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Learning to live within your (water) budget: evidence

from allocation-based rates

Maŕıa Pérez-Urdiales and Kenneth A. Baerenklau

School of Public Policy, University of California Riverside

Abstract

As allocation-based rates (ABR) become more widely adopted in the residential wa-

ter sector, it is important to determine whether consumers interpret the water budget

as a target for water use, or if they simply respond to the increasing block design. This

paper exploits a natural experiment created when ABR were adopted by a California

water district, that allows us to identify households with high water use as a treatment

group. We find evidence of heterogeneous customer responses, and policy-induced be-

havioral changes that imply customers adjust their target level of water use based on

the information signal provided by the water budget.

JEL-Classification: Q20; Q25; Q28.

Keywords: Water Demand; Allocation-based Rates; Convergence; Regression Discontinuity

Design, Difference-in-differences; Latent Class Models

1 Introduction

In the current context of increasing water scarcity, both price and non-price strategies are

commonly implemented to promote more sustainable water use. Among the former, ap-
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proaches include seasonal rates, time of use pricing and drought surcharges, but increasing

block rate (IBR) tariffs have been the most widely adopted price structure in recent decades

(Zetland and Gasson, 2013). As noted by Monteiro and Roseta-Palma (2011), this type of

tariff potentially provides consumers with a clear signal of water scarcity while also supply-

ing low cost water for basic needs. However, Arbués and Barberán (2012) argue that equity

problems may arise associated with the size of the household. In particular, they argue that

because larger households tend to use more water even for basic needs, they will tend to

pay more per unit for that water than smaller households (Arbués and Barberán, 2012).

Moreover, IBR tariffs may not send an adequate scarcity signal to smaller households. That

is, even if a small household is using water excessively, the higher rate may not apply to its

level of consumption.

Non-price strategies have become increasingly common in the past years, mostly due to

the fact that water demand is generally price inelastic (Sebri, 2014), and therefore, price

policies can have limited water conservation potential. Notably, social comparisons have

been used as a non-price tool to promote conservation in the electricity and water sectors.

Several studies show that social comparisons can significantly decrease consumption (Allcott,

2011; Brent et al., 2015). However, Ferraro and Price (2013) find that the effect fades over

time.

In recent years, allocation-based rates (ABR)1 have been implemented in the residential

water sector across the US2 and in particular in California where they were codified in the

State Water Code in 2008. These rates emerged to address the equity issues associated

with IBR described above, as ABR is a type of increasing block rate structure in which the

block sizes are defined based on the quantity of water that is deemed efficient for a particular

consumer’s indoor and outdoor needs. The applicable definition of water use efficiency is that

provided by Gleick and Cain (2004): “the theoretical maximum water use efficiency occurs

1ABR also is referred to as “IBR water budgets” or “budget-based rates”.
2See Mayer et al. (2008) for a list of water utilities using ABR in California, Utah, Nevada, Colorado,

North Carolina and Florida.
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when society actually uses the minimum amount of water necessary to do something”. While

this measure of water use efficiency could be determined using Frontier Analysis methods

that compare the level of water use across households, in practice efficiency is determined

by the water agency. That is, the definition of efficiency used here is an engineering rather

than economic use of the word.

Under ABR, the block sizes are household-specific and are updated every billing period

according to weather conditions (Baerenklau et al., 2014). Thus larger households (typically

defined as having more residents and more irrigated area) are allocated more low-cost wa-

ter than smaller households, with higher rates impinging on both households if and when

consumption goes above the efficient level of use. This efficient level is labeled the “wa-

ter budget” in customer billing statements, and provides a signal to each customer about

their relative water use efficiency. The existence of the water budget thus potentially allows

consumers to learn about their changing water needs and adapt their water use accord-

ingly. That is, ABR can be considered a combination of both price and non-price strategies.

However, rather that relying on social comparison information as above, this tariff informs

consumers about their own level of water use efficiency, i.e., a measured tailored to their

specific characteristics. Therefore, ABR is thought to be a fair and effective option for areas

with a pressing need to encourage water conservation (Mayer et al., 2008).

However, several studies in the water economics literature raise concerns about the con-

servation potential of this price structure due to its complexity. For instance, Mayer et al.

(2008) indicate that this tariff differs significantly from the typical rate structures most con-

sumers are familiar with. Garćıa-Rubio et al. (2015) state that water utilities aiming to

promote water conservation could implement standard IBR (with fixed block sizes) rather

than ABR structures that may be difficult for consumers to understand. Pinto and Mar-

ques (2015) indicate that in order to achieve the desired outcome of a tariff structure, the

consumer needs to receive a price signal or an understanding of their water consumption
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cost. As a consequence, they recommend avoiding complicated tariffs such as ABR as they

are difficult for consumers to understand, thus potentially undermining their effectiveness.

Moreover, the authors also state that ABR is costly to implement due to its information

requirements, and the need for the water agency to define the efficient level of water use.

Despite these concerns, no study has attempted to test the effectiveness of ABR as a

signal of efficient water use, and in particular whether the existence of the “water budget”

helps inefficient customers learn to use water more efficiently. In other words, none has sought

evidence that consumers are responding to the particular features of the rate structure that

are designed to promote efficient use but that also make it relatively more complex than

other rate structures.

Our goal is thus to investigate the effect of ABR on inefficient water consumers, and

in particular to examine whether these consumers are converging to their efficient levels

of water use through time. To do so, we use household-level panel data from the Eastern

Municipal Water District (EMWD) in southern California for the period April 2006-2012.

EMWD changed its tariff from a uniform rate to ABR in 2009. This change allows us to

use quasi-experimental methods (specifically, a Regression Discontinuity Design (RDD)) to

isolate the effect of ABR on inefficient consumers and determine whether they converge to

efficient use in response to the implementation of this tariff. The idea of convergence in this

context refers to a reduction in the distance between actual water use and efficient water

use, over time. Therefore, we adopt an empirical strategy similar to the time series approach

used to study convergence in the economic growth literature, along with a “difference-in-

differences” (DID) methodology to estimate reductions in the distance between actual and

efficient water use. Unlike typical DID methods that study the impact of a one-time change

in policy (Nataraj and Hanemann, 2011), our DID approach explicitly considers a gradual

learning or adaptation to the new tariff. Moreover, we expect heterogeneity in the response

to the new tariff because households may differ in their ability or willingness to respond, as
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noted by the studies cited above. In order to address this issue, we follow the approach by

Deb and Vargas (2016) and combine the DID strategy with a Latent Class Model.

In our baseline homogeneous model, we find that inefficient households experience a

significant improvement in water use efficiency due to the implementation of ABR, i.e., their

target level of water use decreases to just below the water budget. Moreover, the convergence

rate towards the target level accelerates after the tariff change. In a heterogeneous model,

we find that the effects of the tariff change are noticeably different across five latent classes of

inefficient households. Finally, we show that after the tariff change, inefficient households are

converging to levels of water use just below their efficient levels, implying that the efficiency

signal provided by the water budget is having a detectable effect on consumer behavior.

2 Allocation-based rates: the case of the Eastern Mu-

nicipal Water District

Eastern Municipal Water District is a member agency of the Metropolitan Water District of

Southern California. EMWD serves an area of western Riverside County, comprising around

795,000 people over 555 square-miles. Cities served in the EMWD service area include

Hemet, Menifee, Murrieta, Perris, San Jacinto and Temecula.

During the period of study, this area experienced increasing pressure on water resources

that was mainly caused by two factors. First, Riverside County experienced a large increase

in population, largely due to migration from Los Angeles County (U.S. Bureau of the Cen-

sus, 2014). Second, California had three consecutive dry years during the period 2007-2009.

This drought was the first ever for which a statewide proclamation of drought emergency

was implemented (CDWR, 2010), on February 26, 2009. As a consequence, the Metropoli-

tan Water District (EMWD’s wholesaler) imposed mandatory water restrictions and rate

increases on its member agencies in 2009 for the first time in 18 years.
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Moreover, in 2008, Water Code section 370 et seq. was adopted by the California State

Legislature. This Water Code section states that “it is in the best interest of the people

of California to encourage public entities to voluntarily use allocation-based conservation

water pricing, tailored to local needs and conditions, as a means of increasing efficient uses

of water, and further discouraging wasteful or unreasonable use of water”. (Ca. Water Code

§§370, 374 (b), ch. 610 (A.B. 2882) )

Faced with these challenges, and noting the recent change to the State Water Code,

EMWD responded by changing its residential water tariff from a uniform rate to ABR in

April 2009. There are four consumption blocks in EMWD’s allocation-based tariff. The

“water budget” is the sum of the first block, which represents efficient indoor water use, and

the second, which takes into account efficient outdoor water use (where efficiency is defined

by EMWD based on state-level standards and measured evapotranspiration needs). The

remaining blocks, the third and the fourth, are “penalty” blocks that charge substantially

higher prices for inefficient use. The block sizes are computed for each household as:

Block 1. w1 = HHS x PPA x DF + IV

Block 2. w2 = (ET x CF x IA + OV)x DF

Block 3. w3 = 0.5 x(w2 + w1)

Block 4. w4 = water use in excess of w3

(1)

where HHS is the household size measured as number of residents in the house, PPA

is the per-person water allowance, DF is a drought factor that is equal to 1 for the period

of analysis,3 ET is the sum of observed evapotranspiration values for each period measured

in inches, CF a conservation factor which is equal to 1 for all the households in the sample,

IA is the irrigated area measured in square feet. IV and OV are indoor and outdoor vari-

ances that can be negotiated for households with unusual indoor or outdoor circumstances.

3While the drought factor considered in this type of ABR directly affects the size of the blocks, an
alternative would be to use a drought factor affecting the rates.
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Examples of indoor variances include medical needs and in-home daycare, and examples of

outdoor variances include large animals (such as horses) and turf grass establishment. Indoor

variances are not affected by the drought factor whereas outdoor variances are.

The new tariff also introduced new marginal price levels. Table 1 shows the price house-

holds were paying before the change in the tariff and the marginal price paid in each of the

blocks after the implementation of the new tariff. The price paid under the prior uniform

rate was higher than the price associated with the first block under ABR, but slightly lower

than the price paid for the water consumed within the second block.

Price Block 1 Block 2 Block 3 Block 4
April 2006-07 Uniform rate 1.73
April 2007-08 Uniform rate 1.79
April 2008-09 Uniform rate 1.88
April 2009-10 Marginal price 1.32 2.41 4.33 7.91
April 2010-11 Marginal price 1.43 2.61 4.68 8.57
April 2011-12 Marginal price 1.38 2.53 4.53 8.29
Prices are expressed in 2010 $/ccf

Table 1: Evolution in prices for the period April 2006- April 2012

3 Regression discontinuity design

Our hypothesis is that, in addition to the effect of inclining prices, the water budget aspect of

ABR acts as a kind of “soft constraint” that signals to consumers the efficient level of water

use. In other words, it acts like a target with a built-in penalty for exceedance (i.e. a higher

marginal price). However, the penalty is delayed since it arrives with the subsequent water

bill approximately one month later. Moreover, both the water budget and the penalty are

somewhat detached from water use habits because few, if any, consumers know how much

water they are using in real-time. Thus, consumers have an opportunity to react to this

signal and adjust consumption habits in the following month. Such behavior would tend to

produce convergence to efficient use through time as consumers learn how their habits affect

7



their water use, and how their actual water use compares to an indicator of efficient use for

their specific household size and environmental conditions.

In order to investigate whether ABR appears to promote this kind of learning behavior,

we use a regression discontinuity design (RDD) and borrow the identification strategy used by

Nataraj and Hanemann (2011). Specifically, we identify two types of consumers: inefficient

households as the treatment group and efficient households as the control group. As in

Nataraj and Hanemann (2011), these groups are identified prior to the tariff change, and thus

prior to receiving any ongoing feedback about their water use efficiency, so we must construct

an indicator of efficiency when EMWD was still using uniform rates. To do this, we calculate

“shadow water budgets” using EMWD’s ABR formula (described in Section 2), customer

data from EMWD, and location-specific historical evapotranspiration data computed by

Baerenklau et al. (2014). Treatment households are those consuming on average above their

shadow water budgets during the year prior to receiving the first bill under ABR4. If these

households continue with their consumption pattern, their ABR water bill will penalize them

and signal that they are consuming inefficiently. Control households are those consuming on

average within their shadow water budgets during the same period. If they maintain their

consumption pattern, their ABR water bills will indicate that they are consuming efficiently.5

That is, as in Nataraj and Hanemann (2011), we assume that households that consumed

above the threshold in the past, are likely to continue consuming above the threshold in

the future, and thus, receive the information signal. Moreover, by assigning households to

treatment and control groups based on their water use efficiency during the year prior to the

tariff change, we alleviate concerns about mean reversion. This is because an idiosyncratic

4For convenience, we refer to this period in time as the year prior to the change in tariff for the remainder
of the paper.

5Our approach differs from the one used by Nataraj and Hanemann (2011) in that we define the treatment
and control groups considering households’ average consumption throughout the previous year rather than
during summer months only. We do this because, unlike the IBR analyzed in Nataraj and Hanemann (2011),
ABR adapt to weather conditions throughout the year. Therefore, we believe it is preferable to consider the
entire year prior to the implementation of ABR.
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consumption shock in one billing period has a much smaller impact on the assignment when

considering average consumption for the entire year.

As in Nataraj and Hanemann (2011), our treatment is not randomly assigned because it

depends on each household’s water use with respect to its shadow water budget. However,

the treatment can be considered “as good as randomized” (Lee and Lemieux, 2010) if house-

holds have imprecise control over the treatment assignment. As noted by Lee and Lemieux

(2010), when households have imprecise control, observable and unobservable household

characteristics prior to the treatment have statistically indistinguishable distributions on

either side of the treatment threshold6. We can expect this situation to be more likely to

occur as we examine smaller and smaller neighborhoods around the threshold, making the

treatment “locally randomized”. To check for this condition, we first follow the approach by

Calonico et al. (2015) and perform a graphical exploratory analysis to check the continuity

of observable household characteristics around the threshold. We consider the number of

people living in the household (HHS ), the size of the irrigated area (IA), household income

(Income)7, and education level8 (Education). In Figure 1, we plot the value of each charac-

teristic against the difference between the logs of water use and water budget. In particular,

the black dots in each panel in Figure 1 represent the sample means of each covariate com-

puted by partioning the support of the difference between the logs of water use and budget

into 250 disjoint bins separately for treatment and control households. Moreover, in each

panel the two solid gray lines show a fourth-order polynomial approximation of the condi-

tional expectation of the observable covariate and the difference between the log of water

use and budget, computed separately for treatment and control households.9 The dashed

6The threshold is the efficient level of water use.
7Our income variable is derived by adjusting census income by the fraction of income usually spent on

“utilities, fuels and public services” and for temporal changes in per-capita personal income for the Ontario-
Riverside-San Bernardino metropolitan statistical area.

8Our education variable is defined as the fraction of the census tract reporting at least “some college’.’
9The plots in Figure 1 have been generated using the package “rdrobust” developed by Calonico et al.

(2018) in R Core Team (2013).
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vertical line represents the threshold. We observe no significant visual evident discontinuity

at the threshold in any of the panels. Following Lee and Lemieux (2010), Table 2 shows

the RD estimates and Standard Errors for each of the observable covariates. Confirming the

graphical results, we find no evidence of significant discontinuity.
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Figure 1: Demographic and socioeconomic variables by the ratio of water use to water budget

Coefficient Std. Error
Income -2.214 (2.084)
Education 0.009 (0.009)
Irrigated Area 0.077 (0.071)
Household size 0.061 (0.051)

Table 2: RDD estimates for observable covariates

Moreover, we also test for differences in means of these variables for the treatment and
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control groups. As in Nataraj and Hanemann (2011), we first compare all efficient house-

holds against all inefficient households,10 and we find that treatment and control groups are

significantly different in terms of their socioeconomic variables. However, we also consider

households with an average water use in the year before the implementation of ABR within

the +
−50%, +

−25% and +
−10% neighborhoods of the threshold, and we observe that the differ-

ences between groups decrease with the size of the neighborhood. Treatment and control

groups are not significantly different when we consider households within 0.10 units around

the threshold.11

Next, although it is not possible to directly test for differences in unobservable character-

istics, we follow Lee and Lemieux (2010) and Oldenburg et al. (2016) and examine whether

the density of the assignment variable (the relative household water use efficiency) is con-

tinuous. If households exert control over the assignment, there should be a discontinuity

in this density at the threshold. Figure 2 shows a histogram of the relative water use effi-

ciency. This variable is partitioned into equally spaced bins of 0.05, and the dashed vertical

line represents the threshold. The figure shows no visual evidence of discontinuity at the

threshold.

Once we define the treatment and control groups and check the validity of the assignment,

we plot in Figure 3 the evolution of the mean water use (black line) and mean efficient use

(gray line) for each group during the period of study. The vertical dashed line in each panel

denotes the tariff change. In general, we observe that the control group’s mean efficient water

use is higher than the treatment group’s. This is consistent with the descriptive statistics

reported in Table A1 (in Appendix A), where we observe that both the IA and HHS are

larger for the control group. The differences in these two variables are not significant when

10Households with a pre-ABR water use extremely close to the efficient level (shadow water budget) may
have been unsure about whether they would be inefficient after the tariff change. Therefore, including these
households in our analysis may confound the results. Following Nataraj and Hanemann (2011), we exclude
households extremely close to the threshold. In our case, we do not consider those households consuming in
the +

−2% of the threshold.
11A summary of these tests is provided in Table A1 in Appendix A.
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Figure 2: Histogram of Relative Water Use Efficiency in the year prior to the tariff change

we consider a small neighborhood around the treatment threshold. Prior to the tariff change,

we observe that the control group’s water use is consistently efficient, whereas the average

water use for the treatment group is usually inefficient. However, the overall patterns are

similar across groups. After the tariff change, we observe that the distance between average

water use and efficient use for the control group seems to remain almost unchanged (perhaps

a slight decrease), whereas this distance substantially decreases for treatment households.

4 Homogeneous model

4.1 Difference-in-differences specification

Difference-in-differences (DID) methods are commonly used to study the impact of a “treat-

ment” on a group. In the simplest case, outcomes are observed for two groups over two time

periods (Wooldridge, 2007). One group is exposed to a treatment in the second period but

not in the first, whereas the second group is never exposed to the treatment. Therefore, the

control group represents the evolution that would have characterized the treatment group in

the absence of treatment.
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Figure 3: Evolution of water use and budget

This basic model can be estimated using the following regression:

yir = α1 + α2Dr + α3Dj + βDrDj + εir (2)

where y is the outcome of interest, r indexes the period, and j indexes the group. Dr is a

dummy variable that takes value 1 for the second period (that is, when r = 1), and Dj is a

binary indicator that takes value 1 for the treatment group and 0 for the control group. In

this case, the estimated coefficient of interest is β. This coefficient applies to the interaction

term DtDj which takes value 1 for observations in the treatment group in the second period.

Therefore, the DID estimate is:

β̂ = (ȳ11 − ȳ10)− (ȳ01 − ȳ00) (3)

As noted by Slaughter (2001), most DID economic studies analyze a one-time treatment,

which allows the analyst to delineate two periods: before and after the change. In this
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regard, the implementation of ABR is somewhat different. First, although we have a discrete

treatment (i.e. the tariff change), the efficiency signal provided by the water budget arrives

each month in the household water bill. Thus the effect of the treatment is repeated at regular

intervals. Second, as explained in Section 2, water budgets are tailored to each household’s

specific characteristics including weather, and thus change every month depending on the

level of evapotranspiration. Therefore, for a relatively inefficient household to modify its

behavior and consume more efficiently, the household must learn to effectively predict the

size of the budget each month. In practice, this is accomplished by experimenting with and

changing household consumption habits and observing the effect on the subsequent water

bill. In this sense, the implementation of the tariff change could be anticipated to have

a gradual effect over multiple periods rather than a large one-time effect. Therefore, the

analytical framework should accommodate this anticipated response.

In order to measure the effect of such a treatment, we base our empirical strategy on

the concept of convergence used in the economic growth literature (Barro et al., 1991; Barro

and Sala-i Martin, 1992). There exist several measures of convergence, but here we base

our analysis on time series tests (Bernard and Durlauf, 1996; Ben-David, 1993, 1996). In

the growth literature, convergence usually refers to reductions in dispersion of per-capita

income or productivity levels among regions over time. However, in our case, we aim to

test if households’ water use is converging to an efficient level over time and, importantly,

whether the average difference between actual and efficient, and the rate of convergence were

affected by the tariff change. Therefore, our variable of interest is a measure of dispersion

that can be written as:

zit = log(Wit)− log(Eit) (4)

where Wit and Eit are the actual and the efficient water use for household i and time

14



period t, respectively. Following Ben-David (1993), we can model convergence as:

zit = α + φzit−1 + εit (5)

where α measures the average difference between the logs of actual and efficient water

use or target level, φ is a parameter measuring convergence to that target level and ε is an

econometric error. As discussed by Bernard and Durlauf (1996), there exists convergence if

zit is a zero-mean stationary process, that is if α = 0 and φ < 1. As in Ben-David (1993),

we define ∆zit = zit − zit−1 so the Dickey-Fuller form of Equation (5) can be written as:

∆zit = α + βzit−1 + εit (6)

Here β is the convergence coefficient, which equals φ−1. Therefore, a negative (positive)

β coefficient indicates convergence (divergence).

Following Slaughter (2001), the approach by Ben-David (1993) can be extended to esti-

mate convergence in the treatment group both before and after the treatment:

∆zit = α1 + α2Dr + β1zit−1 + β2zit−1Dr + εit (7)

where r denotes the period before or after the tariff change. Since both periods have the

same length in our data (36 months), r = 0 for months from t = 1 to t = T/2, and r = 1 for

months from t = 1+T/2 to t = T , where T is 72 months. In this model, we are assuming that

relative water use efficiency may improve over time as households receive repeated feedback

on their water use. Both before and after the tariff change, such feedback takes multiple

forms including a positive marginal cost for water consumption, messaging campaigns that

educate consumers about water use efficiency, peer influence, and perhaps others. After the

tariff change, feedback also arrives in the form of the water budget. Therefore, we should

expect consumers to be making efficiency improvements throughout our observation window,
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but possibly converging at different rates and to different levels of water use before and after

the tariff change. Given the nature of the treatment, we could reasonably expect convergence

rates to increase and target levels to decrease towards the water budget after tariff change.

Thus, Equation (7) measures behavioral change by comparing the convergence parameters

α and β before and after the treatment. However, this equation may not estimate the true

effect of the treatment if other factors affecting convergence behavior also changed around

the time of the tariff change. Therefore, we introduce a control group that would have been

affected by the same confounding factors in order to properly identify the treatment effect.

Following Slaughter (2001), we can estimate the convergence parameters by combining the

convergence model with the basic DID approach:

∆zit = α1 +α2Dr +α3Dj +α4DrDj +β1zit−1 +β2zit−1Dr +β3Djzit−1 +β4DrDjzit−1 +εit (8)

We note that one main difference between our approach and Slaughter (2001) is the

inclusion of an intercept in our model.12 The main consequence of this difference is that we

may not be able to interpret the regression t-statistics as usual in the presence of unit root.

As noted by Levin et al. (2002) “regression t-statistics for stationary panel data converge to

the standard normal distribution”. Therefore, before estimating equation (8), we must first

establish that our dispersion measure zit is a stationary process. To do so, we can use two of

the most popular types of unit root tests for panel data. Both types of tests consider the same

null hypothesis: the presence of a unit root for all individuals in the panel. However, the

alternative hypothesis differs. The first type of test (Levin et al., 2002; Harris and Tzavalis,

1999) assumes that the water use-water budget dynamics are the same for each household,

and thus the alternative hypothesis is that all household series are stationary. For the second

12As discussed by Ben-David (1996), the intercept equals 0 by construction when testing per capita income
convergence due to a convenient transformation of variables. However, this transformation does not apply
to our analysis.
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type of test (Im et al., 2003; Breitung and Pesaran, 2008), the alternative hypothesis is that

at least one of the series is stationary. Given our data, we also must employ unit root tests

for fixed T . Therefore, we utilize Harris and Tzavalis (1999), hereafter HT, and Im et al.

(2003), hereafter ITS, as our unit root tests.

After performing these tests, and presuming rejection of the null, we can use Equation (8)

to estimate convergence parameters for the treatment and control groups, before and after

the treatment. Table 3 shows the formulas for these parameter estimates. The β coefficients

indicate the convergence rate for each group and period, and the α coefficients indicate the

target levels. A negative (positive) rate parameter β indicates convergence (divergence) over

time, and as indicated by Ben-David (1993), the larger the β, the faster the rate. A negative

(positive) intercept indicates that households are converging to a level below (above) the

efficient level. Following Slaughter (2001), the effect of the implementation of the new tariff

on treatment households can be obtained by computing the DID of the convergence rates in

the table. The difference in convergence rates between the treatment and the control groups

before the change is given by (β1 + β3) − β1 = β3. Moreover, the difference in convergence

rates between the treatment and the control groups after the implementation of the tariff

is given by (β1 + β2 + β3 + β4) − (β1 + β2) = β3 + β4. Therefore, β4 identifies the effect

of the tariff on the treatment group’s convergence rate since the difference between the two

previous DID rates is (β3+β4)−β3 = β4. Similarly, α4 indicates the change in the treatment

group’s target level due to the implementation of the new tariff.

Convergence to an efficient level of use exists if the difference between the log of water

use and the log of efficient use is a stationary process around zero, that is, the relevant

convergence parameter is negative and the relevant target level is equal to 0. We use an F

test of the null hypothesis that each target in table 3 equals zero. If the null hypothesis

is rejected, there exists convergence to a non-zero target: a negative (positive) intercept

indicates that households are converging to a level below (above) the efficient level.
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Table 3: Convergence rates and intercepts

Household group and period Intercept Convergence rate

Control group pre-IBR water budget α1 β1

Control group post-IBR water budget α1 + α2 β1 + β2

Treatment group pre-IBR water budget α1 + α3 β1 + β3

Treatment group post-IBR water budget α1 + α2 + α3 + α4 β1 + β2 + β3 + β4

4.2 Convergence to efficient water use assuming homogeneity

We begin our analysis by performing the unit roots tests discussed in Section 4.1. These

tests are computed for both treatment and control groups, before and after the tariff change,

using all households as well as households in the +
−50%, +

−25% and +
−10% neighborhoods of

the threshold. Results from these tests are provided in the Appendix B. In all cases we reject

the null hypothesis of the presence of unit roots for the treatment and control groups, before

and after the implementation of the new tariff, and for the five neighborhoods considered.

Therefore, we can conclude that the difference between the log of water use and the log of

efficient use is indeed a stationary (convergent) process.

Turning to the DID analysis, we first present estimates for a one-class (homogeneous)

model using Equation (8). Table 4 presents these results. The columns in the table show

the results using all households and households in the +
−50%, +

−25% and +
−10% neighborhood

of the threshold. We mainly discuss the results for the +
−10% neighborhood of the threshold,

as it is the sample in which we do not observe significant differences between treatment and

control households. However, we also report the results for larger samples for comparison

purposes. The negative and significant coefficient α1 indicates that the target level of water

use for control households in the period before the tariff change was already below efficient

use (as seen also in Figure 3). However the target for treatment households during the same
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period is above efficient use: α3 is positive and larger (in absolute terms) than α1. After the

tariff change there is a decrease in the target level for both treatment and control groups as

the negative coefficient α2 indicates. This general decrease in the average difference between

actual use and efficient use may be due to several factors, including higher marginal prices

under the new tariff and increased messaging about the need for water conservation due

to the statewide proclamation of drought emergency in 2009. Regarding the effect of the

treatment, we see that the estimated coefficient α4 is negative and significant, implying that

the tariff change produced a significant downward shift in the target level for inefficient

consumers relative to the control group. Although the sign of this effect is consistent across

all sample sizes the magnitude decreases as we consider smaller neighborhoods. That is, the

effect is more pronounced when considering the more inefficient households that are further

away from the threshold. However, as seen in Table A1 in Appendix A, larger neighborhoods

imply more dissimilar treatment and control households, which reduces the likelihood that

we are observing the true causal effect of the tariff change.

In terms of the convergence rate coefficients for the sample comprising households in the

+
−10% neighborhood of the threshold, we observe that β1 is negative while β3 is positive but

smaller (in absolute terms) than β1. This indicates that there is convergence to the pre-ABR

targets before the tariff change for both control and treatment groups. Such convergence

suggests that households may be using accumulated experience to target desired levels of

water services and, by extension, water use, which is consistent with household production

theory. However, at least in part because they are not receiving clear signals about efficient

use, these target levels may or may not be efficient, as we observe in the treatment group.13

After the tariff change, there is a general decrease in the convergence rate, as indicated by

the positive β2. However, this decrease is less pronounced for treatment households, as β4

is negative but smaller (in absolute terms) than β2. To understand what may be driving

13As indicated by the tests shown in Table B1, the difference between actual and efficient water use
is a stationary process around a positive (negative) target for the treatment (control) group before the
implementation of ABR.
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All HH HH± 50% HH±25% HH±10%
Intercept (α1) −0.123∗∗∗ −0.122∗∗∗ −0.076∗∗∗ −0.039∗∗∗

(0.001) (0.001) (0.001) (0.002)

Post (α2) −0.011∗∗∗ −0.027∗∗∗ −0.047∗∗∗ −0.065∗∗∗

(0.001) (0.001) (0.002) (0.003)

Treatment (α3) 0.184∗∗∗ 0.173∗∗∗ 0.107∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.002) (0.003)

Post x Treatment (α4) −0.075∗∗∗ −0.058∗∗∗ −0.032∗∗∗ −0.008∗

(0.002) (0.002) (0.003) (0.004)

Dift−1 (β1) −0.240∗∗∗ −0.410∗∗∗ −0.471∗∗∗ −0.482∗∗∗

(0.001) (0.002) (0.003) (0.005)

Dift−1 x Post (β2) 0.046∗∗∗ 0.098∗∗∗ 0.111∗∗∗ 0.108∗∗∗

(0.002) (0.002) (0.004) (0.007)

Dift−1 x Treatment (β3) −0.160∗∗∗ −0.019∗∗∗ 0.026∗∗∗ 0.036∗∗∗

(0.003) (0.003) (0.004) (0.007)

Dift−1 x Post x Treat (β4) 0.038∗∗∗ −0.0004 −0.011∗ −0.019∗

(0.004) (0.005) (0.006) (0.010)

N 694152 528120 299808 110088
Standard errors in parentheses
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Estimation results - Homogeneous model
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this result, recall that both control and treatment households experienced a downward shift

in their target levels in the period after the tariff change. In order to approach the new

target, they may change habits and technologies, which may induce a learning process that

requires a gradual adaptation. The more pronounced decrease in convergence rate for the

control group could be because it is relatively challenging for already-efficient consumers to

figure out how to be even more efficient and make progress towards a new, more demanding,

target. For the larger samples, we observe similarities in terms of the signs of the effects

when looking at β1 and β2. However, β3 is negative, and β4 is positive or not significantly

different from 0 when we consider the two biggest samples. This could imply that there is a

high level of heterogeneity when we consider observations far from the budget, and that the

effect is “cleaner” closer to the threshold. However, another explanation is there may still

be unobserved household heterogeneity around the threshold. We explore this possibility

further in Section 5.2, after some falsification tests.

Finally, Table 5 presents an alternative way to consider our results that may facilitate

more intuitive before-and-after comparisons. This table shows the intercepts and convergence

rates computed using the sums in Table 3 and the estimated coefficients in Table 4. The F

tests reject the null hypothesis of the sum of the coefficients being equal to 0 in all cases.

All HH HH +/- 0.5 HH +/-0.25 HH +/-0.10

Control
Pre-ABR

Intercept -0.123 -0.122 -0.076 -0.039
Convergence rate -0.240 -0.410 -0.471 -0.482

Post-ABR
Intercept -0.133 -0.149 -0.123 -0.104
Convergence rate -0.399 -0.430 -0.445 -0.447

Treatment
Pre-ABR

Intercept 0.061 0.051 0.031 0.007
Convergence rate -0.193 -0.312 -0.360 -0.374

Post-ABR
Intercept -0.025 -0.033 -0.048 -0.066
Convergence rate -0.315 -0.332 -0.345 -0.357

Table 5: Convergence rates and target levels
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4.3 Robustness checks: Price vs Label effects

The preceding results suggest that the implementation of ABR affected the water use ef-

ficiency of inefficient consumers. However, we cannot yet say which features of the new

rate structure are driving these behavioral changes. Consider the comparison of prices paid

before and after the implementation of ABR shown in Table 6.

pre-ABR price Post-ABR price
Marginal Price Average Price
Control Treatment Control Treatment

All HH

1.88 2.41 4.33

1.80 2.44
HH +/- 0.5 1.92 2.40
HH +/-0.25 2.03 2.33
HH +/-0.10 2.11 2.26

Table 6: Comparison of Prices before and after the implementation of ABR

Both marginal and average prices paid under ABR are higher than those paid before the

tariff change (except for the control group’s average price for the largest sample). Moreover,

marginal and average prices for the treatment group are higher than those for the control

group. And recall that the water budget coincides with second kink point in the new rate

structure. Therefore, it remains unclear whether the results in Table 4 are driven by changes

in marginal price or average price, or by the signal provided by the water budget.

In order to address these questions, we conduct a series of falsification tests using the

two remaining kink points in the rate structure (i.e. between blocks 1 and 2, and between

blocks 3 and 4). Conveniently, these kink points are not associated with the water budget.

Therefore, we repeat our analysis using these two alternative treatment thresholds.

Tables 7 and 8 show comparisons of the prices paid before and after the implementation

of ABR using these new thresholds. We observe that the average price decreased for both

treatment and control groups when we consider the first kink point as the threshold, whereas

the marginal price increased for the treatment group and decreased for the control group.
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When we consider the third kink point as the threshold, we see that marginal and average

prices increased for both treatment and control households, with larger increases for the

treatment group.

pre-ABR price Post-ABR price
Marginal Price Average Price
Control Treatment Control Treatment

All HH

1.88 1.32 2.41

1.37 2.06
HH +/- 0.5 1.38 1.65
HH +/-0.25 1.41 1.57
HH +/-0.10 1.44 1.53

Table 7: Comparison of Prices before and after the implementation of ABR - 1st kinkpoint

pre-ABR price Post-ABR price
Marginal Price Average Price
Control Treatment Control Treatment

All HH

1.88 4.33 7.91

1.95 2.80
HH +/- 0.5 2.19 2.79
HH +/-0.25 2.48 2.77
HH +/-0.10 2.61 2.69

Table 8: Comparison of Prices before and after the implementation of ABR - 3rd Kinkpoint

We focus our analysis on the +
−10% neighborhoods of these two thresholds to avoid picking

up our main treatment effect(Nataraj and Hanemann, 2011).14 As in our original analysis,

we assign households to treatment and control groups based on the average ratio of water

use to each kink point in the year prior to the tariff change. Results from the first test

are presented in the first column in Table 9.15 The false treatment effect is not statistically

significant. That is, households that are consuming above the first kink point before the tariff

14The distance between kink points is relatively small for some households. Therefore, if we consider larger
samples for the falsification tests, we may include as treatment households some that are already treatment
households in our original analysis, in which case the estimated treatment effect for the robustness check
would be confounded.

15Difference in mean tests of the observable covariates for the false treatment and control groups are shown
in Table A2 in the Appendix. The results indicate that there are no significant differences in observable
characteristics with the exception of the Irrigated area for households in the +

−10% neighborhoods of the
third kink point. However, this result does not invalidate the falsification test.

23



change do not update their target level and do not change their convergence rate towards

the target over time.

1st kink point 3r kink point
Intercept (α1) −0.016∗∗∗ −0.062∗∗∗

(0.004) (0.003)
Post (α2) −0.048∗∗∗ −0.067∗∗∗

(0.006) (0.005)
Treatment (α3) 0.051∗∗∗ 0.042∗∗∗

(0.006) (0.006)
Treatment x Post (α4) −0.010 0.004

(0.009) (0.010)
Difft−1 (β1) −0.385∗∗∗ −0.436∗∗∗

(0.009) (0.008)
Difft−1 x Post (β2) 0.080∗∗∗ 0.115∗∗∗

(0.013) (0.011)
Difft−1 x Treatment (β3) −0.013 0.083∗∗∗

(0.013) (0.014)
Difft−1 x Post x Treat (β4) 0.022 −0.001

(0.018) (0.020)

Standard errors in parentheses
∗∗∗p<0.01

Table 9: Robustness checks

We repeat the falsification test considering the average ratio of water use to the third

kink point in the year prior to the tariff change as the threshold. Again, we find that the false

treatment effect is not significant: this test also indicates that the tariff change did not induce

any adjustment or convergence towards the third kink point. Although we observe a general

decrease in water use with respect to these thresholds, we only find a significantly larger

reduction for treatment households when we consider the water budget (second kink point)

as the threshold. Taken together, these test results provide strong support for the validity

of our approach. While we observe a general decrease of water use relative to the different

thresholds and a decrease in the convergence rate towards the target level, as indicated by

α2 and β2, respectively, we only identify a significant treatment effect in both α4 and β4
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when we consider the water budget as threshold.

At first glance, our results may seem to contradict those of Nataraj and Hanemann

(2011), our main reference study. Their results indicate that consumers respond to changes

in prices, particularly to the introduction of a new block in the increasing block rate structure,

whereas in our study we find that consumers react to the efficiency signal rather than to

the price structure. However, caution is warranted when directly comparing these results

because the price structures analyzed differ in the information provided to consumers. In

particular, the price structure analyzed in Nataraj and Hanemann (2011) is a standard IBR

with fixed block sizes across time and consumers. As discussed in the introductory section,

our analysis focuses on the implementation of ABR, which is a type of IBR with household-

specific block sizes, providing the consumer information about the efficient level of water

use. In this sense, our results could be compared to the findings of Nemati et al. (2018).

Their results indicate that social norms-based conservation programs such as digital and

web-based water consumption analytics platforms cause significant reductions in water use,

whereas households in their sample have no response to the IBR structure.

5 Heterogeneous model

5.1 Incorporating heterogeneous consumer responses

The empirical model proposed thus far assumes that the effect of the tariff change is homoge-

neous across households. However, this is unlikely, and our estimation results suggest there

is underlying heterogeneity in our sample. Such heterogeneity may arise from a number of

sources. For example, households may differ in their abilities to react to the new tariff due

to unobserved differences in water-using technologies or in their levels of understanding of

the new tariff (as mentioned above). We can also expect that some households may not pay

close attention to their water bill. Whatever the source, neglecting this heterogeneity can
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lead to biased parameter estimates and incorrect policy conclusions.

An increasing number of papers address the issue of heterogeneity in the residential water

demand literature. Among the different methodologies, Latent Class Models (LCM) provide

an intuitive approach not only to control for heterogeneity but also to reveal underlying

“types” of consumers which can be helpful for deriving policy conclusions (Pérez-Urdiales

et al., 2016). This is mainly because LCM is consistent with the way producers including

public agencies (water or otherwise) tend to think about their customers when deciding

which programs and/or services to offer. Specifically, producers tend to offer menus with

discrete options that are targeted to various types of consumers. Examples from water policy

include information campaigns targeted to specific customers, rebate programs with specific

eligibility criteria, and pricing plans that are tailored to different user groups (e.g. residential,

low income, commercial, agricultural). LCMs have been implemented previously in research

areas closely related to this study. For example, they have been used in the economic growth

literature to identify the so-called “convergence clubs” or groups of countries/regions with

similar convergence patterns (Paap et al., 2005; Centorrino and Pérez-Urdiales, 2014). They

also have been combined with a DID strategy by Deb and Vargas (2016) to measure a

heterogeneous treatment effect on the implementation of calorie-labeling laws in the US.

Here we use LCM to identify potentially different responses to the implementation of

ABR. LCM assumes that the sample of households is a finite mixture of J subpopulations

(Cameron and Trivedi, 2005). As noted by Fernandez-Blanco et al. (2009), this method

involves simultaneously estimating the convergence behavior of each group, and classifying

households into different groups. Thus, our goal is to re-estimate Equation (8) while iden-

tifying different groups (or classes) of households. Convergence behavior is assumed to be

the same within each class, but differences are allowed across classes. Class membership is

probabilistic in a LCM, so we assume that each household belongs to each class j with a

probability πj. With this in mind, we can write the likelihood of observing our dependent
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variable for a single household ∆zit as:

f(∆zit | ∆zit−1; β; π) =
J∑

j=1

πjfj(∆zit | ∆zit−1; βj) (9)

If we assume a normal mixture, the sample likelihood function can be written as the sum of

J likelihood normal distributions weighted by the probabilities of class membership:

l(β, π | ∆zit) =
N∏
i=1

(
J∑

j=1

(πj

T∏
t=1

1

σi
φ(εit/σi))

dij

)
(10)

where dij denotes an indicator variable which takes value 1 if household i belongs to class

j, and 0 otherwise. This likelihood function may be maximized using the Expectation-

Maximization (EM) algorithm.16 Maximization produces an estimated set of α and β coef-

ficients as in table 3 for each class, where the number of classes is specified exogenously.

As discussed by Pérez-Urdiales et al. (2016), the usual way to proceed is to estimate

models with a sequentially increasing numbers of classes. Then, in order to select the ap-

propriate number of classes, we compute likelihood-based information criteria, such as the

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC). These

statistics reward the goodness of fit and penalize an increasing number of estimated pa-

rameters. Therefore, they are used to compare models with different numbers of classes,

preferring the model that minimizes the criteria.

5.2 Convergence to efficient water use assuming heterogeneity

Using LCM to re-estimate our DID parameters, we focus on the most restrictive sub-sample

(households in the ±10% neighborhood of the threshold) because we know the treatment

can be considered randomly assigned in this neighborhood. We use Equation (10) estimate

LCMs with 2, 3, 4 and 5 classes. We then compare AIC and BIC across these models to

16The reader is referred to Paap et al. (2005) for further details about the EM algorithm.
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select the optimal number of classes. In our case, the 5-class model is preferred, and so we

focus our discussion on these results. 17

Table 10 presents the parameter estimates for the 5-class model. The mean posterior

probability estimates, reported at the bottom of the table, characterize the probability that

each household belongs to each class; this is also the proportion of the sample that we would

expect to be in each class. Class 2 is the largest with 53.15% of the sample, followed by

Class 1 with 18.30%, Class 3 with 12.46% and Class 5 with 11.40%. The residual 4.7% is in

Class 4.

Turning to the DID estimates of interest, α4 is significant and negative for all the classes

except Class 5, implying that the implementation of ABR caused treatment households

belonging to these classes to shift their target levels down. The other DID estimate, β4, is

significant for all the classes, taking negative values for Class 4 and Class 5. This means

the tariff change caused treatment households in these classes to converge to the target level

faster, whereas it generated a decrease in the convergence rate for the remaining classes.

We also find heterogeneity in the signs and magnitudes of the effects across classes for the

remaining coefficients, making it difficult to provide clear intuition for the entire table of

results. In order to gain some insights, we use these results to calculate the target levels and

convergence rates for the different classes before and after the tariff change. Doing so also

reveals whether treatment households consider the efficient level of water use as their target

after the tariff change.

17The 6-class model did not converge.
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Class 1 Class 2 Class 3 Class 4 Class 5
Intercept (α1) -0.017∗∗∗ -0.042∗∗∗ -0.008∗∗∗ -0.072∗∗∗ -0.036∗∗∗

(0.002) (0.002) (0.001) (0.002) (0.002)
Post (α2) -0.021∗∗∗ -0.068∗∗∗ -0.053∗∗∗ 0.027∗∗∗ -0.159∗∗∗

(0.003) (0.002) (0.002) (0.003) (0.003)
Treatment (α3) 0.073∗∗∗ 0.053∗∗∗ 0.013∗∗∗ 0.069∗∗∗ 0.074∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003)
Treatment x Post (α4) -0.022∗∗∗ -0.007∗∗ -0.047∗∗∗ -0.052∗∗∗ 0.038∗∗∗

(0.004) (0.003) (0.003) (0.004) (0.004)
Difft−1 (β1) -0.595∗∗∗ -0.497∗∗∗ -0.240∗∗∗ -0.908∗∗∗ -0.564∗∗∗

(0.005) (0.004) (0.005) (0.005) (0.005)
Difft−1 x Post (β2) 0.077∗∗∗ 0.147∗∗∗ 0.033∗∗∗ 0.633∗∗∗ -0.203∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.008)
Difft−1 x Treatment (β3) -0.005 -0.059∗∗∗ -0.114∗∗∗ 0.780∗∗∗ 0.116∗∗∗

(0.007) (0.006) (0.007) (0.007) (0.007)
Difft−1 x Post x Treat (β4) 0.073∗∗∗ 0.058∗∗∗ 0.047∗∗∗ -0.632∗∗∗ -0.141∗∗∗

(0.011) (0.009) (0.011) (0.011) (0.011)
Mean posterior

0.1830 0.5315 0.1246 0.0470 0.1140
probabilities
Standard errors in parentheses
∗∗∗p<0.01

Table 10: Estimation results - LCM HH ±10%
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Table 11 shows these calculated values. As in the homogeneous model, all of these values

are statistically different from zero.18 Households in the control group had target levels below

their water budgets before the tariff change (indicated by negative values in row 1), across

all classes. Moreover, control households experienced a downward shift in their target levels

after the tariff change (larger negative values in row 3), except households in Class 4 who

were the most efficient pre-ABR and became relatively less efficient after the tariff change.

Regarding the convergence rates for the control group, we observe a general decrease due to

the tariff change (rows 2 and 4), with the exception of Class 5.

Households in the treatment group had target levels above their water budgets before

the tariff change (indicated by positive values in row 5), with the exception of Class 4.

After the tariff change, the targets for the treatment group decreased to efficient levels

(negative values in row 7), with the exception of Class 1. This class was the most inefficient

before the tariff change, and even though the distance between actual and efficient water use

decreased, treatment households in this class remained inefficient after the tariff change. The

adjustments by the other four classes did not lead to convergence to the budget, but rather

to a level just below the budget. For instance, the water budget for treatment households

belonging to the largest class, Class 2, after the tariff change is 19.74 ccf. Based on the

estimated post-ABR target, the average level of water use for treatment households in this

class is 18.49 ccf. This small difference is perhaps evidence of a desire to create a buffer

against stochastic (accidental) inefficient consumption. Regarding the convergence rates for

the treatment group, these decrease after the tariff change (with the exception of Class 5 ),

similar to households in the control group.

In general, results from the heterogeneous model indicate an increase in water use effi-

ciency across classes, for both treatment and control groups. However, the nature of the

change varies across classes. In order to facilitate a comparison, we show the policy-induced

18For this analysis, households are assigned to a particular class based on the most likely class membership,
that is, the highest posterior probability.
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Class 1 Class 2 Class 3 Class 4 Class 5

Control
Pre-ABR

Intercept -0.017 -0.042 -0.008 -0.072 -0.036
Convergence Rate -0.595 -0.497 -0.240 -0.908 -0.564

Post-ABR
Intercept -0.038 -0.110 -0.061 -0.044 -0.196
Convergence Rate -0.518 -0.350 -0.207 -0.274 -0.767

Treatment
Pre-ABR

Intercept 0.056 0.010 0.006 -0.003 0.038
Convergence Rate -0.600 -0.556 -0.354 -0.128 -0.448

Post-ABR
Intercept 0.013 -0.065 -0.094 -0.028 -0.084
Convergence Rate -0.450 -0.352 -0.274 -0.127 -0.792

Table 11: Convergence rates and target levels- HH ±10%

changes in target levels and convergence rates for the five classes within both treatment and

control groups in Table 12. Lines 1 and 3 show that Class 5 experienced the strongest increase

in water use efficiency, for both treatment and control groups. Moreover, the convergence

rate for this class increased after the tariff change (becoming more negative). While we do

not have information to characterize class membership, we speculate that Class 5 may be

representative of households adopting water-efficient technologies after the implementation

of ABR, as their behavior is consistent with this type of structural change, i.e., a large, fast

reduction in water use. Classes 1, 2 and 3 appear qualitatively different from Class 5 but

similar to each other, and exhibit more subtle adjustments that happen more slowly. These

classes may include households changing their water use habits instead of their installed

technologies, as habit changes tend to be less effective than new technologies (Inskeep and

Attari, 2014) and require more time to establish due to the learning process. Differences

across these three classes may reflect differences in the type of habit being changed, such as

indoor versus outdoor. Class 4 is the smallest group and, as is typical of LCM, appears to

include unusual responses not well characterized by the other more intuitive groups. Unfor-

tunately, our data set does not contain information on habits and technologies to test these

speculations, but this would be a logical extension for future work.
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Class 1 Class 2 Class 3 Class 4 Class 5

Control
Pre-PostABR Difference intercept -0.021 -0.068 -0.053 0.028 -0.160
Pre-PostABR Difference convergence rate 0.077 0.147 0.033 0.634 -0.203

Treatment
Pre-PostABR Difference intercept -0.043 -0.075 -0.100 -0.025 -0.122
Pre-PostABR Difference convergence rate 0.150 0.204 0.080 0.001 -0.344

Table 12: Differences in target levels and converge rates - HH ±10%

6 Conclusions and policy implications

This paper investigates the effects of allocation-based rates on inefficient consumers in the

residential water sector. By exploiting a change in tariff from a uniform rate to ABR for

a Southern California case study, we are able to use a RDD approach to assign households

to treatment and control status based on their relative water use efficiency just prior to the

rate change. Then, we combine a DID methodology with an empirical strategy similar to

that used to estimate convergence in a time series framework. By doing so, we are able to

characterize the gradual adaptation by inefficient customers to this new tariff.

Focusing on the households in the ±10% neighborhood of the treatment threshold, the

results of our homogeneous model indicate that there was a general increase in water use

efficiency after the change in tariff. Moreover, this increase was significantly larger for house-

holds that consumed water inefficiently prior to the tariff change (treatment households).

In terms of gradual adaptation, we find evidence that inefficient households converge faster

to their new target efficiency levels after the tariff change. Moreover, our falsification tests

reject the notion that these effects are due to discrete increases in marginal price (“kink

points”) in the ABR structure, and instead suggest that the information signal provided by

the water budget is driving the observed behavior.

When we allow for heterogeneity, we identify five different household classes. We find

that the implementation of ABR generated an improvement in water use efficiency among

treatment households for four of the estimated classes. The target levels for treatment
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households in these classes were positive (inefficient) prior to the tariff change and became

negative (efficient) after the change. We also find evidence of heterogeneity in the target

levels after the tariff change. While none of the new targets is statistically equal to zero,

which would imply that consumers are targeting consumption at their water budgets, most

of the classes have negative targets that are close to zero, implying these households are

targeting water use levels just below their budgets. We also find that the tariff change had a

heterogeneous effect on the convergence rates for treatment households in terms of both sign

and magnitude. The convergence rates generally decrease, with the exception of the class

experiencing the strongest downward shift in its target.

Our analysis suggests that ABR can be useful for policymakers wishing to improve water

use efficiency. During the year prior to the tariff change, 26% of our sample households were

consuming on average above their efficient level of water use. This percentage was reduced

by more than half to 12% during the last year of our data. Our results also rebut concerns

that ABR is too complex for customers to understand, suggesting instead that the efficiency

signal provided by the water budget has a measurable effect on consumer behavior.

Policymakers would benefit from future work that investigates the defining character-

istics of the latent consumer classes revealed by our study, so that future policies could

be more effectively tailored to these different groups. Work that aims to understand the

specific changes in habits and/or technologies implemented by different consumer classes to

increase water use efficiency also would be helpful. If our speculative analysis is on track,

then a large majority of households may be achieving improvements through habit change,

while a much smaller percentage may be responding with new technologies. It would be

particularly interesting to replicate our analysis with additional stated preference data on

habits and technologies to better understand consumer class profiles and their adaptations

to ABR, so that water providers can more effectively help their customers achieve lasting

improvements in water use efficiency. Additional research analyzing how billing frequency
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may affect consumers’ ability to respond to the signal provided by the water budget also

would be valuable.
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Appendices

A Difference in means tests

Control Treatment t-test p.value Control Treatment t-test p.value

All HH HH +/- 50%

Income 307.80 323.45 -20.90 0.00 314.80 323.17 -10.38 0.00

Education 0.50 0.52 -6.49 0.00 0.50 0.52 -5.32 0.00

Irrigated area 3.11 2.66 19.56 0.00 3.05 2.73 12.84 0.00

Members 3.26 3.26 -0.19 0.85 3.32 3.28 2.28 0.02

No control households 7187 5143

No treatment households 2454 2192

HH +/- 25% HH +/- 10%

Income 318.96 322.96 -3.96 0.00 320.46 321.99 -0.96 0.34

Education 0.51 0.51 -1.99 0.05 0.51 0.51 -0.36 0.72

Irrigated area 3.00 2.81 5.80 0.00 2.94 2.86 1.52 0.13

Members 3.35 3.30 1.97 0.05 3.36 3.30 1.47 0.14

No control households 2652 860

No treatment households 1512 669

Table A1: Difference in mean tests for observable covariates
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Control Treatment t-test p.value Control Treatment t-test p.value
1st Block 3rd Block

Income 295.31 295.85 -0.16 0.87 324.91 329.46 -1.37 0.17
Education 0.50 0.49 1.12 0.26 0.53 0.52 0.59 0.55
Irrigated area 2.71 2.83 -1.00 0.32 2.51 2.17 3.23 0.00
Members 3.23 3.36 -1.66 0.10 3.23 3.15 1.05 0.30

No control households 207 274
No treatment households 205 97

Table A2: Difference in mean tests for observable covariates- Falsification test
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B Panel unit root tests

Control Treatment
Pre-ABR Post-ABR Pre-ABR Post-ABR

All HH

HT test -449.3 -428.7 -247.3 -230.4
p-value 0.000 0.000 0.000 0.000
IPS test -167.5 -175.0 -98.54 -92.08
p-value 0.000 0.000 0.000 0.000

HH ± 50%

HT test -374.7 -354.1 -236.1 -220.6
p-value 0.000 0.000 0.000 0.000
IPS test -139.7 -144.5 -92.89 -87.62
p-value 0.000 0.000 0.000 0.000

HH ± 25%

HT test -270.6 -252.9 -194.7 -185.0
p-value 0.000 0.000 0.000 0.000
IPS test -101.2 -102.5 -76.98 -73.98
p-value 0.000 0.000 0.000 0.000

HH ± 10%

HT test -155.7 -144.6 -130.9 -125.5
p-value 0.000 0.000 0.000 0.000
IPS test -57.94 -57.68 -51.48 -49.82
p-value 0.000 0.000 0.000 0.000

Table B1: Unit root tests
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