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Behavioral/Systems/Cognitive

Reinforcement Learning Signals Predict Future Decisions

Michael X Cohen,1,2 and Charan Ranganath2

1Department of Epileptology and Center for Mind and Brain, University of Bonn, 53105 Bonn, Germany, and 2Center for Neuroscience, University of
California, Davis, Davis, California 95616

Optimal behavior in a competitive world requires the flexibility to adapt decision strategies based on recent outcomes. In the present
study, we tested the hypothesis that this flexibility emerges through a reinforcement learning process, in which reward prediction errors
are used dynamically to adjust representations of decision options. We recorded event-related brain potentials (ERPs) while subjects
played a strategic economic game against a computer opponent to evaluate how neural responses to outcomes related to subsequent
decision-making. Analyses of ERP data focused on the feedback-related negativity (FRN), an outcome-locked potential thought to reflect
a neural prediction error signal. Consistent with predictions of a computational reinforcement learning model, we found that the
magnitude of ERPs after losing to the computer opponent predicted whether subjects would change decision behavior on the subsequent
trial. Furthermore, FRNs to decision outcomes were disproportionately larger over the motor cortex contralateral to the response hand
that was used to make the decision. These findings provide novel evidence that humans engage a reinforcement learning process to adjust
representations of competing decision options.
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Introduction
Recent research in neuroscience and computational modeling
suggests that reinforcement learning theory provides a useful
framework within which to study the neural mechanisms of
reward-based learning and decision-making (Schultz et al., 1997;
Sutton and Barto, 1998; Dayan and Balleine, 2002; Montague and
Berns, 2002; Camerer, 2003). According to many reinforcement
learning models, differences between expected and obtained re-
inforcements, or reward “prediction errors,” can be used to form
and adjust associations between actions or stimuli and their en-
suing reinforcements (Sutton, 1992; Sutton and Barto, 1998;
Montague and Berns, 2002). Critically, these models suggest that
reward prediction errors can guide decision-making by signaling
the need to adjust future behavior. In particular, larger prediction
errors should be associated with adjustments in subsequent deci-
sions, which occur because prediction errors strengthen or weaken
representations of winning and losing actions, respectively.

Research using scalp-recorded event-related brain potentials
(ERPs) in humans has revealed an ERP modulation called the
“feedback-related negativity” (FRN) that might reflect a neural
reward prediction error signal (Holroyd and Coles, 2002). The
FRN is a relatively negative ERP deflection at frontocentral scalp
sites �200 – 400 ms after negative compared with positive feed-

back (Nieuwenhuis et al., 2002; Holroyd et al., 2003; Yasuda et al.,
2004; Frank et al., 2005), and it reflects neural processes that share
many characteristics with prediction errors (Schultz et al., 1997;
Holroyd and Coles, 2002; Ruchsow et al., 2002; Nieuwenhuis et
al., 2004; Yasuda et al., 2004; Frank et al., 2005). Holroyd and
Coles (2002) suggested that the anterior cingulate cortex uses
these prediction error signals to adapt reward-seeking behavior
and demonstrated that a computational reinforcement learning
model can emulate behavioral and neural responses during sim-
ple learning tasks. If neural prediction error signals are used to guide
decision-making, as suggested by reinforcement learning models,
we would expect that FRN magnitudes in response to decision out-
comes should relate to subsequent decision behavior.

Accordingly, in the present study, we used ERPs to test how
prediction errors might relate to adjustments in decision-
making. In the experiment, subjects played a strategic game
against a computer opponent and could maximize their winnings
only by dynamically adjusting their decision strategies. We used
prediction errors and decision option representations generated
from a computational reinforcement learning model to generate
novel hypotheses about human ERP and behavioral responses in
this task. Based on the idea that prediction errors are used to
adjust action representations, our analyses tested two critical pre-
dictions: (1) FRNs elicited by decision feedback should be related
to how subjects adjusted their decision behavior on the subse-
quent trial, and (2) decision feedback should modulate the mag-
nitude of FRNs recorded over motor cortex sites.

Materials and Methods
Subjects. Fifteen right-handed subjects (9 male, aged 21–28 years) were
recruited from the University of Bonn community. Subjects had normal
or corrected-to-normal vision and reported having no psychiatric con-
ditions. The study was approved by the local ethics review committee,
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and subjects signed informed consent documents before the start of the
experiment.

Behavioral procedure. Subjects played a competitive, zero-sum game
called “matching pennies” against a computer opponent. In the game,
the subject and a computer opponent each selected one of two targets. If
the subject and the computer opponent chose the same target, the subject
lost one point, and if the subject and the computer opponent chose
opposite targets, the subject won one point. On each of 1020 trials, sub-
jects first saw the two targets, a fixation dot and “you!” on the screen, and
pressed the left or right button with the left or right index finger on a
response box to indicate their decision, which they were instructed to
make as quickly possible. A green box surrounded their chosen target for
400 ms, followed by a 1000 ms delay, followed by the computer oppo-
nent’s choice highlighted in violet and “�1” or “�1” displayed above the
targets for 1000 ms. An intertrial interval of 1500 ms separated each trial
(Fig. 1a).

The computer opponent was programmed to search for and exploit
patterns in the subject’s recent response history in attempt to beat the
subject. Specifically, it kept in memory the subject’s selections from the
previous six trials and searched for patterns in these selections [left–
right–left–right–left (and, by extension, right–left–right–left–right); left–
left–right–right; left–left–left–right–right; win/stay–lose/switch]. The
strategy search process was rote and preprogrammed (i.e., not a neural
network or intelligent pattern classifier). If the computer opponent
found a strategy, it chose the decision option that completed the pattern.
For example, if the subject responded left–left–right–right, the computer
opponent chose left on the following trial. This way, if the subject con-
tinued with this pattern, the computer opponent would win. In addition
to searching for such patterns, the computer opponent also searched for
an overall bias (one target is selected on at least four of the six previous
trials). When no pattern was detected, the computer opponent chose a
target randomly. An additional condition limited the number of succes-
sive wins to four.

The matching pennies game is often used to study economic decision-
making and reinforcement learning (Mookherjee and Sopher, 1994; Sut-
ton and Barto, 1998), and it has been used recently in neuroscience to
study activity in the prefrontal cortex (Barraclough et al., 2004). The
optimal decision policy in this game is to choose each target equally often
and with no easily identifiable pattern. Thus, this game is useful for
studying how reinforcements are used to adjust behavior on the trial-by-
trial level rather than examining learning of optimal response patterns
over a longer timescale. Furthermore, the competitive nature of this
game helped ensure that subjects were constantly evaluating reinforce-

ments and adjusting their behavior accordingly. Indeed, if subject’s be-
havior was patterned and detectable by the computer opponent, it was
possible, and in fact easy, to lose to the computer on 100% of trials. Thus,
the results might be different if subjects selected both targets equally
often but were selecting randomly rather than guided by the need to
constantly adapt decision behavior.

ERP recording and analysis. EEG data were recorded at 1000 Hz (with
an anti-aliasing low-pass filter set at 300 Hz) from 23 scalp electrodes
spread out across the scalp and four ocular (two horizontal electroocu-
lograms and two vertical electrooculograms) electrodes. All EEG chan-
nels were referenced to the left mastoid and were re-referenced on-line to
the average of the left and right mastoids by the acquisition software.
Scalp channels were Fpz, AFz, Fz, FCz, Cz, Pz, Oz, FC1, AF7, F3, C3, P3,
CP5, FC5, T7, FC2, AF8, F4, C4, P4, CP6, FC6, and T8. Data were resa-
mpled to 250 Hz and band-pass filtered from 0.1 to 40 Hz off-line. Trials
containing blink or other artifacts, identified as having voltage ampli-
tudes greater than �90 �V, were removed before averaging (mean � SD,
4 � 3%). Although the topography of the FRN is fairly anterior in our
study and in other studies, these effects are not likely contaminated by
eyeblinks, because eyeblink artifacts are more anterior and are spread out
across the x-axis of the scalp (i.e., extending from eye to eye) (Jung et al.,
2000; Li et al., 2006) rather than being small and focused in central
electrodes.

Statistical analyses were performed by entering average ERP voltage
potentials from a 240 –260 ms post-feedback window into a 2 (feedback:
positive or negative) � 2 (decision on following trial: same or opposite)
repeated-measures ANOVA. We chose this time window based on the
peak of the FRN (the loss–win difference) from electrode FCz, which
occurred at 250 ms. ERPs were averaged across time windows because
average amplitude measures are more robust than peak amplitude mea-
sures with respect to noise fluctuations in ERP waveforms. We selected
FCz for analyses based on the loss–win difference topography, which
demonstrates that the FRN was maximal at this site. Electrode sites C3
and C4 were used in analyses involving motor potentials (for spatial
position of electrodes FCz, C3, and C4, see red circles in Figs. 3, 6) For
illustration purposes, we z-transformed the ERP data in Figure 4 so they
are more easily visually compared with results from the model. We cal-
culated and plotted the predictive FRN (pFRN) (see Results) as the dif-
ference between loss/opposite and loss/same trials.

Reinforcement learning model. To test whether ERP and behavioral
responses reflected a reinforcement learning process, we examined re-
sponses of a computational reinforcement learning model. The model
used a reward prediction error to update weights associated with each
target and probabilistically chose the target with the stronger weight
(Schultz et al., 1997; Egelman et al., 1998; Holroyd and Coles, 2002;
Montague and Berns, 2002; Schultz, 2004). Thus, after receiving negative
feedback, the model generates a negative prediction error, which is used
to decrease the strength of the weight of the chosen decision option (e.g.,
the right-hand target), making the model less likely to choose that deci-
sion option on the following trial. Specifically, the probability ( p) of
choosing the right-hand target on trial t is the logit transform of the
difference in the weights on each trial (wt) associated with each target,
passed through a biasing sigmoid function (Egelman et al., 1998; Mon-
tague et al., 2004):

p�right�t �
exp(w �right�t)

exp(w �right�t) � exp(w �left�t)
.

After each trial, a prediction error (�) is calculated as the difference
between the outcome received (�1 or 1 for losses and wins) and the
weight for the chosen target [e.g., � � �1 � w(right)t in the case in which
the model lost after choosing the right-hand target]. Weights are then
updated according to wt � 1 � � � wt � � � � � �, where � is a discount
parameter, � is 1 for the chosen target and 0 for the nonchosen target,
and � is the learning rate, which scales the effect of the prediction error
on future weights. Note that, in this model, there is no temporal dis-
counting that occurs between the response and the outcome. In the
current study, it would not make sense to discount action values from the
time of the response until the time of outcome, because the interval

Figure 1. Trial events and correspondence between model outputs and behavior. a, Depic-
tion of trial events. Numbers indicate time of onset and offset of stimuli in milliseconds after the
subjects’ behavioral response. Displayed is a loss trial. b, Outputs of the reinforcement learning
model (gray lines) predicted subjects’ trial-to-trial behavioral changes (black lines). Results are
displayed for two subjects for whom the model closely fit the behavioral results. The calculated
prediction error of the model on each loss trial closely matched the local fraction (calculated by
smoothing behavioral choices, coded as 0 or 1, with a 10 trial kernel running-average filter) of
subjects’ loss/opposite versus loss/same choices on each of those trials.
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between the response and the outcome was fixed at 1500 ms and because
the outcomes unequivocally resulted from the preceding response. In-
stead, the model discounts weights from previous trials, as in other stud-
ies (Barraclough et al., 2004; Cohen, 2006), rather than discounting the
value of the action before the receipt of the outcome.

Many computational learning models exist, some of which might per-
form as well or better on this task as the model we used. We chose our
model because (1) it has a proposed neurobiological basis (for review, see
Montague et al., 2004) and thus makes testable predictions appropriate
for neuroscience data, and (2) similar models have been used previously
to study ERP correlates of reinforcement learning (Holroyd and Coles,
2002; Nieuwenhuis et al., 2002, 2004). Nonetheless, other prediction-
error-driven learning models could be used that would generate similar
predictions (for an example, see supplemental information, available at
www.jneurosci.org as supplemental material).

We used the model in two different ways. First, we had the model play
the matching pennies game against the computer opponent. This was
done to assess the performance of the model and examine its prediction
errors and decision option weights as it played the game. For these anal-
yses, we set � to 0.8 and � to 1 for both wins and losses. Second, we
wanted to examine whether the subjects’ behavioral responses reflected a
reinforcement learning process. To do this, we gave the model the unique
history of decisions and reinforcements from each subject and compared
subjects’ behavioral and ERP responses to the reward prediction error
and weights for the two decision options that the model calculated for
each trial for each subject. In these analyses, we mathematically estimated
� and � for each subject using a maximum likelihood minimization
procedure in Matlab 6.5 (MathWorks, Natick, MA) (Luce, 1999; Barra-
clough et al., 2004; Cohen and Ranganath, 2005; Cohen, 2006). The
procedure uses the nonlinear, unconstrained Nelder–Mead simplex
method (Lagarias et al., 1998) to find values of the learning parameters
that maximize the sum of p(right)t or p(left)t across the experiment (de-
pending on the target selected on trial t). Finally, to examine the corre-
spondence between behavioral responses and model outputs, we coded
“loss/stay” (i.e., the subject lost on trial t and chose the same target on
trial t � 1) and “loss/switch” trials as 0 and 1, respectively, and smoothed
the resulting vector with a running average filter with a 10 trial kernel, an
analysis often used to examine correspondence between model predic-
tions and behavioral selections (Sugrue et al., 2004; Bayer and Glimcher,
2005; Samejima et al., 2005).

Results
Behavioral results
Subjects won an average � SE of 51.4 � 1.1% of trials. To exam-
ine whether behavioral responses reflected a reinforcement learn-
ing process, we compared subjects’ behavioral choices to outputs
of the model. The model makes two predictions about subjects’
behavioral choices during the task: (1) larger negative prediction
errors make the subject more likely to choose the opposite target
on the following trial, and (2) the stronger the weight of a deci-
sion option, the more likely the subject is to choose that decision
option. To test the first hypothesis, we used the model to calculate
prediction errors on each trial for each subject and compared
these prediction errors to the local fraction of “loss/same” (i.e.,
when the subject lost and chose the same target on the following
trial as on the current one) versus “loss/opposite” (i.e., when the
subject lost and chose the opposite target on the following trial as
on the current one) decisions. As seen in Figure 1b, the predic-
tions of the model correlated with the subjects’ behavior. Specif-
ically, larger negative prediction errors calculated by the model
were associated with increased likelihood of subjects choosing the
opposite target on the following trial. The correlation between
these variables was significant across subjects (average r � �0.29;
p � 0.007).

We tested the second prediction, that weights calculated by
the model would correspond to left-hand versus right-hand de-
cisions chosen by the subjects, in a similar manner: the model

calculated weights of the two targets for each trial, based on each
subject’s unique history of decisions, and the difference between
the two weights at each trial was compared with the local fraction
of left-have versus right-hand target selections (coded as 0 or 1).
Again, we found a correspondence between what the model esti-
mated the weights should be and what the subjects actually chose
(supplemental Fig. S4, available at www.jneurosci.org as supple-
mental material). Specifically, greater relative weights of the
right-hand versus left-hand target were associated with increased
likelihood that the subjects would choose the right-hand target.
This correlation was significant across subjects (average r � 0.35;
p 	 0.001).

ERP results
The correspondence between the behavioral data and the model
suggests that humans engage a reinforcement learning-like pro-
cess during the task. We next sought to investigate the neural
mechanisms that might underlie this process by examining ERPs
recorded while subjects played the game. Consistent with previ-
ous studies of the FRN, feedback-locked ERPs recorded at fron-

Figure 2. Feedback-locked ERPs sorted according to current outcome and future decision. a,
Grand-average ERPs after losses (black) and wins (gray) separated according to whether sub-
jects chose the opposite (dashed lines) or the same (solid lines) target on the following trial as
on the current trial. Light gray bar indicates time window used for analyses. b, Grand-averaged
FRN (loss–win effect; dotted gray line) and pFRN (loss/opposite � loss/same trials; solid black
line) plotted over time.
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tocentral scalp sites were relatively negative after losses compared
with ERPs after wins [repeated-measures one-way (feedback: win
or loss) ANOVA at FCz, F(1,14) � 15.3; p � 0.002] (Fig. 2a,b). This
ERP difference is similar in timing and topography to the FRN
[similar effects are also called the “feedback error-related nega-
tivity” (fERN) or “medial frontal negativity”], which may reflect
a neural computation of a reward prediction error (Holroyd and
Coles, 2002; Yasuda et al., 2004; Frank et al., 2005). If prediction
errors signal the need to adjust future behavior, as the model
predicts and the behavioral data confirm, feedback-locked ERPs
at medial frontal sites should predict adjustments in decision-
making on the subsequent trial. To test this hypothesis, we sepa-
rately averaged ERPs during wins and losses according to the
decision that was made in the following trial. As shown in Figure
2, a and b, ERPs after losses were significantly more negative on
trials when subjects chose the opposite target on the following
trial (loss/opposite trials) compared with ERPs during losses
when subjects chose the same target on the following trial (loss/
same trials). This was confirmed by a 2 (outcome: win or loss) �
2 (next trial: same or opposite) repeated-measures ANOVA
(main effect of next trial decision, F(1,14) � 4.75; p � 0.04). This
effect was significant for losses (F(1,14) � 5.49; p � 0.03) but not
for wins (F(1,14) � 1.17; p � 0.29). In other words, loss/opposite
trials elicited a larger FRN than did loss/same trials. We refer to
the difference between ERPs after loss/opposite and loss/same
trials as the pFRN effect (Fig. 3). A LORETA source localization
procedure (Pascual-Marqui et al., 1994) estimated overlap-
ping generators of the FRN and pFRN in the dorsal and
posterior cingulate cortex (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material), consistent with
other source estimations of the FRN, as well as with the re-
sponse-related ERN (Ruchsow et al., 2002; Herrmann et al.,
2004; Debener et al., 2005).

We next compared the pFRN with prediction errors generated
by the reinforcement learning model. The model played the
matching pennies game against the computer opponent in 15
separate sessions and won an average � SE of 48.8 � 0.27%. This
is near the Nash equilibrium of winning in 50% of trials, which is
the optimal behavior given two competitive opponents, and is
comparable with our subjects’ performance. The prediction er-
rors of the model were negative after losses and positive after wins

(thus, it exhibited an FRN). More importantly, prediction errors
were larger during loss/opposite trials compared with those dur-
ing loss/same trials (a pFRN; t(14) � 26; p 	 0.001) (Fig. 4a).
These parallels between the prediction errors of the model and
human ERPs to decision outcomes (Fig. 4) are consistent with the
idea that the pFRN effect reflects the computation of negative
prediction errors and that it signals the need to adjust behavior.

How might a neural prediction error signal be used to guide
future decisions? In the model, prediction errors are used to
strengthen or weaken the weights of the two decision options.
Indeed, analysis of changes in the weights in the model after losses
and wins showed that weights were strengthened or weakened
depending on the type of response that led to the outcome. More
specifically, if the right-hand target was selected and led to a loss,
the weight for right-hand target was weakened relative to that of
the left-hand target, whereas the opposite pattern was apparent
for wins. Likewise, if the left-hand target was selected and led to a
loss, the weight for left-hand target was weakened relative to that

Figure 4. Human ERP responses closely resemble model outputs. a, Prediction errors gen-
erated by the reinforcement model parallel human ERP responses. The prediction errors of the
model (right) paralleled the feedback-locked ERP responses of humans (left). ERP data are
z-transformed for ease in comparison with model output. PE, Prediction error. b, Motor cortex
ERP amplitudes and changes in model weights are modulated by both the decision made and
the feedback received. The y-axis depicts z-transformed activity differences between electrodes
C3 and C4 (left) or the differences in the adjustments of the model in the weights for left and
right target (right), separated according to whether the subjects or model chose the left- or
right-hand target and whether they lost or won. Negative values indicate relatively more activ-
ity over right versus left motor cortex (human ERP) or left versus right weights (model). The
parallels between the model weights and motor ERPs suggest that representations of winning
responses are strengthened and representations of losing responses are weakened. W, Weight.

Figure 3. Topographical distributions of FRN (loss–win; top row) and pFRN (loss/opposite � loss/same trials; bottom row) over time. Red circle in top left map shows location of electrode FCz,
used for ERP plots in Figure 2 and statistical analyses.
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of the right-hand target [2 (target selected: left or right) � 2
(feedback: loss or win) factorial ANOVA; F(1,14) � 979; p 	 .001]
(Fig. 4b, right).

In humans, weights for decision options might correspond to
neural representations of actions used to indicate decisions
(Schall, 1995; Gold and Shadlen, 2000; Samejima et al., 2005;
Schall, 2005), and the strength of these representations might
correspond to the relative magnitudes of ERPs measured over
right versus left motor cortex (for left-hand vs right-hand re-
sponses). Based on this reasoning, we hypothesized that lateral
scalp sites over motor cortex should exhibit a sensitivity to loss
versus win feedback when that motor cortex was used to indicate
the decision. Two complementary analyses support this hypoth-
esis. First, we examined the FRN (i.e., the loss–win ERP differ-
ence) at motor cortex sites C3 and C4 as a function of the target
selected on each trial. This analysis revealed a significant hand �
hemisphere interaction (F(1,14) � 4.63; p � 0.04), such that the
FRN was enhanced over motor cortex electrode sites contralat-
eral to the hand used to make the preceding response (Fig. 5). We
refer to this modulation as a lateralized FRN (LFRN) effect.
Follow-up analyses showed that this LFRN effect was signifi-
cantly larger on the left hemisphere than on the right hemisphere

on trials with right-hand responses (F(1,14) � 5.56; p � 0.03). On
trials with left-hand responses, this effect was in the expected
direction, although not significant (F(1,14) � 1.12; p � 0.28).
Figure 3 illustrates the time course of the enhanced FRN effect at
motor cortex electrode sites contralateral to the response hand
used. Current source density maps confirmed that these effects
were maximal over C3 and C4 (supplemental Fig. S5, available at
www.jneurosci.org as supplemental material). The time course of
the topographical distribution is displayed in Figure 6.

The previous analysis demonstrated that feedback about de-
cision outcomes modulates ERPs recorded at lateral motor sites.
In an additional analysis, we investigated how these feedback
signals might modulate activation of motor representations by
examining lateralized ERP potentials (e.g., the difference between
the potentials recorded at electrode C3 and those at C4) after
feedback. In this analysis, positive values indicate that the left
motor cortex has a relatively positive potential than that of the
right, and negative values indicate that the left motor cortex has a
relatively negative potential compared with that of the right. An
ANOVA on these motor cortex difference values, with response
hand (left or right) and feedback (loss or win) as factors, revealed
a significant interaction (F(1,14) � 5.28; p � 0.03), and inspection
of this interaction suggests that representations of winning re-
sponses are strengthened whereas representations of losing re-
sponses are weakened (Fig. 4b, left). As shown in Figure 4b, the
pattern of feedback-locked ERP effects over motor cortex was
similar to the weight changes produced by the computational
model after wins and losses.

Discussion
In the present study, we examined ERPs after decision outcomes
to test the idea that reinforcement learning signals guide dynamic
changes in decision behavior. Our results were consistent with
predictions of a computational model, suggesting that neural
prediction error signals guide future decisions through the ad-
justment of competing action representations.

Neural responses to feedback predict adjustments in
future behavior
According to a recent theory, the FRN reflects a reward predic-
tion error signal sent from the midbrain dopamine system to the
anterior cingulate cortex, in which it is used to adapt behavior

Figure 6. Topographical maps of LFRN effect over time, separated for right-hand (top row) and left-hand (bottom row) responses. Red circles on the top left map show locations of electrodes C3
(left hemisphere) and C4 (right hemisphere), which were used for ERPs in Figure 5 and for statistical analyses.

Figure 5. ERP evidence that feedback processing involves adjustments of representations of
competing responses. Grand-averaged LFRN effects according to whether subjects chose the
left-hand target (a) or the right-hand target (b). ERPs are shown from motor cortex electrode
sites (C3 and C4). The LFRN difference is larger over right motor cortex after left target selections
and is larger over left motor cortex after right target selections.

Cohen and Ranganath • Mechanisms of Reinforcement Learning J. Neurosci., January 10, 2007 • 27(2):371–378 • 375



according to principles of reinforcement learning (Holroyd and
Coles, 2002). Given that prediction errors might signal the need
to adjust behavior (Ridderinkhof et al., 2004a,b), the FRN should
reflect not only whether the current feedback is good or bad but
also how behavior is adjusted in the future. Consistent with this
idea, we found that ERPs elicited by loss feedback were more
negative when subjects chose the opposite versus the same target
on the subsequent trial. Several considerations suggest that this
pFRN effect is driven by the same neural mechanisms as the FRN:
both the pFRN and the FRN have similar topographical distribu-
tions, time courses, and estimated neural generators (Figs. 2, 3)
(supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). Furthermore, the reinforcement learning
model uses a single mechanism to produce effects that strongly
resembled both the FRN and the pFRN (Fig. 4a).

Other studies using different paradigms have reported
feedback-locked potentials that have been referred to as the FRN,
the fERN, or the medial frontal negativity (Gehring and Wil-
loughby, 2002; Holroyd et al., 2002, 2003). Although there may
be functional differences between these effects (Holroyd et al.,
2002), they share many functional characteristics and can be dis-
tinguished from later-occurring modulations of ERP compo-
nents such as the P300 complex or error positivity (Nieuwenhuis
et al., 2001; Hajcak et al., 2005). Several factors suggest that the
pFRN effect may be a modulation of the FRN rather than the
P300. First, the peaks of the FRN and pFRN effects overlap in
time and occur well before the expected time range of the P300
peak (250 ms in our analyses vs 300 – 400 ms for a typical P300
peak) (Fig. 2a). Second, both the FRN and the pFRN effects have
an anterior scalp topography, whereas the P300 typically has a
more posterior topography with a spatial peak at Pz.

Other ERP studies have related the magnitude of the FRN to
overall learning or decision-making strategies, although these
were not on the trial-by-trial level (Yeung and Sanfey, 2004;
Frank, 2005; Hewig et al., 2006). Additionally, some studies have
shown that, during speeded reaction time tasks (when errors are
common), ERPs after the response predict increases in reaction
time on the subsequent trial (Gehring et al., 1993; Garavan et al.,
2002; Ridderinkhof et al., 2003; Debener et al., 2005). However,
ERPs are not correlated with subsequent reaction time adjust-
ments in every study (Gehring and Fencsik, 2001), and, in the
present study, the pFRN was unrelated to reaction times on sub-
sequent trials (one-way ANOVA, F(1,14) 	 1). This is probably
because our study did not require speeded responses, and so
reaction times were not relevant to task performance. It is likely
that the FRN/ERN signals prediction errors, and the impact of
prediction errors on future behavior will vary across studies, de-
pending on which specific behaviors are task relevant (Fiehler et
al., 2005).

Although the neural generator(s) of the FRN remain some-
what debated, accumulating evidence from ERP source localiza-
tion studies (including our own) (supplemental Fig. S2, available
at www.jneurosci.org as supplemental material) suggests that the
anterior cingulate or surrounding medial frontal cortex is a likely
generator (Ruchsow et al., 2002; Herrmann et al., 2004; Debener
et al., 2005; Wang et al., 2005; Taylor et al., 2006). Consistent with
these source estimations, and with our finding that the pFRN
predicts adjustments in decision-making, a recent study showed
that cingulate lesions in monkeys impair the ability to use previ-
ous reinforcements to guide decision-making behavior (Kenner-
ley et al., 2006).

Neural responses to feedback reflect adjustment of competing
action representations
According to many reinforcement learning models, prediction
error signals can guide decision-making by modulating the
strength of weights for competing decision options (Barto, 1995;
Egelman et al., 1998; Braver and Brown, 2003). Consistent with
these models, single-unit recording studies of monkeys have
shown that activity in specific response-related neurons is mod-
ulated by expected reward (Schall, 1995, 2005; Gold and Shadlen,
2000; Sugrue et al., 2004). The present results provide the first
evidence, to our knowledge, to suggest that humans might engage
a similar mechanism. We found that FRN-like responses over
motor cortex electrode sites were lateralized according to the
response hand that was used to make the decision (the LFRN).
This finding suggests that feedback information may be pro-
cessed in motor cortical regions, such that representations of
winning responses are strengthened, whereas representations of
losing responses are weakened. Scalp-recorded ERPs lack the spa-
tial precision to determine whether the LFRN was driven by ac-
tivity in the hand areas of motor cortex. However, C3 and C4
are commonly used to study motor responses (Mordkoff and
Gianaros, 2000; Galdo-Alvarez and Carrillo-de-la-Pena, 2004;
Carrillo-de-la-Pena et al., 2006), and current source density maps
confirmed that these effects are maximal over C3 and C4 (sup-
plemental Fig. S5, available at www.jneurosci.org as supplemen-
tal material). Future research using fMRI could be used to more
precisely localize the generators of this effect.

Importantly, the LFRN effect was observed after feedback,
which was 1400 ms after the response made on that trial and
�2000 ms before the response made on the following trial. Con-
sequently, it is highly unlikely that the LFRN was driven by overt
motor responses. Furthermore, these results could not be attrib-
utable to differences in horizontal eye movements because the
horizontal electrooculogram channels showed no “FRN-like” ef-
fect (supplemental information, available at www.jneurosci.org
as supplemental material). It is possible that subjects maintained
a memory trace of the previous motor response throughout the
delay from the decision to the feedback (i.e., they kept active a
representation of the right motor response during trials in which
they selected the right-hand target), but such a difference in base-
line activity levels could not explain the LFRN, because it was
impossible for subjects to predict the feedback before receiving it.
Indeed, whether motor cortex was active before feedback per se
was not of interest but rather the change in motor cortex activity
as a function of the decision outcome. We suggest that the LFRN
reflects a process by which prediction error signals are used to
adjust representations of competing actions associated with dif-
ferent decision options. This interpretation is supported by the
parallel pattern of results obtained from the reinforcement learn-
ing model when it was subjected to the same analyses (Fig. 4).

Finally, we note that the response-lateralized FRN observed
here need not accompany the FRN under all circumstances. In-
deed, it is possible to obtain an FRN when no responses are re-
quired (Donkers et al., 2005; Yeung et al., 2005). It is likely that
the LFRN would be observed only when lateralized responses are
required.

Neural mechanisms of
reinforcement-guided decision-making
Several lines of evidence suggest that calculations of prediction
errors are expressed through dynamic changes in midbrain do-
pamine neuron activity (Schultz et al., 1997; Waelti et al., 2001).
Interestingly, larger or longer dopamine dips follow larger viola-
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tions of expected reward (Fiorillo et al., 2003) and thus might
indicate a larger prediction error. Midbrain dopamine neurons
can directly modulate activity of pyramidal cells in the cingulate
cortex (Gariano and Groves, 1988; Williams and Goldman-
Rakic, 1998; Onn and Wang, 2005) and may transmit prediction
error signals through this connection. Cingulate neurons can also
modulate activity in the striatum and midbrain (Eblen and Gray-
biel, 1995; Joel and Weiner, 2000), so it is possible that prediction
error signals might be calculated in the cingulate and transmitted
to midbrain dopamine regions. Future research using simulta-
neous recordings from the medial frontal cortex and midbrain
may shed light into whether prediction errors are first signaled by
cortical or subcortical areas.

Dopaminergic prediction error signals might guide adjust-
ments in action representations through modulation of the basal
ganglia–thalamic– cortical motor loop (Alexander and Crutcher,
1990; Orieux et al., 2002; Frank, 2005). Specifically, the globus
pallidus may gate activations of motor commands in the thala-
mus (Frank, 2005). Phasic bursts or dips of dopamine modulate
the gating mechanism of this system over the thalamus and thus
may allow cortical representations of actions (e.g., left- or right-
hand responses) to be strengthened or weakened (Alexander et
al., 1986; Gurney et al., 2001; Frank, 2005). Thus, the LFRN effect
observed here might reflect adjustments of motor response rep-
resentations induced by phasic modulations of the thalamic–
pallidal– cortical motor system.
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