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Abstract—This paper presents a study on the effects of capacity
factor of electric vehicle (EV) charging plazas on sizing of
energy storage systems (ESS) for peak load reduction of the
charging plazas. The study is based on one year of measurement
data from four fast charging stations from southern California,
USA. The capacity factor of the charging stations was varied
from 10% to 40% by duplicating the measured charging
sessions to occur at the same time on a different day of the same
type. Moreover, the size of the charging plaza was varied
between 4 and 20 charging stations. The results show that the
relatively highest ESS capacity is needed, and the utilization rate
of the ESS is the largest, for highly utilized small-scale charging
plazas. The required grid connection power of an EV charging
plaza can be decreased considerably by an ESS with relatively
small power and energy capacities.

Index Terms-- Charging stations, Electric vehicle charging,
Electric vehicles, Energy storage systems, Load management

I. INTRODUCTION

As part of the current energy transition, the movement
towards electrified mobility is making rapid progress. The
increasing number of electric vehicles (EV) and their fast
charging stations might lead to severe problems for electrical
grids. The significant power demand of the charging stations
brings on a need for grid upgrade investments. Moreover, the
highly intermittent energy demand of the charging stations
complicates demand forecasting and might lead to grid
stability issues. Energy storage systems (ESS) can be used to
reduce the required connection power of an EV charging plaza
by levelling its power demand. The ESSs can also be used to
smooth fast variations in the power drawn from the grid by the
charging plaza and for enhancing power outage resilience of
the charging plaza.

Sizing of ESSs for EV charging plazas has been studied
during the past few years considering several aspects like peak
load reduction [1]–[4], resilience to power outages [2], [4],
and costs of the ESS [2], [3], [5] and electricity [3], [5]. Sizes
of the EV charging plazas and utilization rates of the charging
stations affect the requirements of the ESSs and will likely
increase over time. However, their effects have not been

studied thoroughly so far. ESS energy requirements for peak
load reduction of a charging plaza were studied in [1] varying
the number of charging stations from 2 to 10. Moreover, the
earlier studies, like [1], focused only on ESS energy
requirements. However, also the required power capacity and
utilization rate of the ESS play a central role in ESS sizing, but
these aspects have received little attention.

The earlier studies in the field were mostly based on
synthetic charging demand profiles instead of actual
measurements. Synthetic charging demand profiles were
created based on daily EV commuting profiles [5],
probabilities of EV driving behavior [2], [4], and
measurement-based probability distributions of charging
sessions [1]. Synthetic charging profiles and measurements
were compared in [6]. Although the temporal resolution of EV
charging profiles affects the accuracy of the obtained results,
the temporal resolution in EV charging modeling varies
typically from 10 s [7] to 2 h [8] and the choice of the
temporal resolution is not justified in most studies, like [2],
[5]. The effects of the temporal resolution on the peak power
of a fleet of EVs were investigated in [9] and the effects on the
accuracy of EV charging load modeling were investigated in
[10]. The results indicate that use of too low temporal
resolution distorts the obtained results.

In this paper, the effects of charging plaza capacity factor,
i.e., utilization rate of the charging stations of the charging
plaza, on sizing of ESSs for peak load reduction of EV
charging plazas is studied. This study addresses the main
drawbacks of earlier studies: the required ESS energy and
power capacities and utilization rate of the ESS are studied
comprehensively based on one year of high-resolution
measurements from four 62.5 kW direct current fast charging
(DCFC) stations. The capacity factor of the charging stations
was varied from 10% to 40% by increasing the number of
charging sessions. The size of the charging plaza was varied
between 4 and 20 DCFC stations by generating charging
profiles for virtual stations by re-ordering the measured
charging sessions of the four DCFC stations. The power limit
(PL) below which the power drawn from the grid was limited
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Figure 1.  The highest EV charging power for a charging plaza with respect
to the rated charging power as a function of the capacity factor and number
of DCFC stations. The power values are calculated as averages of random
DCFC station permutations limiting the number of permutations to 200.

by the ESS was varied from 6% to 100% with respect to the
rated charging power of the charging plaza.

II. METHODS AND DATA

A.  Measurement data
This study is based on one year of measurements from

four ChargePoint DCFC stations located on the campus of the
University of California, San Diego (UCSD). Two of the
stations are at the East Campus Utility Plan (ECUP) parking
lot and the other two are at the Osler parking structure in La
Jolla, CA 92093, USA. The rated power of each station is
62.5 kW. However, each station is paired with another DCFC
station so that if only one of them is in use, then the maximum
power delivery to a single EV doubles to 125 kW.

In total 4,787 charging sessions occurred at the four DCFC
stations during the year 2022. Charging sessions with missing
charging duration or energy were removed leading to 4,087
charging sessions which were analyzed. The utilized charging
session data consists of the times when charging started and
ended, and the energy dispatched. Charging sessions with
power higher than 62.5 kW were modeled as if there was only
62.5 kW available by removing the excess energy. The
numbers and total durations of the charging sessions, capacity
factors, and total energies dispatched are compiled in Table I
for the four DCFC stations. The capacity factors of the DCFC
stations range from 5.6% to 9.7% with Osler DCFC 1 being
the most frequently utilized charging station. In this study, the
capacity factor of the charging stations was varied from 10%
to 40%. The lower limit of 10% is chosen as the highest
capacity factor value of Table I.

TABLE I. NUMBER OF CHARGING SESSIONS, TOTAL CHARGING
DURATION, CAPACITY FACTOR, AND TOTAL ENERGY DISPATCHED FOR THE

STUDIED DCFC STATIONS.

Station Sessions Total
duration (h)

Capacity
factor (%)

Energy
dispatched

(MWh)

ECUP 1 795 493.3 5.63 12.5

ECUP 2 721 525.0 5.99 20.6

Osler DCFC 1 1475 846.5 9.66 32.5

Osler DCFC 2 1096 638.2 7.29 25.2

The number of charging sessions was increased by the
following procedure to study the effects of the capacity factor.
First, a charging session was randomly picked from the dataset
of a DCFC station. Then it was duplicated to occur at the same
time on a different day of the same type (holiday, weekday,
weekend day). If the duplicated charging session overlaps
with an existing one its start time was increased to 1 minute
after the end of the previous charging session, i.e., 1 minute
was assumed to be the time required to switch between
drivers. The capacity factor of each DCFC station was
increased to up to 40% by repeating this procedure. After that,
the number of DCFC stations was increased beyond 4 by
creating new stations by the following procedure. The starting
dates of the measured charging sessions were changed by
randomly reordering the days from each day type. Since a

charging session may continue to next day, this reordering
may lead to overlapping charging sessions after midnight.
Thus, starting from the first charging session of the year we
checked for overlapping sessions. The overlapping sessions
were moved to start 1 minute after the end of the previous
session. Four new DCFC stations were created by this
procedure from the data of each real DCFC station. Finally, a
power time series with a sampling frequency of 1 Hz was
generated for each DCFC station by assuming constant
charging power for each charging session between the times
when EV charging started and ended. Differences between
power time series generated in this way and actual electrical
measurements are usually small [11].

Fig. 1 presents the highest total plaza EV charging power
PEV as a function of the capacity factor and number of DCFC
stations. At small charging plaza sizes, the highest PEV is close
to 100% decreasing with increasing number of DCFC stations
since the aggregate charging profile becomes flatter as the
charging profiles of individual stations differ from each other.
For charging plazas consisting of multiple charging stations,
the highest PEV increases with the increasing capacity factor as
the probability of simultaneous charging of multiple EVs
increases. For a single DCFC station, the highest PEV is
constant as a function of the capacity factor as the new
charging sessions are duplicated from the existing ones, i.e.,
the highest PEV stays constant when the number of charging
sessions is increased.

The average PEV, i.e., required minimum connection
power for a charging plaza in case of perfect power levelling,
with respect to the rated charging power is presented in Fig. 2
as a function of the capacity factor. The relative average PEV
increases with the increasing capacity factor as there are more
charging sessions. The relative average PEV is the same for all
studied charging plaza sizes as it is simply the relative total
energy charged divided by one year.

B. Control strategy
In this study, the ESS is sized to limit the power that the

charging plaza draws from the grid Pgrid below the applied PL.
The PL is altered from the average PEV, which varies from 6%
to 23% depending on the capacity factor (Fig. 2), to 100% of



Figure 3.  The highest power drawn from the grid, highest EV charging
power, and highest ESS charging and discharging powers with respect to the
rated charging power during the one-year period for 12 DCFC stations with

capacity factors of 10% (a) and 40% (b) as a function of the power limit.

Figure 2.  The average EV charging power for a charging plaza with respect
to the rated charging power as a function of the capacity factor.

the rated charging power of the charging plaza. The minimum
PL limit is selected based on Fig. 2 since PLs below the
average PEV are not feasible. The ESS was controlled as
follows. The ESS discharges when the PEV is more than the
PL and charges when PEV is less than the PL until the ESS is
fully charged. The ESS was fully charged in the beginning of
the studied year. Losses of the ESS and cables were not taken
into account.

III. RESULTS AND DISCUSSION

Fig. 3 presents the highest power drawn from the grid,
highest EV charging power, and highest power of the ESS for
the charging plaza of 12 DCFC stations for capacity factors of

10% and 40% as a function of the PL. The highest
(normalized) powers increase with increasing capacity factor
since the frequency of simultaneous charging sessions
increases. The highest PEV is independent of the PL as EV
charging power is not limited. At PLs lower than the highest
PEV, the highest Pgrid equaled to the PL. In that PL region, the
highest ESS discharging power decreases linearly as the sum
of the ESS discharging power and Pgrid equals PEV. The
highest ESS charging power equaled to Pgrid for low PL values
meaning that the highest ESS charging power occurred when
all the power drawn from the grid was used to charge the ESS.
At some PL value, the highest ESS charging power started to
fluctuate until it became zero when the PL reached the highest
PEV. In that PL region, the highest ESS charging power
occurred when Pgrid was not used entirely to charge the ESS
but part of it charged the EVs. Thus, the highest ESS charging
power depends on the concurrent EV charging power. The
erratic behavior of the ESS charging power is a result of using
a rule-based ESS control strategy.

Fig. 4 presents the highest ESS power during the one-year
period for several charging plaza sizes as a function of the PL
and capacity factor. The highest ESS power means the ESS
power capacity required to limit Pgrid below the applied PL.
The normalized powers decrease strongly with increasing
charging plaza size. Moreover, they decrease with decreasing
capacity factor, with greater decreases for larger charging
plazas. Thus, the relatively highest ESS power capacity is
needed for highly utilized small-scale charging plazas. The
required power capacity changes as a function of the PL as
was earlier explained by Fig. 3.

The required energy capacity of the ESS with respect to
the rated charging power of the charging plaza is presented in
Fig. 5 for several charging plaza sizes as a function of the PL
and capacity factor. The required energy capacity decreases
with increasing charging plaza size and PL. The increasing
charging plaza size smooths the aggregate EV charging profile
since the profiles of individual charging stations are not
identical while the increasing PL reduces the need for power
leveling. There are peaks at low PLs since the calculations
were done with PL steps of 1%. The peaks are the higher the
closer the lowest PL value is to the average PEV determined by
the capacity factor (Fig. 2), i.e., the required energy capacity
increases strongly as the PL decreases closer to the average
PEV. The required energy capacity decreases with decreasing
capacity factor as the occurrence frequency of simultaneous
charging sessions decreases reducing the need for power
leveling. The ESS energy capacities for charging plazas of 4
and 20 DCFC stations required to limit Pgrid to 30% were 3.02
and 1.88 h, respectively, for a capacity factor of 40% while the
corresponding values for a capacity factor of 20% were 0.85
and 0.27 h. For 20 DCFC stations, an ESS energy capacity of
3.34 h is sufficient for power leveling even with the highest
studied capacity factor (40%) and a strict PL of 25%.

The utilization rate of the ESS can be illustrated by the
energy cycled through the ESS which is also an indicator of
the lifetime of the ESS that is typically rated in number of
charge–discharge cycles. Fig. 6 presents the share of total EV
charging energy cycled through the ESS for several charging
plaza sizes as a function of the PL and capacity factor. Like



Figure 4.  Required power capacity of the ESS with respect to the rated
charging power during the one-year period for 4 (a), 12 (b), and 20 (c) DCFC

stations as a function of the power limit and capacity factor.

Figure 5.  Required energy capacity of the ESS with respect to the rated
charging power during the one-year period for 4 (a), 12 (b), and 20 (c) DCFC

stations as a function of the power limit and capacity factor.

relative power and energy requirements in Figs. 4 and 5, also
the share of energy cycled through the ESS decreases with
increasing charging plaza size and PL and with decreasing
capacity factor. At PLs higher than 40% or so, only a small
share of the EV charging energy is cycled through the ESS,
i.e., the utilization rate of the ESS is low, while the share of
cycled energy increases strongly at lower PLs. With a PL of
30%, depending on the capacity factor, between 5.4% to
22.6% of the EV charging energy is cycled through the ESS
for the charging plaza of 4 DCFC stations while the
corresponding range is from 0.05% to 12.6% for 20 DCFC
stations.

The results show that the utilization rate of an EV charging
plaza has a major effect on the requirements and the utilization
rate of an ESS used for peak load reduction of the charging
plaza. The relative ESS power and energy requirements and

the utilization rate of the ESS increase as the PL and the
charging plaza size decrease and the utilization rate of the
plaza increases. The required grid connection power of an EV
charging plaza can be decreased considerably relative to the
rated power of the charging plaza by an ESS with relatively
small power and energy capacities especially in the case of EV
charging plazas with many DCFC stations or low utilization
rate.

IV. CONCLUSIONS

In this paper, the effects of the capacity factor of EV
charging plazas on sizing of ESSs for peak load reduction of
the charging plazas were studied based on one year of
measurements from four DCFC stations. The capacity factor
of the DCFC stations was varied from 10% to 40% by
duplicating measured charging sessions to occur at the same



Figure 6.  Share of total EV charging energy cycled through the ESS during
the one-year period for 4 (a), 12 (b), and 20 (c) DCFC stations as a function

of the power limit and capacity factor.

time on a different day of the same type. Moreover, the size of
the charging plaza was varied between 4 and 20 DCFC
stations by generating charging profiles for virtual stations by
re-ordering the measured charging sessions.

The relative ESS power and energy requirements and the
utilization rate of the ESS increased as the PL and the
charging plaza size decreased and the utilization rate of the
plaza increased. The results mean that the relatively highest

ESS capacity is needed, and the utilization rate of the ESS is
the largest, for highly utilized small charging plazas. The
increasing charging plaza size smooths the aggregate EV
charging profile as the charging profiles of individual charging
stations differ from each other while the decreasing capacity
factor decreases the occurrence frequency of simultaneous
charging sessions reducing the need for power leveling. The
required grid connection power of an EV charging plaza can
be decreased considerably by an ESS with relatively small
power and energy capacities. For example, ESS power and
energy capacities of 45.7% and 2.19 h, with respect to the
rated EV charging power, are high enough to limit the peak
power of a charging plaza of 12 DCFC stations to 30% of the
rated EV charging power of the charging plaza even with the
highest studied capacity factor of 40%.
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