justify replacing the cumulative Poisson 
distribution function with the cumulative normal distribution function N, (19) 
becomes 

R(x)=V+ f s(x,k)[N[(k-L)/&]-N[(k-L-D)/dG]] (21) 
k=l 

For k > 0 the difference between the two normal CDFs in (21) is always positive 
and s(x, k) is always negative for x > C. Hence the entire sum is negative, so 
R(x) < V for x > C, as claimed. 

To show that a wrong-way Mach band will appear on the low side of the edge 
(i.e., that R(x) will be > V for x < -C) we replace L in (21) with L’ = L + D, and 
D with D’= -D. Equation (21) still describes the edge response for large L, but 
now it is the response to a downwards illuminance step from L + D to L at x’ = 0. 
The integrals s(x, k) are still all negative for x > C, since they do not depend on the 
input image, but now the difference between the normal CDFs in (21) is always 
negative. So each term in the sum is positive, and consequently R(x) > I/. But the 
response for x> C to an illuminance drop from L+ D to L must be the mirror 
image of the response for x < -C to an illuminance increase from L to L + D, so 
the latter must be > V for x < -C. a 
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5. DISCUSSION 

Mach himself (1865) attributed Mach bands to a “reciprocal action of neighbor- 
ing areas of the retina” which acts like double differentiation, so that light falhng on 
a given point exerts an excitatory effect at that point and an inhibitory effect at 
neighboring points. (Ratliff, 1965, reproduces Mach’s papers.) He believed that the 
function of this process is to emphasize the borders of objects. Both ideas have 
generally been accepted by subsequent investigators. Constant volume operators 
provide an alternative mechanism for Mach bands based an entirely different 
motivation. From their perspective, Mach bands and other high-pass filter effects 
can be interpreted as by-products of a retinal process whose real function is to 
maximize spatial resolution in the face of photon noise. This mechanism involves 
only positive spatial summation-lateral excitation. And as we have seen in this 
paper, if one tries to combine this mechanism with lateral inhibition the resulting 
edge response looks quite unlike the Mach bands perceived at edges. So if one 
begins with the problem of photon noise and asks how the retina might be designed 
to maximize spatial resolution across different light levels, while maintaining a con- 
stant reliability for contrast detection, one is led to a class of operators which solve 
that problem and duplicate the main features of spatial vision when the pointspread 
function is positive, but fail rather dramatically when the pointspread contains 
negative lobes. In other words, if one begins with the problem of photon noise one 
can be led among a theoretical path in which the concept of lateral inhibition holds 
no attraction at all. 

Writing in 1865, of course, Mach was unaware of the statistical problems con- 
fronting the visual system and had no reason to explore retinal mechanisms 
motivated by those problems. But the visual system itself has always had a broader 
perspective: its design has been shaped by photon noise from the very beginning. Is 
it possible that the design of the retina is based on a constant volume principle? 
The history of retinal physiology has been so strongly influenced by the concept of 
lateral inhibition that it is difficult to say how the weight of evidence would appear 
today if the idea of CV operators had been around from the start. Current 
physiological accounts are based firmly on lateral inhibition, and the notion of a 
CV operation simply does not arise. However, if one examines the physiological 
data with an open mind, it is surprisingly difficult to find evidence that un- 
equivocally rules out a CV interpretation. At a qualitative level the responses of 
retinal ganglion cells driven by a CV mechanism would look like those observed in 
electrophysiology: at moderate to high light levels ganglion cells would appear to 
have a receptive field divided into antagonistic center and surround regions, and at 
very low levels the receptive field would appear to consist only of a positive central 
zone, with no inhibitory surround. So a CV interpretation cannot be immediately 
rejected on the basis of physiology. 

A detailed comparison between psychophysical data and CV predictions for 
Poisson-noisy input images shows that while the Gaussian CV model duplicates the 
main qualitative properties of spatial vision, it fails to match human performance 
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quantitatively in certain critical respects (Yellott, 1987). In particular, it incorrectly 
implies that as retinal illuminance rises in the photopic range, the CSF should 
simply shift bodily to the right along the log spatial frequency axis, as shown here 
in Fig. 10. It this were true, contrast sensitivity would decrease at low spatial fre- 
quencies as mean retinal illuminance rises. That would be an undesirable side-effect, 
and it does not occur empirically (Van Nes and Boumann, 1967). However the CV 
model analyzed in that paper (the same model considered here in Section 4) is far 
too stark to be realistic. For example, it does not involve any temporal component: 
it treats retinal image processing on a frame-by-frame basis and ignores the fact 
that in a real retina the pointspread function would develop over time. Cornsweet 
and Reumann (1986) have studied the consequences of adding a time component to 
CV operators. They find that the resulting model can duplicate many of the well 
known temporal properties of human vision. At present it is not obvious whether 
the psychophysical defects of CV operators as visual models can be cured by tinker- 
ing with temporal assumptions: more work needs to be done on this problem. 

For the moment then, one can argue that it is an open question whether a CV- 
like mechanism has any physiological reality. But even if it turns out that evolution 
has made no use of CV operators and designed the retina along completely different 
lines, these operators would still be of interest to visual science because they are 
motivated by fundamental design considerations, i.e., by problems faced by all 
visual systems, whether biological or manmade. And they provide a simple solution 
to those problems-a solution that could readily be implemented by hardware and 
should prove useful in machine vision. For that reason alone it seems worthwhile to 
develop their theory. As we noted at the outset (and as is apparent throughout this 
paper), that theory is still in rough form: the main consequences of image proces- 
sing by CV operators have been worked out by a mixture of homespun 
mathematics and computation, but much remains to be done to create a polished 
general theory. The results of this paper show at least that one direction which 
might have seemed intuitively promising needs no further exploration: we know 
that nothing useful can be achieved by combining CV operators and lateral 
inhibition. 
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