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Absorption of charged particles in Perfectly-Matched-Layers by optimal damping of
the deposited current

Remi Lehe®,* Aurore Blelly®," Lorenzo Giacomel?, Revathi Jambunathan®, and Jean-Luc Vay®
¢ Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
® CERN - 1211 Geneva 23 - Switzerland
(Dated: September 2, 2022)

Perfectly-Matched Layers (PML) are widely used in Particle-In-Cell simulations, in order to ab-
sorb electromagnetic waves that propagate out of the simulation domain. However, when charged
particles cross the interface between the simulation domain and the PMLs, a number of numerical
artifacts can arise. In order to mitigate these artifacts, we introduce a new PML algorithm whereby
the current deposited by the macroparticles in the PML is damped by an analytically-derived,
optimal coefficient. The benefits of this new algorithm is illustrated in practical simulations. In
particular, it is shown that this new algorithm is well-suited for particles exiting the box in near-
normal incidence — in the sense that the fields behave as if the exiting particle was propagating in

an infinite vacuum.

INTRODUCTION

Electromagnetic Particle-In-Cell (PIC) simulations [1,
2] are widely used to study the physics of beams and plas-
mas in various contexts, including astrophysical systems,
particle accelerators, and microwave devices. In those
different cases, the simulation domain represents only a
finite portion of space. Therefore, electromagnetic waves
and charged particles can potentially exit that domain
during the course of the simulation. If no specific treat-
ment is applied at the domain boundary, this can lead
to unphysical effects, such as electromagnetic waves re-
flecting back into the interior of the domain, and charged
particles leaving spurious fields at the boundary. Often-
times, these effects can invalidate the results of the sim-
ulation. Hence it is necessary to apply algorithms that
“remove” (or “absorb”) out-going electromagnetic waves
and charged particles, in a way that reproduces the ex-
pected physical behavior.

For electromagnetic waves, one such algorithm is the
Perfectly-Matched Layers (PMLs) algorithm [3]. PMLs
are auxiliary computational cells where the field update
equations are modified so as to damp out-going electro-
magnetic waves without undesired reflection. This tech-
nique has indeed been shown to efficiently absorb waves
over a broad range of incidence angles and frequencies,
and is therefore very commonly used. However, in the
original formulation of the PMLs, the presence of charged
particles was not considered. In practice, a number of nu-
merical issues can occur when charged particles reach the
PML region, which can then undesirably affect the simu-
lation at large [4, 5]. While there is a large body of work
on PMLs in general, the issue of charged particles reach-
ing the PML has attracted relatively little attention.

Historically, solutions to this issue have been proposed
and studied in the context of microwave devices, whereby
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an electron beam passes through the simulation domain,
and interacts with electromagnetic modes in a cavity or
a waveguide [4-7]. For instance, in [4], the authors ob-
served that spurious electrostatic fields can build up at
the boundary of the simulation domain, if charged par-
ticles are simply removed from the simulation as soon
as they enter the PML region. (Note that, by default,
this is how charged particles are treated in many PIC
codes with PMLs.) In order to mitigate this issue, the
authors proposed to apply numerical diffusion to these
fields, by using a Marder-type divergence-cleaning algo-
rithm [8], which causes these fields to decay over time.
This does prevent the build up of spurious fields, but is
only effective over timescales longer than the characteris-
tic diffusion time, which is limited by stability constraints
[4]. Alternatively, instead of removing the particles, some
algorithms [5, 6] allow them to propagate into the PML
region, and to use the corresponding current density as a
source term in the PML equations. In the case of [5], this
is also combined with a propagative divergence-cleaning
algorithm [9-12]. It is observed that this strongly miti-
gates the spurious electrostatic fields at the boundary.

In the above-mentioned studies, the authors assess the
efficiency of their respective algorithms by observing the
overall behavior of the simulation, for their particular
physics problem, and by verifying that this overall be-
havior is physically realistic. However, they do not study
the detailed behavior of the fields associated with indi-
vidual particles as they exit the simulation.

By contrast, in the present paper, we first focus on the
fields of individual particles, before moving on to more
complex, physically-relevant simulations. We show that,
when an individual particle exits the simulation domain,
it can produce a spurious electrostatic field (as observed
in [4, 5]), but also a spurious electromagnetic radiation
(section I). We propose a set of modified PML equations
which, for an outgoing particle in normal incidence, sup-
press both of these effects, and thus allow individual par-
ticles to cleanly exit the simulation domain (section II
and section III) — as if it was propagating in infinite vac-
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uum. We then apply this new algorithm in physically-
relevant simulations (section IV).

I. SPURIOUS EFFECTS ASSOCIATED WITH
PARTICLES ENTERING THE PML

In order to illustrate the numerical issues that arise
when particles enter the PML, we run PIC simulations
of a single macroparticle impinging on a PML, with a
relativistic Lorentz factor v = 10. The other simulation
parameters, and the overall simulation setup, are sum-
marized in appendix A 1.

The left column of fig. 1 shows the evolution of the elec-
tric field in the case of the standard PML algorithm. The
fields seen in the top panel are the self-fields associated
with the macroparticle. (As mentioned in appendix A 1,
the macroparticle separated from an opposite-charge mo-
tionless macroparticle at ¢ = 0. Therefore, the associated
self-fields at ¢ > 0 have a curved wave-front.) The bot-
tom panels in the left column of fig. 1 show that two types
of spurious fields arise after the macroparticle enters the
PML:

e a static field, that remains confined close to z = 0
(domain boundary).

e an outward-propagating pulse, that expands in the
z < 0 (interior) region.

The existence of these fields can be understood qualita-
tively. In the standard PML algorithm, the macroparticle
is indeed removed as soon as it enters the PML region,
and thus the current density j is zero in the entire simu-
lation box from then on. In the electromagnetic PIC field
update, this is in fact equivalent to having the macropar-
ticle suddenly stop at the vacuum/PML interface. (If the
macroparticle’s velocity v is zero, then the associated j
is zero as well.) The abovementioned static field can
thus be seen as the space-charge field of this equivalent,
motionless macroparticle, while the outward-propagating
pulse can be seen as the electromagnetic radiation gener-
ated by the macroparticle suddenly decelerating to reach
a rest state.

Intuitively, one might think that these spurious ef-
fects would disappear if, instead of being removed, the
macroparticle is allowed to propagate and deposit cur-
rent in the PML. However, the middle column of fig. 1
shows that this is not the case. Allowing the particle
to deposit current in the PML does remove the spurious
static field, but an outward-propagating spurious pulse
still exists. We note that this remaining pulse might be
analogous to the transition radiation associated with a
charged particle crossing the interface between two me-
dia with different electromagnetic properties.

In the next section, we propose a modified PML al-
gorithm that does remove both the static field and the
outward-propagating spurious pulse under certain condi-
tions, as shown in the right column of fig. 1.
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FIG. 1. Colormaps of the E, field, near the edge of the
simulation box. The PML region corresponds to z > 0.
(In this region, we show the sum of the split components
E, = Egy + Ez..) The different rows correspond to differ-
ent simulation times, while the different columns correspond
to different algorithms. Left column: standard PML algo-
rithm (a(z) = 0 in eq. (1)). Middle column: PML with cur-
rent deposition (a(z) = 1 in eq. (1)). Right column: PML
with damped particle deposition (a(z) given by eq. (4), with
v = ¢). The notations Az, Az and At correspond to the cell
sizes and timestep of the simulation respectively. The field is
normalized by Eo = ¢/(4meoAx?), where ¢ is the charge of
the macroparticle.



II. A MODIFIED SET OF PML EQUATIONS,
FOR ABSORPTION OF CHARGED PARTICLES

A. Continuous equations

In order to describe the proposed algorithm, let us con-
sider that the interface between the simulation and the
PML is at z = 0, with the PML lying in the z > 0 half-
space, as represented on fig. 1. (Hence, z represents the
depth inside the PML for z > 0.)

We let the particles propagate and deposit their cur-
rent density 7 in the PML region (2 > 0) (similarly to
[5, 6]), and use the following split-field Maxwell equa-
tions:
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where o(z) is the PML conductivity (which, in general,
varies as a function of the depth z [13]), and «(z) is
a newly-introduced damping coefficient on the current
density. For a(z) = 0, these equations are identical to
the original PML formulation by Bérenger [3], in which
there is no source term associated with charged parti-
cles. On the other hand, a(z) = 1 results in a scheme
which is similar to [5, 6]. (As mentioned previously, [5]
also adds a propagative divergence-cleaning correction to
these equations.)

By contrast, here we choose the following prescription:

a(z) =exp (- [T (1)

where v is the assumed velocity of the exiting particles.
(This assumed velocity is discussed in more detail in sec-
tion ITC.) Notice that the value of the damping coeffi-
cient a(z) decreases monotonically from 1 at the PML
interface (z = 0) towards 0 deep inside the PML.

In appendix B, we show that, for a particle in normal
incidence with a wvelocity v, these modified PML equa-
tions (with a(z) given by eq. (4)) constitute an ideal open
boundary. More specifically, when using these equations
in the PML domain, the fields associated with the par-
ticle in the physical domain are exactly the same as if
the PML were replaced by an infinite vacuum region.
In particular, there is no spurious electrostatic field and
electromagnetic radiation as the particle transitions from
the physical domain to the PML region.

We note that this proposed PML algorithm has an
intuitive interpretation. Omne indeed expects the fields
associated with the particle to be progressively damped
in the PML. However, this cannot consistently occur if
the source of these fields (the current j) is not damped as
well. In this sense, it seems reasonable that the damping
of 7 needs to be “matched” to the natural damping rate
of the field in the PML. However, the exact matching
condition itself (given by eq. (4)) is less intuitive, and
requires a proper derivation — as given in appendix B.

Finally, note that the extension of egs. (1) to (3) to
2D (or 1D) Cartesian geometries can be readily obtained
by setting derivatives term to 0 for the corresponding
invariant directions of space.

B. Discretization

The above equations and considerations are valid in the
continuous limit. However, in a PIC algorithm, egs. (1)
to (3) would of course be discretized in time and space.
For that purpose, notice that the newly-introduced terms
of the form «(z)js, a(2)jy, a(2)j, do not affect the usual
finite-difference time-domain (FDTD) discretization of
the other terms in egs. (1) to (3), on a staggered Yee
grid [14]. In addition, these newly-introduced terms are
naturally properly centered on a Yee grid, so that no
additional interpolation or averaging is needed. Finally,
in the discretized system, a(z) will be evaluated at the
nodes and cell-centers of the staggered grid. If o(z) is
chosen to be a simple, analytical function (as is often the
case; see e.g. appendix A1), then a(z) can readily be
expressed in a closed analytical form from eq. (4) before
being evaluated at these points.

As a result of the discretization, the ideal absorbing
properties of the continuous system egs. (1) to (4) may
be slightly affected. (Note that the original PMLs them-
selves were also derived in the continuous limit [3], and
that their absorption properties become imperfect once
discretized.) While the bottom right panel of fig. 1 does
show some faint remaining spurious fields that may in-
deed be due to the discretization, it nonetheless repre-
sents a major improvement compared to the other meth-



ods (middle and left panels).

C. Discussion and limitations

As mentioned in section IT A and appendix B, the pro-
posed PML scheme is well-adapted for macroparticles
entering the PML in normal incidence, and with a ve-
locity that matches the assumed velocity v in eq. (4).
On the other hand, if a macroparticle is incident with
an oblique angle, or with a velocity different than the
assumed one, the absorption efficiency of the proposed
PML will be lower. This will be examined and quanti-
fied in section III.

We note that, while the limitation on the angle cannot
be easily overcome, the limitation on the velocity can be
lifted by a slightly more complex scheme. Rather than
damping the current density uniformly by «(z) for all
particles, we can set a(z) = 1 in eq. (1) and instead
damp the weight of each macroparticle according to:

w; = &; (t)w; a;(t) = exp (— /tt Mdt’)

i €0
where w; is the original weight of macroparticle 7, t; is
the time at which the macroparticle enters the PML, and
zi(t) is the position of that macroparticle as a function
of time. Due to the linearity of the Maxwell equations,
the absorption property of this alternative scheme for the
self-fields of each individual macroparticle is identical to
that of the original scheme, where v in eq. (4) would
match the velocity of the individual macroparticles. For
the sake of simplicity, this alternative scheme is not dis-
cussed further in the rest of this manuscript.
Importantly, while the proposed scheme constitutes an
ideal open boundary for a particle being absorbed in the
PML, this property does not necessarily carry over for
a particle being emitted from the PML. More precisely,
when using eq. (4) with v > 0, the PML will efficiently
absorb the fields associated with a particle propagating
with +v into the PML, but not necessarily the fieds as-
sociated with a particle initialized inside the PML and
propagating with —v into the simulation domain. Fun-
damentally this is because, unlike the Maxwell equations,
the PML equations are not time-reversible.

III. SINGLE-PARTICLE TESTS

In this section, we quantify the impact of the incidence
angle and velocity of the incident particle on the absorp-
tion properties of the PML. To this end, we ran addi-
tional simulations of a macroparticle crossing the PML,
similarly to the case represented in fig. 1, while varying
the angle and velocity of that macroparticle. (The other
simulation parameters are the same as, in appendix A 1.)
In each case, we compared the results with a reference
simulation in which the simulation box is extended in
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FIG. 2. Relative error on E and B due to numerical artifacts
at the PML interface (as defined in eq. (5)) as a function of
the incidence angle of the macroparticle, for different PML
schemes.

the z > 0 region, so that in this case the particle does
not exit the box during the course of the simulation. (In
practice, we double the size of the simulation box along
the z direction, compared to the base case described in
appendix A 1.) In this reference simulation, the parti-
cle self-fields are therefore free of the numerical artifacts
associated with a particle crossing the PML interface.
We then define the relative error as:

_ Jdz [(E — Eyef)* + (B — Brey)?]

£
[dx [EZ.; + B2 ;]

(5)

where we integrate over the physical cells of the orig-
inal simulation. We evaluate this quantity at the end
of the simulation i.e., t = 125A¢, while the macroparti-
cle crosses the PML interface at ¢ = 65At. Note that,
because of the presence of a motionless opposite-charge
particle in the simulation box (see appendix A 1) the de-
nominator in eq. (5) is non-zero.

A. Impact of the incidence angle

We first vary the incidence angle of the particle from 0°
(normal incidence) to 75°, while keeping the velocity of
the particle fixed (corresponding to a Lorentz factor v =
10). The corresponding relative error for different PML
schemes is shown in fig. 2. The different PML schemes
all implement eqs. (1) to (3), but use different choices for
a(z), as indicated in the legend of fig. 2.

As can be seen in fig. 2, the error is high for the stan-
dard PML scheme (a(z) = 0) and, to a lower extent,
for the PML scheme with undamped particle deposition
(a(z) = 1). This is because of the presence of spurious



fields at the PML interface, as described in section I. In
the case of the damped particle deposition («(z) given by
eq. (4) with v = ¢), the error is close to zero for normal in-
cidence, thereby confirming the predictions of section II.
As expected, the error grows when the incidence angle
increases. However, it is worth noting that, even at high

incidence angle, this error remains lower than that of the
other PML schemes.

B. Impact of the incident velocity

We then varied the incident velocity of the macropar-
ticle, from non-relativistic (v < ¢) to ultra-relativistic, in
normal incidence. (For low v, the macroparticle is initial-
ized closer to the PML, so that the particle still crosses
the PML interface at the same time ¢t = 65At.) We com-
pare the different PML schemes in fig. 3. In the case of
the damped PML, we use eq. (4) with a fixed v (v = cin
this case).

Again, fig. 3 shows that the error is relatively high for
the standard PML scheme («(z) = 0) and the PML with
undamped particle deposition (a(z) = 1). As expected,
for low velocity (v < ¢), the PML scheme with damped
particle deposition also has a significant error, due to
the fact that we use v = ¢ in eq. (4). (Recall however
from section II C that this limitation could be overcome,
even for multiple macroparticles with different velocities,
by a modified scheme where the macroparticle weight
is progressively damped.) Yet for relativistic velocities
(yv/c > 1), the error in fig. 3 becomes very low. This
also indicates that, in simulated scenario where most ex-
iting particles are known to be relativistic, setting v = ¢
independently of the actual energy of the particles is a
reasonable choice.

IV. APPLICATION IN ACCELERATOR
SIMULATIONS

In this section, the new PML scheme is tested with two
physically-relevant scenarios.

A. Beam passing through a metallic cavity

We consider a proton beam passing through a sim-
plified, rectangular accelerator cavity. Since the proton
beam is relatively long, it is continuously injected on one
side of the simulation box and then absorbed on the other
side. Both sides of the simulation box are terminated by
PMLs. The simulation parameters are summarized in
appendix A 2. Note that, in principle, the same config-
uration could also be used to simulate a train of pro-
ton bunches going through the cavity, instead of a single
bunch.

Figure 4 shows colormaps of the quantity F, — cB, at
different times and with different PML schemes. Note
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FIG. 3. Relative error on E and B due to numerical artifacts
at the PML interface (as defined in eq. (5)) as a function of
the celerity of the macroparticle, for different PML schemes.

that E, — ¢B, corresponds, to a good approximation,
to the transverse force felt by ultra-relativistic particles
traveling in the +z direction. Note also that the space
charge field of the (relativistic) proton beam largely can-
cels out when evaluating I, — cB,,.

Of particular interest is the behavior of the fields at
both ends of the simulation box (z = £50 mm). As ex-
pected, the standard PML scheme leads to a strong spu-
rious field (left column in fig. 4). At the left-hand side
of the simulation box (z = —50mm), this issue is signif-
icantly reduced by depositing the particle current in the
PML (middle and right column), but is not completely
removed. This is particularly visible at ¢t = 0.391ns. In
the case of the proposed PML scheme (right column in
fig. 4), this remaining spurious field is indeed expected
from the discussion of section II C: although the proposed
PML scheme is well-adapted for exiting particles, it is not
as efficient for particles entering the simulation box from
the PMLs.

By contrast, the advantage of the proposed PML
scheme is clearly visible at the right-hand side of the sim-
ulation box (z = +50mm), in particular at ¢ = 0.77 ns.
In this case, simply depositing the particle current in
the PML without damping still leads to significant spu-
rious fields at the right-side boundary (middle column).
By contrast, the proposed PML scheme largely removes
these spurious fields (right column).

In order to confirm the advantage of the proposed
scheme, we now quantify the impact of the spurious fields
on the beam itself. Note that, since the centroid position
of the beam in z is offset with respect to the axis of the
cavity (see Fig. 4, and appendix A 2), the E,—cB,, field in
the cavity results in a net deflection of the beam along x.
We quantify this deflection by computing the mean of the
dimensionless momentum along x i.e. (u,) = (p.)/mec.
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the beginning of the PML cells. (In the PML cells, we show the sum of the split components for E, and By.) The black lines
represent the cavity boundary, while the gray contour lines represent the proton beam density. The different rows correspond
to different simulation times, while the different columns correspond to different algorithms. Left column: standard PML
algorithm («a(z) = 0 in eq. (1)). Middle column: PML with current deposition (a(z) =1 in eq. (1)). Right column: PML with
damped particle deposition (a(z) given by eq. (4), with v = ¢).

The physical deflection due to the cavity is obtained by
running a reference simulation, whereby the box is made
twice larger in the z direction, and by recording the
change in (u,) between z = —54mm and z = +54 mm.
The corresponding value is shown as a dashed black line
in Fig. 5.

However, in addition to this physical deflection, the
spurious fields seen near the PMLs in Fig. 4 also imprint

an unphysical deflection on the beam. This unphysi-
cal deflection is evaluated by calculating the deflection
A(ug) between z = —54mm and z = —35mm (for the
left PML) and z = +35mm and z = +54mm (for the
right PML), and by subtracting the corresponding de-
flection A(ug)res from the reference simulation in those
same sections of the simulation. The corresponding val-
ues, for the different PML algorithms tested in Fig. 4,
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the calculation of these different quantities.

are also shown in Fig. 5.

As can be seen, for the standard PML, the unphys-
ical deflection at the left and right PMLs (green bars)
both exceeds the total physical deflection from the whole
cavity (black dashed line). As expected, the PML with
undamped current deposition significantly improves this,
but the unphysical deflection (blue bars) is still a non-
negligible fraction of the total physical deflection. Fi-
nally, the PML with damped deposition (purple bar) is
seen to result in a negligible unphysical deflection at the
right PML, while it still results in a significant unphys-
ical deflection at the left PML (purple bars). This is
consistent with the observations of Fig. 4, and with the
fact that the proposed PML algorithm is well-adapted
for exiting particles, but not for entering particles. We
note that, in principle, one could use the undamped PML
algorithm on the left PML, and the damped PML algo-
rithm on the right PML in order to minimize the total
spurious effect on the beam.

B. Laser-wakefield acceleration

We now consider simulations of a laser-driven plasma
accelerator [15] in the blow-out regime [16]. In the simu-
lations that we performed, an intense ultra-short laser
pulse propagates through an underdense plasma, and
drives a non-linear plasma wakefield. A moving window
is used to follow the pulse as it propagates. Snapshots of
the simulations are shown in fig. 6 for two different values
of the laser amplitude: ap = 2 (top) and agp = 3 (bot-
tom). The other simulation parameters are summarized

in appendix A 3.

In this configuration, it is common for the head of the
laser pulse to progressively diffract, and thus to reach the
transverse boundaries of the simulation box, in grazing
incidence. Therefore, PMLs are often used as transverse
boundary conditions, so as to prevent the diffracting laser
field from spuriously reflecting back into the simulation
box.

At the same time, in the blow-out regime, a fraction
of the plasma electrons also reach the transverse bound-
ary, after being violently expelled by the ponderomotive
force of the laser driver. A sample of these plasma elec-
trons are represented for instance in fig. 6, along with
their velocity vector. As can be seen, these plasma elec-
trons are concentrated in a well-defined stream, which
impacts the transverse boundary at z ~ 160 (upper half)
or z ~ 170 pm (lower half). As these electrons enter the
PML region, they generate a spurious electromagnetic
radiation which reflects back towards the axis, as seen
again in fig. 6. For the standard PML scheme (upper left
colormap) and the PML scheme with particle deposition
without damping (upper right colormap), this spurious
field is quite strong, and it distorts the structure of the
fields inside the plasma bubble. This distortion is partic-
ularly visible in the lineouts of £, —cB,, on the right side
of Fig. fig. 6. This quantity corresponds to the focusing
field that a relativistic electron beam would experience,
if it was co-propagating inside the plasma bubble. There-
fore, any distortion of this focusing field can have impli-
cations for the preservation of ultra-low beam emittance,
and for the potential development of a hosing instability,
in a laser-wakefield accelerator.

By contrast, when damping the deposited current in
the PML (lower left colormap), this spurious distortion
is either practically suppressed (upper half in fig. 6, cor-
responding to ap = 2) or at least significantly mitigated
(lower half in fig. 6, corresponding to ag = 3). This can
be seen in particular by comparing this case with the
reference case (lower right colormap), in which the simu-
lation box is two times wider in z and y (compared with
the parameters of appendix A 3) and thus avoids the ar-
tifacts associated with jets of electrons crossing the PML
interface. The fact that the proposed PML scheme is
less efficient for ap = 3 (bottom half in Fig. fig. 6) is
most likely due to the fact that the electrons are imping-
ing on the PML at a more oblique angle in this case, as
can be seen from the velocity vectors in fig. 6. (Recall
from section IIT A that the proposed PML scheme is most
efficient for normally incident particles.) This motivates
further development of this PML scheme in the future,
so as to make it more robust to the incidence angle of the
particles.

V. CONCLUSION

In summary, in this paper we proposed a new PML
scheme, whereby macroparticles deposit their current
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FIG. 6. Left: Colormaps of the transverse magnetic field By in the simulation box. The arrows represent the velocity vectors of
a sample of the plasma electrons that were expelled by the laser driver. The gray contour lines indicate the position of the laser
driver itself. The black dashed lines correspond to the transverse boundaries of the actual simulation box, and the beginning
of the PML cells. (In the PML cells, we show the sum of the split components of B,.) The purple dotted lines represent the
transverse limits of the plasma that is injected in front of the laser beam in the simulation. (As is often the case in this type
of simulation, some amount of vacuum was left between the PML and the plasma.) The red dashed line corresponds to the
position of the lineout shown on the right. The different colormaps correspond to different PML algorithms, as well as to a
reference case (rightmost column) where the simulation box was two times wider in 2 and y. (The colormap does not show
the full simulation box in this case.) Right: Lineouts of the focusing field E, — cBy, close to the axis, for the different PML
algorithms. The upper and lower halves of this figure correspond to laser amplitude values of ap = 2 and a¢ = 3, respectively.



into the PML cells and whereby this current is damped by
an optimal coefficient (eq. (4)) which minimizes numeri-
cal artifacts. It was shown, mathematically and through
single-particle simulations, that this PML scheme be-
haves practically as an ideal vacuum open boundary con-
dition, for macroparticles entering the PML in normal
incidence and with a known velocity. In particular, the
proposed scheme suppresses both the spurious static field
and spurious radiation that is usually associated with
particles exiting the simulation box.

This scheme could have applications in various physical
scenarios, including plasma simulations with out-flowing
relativistic jets of particles as well as simulations of trains
of particle bunches traveling through complex structures.
Moreover, in the future, the scheme could be applied in
the context of mesh refinement, for algorithms that in-
volve refined patches surrounded by PML[17].
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Appendix A: Simulation parameters

This section lists the parameters that were used
in the different simulations mentioned in the
main text. All simulations were run with the
open-source PIC code WarpX [18], available at
https://github.com/ECP-WarpX/WarpX.

1. Single-particle simulations

In the single-particle tests, a charged particle is ini-
tialized close to the middle of the simulation box, with a
velocity directed towards the PML. The E and B fields
are initialized to zero. In order to ensure V - E = p/eo,
a motionless particle of opposite charge is placed at the
initial position of the moving particle. This motionless
opposite-charge particle therefore produces an associated
space charge field in the simulation box, but its ampli-
tude is low at the position of the PML.

The simulations wuse the finite-difference Cole-
Karkkainen (CK) Maxwell solver [19] with cubic cells
(Az = Ay = Az), at the Courant-Friedrichs-Lewy limit
(cAt = Az). The current deposition operation uses the
charge-conserving Esirkepov scheme [20], with cubic par-
ticle shape factors (also known as Piecewise Cubic Spline
interpolation). An additional binomial filter [1] is applied
to the deposited current before updating the fields.

The simulation domain consists of a 3D box of 128 x
128 x 128 cells, surrounded by PMLs extending 8 cells
beyond the boundary. The PML conductivity o(z) is
given by

=)

2. Simulations of a rectangular cavity

The simulation of section IV A uses the Yee solver [14]
with cubic cells (Az = Ay = Az = lmm), at the
Courant-Friedrichs-Lewy limit (cAt = Az/v/3). The
cavity is modeled by setting the E and B fields to
zero in the cells covered by the cavity. The current de-
position operation uses the charge-conserving Esirkepov
scheme [20], with linear particle shape factors and an ad-
ditional binomial filter [1]. The simulation box consists of
64x64x108 cells, with PMLs extending over another 10
cells on both sides, in the z direction. The conductivity
in the PMLs is given by:

o(z) = % (1OZAZ)2

The proton beam consists of 40 nC and is monoenergetic
with a Lorentz factor v = 479. It has a Gaussian spatial
distribution with a 18.8 mm longitudinal RMS size, a 0.2
mm transverse RMS size, and a +5 mm offset in the =
direction.

(A2)

3. Laser-wakefield acceleration simulations

The simulation of section IVB wuses the Cole-
Karkkainen (CK) Maxwell solver [19] with (Az =
Ay = 0.125 um and Az = 0.025 um), at the Courant-
Friedrichs-Lewy limit (cAt = Az). The current de-
position operation uses the charge-conserving Esirkepov


https://doi.org/10.5281/zenodo.7011364
https://github.com/ECP-WarpX/WarpX

scheme [20], with cubic particle shape factors (also known
as Piecewise Cubic Spline interpolation) and an addi-
tional binomial filter [1]. The simulation box consists of
380x380x2200 cells, with PMLs extending over another
10 cells at the x and y boundaries. The conductivity in
the PMLs is given by eq. (Al).

The laser driver has a Gaussian intensity profile with
a 6 pm waist and a 15 fs duration, and is polarized along
the y axis. The background plasma has a density of 2 x
10'"ecm ™3 and is represented with 1 macroparticle per
cell.

Appendix B: Derivation of the damping rate a(z)
that removes spurious effects for a particle in
normal incidence

1. Statement of the problem

In this section, we consider a charged particle prop-
agating along z (normal incidence) at constant speed v,
and crossing the vacuum/PML interface (z = 0) at ¢ = 0.
In particular, the current density 7 that contributes to
the regular Maxwell equations (z < 0) and PML equa-
tions (z > 0) is

Ja 0
jy = q6((E,y,Z—’Ut) 0 (Bl)
jz v

In these conditions, if there are no spurious effects at
the vacuum/PML interface, we expect the fields in the
physical domain (z < 0) to be those of a relativistic par-
ticle in infinite vacuum [21]:

x 1
E, Teor z— ot
B, —y
yvg 1
B —_— v 0 B2b
By 471'6002 3 I z< ( )

w

with 7 = [22 + 3% + 7%(z — vt)?]"/2. In general, how-
ever, the fields in the physical domain do not correspond
to eq. (B2), because of spurious reflections at the vac-
uum/PML interface, as seen in fig. 1.

A necessary and sufficient condition for the absence of
reflections at the vacuum/PML interface is that the ex-
pression of E and B inside the PML is continuous with
the incident field eq. (B2) at z = 0. (Note that a simi-
lar reasoning on continuity is used when calculating the
reflection of plane waves at the interface between two di-
electrics, in classical electromagnetics [21]. In particular,
the case where the transmitted wave is continuous with
the incident wave corresponds to Brewster’s angle, and
in this case the amplitude of the reflected wave is zero.)

This condition of continuity would be satisfied, for in-
stance, for the following expression of E and B inside
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the PML
E, g 1
B, | = og(z)47 — Vz>0 (B3a)
E, Teor z— vt
B -y
z 1
B, | =a() 2t — Vz>0 (B3b)
BZ 47TEQC 0
under the condition
alz=0)=1. (B4)

The expression in eq. (B3) is motivated by physical intu-
ition: if the current density is damped by a factor a(z) in
the PML equations eq. (1), then we expect the associated
fields to be damped proportionally. There is however no
guarantee at this point that the expression of the fields
eq. (B3) is indeed a mathematical solution of the PML
equations egs. (1) to (3). (By contrast, the expression of
the fields in the physical domain eq. (B2) are known to
be a solution of the regular Maxwell equations.)

In the rest of this appendix (appendices B2 and B 3),
we search for the conditions on a(z) under which eq. (B3)
is indeed a solution of the PML equations egs. (1) to (3),
and show that this happens only when «(z) has the ex-
pression given by eq. (4).

Notice incidentally that this appendix does not show
that eq. (4) is the only solution that suppresses spurious
effects at the PML interface, since there could be expres-
sions of a(z) that suppress spurious effects when applied
in egs. (1) to (3), without E and B necessarily having
the form given by eq. (B3), in the PML.

2. Formulation in Fourier space

Here we search for the conditions under which the
Ansatz fields eq. (B3) satisfy the PML equations egs. (1)
to (3). We note that this is equivalent to searching the
conditions under which the Fourier transform of eq. (B3)
satisfies the Fourier transform of eqs. (1) to (3). The
formulation in Fourier space is preferred here, since it
simplifies calculations and avoids the need to deal with
derivatives and singularities at the exact position of the
particle.

Here we use the following definition for the Fourier
transform in z, y and ¢:

/ dt do dy e~ Feo=Roy Ot P (g gy o 1) (B5)

F(zy,2,t) =
1
2m)3

/ dw dky dk, e*=m TRVt E (R b2 w)
(B6)

—~



With this definition, the Fourier transform of the PML
equations egs. (1) to (3) (with j given by the single-
particle expression eq. (B1)) is:

—iwEpy = cFik, B, (B7a)
—iwEy, = —028zl§y — o(2) Enn (B7b)
€0
—iwc‘fyz = 20,8, — a(2) c‘:'yz (B7¢)
€0
—iwEyy = —Pik, B, (B7d)
—iwé, = A(ik,B, — ik,B,) — Mei“’z/” (B7e)
€0
—iwByy = —ik,E, (B8a)
iwB,. — 0.6, - 2¥p, (B8h)
€0
—inyz = 0,6, — o(2) Byz (B&c)
€0
—iwBys = ikE. (B8d)
—iwB, = —(ik,&, — ik,E,) (B8e)
A;E = Amy + Amz (B9a)
Ay = Ayz + Ayr (B9b)
B, = Bay + B, (B9c)
B, = By. + Bys (B9d)

The Fourier transform of the Ansatz fields in the PML
eq. (B3) is (see appendix C for a demonstration)

8:1 . q eiwz/v ke
“/:y = —zoe(Z)EO_U k2 + k% + w2/ (y)?] w/ij!Qv)
’ (B10a)
B, iwz v -
B, | = —ia(z)LQ 2 26 /2 2 kliy
5 w2+ e+ | g
(B10b)

3. Condition on «(z)

From the above expressions, it can be seen that the
Ansatz fields in Fourier space eq. (B10) automatically
satisfy the longitudinal component of the PML equation
eqs. (B7e) and (B8e). In addition, inserting eq. (B10)
into the other equations of eqs. (B7) and (B8) provides
the expression of the split components of E and B:

‘., » :
g:l;z _ . i elu}Z v X(Z)kw
&, | = T TR T oG | x(h,

0
(B11)
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lﬁfﬂy ) ky/”Y2
[?’zz _ —iOé(Z) q ezwz/v —X(Z)ky
B, co? T+ R+ w2 /()] | x(2)ks

Bya —ka /v
(B12)

where:
iw + Lda
x(z) = ﬁ (B13)

€0

In order to show that the Ansatz fields eq. (B10) sat-
isfy the PML equations, it now suffices to show that
egs. (B10) to (B12) satisfy the remaining set of PML
equations eq. (B9). Tt is easy to show that eq. (B9) is
indeed satisfied if and only if x(z) = 1, i.e. if and only if:

(B14)

The solution to this differential equation, with the con-
tinuity condition «(0) = 1 (see eq. (B4)), is indeed the
expression given in eq. (4).

Appendix C: Fourier transform of the fields
associated with a relativistic particle

It is well-known that, in 3 dimensions, the Fourier
transform of a 1/r field has the following form (see e.g.

22])

/ dX ie—iK-X - 4_7T
R

3 |X| - K2 (Cl)

Multiplying on both sides by —iK and using integration

by parts:
0 1 KX ArK
—— e =—i
0X | X| K?

—/ dX
R3

and then upon carrying out the derivative, and using the

(C2)

X K
vector notation X = | Xo | and K = | K>
X3 K3

/// e~ (K1 X1+ K2 Xo+K3X3) §1
dX;dXodXs 2
(XP+ X3+ X352\ x,

47
(Kf + K3+ K3) \ g,

=—i
(C3)
We now use the following change of variable (at fixed z):

Xlzx
K=k,

X2:y
Ko =k,

X3 =7(z—vt)
K3 =w/(y)

(C4)
(C5)



and obtain:

-, /// Lo dy —ilknathyy+w(z/v—t)] ﬂyc
[22 4+ y2 + v2(z — vt)?]3/2 (2 — vt)
——i o y
TR R0\

(C6)

Finally, by multiplying the third vector component of
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various physical factors:

eiwt—ikmm—ikyy xr

V4
dx dy dt
/// Y dmeg [22 + y2 + 2 (2 — vt)2]3/2 z;yvt

iwz /v kg
=4 € k
€ov [k2 + k2 + w?/(yv)?] Y

this equation by 1/+, and multiplying all components by
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