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RESEARCH Open Access

Ischemic axonal injury up-regulates MARK4
in cortical neurons and primes tau
phosphorylation and aggregation
Eric Y. Hayden1, Jennifer Putman1, Stefanie Nunez1, Woo Shik Shin1, Mandavi Oberoi1, Malena Charreton1,
Suman Dutta1, Zizheng Li1, Yutaro Komuro1, Mary Teena Joy1, Gal Bitan1,2,3, Allan MacKenzie-Graham1,
Lin Jiang1 and Jason D. Hinman1*

Abstract

Ischemic injury to white matter tracts is increasingly recognized to play a key role in age-related cognitive decline,
vascular dementia, and Alzheimer’s disease. Knowledge of the effects of ischemic axonal injury on cortical neurons
is limited yet critical to identifying molecular pathways that link neurodegeneration and ischemia. Using a mouse
model of subcortical white matter ischemic injury coupled with retrograde neuronal tracing, we employed
magnetic affinity cell sorting with fluorescence-activated cell sorting to capture layer-specific cortical neurons and
performed RNA-sequencing. With this approach, we identified a role for microtubule reorganization within stroke-
injured neurons acting through the regulation of tau. We find that subcortical stroke-injured Layer 5 cortical
neurons up-regulate the microtubule affinity-regulating kinase, Mark4, in response to axonal injury. Stroke-induced
up-regulation of Mark4 is associated with selective remodeling of the apical dendrite after stroke and the
phosphorylation of tau in vivo. In a cell-based tau biosensor assay, Mark4 promotes the aggregation of human tau
in vitro. Increased expression of Mark4 after ischemic axonal injury in deep layer cortical neurons provides new
evidence for synergism between axonal and neurodegenerative pathologies by priming of tau phosphorylation and
aggregation.
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Introduction
Understanding the consequences of axonal injury on
cortical neurons, particularly subcortically projecting
Layer 5 cortical neurons, has wide-reaching implications
in a variety of neurologic diseases. Importantly, subcor-
tical ischemic axonal injury in the form of stroke is both
common [18] and progressive [13] and contributes to
the development of cognitive impairment and Alzhei-
mer’s disease (AD) [16]. Though axonal injury within
the white matter is associated with both sporadic and
familial AD [26, 27], to date, no studies have suggested a
molecular link between axonal injury and neurodegener-
ation. In part, the lack of models featuring isolated

axonal injury within subcortical structures coupled with
the complexity of axonal projections from cortical neu-
rons poses a challenge to identifying molecular pathways
that drive the selective neuronal loss common to both
white matter lesions [12] and AD [40].
Models of axonal transection and crush injury in the

peripheral, cranial, and optic nerves have provided tremen-
dous insight into the molecular response of neurons to
distal axonal injury, including the identification of dual leu-
cine zipper kinase (DLK), Jun kinase and other molecular
pathways [15]. Increasingly, these pathways are being stud-
ied outside the context of peripheral nerve regrowth and
explored in models of neurodegeneration. Loss of DLK
signaling can protect against axonal degeneration and neur-
onal loss in models of AD [25]. Jun kinase is implicated in
neurodegeneration following injury and can directly phos-
phorylate the microtubule associated protein tau and pro-
mote the formation of neurofibrillary tangles that drive
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neurodegeneration in AD [51]. Despite these convergent
mechanisms, evidence linking ischemic axonal injury in the
white matter and molecular pathways that drive AD-related
neurodegenerative phenomena is lacking.
In this study, we utilized a mouse model of focal ischemia

within subcortical white matter that leads to axonal loss
[37, 48] and selective neuronal injury within the overlying
cortex [19]. We combined this model with layer-specific
cortical neuron cell capture after stroke to identify a role
for microtubule reorganization in stroke-injured cortical
neurons. Using tissue clearing, we show that cytoskeletal
reorganization in cortical neurons damaged by subcortical
stroke selectively reduces apical dendrite length. RNA-
sequencing of stroke-injured layer 5 cortical neurons, iden-
tified the microtubule-associated regulatory kinase, Mark4,
as significantly up-regulated after focal axonal ischemia.
Mark4 acts through site-specific phosphorylation of tau to
destabilize microtubules [11] and is found in association
with neurofibrillary tangles in AD brain [30]. Using a
FRET-biosensor assay, we demonstrate that human Mark4
can potentiate tau aggregation in vitro. By associating sub-
cortical ischemic axonal injury with molecular events
occurring within connected cortical neurons, this study
presents a strategy to identify novel molecular links
between the two most common forms of dementia.

Material and methods
Animals
All animal studies presented here were approved by the
UCLA Animal Research Committee, accredited by the
AAALAC. Mice were housed under UCLA regulation
with a 12-h dark-light cycle. All mice used in the study
were male. Wild-type C57Bl/6 mice (Jackson Labs,
Strain #000667) were used for all experiments unless
otherwise stated. Male YFP-H transgenic mice (derived
from B6.Cg-Tg (Thy1-YFP)HJrs/J mice, Jackson Labs,
Strain #003782) were used for tissue clearing studies.

White matter stroke
Subcortical white matter ischemic injury was induced as
previously described [19, 37] using three focal injections
of L-N5-(1-Iminoethyl) ornithine, Dihydrochloride
(LNiO) added 1:1 (27 mg/mL, Millipore) with 20% fluor-
oruby (Fluorochrome LLC) into white matter beneath
sensorimotor cortex. Sham animals underwent fluoror-
uby injections diluted in saline. Animals were sacrificed
at 7 days post-stroke and either freshly dissected, fresh
frozen on dry ice, or transcardially perfused with 4%
PFA and prepared for tissue sections as described [19].

Layer 5 MACS-FACS
At 1week after stroke, regions of cortex overlying subcor-
tical white matter stroke lesions were dissected and mech-
anically digested, following a single-cell suspension

protocol using Neurocult dissociation kit (STEMCELL).
For magnetic bead cell sorting (MACS), Neuronal
enrichment kit microbeads and CD11b microbeads (Milte-
nyi Biotec) were added to the suspension before applying to
MACS column to remove non-neuronal cells. After collect-
ing all neuronal cells, we fixed and labeled neurons with
Rabbit anti-CTIP2 (Abcam) (adapted from [34]) followed
by anti-rabbit Alexa 488 and sorted for fluororuby and
CTIP2+/Alexa488+ neurons at the Flow Cell Cytometry
Core at UCLA. Total RNA was collected from sorted cells
using NucleoSpin miRNA kit (Machery Nagel).

RNA-seq
Isolated RNA from MACS-FACS isolated neurons was nor-
malized by FACS cell counts to 10–20 cells/μL. cDNA
library generation was performed using SMART-Seq v4
Ultra Low Input RNA Kit (Takara, Inc. #634894) and li-
brary products validated. RNA-sequencing was performed
using TrueSeq with RiboZero (Illumina, Inc.) treatment.
Samples were pooled, barcoded, and sequenced on an Illu-
mina HiSeq 4000 sequencer over three RapidRun using 64
bp single end reads for an average of 34.9M reads/sample.
Reads were aligned to the latest mouse mm10 reference
genome using the STAR spliced read aligner. Total counts
of read-fragments aligned to known gene regions within
the mouse mm10 refSeq reference annotation are used as
the basis for quantification of gene expression. Fragment
counts were derived using HTS-seq program. Various QC
analyses were conducted to assess the quality of the data
and to identify potential outliers. After exclusion of outlier
samples, differential gene expression analysis was per-
formed using limma-voom in R using a false discovery rate
of < 0.1.

Laser-capture microscopy
Twenty μm cryostat sections from fresh frozen specimens
of sham and stroke animals were mounted on Arcturus
Polyethylene Naphthalate (PEN) Membrane glass slides
(Applied Biosystems, Inc.), briefly air-dried, fixed for 30 s in
95% EtOH. Sections from sham animals submerged in Cre-
syl Violet/EosinY solution [7] to identify Layer 5 cortical
neurons by nuclear size, while sections from stroke animals
were briefly rinsed in PBS. After sequential dehydration in
ethanol and xylene, sections were stored in xylene until
laser capture. Using a Leica Laser Microdissection (LMD)
7000 microscope, 20–50 Layer 5 cells per section were
collected into RNA lysis buffer. RNA was then isolated as
above.

Confirmation of Mark4 up-regulation in cortical neurons
Laser capture microdissected neuronal RNA concentra-
tion was measured to create 2.5 ng/uL dilutions of total
RNA from each sample and control (n = 4/grp). First-
strand cDNA was created using SuperScript IV VILO
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Master Mix kit with ezDNase enzyme (Invitrogen). Tar-
geted amplification of Mark4 and Gapdh was performed
using Taqman PreAmp Master Mix kit (Thermo Fisher
Scientific; Probe #Mm05549375_m1 (Mark4) and
Mm99999915_g1 (Gapdh)) and relative gene expression
determined using Taqman Gene Expression Master Mix
(Thermo Fisher Scientific).
To determine Mark4 protein expression, 60-100X con-

focal fields of view were obtained from ipsilateral cortex
overlying white matter stroke. Images were converted to
8-bit gray scale in Fiji [42] and the threshold equalized
between all images. Total fluororuby cell number and
Mark4-immunoreactive cell numbers were determined
using the Cell counter plugin. To determine relative ex-
pression of Mark4, each Mark4 neuronal cell body was
isolated and the mean arbitrary fluorescent units (AFUs)
measured. Mark4 AFUs per unit area were averaged per
animal to generate a relative expression level of Mark4
in FR+ and FR- cells.

Immunofluorescence and confocal imaging
Fluororuby-labeled sham and stroke-injured brains were
sectioned at 40 μm in a -22C cryostat and then stored in
cryoprotectant at -20C. The total number of CTIP2+ and
FR+ cells in the overlying motor and sensory cortices were
measured using stereology. Briefly, regions of interest were
outlined in Stereo Investigator (MBF Bioscience, Inc.) and
positive cells counted using the optical fractionator. Total
cell numbers were measured in 7–9 sections through the
region of cortex overlying stroke. The ratio of FR+/CTIP2+
cells was generated for both sham (n = 3) and stroke-
injured animals (n = 4). For staining, tissue sections con-
taining stroke were removed from cryoprotectant and
washed in PBS and incubated for 30min in 10mM sodium
citrate buffer. After cooling and washing, sections were
blocked in PBTDS and tissue was incubated overnight in ei-
ther anti-MARK4 (Cell Signaling Cat# 4834S, 1:100), anti-
phospho-tau Ser262 (Thermo Fisher Cat# 44–7506, 1:500),
or 12e8 (gift from Benjamin Wolozin, 1:500) primary anti-
body in PBTDS. Corresponding secondary antibodies were
added (1:250) including Donkey anti-Rabbit 488 or Donkey
anti-Mouse 647 (Jackson ImmunoResearch) and counter-
stained with DAPI. Tissue was mounted onto glass slides
and dehydrated in ethanol and xylenes and covered with
DPX and a coverslip. Imaging was conducted on a Nikon
C2 confocal microscope. Three 60X images were taken on
each tissue section in the region of interest containing
stroke-injured and non-stroke injured Layer 5 cortical
neurons.

U-DISCO & apical dendrite measurement
Seven days after white matter stroke in YFP-H trans-
genic mice (n = 5), animals were transcardially perfused
with 4% PFA and post-fixed overnight at 4C. Tissue

slabs 3 mm in thickness and spanning the region of
stroke were generated that included left and right cor-
tical regions. Tissues were cleared using uDISCO as
described [38]. Briefly, tissues were optically cleared by
serial incubation in increasing concentrations of tert-
butanol (Acros Organics) followed by immersion in
benzyl alcohol (Sigma-Aldrich)/benzyl benzoate (Sigma-
Aldrich)/diphenyl ether (Alfa Aesar) (BABB-D) solution
until transparent. The tissues were then immediately im-
aged on a Leica SP5 laser confocal microscope.
Apical dendrite length was measured in Fiji [42]. A

standard grid was applied to images and neighboring
YFP+ and YFP+/FR+ neurons (within 10 μm) were mea-
sured. The apical dendrite was measured by manual
tracing beginning at the cell body and moving superiorly
until the YFP signal was lost. Ten pairs of neurons were
quantified per animal.

Electro-chemiluminescence immunoassay (ECLIA)
measurement of p-tau (Thr231)
Cortex overlying the white matter stroke was carefully
isolated and dounce homogenized (20 times) in the pres-
ence of HALT Protease and Phosphatase inhibitor cock-
tail (Thermo Fisher Scientific, Waltham, MA) in PBS,
and the total protein in each sample was quantified
using BCA protein assay (Pierce) according to manufac-
turer instructions. The p-Tau (Thr231) concentration in
cortex overlying stroke or sham was measured using a
singleplex multi-spot phospho-Tau assay Kit (Meso
Scale Discovery®, USA) as per the manufacturer’s recom-
mendations. Briefly, blocker A was added to each well
and incubated at room temperature with shaking at ~
800 rpm for 1 hour. After washing the wells four times
with the kit provided wash buffer, diluted samples and
calibrators were added, and the plate was incubated at
room temperature with shaking at ~ 800 rpm for 1 hour.
After washing the wells four times with wash buffer,
Sulfo-TAG detection antibody was added and the plate
was incubated at room temperature with shaking at ~
800 rpm for 1 hour. After washing thoroughly 150 μl of
1× read buffer were added, and the plate was read using
an Meso Scale Discovery MESO QuickPlex SQ 120 in-
strument. The data were analyzed using Discover Work-
bench 4.0 software and quantified with reference to a
freshly prepared standard curve.

Immunoblotting
Dot blots were conducted using recombinant human
Tau (Anaspec, #AS-55556) and recombinant human
MARK4 (Abcam, #ab105211) and Mark/Par-1 inhibitor
#39621 (Millipore Sigma, #454870). All recombinant
proteins were dissolved in 25 mM Tris-HCl, pH 7.5. To
measure tau phosphorylation recombinant human tau
(15 μM) with or without recombinant human Mark4
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(0.30 μM) were combined with the following: 5.0mM ß-
Glycerol phosphate; 12mMMgCl2; 0.1mM Na Orthovana-
date; 2.0mM Dithiothreitol; 50 μM ATP; 25mM Tris-HCl,
pH 7.5, and incubated at 30 °C. Four μL of each mixture
were placed onto the membrane using a fine pipette tip.
After all time points were collected, the membrane was
blocked with 2.5% milk in TBS-T on an orbital shaker for
2 h at room temperature. The membrane was incubated
overnight with the primary antibody to p-tau Ser262 (Ther-
moFisher Scientific, #OPA1–03142) diluted 1:1000 in 2.5%
milk) at 4 °C. After three 5min washes with TBS-T, the
membrane was incubated for 1 h at room temperature with
HRP-conjugated anti-Rb secondary antibody (Invitrogen,
Cat#65–6120, diluted 1:10,000 in 2.5% milk). After three 5
min washes in TBS-T, the membrane was incubated with
ECL reagent for 1min and placed in a small plastic bag,
and imaged with a Syngene PXi imager (MD).

Cellular assay of tau aggregation using HEK biosensor
cells
Tau RD P301S FRET Biosensor (ATCC CRL-3275) cells
were cultured and analyzed as previously described [20].
The cells were grown in DMEM (Dulbecco’s modifica-
tions of eagle’s medium with 2 mML-glutamine & 4.5G/
L glucose) supplemented with fetal bovine serum 100
units/ml of penicillin G and 0.1 mg/ml of streptomycin
sulfate in a humidified atmosphere of a 5% CO2 at 37 °C.
Trypsinized-HEK293 cells were harvested, and seeded
on collagen-coated 96-well flat plates (2.5–3.5 × 104

cells/well) in 200 μl culture medium and incubated at
37 °C in 5% CO2 incubator. After 24 h, the prepared
Mark4 (1–250 pM) with or without Mark/Par-1 inhibi-
tor #39621 (10 μM for 1 h) was pretreated with lipofecta-
mine (Invitrogen) transfection reagent (0.2 μl/well). Tau
repeat domain (residues 244–372), expressed as previ-
ously described [45], was aggregated until Thioflavin T
fluorescence intensity reached a plateau, and was then
diluted into Opti-MEM (GIBCO) and sonicated for 10
min in an ultrasonic water bath. After 48 h, the old cul-
ture media were replaced to fresh media and sonicated
tau seeds with lipofectamine (Invitrogen) transfection
reagent (0.2 μl/well) were treated. In experiments using
mouse cortical homogenates or recombinant wild-type
human tau, normalized amounts of total protein were
determined using the BCA colorimetric assay, diluted in
Opti-MEM and complexed with Lipofectamine 2000.
Transduction complexes were incubated at room
temperature for 20 min and then added directly to cells
for 24–96 h. Tau aggregation of biosensor cells was visu-
alized by florescent microscope images using FITC
channel (ex: 485; em: 520) after 24 h. The cells were har-
vested after extensively washed and trypsinized. The har-
vested cells were moved in 200 μl chilled buffer (HBSS,

1% FBS, 1 mM EDTA), and then stored at 4 °C ready for
FRET-based flow cytometry.

Flow cytometry and data analysis of tau biosensor cells
FRET-based flow cytometry was used for quantifying the
intracellular tau protein aggregation. The flow cytometry
analyses of tau biosensor cells were performed by Digital
Analyzers LSRII (IMED) flow cytometer. The FRET pair
(ex: 405 nm; em: 525/50 nm) as well as CFP fusion
protein (ex: 405 nm; em: 405/50 nm) and YFP fusion
protein (ex: 488 nm; em: 525/50 nm) alone were mea-
sured for quatifying the fluorescence intensities. The
FRET signal of the same amount of cells (20,000 cells
per replicate) were analyzed for each experiment repli-
cate to differentiate the aggregated tau protein from the
non-aggregated status. The FRET gating was introduced
to exclude all of the FRET-negative cells treated with
PBS buffer and to include the FRET-positive cells treated
with fibril seeds. The integrated FRET densities (IFD,
FRET-positive cells multiplied by the median fluores-
cence intensity of FRET-positive cells) were calculated
for all analyses. All flow cytometry data were analyzed to
fit the non-linear sigmoidal curve. The quantified tau ag-
gregation has conducted a minimum of three independ-
ent experiments with at least three replicates in each
experimental condition.

Statistical analysis
Data analysis was performed using Microsoft Excel,
GraphPad Prism v7.0, and Matlab R2017a. Error bars
shown in all graphs are standard error of the mean
(SEM). Gene expression values were normalized and
compared using a false-discovery rate adjusted p-value
assuming significance at FDR < 0.1. Relative gene expres-
sion values generated by qPCR were compared using
confidence intervals. A paired two-tailed t-test was used
to compare the number of fluororuby and Mark4 cells.
To determine differences in apical dendrite length, a
Mann-Whitney two-tailed unpaired t-test was used to
compare average Mark4 intensity per pixel per cell be-
tween co-labeled FR+/Mark+ and to FR−/Mark4+.
ECLIA pTau levels were determined with a two-tailed
unpaired t-test. Biosensor assay results were compared
using a one-way ANOVA with Sidak’s multiple compari-
sons test. Unless otherwise stated, an α < 0.05 was used
to determine statistical significance.

Results
To determine the effect of subcortical ischemic axonal
injury on cortical neurons, we used a workflow that
allowed identification and RNA-sequencing of stroke-
injured Layer 5 cortical neurons (Fig. 1a). We used a
mouse model of focal ischemic white matter injury
[19, 49] with retrograde tracer injections [48] to label

Hayden et al. Acta Neuropathologica Communications           (2019) 7:135 Page 4 of 12



sensorimotor cortical neurons with stroke-injured
axons (Fig. 1b). This model provides a unique tool for
identifying the effect of distal axonal injury on unin-
jured cortical neurons. Seven days after ischemic
induction in wild-type mice, stroke-injured fluoror-
uby+/CTIP2+ neurons (Fig. 1b, lower panels) within
the overlying sensory and motor cortex were increased
compared to sham (sensory: 0.26% ± 0.02 vs. 0.04% ±
0.005%; p < 0.0001; motor: 0.22% ± 0.01% vs. 0.07% ±
0.007%; p < 0.0001) (Additional file 1: Figure S1a-b)
with subcortical stroke labeling an average of 0.24% ±
0.02% of the total CTIP2+ Layer 5 cortical neuron
population in ipsilateral sensorimotor cortex overlying
the ischemic lesions (Additional file 1: Figure S1c). To
identify molecular programs specifically activated in
stroke-injured CTIP2+ Layer 5 cortical neurons, we
employed a magnetic-activated cell sorting (MACS)-

fluorescence-activated cell sorting (FACS) method com-
bined with CTIP2+ antibody labeling [34] followed by
RNA-seq. MACS-FACS after stroke resulted in reliable
detection of three cell populations with an average capture
of 425.5 ± 157.9 FR+ cells, 45.5 ± 24.4 CTIP2+ cells, and
136.5 ± 43.2 FR+/CTIP2+ cells (n = 4) from each dissected
cortical region (Additional file 1: Figure S2). After RNA
isolation, we performed RNA-sequencing and paired sam-
ple differential gene expression between FR+/CTIP2+
stroke-injured neurons and neighboring CTIP2+ unin-
jured neurons. To verify that our layer-specific MACS-
FACS-seq approach enriched for Layer 5 cortical neurons,
we examined average fpkm for reported layer-specific cor-
tical neuron marker genes [4] (Fig. 1c). This analysis con-
firmed enrichment of Layer 5 cortical neurons (F = 22.69,
p < 0.0001 by one-way ANOVA) using CTIP2+ MACS-
FACS-seq.
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Fig. 1 MACS-FACS-seq of Layer 5 cortical neurons after subcortical stroke. Schematic representation of workflow to isolate stroke-injured and
neighboring uninjured CTIP2+ Layer 5 cortical neurons for RNA-sequencing (a). Retrograde neuronal tracing with fluororuby (FR) within
subcortical white matter at the stroke site (white arrow, upper panel, b) and deep layers of overlying cortex (yellow arrow, upper panel, b) 7 days
after stroke. CTIP2+ (green) and FR+ (red) Layer 5 cortical neurons overlying stroke (lower panels, b). Enrichment for Layer 5-specific marker genes
in MACS-FACS isolated CTIP2+ cortical neurons (average fkpm; n = 5; p < 0.0001 by 2-way ANOVA) (c). Volcano plot of mapped gene sequences
between CTIP2+/FR- and CTIP2+/FR+ cortical neurons (d). Gene ontology of differentially expressed genes (FDR < 0.1) (e). Dashed line indicates
p = 0.05. Scale bars = 500 μm in upper panel and 10 μm in lower panels of b.
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After controlling for outliers, differential gene expression
analysis using limma-voom R package (FDR < 0.1) demon-
strated 136 up-regulated and 85 down-regulated genes in
Layer 5 cortical neurons 7d after subcortical ischemic
axonal injury (Additional file 1: Figure S3; Additional file 2:
Data File S1). Among the top up-regulated genes by logFC,
was the microtubule affinity-regulating kinase Mark4 (4.44-
fold increased, FDR p-value = 2.96 × 10− 5) (Fig. 1d). The
MARK family of enzymes play a key role in regulation of
the cellular cytoskeleton [32]. In humans and rodents, there
are four MARK isoforms, all of which have been implicated
in AD and are found in association with hyperphosphory-
lated tau present in neurofibrillary tangles (NFTs) [30].
Among the MARK enzyme isoforms, only Mark4 was
enriched in stroke-injured cortical neurons. Gene
ontology analysis [24] of the significantly up-regulated
genes (FDR < 0.1) pointed to microtubule and cyto-
skeleton reorganization, including tau-protein kinase

activity, as a key response of cortical neurons to sub-
cortical stroke (Fig. 1e), further implicating Mark4 as
an axonal-ischemia response gene.
To confirm Mark4 up-regulation in cortical neurons

after axonal ischemia, we performed laser capture micro-
dissection of ipsilateral retrograde-labeled Layer 5 neu-
rons 7d after stroke (453.5 ± 41.3 cells/animal, n = 8)
compared to non-stroke injured Layer 5 neurons
(455.8 ± 28.2 cells/animal, n = 4) (Fig. 2a). Enrichment of
neuronal and Layer 5 neuron gene expression was con-
firmed by qPCR for salient glial marker genes and the
Layer 5 marker gene Fezf2 (Fig. 2b). We confirmed that
Mark4 gene expression was significantly up-regulated by
qPCR from laser-captured neuronal isolates compared
to control layer 5 cortical neurons (Fig. 2c). Within the
cortex, fluororuby+/Mark4+ cells (Fig. 2d) represented
~ 30% of the stroke-injured fluororuby+ cells and
stroke-injured neurons showed increased levels of
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Fig. 2 Mark4 up-regulation after subcortical stroke in Layer 5 cortical neurons. Image of fluororuby+ labeling in ipsilateral cortex after stroke
(arrow) in sections prepared for laser capture microdissection (left, a). Individual fluororuby+ cortical neurons before (upper panel) and after
(lower panel) laser capture microdissection (right, a). Graph of qPCR fold expression differences normalized to neurofilament heavy chain (NFH)
for cell-type specific marker genes from laser-capture RNA (red) compared to whole brain RNA (black) (b) (p < 0.0001 by one-way ANOVA with
adjusted p-value for Fezf2 levels < 0.0001 by Sidak’s correction). Agarose gel of Mark4 PCR product from pooled LCM isolates (lower panel, c).
qPCR for Mark4 in laser-captured FR- (L5) or FR+ (FR + L5) Layer 5 cortical neurons (1.3-fold increased expression, confidence interval ± 0.18, n = 4
in L5, n = 8 in FR + L5) (upper panel, c). Mark4 protein expression (green) in fluororuby+ (red) stroke-injured cortical neurons 7 days after stroke
(d). Number of Mark4+ cells (bar plots with quartiles) and average intensity of Mark4 expression (AFUs/unit area) in FR- and FR+ cortical neurons
after stroke (e) (n = 12, total cells = 240, p = 0.0053 for average Mark4 AFUs per animal by t-test). Mean ± S.E.M. Scale bars = 10 μm
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Mark4 protein expression (Fig. 2e; 0.247 ± 0.097 AFUs in
FR- cells vs. 0.306 ± 0.101 AFUs in FR+ cells, p = 0.0053)
indicating that Layer 5 cortical neurons respond to sub-
cortical ischemic axonal injury by up-regulating Mark4
to remodel the cytoskeleton.
Overexpression of Mark4 in hippocampal neurons re-

duces their dendritic complexity [52]. To determine the
consequence of Mark4 up-regulation in cortical neurons
after subcortical axonal ischemia, we introduced subcortical
strokes into the YFP-H transgenic line together with fluor-
oruby [19]. We measured apical dendrite length and
complexity in 3D using uDISCO (Fig. 3a-b; Additional file 3:
Movie S1). As in wild-type mice, fluororuby labeling at the
time of subcortical stroke results in robust neuronal
labeling within the deep cortical layers including a signifi-
cant fraction of YFP+ Layer 5 neurons. In YFP+/fluoror-
uby+ stroke-injured neurons, apical dendrite length was
reduced by 33.4% (161.0 ± 12.1 μm vs. 107.2 ± 8.0 μm; p <
0.0001 by paired t-test, n = 10 cells per animal per group)
compared to neighboring but un-injured YFP+ neurons
(Fig. 3c-d). These findings indicate that subcortical ischemic
axonal injury reduces dendritic complexity in Layer 5 cor-
tical neurons.
Mark4-mediated phosphorylation of Ser262 acts as a

gate-keeper for subsequent, more pathogenic tau phosphor-
ylation events [36]. To examine whether stroke-induced
expression of Mark4 results in pathogenic tau phosphoryl-
ation, we examined murine tau phosphorylation after
stroke using both immunofluorescence in stroke-injured
neurons and electro-chemiluminescence immunoassay
(ECLIA) for phospho-tau. Immunofluorescence labeling
with a pTau-Ser262-specific antibody and the multi-
epitope phosphoTau antibody 12E8 [29] demonstrated

increased detection of phospho-tau in fluororuby positive
cells, many of which were also Mark4+ (Fig. 4a). ECLIA for
phospho-tau Thr231 levels showed an increase in tau phos-
phorylation in overlying cortical tissue from mice with sub-
cortical ischemia compared to sham controls (p = 0.012,
n = 8, Student’s t-test, Fig. 4b), indicating that ischemia
damaging only the distal axonal projection of a cortical
neuron is sufficient to promote pathogenic tau phosphoryl-
ation events.
The interaction between subcortical axonal ischemia

and the up-regulation of a gene (Mark4) implicated in
AD suggests a potential two-hit hypothesis for tauopathy
related to dementia. To address this possibility, we used
a FRET-based biosensor assay [20] to measure tau aggre-
gation in HEK cells. Protein transfection of ipsilateral
overlying cortical homogenates at 7d after stroke into
tau biosensor cells did not result in significant tau
aggregation by FRET (Additional file 1: Figure S4),
nor did transfection of phosphorylated full-length re-
combinant human tau after pre-treatment with Mark4
(Additional file 1: Figure S4). However, the addition
of human Mark4 protein into biosensor cells prior to
seeding with the four-repeat domain of tau promotes
the aggregation of tau in a both a dose-dependent
(F = 72.22, p < 0.0001 by one-way ANOVA, Fig. 4c)
and time-dependent manner (F = 159.3, p < 0.0001 by
one-way ANOVA, Additional file 1: Figure S4). The
Mark4-dependent increase in tau phosphorylation at
Ser262 can be suppressed in vitro using a Mark-selective
inhibitor (N-(2,5-Dimethylphenyl)-2-(4-(4-methoxyphe-
nyl)-3-oxo-3,4-dihydropyrazin-2-ylthio)acetamide) [50]
(Additional file 1: Figure S4). Addition of the inhibitor to
Mark4-transfected biosensor cells similarly suppresses the

a b c

stroke

YFP+ YFP+/FR+
0

100

200

300

400

A
pi

ca
l d

en
dr

ite
 le

ng
th

 (µ
m

) 

p < 0.0001 
d

Fig. 3 Reduction in dendritic complexity in Layer 5 cortical neurons after subcortical stroke. uDISCO cleared hemisphere of YFP-H+ transgenic
mouse at 7 days after stroke with retrograde neuronal labeling using fluororuby (a). Stroke-injured FR+ (red) and neighboring uninjured YFP+
cortical neurons (green) are visible in sensorimotor cortex along with stroke-injured YFP+/FR+ neurons (yellow) (b). Apical dendrite length was
measured in pairs of neighboring YFP+/FR- and YFP+/FR+ neurons (c). Graph of apical dendrite length in YFP+/FR+ cortical neurons compared
to neighboring YFP+/FR- cortical neurons (d) (n = 3, total cells = 60, p < 0.0001 by paired t-test). Mean ± S.E.M. Scale bars = 300 μm in a, 80 μm in
b, 10 μm in c

Hayden et al. Acta Neuropathologica Communications           (2019) 7:135 Page 7 of 12



Sham Stroke
20

25

30

35

40

45 p = 0.012

fluororuby pTau-Ser262 fluororuby/NeuN/pTau-Ser262

fluororuby Mark4 12E8 fluororuby/Mark4/12E8

-100

0

100

200

300

400

Ta
u 

se
ed

in
g 

 q
ua

nt
ifi

ca
tio

n
 b

y 
in

te
gr

at
ed

 F
R

E
T 

de
ns

ity

p<0.0001

p<0.0001

p<0.0001

p<0.0001

Tau (20 nM)   -   +    +    +    +    +     +     +
hMARK4   -    -    1   10   50  100    250  250   (pM)
MARK inhibitor   -         -     -       -      -     -      -    10    (µM)

p-
Ta

u 
T

hr
23

1 
(p

g/
m

L)

a

b

tau + inhib Mark4 250 pM
tau + inhib

50 pM 250 pM

taucontrol

c

st

ctx

wm

wm

stroke-injured
neurons

dissect cortex

cortical 
homogenate

p-Tau Thr231
ECLIA

NeuN

Fig. 4 (See legend on next page.)

Hayden et al. Acta Neuropathologica Communications           (2019) 7:135 Page 8 of 12



effect of Mark4 on tau aggregation (adjusted p < 0.0001,
Fig. 4c; Additional file 1: Figure S5). These results indicate
that Mark4 potentiates tau aggregation and does so
through phosphorylation at Ser262.

Discussion
Cortical neurons have limited ability for repair after
brain injury that leaves them vulnerable to degenerative
phenomena. Recent advances in understanding molecu-
lar pathways in cortical neurons after stroke and trau-
matic brain injury have suggested that brain repair is
possible if the molecular pathways regulating the re-
sponse to injury are well-characterized [21, 28]. To date,
models for understanding how neurons respond to
selective axonal injury in the distal axon segments have
been limited to the peripheral nerve system or the optic
nerve using transection or crush injury models. Here, we
illustrate how a stroke model of subcortical axonal ische-
mia together with retrograde neuronal tracing and cell
capture can be used to identify molecular pathways that
might be relevant for brain injury and repair in cortical
neurons with isolated axonal damage. We chose to spe-
cifically isolate CTIP2+ Layer 5 cortical neurons since
damage to subcortical axonal projections in this popula-
tion accounts for motor dysfunction after stroke. Our
layer-specific MACS-FACS-seq technique is internally
controlled, enriches for the cell population of interest, and
could be easily applied using other robust layer-specific
markers. The use of slight fixation and labeling for intra-
cellular markers does partially compromise RNA integrity
but the application of RNA-sequencing advances in
sequencing technology can partially compensate for this.
We were also able to use cortical depth and size selection
by laser-capture microdissection after subcortical axonal
injury to identify the same population of cells, though
LCM is more labor-intensive. Despite these challenges, we
show definitive evidence that up-regulation of Mark4 is a
consistent response of cortical neurons to subcortical
axonal ischemia.
Regulation of the neuronal cytoskeleton is a key re-

sponse to injury after stroke [31]. Calcium-dependent
pathways lead to turnover of synapses [23], dendritic
restructuring [35], and remodeling of the axon initial

segment in both directly damaged neurons [41] and
those indirectly damaged by subcortical ischemia [19].
Here, we utilized uDISCO tissue clearing to show that cor-
tical neurons undamaged by primary ischemia but subject
to subcortical axonal ischemia undergo dendritic remodel-
ing while unaffected neighboring neurons retain normal
apical dendrite length. This cytoskeletal reorganization
after subcortical axonal ischemia is consistent with the
effects of Mark4 overexpression on dendritic complex-
ity in cultured hippocampal neurons [52] indicating
that this reorganization is at least partially dependent
on the regulation of tau. Indeed, mice lacking MAPT
subjected to hemispheric cerebral ischemia have re-
duced infarct volumes and preserved cognitive function
[5] suggesting that post-stroke regulation of tau plays a
central role in delayed neurodegeneration.
Mark4 has been implicated in the pathogenesis of AD

through genetic linkage analysis [46], is found in associ-
ation with NFTs in human AD brain, [30] and its princi-
pal phosphorylation site (serine 262) [17] within the tau
repeat domains is thought to be critical to tau accumula-
tion [10, 14]. Among the Mark enzyme isoforms (1–4),
Mark4 is the most closely associated with Braak stage
pathology in AD brain [17]. Its primary kinase activity is
the phosphorylation of tau at Ser262 within the KXGS
motif in the microtubule-binding domain of tau. Phos-
phorylation at Ser262 precedes the formation of NFTs
[3] and can ultimately promote neuronal cell death [44].
The role of tau phosphorylation at Ser262 is controver-
sial [9, 43] but the majority of evidence indicates that
phosphorylation at Ser262 within the tau repeat domains
acts as a gateway phosphorylation site that can promote
additional phosphorylation events and can promote tau
aggregation [6] and sensitize neurons to β-amyloid in-
duced tau aggregation [1]. Here, we show that subcor-
tical axonal ischemia not only induces phosphorylation
at Ser262 but also promotes additional pathogenic tau
phosphorylation events (Thr231). Because murine tau
does not readily accumulate, further understanding of
post-stroke modifications of tau in wild-type mice is lim-
ited. However, in a tau biosensor assay using pathogenic
fragments of human tau, we were able to demonstrate
that Mark4 potentiates tau aggregation and the

(See figure on previous page.)
Fig. 4 Mark4 potentiates tau phosphorylation in vivo and aggregation in vitro. Immunolabeling for pTau-Ser262 (purple) in stroke-injured FR+
(red) cells with uninjured NeuN+ cortical neurons (green) (upper panels, a). Immunolabeling for Mark4 (green) and 12E8 (white) in FR+ (red) cells
(lower panels, a). Subcortical stroke with retrograde tracing highlighting stroke-injured cortical neurons 7d after stroke (left, b). Cortical tissue
overlying stroke enriched for stroke-injured FR+ cells is selectively isolated (middle, b). ECLIA for pTau-Thr231 (pg/mL) in ipsilateral cortex of sham
and stroke (b) (n = 8/grp, p = 0.012). Schematic of FRET-based tau biosensor assay used to measure tau aggregation in presence of human Mark4
(upper, c). Representative images of FRET signal induced by tau aggregation in presence of varying concentrations of transfected human Mark4
protein (pM) with or without Mark enzymatic inhibitor (left, c). Tau aggregation quantified by integrated FRET density in tau-biosensor cells in
presence of 20 nM of tau repeat domains and increasing concentrations of human Mark4 (1–250 pM) and Mark enzymatic inhibition (10 μM)
(right, c) (p < 0.0001 by ANOVA) with specific statistical comparison shown with brackets and p-values. Scale bars = 10 μm (a); 500 μm
(b). Mean ± S.E.M
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inhibition of Mark enzymatic activity reduces rates of
tau aggregation. This cell-based assay allows modeling of
tau aggregation on a rapid time scale and our data dem-
onstrate that in a cell with increased levels of Mark4, tau
aggregation is promoted. The ability of stroke-injured
neurons to handle these potentially pathogenic modifica-
tions of tau induced by Mark4 over the long-term is
unknown.
Understanding the vascular contributions to Alzhei-

mer’s disease (AD) is increasingly recognized as a crit-
ical step in developing the next generation of AD
therapeutics [8]. Alzheimer’s disease and cerebrovascu-
lar disease account for over 80% of dementia diagnoses.
The most common neuropathologic findings in vascu-
lar dementia are lacunar infarcts and microvascular
ischemia in the brain white matter that are similar to
the white matter lesions resulting from this stroke
model [47]. At autopsy, at least half of patients with a
clinical dementia diagnosis have mixed dementia, dem-
onstrating hallmarks of chronic cerebrovascular disease
in the form of subcortical ischemic white matter injury
along with AD pathology [2]. In humans studies, white
matter hyperintensities present on magnetic resonance
imaging correlate with the degree of AD pathology in
patients [13] and cerebrovascular pathology was signifi-
cantly higher in a cohort of sporadic AD subjects
compared to those with autosomal dominant AD [39].
The burden of cortical tau is also associated with white
matter hyperintensities on MRI suggesting that white
matter axonal injury is related to pathologic changes in
the connected cortex [33]. Using in vivo PET tracers
specific for aggregated tau (AV1451), Kim et al. [22]
showed that increased tau accumulation was associated
with the burden of cerebrovascular injury. These find-
ings suggest an intriguing link between subcortical
white matter ischemia and cortical tau accumulation.
Here, we provide evidence that axonal ischemia triggers
a molecular pathway that leads to the destabilization of
tau from microtubules in deep cortical neurons. This
molecular pathway may serve to link the two most
common neurologic pathologies: subcortical white mat-
ter ischemic axonal injury and tauopathy associated
with AD. Whether Mark4 is the sole enzymatic regula-
tor of this cytoskeletal instability remains to be shown
though testable by combining this white matter axonal
injury model with appropriate AD transgenic mouse
models. However, ischemia-induced priming of cortical
neurons for pathogenic modifications of tau provides a
novel drug target for mixed vascular and AD dementia.
Given the commonality of both subcortical axonal
ischemia and neurodegenerative pathologies in individ-
uals with dementia, the contribution of axonal injury to
pathways relevant to neurodegeneration deserves
further investigation.

Conclusions
In conclusion, these findings support a two-hit hypoth-
esis for neurodegenerative disease in which ischemic
axonal injury may function to prime cortical neurons for
the pathologic changes associated with Alzheimer’s dis-
ease including neurofibrillary tangles. With its known
role in regulating tau phosphorylation, Mark4 may serve
a critical role in regulating the stability of the cytoskel-
eton in cortical neurons after subcortical injury making
them more susceptible to tau accumulation. Though
other up-stream signaling cascades induced by ischemic
axonal injury may also contribute cytoskeletal remodel-
ing, our in vitro biosensor assay findings suggest that
Mark4 specifically potentiates pathogenic tau accumula-
tion. Given the robust overlap of cerebrovascular and
Alzheimer’s disease pathologies in the demented brain,
the identification of other synergistic molecular path-
ways caused by stroke may lead to novel therapeutic
targets for neurodegeneration.
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