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Abstract ﬁ
CS,
Elman (1990) proposed a connectionist architecture for CS, 1 I
the representation of temporal relationships. This ap-
proach is applied to the modeling of serial conditioning. us H

Elman’s basic simple recurrent network (SRN) was
modified to focus its attention on the prediction of
important events (Unconditioned Stimuli, or USs) by
limiting the connection weights for other events (the
Conditioned Stimuli, or CSs). With this modification,
the model exhibited blocking and serial conditioning to
sequential stimulus compounds. An exploration of the
underlying mechanisms suggests that event termina-
tions (CS offsets) were used in predicting US occur-
rences following simple trace conditioning and event
beginnings (CS onsets) were more important following
serial conditioning. The results held true under a series
of learning rate and momentum values.

Introduction

The study of classical conditioning, beginning with
Pavlov’s demonstration of dogs salivating to bells in the
early 1900s, is perhaps the most mature area of
contemporary psychology. The Rescorla-Wagner model
(Rescorla & Wagner, 1972) is one of the best known
attempts to explain and predict classically conditioned
behavior. Their model focused on the behavior of
subjects at the trial level, which differs from recent
models (e.g. Desmond, 1990; Grossberg & Levine,
1987; Grossberg & Schmajuk, 1987; Lee, 1991; Sutton
& Barto, 1981, 1990) where the focus is on inrratrial
stimulus relationships. To demonstrate the distinction,
consider the case of blocking. Here we have two con-
current events (CS; and CS,) that consistently precede a

third event (the US). However, the subject has received
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Figure 1: Serial conditioning

prior training in which CS, consistently preceded the

US. This pretraining retards or blocks the subsequent
learning of the CS,-US relationship. Trial level theories

can account for this observation, but they are silent on
the role of intratrial variables like inter-stimulus interval
(ISI - the temporal distance between CS onset and US
onset), the temporal relationships among multiple CSs,
and the duration of the CSs and USs. Intratrial models
like the present one are designed to address these var-
iables.

The particular classical conditioning paradigm in-
vestigated here is that of serial or sequential condi-
tioning. In serial conditioning, multiple CSs precede
the US, but unlike simple compound conditioning
where the CSs co-occur, serial CSs are sequentially
ordered (see Figure 1) where the first CS is presented in
a trace relationship with the US. Trace conditioning is
the term used to describe a situation where the CS is no
longer present at the time of occurrence of the US. The
second CS serves to provide a mechanism by which the
first event acts on the US. In fact, earlier work (e.g.
Bolles, Collier, Bouton & Marlin, 1978; Kehoe, Gibbs,
Garcia & Gormezano, 1979) has shown that an
intervening CS facilitates learned responding to a CS
presented in a trace relationship to the US. In essence,
it "bridges the gap."

Neural modelers have used a variety of approaches
to capture temporal relationships among inputs. The
approach adopted in this article is based on the work of
Elman (1990). Elman used a simple recurrent network
(SRN) to encode time where inputs can have sustained
effect via a recurrent delay loop (see Figure 2).
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The activations of the hidden units are fed back as
input to themselves during the following time step. This
permits the model to have some memory of its previous
state. Elman trained this type of network to predict the
input on the next time cycle: the values presented at the
output layer at time ¢ are identical to the inputs at time
t+1. The primary goal of this study is to evaluate the
promise of SRNs for modeling intratrial relationships.
The secondary goal is to determine the mechanisms
underlying the encoding of these temporal relationships.

The Model

Earlier work with SRNs demonstrated their ability to
model basic excitatory conditioning and phenomena
such as blocking (Young, unpublished data). To show
blocking it was necessary to treat the two classes of
events, the CSs and the USs, differently. Historically,
there have been two theoretical approaches to capturing
this difference and the relationship between the CSs and
the US. Mackintosh (1975) assumes that concurrent
CSs must compete for attention. Blocking occurs be-
cause the subject learns to attend to the pretrained CS,

thus interfering with later attending to CS,. Alterna-
tively, Rescorla & Wagner (1972) assume a competi-
tion among the CSs for US associative strength.
Blocking occurs because CS, has captured most of the

associative strength available from the US. The US is
no longer a surprising event (being predicted by CS))
and thus does not require any additional predictors.

The software (tlearn) used in these simulations was
developed at the University of California - San Diego's
Center for Research in Language. Tlearn provided a
mechanism to encourage CS competition. Figure 2
illustrates the architecture used. The weighted connec-
tions between the internal representations (the hidden
layer) and the non-US portion of the output layer were
limited in value. The limits were chosen as a result of
the earlier work with blocking and represent one of the
free parameters within this model. These limits con-
strain the degree to which errors in CS prediction can
affect the leaming process.

As the weights increase, hidden nodes will be more
sensitive to US errors than to CS errors. If the US is
being adequately predicted, less error will be propa-
gated back to the internal connections. This process is
analogous to the competition among CSs for US as-
sociative strength. When any error in US prediction is
reintroduced (e.g. a change in salience), the model will
be sensitive to these changes, thus allowing the CSs to
compete for the ability to predict the "new" US.

Output layer

3 Context | 2CS l 1US
2)

=
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History layer
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Figure 2: The SRN architecture used in the simulations.
Labeled arrows have a limit on connection weights:
[lower limit, upper limit]. The [1,1] connections are the
copy back links discussed in Elman (1990).

In the first set of simulations, the author tested the
model's performance during serial conditioning (see
Figure 1). Learning of the CS->US relationship should
be facilitated by the presence of the intervening CS, as
compared to a control without CS, (Bolles er al, 1978).

In the second set of simulations the roles of the onset
and offset of the trace CS following both serial and
trace conditioning were tested. The results were com-
pared qualitatively to previous empirical research.
Hence, no claims as to the correspondence between
time in the model and real time will be made. The
simulations demonstrated the performance of the model
under different parameter settings (learning rate and
momentum) to examine their effect on the qualitative
results.

The output of the US node is the dependent variable
of interest. This is a measure of the model’'s US
expectancy for the following time step on a scale of
[0,1]. Most previous modeling work uses the condi-
tioned response (CR) as a dependent variable. Since I
am not prepared to deal with the issues of learning vs.
performance, I opted for a measure of the model's
learning and suggest that the CR is a function of the US
expectancy. For comparison purposes, it may be as-
sumed that measures of CR and US expectancy are cor-
related.

Simulation 1

The first set of simulations were run to examine
performance of the model during serial conditioning,



Method

Tlearn was trained on 2 different training sets. One
training set represented the serial paradigm and con-
sisted of 2 sequential CSs preceding the US. The first
CS (CS)) was three time steps long and was
immediately followed by the second CS (CS,), also
three time steps long. During the third time step of
CS,, the US was presented and lasted for one time step,
overlapping with CS, (Figure 1). The ITI (inter-trial
interval) alternated between 5 and 7 time steps. On the
average, 12 time steps corresponded to one trial or CS-
US pairing. The presence of a CS or US was signalled
by a 1 at the comresponding input value. The trained
output values, as in Elman's (1990) model, were the
input values for the subsequent time step. Learning was
accomplished via backpropagation (Rumelhart, Hinton
& Williams, 1986). The model also contained 3
additional inputs/outputs that were present for future
work regarding the effect of contextual cues on condi-
tioning. For the current simulations, these values were
constant with values of [.5, 1, .5]. The second training
set represented a control in which the intervening CS,
was absent. Previous empirical work (e.g. Bolles er al,
1978) suggests that learning of the CS;->US relation-
ship should be slower following trace as compared to
serial conditioning.

The model was run six times for each of three sets of
parameter settings. Learning rate, designated r, and
momentum, m, were set to the following: 1) r=.1, m=0,
2) r=2, m=0 and 3) r=.1, m=3. After training,
performance was measured in response to CS,, CS, and
the CS,;->CS, compound in the absence of the US. No
leaming was permitted during this phase, thus
preventing any extinction. The ITI between the end of
the last US and the first of the test CSs was longer than
that present during training to encourage the model to
flush its temporal memory of previously occurring
stimuli. The average ITI during training was 6 while
that during testing was 12.

Results

The general results are presented in Figure 3 which
represent the model’s performance under the r=.2, m=0
settings. Qualitative results for the other settings were
quite similar and will be described below. Figure 3
illustrates the US expectancy as a function of time since
CS onset. Note that for optimal prediction, the peak of
US expectancy should occur on the time step before
presentation of the US. This was true for CS, under all
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of the parameter settings and after both serial and trace
conditioning. Regarding the facilitation of learning the
CS, ->US relationship, the results are mixed. The
expectancy appeared to grow faster under serial
conditioning during the first few 1000 time steps. This
qualitative result is clearest with the r=.1, m=0 settings.

Given the small sample size (n=6), the only
statistically significant difference between serial and
trace condition peaks (at 4 time steps following CS
onset) was at 30,000 time steps for r=.1, m=0
(1(10)=2.408, p=.037). Most of the other apparent
differences at step 4 had p-values < .2.

With further training, peak expectancy to CS; under
both conditions reached approximately the same
asymptote (after 40K time steps, p=.168 for r=.1, m=0;
p=225 for r=.1, m=3; p=741 for r=2, m=0).
However, note that US expectancy was significantly
greater during the immediately preceding time steps
under the serial paradigm.
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Figure 3: Time course of learning. The bars represent
the US expectancy after training the model for 5, 10,
20, 30 and 40 thousand simulation time steps. The x-
axis represents time steps during testing, indexed
against the onset of the test CS. Onset of US during
training (not testing) relative to the CS is noted on each
graph.



Regarding CS,, the peak expectancy tended to occur

later than optimal as training progressed. In the r=.1,
m=.3 case, the peak expectancies occurred two steps
later than expected considering the CS,->US relation-

ship. There was also a trend toward later expectancies
as the strength of the CS->US relationship grew. The

earliest US expectancy peaks (and highest*under all but
the r=.1, m=.3 setting) occurred during the first five to
twenty thousand time steps (depending on the settings).
Latency grew longer with more training.

Discussion

The first thing to note was the common gqualitative
results for all three of the parameter settings. There
were some differences in degree, but the trends were
similar. Given the small sample size, the only conclu-
sion regarding US expectancy peak that can be made is
that the mean differences between the two conditions
grew smaller with more training. A similar result was
observed by Bolles er al (1978) in their animal subjects.
They compared delay, trace and filler conditions where
the filler condition represented serial conditioning.
They observed facilitation (as measured by suppression
ratio) in the filler condition after 16 CS-US pairings.
However, after 64 pairings there were no significant
differences among the three groups.

One of the more interesting simulation results is that
serial conditioning did result in shorter latencies to CS,
under all three parameter settings. If the goal of the
system is to accurately predict the occurrence of the US,
then the trace procedure was more accurate over the
long run. However, in an adaptive sense, having a bit
more forewarning of the USs’ occurrence is beneficial.
By that criteria, serial conditioning was superior, al-
though the mechanism for this is unclear.

The graphs illustrate average performance over a
number of runs. This conceals a couple of the inter-
esting strategies adopted by some of the networks. In
two runs (one at r=.2, m=0; one at r=.1, m=.3), the
system was observed to develop no US expectancy to
presentation of CS, or CS, alone but showed a normal
expectancy to the compound (with a peak of approxi-
mately .8 to .9). This is evidence of configural learning
where the compound is treated differently than the sum
of its elements. Configural learning in animals usually
results when there is differential reinforcement of the
compound and its elements. However, in an experiment
involving simple compound (non-serial) conditioning,
Kehoe (1986) has found low levels of responding to the
elements following conditioning of the compound only.
In a similar vein, the model twice (once at r=.2, m=0;
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once at r=.1, m=0) showed US expectancy following
CS,, no expectancy following CS,, but more expectan-
cy to the compound than to CS, alone. Similar empiri-

cal results have also been observed (e.g. Kehoe, 1979).
The tendency for CS, latencies to grow longer with

more training may be the result of generalization from
the earlier CS,. This type of generalization and the

degree of supremacy of the first element in a serial
compound has been extensively studied by Kehoe &
Napier (1991) with eye blink conditioning in rabbits.
Using serial pulse stimuli, Kehoe observed that the CR
topography during test of later elements of the
compound was very similar to the topography expected
and observed to the first element of the compound. In
Experiment 2, an A->B->C->D compound was
presented where the ISI from A to the US was 400
msec. Observed CR peaks to all of the singly presented
elements occurred after 400 to 450 msec despite the fact
that the ISIs of B, C and D during training were 300,
200 and 100 msec respectively.

In simulation 2, I was interested in exploring the
variables that drive the model’s US expectancy. Moore,
Desmond and Belthier’s (1989) model relied on both
CS onset and CS offset for its responses. The next
simulation investigates the SRN model’s dependence on
these two variables following both trace and serial
conditioning.

Simulation 2

In this set of simulations, the duration of the test CS
was systematically manipulated. If, after equating for
CS onset, the latency of US expectancy was the same
for all durations of the test CS, then CS onset is
determining expectancy. However, if the US latency
systematically covaried with the changes in duration
(and thus offset), then US expectancy is based on CS
offset. The data from delay conditioning in the Kehoe
& Napier (1991) studies indicate that the earliest part of
a sequence of pulse stimuli commands substantial
responding (the remporal primacy effect). This might
generalize to apply to the earliest part of a single CS. A
different result is suggested by Boyd & Levis (1976).
Their results demonstrated a greater reliance on the
later stimuli in the compound following avoidance
conditioning. However, there is a significant difference
in the CS durations (and hence 1SIs) in the two studies.
In Boyd & Levis (1976), the CSs were 6 sec. long.
Given that they were using a three component com-
pound, the ISI from CS; to the US was 18 sec. My

hypothesis was that the durations being used in the
present simulations would be better approximated by



those used by Kehoe & Napiers (1991) rather than those
of Boyd & Levis (1976). Note that this begs the
question of optimal ISIs for the two different para-
digms, NMR in the former and avoidance responding in
the latter.

Method

The training method was identical to that used in
Simulation 1. The testing phase consisted of a
systematic variation of the duration of CS; including
time step lengths of 1, 2, 3 (the one on which it was
trained) and 6. The ITI between the last training US
and the first testing CS was also systematically varied
to investigate any effect on the system’s performance.
Testing was performed following forty thousand
training steps (approximately 3300 trials) for each of
the parameter settings used. Two runs at each of the
settings were conducted.

Results

The results are shown in Figure 4 collapsed across
parameter settings (there were no significant differences

Effect of Changing CS Duration at Test
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Figure 4: Effect of changing the duration of CS at test.
Time since CS onset represented on x-axis.
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among results for different parameter values). Note
that in the graphs, CS onset is equated across test CS
durations. Offsets vary with duration (e.g. duration 6 is
on through 5 on the graph and off at 6). Given the
training set, a US expectancy that depends on the CS
onset should peak at 4 on the graph. A US expectancy
that depends on offset should peak at 2 for duration 1, 3
for duration 2, 4 for duration 3, and 7 for duration 6.

The variation of ITIs did have an impact on perfor-
mance for some networks. Specifically the shortest test
ITI (length 7) resulted in the poorest performance while
test ITIs of 11 and 16 performed equally well.

Discussion

It is apparent that the model depends primarily on CS
offset for predicting US occurrence during trace con-
ditioning. However during serial conditioning, the CS
onset played a major role. All durations longer than 1
resulted in significant expectancy at time steps 3 & 4.

Following serial conditioning, the CS offset played a
larger role in signalling when to stop expecting the US
rather than in initiating expectancy. The longer the CS
was on, the more sustained the expectancy. Hence, the
offset tends to attenuate expectancies at time 3, 4, 5,
and 8 for durations of 1, 2, 3, and 6 respectively. This
helps to explain the lack of a peak at time 3 or 4 for the
CS of length 1 and the drop in expectancy from 3 to 4
for the CS of length 2. The apparent drop at 4 for the
CS of length 3 was not significant.

Note that the observed dependence on CS onset vs.
offset will likely change for different trained CS
durations. Longer CSs will drive the system to use the
nearer CS offset for US initiation while shorter CSs
lessen the burden of reliance on the farther onset.

The fact that the test ITI of 7 performed worst was a
surprise considering that the model was trained using an
ITI that varied between 5 and 7. The initial reason for
testing this independent variable was to insure that the
system was not learning about the regularity of US
occurrence. Hence, it was a surprise that matching the
test ITI to training ITI resulted in worse performance.
The short training ITI may have actvally retarded the
network’s learning.

General Discussion

The model produced very different event representa-
tions as the result of serial vs. trace conditioning. Other
intratrial models of conditioning (e.g. Grossberg &
Levine, 1987; Grossberg & Schmajuk,1987, 1989;



Klopf, 1988; Lee, 1991; Sutton & Barto, 1981, 1990)
have been tested on a wide variety of conditioning
paradigms. The SRN model’s performance on serial
conditioning demonstrates promise and it should be
compared to that of the other models. Empirical work
can then be planned to resolve the theoretical differ-
ences. As a model of conditioning, the current model is
not comprehensive. Motivation, drive, habituation, and
instrumental training have yet to be explored.
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