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ABSTRACT

The ability of long-wave low-frequency basin modes to be resonantly excited depends on the efficiency with
which energy fluxed onto the western boundary can be transmitted back to the eastern boundary. This efficiency
is greatly reduced for basins in which the long Rossby wave basin-crossing time is latitude dependent.

In the singular case where the basin-crossing time is independent of latitude, the amplitude of resonantly
excited long-wave basin modes grows without bound except for the effects of friction. The speed of long Rossby
waves is independent of latitude for quasigeostrophic dynamics, and the rectangular basin geometry often used
for theoretical studies of the wind-driven ocean circulation is such a singular case for quasigeostrophic dynamics.

For more realistic basin geometries, where only a fraction of the energy incident on the western boundary
can be transmitted back to the eastern boundary, the modes have a finite decay rate that in the limit of weak
friction is independent of the choice of frictional parameters. Explicit eigenmode computations for a basin
geometry similar to the North Pacific but closed along the equator yield basin modes sufficiently weakly damped
that they could be resonantly excited.

1. Introduction

In recent articles, LaCasce (2000) and Cessi and Pri-
meau (2001) have demonstrated that there exists, in the
physically relevant case of weak friction, a set of weakly
damped low-frequency basin modes. The basin modes
consist of a westward propagating long Rossby wave
excited by boundary pressure fluctuations at the eastern
boundary and a uniform pressure adjustment that en-
forces mass conservation in the basin. This uniform
pressure adjustment is determined by imposing an in-
tegral constraint for mass conservation in the basin. Fur-
thermore, it is this pressure adjustment that produces
the pressure fluctuations at the eastern boundary. At the
western boundary a frictional boundary layer damps out
part of the mode’s energy so that the resulting modes
are weakly damped. The period of the gravest mode is
given by the time for long Rossby waves to cross the
basin. For midlatitude first baroclinic waves, this time
is on the order of a decade. Cessi and Primeau (2001)
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also show that for the case of a square ocean basin these
modes can be resonantly excited by weak atmospheric
forcing to produce strong decadal fluctuations in the
depth of the thermocline.

For quasigeostrophic (QG) dynamics in a square ba-
sin the crossing time, given by the width of the basin
divided by the long Rossby wave phase speed, is in-
dependent of latitude. Real ocean basins, however, are
not square, and their width depends on latitude. Fur-
thermore, real ocean basins have large north–south ex-
tent so that the speed of long Rossby waves propagating
in them also depends on latitude contrary to the qua-
sigeostrophic approximation. Since the basin-crossing
time is actually a function of latitude, it is natural to
inquire how the modes identified by Cessi and Primeau
(2001) are affected. In a follow-up article, Cessi and
Louazel (2001) studied a shallow-water model and
found that because of the variations of the long Rossby
wave phase speed in the shallow-water model, the decay
rate of the basin modes remained finite as the friction
parameter was decreased. Here we will investigate the
role played by the basin shape in both a quasigeostrophic
setting and in a shallow water setting.

To this end, we begin by revisiting in section 2 the
quasigeostrophic case previously considered by Cessi
and Primeau (2001). The difference is that here we allow
the width of the basin to vary with latitude. After having
gained an understanding of the quasigeostrophic case
with latitude-dependent crossing time, it is straightfor-
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ward to extend the results to planetary scales via the
shallow-water equations in spherical coordinates (sec-
tion 3). The conclusions are presented in section 4.

2. The quasigeostrophic case

The linear evolution of the transport streamfunction
forced by wind stress t is governed by

] 1 ]c
2¹ c 2 c 1 b

21 2]t R ]x

1 1
2 25 curlt 1 k¹ ¹ c 2 c , (1)

21 2r R

where

Ïg9H
R [ , baroclinic deformation radius (2)

f

and

k [ large-scale eddy diffusivity. (3)

For geostrophic flow, the kinematic boundary condition
of no flow normal to the basin walls requires that there
be no pressure gradient along the basin boundary. In a
simply connected domain, the resulting boundary con-
dition is that

c | 5 c (t).boundary 0 (4)

The scalar function, c0(t), gives the time evolution of
the boundary pressure. It is determined as part of the
solution by requiring that the total mass be conserved:

c(x, y, t) dx dy 5 0. (5)E
area

Because of the fourth-order derivative in the friction
term, an additional boundary condition is required, for
which one can choose either no-slip or free-slip bound-
ary conditions:

=c · n 5 0, (no slip) (6)
2¹ c 5 0, (free slip). (7)

In order to allow the basin crossing time for long
Rossby waves to be a function of latitude within the
quasigeostrophic context, we consider a basin whose
width is a function of latitude:

D 5 {(x, y) | 0 # y # Y , X (y) # x # X (y)}. (8)N W E

Here XW(y) and XE(y) are the positions of the eastern
and western basin boundaries as a function of y, and YN

is the maximum north–south extent of the basin.

a. Nondimensionalization

It is useful to recast the problem in nondimensional
form by introducing the following scales:

(x, y) 5 L (x*, y*), (9)x

t 5 t t*, (10)0

21c 5 t (br) c*, (11)0

where time has been nondimensionalized by the time
for a long Rossby wave to cross a basin of width Lx,

Lxt 5 . (12)0 2bR

The resulting nondimensional equation after dropping
the asterisks is

2 2 2(e¹ c 2 c) 1 c 5 G(x, y, t) 1 d¹ (e¹ c 2 c) (13)t x

in which G(x, y, t) is the wind forcing. The nondimen-
sional boundary conditions are

c 5 c (t), (14)0

2ed=c · n 5 0, or ed¹ c 5 0, (15)

together with the integral constraint for mass conser-
vation,

c(x, y, t) dx dy 5 0. (16)E
D

There are two small parameters

2R k
e [ , d [ . (17)

21 2L bL Rx x

The parameter d is the ratio of the basin crossing time-
scale to the damping timescale for long Rossby waves
and the parameter e measures the relative importance
of inertia to vortex stretching.

For midlatitude scalings,

211 21 21b 5 2 3 10 m s , (18)
6L 5 8 3 10 m, (19)x

4R 5 3 3 10 m, (20)
2 21k 5 1000 m s . (21)

Typical values for the small parameters are

25 23e 5 2.4 3 10 , d 5 6.9 3 10 (22)

so that

e K d K 1. (23)

b. Numerical method

We will be looking for eigenmode solutions of the
form

2ivtc 5 e f(x, y). (24)

Substitution into the governing equation yields the fol-
lowing eigen problem:
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2 2 22iv[e¹ f 2 f] 1 f 5 d¹ (e¹ f 2 f),x (25)

which can be written as a matrix eigenvalue problem,

2ivBf 5 Af, (26)

by discretizing the equations. For the solutions pre-
sented in the following sections, the discretization ap-
proximates the solution using the finite element method
on a unstructured mesh made of triangles. The domain
triangulation is done using the two-dimensional mesh
generator ‘‘Triangle’’ available from Netlib (see ac-
knowledgments). The basis functions are first-order tent
functions. Second-order tent functions were used as well
to check the convergence of the solutions.

c. Long-wave approximation with weak friction

In order to make the long-wave approximation for
the solution of modes in a closed basin, it is important
that short Rossby waves generated by reflection at the
western boundary be damped out sufficiently fast that
they will not propagate out of the western boundary
layer and spoil the long-wave approximation in the basin
interior. Rossby waves reflected from the western
boundary must have an eastward group velocity. Con-
sequently, their wavelengths are shorter than the Rossby
deformation radius. In terms of our nondimensional pa-
rameters, eastward propagating Rossby waves have
wavelengths l # e1/2 so that their damping time is

c e
t ; O # . (27)sw 21 2d¹ c d

Thus for the long-wave approximation to be valid, it is
necessary that e K d as is the case for scaling (23). The
scaling e K d K 1 implies that short Rossby waves
with eastward group velocity will be damped quickly
by friction, while westward propagating long Rossby
waves will be damped slowly with a long timescale, tlw

; O(1/d).
It is important to distinguish the limit e K d → 0

from the alternate limit d K e → 0. The former leads
to the long-wave basin modes whose properties we focus
on in the present paper. The later does not. It leads to
the small Rossby radius limit of the inviscid basin modes
discussed by Flierl (1977).

Note that if either e or d vanish, the fourth-order
derivatives in the governing equation (13) vanish so that
one cannot impose the boundary condition on the tan-
gential velocity. This is why we have multiplied the no-
slip or free-slip boundary condition by ed in (15). If
both e and d vanish, then the second-order derivatives
in the governing equation also vanish. In this case, the
governing equation reduces to a first-order hyperbolic
equation, 2ct 1 cx 5 G(x, y, t) and one can only satisfy
the no normal-flow boundary condition (14) at the east-
ern boundary from which the characteristics emanate.
In order to satisfy the no-normal flow boundary con-
dition at the western wall, one must retain either the

frictional term or the inertial term depending on which
is larger. In contrast, the integral constraint (16) can be
satisfied even when both e and d vanish.

For basin-scale modes, the scaling given by (23) im-
plies that both friction and inertia can be neglected away
from thin boundary layers. To O(d), the interior problem
reduces to

]c ]c I I2 1 5 0 
]t ]x  . (28)

c [X (y), t] 5 c (t)I E 0

Again, because of the scaling e K d K 1, the eastward
propagating short Rossby waves are damped out before
they can leave the frictional western boundary layer.
Consequently, the integrand in the integral constraint
can be well approximated by the interior long-wave so-
lution cI everywhere except in the frictional boundary
layers. Only in the frictional boundary layers are the
corrections to cI of order one, but those corrections of
order one are confined to a boundary layer of thickness
d so that their contribution in the total integral will only
be of order d:

c dx dy 5 c 1 c dx dyEE EE I b

5 c 1 O(d). (29)EE I

Thus the interior solution must satisfy the integral con-
straint

Y X (y)N E

dy dx{c } 5 0. (30)E E I

0 X (y)W

1) ENERGY CONSIDERATIONS

The energy equation for the interior problem is ob-
tained by multiplying equation (28) by cI, to get

E 1 = ·F 5 0,t (31)

in which the energy density is given by /2 and the2cI

energy flux is given by
2cIF 5 2x . (32)

2

Note that the energy flux is everywhere westward. For
a resonant mode to be established, some of the energy
fluxed onto the western boundary must be returned to
the eastern boundary where it can radiate back into the
interior—otherwise the mode will be completely
damped out after one long-wave basin-crossing time.
As is well known, for inviscid basin modes (d 5 0, e
± 0), the energy is reflected back to the eastern bound-
ary by short Rossby waves with eastward group veloc-
ity. For the long-wave basin modes satisfying scaling
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(23) this is not possible since short Rossby waves are
damped within a thin western boundary-layer. Cessi and
Primeau (2001) demonstrate that in the long-wave limit
the time-dependent boundary pressure allows the energy
to be transferred back to the eastern boundary. Physi-
cally, the boundary pressure adjustment can be thought
of as parameterizing the effect of very low-frequency
gravity waves forced by the mass redistributions in-
duced by the propagation of long Rossby waves in a
closed basin. We will return to this interpretation in
section 3 when we consider the shallow-water equations.

Energy considerations allow us to obtain an expres-
sion for the energy rate of change in terms of the interior
solutions cI, without having to consider the details of
the frictional western boundary layer. The incident en-
ergy fluxed onto the western boundary layer, FI, and
the energy transmitted to the eastern boundary by the
time-dependent boundary pressure, FT, are given by

YN 2c (X (y), y, t)I WIF 5 dy ,E [ ]20

YN 2c (t)0TF 5 dy . (33)E [ ]20

Note that the interior solution c 5 cI does not satisfy
the no-normal flow boundary condition at the western
boundary; FI can be rewritten in a more useful form by
making use of the mass conservation constraint. Dif-
ferentiating (30) with respect to time and using (28)
gives

Y YN N

dy{c (X (y), y, t)} 5 c (t) dy,E I W E 0

0 0

whence, the boundary pressure term is given by the
meridional average of the interior solution evaluated
along the western boundary

YN1
c (t) 5 c (X (y), y, t) dy. (34)0 E I WYN 0

If we then decompose cI(XW(y), y, t) into an average
plus deviation,

c (X (y), y, t) 5 c (t) 1 c9(y, t),I W 0 I (35)

where (y, t) [ c(XW(y), y, t) 2 c0(t), the incident energyc9I
fluxed onto the western boundary can be written as

YN1
I 2 2F 5 (c 1 (c9) ) dyE 0 I2 0

since c9 dy 5 0. Note that if the basin-crossing timeYN#0

is independent of latitude, the wave fronts arrive at the
western boundary with their lines of constant phase par-
allel to the wall. In that case cI(XW(y)) 5 const and c9
5 0.

Since there is no dissipation in the interior of the
basin, the difference between the energy incident on the

western boundary and the energy transmitted to the east-
ern boundary gives the rate of change of total energy,

I TE 5 2(F 2 F )E t

D

Y YN N2 2 2c (c9) c0 I 05 2 dy 1 1 dyE E1 22 2 20 0

YN 2(c9)I5 2 # 0.E 20

Thus we see that the total energy must decrease unless
5 0, that is, unless the wave fronts arrive at thec9I

western boundary parallel to the wall. This will be the
case only if the basin-crossing time for long waves is
independent of latitude.

The reflection process at the western boundary splits
the energy into two parts. One part is reflected into the
uniform boundary pressure adjustment. The other part
that is reflected into the short eastward propagating
Rossby waves is quickly damped out in the frictional
boundary layer. The energy partitioning is determined
by the meridionally averaged long-wave interior solu-
tion evaluated along the western boundary. The part of
the energy that is reflected into the uniform pressure
adjustment is transmitted to the eastern boundary where
it excites the long Rossby waves.

The square basin considered by Cessi and Primeau
(2001) is a singular case since the basin crossing time
for long Rossby waves is independent of latitude. This
is why the amplitude of the resonating basin modes
becomes unbounded as the friction parameter d ap-
proaches zero. In general, however, the long-wave ba-
sin-crossing time will not be independent of latitude and
the resonating basin modes will have a finite amplitude
even as the friction parameter approaches zero.

2) FREE MODES

Cessi and Louazel (2001) show that it is possible to
obtain an estimate of the period and damping time of
free modes of the planetary geostrophic equations with-
out having to deal explicitly with the frictional boundary
layers. If we apply their method to the quasigeostrophic
equations we can make the connection to the inviscid
results of Cessi and Primeau (2001) more direct. For
this method, we consider free mode solutions of the
form c(x, y, t) 5 esth(x, y). Substitution into (28) and
a little algebra yields

s(x2X (y)1t)Ec 5 h e ,0 (36)

where s is yet to be determined and h0 is an arbitrary
amplitude independent of x and y. The conservation of
mass constraint (16) yields an equation for s,

YN 1
s (X (y)2X (y))W Edy (1 2 e ) 5 0. (37)E 5 6s0
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FIG. 1. Basin geometry for various values of the parameter m. For m 5 0 the basin geometry
is square, for m , 0 it wider to the north, and for m . 0 it is narrower to the north.

FIG. 2. Frequency of the gravest mode as a function of m. For m
5 0, the basin width is independent of y.

FIG. 3. Damping rate of the gravest mode as a function of m. For
m 5 0, the basin width is independent of y.

For the special case where the width of the basin is
independent of y; for example, XE(y) 2 XW(y) 5 1, Eq.
(37) reduces to

s1 2 e 5 0, (38)

and we recover the purely oscillatory undamped solu-
tions found by Cessi and Primeau (2001),

s 5 i2pn for n 5 1, 2, · · ·. (39)

Basins with latitude independent widths allow the long-
wave basin modes to resonate most strongly. To study
the effect of basins with varying width, we consider the
special case of straight, but nonparallel, western and
eastern boundaries with YN 5 1:

X (y) 5 my, X (y) 5 1 2 my,W E

m , 1/2. (40)

Figure 1 shows the basin domain. For m 5 0 we have
a square basin. For m . 0 we have a basin that narrows
to the north, and for m , 0 we have a basin that is
wider in the north. Note that the maximum crossing-
time for long waves as a function of latitude is given
by

1 2 2m, m , 0
t 5 (41)max 51, m $ 0.

For the choice of basin geometry (40), the y integration
in (37) can be carried out explicitly, and the integral
constraint reduces to an algebraic equation for s,

1 1
s (2m21) 2s1 2 (e 2 e ) 5 0. (42)5 6s 2ms

For m ± 0, solutions for s are obtained numerically.
Figures 2 and 3 show the frequency, Im{s}, and e-
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FIG. 4. Period of the three modes (dashed lines) as a function of
m, as well as the period of the three modes rescaled by the maximum
basin-crossing time tmax (solid curves) as a function of m.

FIG. 5. Plot of Q factors for the three modes as a function of m.
As m → 0, the basin width becomes independent of latitude, and
Q → `.

folding decay rate, Re{s}, for the three gravest modes.
We first discuss the frequency of the modes as a function
of the basin geometry. For m . 0, the basin narrows
to the north and the maximum basin-crossing time for
long waves is independent of m, the frequency remains
relatively constant. For m , 0, where the basin widens
to the north, however, the frequency decreases with m.
In Fig. 4, a plot of the period of the three gravest modes,
rescaled by the maximum crossing time, shows that the
rescaled period varies little as m is varied in comparison
to the non-rescaled period. This indicates that the period
of the modes scales as the maximum basin-crossing time
for long Rossby waves.

If we now consider the damping of the modes (Fig.
3), we find that even though friction was neglected in
obtaining the approximate long-wave solutions, the
modes have a finite damping rate except for the special
case m 5 0 (the square basin case). Thus, as long as
the friction is sufficiently small, the damping rate of
long-wave modes is to first-order independent of fric-
tion. The amplitude of the resonantly excited long-wave
basin modes does not depend on the explicit value of
the dissipation parameter. Instead, it is determined by
the shape of the basin. This is a satisfying result since
frictional parameters—apart from being small—are
poorly known.

For the special case of m 5 0, the damping rate goes
to zero in the absence of explicit friction. This is due
to the fact that when the long Rossby wave basin-cross-
ing time is independent of latitude, the energy carried
westward by the long Rossby-wave component of the
mode is perfectly reflected into the parameterized forced
gravity wave component of the mode. There is not in
this case a fixed fraction of the energy that is trapped
near the western boundary where it can be efficiently
damped out by friction. In these special basins the am-

plitude of resonantly excited long-wave basin modes
depends on the explicit value of the friction parameter.

3) RESONANCES

Cessi and Primeau (2001) showed that the long-wave
low-frequency basin modes can be resonantly excited.
Given that the square basin geometry they considered
is optimally suited to produce resonances, one must ask
if resonances are possible in more general basin ge-
ometries. The ability of resonators to produce spectral
peaks can be measured in terms of the ‘‘quality factor’’
or Q-factor (e.g., Marion 1970). For our modal solu-
tions, the Q factor is

Q [ v /(2s ),r r (43)

where vr 5 ( 2 )1/2 is the frequency at which the2 2s si r

resonantly excited mode would produce a spectral peak.
Real positive Q factors give spectral peaks, with the
sharpness of the spectral peak increasing with increasing
Q factors. Usually, only broad spectral peaks are present
in geophysical records. For reference, Wunsch (2000)
points out that the prominent El Niño–Southern Oscil-
lation index signal has a Q ; 1. Thus, if long-wave
modes have real Q factors, they have the potential of
being resonantly excited by stochastic atmospheric forc-
ing. In the real ocean, their ability to resonate would of
course be reduced by frictional dissipation and mode
coupling, which would drain energy out of the modes.

In Fig. 5, the Q factors for the three gravest modes
are plotted as a function of m for the basin geometry
considered in Fig. 1. For m 5 0, the Q factors go to
infinity because of the absence of explicit friction, point-
ing to the fact that the square basin is an ideal resonating
cavity for long-wave basin modes. For m ± 0 the Q
factors are greater than unity, indicating that long-wave
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FIG. 6. Basin domain showing a typical unstructured triangular
mesh.

FIG. 7. Real and imaginary parts for the gravest mode (top two panels), and of the second gravest mode (bottom
two panels), for m 5 20.5 and d 5 0.05. Solid contours indicate positive values, and dashed contours indicate negative
values.

basin modes can be resonantly excited even when the
basin-crossing time is latitude dependent.

d. Basin mode computations with inertial and
frictional effects

To confirm the results obtained in the previous sec-
tion, we carry out explicit two-dimensional eigenmode
computations retaining inertial effects (e ± 0) and with

friction in the form of Rayleigh drag. With Rayleigh
drag, only the no normal-flow boundary condition is
imposed along the basin boundary. We use a finite el-
ement method with linear elements for an unstructured
triangular mesh, as well as quadratic elements to check
for convergence. Figure 6 shows a typical mesh.

For the two-dimensional computations, we choose e
5 0.001 25 and vary d and m, and seek modal solutions
of the form c 5 esh(x, y). Typical eigenmodes are
shown in Fig. 7 where the two gravest modes are con-
toured for a basin which is wider to the north (m 5
20.5, d 5 0.01). Lines of constant phase arrive at the
western boundary at an angle. Friction in the thin west-
ern boundary layer forces the phase to become constant
along the wall such that the no normal-flow boundary
condition can be satisfied. Note how the lines of constant
phase are parallel to the eastern boundary as they prop-
agate westward. In contrast, inviscid basin modes for
which inertial effects allow the no-normal flow bound-
ary conditions to be satisfied have their phase lines per-
pendicular to lines of constant planetary vorticity (Flierl
1977), regardless of the basin shape. With e # d, short
Rossby waves with eastward group velocity cannot
propagate far from the western wall before being
damped out. Thus only westward propagating long
waves are present in the eastern part of the basin. Note
also that, at any given time, the amplitude of the mode
increases westward. This can be understood mathemat-
ically because the dynamical balance for the long-wave
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FIG. 8. Period of the gravest basin mode as a function of the
logarithm of the frictional parameter log10 d, and the geometry pa-
rameter m. The period is nondimensionalized by the basin-crossing
time for long waves in a square basin.

FIG. 9. Plot of Q factors for the gravest basin mode as a function
of the log of the frictional parameter log10 d and the geometry pa-
rameter m. Parallel eastern and western walls have m 5 0.

basin modes is governed by a first-order hyperbolic
equation, whose solution must be of the form f (x 1 t).
Modal solutions must therefore be of the form
A(y)es(x1t) . From this functional form we can see that
the mode’s amplitude must decay in the eastward di-
rection if it is decaying in time. Physically, this can be
understood by the fact that the decaying mode produces
a decaying pressure oscillation at the eastern boundary.
The boundary pressure fluctuations are then carried
westward by the long Rossby waves. Since dissipation
in the basin interior is negligible, the fluctuations in the
western part of the basin having originated at a much
earlier time than those nearer to the eastern boundary
have a larger amplitude.

In Fig. 8 the period of the gravest mode is contoured
as a function of the frictional parameter d and the pa-
rameter m controlling the basin geometry. For a nar-
rowing basin with m . 0, the period of the modes is
close to unity (recall that time is nondimensionalized
by the basin-crossing time for long waves in the south-
ern part of the basin). For a widening basin with m ,
0, the period increases along with the increase in the
maximum width of the basin, in agreement with the
long-wave results of the previous section.

Figure 9 contours the Q factor for the gravest mode
as a function of the basin geometry m and the friction
parameter d. The best resonators occur for m 5 0. The
ability of the modes to be resonantly excited decreases
as m moves away from zero. As the friction parameter
d is decreased there is a rapid increase in the Q factor
for the case m 5 0 in accordance with the long-wave
results presented in the previous section. Note that there
is a wide range of frictional parameters with Q ; O(1)
even with finite friction in basins for which the lines of
constant phase arrive at the western boundary at a large
angle. Thus, the conclusion of Cessi and Primeau (2001)
that long-wave basin modes can be resonantly excited

remains valid for more general basin geometry. The
difference is that, for weak friction, the damping of the
modes in basins with latitude dependent width is not
controlled by the choice of dissipation parameterization
as is the case for the special choice of a square ocean
basin.

3. Planetary geostrophic case

In this section we demonstrate how the understanding
gained from the quasigeostrophic case carries over to
the shallow-water equations. The structure of the long-
wave modes is essentially unchanged; one simply has
to take into account the variations of the phase speed
with latitude in addition to the variations of the basin
width when determining the variations of the basin-
crossing time with latitude. Furthermore, the shallow-
water equations retain the necessary dynamics for mass
conservation. Consequently, the long-wave basin modes
computed using the shallow-water equations will ex-
plicitly resolve the dynamical process that transmits the
energy back to the eastern boundary.

The linearized shallow water equations, with friction
in the form of Rayleigh drag, can be written in spherical
geometry as follows:

u 2 fy 5 2g9h /(a cosf) 2 ru, (44)t l

y 1 fu 5 2g9h /a 2 ry , (45)t f

h 1 H= · u 5 0. (46)t h

The first two equations are the momentum equations,
and the third is the conservation of mass equation, with
f 5 2V sinf the Coriolis parameter, a the radius of the
earth, r the Rayleigh friction parameter, g9 the reduced
gravity, and h the displacement of the layer depth about
the mean depth H. Unlike the QG formulation, the shal-
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FIG. 10. Real (top panel) and imaginary (bottom panel) parts of
the gravest eigenmode for the Pacific basin with a wall along the
equator. Shaded areas indicate negative contours (r 5 3 3 1027 s21).

low-water equations retain gravity wave motions and
conserve mass without the need to impose the integral
constraint for mass conservation.

For modes with a decadal period, v ; 2 3 1028 s21,
the tendency terms in the momentum equations are small
compared with the Coriolis, pressure gradient, and fric-
tion terms. We can therefore neglect the tendency terms
in the momentum equations. The neglect of these terms
filters out the free gravity modes from the problem as
well as the short Rossby waves:

2 fy 5 2g9h /(a cosf) 2 ru, (47)l

1 fu 5 2g9h /a 2 ry . (48)f

h 1 H= ·u (49)e h

This approximation while correct for realistic parameter
values will break down in the limit of zero friction.
Eliminating u and y from (49) to obtain a single equation
in h and letting r → 0 gives

]h c(f) ]h
2 5 0, (50)

]t a cosf ]l

where

g9H 2V cosf
c(f) 5 b , b 5 . (51)

2f a

For the basin geometry given by

D 5 {(f, l) | F , f , F , L (f) # l # L (f)},S N W E

the long-wave basin-crossing time is given by

(L (f) 2 L (f))a cosfE Wt (f) 5 . (53)0 c(f)

To emphasize the importance of the latitude depen-
dence of the basin-crossing time over the latitude de-
pendence of the phase speed or the basin width we
consider two cases. For the first we consider an idealized
basin geometry in which the basin width decreases to
the north in such a way that the basin-crossing time is
independent of latitude. Specifically, we choose the fol-
lowing basin geometry:

2c(f)T c(f)T0 0D 5 (l, f) # l # ,5 ) 2a cosf 2a cosf

25p 80p
# f # , (54)6180 180

where T0 5 15 yr. For this case we will show that the
decay rate of the modes is determined by the friction
in an analogous fashion to the case of a rectangular basin
for quasigeostrophic dynamics. In contrast, the second
case we consider uses the realistic North Pacific basin
coastline with a wall along the equator. We chose to
close the North Pacific basin in order to avoid having
to compute the modes for the entire globe. For this latter
case, the basin-crossing time is latitude dependent. Be-

cause of this, the wave fronts do not arrive at the western
boundary parallel to the basin wall and part of the en-
ergy carried by the long Rossby waves becomes trapped
near the boundary where it is damped out by friction,
giving the modes a finite decay rate even as friction
goes to zero.

In the following computations we vary the friction
parameter r and hold the reduced gravity g9 and H fixed
(g9 5 0.013 m s22, H 5 1000 m). Varying g9H changes
the period and the decay rate of the modes, but does
not change the Q factors. Contour plots of the two grav-
est modes for the Pacific basin coastline with a wall
along the equator are given in Figs. 10 and 11 (r 5 3
3 1027 s21). For our choice of g9H, the period of the
two gravest modes are 14.2 and 7.0 yr. The gravest mode
for the optimally resonating basin is given in Fig. 12 (r
5 3 3 1027 s21). For our choice of g9H its period is
17.2 yr. For the North Pacific basin the phase lines do
not arrive parallel to the western boundary. Conse-
quently, a considerable fraction of the energy fluxed
onto the western boundary will not be transmitted to
the eastern boundary. In contrast, for the optimal basin
geometry the phase lines arrive at the western boundary
parallel to the wall. Except for the effects of the explicit
frictional dissipation, all of the energy incident on the
western boundary in the basin with optimal shape is
transmitted to the eastern boundary. Figure 13 shows a
plot of the Q factors for the two gravest modes in the
two different basin geometries. The Q factors for the
modes in the optimal-resonator basin shape tend to in-
finity as the friction tends to zero. In contrast, for the
North Pacific geometry, the Q factors tend to a finite
limit as the friction goes to zero (Q ø 0.6 for the gravest
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FIG. 11. As in Fig. 10 but for the second gravest eigenmode.

FIG. 12. Real (top panel) and imaginary (bottom panel) parts of
the gravest eigenmode for an optimally resonating basin on the sphere.
Dashed contours indicate negative values (r 5 3 3 1027 s21).

FIG. 13. Plot of the Q factor for the two gravest modes for two different basin geometries as
a function of the frictional parameter r. The solid squares are for the North Pacific basin geometry
and the open squares are for the optimally resonating basin geometry. The solid lines are for the
gravest mode and the dashed line are for the second gravest mode.

mode and Q ø 1.2 for the second gravest mode). Nev-
ertheless, the computation for the North Pacific basin
shows that even for very irregular basin geometries the
long-wave basin modes have Q factors of order one.
This suggests that these basin modes might be detectable

in the real ocean if they are being excited. Of course
the present calculations are restricted to a basin closed
off at the equator—a more accurate calculation would
solve the problem for the basin configuration of the
entire globe. We have neglected nonlinear effects that
might become large in the western boundary layer. Also
neglected is the effect of the mean background current.
For the linearized reduced-gravity formulation mean
currents have no effect on the modes because there is
an exact cancellation between the Doppler shift and the
potential vorticity gradient caused by the thickness gra-
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FIG. 14. Gravest ‘‘Kelvin’’ mode (upper panel) and gravest long-
wave Rossby mode (lower panel). The thick solid and dashed lines
denote the phase (cotidal lines) and the amplitude (co-amplitude
lines). The contour interval for the amplitude lines is 0.1. (upper
panel) The amplitude is unity along the boundary and decreases to
zero toward the interior. (lower panel) The amplitude is zero at the
amphidromic point (X ø 3000 km, Y ø 3900 km) and increases to
unity near the western boundary at (X ø 200 km, Y ø 3000 km).
The mode in the upper panel consists of one wave traveling coun-
terclockwise with its amplitude trapped near the boundary and de-
caying toward the center of the basin with an e-folding scale equal
to the local Rossby deformation radius. Note how there is a clear
phase propagation along the boundary for the ‘‘Kelvin’’ mode, but
that the phase for the long-wave Rossby mode is nearly constant
along the boundary. For the Rossby mode, the boundary pressure
oscillates in time but is nearly spatially uniform.

dients supporting the flow. For more realistic model
formulations with several vertical modes this would no
longer be the case. Topography would also act to scatter
energy between different vertical modes. It would be
interesting to investigate such effects in a future study.

4. Shallow water case

In the previous section’s calculations using the plan-
etary geostrophic equations, we neglected the tendency
terms in the momentum equations. This approximation
is appropriate for low-frequency modes but it also has
the effect of filtering out the free gravity waves in gen-
eral, and Kelvin waves in particular. In the QG for-
mulation, the uniform boundary pressure fluctuations
are sometimes said to parameterize the effects of Kelvin
waves propagating around the boundary. The uniformity
of the pressure adjustment along the boundary is loosely
attributed to the fact that for the QG formulations the
gravity waves propagate around the boundary instan-
taneously. Our goal here is to retain the tendency terms
in the shallow-water equations so that we can investigate
what role, if any, is played by Kelvin waves in the
boundary pressure adjustment of the long Rossby wave
basin modes.

To address this question we have performed an ad-
ditional set of computations with the linearized shallow-
water equations in which we retain the time derivative
terms in the momentum equations. For simplicity, we
formulate the problem in Cartesian coordinates on a b
plane in a rectangular basin of dimension Lx 5 6000
km and Ly 5 4000 km:

u 2 ( f 1 by)y 5 2g9h 2 ru, (55)t o x

y 1 ( f 1 by)u 5 2g9h 2 ry , (56)t o y

h 1 H(u 1 y ) 5 0. (57)t x y

We choose the following numerical values for the pa-
rameters H 5 1000 m, f o 5 9 3 1025 s21, b 5 1.8 3
10211 m21 s21, g9 5 0.081 m s22, and r 5 1 3 1026

s21. With these parameters, free gravity waves propagate
with a speed of 9 m s21, and the Rossby radius of
deformation ranges from 166 km in the south of the
basin to 71 km in the north of the basin. This is larger
than for the real ocean, but allows for adequate reso-
lution of motions on the scale of the Rossby radius of
deformation without an exceedingly fine grid interval.

Using a finite difference approximation with a 20-km
resolution, we first seek free mode solutions in the form

   u(x, y, t) û(x, y)   
ivty(x, y, t) 5 ŷ(x, y) e . (58)   

   
h(x, y, t) ĥ(x, y)   

In Fig. 14 we contrast two very different basin modes
obtained using the above model formulation. The mode
in the upper panel has a period of only 25 days and
consists of one counterclockwise propagating gravity

wave trapped within one Rossby radius of the coast. Its
period is roughly given by the time for a Kelvin wave
to propagate around the boundary

(2L 1 2L )/Ïg9H ø 26 days.x y

It corresponds to the gravest mode obtained by Rao
(1966) for an inviscid f -plane formulation. In contrast,
the mode in the lower panel has a period of 566 days.
It is the gravest long Rossby wave basin mode. Its period
is comparable to the basin-crossing time for the long
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Rossby wave in the north of the basin (Lx/(bRd2) ø
756 days).

For the ‘‘Kelvin’’ mode in the upper panel, the phase
propagates around the boundary of the basin in the coun-
terclockwise direction. The pressure along the boundary
is clearly a function of both space and time. For the
long Rossby wave basin mode, the phase propagates
westward in the interior of the basin but is nearly con-
stant along the boundary. Unlike the ‘‘Kelvin’’ mode
the boundary pressure for the long Rossby wave mode
is nearly independent of space. It oscillates in time syn-
chronously at all points along boundary despite the fact
that the model formulation has a finite Kelvin wave
propagation speed. This is not surprising since the time
for a gravity wave to propagate around the boundary
(26 days) is much shorter than the period of the mode
(566 days). This suggests that free Kelvin waves are
not the means by which the energy fluxed onto the west-
ern boundary by the long Rossby wave is returned to
the eastern boundary.

To further examine how the energy is transmitted
from the western boundary to the eastern boundary, we
now turn to a forced problem in which we prescribe the
pressure along the western boundary to oscillate in time.
This forcing provides a source of energy at the western
boundary. For low-frequency oscillations it is meant to
mimic the pressure perturbations caused by the long
Rossby waves incident on the western boundary. The
boundary forcing is imposed by prescribing thickness
along the western boundary as follows:

ivth(x 5 0, y, t) 5 e . (59)

The response to the prescribed forcing is obtained on
an f plane as well as on a b plane. The advantage of
the f -plane formulation is that by setting b to zero we
can eliminate the Rossby waves and thus isolate the
mechanism by which the boundary pressure fluctuations
on the western boundary are transmitted to the eastern
boundary.

The solution to two different forcing frequencies are
contrasted in Fig. 15. The two upper panels show the
forced response with v 5 2p/756 days, and the lower
panels show the forced response with v 5 2p/25 days.
The left panels are for the f -plane case and the right
panels are for the b-plane case. For the high-frequency
forcing (lower panels) the response is very similar for
both the f -plane and b-plane solutions. There is a clear
counterclockwise phase propagation, and the amplitude
is trapped near the boundary with an e-folding decay
scale equal to the Rossby radius of deformation. For the
low-frequency forcing (upper panels), the case with the
b-effect (top right panel) shows long Rossby waves ra-
diating from the eastern boundary, indicating that the
forcing imposed on the western boundary has been
transmitted to the eastern boundary. It is important to
note that the response to the low-frequency forcing does
not have any phase propagation along the boundary.
The pressure around the boundary oscillates synchro-

nously for both the b-plane case and the f -plane case.
Furthermore, the low-frequency forced response on the
f -plane does not have the typical characteristics asso-
ciated with free Kelvin wave. There is no phase prop-
agation with the coast to the right, and the amplitude
of the response decays away from the boundary with
an e-folding scale, that is much larger than one Rossby
radius of deformation as is the case for Kelvin waves.
(Compare the dashed co-amplitude lines in the upper
left panel with those in the lower left panel. The contour
interval is the same in both panels).

For the low-frequency long Rossby wave basin modes
the boundary pressure fluctuations are spatially uniform
even when the speed of the gravity waves is finite. Thus,
for motions with frequencies that are much lower than
the time for a Kelvin wave to propagate around the
perimeter of the basin the uniform boundary pressure
adjustment in the QG formulation can not be interpreted
as being the manifestation of Kelvin waves propagating
around the boundary instantaneously. The mechanism
by which the energy of the long Rossby wave modes
is transmitted from the western boundary to the eastern
boundary is attributed to a low-frequency forced gravity
wave response.

The midlatitude long-wave basin modes are different
in this respect from the equatorial basin modes described
by Cane and Sarachik (1977) and Cane and Moore
(1981). For the equatorial modes, the energy carried
westward by the Rossby waves is returned eastward by
a propagating Kelvin wave. For the midlatitude long-
wave Rossby basin modes the resulting modal frequency
is so low that the long Rossby waves do not excite any
free gravity waves. Instead, they produce a forced grav-
ity wave response at the modal frequency. This forced
large-scale response enforces mass conservation and
carries energy back to the eastern boundary where it
can radiate again as long Rossby waves.

5. Conclusions

If long-wave basin modes are to have a damping time-
scale longer than the basin-crossing time so as to avoid
being damped away, it is necessary for the energy carried
westward by the long Rossby waves to be returned to the
eastern boundary. In the inviscid theory of Rossby basin
modes, this is achieved by the reflection of short Rossby
waves at the western boundary. For low frequencies, the
resulting inviscid basin modes have small spatial scales,
and we would expect that they would be quickly damped
out by frictional effects. However, as Cessi and Primeau
(2001) have demonstrated, the time-dependent boundary
pressure adjustment necessary to conserve mass in the
quasigeostrophic limit allows the energy incident on the
western boundary to be transmitted back to the eastern
boundary without being damped out. In the quasigeo-
strophic case, the energy is returned to the eastern bound-
ary by the spatially uniform boundary pressure fluctua-
tions. In the shallow-water equations a similar spatially
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FIG. 15. Forced response in which the thickness h is prescribed to oscillate in time along the western boundary: (left panels) The response
on an f plane and (right panels) the response on a b plane. (upper panels) The response for a forcing frequency of v 5 2p/756 days21;
(lower panels) The forced response for a forcing frequency of v 5 2p/25 days21. The thick solid and dashed lines denote contours of phase
and amplitude. The contour interval for the amplitude is 0.1. The amplitude is equal to unity along the boundary and decreases to zero
toward the interior of the basin in all cases except the upper-right panel where the response decreases to zero at the amphidromic point near
the northwest corner of the basin.

uniform boundary pressure fluctuation returns the energy
to the eastern boundary, even when the speed of Kelvin
waves is finite.

We find in the present study that it is the shape of the
basin that determines the ability of the modes to be res-
onantly excited. If the basin shape is such that the basin
crossing time for the long Rossby wave is a function of
latitude, the modes’ damping rate will remain finite and
become independent of the friction parameter as the fric-
tion parameter is decreased. Nevertheless, we find that the
resulting decay rate is sufficiently small for the modes to
have real Q factors so that spectral peaks might be de-
tectable. In fact, Cessi and Louazel (2001) have demon-
strated that this is indeed the case through time-dependent
simulations of the planetary geostrophic equations. Here
we have focused on clarifying how the shape of the basin
determines the modes decay rate by controlling the par-

tition of energy that is either dissipated in the western
boundary layer or transmitted back to the eastern boundary
via a forced gravity wave response.

Finally, we caution on the use of rectangular ocean
basins for theoretical studies of low-frequency vari-
ability using the quasigeostrophic equations. Rectan-
gular basins are widely used for theoretical studies of
the wind-driven ocean circulation because of the ease
with which the boundary conditions can be applied in
analytical and finite difference models. For quasigeo-
strophic dynamics, however, the rectangular basin is sin-
gular in the sense that it is an optimal resonator for
long-wave basin modes. For the shallow-water equa-
tions, the optimal basin geometry has its width narrow-
ing to the north such that the long-wave basin-crossing
time becomes independent of latitude. For a basin ge-
ometry similar to the North Pacific with a wall along
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the equator, we obtain Q factors of 0.6 and 1.2 for the
two gravest modes. These estimates would of course
decrease if the modes coupled strongly to other modes
in the vertical because of topography for example. Nev-
ertheless, if low-frequency long-wave modes are being
excited by atmospheric forcing their Q factors appear
to be sufficiently large for spectral peaks to be detectable
in long records of the thermocline displacement.
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