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Abstract

Due to the exponential growth of computational algorithms, artificial intelligence (AI) methods are 

poised to improve the precision of diagnostic and therapeutic methods in medicine. The field of 

radiomics in neuro-oncology has been and will likely continue to be at the forefront of this 

revolution. A variety of AI methods applied to conventional and advanced neuro-oncology MRI 

data can already delineate infiltrating margins of diffuse gliomas, differentiate pseudoprogression 

from true progression, and predict recurrence and survival better than methods used in daily 

clinical practice. Radiogenomics will also advance our understanding of cancer biology, allowing 

noninvasive sampling of the molecular environment with high spatial resolution and providing a 

systems-level understanding of underlying heterogeneous cellular and molecular processes. By 

providing in vivo markers of spatial and molecular heterogeneity, these AI-based radiomic and 

radiogenomic tools have the potential to stratify patients into more precise initial diagnostic and 

therapeutic pathways and enable better dynamic treatment monitoring in this era of personalized 

medicine. Although substantial challenges remain, radiologic practice is set to change 

considerably as AI technology is further developed and validated for clinical use.
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Summary

Advances in artificial intelligence applied to radiomics and radiogenomics in neuro-oncologic 

imaging will improve our diagnostic, prognostic, and therapeutic methods, helping propel the field 

into an era of precision medicine.

Artificial intelligence (AI) is a broad term that describes any task performed by a computer 

that normally requires human intelligence, including explicit rule-based systems, as well as 

computer algorithms that do not require hard-coded rules (Fig 1). Machine learning, which 

falls under the umbrella of AI, is a branch of data science that enables computers to learn 

from existing “training” data without explicit programming to make predictions about new 

data points. Deep learning is a subclass of machine learning based on neural networks, 

containing a large number of layers, made possible due to recent computational advances. 

Machine learning and deep learning methods are being increasingly adopted for radiomics 

research, which relies on medical imaging data as quantitative imaging biomarkers. The 

overarching goal of AI-based research in neuro-oncologic imaging is to better understand 

the complex manifestations of heterogeneous central nervous system (CNS) neoplasms in 

hopes of improving patient outcomes.

Machine Learning Methods

Most applications of machine learning in medical imaging have relied on supervised forms 

of machine learning, which consist of algorithms that are trained on “ground truth” labels. 

Labels can include different classes of diagnoses (eg, high- vs lower-grade glioma), different 

prognoses (eg, long vs short survival), or different classes that exist within a single set of 

image volumes (eg, enhancing tumor vs necrotic tissue vs edema vs normal brain tissue). 

When provided with sufficient examples of the different classes, algorithms “learn” how to 

classify novel data. Supervised machine learning methods include logistic regression, 

support vector machines, and random forests, as well as tools useful for clinical decision 

support (eg, decision trees and Bayesian networks) (1,2). In general, these traditional 

supervised approaches are applied to explicitly engineered intermediate features, often after 

a step of feature reduction, which is necessary to reduce model complexity and avoid 

overfitting (ie, memorizing the training sample cases rather than learning the relevant 

pattern)—a prevalent problem that creeps into many machine learning studies without 

proper “held out” validation samples. These approaches, while powerful, oftentimes require 

extensive, domain-specific, expert knowledge about the underlying biologic basis of the 

process being studied. Another frequently used category of machine learning is unsupervised 

algorithms, such as k-means clustering, which can generate novel groupings or categories 

from complex data sets and have important roles in discovery science and big data.

Deep Learning Methods

Deep learning grew out of a desire to model the tiered organization of the mammalian 

brain’s visual cortex, where hierarchically organized layers process increasingly complex 

intermediate visual features such as lines, edges, shapes, and entire visual objects (3–6). The 

recent growth of computing power through parallel graphical processing units and improved 
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mathematical optimization methods enabled upscaling the architectures of these neural 

network models to contain many intermediate layers, differentiating deep learning from 

traditional neural networks, which were first conceived in the 1940s (3–6). Through an 

iterative process of up-dating model weights (“backpropagation”), these algorithms learn to 

appropriately identify lower and intermediate level image information in order to maximize 

classification performance. Typically, convolutional neural networks (CNNs), a class of 

feed-forward neural networks, have been used for image-based problems. In recent years, 

deep learning approaches have achieved super-human performance on visual processing 

tasks, as benchmarked by the ImageNet challenge, a yearly competition to test algorithms on 

visual recognition tasks (7,8). Interestingly, the weights derived from these networks trained 

on ImageNet can be adapted for new tasks, including medical images, in a process termed 

“transfer learning.” Although some deep learning architectures for medical image processing 

use transfer learning, others use custom image-naive architectures, which may perform 

better depending on the specific task. Although deep learning models can run quickly and do 

not require as much manual intervention as traditional machine learning approaches, they 

tend to require large amounts of labeled training data in order to be robust to data variability.

Radiomics in Neuro-Oncology

Although clinical radiology generally relies on visual assessment of images in subjective and 

qualitative terms, the field of radiomics extracts information from clinical images for use as 

quantitative imaging biomarkers (9,10). The first essential step of radiomics generally 

involves lesion segmentation (Fig 2, A), which is generally preceded by image preprocessing 

steps including skull stripping, intensity normalization, and alignment of image volumes 

from different modalities. A variety of methods have been used for segmentation, ranging 

from manual labeling and/or annotation and semiautomated methods (11) to more recent 

deep learning methods (12–14).

The next step of radiomics with traditional machine learning involves the extraction of 

quantitative features, including basic shape, size, and intensity metrics, as well as more 

complex features derived from a variety of statistical approaches applied to the images, for 

example, histogram-based features, texture-based features, fitted biophysical models, spatial 

patterns, and deep learning features (Fig 2, B). A variety of different machine learning 

models can then be applied to the intermediate quantitative features in order to “mine” them 

for significant associations, allowing them to predict crucial information about a tumor, such 

as infiltrating tumor margins, molecular markers, and prognosis (Fig 2, C), which are 

relevant for therapeutic decision making. Alternatively, deep learning approaches to 

radiomics in neurooncology generally necessitate less domain-specific knowledge compared 

with the explicitly engineered features for traditional machine learning, allowing them to 

make predictions without explicit feature selection or reduction steps.

Public Neuro-Oncology Radiomic Data and Competitions

Advances in the field of segmentation and radiomics within neuro-oncology have been 

supported by data made available through the Cancer Imaging Archive (TCIA) (15), which 

is part of a larger effort from the Cancer Genome Atlas (TCGA) (http://
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cancergenome.nih.gov/). Since 2012, TCIA data have been further curated through the 

annual Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge 

(16,17), which seeks to improve the accuracy of automated glioma segmentation and 

survival prediction with preoperative MR images. This public data set contains multimodal 

images of high- and lowergrade gliomas with expert manual segmentations with five labels 

(healthy brain tissue, necrosis, edema, and nonenhancing and enhancing tumor). Deep 

learning approaches have surpassed more traditional segmentation methods to win the 

BraTS challenges in 2016 (12) and 2017 (14).

Current Methods in Neuro-Oncologic Imaging

Most research in neuro-oncology has focused on diffuse gliomas, World Health Organization 

(WHO) grade II–IV tumors, which are typically divided into lower-grade gliomas (WHO 

grade II and III) and glioblastoma (WHO grade IV) (18). Much work has focused on 

glioblastoma, given that it represents more than half of malignant primary brain tumors and 

has an aggressive course and grim prognosis (19). Lowergrade gliomas can sometimes 

progress into glioblastoma, and these are known as secondary glioblastomas. A variety of 

other brain tumors, including WHO grade I tumors, pediatric CNS tumors, primary CNS 

lymphoma, and brain metastases, encompass important areas of neuro-oncology but 

represent lessactive areas of research given smaller sample sizes, more disease 

heterogeneity, and relatively lower morbidity.

Given its excellent soft-tissue contrast, MRI is the central tool for tumor detection and 

characterization. Conventional MRI sequences, which include pre- and postcontrast T1-

weighted imaging, T2-weighted imaging, and T2-weighted fluid-attenuated inversion 

recovery (FLAIR) sequences, are good at helping delineate tumor volume and morphologic 

characteristics. Unfortunately, contrast enhancement is nonspecific and the detection of foci 

of tumor infiltration within the T2-weighted FLAIR signal intensity abnormality is nearly 

impossible with conventional sequences (20). Most institutions rely on other advanced MRI 

methods that are more sensitive to this crucial aspect of tumor physiology. Diffusion-

weighted imaging is a useful method for evaluating areas of high cellularity and can be 

extended to diffusion tensor imaging, which can help identify tissue microstructure and 

depict neoplastic infiltration in areas of brain that appear normal on conventional MR 

images (20–22). Perfusion MRI with dynamic susceptibility-weighted contrast material 

enhancement, dynamic contrast enhancement, or arterial spin labeling exploits the 

neoangiogenic properties of gliomas. MR spectroscopy, which depicts the distribution of 

chemical metabolites such as choline, creatine, and N-acetylaspartate, is used clinically for 

grading gliomas and identifying regions of tumor infiltration (23,24). Despite the potential 

viability of these advanced modalities, they are usually interpreted in a qualitative manner. 

Their widespread adoption is further complicated by variability across sites, imaging units, 

and postprocessing methods.

Genomics and Radiogenomics in Neuro-Oncology

Vast mutational, molecular, and microenvironment heterogeneity in CNS neoplasms 

substantially complicates diagnostic and treatment approaches. Diffuse gliomas typically 
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harbor more than 60 genetic alterations, encompassing several major cellular pathways (25). 

Developing a better understanding of these cellular pathways is crucial for improving 

diagnostic methods and delivering targeted therapies. In fact, given the prognostic 

significance of different mutations, molecular markers have recently taken a larger role in 

establishing an “integrated diagnosis,” as seen in the most recent 2016 WHO classification 

of CNS tumors (26) (Fig 3). For example, glioblastoma is now fundamentally grouped 

according to the presence of mutations in isocitrate dehydrogenase (IDH), with worse 

survival seen in IDH wild-type gliomas (27). Seminal work analyzing gene expression data 

of subjects from TCGA (https://cancergenome.nih.gov/) identified prognostically influential 

gene expression–based subgroups, namely proneural, neural, classic, and mesenchymal, 

representing distinct cellular pathways with prognostic and therapeutic implications (28).

Further advancing our understanding of neuro-oncology is the nascent field of 

radiogenomics (imaging genomics), which correlates imaging characteristics with genetic, 

mutational, and expression patterns (29,30). Radiogenomics also has the power to 

dynamically monitor the microenvironment over the course of treatment, potentially 

allowing for a reduced number of repeat biopsies or resections. Glioma radiogenomics (Fig 

3) has begun to characterize radiomic phenotypes of several candidate genetic alterations, 

including IDH mutation, O6-methylguanine-DNA-methyltransferase (MGMT) methylation, 

epidermal growth factor receptor (EGFR) splice variant, and the 1p/19q codeletion. 

Additional work in radiogenomics has attempted to develop a systems-level understanding 

between gene expression patterns and radiomics.

Candidate Genetic Alterations

Mutations in IDH1 and IDH2 are found in 70%–80% of lower-grade gliomas but only 5%–

10% of glioblastomas, which are usually secondary glioblastomas, arising from lower-grade 

gliomas (27,31–32). IDH mutant gliomas result in the accumulation of D-2-

hydroxyglutarate, an oncometabolite absent in IDH wild-type tumors. D-2-hydroxyglutarate 

can be detected with high specificity with MR spectroscopy (33–35). Although advanced 

MR spectroscopy sequences (eg, two-dimensional localized correlation spectroscopy at 7.0 

T [36]) are highly reliable in the detection of 2-hydroxyglutarate, they are not readily 

available in most centers, which limits their utility. Interestingly, visually apparent imaging 

biomarkers, including indistinct margins and T2-FLAIR mismatch (regions within the tumor 

that are hyperintense on T2-weighted images but hypointense on FLAIR images), have been 

shown to be useful in the differentiation of IDH mutant from IDH wild-type gliomas (37). 

CNNs applied to conventional MRI modalities have been used to differentiate IDH mutant 

gliomas from IDH wild-type tumors with 92% accuracy, consistent with prior visual 

assessment and underlying pathophysiology that IDH wild-type tumors demonstrate more 

infiltrative, ill-defined margins (38).

Approximately 33%–57% of diffuse gliomas exhibit hypermethylation of the promoter of 

the MGMT gene, encoding for a DNA repair protein (39,40). MGMT promoter 

hypermethylation has been associated with better prognosis owing to improved sensitivity to 

alkylating agents (eg, temozolomide) (39,40). Radiomic studies have identified distinct 

imaging signatures for this molecular marker. Several groups have been able to predict 
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MGMT methylation status with up to 88% accuracy by combining texture features with 

traditional supervised machine learning methods (41–43). In addition, several deep learning 

architectures have been shown to predict MGMT methylation status (44,45). Korfiatis et al 

(44) obtained up to 94.9% accuracy with only T2-weighted images and without the need for 

previous tumor segmentation. By performing principal component analysis on their final 

CNN layer, Chang et al (38) found that nodular and heterogeneous enhancement and 

“masslike FLAIR edema” were helpful for predicting MGMT methylation status, with up to 

83% accuracy.

EGFR is a receptor tyrosine kinase that regulates normal cellular growth in epithelial cell 

lines (46). EGFR mutations are present in approximately 40% of glioblastomas but are 

rarely found in lower-grade gliomas (31). The most common extracellular EGFR mutation in 

glioblastoma is the splice variant III (EGFRvIII), which is found in 31% of patients (47). 

Radiogenomic studies performed with perfusion imaging have demonstrated a moderate 

relationship between EGFR amplification and tumor blood flow and volume (48,49). 

Support vector machine–based approaches have shown that EGFRvIII mutant gliomas 

exhibit deep peritumoral infiltration, which is consistent with a more aggressive and/or 

infiltrative phenotype (50). Further multivariate approaches incorporating a larger set of 

multiparametric features have shown that EGFRvIII tumors have increased 

neovascularization and cell density, as well as a spatial preference for frontal and parietal 

regions (51,52).

The codeletion of chromosome arms 1p/19q is present in approximately 30% of lower-grade 

gliomas (but is not present in glioblastoma) and, in combination with an IDH mutation, now 

defines an oligodendroglioma (26). The 1p/19q codeletion has been shown to have a 

protective effect on prognosis (53). Comparison of lower-grade gliomas with and without the 

1p/19q codeletion showed that noncircumscribed borders, heterogeneous signal on T1- 

and/or T2-weighted images, and lower apparent diffusion coefficients are strongly 

associated with 1p/19q codeletions (37,54). More recent work with use of CNNs found that 

the 1p/19q codeletion is associated with increased enhancement, left frontal predominance, 

and ill-defined margins on FLAIR images with mass effect (33), with up to 93% accuracy 

(55).

Systems-Level Radiogenomic Approaches

Complementary to these candidate gene approaches, a systemslevel radiogenomic approach 

has been used by some groups to better understand how radiomic markers relate to gene 

expression patterns more globally, which is important considering that each tumor contains a 

combination of different mutations. An early study (56) looked at the relationship between 

gene expression modules with several neuroradiologist-defined MRI patterns, including 

contrast-to-necrosis ratio, subventricular zone involvement, contrast-to-T2 ratio, and T2 

heterogeneity patterns. The investigators found that activation of specific gene expression 

programs can be inferred from imaging traits; for example, the hypoxia module was 

associated with contrast enhancement and the proliferation module was associated with mass 

effect. Grossmann et al (57) compared genomic pathway enrichment analyses with 

volumetric tumor phenotypes, finding that immune response and apoptosis cellular pathways 
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were associated with necrosis pathways and that tumor bulk and edema were associated with 

homeostasis and cell cycling pathways. Zinn et al (58) evaluated the relationship between 

radiomic features in gliomas and nonoverlapping mutations in TP53, PTEN, and EGFR 
genes in 29 patients from TCGA. Although there were minimal differences in conventional 

MRI volumetric parameters, texture analyses yielded distinct and partially nonoverlapping 

radiomic feature sets and a variety of gene expression signatures uniquely associated with 

these three mutations (TP53 with angiogenesis, PTEN with invasion, and EGFR with 

immune response).

Prognostication in Neuro-Oncology

In current clinical practice, prognostication is based on histologic tumor grade and clinical 

models incorporating the patient’s age, sex, and functional status (eg, the Karnofsky 

performance status scale) (59). In addition, some of the previously discussed specific 

molecular markers are now central in diagnosis and prognosis. However, imaging features 

and radiomic metrics are not used in any widely adopted clinical prognostic model, despite 

their potential to capture underlying tumor biology and outcomes.

Radiomic Prediction of Prognosis

Previous radiomic studies have shown that basic imaging metrics, including maximal 

dimension and enhancing volume, are predictive beyond clinical models (60,61). A rule-

based model combining clinical, imaging, and genetic variables resulted in the best 

predictive accuracy in patients in TCIA (62). Diffusion, perfusion, and MR spectroscopy 

measures have also been found to be prognostic (63,64), and more recent studies have used 

machine learning methods to predict patient survival on the basis of multiparametric MR 

images (65–67). Kickingereder et al (65) identified 11 crossvalidated features portending a 

poor prognosis, including volume, shape, texture, and wavelet features. These features were 

exclusively derived from FLAIR images within the contrastenhancing portion of the tumor. 

Macyszyn et al (66), using features explicitly extracted from traditional and advanced MRI 

sequences, developed a support vector machine model to predict survival group (low, 

medium, and high), with up to 80% accuracy in training and prospective replication cohorts. 

The most predictive features in this model included tumor volumes, angiogenesis (enhancing 

tumor volume), peritumoral infiltration (peak perfusion height), cell density (trace diffusion 

values), and distance to the ventricles.

Systems-Level Radiomic Approaches for Prognostication

With use of unsupervised machine learning methods, radiomic features can also be used to 

generate novel subgroups that may more closely align with the underlying biology of 

gliomas. Itakura et al (68) performed clustering of features capturing the shape, texture, and 

edge sharpness of 121 solitary glioblastomas with postcontrast T1-weighted MRI. They 

identified three clusters—premultifocal, spherical, and rim enhancing. These clusters were 

subsequently validated in 144 multi-institution subjects from TCIA and had significant 

differences in survival. The best prognosis was seen in the rim-enhancing subgroup, and the 

worst prognosis was seen in the premultifocal group. Rathore et al (43) also applied an 

unsupervised high-dimensional clustering algorithm to a comprehensive feature set derived 
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from conventional and advanced MRI in 208 patients with glioblastoma. The resulting 

subtypes were remarkably similar to those found in the study by Itakura et al (68), clustering 

into rim-enhancing, irregular, and solid subgroups. These subgroups were associated with 

distinct survival estimates, with the best survival seen in the rim-enhancing subgroup. The 

clusters were also associated with particular anatomic locations, molecular subtypes, and 

genetic variations, including IDH, MGMT, and EGFRvIII. Although these subgroups are 

still preliminary, requiring larger sample sizes and additional validation to ensure their 

robustness, they show the promise of unsupervised methods in providing more precise 

subgrouping and prognostication than clinical models and molecular markers currently used 

in WHO classification.

Treatment Response Assessment in Neuro-Oncology

Current standard-of-care treatment for glioblastoma consists of maximal safe resection 

followed by radiation and chemotherapy with temozolomide (69), whereas lower-grade 

gliomas may be treated with surgery and/or chemoradiation. The addition of tumor-treating 

fields has more recently been shown to have an additional survival benefit in glioblastoma 

(19). Although not yet proven, an array of clinical trials using immunotherapy are being 

applied to treat patients with glioblastoma (70), including ones that target specific molecular 

pathways such as EGFR (71).

Clinical Response Assessment

Increasing size of T2/FLAIR signal abnormality with new or increasing areas of 

enhancement after combined radiation and chemotherapy, known as pseudoprogression (72), 

makes the evaluation of treatment response particularly challenging and is more common in 

MGMT methylated and IDH mutant tumors. Conversely, antiangiogenic agents (eg, 

bevacizumab) can result in pseudoresponse, which consists of a dramatic reduction of 

enhancement by altering the blood-brain barrier, but do little to alter progression of the 

infiltrating component—with no improvement in overall survival (73).

Initial guidelines for response assessment followed the Macdonald criteria (74), which 

incorporated only the size of enhancing components. More recently, the evaluation of 

treatment response has been described with the Response Assessment for Neuro-Oncology, 

or RANO, criteria (75), which incorporates changes in enhancing tissue and T2/FLAIR 

nonenhancing signal intensity abnormalities in addition to clinical status. A recent 

modification to the RANO criteria (76) changed the baseline assessment to be the first 

postradiation treatment image rather than the postresection image and provides some 

response assessment rubrics to identify pseudoprogression. However, RANO is still a limited 

tool for assessing response, especially considering that it uses two-dimensional 

measurements, which are subjective, and does not incorporate advanced imaging modalities 

such as MRI perfusion, diffusion tensor imaging, and MR spectroscopy, despite their clinical 

utility and use at most institutions. Newer immunotherapy agents have been shown to elicit 

complex inflammatory responses (77), adding additional difficulties in response assessment. 

The immunotherapy RANO criteria (78,79) extends the timeline for determining progression 

in an attempt to help account for immune inflammatory-related pseudoprogression.
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Radiomic Prediction of Pseudoprogression and Progression

The differentiation of pseudoprogression from true progression remains a crucial diagnostic 

dilemma, for which AI methods are well suited (Fig 4). Several radiomic studies have had 

moderate success by evaluating diffusion-weighted imaging (80,81) and dynamic 

susceptibility-weighted contrast enhancement measures (82,83). Machine learning 

approaches that incorporate multiple measures from both diffusionweighted imaging and 

dynamic susceptibility-weighted contrast enhancement have also had success in predicting 

pseudoprogression (84,85). Notably, although most previous studies have used longitudinal 

clinical and radiologic follow-up to determine pseudoprogression, histologic examination of 

repeat resections often shows a combination of treatment-related changes and recurrent 

and/or residual tumor. Wang et al (86) used a multivariate logistic regression model, 

incorporating measures derived from dynamic susceptibility-weighted contrast-enhanced 

MRI and diffusion tensor imaging within the enhancing tissue to predict pseudoprogression 

on the basis of histologically classified cases of true progression, pseudoprogression, and 

mixed response, with an area under the curve of 0.90. Akbari et al (87) conducted a support 

vector machine–based analysis of conventional and advanced MRI features by training the 

model on pathologists’ scores of true progression versus pseudoprogression, demonstrating a 

high correlation (r = 0.86) between pathologic and radiomic scores of pseudoprogression.

Radiomic Predictions of Infiltration and Recurrence

Despite the difficulty in differentiating infiltrating neoplasm from edema by using 

conventional qualitative approaches, there is substantial promise for machine learning 

methods to identify margins of infiltrative tissue on preoperative MR images. These 

delineations may be used to guide extended surgical resections, localized biopsies, and 

radiation treatment planning. With use of a voxel-wise logistic regression model, FLAIR and 

apparent diffusion coefficient maps were shown to be sufficient to enable prediction of areas 

of future tumor recurrence (88). Akbari et al (89) developed and Rathore et al (90) refined a 

multivariate support vector machine approach, incorporating features from conventional and 

advanced MRI modalities after registering areas of glioblastoma recurrences to preoperative 

MR images. This approach generates predictive spatial maps of infiltrated peritumoral tissue 

(Fig 5), with approximately 90% cross-validated accuracy.

For another approach, which uses pathologic-radiologic relationships, Chang (91) developed 

a fully automated system to register biopsy sites from neuronavigational cross-hairs to the 

preoperative MR images by using a CNN in 36 patients. Multimodal imaging measures at 

the biopsy sites were then used to train a network on a cell density counting method applied 

to pathology images (Fig 6). They found an inverse relationship between cellularity and 

apparent diffusion coefficient and FLAIR values and a direct relationship between degree of 

enhancement and cellularity. This approach effectively generates noninvasive maps of cell 

density, which are useful for identifying the infiltrative margins of gliomas. Given that 

current surgical resection is guided largely by means of the enhancing tumor alone, these 

methods have substantial promise in developing noninvasive means to stratify patients into 

clinical trials and guiding more aggressive treatments. Indeed, the method by Akbari et al 

(89) has already spurred a clinical trial with intensified radiation to areas of infiltrative tumor 

for patients who have recently undergone an initial resection.
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AI Applications in Neuro-Oncologic Imaging: Non-Glioma Evaluation

Machine learning approaches have also been applied to other CNS tumors, particularly brain 

metastases and CNS lymphoma, with the potential to clarify diagnostically ambiguous 

situations and/or improve workflow efficiency and accuracy. Initially, a variety of image-

processing methods, such as threedimensional template matching, were used to detect and 

localize brain metastases (92,93). More recent work with use of three-dimensional CNNs 

has shown increasing promise (94,95), with potential to aid in stereotactic radiation therapy 

planning. In some situations, the differentiation among brain metastases, primary CNS 

lymphoma, and glioblastoma is not possible with existing clinical and imaging paradigms. 

To address this problem, Wang et al (96) developed a decision tree and multivariate logistic 

regression model incorporating diffusion tensor imaging and dynamic susceptibility-

weighted contrast-enhanced MRI metrics from the enhancing region to differentiate among 

these three entities. In another study (97), random forest analysis applied to extracted 

radiomic texture and wavelet features enabled the differentiation of nonnecrotic 

glioblastoma from CNS lymphoma, with a performance superior to that of three human 

readers. Sometimes patients are found to have brain metastases without a known primary 

site. Machine learning approaches have been applied to this clinical scenario on the 

assumption that underlying molecular differences and their downstream effects on local 

environments are likely to exhibit different radiomic features. For example, Ortiz-Ramón et 

al (98) were able to differentiate brain metastases due to lung cancer, melanoma, and breast 

cancer by using a random forest model applied to features derived from two- and three-

dimensional texture analyses of T1-weighted postcontrast sequences.

Promises and Challenges of AI in Neuro-Oncologic Imaging

AI methods, given their ability to discern patterns and combine information in a way that 

humans cannot, show substantial promise for the future of radiology and precision medicine. 

An ideal AI-based diagnostic system for neuro-oncology would incorporate all relevant 

multimodal imaging data with clinical information and molecular markers to make precise 

predictions of biologically based and clinically relevant subtypes for a new tumor diagnosis, 

in line with the precision medicine movement (99). This information could help stratify 

patients into tailored treatments predicted to be most effective, including determining 

whether a patient would benefit from standard or supertotal resection and/or targeted 

intensification of radiation therapy to areas of infiltrative tumor, chemotherapy, or novel 

therapeutic agents that target specific cellular mechanisms (Fig 7).

AI also has great potential for monitoring both standard treatments and novel treatments 

such as immunotherapy. Although complex inflammatory responses seen in immunotherapy 

(76) would require further validation of AI models that could monitor these new treatments 

(100), they have the potential to quickly determine treatment efficacy, thus allowing for 

dynamic adjustment during the course of treatment. In this regard, AI methods applied to 

advanced imaging could ultimately offer a personalized treatment response prediction 

superior to that of current methods.
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Challenges

Major challenges to the promises of AI in radiology include high-quality ground truth data, 

generalizable and interpretable methods, and user-centric workflow integration (101). 

Concerns regarding the “black box” nature of these algorithms have somewhat diminished 

given the continuing development of methods, such as saliency maps (102) or principal 

component analysis (38), that can “unbox” the networks by interrogating internal algorithm 

feature vectors. A better mechanistic under-standing between feature patterns and 

underlying biology will be helpful both for clinical acceptance and for improving the 

biologic and treatment relevance of the patterns revealed by these methods.

One of the premier challenges in AI research is the availability of large, well-annotated data 

sets. Unfortunately, studies with relatively small sample sizes are prone to measurement 

error (103). TCIA and BraTS have made substantial progress in the creation of centralized, 

well-labeled data for glioma image analysis, whereas non–glioma-based research has been 

limited by a lack of public data sets. Nevertheless, the vast majority of available data remain 

siloed within individual institutions and hospital systems. In order for these algorithms to 

improve further, larger and more heterogeneous data sets (likely orders of magnitude larger) 

may be needed to improve the generalizability of an algorithm’s performance across 

different imaging sites, acquisition parameters, and patient populations (104). An important 

component of assembling such data sets is the sharing of data among institutions, similar to 

efforts in Alzheimer disease (105) and autism (106) research. Other ways of improving data 

sets include statistical techniques to harmonize the data sets and to introduce more uniform 

data collection by adoption of standardized neuro-oncology imaging protocols across 

institutions (76). Interestingly, novel deep learning methods, namely generative adversarial 

networks, have shown promise in improving performance by generating synthetic data 

(107).

An additional barrier to the development of more robust algorithms in the field of neuro-

oncologic imaging, and radiomics more generally, is the lack of clear, targeted “use cases” 

or specific tasks against which their performance can be benchmarked. Other than the BraTS 

competition, the measured performance of an individual algorithm is highly taskdependent, 

data set–dependent, and strongly influenced by the particular scientific question, all of which 

limit comparison of different algorithms developed by different groups. The newly formed 

American College of Radiology Data Science Institute (https://acrdsi.org/) is helping define 

standard use cases, annotation tools, and data sets, which should greatly help with 

standardization and benchmarking relevant to both academic pursuits and commercial 

ventures.

In addition, although the U.S. Food and Drug Administration is developing pathways for 

approval of these emerging tools, there are many unanswered questions, including the 

generalizability of the methods and when retraining is appropriate.

Pathways to Clinical Implementation

Despite the growing use of AI algorithms in research settings, there are major obstacles to 

the efficient and consistent deployment of these sophisticated algorithms in a clinical setting. 
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The system must be easily integrated into the radiologist’s workflow (electronic medical 

record system, picture archiving and communication system, and dictation software) to be 

adopted. Furthermore, many of the segmentation and radiomic methods require manual 

intervention and the use of a variety of in-house pipelines and have lengthy processing 

times. There has been relatively little work done to develop tools for easily translating and 

sharing these methods. In fact, most publications do not provide enough information to re-

create their method independently. A few examples of open source tools that may facilitate 

sharing of different methods are Modelhub (http://modelhub.ai/), Pyradiomics (http://

www.Radiomics.io/) (108), and the Cancer Imaging Phenomics Toolkit (https://

med.upenn.edu/cbica/captk/), which was developed to facilitate clinical translation of these 

tools (109,110). Alternatively, optimal solutions for integration into routine clinical 

workflow may ultimately be provided through emerging commercial ventures.

The “holy grail” of AI in neuroradiology (111) might consist of a fully automated system, 

integrated into the radiologic workflow, that analyzes images in real time and provides a 

quantitative and probabilistic draft report. A more general diagnostic system for brain MR 

images might first assess the probability of whether a newly identified lesion represents a 

specific neoplasm or a neoplastic mimic (Fig 7, A). Such a system would recommend 

additional advanced imaging protocols and/or sequences as needed. A more specific glioma 

evaluation system (Fig 7, B) would then generate a personalized prediction of relevant 

molecular markers (precision diagnostics) and prognosis, as well as specific treatment 

recommendations (precision therapeutics). This automated system could also be used for 

monitoring treatment in “real time,” with more precise quantitative reporting tools to track 

changes in both conventional and advanced imaging parameters as well as patterns derived 

from deep learning.

Until AI methods are completely integrated into daily practice, it will be the role of the 

“centaur” radiologist (112), formed as a synergy of humans and computers, to integrate 

information from images, AI tools, and health records to improve the precision of radiology 

and health care.

Conclusion

The overarching goal of this line of research is to improve the outcomes of patients affected 

by CNS neoplasms through improvements in diagnostic and treatment methods. AI tools 

that combine clinical, radiomic, and genomic information into predictive models hold 

substantial promise for guiding and monitoring personalized therapeutics. However, many 

challenges exist and much work needs to be done to bring the promise of this field into 

fruition. Nevertheless, radiologic practice will substantially change as AI technology 

continues to improve to be able to enhance radiologists’ accuracy and efficiency. It is crucial 

for the future radiologist to understand and appropriately use these powerful tools as they 

become more integrated into everyday clinical practice in the coming years.
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Abbreviations

AI artificial intelligence

BraTS Multimodal Brain Tumor Image Segmentation Benchmark

CNN convolutional neural networks

CNS central nervous system

EGFR epidermal growth factor receptor

FLAIR fluid-attenuated inversion recovery

IDH isocitrate dehydrogenase

MGMT O6-methylguanine-DNA-methyltransferase

TCGA the Cancer Genome Atlas

TCIA the Cancer Imaging Archive

WHO World Health Organization
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Essentials

• Artificial intelligence (AI) algorithms are driving neuro-oncology radiomics 

research forward by identifying complex patterns in advanced MRI with 

important diagnostic, prognostic, and therapeutic implications.

• Radiogenomics in neuro-oncology offers insights into underlying cellular and 

molecular mechanisms of cancer biology.

• Radiomic and radiogenomic tools provide a means of noninvasive sampling 

of tumor microenvironments, allowing for a dynamic and comprehensive 

evaluation of regionally heterogeneous central nervous system tumors.

• Despite substantial challenges, targeted clinical implementation of AI 

methods in neuro-oncology is set to transform the field into an era of 

precision medicine.

Rudie et al. Page 20

Radiology. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Diagram shows overview of terms encompassed by artificial intelligence and their nested 

relationships with each other.

Rudie et al. Page 21

Radiology. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Workflow of radiomics in neuro-oncology. A, After preprocessing steps, multimodal MR 

images are segmented by using automated or manual methods. B, This is followed by 

feature extraction with use of a variety of different techniques. C, Machine learning methods 

are then trained on the features to generate models of underlying molecular markers and 

predict survival. Deep learning models can be used for performing each of the described 

steps individually or in a more comprehensive fashion (bottom pathway of figure). 

EGFRvIII = epidermal growth factor receptor variable III, IDH = isocitrate dehydrogenase, 

MGMT = O6-methylguanine-DNA-methyltransferase.
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Figure 3: 
Genomic and radiogenomic landscape of diffuse gliomas. Diffuse gliomas are fundamentally 

differentiated according to presence of IDH mutation. IDH mutant gliomas are typically 

lower grade (World Health Organization [WHO] grades II–III) but can sometimes be 

glioblastoma (GBM) (WHO grade IV), in which case they usually arise from a lower-grade 

astrocytoma. IDH mutant gliomas are subdivided according to presence of 1p19q codeletion, 

which defines an oligodendroglioma, and are associated with “poorly circumscribed” 

margins. The 1p19q non-codeleted tumors are characterized by “circumscribed” margins 

and exhibit the “T2–fluid-attenuated inversion recovery (FLAIR) mismatch” pattern. IDH 

wild-type gliomas are typically glioblastomas but may sometimes be a lower-grade 

astrocytoma or oligodendroglioma not otherwise specified (NOS). Epidermal growth factor 

receptor (EGFR) mutations and O6-methylguanine-DNA-methyltransferase (MGMT ) 

methylation status are important molecular and prognostic markers. EGFR mutant gliomas 

are associated with increased cerebral blood volume (CBV ). Methylated MGMT gliomas 

are associated with “masslike” T2-FLAIR signal intensity abnormality and heterogeneous 

and/or nodular enhancement pattern, whereas unmethylated MGMT gliomas are associated 

with “infiltrative” T2-FLAIR signal intensity abnormality and thick enhancement pattern 

with central necrosis. Background shading represents overall prognosis (green = best, yellow 

= intermediate, red = worst). wt = wild-type.
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Figure 4: 
Treatment response in neuro-oncologic imaging. After standard-of-care treatment with 

combined radiation therapy and chemotherapy, increasing T2–fluid-attenuated inversion 

recovery (FLAIR) signal intensity abnormality and new and/or increasing size of enhancing 

lesions are often seen. Artificial intelligence (AI )–based “virtual biopsy” could assist in 

distinguishing underlying biology and segregating treatment response into three possible 

categories: true progression (>75% recurrent and/or residual glioma at pathologic 

examination), mixed response (25%–75% recurrent and/or residual glioma at pathologic 

examination), and pseudoprogression (>75% treatment-related changes). Categories dictate 

distinct therapeutic approaches. In this example, the new enhancing lesion was found to 

represent 100% treatment-related changes at pathologic examination, with few atypical cells.
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Figure 5: 
Predictive maps of tumor infiltration. Multimodal pre-operative conventional and advanced 

MRI data were analyzed with support vector machines to generate an estimated infiltration 

map overlaid on postcontrast T1-weighted image (red areas signify higher risk). Postcontrast 

T1-weighted MR image obtained at 6-month follow-up (right) demonstrates area of 

recurrence near site of highest predicted infiltration (arrow).
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Figure 6: 
Predicted tumor cellularity map. Left, voxelwise linear regression model was applied to 

multimodal preoperative MRI trained on automated cell counts of biopsies localized to 

different regions on MR image and used to generate a map of predicted cellularity (red areas 

signify more cells). Right, photomicrographs of biopsy specimens from regions of tumor 

with high and low cellularity (hematoxylin-eosin stain; original magnification, ×400). 

(Reprinted, with permission, from reference 91.)
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Figure 7: 
Schematic of future artificial intelligence–based neuro-oncologic imaging and clinical 

management workflow. A, Initial lesion detection and analysis system would generate a 

probabilistic differential of lesion(s) seen on patient’s initial brain MR image (precision 

diagnostics). It would also recommend additional useful imaging examinations, laboratory 

tests, or tissue sampling. B, Glioma-specific module could make personalized predictions of 

molecular markers, survival, and treatment responses (precision diagnostics), thereby 

recommending optimal treatment plan(s), which would be continuously updated on the basis 

of follow-up imaging (precision therapeutics). CNS = central nervous system, DTI = 

diffusion tensor imaging, EGFR = epidermal growth factor receptor, EGFRvIII = epidermal 

growth factor receptor variable III, IDH = isocitrate dehydrogenase, MGMT = O6-

methylguanine-DNA-methyltransferase, TTFields = tumor-treating fields.
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