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Schizophrenia is characterized by psychosis and negative symp-
toms such as social and emotional withdrawal. While onset 
of psychosis typically does not occur until late adolescence 

or early adulthood, there is strong evidence from clinical and epi-
demiological studies that schizophrenia reflects a disturbance of 
neurodevelopment1. It confers substantial mortality and morbid-
ity, with a mean reduction in life expectancy of 15–30 years2,3. 
Although recovery is possible, most patients have poor social and 
functional outcomes4. No substantial improvements in outcomes 
have emerged since the advent of antipsychotic medication in the 
mid-twentieth century, a fact that has been attributed to a lack of 
knowledge of pathophysiology1.

Schizophrenia is both highly heritable and polygenic, with risk 
ascribed to variants spanning the full spectrum of population fre-
quencies5–7. The relative contributions of alleles of various frequen-
cies are not fully resolved, but recent studies estimate that common 
alleles, captured by genome-wide association study (GWAS) arrays, 
explain between one-third and one-half of the genetic variance in 
liability8. There has been a long-standing debate, from an evolution-
ary standpoint, as to how common risk alleles persist in the popula-
tion, particularly given the early mortality and decreased fecundity 
associated with schizophrenia9. Various hypotheses have been 
proposed, including compensatory advantage (balancing selec-
tion), whereby schizophrenia-associated alleles confer reproductive  
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Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. 
Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although 
large-scale genomic studies have begun to provide insights. We report a new genome-wide association study of schizophrenia 
(11,260 cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel associated loci and 
145 loci in total. Through integrating genomic fine-mapping with brain expression and chromosome conformation data, we 
identify candidate causal genes within 33 loci. We also show for the first time that the common variant association signal is 
highly enriched among genes that are under strong selective pressures. These findings provide new insights into the biology 
and genetic architecture of schizophrenia, highlight the importance of mutation-intolerant genes and suggest a mechanism by 
which common risk variants persist in the population.
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advantages in particular contexts10,11; hitchhiking, whereby risk-
associated alleles are maintained by their linkage to positively 
selected alleles12; and contrasting theories that attribute these effects 
to rare variants and gene–environment interaction13. Addressing 
these competing hypotheses is now tractable given advances from 
recent studies of common genetic variation in schizophrenia.

The largest published schizophrenia GWAS, that from the 
Schizophrenia Working Group of the Psychiatric Genomics 
Consortium (PGC), identified 108 genome-wide significant loci 
and unequivocally demonstrated the value of increasing sample 
sizes for discovery in schizophrenia genetics research5. Here we 
report a large, phenotypically homogeneous GWAS of schizophre-
nia that, when combined with previously published data, identifies 
new facets of genetic architecture and biology and demonstrates 
that the evolutionary process of background selection contributes 
to the persistence of common risk alleles in the population.

Results
GWAS and meta-analysis. We obtained genome-wide genotype 
information for schizophrenia cases from the UK (the CLOZUK 
sample), which we combined with control datasets obtained from 
public repositories or through collaboration. The final sample 
size was 11,260 cases and 24,542 controls (5,220 cases and 18,823 
controls not in previous schizophrenia GWAS; Methods and 
Supplementary Figs. 1 and 2). At a genome-wide level, the associa-
tion statistics indicated that the common variant architecture in the 
CLOZUK sample was highly correlated with that in an independent 
sample of 29,415 cases and 40,101 controls from the PGC (genetic 
correlation =  0.954 ±  0.030; P =  6.63 ×  10–227), and this was further 
confirmed by polygenic risk score and trend test analyses across the 
datasets at a range of association P-value thresholds (Methods and 
Supplementary Tables 1 and 2).

Meta-analysis of the CLOZUK and independent PGC datasets, 
excluding related and overlapping samples (total of 40,675 cases 
and 64,643 controls; Supplementary Fig. 3) identified 179 indepen-
dent genome-wide significant SNPs (P <  5 ×  10–8; Supplementary 
Table  3) mapping to 145 independent loci (Fig.  1, Methods and 
Supplementary Table  4). The 145 associated loci included 93 
of those that were genome-wide significant in the study of the 
PGC, the majority of which showed a strengthened association 
(Supplementary Fig. 4 and Supplementary Table 5). This does not 
imply that the remaining 15 PGC loci were false positives; rather, 
this reflects the expected inflation of effect sizes for genome-wide 
significant SNPs in incompletely powered studies and, as we demon-
strate, is consistent with all 108 PGC loci representing true positives 
(Supplementary Note). Of the 52 loci not identified by the PGC, 
2 have been reported as genome-wide significant in other studies: 
the locus at ZEB214 and a locus on chromosome 8 (38.0–38.3 Mb)15.

In further independent samples (5,662 cases and 154,224 con-
trols), 43 of the 50 genome-wide significant index SNPs showed the 
same pattern of allelic association, a level that far surpassed chance 
(P =  1.05 ×  10–7). Despite the modest number of cases in these 
samples, 18 of the 50 index alleles reached nominal significance 
(P <  0.05), which again is implausible by chance (P =  1.46 ×  10–11). 
None demonstrated evidence for heterogeneity of effect (Methods 
and Supplementary Table 6).

Mutation-intolerant genes. Recent studies have shown that muta-
tion-intolerant genes capture much of the rare variant architecture 
of neurodevelopmental disorders such as autism, intellectual dis-
ability and developmental delay, as well as schizophrenia16–19. Here 
we show that, for schizophrenia, this also holds for common varia-
tion. Using gene set analysis in MAGMA20, loss-of-function (LoF)-
intolerant genes (n =  3,230) as defined by the Exome Aggregation 
Consortium (ExAC)21 using their gene-level constraint met-
ric (pLI ≥  0.9), were enriched for common variant associations  

with schizophrenia in comparison with all other annotated genes 
(P = 4.1 ×  10–16).

It has been shown that pLI is correlated with gene expression 
across tissues, including brain21, which raises the possibility that the 
enrichment for LoF-intolerant genes in schizophrenia may reflect 
enrichment for signal in genes expressed in the brain. However, LoF-
intolerant gene set enrichment was robust to the inclusion of both 
‘brain-expressed’ (n = 10,360) and ‘brain-specific’ (n = 2,647) gene 
sets19 as covariates in the analysis (P =  1.89 ×  10–10) or to controlling 
for FPKM gene expression values in brain22 (P =  1.03 ×  10–14).

It has been suggested that clustering of risk alleles in mutation-
intolerant genes is a hallmark of early-onset traits under natu-
ral selection23,24. However, LoF-intolerant genes are known to be 
enriched for SNPs identified as genome-wide significant in GWAS 
(as listed in the NHGRI-EBI GWAS Catalog25) and for broad catego-
ries of disorders21. To examine whether our finding is a property of 
polygenic disorders in general, we obtained summary genetic data 
from a late-onset neuropsychiatric disorder (Alzheimer’s disease), a 
non-psychiatric disorder (type 2 diabetes) and a psychological trait 
(neuroticism), each of which has been shown to be under minimal 
selective pressure (Methods). These other phenotypes showed at 
best a weak signal for enrichment of the LoF-intolerant gene set in 
the MAGMA analysis, with the signal not comparable to that seen 
in schizophrenia (Alzheimer’s disease, P =  0.008; type 2 diabetes, 
P =  0.016; neuroticism, P =  0.066).

To quantify the contribution of SNPs within LoF-intolerant genes 
to schizophrenia SNP-based heritability (h2

SNP), we used partitioned 
linkage disequilibrium score regression (LDSR)26 (Supplementary 
Table 7). Overall, genic SNPs accounted for 64% of h2

SNP, a 1.23-fold 
enrichment proportional to their SNP content (P =  5.93 ×  10–14). 
Consistent with the analysis using MAGMA, h2

SNP was enriched in 
LoF-intolerant genes (2.01-fold; P = 2.78 ×  10–24), which explained 
30% of all h2

SNP (equating to 47% of all genic h2
SNP). In contrast, genes 

classed as not LoF intolerant (pLI <  0.9) were significantly depleted 
for h2

SNP relative to their SNP content (0.90-fold; P = 5.86 ×  10–3), 
although in absolute terms SNPs in these genes accounted for 34% 
of h2

SNP. A finer-scale analysis of the relationship between LoF intol-
erance scores and enrichment for association showed that enrich-
ment was restricted to genes with a pLI score above 0.9, precisely 
those defined as ‘LoF intolerant’ (Supplementary Fig. 5).

Common risk alleles in regions under background selection. Our 
finding that LoF-intolerant genes are enriched for common risk 
variants raises the question of how such alleles are found at common 
frequencies in the population. While the contribution of ultra-rare 
variation in functionally important genes to disorders associated 
with low fecundity can be accounted for by de novo mutation16,19,27,  
this cannot explain the persistence of common alleles. To address 
this question, we used partitioned LDSR to test the relationship 
between schizophrenia-associated alleles and SNP-based signatures 
of natural selection. These included measures of positive selection, 
background selection and Neanderthal introgression. We examined 
the heritability of SNPs after thresholding them at extreme values 
for these metrics (top 2%, 1% and 0.5%), including in the baseline 
model annotation sets such as LoF-intolerant genes and genomic 
regions with extreme LD patterns (Methods).

We observed strong evidence for schizophrenia h2
SNP enrich-

ment in SNPs under strong background selection (BGS), which 
was consistent across all the thresholds we examined (Table 1). We 
also found a significant depletion of h2

SNP in SNPs subject to posi-
tive selection as indexed by the CLR statistic. These two results are 
mutually consistent, as calculation of the CLR statistic explicitly 
controls for the effect of BGS28. This suggests that SNPs under posi-
tive selection, but under weak or no BGS, are depleted for associa-
tion with schizophrenia. No significant relationship between h2

SNP 
and other positive selection or Neanderthal introgression measures 
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was found after correction for multiple testing (Table 1). An LDSR 
analysis treating BGS measures as a quantitative trait rather than 
as a binary one confirmed that the relationship between BGS and 
schizophrenia association was not due to the imposition of arbi-
trary thresholds to define strong BGS (P =  7.73 ×  10–11). We also 
note that the τc statistic of the LDSC model was significant for BGS, 
in both the binary (P = 0.041) and quantitative (P = 0.023) analyses 
(Supplementary Table 8). The τc statistic indicates the enrichment of 
BGS after controlling for all other annotations in the model (includ-
ing LoF-intolerant genes)26 and thus represents a robust and conser-
vative test for BGS enrichment.

The above analyses account for a possible confounding rela-
tionship between LoF intolerance and BGS. To illustrate this more 
clearly, we binned the BGS intensities into four categories of increas-
ing score and classified SNPs in these bins according to whether they 
were in LoF-intolerant genes, ‘all other’ gene sets or a non-genic set 
(Supplementary Fig.  6). Note that the lower boundary of the top 
bin (BGS intensity >  0.75) corresponds approximately to the top 2% 
BGS threshold in Table 1 and is equivalent to a reduction in effective 
population size estimated at each SNP of 75% or more29. We found 
significant heritability enrichment across all BGS intensity intervals 
in LoF-intolerant genes that increased progressively with higher 
intensity scores. Notably, we also found heritability enrichment for 
SNPs under BGS pressure in genes that were not LoF intolerant, 
restricted to the highest BGS intensity bin. Indeed, the highest BGS 
intensity bin in non-LoF-intolerant genes was enriched for heritabil-
ity at a level roughly equivalent to that for all LoF-intolerant genes. 

These findings point to BGS and LoF intolerance as making at least 
partially independent contributions to heritability enrichment in 
schizophrenia. In contrast, none of the phenotypes we selected on 
the basis of their minimal impact on fecundity (Alzheimer’s disease, 
type 2 diabetes and neuroticism) showed significant BGS enrich-
ment for heritability either when using the BGS τc statistic of the 
LDSR model (minimum P >  0.22; Supplementary Table 8) or when 
specifically testing regions of high BGS intensity in genes that were 
tolerant (pLI <  0.9) of functional mutations (minimum P >  0.40).

Systems genomics. Using MAGMA, we undertook a primary anal-
ysis of 134 central nervous system (CNS)-related gene sets we have 
previously shown capture the excess copy number variation (CNV) 
burden in schizophrenia30. In a GWAS context, we now show that, 
collectively, this group of gene sets captures a disproportionately 
high fraction of h2

SNP (30% of total heritability, enrichment =  1.63, 
P = 8.57 ×  10–13, 46% of genic heritability; Supplementary Table 7). 
Of the 134 sets, 54 were nominally significant, of which 12 sur-
vived multiple-testing correction (family-wise error rate (FWER) 
P <  0.05; Supplementary Table  9), with no notable association for 
gene sets such as the ARC protein complex and the NMDAR pro-
tein network, that we have previously implicated in rare variant 
studies30,31. Stepwise conditional analysis, adjusting sequentially 
for the more strongly associated gene sets, resulted in six gene sets 
that were independently associated with schizophrenia (Table  2 
and Supplementary Data). These extended from low-level molecu-
lar and subcellular processes to broad behavioral phenotypes. The 
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most strongly associated gene set constituted the targets of the 
fragile X mental retardation protein (FMRP)32. FMRP is a neuro-
nal RNA-binding protein that interacts with polyribosomal mRNAs 
(the 842 target transcripts of this gene set32) and is thought to act by 
inhibiting translation of target mRNAs, including many transcripts 
of pre- and postsynaptic proteins. The FMRP target set has been 
shown to be enriched for rare mutational burden in exome sequenc-
ing studies of  de novo variation in autism33 and intellectual dis-
ability31. In schizophrenia, it has also been shown to be nominally 
significantly enriched for association signal in sequencing studies8,31 
and GWAS5,8, but has only inconsistently been associated in stud-
ies of CNV30,34. Here we provide the strongest evidence thus far for 
enrichment of this gene set in schizophrenia.

We highlight another five gene sets that are independently asso-
ciated with schizophrenia. Three of these derive from the Mouse 
Genome Informatics (MGI) database35 and relate to behavioral 
and neurophysiological correlates of learning: abnormal behav-
ior (MP:0004924), abnormal nervous system electrophysiology 
(MP:0002272) and abnormal long-term potentiation (MP:0002207). 
We note that two of these gene sets (MP:0004924 and MP:0002207) 

were among the five most enriched of the 134 gene sets tested in 
a recent schizophrenia CNV analysis30. The remaining two inde-
pendently associated genes sets were voltage-gated calcium channel 
complexes36 and the 5-HT2C receptor complex37. The calcium chan-
nel finding confirms extensive evidence from common and rare 
variant studies implicating calcium channel genes in schizophre-
nia5,8, including a new GWAS locus in CACNA1D identified in our 
meta-analysis. While there is less convergent evidence in support 
of the involvement of the 5-HT2C receptor complex in schizophre-
nia, the fact that we identify independent association for this gene 
set implicates these genes in schizophrenia pathophysiology and 
potentially rejuvenates a previous avenue of 5-HT2C ligand thera-
peutic endeavor in schizophrenia research38. However, we interpret 
this result with caution given the small size of this gene set and the 
fact that a number of its genes encode synaptic proteins that are 
structurally related to other receptor complexes37, not only 5-HT2C.

Systems genomics and mutation-intolerant genes. The LoF-
intolerant genes and the six conditionally independent (‘significant’) 
CNS-related gene sets together account for 39% of schizophrenia 
SNP-based heritability (P =  5.07 ×  10–26), equating to 61% of genic 
heritability (Fig.  2a and Supplementary Table  7). This is likely to 
be an underestimation of the true effect of these gene sets, as dis-
tal non-genic regulatory elements (not included in this analysis) 
will add to the heritability explained by these genes. In examin-
ing the relationship between the LoF-intolerant and CNS-related 
gene sets (Fig.  2a), genes belonging to both categories were the 
most highly enriched (2.6-fold, P = 7.90 ×  10–15), although LoF-
intolerant genes that were not annotated to our significant CNS 
gene sets still displayed enrichment for SNP-based heritability 
(1.74-fold, P =  9.77 ×  10–10), while genes that were in the significant 
CNS gene sets but had pLI < 0.9 showed more modest enrichment 
(1.39-fold, P =  6.05 ×  10–4). Notably, genes outside these categories 
were depleted in heritability relative to their SNP content (enrich-
ment =  0.79, P = 1.82 ×  10–7).

This general pattern remained when we focused on the six 
significant CNS gene sets individually, in that the enrichment in 
these gene sets derived primarily from their intersection with LoF-
intolerant genes (Fig. 2b). Indeed, only the targets of FMRP showed 
significant enrichment for SNPs in genes that were not LoF intoler-
ant (2.06-fold, P =  4.23 ×  10–5).

Data-driven gene set analysis. To set the systems genomics results 
in context and to ensure that we were not missing enrichment in 
other gene sets by our hypothesis-driven approach, we undertook 
a purely data-driven analysis of a larger comprehensive annotation 

Table 1 | Heritability analysis of natural selection metrics

Top 2% of scores (genome wide) Top 1% of scores (genome wide) Top 0.5% of scores (genome wide)

Metric Ref. Enrichment 2-sided P value Enrichment 2-sided P value Enrichment 2-sided P value

Background selection (B 
statistic)

[29] 1.801 0.001 2.341 9.90 × 10–4 2.365 0.002

Positive selection (CLR) [28] 0.408 6.53 × 10–5 0.173 5.80 × 10–7 0.259 0.016

Positive selection (CMS) [88] 0.054 0.001 –0.037 0.006 –0.039 0.007

Positive selection (XP-EEH) [87] 0.621 0.342 0.383 0.303 0.125 0.268

Positive selection (iHS) [86] 0.973 0.946 0.980 0.974 1.633 0.557

Neanderthal posterior 
probability (LA)

[89] 0.807 0.347 0.800 0.462 0.858 0.745

Partitioned LDSR regression results for SNPs thresholded by extreme values (defined as top percentiles versus all other SNPs) of each natural selection metric. All tests have been adjusted for 58 ‘baseline’ 
annotations, which include categories such as LoF intolerant, recombination coldspot and conserved (Methods). Enrichment values below 1 indicate a depletion of h2

SNP in an annotation category (less 
contribution than expected for a given number of SNPs). Negative enrichments should be considered zero (no contribution to h2

SNP by these SNPs). Bold values indicate results surviving correction after 
adjusting for all tests (Bonferroni α =  0.05/18 =  0.0028).

Table 2 | Functional gene set analysis highlights six independent 
gene sets associated with schizophrenia

Gene set Number of 
genes

Enrichment P 
value (FWER)a

Conditional  
P valueb

Targets of FMRP32 798 1 ×  10–5 1.9 ×  10–8

Abnormal behavior 
(MP:0004924)

1,939 1.8 ×  10–4 1.4 ×  10–5

5-HT2C receptor 
complex37

16 0.029 0.001

Abnormal 
nervous system 
electrophysiology 
(MP:0002272)

201 0.003 0.002

Voltage-gated calcium 
channel complexes36

196 0.011 0.016

Abnormal long-
term potentiation 
(MP:0002207)

142 0.030 0.031

MP refers to Mammalian Phenotype Ontology terms of the MGI35, from which gene sets were 
derived. FMRP, fragile X mental retardation protein.a Westfall–Young family-wise error rate, as 
implemented in MAGMA20. bFrom stepwise conditional analysis that adjusts sequentially for 
‘stronger’ associated gene sets.
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of gene sets from multiple public databases, totaling 6,677 gene 
sets (Methods and Supplementary Table 10). Six gene sets survived 
FWER correction for the full 6,677 gene sets and showed indepen-
dence through conditional analyses. The LoF-intolerant gene set 
was the most strongly enriched, followed by the two most strongly 
associated functional gene sets we had specified in our hypothesis-
driven CNS gene set analysis (FMRP targets and MGI abnormal 
behavior genes). The other three sets were calcium ion import 
(GO:0070509), membrane depolarization during action potential 
(GO:0086010) and synaptic transmission (GO:0007268). These are 
highly overlapping with the independently associated sets from our 
primary CNS systems genomics analysis. Indeed, if we repeat the 

data-driven comprehensive gene set analysis while adjusting for 
the six independently associated CNS gene sets, the only surviving 
enrichment term is the LoF-intolerant genes. These results are con-
sistent with those from CNV analysis30 in that they do not support 
annotations other than those related to CNS function and demon-
strate that hypothesis-based analysis to maximize power does not 
substantially impact the overall pattern of results.

Identifying likely candidates within associated loci. To identify 
SNPs and genes that might be causally linked to the genome-wide 
significant associations, we used FINEMAP39 to identify credibly 
causal alleles (those with a cumulative posterior probability for 
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Fig. 2 | Partitioned heritability analysis of gene sets in schizophrenia. a, Heritability of genomic partitions and the six conditionally independent 
(‘significant’) gene sets (Table 2). The radius of each segment indicates the degree of enrichment, while the arc (angle of each slice) indicates the 
percentage of total SNP-based heritability explained. No relative enrichment (enrichment =  1) is shown by the dashed red line (and depletion equates to 
enrichment < 1, inside red line). b, Heritability of the significant CNS gene sets dissected by their overlap with LoF-intolerant genes. Whiskers represent 
heritability or enrichment standard errors. Asterisks indicate the significance of each heritability enrichment (*P ≤  0.05, **P ≤  0.01, ***P ≤  0.001).
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a locus of at least 95%) and functionally annotated these alleles 
using ANNOVAR40. This identified 6,105 credible SNPs across 144 
genome-wide significant loci, excluding the major histocompatibil-
ity complex (MHC) region (Methods and Supplementary Table 11). 
From these, we defined a highly credible set of SNPs (n =  25) as those 
that were more likely to explain the associations than all other SNPs 
combined (i.e., with a FINEMAP posterior probability greater than 
0.5). Of these, 14 mapped to genes on the basis of putative function-
ality (exonic SNPs that cause nonsynonymous or splice variations 
or promoter SNPs; n =  6) or mapped to regions identified as likely 
regulatory elements (n =  8) through chromosome conformation 
analysis performed in tissue from the developing brain using Hi-C41 
physical interactions (Methods and Supplementary Table 12). One 
of the implicated alleles was a nonsynonymous variant in the man-
ganese and zinc transporter gene SLC39A8. Nonsynonymous vari-
ants in this gene, which lead to  SLC39A8 deficiency,  have been 
associated with severe neurodevelopmental disorders putatively 
through  impaired manganese transport and  glycosylation42, high-
lighting a mechanism of therapeutic potential for schizophrenia.

We also applied Summary-data-based Mendelian Randomization 
(SMR) analysis43 to the data in concert with dorsolateral prefron-
tal cortex expression quantitative trait locus (eQTL) data from 
the CommonMind Consortium44, aiming to identify variants that 
might be causally linked through expression changes in specific 
genes (Methods and Supplementary Table  13). After applying a 
conservative threshold (PHEIDI >  0.05) that prioritized colocalized 
signals due to a single causal variant43, we identified 22 candidates 
at 19 loci with false discovery rate (FDR) P <  0.05.

In total, the combination of FINEMAP, Hi-C and SMR analyses 
assigned potentially causal genes at 33 genome-wide significant loci 
and implicated a single gene at 27 of these loci. However, the anal-
yses intersect for only a single gene, ZNF823, indicating the need 
for more comprehensive functional genomic annotations in CNS-
relevant tissues.

Discussion
In the largest genetic study of schizophrenia thus far, we explore 
the genomic architecture of and the evolutionary pressures on com-
mon variants associated with the disorder. Our study provides the 
first evidence linking common variation in LoF-intolerant genes to 
risk of developing schizophrenia and demonstrates that these genes 
account for a substantial proportion (30%) of the SNP-based heri-
tability for schizophrenia. Systems genomics analysis highlights six 
gene sets that are independently associated with schizophrenia and 
point to molecular, physiological and behavioral pathways involved 
in schizophrenia pathogenesis.

Given that mutation intolerance is due to high selection pres-
sure21,23,24, our finding that schizophrenia risk variants that persist 
at common allele frequencies are enriched in LoF-intolerant genes 
might appear counterintuitive. However, new evidence presented 
here suggests that this can be reconciled by BGS, which is a conse-
quence of purifying selection in regions of low recombination45,46.  
In such regions, recurrent selection against deleterious variants 
causes haplotypes to be removed from the gene pool, which reduces 
genetic diversity in a manner equivalent to a reduction in effective 
population size47. This in turn impairs the efficiency of the selec-
tion process, allowing alleles with small deleterious effects to rise 
in frequency by drift48. Such a consequence of purifying selection 
has been shown to be compatible with the genomic architecture 
of complex human traits49 and to influence phenotypes in model 
organisms50. We have explicitly modeled this effect (both theoreti-
cally and via simulations; Supplementary Note) and provide strong 
evidence for the feasibility of this effect as explanatory for the effect 
sizes seen for common alleles in schizophrenia.

We did not find enrichment for any measure of positive selection 
or Neanderthal introgression. A recent study explained a negative  

correlation between schizophrenia associations and metrics indica-
tive of a Neanderthal selective sweep as evidence for positive selec-
tion or polygenic adaptation in schizophrenia12. We do not find any 
significant correlation in our model, which addresses the contri-
bution of BGS, and hence our results are not consistent with large 
contributions of positive selection to the genetic architecture of 
schizophrenia (Table 1). Indeed, positive selection is not widespread 
in humans, as reported by other studies that explicitly considered 
or accounted for BGS28,51. Polygenic adaptation, the co-occurrence 
of many subtle allele frequency shifts at loci influencing complex 
traits52, remains an intriguing possibility but has not been impli-
cated in psychiatric phenotypes, including schizophrenia, in recent 
analyses53,54. In contrast, BGS has been proposed as a mechanism 
driving human–Neanderthal incompatibilities, as regions with 
stronger estimated BGS have lower estimated Neanderthal intro-
gression55. We therefore conclude that the bulk of the BGS signal we 
obtain is unlikely to be influenced by positive selection29, challeng-
ing theories of the selective advantage of schizophrenia risk alleles 
to explain the high population frequencies of these alleles.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0059-2.
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Methods
GWAS and reporting of independently associated regions. Details of sample 
collection and genotype quality control are given in the Supplementary Note. The 
CLOZUK schizophrenia GWAS was performed using logistic regression with 
imputation probabilities (‘dosages’) adjusted for 11 principal-component analysis 
(PCA) covariates. These covariates were chosen as those nominally significant 
(P <  0.05) in a logistic regression for association with the phenotype56. To avoid 
overburdening the GWAS power by adding too many covariates to the regression 
model57, only the first 20 principal components were considered and tested for 
inclusion, as higher numbers only become useful for the analysis of populations 
that bear strong signatures of complex admixture58. The final set of covariates 
included the first five principal components (as recommended for most GWAS 
approaches59) and principal components 6, 9, 11, 12, 13 and 19. Quantile–quantile 
and Manhattan plots are shown in Supplementary Figs. 7 and 8.

To identify independent signals among the regression results, signals were 
amalgamated into putative associated loci using the same two-step strategy 
and parameters as PGC (Supplementary Table 14). In this procedure, regular 
LD clumping is performed (r2 =  0.1, P <  1 ×  10–4; window size <  3 Mb) to obtain 
independent index SNPs. Afterward, loci are defined for each index SNP as the 
genomic region that contains all other imputed SNPs within the region with r2 ≥ 
0.6. To avoid inflating the number of signals in gene-dense regions or in those with 
complex LD, all loci within 250 kb of each other were annealed.

Meta-analysis with PGC. A total of 6,040 cases and 5,719 controls from CLOZUK 
were included in the recent PGC study5. We reanalyzed the PGC data after 
excluding all these cases and controls, obtaining a sample termed ‘INDEPENDENT 
PGC’ (29,415 cases and 40,101 controls). Adding the summary statistics from 
this independent sample to the CLOZUK GWAS results allowed for a combined 
analysis of 40,675 cases and 64,643 controls (without duplicates or related samples). 
This meta-analysis was performed using the fixed-effects procedure in METAL60 
with weights derived from standard errors. For consistency with the PGC analysis, 
additional filters (INFO >  0.6 and MAF >  0.01) were applied to the CLOZUK 
and INDEPENDENT PGC summary statistics, leaving 8 million markers in the 
final meta-analysis results. Quantile–quantile and Manhattan plots are shown in 
Supplementary Fig. 3 and Fig. 2. The same procedure as above was used to report 
independent loci from this analysis (Supplementary Tables 3 and 4). As raw PGC 
genotypes were not available for the LD clumping procedure, phase 3 of the 1000 
Genomes Project (1KGPp3) was used as a reference.

Replication of new GWAS loci. To validate the association signals from the 
CLOZUK +  PGC meta-analysis, we amalgamated data contributed by other 
schizophrenia genetics consortia (total of 5,762 cases and 154,224 controls; 
details in the Supplementary Note). We sought GWAS summary statistic data for 
the index SNPs from the 50 new genome-wide significant loci (Supplementary 
Table 4). These summary statistics were subjected to meta-analysis in METAL 
using the fixed-effects procedure to obtain replication and heterogeneity statistics 
(Supplementary Table 6).

Estimation and assessment of a polygenic signal. Association signals caused 
by the vast polygenicity underlying complex traits can be hard to distinguish 
from confounders related to sample relatedness and population stratification. To 
effectively disentangle this issue, we used the software LD Score v1.0 to analyze 
the summary statistics of our association analyses and estimate the contribution 
of confounding biases to our results by LDSR61. An LD reference was generated 
from 1KGPp3 after restricting this dataset to strictly unrelated individuals and 
retaining only markers with MAF > 0.01. To improve accuracy, the summary 
statistics used as input were refined by discarding all indels and restricting SNPs to 
those with INFO > 0.9 and MAF > 0.01, a total of 5.16 million SNPs. The resulting 
LD score intercept for the CLOZUK GWAS was 1.085 ±  0.010, which compared 
to a mean χ2 of 1.417 indicates a polygenic contribution of at least 80%. For the 
CLOZUK +  PGC meta-analysis, the LD score intercept was 1.075 ±  0.014 (mean 
χ2 =  1.960), which supports more than 90% of the signal being driven by polygenic 
architecture. Both of these figures are in line with those for other well-powered 
GWAS of complex human traits64, including schizophrenia5. This analysis was also 
used to calculate SNP-based heritability (h2

SNP) for our three datasets (CLOZUK, 
INDEPENDENT PGC and the CLOZUK +  PGC meta-analysis), which we 
transformed to a liability scale using a population prevalence of 1% (registry-
based lifetime prevalence62). For reference and compatibility with epidemiological 
studies of schizophrenia, prevalence estimates of 0.7% (lifetime morbid risk63) 
and 0.4% (point prevalence63, more akin to treatment-resistant schizophrenia 
prevalence (appropriate for CLOZUK)) were used for additional liability-scale h2

SNP 
calculations (Supplementary Table 15).

The LDSR framework allowed us to compare the genetic architecture of 
CLOZUK and INDEPENDENT PGC, by calculating the correlation of their 
summary statistics64. A genetic correlation coefficient of 0.954 ±  0.030 was 
obtained, with a P value of 6.63 ×  10–227. We also examined the independent SNPs 
that reached a genome-wide significant level in the INDEPENDENT PGC dataset, 
of which there were 76 after excluding the extended major histocompatibility 
complex (xMHC) region. In the CLOZUK sample, 76% (n =  57) of these genome-

wide significant SNPs were nominally significant (P <  0.05). Using binomial sign 
tests based on clumped subsets of SNPs65, we found that all but 1 (98.6%) of these 
76 genome-wide significant SNPs were associated with the same direction of effect 
in the CLOZUK sample, a result highly unlikely to reflect chance (P =  2.04 ×  10–21; 
Supplementary Table 1). Moreover, of the 1,160 SNPs with an association P value 
less than 1 ×  10–4 in the INDEPENDENT PGC sample, 82% showed enrichment 
in the CLOZUK cases (P =  3.44 ×  10–113), confirming that very large numbers of 
true associations will be discovered among these SNPs with increased sample sizes. 
Additionally, the new sample introduced in this study (CLOZUK2) was compared 
by the same methods with the PGC dataset and showed results consistent with 
the full CLOZUK analysis, providing molecular validation of this sample as a 
schizophrenia sample (Supplementary Table 1).

We went on to conduct polygenic risk score analysis. Polygenic scores for 
CLOZUK were generated from INDEPENDENT PGC as a training set, using the 
same parameters for risk profile score (RPS) analysis in PGC5, arriving at a high-
confidence set of SNPs for RPS estimation by removing the xMHC region and 
indels, and applying INFO >  0.9 and MAF >  0.1 cutoffs. Scores were generated 
from the autosomal imputation dosage data, using a range of P-value thresholds 
for SNP inclusion66 (5 ×  10–8, 1 ×  10–5, 0.001, 0.05 and 0.5). In this way, we can assess 
the presence of a progressively increasing signal-to-noise ratio in relation to the 
number of markers included67. As in the PGC study, we found the best P-value 
threshold for discrimination to be 0.05 and report highly significant polygenic 
overlap between the INDEPENDENT PGC and CLOZUK samples (P < 1 ×  10–300, 
Nagelkerke r2 =  0.12; Supplementary Table 2), confirming the validity of combining 
the datasets. For comparison with other studies, we also report polygenic variance 
on the liability scale68, which amounted to 5.7% for CLOZUK at the 0.05 P-value 
threshold (Supplementary Table 2). As in the PGC study, the limited r2 and area 
under the receiver operating characteristic curve (AUROC) obtained by this 
analysis restrict the current clinical utility of these scores in schizophrenia.

Gene set analysis. To assess the enrichment of sets of functionally related genes,  
we used MAGMA v1.0320 on the CLOZUK +  PGC meta-analysis summary 
statistics. From these, we excluded the xMHC region for its complex LD and  
the X chromosome given its smaller sample size. In the resulting data, gene-wide  
P values were calculated by combining the P values of all SNPs inside genes after 
accounting for LD and outliers. This was performed allowing for a window of 35 kb 
upstream and 10 kb downstream of each gene to capture the signal of nearby SNPs 
that could fall in regulatory regions69,70. Next, we calculated competitive gene set 
P values on the gene-wide P values after accounting for gene size, gene set density 
and LD between genes. For multiple-testing correction in each gene set collection, 
an FWER71 was computed using 100,000 resamplings.

We performed sequential analyses using the following approaches:
1.   LoF-intolerant genes. We tested the enrichment of the LoF-intolerant 

genes described by ExAC21. This set comprised all genes defined in the 
ExAC database as having a probability of LoF intolerance (pLI) statistic 
higher than 90%. Although these genes do not form part of cohesive 
biological processes or phenotypes, they have previously been found to 
be highly expressed across tissues and developmental stages21. Also, they 
are enriched for hub proteins72, which makes them interesting candidates 
for involvement in the ‘evolutionary canalization’ processes that have been 
proposed to lead to pleiotropic, complex disorders73.

2.   CNS-related genes. These gene sets were compiled in our recent study30 
and include 134 gene sets related to different aspects of CNS function 
and development. These include, among others, gene sets that have 
been implicated in schizophrenia by at least two independent large-scale 
sequencing studies8,31: targets of FMRP32, constituents of the N-methyl-
d-aspartate receptor (NMDAR74) and activity-regulated cytoskeleton-
associated protein complexes (ARCs75,76), as well as CNS and behavioral 
gene sets from MGI database version 635.

3.   Genes identified by data-driven analysis. The final systems genomic 
analysis was designed as an ‘agnostic’ approach, with the aim of integrating 
a large number of gene sets from different public sources, not necessarily 
conceptually related to psychiatric disorders, as this has been successful 
elsewhere70,77. We conducted this analysis to test whether additional gene 
sets were associated in addition to those from the 134 CNS-related gene 
sets. For this, first we merged together the LoF-intolerant gene set and 
the 134 sets in the CNS-related collection. Second, we selected additional 
gene set sources to encompass a comprehensive collection of biochemical 
pathways and gene regulatory interaction networks: 2,693 gene sets with 
direct experimental evidence and a size of 10–200 genes70 were extracted 
from Gene Ontology (GO78) database release 01/02/2016; 1,787 gene sets 
were extracted from the fourth ontology level of MGI database version 635; 
1,585 gene sets were extracted from REACTOME79 version 55; 290 gene 
sets were extracted from KEGG80 release 04/2015; and 187 gene sets were 
extracted from OMIM81 release 01/02/2016.  
The total number of gene sets included was 6,677.

Detailed results of the analyses of the CNS-related and data-driven collection 
are given in Supplementary Tables 9 and 10. Reported numbers of genes in each 
gene set are those with available data in the meta-analysis. This may differ from the 
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original gene set description, as some genic regions had null or poor SNP coverage. 
Following the data-driven gene set analysis as described, we also conducted 
analysis adjusting for our CNS-related gene sets to determine whether the data-
driven analysis was contributing additional findings.

Partitioned heritability analysis of gene sets. It is known that the power of a 
gene set analysis is closely related to the total heritability of the phenotype and the 
specific heritability attributable to the tested gene set82. To assess the heritability 
explained by the genes carried forward after the main gene set analysis, LD Score 
was again used to compute a partitioned heritability estimate of CLOZUK +  PGC 
using the gene sets as SNP annotations. As in the MAGMA analysis, the xMHC 
region was excluded from the summary statistics. These were also trimmed to 
contain no indels and only markers with INFO > 0.9 and MAF > 0.01, for a total 
of 4.64 million SNPs. As a recognized caveat of this procedure is that model 
misspecification can inflate the partitioned heritability estimates26, all gene sets 
were annotated twice: once using their exact genomic coordinates (extracted from 
the NCBI RefSeq database83) and another time with putative regulatory regions 
taken into account using the same upstream/downstream windows as in the 
MAGMA analyses. Additionally, all SNPs not directly covered by our gene sets of 
interest were explicitly included into other annotations (‘non-genic’, ‘genic but not 
LoF intolerant’) on the basis of their genomic location. Finally, the ‘baseline’ set 
of 53 annotations from Finucane et al.26, which recapitulates important molecular 
properties such as presence of enhancers or phylogenetic conservation, was also 
incorporated in the model. All of these annotations were then tested jointly for 
heritability enrichment. We note that using exact genic coordinates or adding 
regulatory regions made little difference to the estimated enrichment of our gene 
sets; thus, throughout the manuscript, we report the latter for consistency with the 
gene set analyses (Fig. 2 and Supplementary Table 8).

Natural selection analyses. We aimed to explore the hypothesis that some 
form of natural selection is linked to the maintenance of common genetic risk 
in schizophrenia12,84,85. To do this, for all SNPs included in the CLOZUK +  PGC 
meta-analysis summary statistics, we obtained four different genome-wide metrics 
of positive selection (iHS86, XP-EEH87, CMS88 and CLR28), one of background 
selection (B statistic29, postprocessed by Huber et al.28) and one of Neanderthal 
introgression (average posterior probability LA89). The use of different statistics is 
motivated by the fact that each of them is tailored to detect a particular selective 
process that acted on a particular timeframe (see Vitti et al.51 for a review). For 
example, iHS and CMS are based on the inference of abnormally long haplotypes 
and thus are better powered to detect recent selective sweeps that occurred 
during the last ~30,000 years88, such as those linked to lactose tolerance or 
pathogen response90. On the other hand, CLR incorporates information about 
the spatial pattern of genomic variability (the site frequency spectrum91) and 
corrects explicitly for evidence of BGS, thus being able to detect signals from 
60,000 to 240,000 years ago28. The B statistic uses phylogenetic information 
from other primates (chimpanzee, gorilla, orangutan and rhesus macaque) to 
infer the reduction in allelic diversity that exists in humans as a consequence of 
purifying selection on linked sites over evolutionary time frames92. As the effects 
of background selection on large genomic regions can mimic those of positive 
selection46, it is possible that the B statistic might amalgamate both, although the 
rather large diversity reduction that it infers for the human genome as a whole 
suggests that any bias due to positive selection is likely to be minor93. Finally, XP-
EEH is a haplotype-based statistic that compares two population samples, and its 
power is thus increased for alleles that have suffered differential selective pressures 
since those populations diverged90. Although methodologically different, LA has 
a similar rationale by comparing human and Neanderthal genomes89, to infer the 
probability of each human haplotype having been the result of an admixture event 
with Neanderthals.

For this work, CLR, CMS, the B statistic and LA were retrieved directly 
from their published references and lifted over to GRCh37 genomic coordinates 
if required using the Ensembl LiftOver tool94,95. As the available genome-wide 
measures of iHS and XP-EEH were based on HapMap 3 data96, both statistics were 
recalculated with the HAPBIN97 software directly on the EUR superpopulation of 
the 1KGPp3 dataset, with the AFR superpopulation used as the second population 
for XP-EEH. Taking advantage of the fine-scale genomic resolution of these 
statistics (between 1–10 kb), all SNP positions present in CLOZUK +  PGC were 
assigned a value for each measure, either directly (if the position existed in the 
lifted-over data) or by linear interpolation. To simplify the interpretation of our 
results, all measures were transformed before further analyses to a common scale, 
in which larger values indicate stronger effect of selection or increased probability 
of introgression. For example, the BGS B statistic, for which values of zero indicate 
the strongest effect (see Charlesworth45 for its theoretical derivation), was included 
in all our analyses as 1 – B, which we termed ‘BGS intensity’.

Heritability enrichment of these statistics was tested by the LD Score 
partitioned heritability procedure. We derived binary annotations from the natural 
selection metrics by dichotomizing at extreme cutoffs defined by the top 2%, 1% 
and 0.5% of the values of each metric in the full set of SNPs. This approach is 
widely used in evolutionary genomics, owing to the difficulty of setting specific 
thresholds to define regions under selection28,51. Consistent with the previously 

described LDSR partitioned heritability protocol, enrichment was estimated with 
all binary annotations included in a model with multiple categories that represent 
important genomic features. This model included the 3 main categories of our 
set-based analysis (‘non-genic’, ‘genic’ and ‘LoF intolerant’), 2 categories based 
on genomic regions with outlying LD patterns (recombination hotspots and 
coldspots)98 and the 53 ‘baseline’ categories of Finucane et al.26.

We then derived the τc coefficient26 (and associated P value) of the significantly 
enriched natural selection annotations (i.e., the background selection metric), 
This represents the enrichment of an annotation over and above the enrichment of 
all other annotations, which is a conservative approach, as most of the categories 
in our model are partially overlapping. To increase our power and for additional 
validation, we noted that LD Score allows testing of the full range of quantitative 
metrics, in an extension of the partitioned heritability framework. Results of this 
analysis are reported in Supplementary Table 8.

Analysis of other phenotypes. To explore the specificity of our natural selection 
results, we retrieved data from other well-powered GWAS of complex traits. We 
selected three phenotypes for which (i) the genome-wide summary statistic data 
were publicly available, (ii) the sample size was larger than 50,000 individuals, 
(iii) the phenotype has minimal impact on fecundity99–101 (and hence the traits 
behave as neutral or approximately neutral to selection) and (iv) summary statistics 
were considered adequate for LD Score analysis based on baseline z scores > 426,102 
(Supplementary Table 8). The phenotypes chosen were Alzheimer’s disease103,neu
roticism104 and type 2 diabetes105. For the LD Score analyses, as the public release 
of these statistics did not include imputation INFO scores at the time of this study, 
we restricted the set of SNPs to those included in the HapMap 3 project96, as 
recommended61. To facilitate comparison with the schizophrenia results, we also 
restricted our schizophrenia summary statistic data to these SNPs and repeated the 
analyses above using BGS as a binary (top 2%) and quantitative trait.

We also employed MAGMA on the summary statistics of these additional 
phenotypes to examine whether the LoF-intolerant gene set enrichment displayed 
specificity to schizophrenia, after excluding the xMHC and APOE regions.

Fine-mapping, Hi-C and SMR. Accurately locating causal genes (‘fine-mapping’) 
for complex disorders is a challenge to GWAS and usually requires multiple 
approaches105. To highlight credibly causal variants, we used FINEMAP v1.139 
at each of the 145 identified loci (Supplementary Table 3), selecting variants 
with a cumulative posterior probability of 95%. These were then annotated with 
ANNOVAR40 release 2016Feb1 (Supplementary Table 11). We mapped the SNPs 
with a FINEMAP posterior probability higher than 0.5 to the developing brain 
Hi-C data generated by Won et al.41, following the methodology described therein, 
which allowed us to implicate genes by chromatin interactions instead of solely 
chromosomal position (Supplementary Table 12). We compiled results from the 
eQTL analysis of the CommonMind Consortium post-mortem brain tissues44. This 
included 15,782 genes, which were curated to remove any genes with FPKM =  0 
across > 10% of individuals. All the SNPs from the meta-analysis data were mapped 
to the eQTL data using rs numbers, position and allele matching. Both datasets 
were analyzed together using SMR43, which resulted in 4,276 genes showing eQTLs 
with overlapping SNPs and genome-wide significant P values (Supplementary 
Table 13).

URLs. CLOZUK +  PGC2 meta-analysis summary statistics, http://walters.psycm.
cf.ac.uk/; CRESTAR Consortium, http://www.crestar-project.eu/; Wellcome Trust 
Case Control Consortium, http://www.wtccc.org.uk/; People of the British Isles 
project, http://www.peopleofthebritishisles.org/; Mouse Genome Informatics 
(MGI), http://www.informatics.jax.org/; Psychiatric Genomics Consortium, 
http://www.med.unc.edu/pgc/; 1000 Genomes IBD segment sharing within and 
between populations, http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
supporting/ibd_by_pair/.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The gene content of the CNS-related gene sets that survived 
conditional analysis (significant) is given in MAGMA format in the Supplementary 
Data. Summary statistics from the CLOZUK +  PGC2 GWAS are available for 
download (see URLs).
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