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Designing, Launching and Implementing High Quality Learning Opportunities for 

Students that Advance Scientific Thinking 

Abstract 

Instructional tasks are key features of classroom practice, but little is known about how different 

components of tasks—such as selecting or designing tasks for a lesson, launching, and 

implementing them with students—shape the conditions for students’ intellectual engagement in 

science classrooms. Employing a qualitative multiple case study approach, we analyzed 57 

science lessons taught by 19 first-year teachers. We examined the potential for students’ 

intellectual work built into the tasks across the phases of instruction, and how the demand of the 

unfolding task deepened (or failed to deepen) students’ engagement in science. The findings 

suggest the importance of beginning a lesson with high quality instructional tasks—complex 

tasks that bear appropriate levels of epistemic uncertainty for a particular group of students in a 

particular moment. Beginning a lesson with high quality tasks however was insufficient by itself 

to ensure rigorous learning opportunities. With the use of complex tasks, higher quality 

opportunities to learn were observed in lessons in which (a) the tasks were framed as a process of 

understanding contextualized phenomena, (b) the specific disciplinary concepts in the task were 

related to big science ideas that transcended the activities themselves, and (c) students’ 

implementation of these tasks were structured using tools that supported changes in thinking.  

Key words: opportunities to learn, instructional tasks, intellectual demand, instructional practices 
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Introduction 

Despite the use of various hands-on, practical, and experiential activities in science 

instruction, research indicates that classroom learning for students largely remains undemanding, 

procedural, and often disconnected from the development of substantive science ideas 

(Banilower et al., 2012; Consortium for Policy Research in Education, 2011; Roth & Garnier, 

2007; Roth et al., 2011). For example, in a study using a nationally representative sample of 31 

middle schools in the U.S., Weiss et al. (2013) found that few science teachers help students link 

activity to substantive science ideas. Weiss et al. also found that appropriate sense-making 

opportunities for students coupled with activities were rare (about 16 percent of observations), 

and classroom discourse that could support reasoning by students was one of the weakest 

dimensions of practice. Roth and Garnier (2007) analyzed a random sample of 500 8th grade 

classroom videos across five countries and concluded, “U.S. teachers did not typically use the 

various activities to support the development of content ideas in ways that were coherent and 

challenging for students” (p. 20). This trend of “activity without understanding” is also reported 

by other studies outside the U.S. (e.g. Goodrum, Hackling, & Rennie, 2000; Osborne & Dillon, 

2008).  

Science educators struggle to help students make sense of science activities, connect 

observation and everyday experiences with science ideas, and deepen students’ understanding 

about the natural world. It is unclear, however, whether this problem originates in the design of 

the activity, how the activity is framed by the teacher, how the students enact the work, or how 

the teacher supports sense-making in subsequent discussions. Researchers tend to foreground 

either the curriculum or teachers’ practices to understand this problem. There is a significant 

body of literature that reports on expert-developed curriculum and its impact on student 
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achievement (e.g., Harris et al, 2015; Lynch, Pyke, & Grafton, 2012), on teachers’ 

implementation of reform-oriented curricula (e.g., Fogleman, McNeill, & Krajcik, 2011; Forbes, 

2011; McNeil & Krajcik, 2008; Schneider, Krajcik, & Blumenfeld, 2005; Zangori, Forbes, & 

Biggers, 2013), and on effective instructional practices such as the facilitation of classroom 

discussion (e.g., McNeill & Pimental, 2010; Puntambekar, Stylianou, & Goldstein, 2007). Some 

studies examine multiple characteristics of teaching that are linked with enhanced students’ 

performances. For example, McNeill, Pimentel and Strauss (2013) found that when 

implementing an inquiry-oriented curriculum, significant learning gains were associated with 

students spending a larger percentage of their time on group work, the sharing of ideas within 

groups, and students’ engagement in argumentation. Despite the insights provided by this body 

of scholarship, it is still unclear how both features of the curriculum and practices by the teacher 

play out together to sustain rigorous learning opportunities over the arc of a lesson trajectory in 

classrooms.   

We contend that students’ opportunities to learn depend upon the integrity of a planning-

implementation process, in which thoughtfully designed lessons are framed for students as 

intellectually challenging and are enacted in ways that maintain high rigor. While such studies 

are rare in science education, parallel studies in the field of mathematics education offer a useful 

analytical lens. For example, Stein and colleagues have conceptualized the process in which 

student learning opportunities are created by attending to the mediating role of instructional tasks 

(Stein et al., 1996; Stein & Lane, 1996). In their mathematical tasks framework, instruction 

begins with selecting or modifying tasks from curriculum materials during the planning stage 

(referred to as “tasks appearing in curriculum materials”). Two stages of enactment follow: 

teachers setting up the tasks at the beginning of the lesson (“tasks-as-set up”) and then teachers 
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and students implementing the tasks (“tasks-as-implemented”). Stein et al. traced the changes in 

the cognitive demand of 144 mathematical tasks used during reform-oriented middle grades 

mathematics instruction from planning through implementation (Stein et al., 1996; Stein & Lane, 

1996) and found that the rigor of the tasks tended to be lowered from planning to implementation 

stages, depending on how the tasks were set up by the teacher and implemented during the 

enactment. Student performance gains were greater in instances where tasks were both set up 

and implemented in a way that maintained high cognitive demand.  

Drawing upon Stein et al.’s mathematical tasks framework, Jackson and colleagues 

(Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013) examined how teachers, required to 

implement reform-oriented curriculum materials, set up tasks at the beginning of their lessons 

(what they called the “launch of the tasks”). Jackson et al. found that in approximately 64% of 

analyzed lessons, the cognitive demand of the tasks was lowered during this setup phase of 

instruction. Based on the analyses of 165 middle grades mathematics lessons taught by 

experienced teachers, they specified two features of productive launches that were significantly 

associated with high quality learning opportunities observed during the concluding discussions: 

(a) maintaining cognitive demand during the launch, and (b) developing common language with 

students to describe task-relevant contextual features and mathematical relationships.  

These studies in the field of mathematics education provide two important insights that 

may inform how learning opportunities are created in science classrooms. First, the studies point 

to the critical role of instructional tasks as a mediator for students’ opportunities to learn. Stein 

and Lane (1996) theorize that instructional tasks influence learning by: (a) affecting the way 

students think as opposed to influencing learning directly, (b) configuring the kind and level of 

classroom discourse that is possible, (c) configuring the possibilities for the occurrence of other 
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forms of recommended instructional practices (p.55). Second, these studies suggest that the kinds 

of decisions that teachers make in order to support deeper learning require them to go beyond 

what is prescribed in curriculum materials.  

Building upon the prior research in mathematics education, this study explores how 

different components of science tasks, such as selecting or designing tasks for a lesson, 

introducing, and implementing them with students, come to shape the conditions for students’ 

intellectual engagement in science classrooms. We think that it is critically important to look at 

both tasks-as-planned and tasks-as-enacted together because their influence on students’ learning 

opportunities is inter-related. Examining either the quality of instructional tasks or how teachers 

enact the tasks limits our understanding of how we can create high quality learning opportunities 

in classrooms. As numerous curriculum studies have demonstrated, high quality tasks themselves 

do not ensure high quality learning opportunities for students in classrooms (Harris et al, 2015; 

Lynch, Pyke & Grafton, 2012; Penuel, Gallagher, & Moorthy, 2011). Examining only teachers’ 

enactment of tasks is also a narrow analytical lens because the nature of learning opportunities is 

likely influenced by the initial quality of the tasks selected/modified/designed by teachers during 

planning. We hypothesize that it is a sequence of coordinated events that constitute opportunities 

to learn in the classroom. Therefore, as researchers, we intend to characterize the conditions that 

lead up to students’ opportunities to learn. In other words, we aim to understand how planned 

and enacted tasks “set the stage” for student learning.  

In this study we examine what science teachers decide to do with curriculum tasks 

(selected or adapted), how they launch the tasks, and what happens once the teacher implements 

the tasks with students. Our analysis focuses on the built-in intellectual demand of instructional 

tasks in the phases of designing, launching, and implementing, and how it is related to students’ 
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intellectual engagement observed in 57 science lessons. The following questions guide our 

analysis: 

1. What is the potential for intellectual demand built into common instructional tasks at the 

onset of a science lesson (task as designed)?  

2. How does the intellectual demand shift as the tasks are launched, then implemented 

during a lesson (task as launched and implemented)?   

3. How does the quality of instructional tasks as designed, launched and implemented, relate 

to student learning opportunities?  

In this article, we specify the conditions under which students come to engage in 

meaningful intellectual work and the kinds of pedagogical decisions entailed for creating those 

conditions. This study is significant because the findings illuminate how intellectually 

challenging learning opportunities in science classrooms are developed and sustained across the 

duration of a lesson. In the following section, we first discuss how we conceptualize 

opportunities to learn and the nature of instructional tasks in science classrooms—the focus of 

this investigation. Next, we present the science tasks framework that represents the sequence of 

instructional events from planning, launching, and enactment of instructional tasks. This 

framework guides our research design and analyses. 

Situative Perspective, Opportunities to Learn, and Instructional Tasks  

We draw upon a situative perspective (Greeno, 2006; Greeno & Gresalfi, 2008) to study 

the relationship between instructional tasks and student learning opportunities. Rather than 

focusing on the processes of acquiring new mental structures, a situative perspective attends to a 

process in which individuals participate more proficiently in practices through social and 

intellectual interactions within an activity system. From this perspective, a learner’s participation 
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is dependent upon features of the settings (i.e., elements of an activity system), such as the nature 

of tasks, resources and tools available, and facilitation by a more knowledgeable other (Greeno, 

2006; Sohmer, Michaels, O'Connor, & Resnick, 2009). Opportunities to learn (OTL) refer to the 

affordances of a setting for changing learners’ participation and practices (Greeno & Gresalfi, 

2008). High quality learning opportunities created in science classrooms make resources 

available that facilitate students’ more proficient participation in the practice and language (i.e., 

tool) of science over time.  

Instructional tasks are one key feature of a setting that can influence on students’ 

opportunities to learn in science classrooms. Expanding upon the scholarship on instructional 

tasks in the field of mathematics education (Doyle, 1983; Hiebert & Wearne, 1993; Stein et al., 

1996; Stein & Lane, 1996), we conceptualize an instructional task as a form of work assigned to 

students (e.g., an assignment, an activity) that is defined by the teacher for the purpose of 

developing students’ understandings of concepts, skills, and scientific practices. There are two 

key features that can be useful in recognizing and characterizing instructional tasks in science 

instruction. First, an instructional task typically results in some documentation of the outcomes 

of intellectual work (i.e. the main products that students are expected to produce). Second, an 

instructional task includes procedures and resources that students are expected to use to complete 

the work (i.e., specifications for how are students expected to produce outcomes and with what 

resources) (Doyle & Carter, 1984; Stein et al., 1996). The nature of the task students are asked to 

do, although prompted by the curriculum materials, can vary depending on the ways in which a 

teacher modifies procedures in response to students’ needs and their understanding of the 

discipline. For example, the three physics teachers in this study coincidently used the same 

expert-developed curriculum materials to teach the topic of forces in springs. The instructional 
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tasks of each of the three observed lessons were: (a) students as a group of 2-4 produced a 

graphical representation of collected data on a small whiteboard that showed the relationship 

between force and the stretched length of two springs, (b) students as a small group generated a 

data table to produce evidence for arguing which of the springs with different stiffness would 

work better for an exercise machine, (c) students individually solved problems on the provided 

worksheet using formulas after confirming Hooke’s law with data. 

  One feature of instructional tasks in science that relates to intellectual demand is the way 

in which observable and unobservable (theoretical) aspects of natural phenomena are addressed 

in relation to students’ sense-making. Tasks that involve collecting and evaluating data, or 

identifying evidence, serve the implicit purpose of drawing students’ attention to observable 

elements of natural phenomena which is an important first step to make sense of how and why 

natural phenomena occur (Kang, Thompson, & Windschitl, 2014; Osborne & Patterson, 2011; 

Windschitl, Thompson, & Braaten, 2008). Other kinds of tasks prompt students to use such 

observations to theorize about abstract, microscopic, or otherwise inaccessible events and 

processes that influence the world we see. For example, in a physics class, a task can prompt 

students to use the idea of unbalanced forces to account for why a roller coaster car moves the 

fastest at the lowest point in the track. The process of scientific sense-making involves 

developing multiple and coherent relationships between/among observable and unobservable 

elements in a system (Ohlsson, 2002; Thagard, 2008) through discursive interactions with others 

and in the context of disciplinary practices such as argument and explanation. Students’ 

interaction in these situations is significantly mediated by the nature of instructional tasks 

(Greeno & Gresalfi, 2008).  

Science Tasks Framework: Linking Instruction to Student Learning Opportunities 
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Building upon the scholarship on instructional tasks in mathematics (Stein et al., 1996), 

we propose the science tasks framework (Figure 1) that guides the systematic examination of 

how teachers’ planning and enactment of instructional tasks are related to student learning 

opportunities. It should be noted that even though the proposed framework presents planning and 

implementing instructional tasks and students’ learning opportunities around single lessons in a 

linear manner, teachers often reason about these features in relation to one another both during 

the design phase and during the act of implementation. Pedagogical decisions at multiple levels 

accumulate over time and have consequences for learning (see Tiberghien, Cross, & Sensevy, 

2014). The following section conceptualizes the phases of instructional tasks as designed, 

launched, and implemented, and its connection to students’ learning opportunities.  

--Figure 1 about here-- 

Tasks as designed. As instructional designers, teachers have access to various teaching 

resources. By resources for instruction, we mean any assets that are used for designing learning 

opportunities in classrooms. They include conventional or material resources (e.g., curriculum, 

textbook, laptop, and equipment), human resources (e.g., knowledge, teaching strategies), and 

social resources (e.g., relationships with knowledgeable others who can assist in the design of 

instruction). Material resources can either be modified or left unchanged from standard curricula. 

By task as designed, we mean the status of the selected or designed activity at the onset of a 

lesson before being communicated to students. It is the outcome of teachers’ work in the “design 

arena” (Remillard, 1999)—teachers’ activities to appropriate or invent particular tasks for 

students.  

Task as launched. Teachers introduce and communicate the planned instructional task to 

students at certain point during instruction. Similar to mathematics education, we refer to this 
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phase as the “launch of task” (Jackson et al., 2013). Drawing upon the research on framing 

(Hammer, Elby, Scherr, & Redish, 2005; Hand, Penuel, & Gutierrez, 2012; van de Sande & 

Greeno, 2012), we posit that the launch is the time when a teacher frames a science situation for 

students, specific to the task, through discursive interactions. During the launch, specific features 

of the task are represented in a particular way, which gives rise to the meaning of a situation for 

participants interacting within it (Greeno, 2009; Hand et al., 2012). Teachers may draw students’ 

attention to certain aspects of the tasks, project the goals that the teacher are designated to 

address the task, name and draw upon resources to organize the activity, delineate the rules for 

“knowing” that are needed to succeed in their activity, and assign the roles and expectations for 

participants. Frames, however, are not simply “given” for students (Hand et al., 2012; see 

Maskiewicz & Winters, 2012); instead frames are negotiated and co-constructed between a 

teacher and students, each of whom comes in with their own framing (e.g., what it means to do 

activities in science classroom), and find the “fit” between existing and new framing to figure out 

“what is it that is going on here?” (Goffman, 1974). Through this process the tasks come to be 

collectively framed as figuring things out or perhaps completing the work for credits. Research 

on framing in classrooms problematizes a prevalent key school frame, that of “doing school” or 

“completing the worksheet” frame (Hammer et al., 2005; Hand et al., 2012). This frame 

represents the structuring of and engagement in rote and shallow learning performances 

(Jimenez-Aleixandre, Bugallo Rodriguez, & Duschl, 2000). Given that science classrooms are 

likely populated with students (and teachers) coming in with varied framings, including the 

students who assume a “doing school” as the default for participation from past experiences, it is 

important to attend to how tasks are framed as meaningful work (or not) during the launch, and 

how the ways in which tasks are framed are related to students’ later intellectual engagement.   
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Task as implemented. The final part of the enactment is implementing the tasks with 

students. The phase of “Implementation of tasks” refers to the time when students engage in tasks 

with the support of the teacher. From an instructional standpoint of view, a key of this phase is 

how students’ social and intellectual interactions, that are framed and set up through the launch 

of tasks, are supported to achieve instructional goals. It is largely unknown what forms of 

instructional support should be provided for whom, when and in what ways, in order to assist 

students’ intellectual engagement mediated by high quality instructional tasks in science 

classrooms.  

In this study, we attend to one kind of scaffold that teachers can provide—the use of 

instructional tools. We attend to tools because they can provide students with scaffolding to 

engage in challenging tasks. Stein and her colleagues (1996) found that in 58% of lessons, the 

maintenance of high-level cognitive activity was associated with provision of scaffolding. By 

instructional tools, we refer to material artifacts provided for students to mediate social and 

intellectual interaction during task implementation. Instructional tools are designed to achieve 

particular goals by improving conditions of student work, especially when they engage in a 

complex activity. Therefore, tools embody some of the designer’s knowledge about the object of 

work (i.e., goals) and effective ways to achieve the goals (i.e., knowledge-embedded function). 

Different from curriculum materials such as a worksheet, tools can often be used across different 

science topics, units, and even across grade levels. One prevalent tool in current science 

instruction is a “Claim-Evidence-Reasoning” framework (McNeill & Krajcik, 2006; McNeill & 

Krajcik, 2008). This tool, that incorporates knowledge about the structure of argumentation, is 

designed to assists students’ engagement in core scientific practices. This study focuses on how 
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the use of instructional tools, if there is any, affects the quality of students’ interactions (i.e., 

students’ talk and performance) during the implementation of tasks.  

Methods 

Research Contexts and Participants 

 This study is part of a larger project that explored beginning science teachers’ learning 

trajectories from preparation to first year of teaching. In this particular investigation, we focus on 

the quality of instructional tasks and student engagement in science classroom. The data came 

from 19 first year science teachers who received their teaching certificates from 13 different 

college-recommending teacher preparation programs in the Northwest United States. Even 

though all lessons were observed in 1st year teachers’ classrooms, the quality of the instruction 

observed across the lessons varied widely, which allowed us to draw reasonable inferences about 

the relationship between the quality of instructional tasks and opportunities to learn in 

classrooms in this sample. All participants had BA in science or equivalent degree and certified 

to teach science at the secondary level (6th to 12th grades). The participants’ backgrounds and 

their school contexts are representative of various populations of new science teachers in the 

United States (see the participants’ profiles and school contexts in Table S1).  

Data Sources 

Observations. Participating teachers’ instruction was observed at least three times from 

three different units upon their invitation between December 2011 and June 2012. Our 

preference was to observe the most discourse rich lessons in a unit selected by teachers. We 

assumed that those lessons likely provided best opportunities for us to examine how the different 

quality of instructional tasks afforded or constrained opportunities for students to advance their 
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thinking by mediating classroom talk (Stein & Lane, 1996). Selecting the three lessons from 

three different units helped us reflect the various topics in the sciences and reduce the likelihood 

of the observational bias caused by teachers’ differential content knowledge. We specifically 

requested that participating teachers invite us to observe lessons in which students were engaged 

in a “sense-making conversation,” such as ‘having a discussion after finishing lab activities’ 

toward the end of unit or project. In most cases teachers invited us when they did a lab, project, 

or hands-on activity. When an observed lesson did not include any sense-making conversation, 

we made an additional observation on the following day with the teacher’s permission to 

document any follow-up conversation coupled with previous activity. Ten out of 19 teachers 

were visited more than three times. A total of 83 lessons were observed. For the final analysis, 

we selected three most discourse rich lessons per each teacher. Therefore a total of 57 lessons 

were coded. Each visit generated a set of data that consisted of detailed field notes, audio-

recorded classroom dialogues, a 30 to 50 minute long post-observation interview with a teacher, 

12 samples of produced student work, various teaching artifacts, and photographs.  

Interviews. Post-observation interviews were conducted for 30-50 minutes. The teachers 

debriefed their instruction in response to the observer’s questions. We specifically asked about 

the context of the observed lesson, the instructional tasks, including the curricular sources, the 

intention behind the task design, their perception about the success and challenges in the ways 

the tasks unfolded during instruction. Some examples of questions were: Since I am not here for 

the entire inquiry, could you tell me about the lessons that came before this lesson and the 

lessons that will follow it? For this particular lesson, where did you get the idea for this lesson? 

What kinds of resources were available for you as you planned this lesson? (see the Interview 

Protocol S1).  
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Teaching and learning artifacts. We collected or took photographs of any inscribed 

artifacts that showed the instructional tasks as designed, launched or implemented. They 

included lesson plans, slides, task guidance sheets, student worksheet, rubrics, or any 

instructional tools used to assist students’ engagement during task implementation. In addition, 

we collected learning artifacts produced by students either individually or collectively. Ten to 12 

samples of produced student work were collected per lesson. 

Data analysis 

 This study takes a qualitative multiple case study approach (Merriam, 2009) to examine 

the quality of instructional tasks and student engagement in 57 science lessons. The first phase of 

the data analyses focused on developing a conceptual framework and coding scheme. Both were 

initially informed by the literature and later by emergent themes from the data. Specifically, the 

first author presented the initial coding schemes and framework to six members of the research 

team. The coding scheme was debated and iteratively revised in weekly research meetings until 

the group reached a consensus. The first and second author coded a sample of data using the final 

coding scheme (Table S2), identified areas of disagreement and refined the coding process over 

time. Based on the results of coding, cross-case analyses were conducted to theorize how and 

under which conditions students were provided high quality learning opportunities that advanced 

their scientific thinking. The following describes the process in detail, including data sources and 

coding scheme for the quality of tasks at each stage. 

 Phase I: Coding the intellectual demand of instructional tasks as designed, 

launched, and implemented.  

 Tasks as designed. We first examined each lesson holistically to identify instructional 

tasks by determining: (a) what students are asked to produce, and (b) how and with what 
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resources. Then tasks as designed are identified by cross referencing lessons or unit plans, 

instructional sheets for the day’s activity, student worksheets, or slides prepared for the 

instruction from planning. Two sets of sub-codes emerged with respect to high and low cognitive 

tasks through open and analytical coding (see Table S2). Building upon the prior studies on 

instructional tasks (Kang & Anderson, 2015; Stein et al., 1996; Stein & Lane, 1996; Tekkumru-

Kisa, Stein, & Schunn, 2015), cognitive science (Mayer, 2005), students’ scientific reasoning 

(Ohlsson, 2002; Thagard, 2008) and informed by recent influential documents (NGSS Lead 

States, 2013; NRC, 2007, 2012), high intellectual demand tasks were defined as the ones that 

have potential for advancing students’ thinking by inviting them to link observable phenomena 

and unobservable ideas. Our data suggested that high intellectual demanding tasks prompted 

students to do one or more of the following: (a) reason with science ideas to explain observable 

phenomena, (b) reason through data and observation to construct or evaluate explanatory models, 

or (c) develop arguments with use of evidence. In contrast, low intellectual demand tasks prompt 

students to (a) remember, recall, confirm, describe, or reproduce known scientific ideas, (b) 

practice skills procedurally, or (c) solve generic problems without connecting to existing 

knowledge (see the details of the coding in Table S2).  

Launching the tasks: framing the tasks. The sources of data for analyzing the tasks as 

launched were field notes, audio-recorded conversation along with hand-out worksheets. The 

intellectual demand of instructional tasks at the stage of launch was analyzed using the same 

coding scheme presented above. In addition, we coded two other features of launches that 

revealed how the tasks were framed. This coding was informed by previous studies on effective 

facilitation of classroom discussion for sense-making (see for example Puntambekar, Stylianou, 

& Goldstein, 2007). One feature has to do with the ways in which the tasks are related to 



RUNNING HEAD: INSTRUCTIONAL TASKS AND OPPORTUNITY TO LEARN 

 17 

learners’ experiences (code=contextualized vs. generic tasks). For example, in one of Hooke’s 

law lesson, the teacher brought a bicep expander and had students to try it out, and then 

introduced the task, “figuring out which of the springs with two different stiffness will work 

better for this bicep expander” (code=contextualized). In contrast, the tasks in the other lessons 

were introduced mainly centering on science ideas, such as “collecting data about Hooke’s law 

using two springs” (code=generic). The other feature of launch characterizes the ways in which 

the introduced tasks were connected to big ideas (code=connected vs. stand-alone). In some 

lessons, the launch included explicit discussion about the big science ideas that transcended the 

activity itself (code=connected). In contrast, in other lessons the tasks were launched as ‘a stand-

alone activity’ with no or little discussion about how the task is related to big ideas beyond the 

ideas specific to the activity itself (see the details in Table S2). 

Tasks as implemented—student learning opportunities. The sources of data for 

analyzing the tasks as implemented were classroom field notes, audio-recorded conversation, and 

produced student work. Students generated various artifacts from task implementation, either 

individually or as a group. Using these data sources, student learning experiences mediated by 

instructional tasks were coded in three ways (see Table S2). First, we examined what students 

actually do and talk about during the phase of task implementation. The level of intellectual 

work observed in students’ talk and performance were coded as high or low (see the details of 

coding scheme in Table S2). Second, we examined produced student work. The produced work 

was coded as ‘high’ if the artifacts showed evidence of generating multiple relationships among 

elements of a natural phenomenon through intensive cognitive processing. It was coded as ‘low’ 

if the artifacts reflected students’ simple or passive intellectual engagement, such as 

documenting, recording, reproducing information, repeating already demonstrated procedures, or 
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solving generic problems. Finally, we analyzed the range of participation during task 

implementation by quantifying how many students engaged in the tasks (i.e., talk and/or work as 

prompted by teacher) to assess the influence of task implementation on students’ learning (high: 

more than 80% (participation of students during task implementation), medium: 40~80%, low: 

less than 40%). Only the lessons that were coded as ‘high’ in all three sub-dimensions were 

considered as high quality learning opportunities (‘Implementation of task’ was coded as HHH 

in Table S3). 

Phase II: Cross-analyses—Analyzing the relationship between the quality of 

instructional tasks and student learning opportunities. Using a lesson as a unit of analysis, 

we first categorized the 57 lessons into two groups, depending on the quality of tasks as 

designed: one with high (n=26 lessons) and the other with low intellectual demands (n=31 

lessons). In each group of lessons, we examined the changes in intellectual demand and the 

quality of student learning opportunities, reflected in students’ engagement with tasks, as the 

lessons unfolded during launch and implementation. Specifically, with the 26 lessons that were 

coded as high quality instructional tasks as designed, the lessons were categorized once again as 

two sub-groups: 15 lessons that maintained their intellectual rigor all the way through student 

learning opportunities (H-H-H), and the other 11 lessons that failed to maintain their rigor 

throughout the lesson (H-L-L or H-H-L). We then further analyzed qualitatively using field 

notes, post-observation interviews, and other teaching artifacts, focusing on when, how, and why 

these breakdowns happened. The 31 lessons that had low-level intellectual tasks as designed 

were also examined, focusing on whether there were any cases when the intellectual rigor 

increased as the tasks were launched or implemented (e.g., L-H-H or L-L-H).  
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 Next we identified the lessons that were successful in providing rigorous student 

learning opportunities with respect to all three sub-dimensions (‘Implementation of task’ was 

coded as HHH in Table S3). Within the 15 lessons that met the criteria, we focused on the design 

of the tasks and how the intellectual rigor was maintained as tasks unfolded. This analysis helped 

us to identify the conditions under which students were likely to engage in robust forms of 

learning.  

Findings 

The analyses reveal three trajectories for students’ intellectual demand as a lesson is 

designed, launched, and implemented: (a) staying at high intellectual demand (H-H-H), (b) 

beginning with intellectually demanding tasks but failing to maintain its rigor (H-H-L or H-L-L), 

and (c) staying at low intellectual demand (L-L-L) (see the coding results and the profiles of 57 

lessons in Table S3). There was no case when a lesson designed with low intellectual demand 

was then framed and implemented with high rigor (e.g., L-H-H), nor were there cases of lessons 

that had low intellectual demand characterizing the framing (or launch) but “recovered” their 

rigor during the implementation, even if the initial quality of the task was high (e.g. H-L-H or L-

L-H). Among the 57 lessons, about a half of the instructional tasks as designed appeared to have 

the potential of engaging students in higher level of intellectual work (n=26 out of 57, 45.6%). 

Among those 26 lessons, students’ rigorous intellectual engagement was observed in only about 

a half of them (n=15 out of 26), and in the other half (n=11) students failed to engage in rigorous 

forms of science learning (see Figure 2).  

--Insert Figure 2 about here— 

We now present three illustrative cases (lessons) that describe different ways in which 

intellectual demand of tasks alter (H-H-H, H-L-L, and L-L-L). Each case provides a detailed 
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description about the quality of tasks in each phase and student engagement mediated by the 

tasks. All together these cases demonstrate how the opportunities for students’ intellectual 

engagement hinge not only upon the quality of planned instructional tasks (tasks as designed), 

but how they are launched and implemented.  

Staying High: Designing Intellectually Challenging Tasks and Maintaining Intellectual 

Rigor (H-H-H)  

In approximately one quarter of lesson (n=15 out of 57, 26.3%), intellectually demanding 

tasks were designed and implemented. Among the 15 lessons, 9 lessons were observed from 

three teachers, Ann, Bob, and Lynn. These teachers consistently designed and enacted 

intellectually challenging tasks across all three observed lessons. The other six lessons were 

observed in six different teachers’ classrooms in one of three observations at the end of year. 

Notably, the tasks of the lessons in this staying high group were either designed or significantly 

modified by the teachers (as opposed to being taken “as is” from curricula) with two exceptions. 

We present one case—Ann’s transfer of energy lesson.  

Ann’s 7th grade physical science: Transfer of energy.  Ann is a Caucasian female who 

majored in biology. Upon her completion of teacher preparation program, she began to teach a 

7th grade physical science at a highly under-resourced, ethnically and linguistically diverse urban 

middle school (free/reduced lunch rate: 86 %). While the school did not mandate the use of a 

particular curriculum, a district-level team provided a pacing guide for several curricular options. 

In addition, Ann’s science department faced pressure from the administration to help increase 

students’ standardized test scores. In particular, the administration requested that the science 

department focus on building students’ scientific literacy skills. Therefore, Ann and her 
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colleagues had to justify any activity or request for resources through the perspective of scientific 

literacy.  

The observed lesson described here was part of a unit on types and transfers of energy. In 

this unit, students had been working on one overarching question: “How can a roller coaster car 

go through the same loop twice (once forward, once backward)?” Students were presented with a 

model of the event, drawn on poster paper by Ann, on the first day of this unit (see a snapshot in 

Figure S1). This model showed a roller coaster car making one loop. Students were asked to 

speculate what happened at one of three parts of the model: before, during, and after the roller 

coaster goes through a loop (i.e., start and going down, making a loop, and going up the ramp). 

Students who picked the same segment worked together to develop their models in small groups 

while discussing how potential energy was transferred to kinetic energy or vice versa after the 

rollercoaster car had left the starting point.  

Task as designed: Revising the whole class model based on evidence. The focal question 

appearing on the teacher’s projected slides was, “Which design gives the rollercoaster the right 

amount of energy to make it through the loop twice?” During the interview, Ann told us that she 

decided to do this activity because in the previous day’s lesson several students raised questions 

about the whole class model that Ann developed. Based on these conversations with students, 

Ann made four different loop designs of a roller coaster car for this observed lesson. The task 

was designed to evaluate the four alternative models of loop design (A to D) using evidence from 

prior activities in the process of answering the focal question (see Figure S2). In this lesson, the 

task as designed was coded as “high” because this task, as constructed, invited students to 

engage in intellectually challenging work. That is, reasoning with evidence to evaluate and revise 

initial models about a complex real world phenomenon (codes HT-a & d in Table S2).  
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Launch of task: contextualizing & connecting a task to the big ideas. Ann began the 

lesson with a question, “Why is Ms. K’s model incorrect based on evidence from our activities?” 

During the introduction of the day’s activity, Ann drew students’ attention to several key 

elements relevant to explaining this complex real world phenomenon, such as the focal 

observable event (i.e., the car makes it through the loop twice—once forward, once backward), 

the roller coaster design, and unobservable science idea (i.e., energy). Ann gave the detailed 

instruction of the task, the rule of ‘knowing’ and expectations, and stated goals that she intended 

to achieve:  

Ok, now we are going to revisit our whole class model of the roller coaster. Just like 

when we did the Skater Girl1, we are going to look at different parts of the model in 

addition to looking at the whole model. We are trying to understand, as a class, which 

roller coaster design gives the car enough energy to make it through the loop twice – once 

forward, once backward. We will do this by using ‘red light’, ‘green light’, and ‘yellow 

light’ sticker. Generally, we know that scientists can’t just say ‘yes’ or ‘no’ to a question. 

They have to back up their claims with evidence. Red, green, yellow stickers will help us 

do that as scientists...[explain that red, green, yellow colors signal how well evidence 

supports a model]…We are using your evidence from your activities to evaluate your 

model, just like scientists…[explain the procedure in detail while modeling one example 

for herself]…The idea is that you tell me both the activity and the evidence you got from 

the activity to support a model or to show how a model is faulty. We want to have one 

per class, so that we can start to use evidence across classes to build a stronger case for 1-

2 models. The goal of this is to come to a class understanding of what works and what 

 
1 The anchoring phenomenon of the previous unit 
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doesn’t, before we move onto final explanations. Remember that we are scientists and we 

use evidence. 

The task as launched was still intellectually challenging given that the completion of this 

task as set up required students’ intensive reasoning such as evaluating evidences from activities 

to figure out which model works (codes=HT-a & d in Table S2). The focal phenomenon of this 

task was contextualized in a specific situation that most students of this class had experience 

(code=contextualized). In addition, the task was conceptually related to the big ideas of this 

unit—making sense of a complex real world phenomenon (code=connected). During this launch, 

students were repeatedly positioned as “scientists” and a member of the classroom learning 

community who contributed to collective construction of knowledge. Overall, during the launch 

the task was framed as “come to a class understanding” about this complex phenomenon “as a 

scientist.”  

Implementation of task & student engagement.  

 Student talk and performance. Ann, and the other two teachers who were successful in 

designing and maintaining intellectual demand across all three lessons, commonly used some 

forms of instructional tools, such as Ann’s red/yellow/green light notecards (see Figure S2). In 

this focal lesson, students smoothly transitioned into small group conversation with their peers. 

They talked about whether and how their evidence from previous lessons supported the initial 

whole class model. They filled out either red-, green-, and yellow-dotted notecards, signaling 

whether they have convincing evidence (green), needed more evidence (yellow), or have 

contradictory evidence (red). As guided during the launch, students identified evidence from 

previous in activities that they had engaged and then began to wrestle for explaining their 

reasoning—“How the evidence supports a model or to show how a model is faulty.” Ann visited 
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each small group and had conversation with students for 5-6 minutes. As shown in the following, 

Ann first read and listened to students’ current ideas. Then she asked a series of questions. Her 

questions either drew students’ attention to some key elements or press students to further 

elaborate their ideas: 

Ann: How’s it going? 

Student 1: Good. We are talking about the speed the car needs for going through the loop.  

[Ann reads student cards] 

Student 2: I think that the ramp activity proved that we need more speed on the car than 

the ramp in coaster A can give.  

Student 3: Yep, the car doesn’t have enough speed to make it up the ramp. When the 

marble started lower in the ramp activity, it didn’t go up enough. It was too slow. 

Ann: Good job using evidence from an activity, not just the activity itself. But I want to 

press on you to go further. Relate speed to energy for me. How did we use the 

ramp activity to talk about relationships between speed and energy? How can 

evidence from the ramp activity about speed and energy help us with the roller 

coaster? 

Student 1: So we talked about in the ramp activity how the more speed something has, 

the more energy it has.  

Student 3: Potential or kinetic [energy]…? 

Student 2: Good question. 

Student 1: Kinetic, since we’re talking about a moving car. 
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Student 2: Ok, so if the car has more speed, like the marble, it has more kinetic energy 

and can get through the loop.  

Ann: Good start. Write that down on the card.  

Since the structure of the task required students to write down their ideas on the notecards 

(set up by task design), Ann provided herself with easy access to students’ ideas during the visits. 

As demonstrated, students initially made connections at the observational level, drawing upon 

the ramp activity—i.e., the relationship between speed of the car and going through the loop. 

Ann pressed students to further reason about the focal phenomena (a roller coaster car making its 

way through the loop) and justify their claim by pointing out an unobservable science idea—

energy. In response to Ann’s question, the students collectively engaged in reasoning with this 

idea to build coherent relationships with the existing set of ideas. Students drew upon the 

scientific terminology (i.e., potential and kinetic energy), and used this to explain what they saw 

(the speed of the car, the height of the model, making a loop) (code=high intellectual 

engagement).  

Produced student work and the range of student participation. In the index card, students 

explained why they thought some part of the model should be kept or revised referring to the 

lessons from the activities. For example, one student stated on the “red-light” note: “The equal 

height activity; It tells you, you can’t go through it both sides aren’t equal. Design D wouldn’t 

work because the big loop makes it impossible to go through since it doesn’t have equal energy.” 

After students wrote down their ideas on the index card individually, they put the cards on the 

wall. They collectively produced the evidence poster on the classroom wall (see Figure S2). As 

demonstrated in the red/green-light cards on the wall, all students participated in the tasks 

(codes=HS-a, c & d; high level of participation). 
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Break Down: Beginning with Intellectually Challenging Tasks as Designed, but Failing to 

Maintain Intellectual Rigor (H-L-L or H-H-L) 

The ‘break down’ of maintaining intellectual rigor was observed both in the phases of 

launch and implementation of tasks. Six out of 11 lessons that began with a high cognitive task 

were lowered in intellectual rigor during the launch (H-L-L). The others were during 

implementation (H-H-L). In the following, the process of lowering intellectual rigor in the 

phases of launch and implementation as well as its projected impact on students’ learning is 

presented using one illustrative case—Nick’s Momentum Lab lesson.  

Nick’s Momentum Lab. Nick was a Caucasian male who had BA in physics. His school 

was located in a suburban community serving diverse population of students with a wide range 

of families’ socioeconomic backgrounds. The primary resources that Nick drew heavily on to 

plan his instruction was a set of curriculum materials developed by a university-based research 

team. Nick was one of the three physics teachers who used this curriculum as major resources for 

instruction in this project.  

The focal lesson came from a 12th grade unit on momentum. This followed a unit on 

energy, and in the previous lesson students were introduced the concept of momentum through 

the conversation about two hypothetical scenarios: (a) being hit by two different balls that have 

different masses but the same speed (i.e., throwing a “bouncy ball” vs. a heavier baseball), and 

(b) being in a vehicle that collides with a light car moving at 60 miles per hour vs. with a heavy 

car moving at 5 miles per hour. The idea of and formula for momentum (FΔt=P, P=mv) were 

presented to students in the prior lesson.   

Tasks as designed. The main task planned for this focal lesson, that was observed in the 

slides and outlined on students’ worksheets, was solving a problem in an interesting scenario by 
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applying the ideas of conversation of momentum. Students were framed as an actor in the movie 

of Jurassic Park who was chased by a dinosaur, a velociraptor, and they had to decide which ball 

between bouncy and clay ones is more likely to close the door. The question stated on the slide 

was, “Would you rather have a super bouncy ball or a sticky lump of clay (assuming that the 

mass and size of the two balls are equal)? Explain your reasoning” (see the snapshot of the slide 

& worksheet in Case S1). As designed, this task has a potential of engaging students in a higher 

level of intellectual work. The key question stated in the worksheet was, “Let’s use the online 

collision simulation to help you find the answer to this question” (see the worksheet in Case S1). 

Then the task prompted students to collect and analyze data about any changes of momentum 

before and after collisions using a computer simulation. The task was designed to guide students 

in coming up with the law of conservation of momentum, both conceptually and mathematically, 

by working with data as a group. The task as designed was coded as “high” because solving the 

focal problem by engaging in this set of work required students’ intensive reasoning with the 

science ideas, moving back and forth among mathematical symbolism, conceptual definitions, 

and imagined phenomena (code: HT-a and b). Completing this task requires a complex reasoning 

that involves taking into account of multiple variables, such as elasticity, mass, and velocity.  

Tasks as launched. The intellectual demand of the task, however, lowered in the phase of 

launch by framing the tasks mainly as ‘filling out the data spreadsheet.’ Nick began the lesson by 

reading out-loud the two learning targets on the screen, which was scripted by Teacher Guideline 

of the curriculum materials. Nick spent about 10 minutes stating the instructions of what 

individual students had to do while going over the worksheet procedure (see the full transcripts 

of the launch in Case S1). He explained the steps to follow, including where to record the data, 

and how to input the data. Each student was assigned to fill out a designated part of the data 
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spreadsheet. At the end of the launch, Nick said, “After you do some data analysis, you are just 

gonna work through a series of questions to get you to think about the law of conservation of 

momentum” (codes=LT-e; generic & stand-alone). Nick pointed out the dinosaur problem at the 

end of the worksheet but there was no discussion of the connection with this data collection 

activity. This form of a launch that lowered the intellectual demand was typical across all five 

observed lessons in Nick’s classroom, as well as other teachers in this group. After all, the tasks 

requested relatively lower level of intellectual work because students mostly work to confirm or 

illustrate known scientific ideas using the data and automatically calculated numbers in the 

provided spreadsheet. Notably, the situation was mostly framed as ‘completing the worksheet’ in 

those lessons. Despite the intellectually challenging tasks as designed, the intellectual work to 

solve the problem was neither guided nor communicated in the phase of launch.  

Task as implemented & student engagement.  

Student talk and performance: The intellectual demand manifested in both student talk 

and performance was relatively low in the phase of task implementation. After the launch, 

students moved to their lab table, logged into computers, and started their work. Nick circulated 

the groups to respond to students’ questions during the rest of the period. Students collected data 

as a small group using a computer simulation following the procedures in the worksheet. The 

simulation was designed to measure the amount of momentum when two moving balls collide in 

a closed system with the changes of key variables (mass, velocity, and elasticity). However, there 

were a great deal of confusions among students, such as which button on the screen they should 

click in the simulation, what numbers they should put for each variable, what the positive and 

negative means, and what they ought to record in the spreadsheet, etc. Most small group 

conversation was focused on clarifying the procedures, ‘what to do’ but there was little sense-
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making conversation (see the samples of small group conversation in Case S1). For example, in 

one group, two male students were unsure what number they should put in for mass and velocity 

in the simulation. One student called and asked, “Can I put just like any numbers?” As 

responding to the students, Nick revealed the key patterns (i.e., the law of conservation of 

momentum) for himself that students were supposed to find from the data. Nick said, “Whatever 

number are, any numbers provided will satisfy the law.” This conversation shifted the nature of 

the work from students’ active reasoning with data (i.e., finding the relationship between initial 

and final momentum) into simply confirming or illustrating the known scientific law by plugging 

numbers into the simulation. During another small group conversation with two female students, 

Nick again lowered the intellectual demand of the task. These two female students, and many 

other students in this classroom, were confused about the negative sign of the velocity. These 

two female students called on Nick and asked, “Is velocity of the two [balls] supposed to be 

negative all the time?” Nick gave them the answer right away, “Not necessarily”: 

Student 1: (ask to her peer) Does velocity have to be different all the time? 

Student 2: I honestly don’t know what is going on. 

Student 1: [Call on Nick] Mr. C, is velocity of two supposed to be negative all the time? 

Nick: uhmmm…okay. Not necessarily. It can be if you always start like two on one side 

together. Does it make sense? So let say you always start two on the right hand 

side, then two will always be negative. But somehow the two gets on from this 

side, so if you remember that two always needs to be on, on the right then it will 

always be negative. Easy enough, uhmm?   

Student 1: Thank you.   



RUNNING HEAD: INSTRUCTIONAL TASKS AND OPPORTUNITY TO LEARN 

 30 

This form of interaction during the small group work was fairly typical across observations in 

Nick’s classrooms.  During the small group work, Nick worked hard to help students get the 

tasks done by clarifying procedures and answering their questions. By doing so, the intellectual 

demand built in the task design became lowered because either the intellectual space for students 

to struggle and reason for themselves was removed or the nature of the task was transformed.  

Produced student work and the range of participation: Produced work reflected the deep 

confusion students experienced during the task implementations.  The reported data and the 

calculations appearing on the data table were inaccurate in most provided samples of student 

responses. In all the nine samples of student work, students’ explanations about the bouncy and 

clay balls were neither matched with nor connected to the data that they collected. For example, 

one student, who were recognized as a high achieving student by Nick, provided evidence of 

engaging in reasoning with everyday knowledge with evidence in her response to the pre-

assessment: “Um, I think that the clay would be more effective because it is solid and I feel that 

it will be ok if you miss, you could hit the velociraptor and temporarily blind it, so that way you 

could grab a T-Rex to kill the velociraptor.” This student collected inaccurate data from the 

simulation, miscalculated the initial and final momentum. The final explanation was changed to 

the correct answer, like all the other students. But her response did neither show any progress in 

her thinking nor in-depth understanding despite the use of academic language.  This student 

stated, “The bouncy ball [is more likely to close the door] because it takes momentum to close 

the door and send the ball back” (see this students’ pre and post responses in Case S1). During 

the implementation, most students logged in the simulation and click the button while plugging 

the numbers (codes=LS-b & c; high level of participation).  
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Staying Low: Low intellectually demanding tasks were designed, launched, and 

implemented (L-L-L) 

Thirty-one out of 57 lessons (54.4%) began with a low intellectual demand task as 

designed, and maintained a low level of intellectual rigor throughout the lessons. About half of 

the lessons in this group (n=15) were observed in five teachers who consistently designed and 

enacted lower level of intellectual work across all three observed lessons. For this paper, we 

present one illustrative case—Sarah’s Battery Lab. This case is particularly interesting because 

of the natural comparison established with similar context, the same grade level and the same 

topic of the lesson with the case of Ann in stay high group. Just like the case of Ann, Sarah 

taught 7th grade physical science at a highly under-resourced urban middle school that had 

ethnically and linguistically diverse populations of students. The topic of this focal lesson was 

the same as Ann’s lesson—types and transfer of energy. This case demonstrates how 

instructional tasks taught in similar contexts can be designed and enacted in a different way, and 

how it affects student learning opportunities. 

Sarah’s Battery Lab: types and transfer of energy. In the previous day students were 

given a lecture about energy transformation in battery and light bulb. They took a note about the 

1st transfer from “chemical to electrical energy” (from liquid to wire), and the 2nd transfer from 

“electrical to light energy” (from wire to light bulb). Sarah invited us on the lab day when 

students built a battery following the lecture day.  

Task as designed—Build a battery to light a bulb. The planned tasks of this focal lesson 

were building a battery and testing it using a light bulb as a pair to answer the four questions: 

“(a) How can a light bulb test whether you made a battery? (b) Draw a diagram of your battery, 

(c) What did you observe as you made the battery? (d) What transfer of energy did you 
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observe?” Despite the hands-on engagement with the task, the task as designed required lower 

levels of intellectual work for three reasons. First, the task prompted students to observe and 

describe what they saw, without further pressing for deeper reasoning such as “how” or “why.” 

Second, most questions had a single and discrete correct answer expected by the teacher, such as 

chemical energy is transferred into light energy. Third, the task was designed to illustrate or 

confirm the known science ideas presented in the prior lecture. Therefore, this task as designed 

was coded as low (codes=LT-a & -c).   

Task as launched—covering standards and giving directions.  The task as launched was 

coded as “low” because the task showed the least amount of complexity, and the completion of 

this task only requires students to procedurally follow the directions, and recall the process of 

energy transfer in battery that they took a note in the previous day. As the bell rang, Sarah called 

on three students from volunteers who raised their hands. Each student read out-loud the 

Standards—“Energy Forms,” Learning Target—“I will build a battery to light a light bulb,” and 

Do Now—“Make a list of everything you already know about batteries.” After students wrote 

down what they knew about batteries, Sarah asked students to share their lists with class. When 

Sarah explained the procedure of the lab, a student, Tom raised his hands and asked a question:  

Teacher: Tom, questions for me? 

Tom: You know the [battery] that you put your finger on it and does it shock you? 

Teacher: Yes, those are, the square battery that you are talking about, yeah? 

[After Tom’s comment, students are getting excited and starting to talk about it] 

Michelle: [talk to her friend] I used to do that. That hurts. 
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Teacher: Listen, five, four, three two, one! We are going to read through all the 

procedures today. After reading through all 10 steps, then we are going to set up 

lab work. (see the full transcripts of Sarah’s launch in the Case S2) 

It appeared that Sarah framed the task as ‘complete the worksheet following directions’ 

to cover one standard (“types of energy”). The 7th grade student, Tom (and other students), who 

had yet to develop “doing school” frame, seemed to bid for his frame, that is inquiring his 

question about every experiences. However, Tom’s question did not make any change in the 

flow of the instruction as Sarah decided to stick to her plan (codes=LT-a & c; generic and stand-

alone). 

Task as implemented & student engagement.  

Student talk and performance: The intellectual demand manifested in both student talk 

and performance was low in the phase of task implementation. Students built a battery following 

the 10 steps described in the textbook and responded to the discussion questions as prompted by 

the task. After building batteries, Sarah reminded students of drawing their batteries in their 

notebooks and answering the question of “what transfer of energy did you observe?”  

 As students finished building their batteries and filled out the answers to the questions on 

a worksheet, Sarah circulated and posed the same questions as on the worksheet and students 

provided one or two words answers. Sarah’s particular press was on naming energy transfers 

with the talk pattern of I-R-E (initiating-responding-evaluating) (see the samples of the small 

group conversation in Case S2). Students mostly engaged in procedural talk when they worked 

together, and responded to the teacher’s question with one or two short words.  

Produced student work and the range of participation: Students produced their notebook 

from this task implementation (see a sample of student work in Case S2). The notebook 
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consisted of Standards, Learning target, Do Now that they copied down. The notebook also 

included a drawing of their battery and responses to three questions. Students recorded 

observation and reproduced the known scientific ideas to produce this learning artifact. The 

intellectual work manifested in this artifact was low although most students participate in 

building batteries (codes=LS-a & b; high participation).   

Discussion 

Our analyses suggest that in order to create opportunities for advancing scientific 

thinking, a lesson must begin with intellectually challenging tasks and maintain its rigor during 

the enactment. In this discussion we first conjecture about how and why beginning a lesson with 

the high quality instructional tasks is essential. We then present three definable characteristics of 

the launch and the implementation observed from the lessons that maintained intellectual rigor 

theorizing how it may come to create conditions for students’ rigorous engagement. 

Getting off on the right foot: Creating learning opportunities for students that advance 

scientific thinking with intellectually challenging instructional tasks 

 The findings highlight the importance of beginning lessons with high quality tasks—

meaning intellectually challenging and complex tasks—for providing robust learning 

opportunities in classrooms. Across the 57 observed lessons, there was no indication that 

students engaged in meaningful sense-making conversation when the planned tasks were of low 

demand (tasks as designed).  

 The analyses suggest that the quality of tasks as designed sets up the initial potential for 

students’ engagement, which could then be either maintained or lowered as the lesson unfolds. 

We theorize that high quality tasks are not just arbitrarily difficult, rather they create the 
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appropriate level of epistemic and procedural uncertainty for a particular group of students 

learning a particular topic in a particular context and moment in time (see Manz, 2014; 

Tiberghien et al., 2014). Researchers who attend to the joint construction of the classroom 

knowledge by the teacher and students note, “uncertainty is an essential component of the 

growing of knowledge, in the scientist’s activity as well as in the science classroom activity” 

(Tiberghien et al., 2014, p. 934). The uncertainty of knowing and the students’ awareness of it 

allow them to question claims, argue about ideas, and in the process gain a better understanding 

of the science through participation in the authentic socio-intellectual processes by which 

knowledge is refined over time. Researchers also note that wrestling with epistemic 

certainty/uncertainty is strongly associated with the development of an intellectual autonomy of 

students (Engle & Conant, 2002; Manz, 2014). We speculate that the appropriate level of 

uncertainty, set up with the carefully designed instructional tasks, affords a space for students’ 

meaningful intellectual work. Examples here are the two 7th grade physical science lessons that 

addressed the same science ideas in similar classroom contexts. In Ann’s roller coaster lesson, 

the task offered the basic structure for productive social and intellectual interactions, such as 

reviewing ideas from the prior activities, and making connections among and between the ideas 

through collective conversation as a small group. The task was puzzling and complex enough for 

this group of middle school students in that moment who had been engaged in resolving one 

major science question over the past several days. The level of uncertainty and complexity 

appeared to be appropriate and sufficient given that the students could develop evidence-based 

explanations after exchanging and reconstructing ideas. It should be noted that the task of 

evaluating four-loop designs for a roller coaster car emerged from the class conversation of the 

prior lesson.  In contrast, the planned task of Sarah’s battery lesson showed little uncertainty 
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either in terms of the knowledge or procedure necessary to complete the work. Even though most 

students participated in this hands-on activity, the procedure to complete this task was instructed 

clearly through the textbook, and there was one correct answer communicated through the prior 

day’s lecture. In other words, there was little or no uncertainty either in relation to knowledge 

construction work or the procedures for developing new forms of evidence or information.  

 Our analysis suggests that a lesson likely begins with high quality instructional tasks that 

create appropriate level of uncertainty when the tasks are designed or selected responsively with 

careful attention to students’ everyday experiences and questions that emerge in the flow of 

instruction, instead of simply following recommended curriculum materials. The majority of 

intellectually demanding tasks observed in classrooms were either designed by the teacher, or 

substantially modified from existing curricula (12 out of 15 lessons, 80%). Ann and other two 

teachers, who consistently provided intellectually challenging learning opportunities, were the 

people who designed their instructional tasks by substantially modifying various existing 

resources (see Table S3). The designed tasks of these three teachers typically addressed a 

puzzling question or a phenomenon that were directly related to students experience in their daily 

life, as demonstrated with Ann’s case. The potential of responsively designing instructional tasks 

to afford students’ intellectual engagement is also implicated by the Sarah’s battery lesson. 

Recall one student, Tom and his question during the launch of the tasks—this query activated his 

everyday knowledge relevant to the topic (“You know the ones that you put your finger on it and 

does it shock you?”). We believe that taking up Tom’s question, that was deeply rooted in his 

everyday experiences as an aspect of task, boosted the intellectual rigor of this lesson by 

increasing the epistemic uncertainty for that particular group of students. It is highly likely that 
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the tasks that are responsively designed, based on students’ ideas or questions, often bear the 

appropriate level of uncertainty for a particular group of students in a particular moment.  

Maintaining intellectual rigor during launch and implementation of tasks 

 Our further analysis shows that beginning a lesson with a high quality tasks is essential 

but not sufficient in creating robust student learning opportunities in classroom. Among the 26 

lessons that began with high demand tasks, only 15 provided evidence of students’ active 

engagement for sense-making (see Figure 2). The cross-analysis of the 26 lessons revealed three 

definable characteristics of launch and implementation of tasks. Two characteristics have to do 

with the ways in which the tasks were framed during the launch. The third one involves teachers’ 

deliberate use of instructional tools or scaffolds that assist students’ implementation of tasks.  

 The first characteristic observed during the launch was that the tasks were communicated 

with students as a way to understand contextualized phenomena (13 out of 15 lessons; see Table 

S3), rather than completing a generic task. We conjecture that framing tasks as a way of 

understanding complex phenomena or solving a question that matters to students may help the 

teacher and students to co-generate the meaningfulness of the work. It may help students 

formulate an epistemic goal for the knowledge construction work entailed in the proposed tasks, 

which is essential for later engagement in meaningful scientific practices during task 

implementation (Berland et al., 2015). Recall how the task of Ann’s roller coaster lesson was 

framed as the work for building “class understanding” while positioning students as scientists 

who were expected to work together in order to solve their puzzle. Explicit discussion on the rule 

of knowing (e.g., “scientists can’t just say ‘yes’ or ‘no’ to a question. They have to back up their 

claims with evidence”) seemed to assist students to engage in the procedure meaningfully 

beyond rote performance. Although cognitively demanding intellectual work can be built into the 
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carefully designed tasks, we conjecture that it is through this process of framing in which 

intellectual demand of the tasks is co-generated as students formulate their sense of “what is it 

that is going on here?” (Goffman, 1974) and constructing the meaningfulness of the work.    

 Another distinctive characteristic of launches observed from the 15 lessons was the 

richness of the language and ideas that surfaced on the social plane of the classroom through 

conversation between teachers and students. In those lessons, the connection to big ideas was 

explicitly discussed during the launch (n=14 out of 15 lessons coded as “connected”; see Table 

S3). Consistent with Jackson and her colleague’s findings (Jackson et al., 2013), students more 

likely engaged in in-depth sense-making conversation during the task implementation when the 

intellectual demand of tasks as launched was coded as high (see intellectual demand of task as 

launch and intellectual level of student talk in Table S3). We conjecture that connecting the tasks 

to big ideas during the launch activated conceptual resources that students could draw upon to 

complete cognitively demanding work. Intellectually demanding science tasks, such as the one 

from Ann’s roller coaster lesson, addressed complex real world phenomena. When lesson 

launches began with intellectually demanding tasks, students were set up to work on several 

ideas, including their own existing ideas, to generate multiple and coherent relations among 

them. As shown in Ann’s case, when teachers and students discussed the connection of the task 

to the big idea of the unit or prior activities, the key elements of observable phenomena and 

unobservable science ideas from the prior lessons became readily available and accessible as 

cognitive resources for students’ sense-making conversations. As reported by Puntambekar et 

al’s study (2007), teachers’ deliberate talk moves to connect the tasks to ideas that transcended 

the activity at hand seemed to help students to successfully engage in rich sense-making 
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conversation by activating and enriching available cognitive resources and seeding ideas for how 

to interact with one another during the implementation.  

With respect to the implementation of tasks, distinctive use of scaffolding tools was 

observed in lessons that maintained intellectual rigor (13 out of 15 lessons, see Table S3) 

whereas lessons that failed to maintain rigor typically did not utilize any scaffolding tools. Tools 

in the lessons that maintained intellectual rigor publically represented students’ ideas, such as 

Ann’s green/yellow/red light cards; teachers used these tools to structure and problematize the 

work (Reiser, 2004). On one hand, the tool in Ann’s class structured the task by guiding students 

through key components and supporting their performance. On the other hand, the tool forced 

students to incorporate key disciplinary ideas and practices in their work by requiring that they 

evaluate four different loop designs, to review and connect evidence from class activities and to 

explain their thinking at length. As such, disciplinary ideas, such as energy and speed, were 

problematized in the process of solving a complex problem. It should be noted that the teachers 

who were successful in beginning a lesson with intellectually challenging tasks and maintaining 

intellectual rigor were the ones who actively utilized various instructional tools during task 

implementation (see Table S3). Reiser (2004) states that “learners, tools, and teachers work 

together as a system”, and “scaffolded tools can create opportunities, but whether learners 

capitalize on these opportunities depends on the expectations and practices established in the 

classroom” (p. 298). We speculate that the deliberate use of tools, as a part of a carefully 

constructed and coordinated system of instruction, make it possible for students to have 

interactions effectively as set up by tasks, therefore advancing their thinking.   

Conclusion & Implications 
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We began our inquiry with the goal of better understanding how to create opportunities 

for students to advance their scientific thinking through the informed use of instructional tasks. 

Building upon the studies in the field of mathematics education, we analyzed the potential for 

students’ intellectual work built into the tasks across the three phases of instruction (tasks as 

designed, launched, and implemented), and documented how the intellectual demand of the 

unfolding task deepened (or failed to deepen) students’ engagement in science. It should be 

noted that the lessons analyzed in this study were taught by 1st year science teachers who faced 

various challenges in selecting, modifying or enacting curriculum in new contexts. Even though 

our findings are consistent with the analyses of mathematics lessons taught by experienced 

teachers, the outcomes of our study should be interpreted with caution, specifically considering 

that novices may use curricular materials and enact lessons differently than educators who have 

been in the classroom for several years.  

This study does allow us to theorize how students’ learning opportunities are the product 

of both design and goal-directed pedagogical support throughout the duration of a lesson. First, 

the findings strongly suggest that it is a sequence of coordinated events that constitute 

opportunities to learn in the classroom. There are at least three kinds of task-related mediation, 

facilitated by teachers, that help translate curriculum into learning opportunities for students: (a) 

selecting and/or modifying tasks for a lesson, (b) launching high-quality tasks by framing the 

work in light of learning goals that transcended the task itself, and (b) providing deliberate and 

appropriate support during the implementation. In our sample, students’ meaningful intellectual 

engagement was observed when: (a) a lesson began with high quality instructional tasks—

complex tasks that bore appropriate levels of epistemic and procedural uncertainty for students, 

(b) the task was framed in a way that helped learners connect themselves to the situations 
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specific to the tasks, as well as seeing the relationship to disciplinary ideas during the launch, and 

(c) students’ engagement with these complex tasks was guided with use of scaffolding tools that 

structured the work and problematized disciplinary content. These findings support the argument 

that teachers need to be re-positioned as instructional designers who work to create particular 

forms of learning opportunities, rather than as passive consumers of pre-developed curricula 

(Brown, 2009; Clandinin & Connelly, 1992; Lloyd, Remillard, & Herbel-Eisenmann, 2009; 

Remillard, 2005). This study begins to shed light on the kinds of pedagogical decisions and 

practices during various parts of lessons that influence students’ intellectual engagement. 

This study also highlights a phase of science instruction that is not often a focus of 

attention in research or in classroom practice—the launch of tasks (see the launch of 

mathematics instruction in Jackson’s et al, 2013). Instead of conceptually conflating launch and 

implementation as same activity, this study examined these phases separately, with attention to 

their unique potential to influence students’ opportunities to learn. We argue that this approach 

increases the analytical power applied to what is impacting students’ intellectual engagement 

with complex tasks.  

One important point emerging from the analyses is the critical role that students 

themselves play in setting up rigorous learning opportunities. From a situated perspective 

(Greeno, 2006; Greeno & Gresalfi, 2008), learning occurs in and through systems of activity that 

are jointly constructed in classrooms. Within this frame, students do not merely respond to 

instruction, rather, their particular forms of participation—asking questions, sharing ideas, 

creating artifacts—constitute opportunities for the intellectual engagement of their peers and for 

the class as a collective (see Maskiewicz & Winters, 2012). Our findings suggest that curriculum 

developers and teachers can only engineer potential intellectual demand into the design of tasks 
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that mediate students’ interactions, and that rigorous learning opportunities cannot be created if 

students fail to see either the meaningfulness of the work or do not exert the intellectual agency 

to engage in the work. A corollary question then, is whether it is possible to create rigorous 

learning opportunities for all students without gaining greater access to their diverse experiences 

and existing repertoires of sense-making practice. Future studies that investigate the roles 

students play in curriculum design and enactment will be critical in addressing issues of equity 

and well as rigor.   
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