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Abstract

Given the importance of regional response in physical and economic terms

to water resource plannerst large scale regional models are a widely used

component of water resource management. Given the absence of a sufficiently

rich data base to estimate cost functions by econometric approachest linear

constrained optimization models have been extensively used to derive normative

estimates of former response to water policy.

A long standing problem in linear models is the inevitable trade-off

between the precision of calibration of the model and the constrained nature

of the solution. Often model results significantly depart from empirical

reality with deleterious effects on policy. This research shows that a

nonlinear cost function formulation overcomes the constraint problem when the

function parameters are estimated from actual farmer responses.

The Positive Quadratic Programming (POP) theory developed was applied to

the California Agricultural and Resources Model (CARM) and used to estimate

demand functions for irrigation water by region.
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Justification and Objectives

Allocation of water resources is increasingly performed indirectly

through economic incentives rather than by direct physical mandates. The

desirability and efficiency of economic policy instruments depends on the

relative responsiveness of water uses to changes in economic incentives. This

responsiveness is summarized in the form and estimation of the "derived

demand" function for water. Since agriculture is the major water user in the

Western States, the ability to accurately estimate regional agricultural

demand functions for water limits the current capabilities of economic

incentives as a regional water policy instrument.

The ability to estimate water demand functions is currently limited both

by data and methodology.

The data problem stems from both its absence in a sufficiently

disaggregated form and the lack of past observations at water prices that

have future policy relevance. Thus traditional derived demand estimation by

econometric methods must be presently discounted.

An alternative methodology based on available farm management data

sources is to construct normative programming models of regional farm

production which yield the demands for irrigation water. However, the

linearity of these models leads to the problem of excessive constraints which

consequently limits the policy value of the resulting derived demands.

The objective of this research project is simple. To develop and

demonstrate an alternative to linear programming models that

(a) closely calibrates with actual farmer actions and thus is believable

(b) Is not tightly constrained and thus is able to respond to future policy

scenarios.
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The methodology is demonstrated by an application to an already existing

regional programming model of California agricultural production.

Methodology Review and Theory

Since the introduction of linear programming for economic analysis, it

has been recognized that the linear constraint set implies Leontief linear

production technology. In this section, a common situation is specified in

which the cost functions which satisfy the first order conditions for profit

maximization differ from those resulting from linear production functions.

The positive quadratic programming (POP) specification is based on the

discrepancy between the linear cost function and the cost function implied by

the farmer's actions. In addition, the POP specification is shown to be

consistent with the first and second order conditions for production in the

"rational" region of a production function.

Specifying a multi-output linear programming problem as

(l) Max

Subject to Ax < b

where x is an n x 1 vector of outputs, r an n x 1 vector of net returns, b an

m x 1 vector of inputs, and A an m x n matrix of linear production function
coefficients.

The optimal solution of k outputs x will be associated with the optimal

basis matrix B and the vector of constraining resources bas:

(2) Bx == b

B = kxk x :: kx l and b ""kx l , k<m
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It follows directly from the linear independence of B that the vector

dimension of optimal LP outputs 1s equal to the number of binding constraints

at the optimum which has an upper bound of m.

In microeconomic studies of farmst the number of empirically justifiable

constraints are comparatively few. Land area and soil type is clearly a

constraint. as is water in Some irrigated regions. Crop contracts and quotas
t

building capacities. breeding stock. finance. managerial skills, and perennial

crops are others. However, it is rare that Some other traditional constraints

such as labor t machinery, or crop rotations are truly restricting to short-run

production decisions. These inputs are limiting, but only in the sense that

once exceeded, the cost per unit output increases due to overtime, increased

prouability of disease, or machinery failure.

In contrast, the sectoral or regional model has greater constraint

aggregation and fewer empirically justifiable constraints. However, the

dominant arguments of less suitable soil types and less experienced management

used as crop acreage is expanded on a regional basis ~,provide an intuitive

basis for increasing regional cost functions. The empirical situation in

which POP is an appropriate technique is when the number of crop outputs that

the farmers actually produce exceeds the number of truly inflexible short-run

constraints on factor inputs. We think that the majority of representative

farm and regional programming models fall into this category. If the farmers

are producing more crops than the number of binding con$traints~ they must be

producing the more profitable crops at a level where the marginal expected

profit is zero and the profit function for that crop conditional on the

cc~str'l.intshas an interior solution. To reiterate, if farmers are

ohs~rved to produce i crops but there are only k (k < i) real constraints



5

binding at the optimum, then farmers must expect t-k unconstrained interior

solutions for the most profitable crops. This in turn implies that the

expected profit function must be concave in the region of the optimum output
of 1.-k crops.

This conclusion is based on the assumption of optimizing behavior,

inherent in all programming models, and Muth's [1961} concept of rational

expectations in which "expectations, since they are informed predictions

of future events, are essentially the same as the predictions of the relevant

economic theory."

Since the model is at the microeconomic level, theory tells us that the

demand function is reasonably assumed perfectly elastic. There are some

special cases where regional and seasonal specialization could cause some

price effect, but. given the collective nature of the effect, a rational

individual will not act on it. The revenue is linear in output and thus the

concavity of the expected profit function in output must be contained in the

expected cost function for those crops with interior solutions, hereafter

termed nonmarginal crops. Thus the cost function for a particular nonmarginal

crop can be expressed as a function of the output level.

(3) i == 1 ••• (1.-k)

Using a Taylor's series expansion around the output level that minimizes

expected average variable cost for the region (xi)' the total cost of

producing Xi units of crop i can be decomposed into four parts (Figure 1).

The first term on the right hand side is the expected fixed cost of producing

crop i at the level Xi. The second linear term is the cost of unit increases
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Figure 1
Taylor Series Expansion of the Cost Function

Total Cost
of x, h{x,)

--------------------------------
---------------

a

quantity of XI

a '" h(Xi) - fixed cost
b " h' (Xi) (Xi· Xi) - Linear Variable Cost Term
c " h'(i

l
) (Xi· xl)2 - Quadratic Variable Cost Term

d " r3 - remainder term of higher orders
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in output i and is the linear variable cost of producing output i. In the

traditional LP production models; the first fixed cost term mayor may not be

included in the objective function since it does not affect the optimal

solution. The linear variable cost coefficients YXc(xi) are obtained from

farm management surveys; experimental data, and farm interviews. However, the

third quadratic term cannot be zero for the (t-k) nonmarginal crops which have

interior solutions. The two most persuasive theoretical reasons for this

positive definite quadratic term are, first, the decreasing returns observed

in the rational region of production of conventional production functions and,

second; the costs of risk caused by changes in the output mix. The

microeconomic implications of these alternative theories will be explored

later, but for a moment the pragmatic analyst will recognize that a large

amount of usually unobtainable data would be needed to estimate the individual

components of the quadratic cost term.

Taking a positive approach to the model. the theoretical basis of the

cost is desirable but not essential to short-run analysis of changing

comparative advantage resulting from specified policy shifts. The quadratic

cost term implicit in the observed production pattern of farmers is

accordingly termed the implicit cost component.

Invariably the second order expansion will not capture the true nature of

the cost function, and the remainder term r3 contains the omitted higher order

terms. However; the implicit cost considerably improves the model in that it

enables the nonmarginal crops to be at interior solutions and the full range

of crops actually produced by farmers to be represented by the model without

the introduction of specious constraints that distort policy analysis. The

quadratic implicit cost specification has the advantage that it can be easily
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estimated from dual values in the standard linear program and solved by

readily available quadratic programs. These two steps are shown in the

following section.

While the second order expansion is an approximation, the production

function or input requirement set implied by the linear quadratic

specification is consistent with the class of production functions that

exhibit decreasing marginal productivity over Some range, whereas the linear

programming specification is not. Thus the POP specification is not an ad hoc

addition to the traditional programming specification. but a cost

specification that is consistent with the combined effects of risk aversion

and decreasing returns to scale in the production set.

The most common specification that yields a cost of risk that is

quadratic in output levels is the mean variance approach based on Freund

[1956J. There have been many modifications and applications of the mean

variance concept which generally improves the diversification and reality of

model output, but has not led to claims of complete validation or precise
predictions.

Wicks [1978] shows that linear specifications of alternative risk

formulations do not yield good predictive results. Weins [1976J used the Kuhn

Tucker conditions and the resulting duals to estimate an aggregate risk

aversion coefficient, but his results were hampered by the need for a single

risk aversion coefficient implicit in approaches that specify risk as the only

nonlinear effect on the regional or individual revenue function.

From the duality properties of cost and production functions the

properties of the production function implied by the quadratic cost function

can be deduced. Using Varian's [1978] proposition of an elasticity of scale

measure



9

( 5) e(b) ==
df(Sb)

ds
S

feb)

where S is a scale parameter and feb) is the implied production function. If

b* is the cost minimizing set of inputs for an output level xi and input
prices wi then Varian shows that

(6 ) e(b*) AC(Xi)
== ':'"':M"="C 7"( x-i""'")

*If e(b ) is less than one. the production technology exhibits decreasing

*returns to scale. and a unity value for e(b ) indicates constant returns to

scale. Thus, the locally increasing average cost function used in the POP

specification implies production in the "rational" range of the production

fu~ctlon. In this context the typical farm or regional unit is defined by its

truly fixed inputs (e.g•• land, etc.), and the variable inputs are

differentiated by cropping activity. Consequently, fertilizer applied to

wheat is considered independent of fertilizer applied to cotton, and expansion

of the cotton acreage results in the application of increased variable inputs

to the fixed farm or regional resources.

There are many reasons why the decreasing returns to scale for cropping

activities cannot be expected to be equal across regions. Soils and expected

climatic conditions will vary, as will the structure and scale of the

representative farm. The heterogeneity of farm types could change the

expected returns to scale as could the technology embodied in customary

regional farming practices. Ultimately. regional variability is an empirical

question which is answered for us by the degree of regional crop

specialization observed in practice.
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It seems that in recognizing the existence of increasing expected average

activity cost functions and the change of these functions across cropping

activities and regions, the POP specification is a closer approximation to

neoclassical micro theory than the conventional linear specification on which
it is based.

Calibration and Solution of the P.O.P. Problem

In this section we prove that the dual values of a linearly constrained

problem (LP or OP) provide the coefficient values of a quadratic term, which,

when added to the LP objective function, results in an unconstrained problem

that has an optimal solution identical to the constrained LP problem. This

result is then used to illustrate how an LP problem which requires additional

CI..Hl~LfdLH:S to realize the empirically observed output levels can be

reformulated as a quadratic program that only contains the true fixed resource

constraints, but exactly reproduces the vector of constrained and

unconstrained output levels observed in the calibration period.

To reiterate, the POP approach uses the information contained in the

empirical observations of crop acreages actually grown, to derive a quadratic

cost term. The cost function now satisfies the unconstrained profit

~a~imizing conditions for nonmarginal crops at the output levels that farmers

chose on the average in the district. That is, the equilibrium marginal cost

that results from the POP approach is the one that rational profit maximizing

farmers would have expected in that year and region in order to have decided

on the acreages that they did.

The pnp approach is related to the penalty function approach to

programming solutions with nonlinear constraints (S.U.M.T) (Fiacco and

t1cCorndck [1968}); however, the economic problem has two important
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differences. Firstt the penalty function approach uses nonlinear costs in the

objective function to approximate the effect of nonlinear constraints.

Whereas in POP the artificial calibration constraints are used to impute the

realt but unknown costs.

Second. sequential unconstrained minimization techniques (S.U.M.T.) use

arbitrarily high penalty costs to achieve the constraints; while the POP

implicit cost is based on marginal conditions and only equals the constraint

for the calibration year or years. In the microeconomic problem, we have

shown that the additional calibration constraints needed to produce reasonable

results for the more profitable nonmarginal crops are approximations to

compensate for the absence of a specific nonlinear cost term in the

objective function. The calibration constraints are approximating the

marginal conditions and will undoubtedly change under different policy

scenarios, thus representing them by constraints greatly reduces the policy

value of results from these models. If the policy scenario dictates an

increase in the comparative profitability of a given nonmarginal crop in a

region, the the calibration constraints will restrict expansion of the crop

acreage and consequent policy prescriptions will be determined by arbitrary

constraint relaxation by the analyst. A formal extrapolative method for

constraint relaxation is found in "Recursive Programming," Day [1962J. The

fundamental hypothesis of the Day approach is that the rate of response to

comparative advantage is determined by hisLorical extrapolation rather than

the degree of change in comparative advantage. In times of rapid change for

the agricultural sector, this would seem to be a difficult assumption to

subs tantiate.

Empiricial validation of programming models requies that the analyst has

observations on the regional output levels for one or more years. The central
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thrust of this paper is that this source of empirical data is most usefully

used not to constrain the final model, but to estimate the missing quadratic

term in the cost function for each nonmarginal crop activity in each region

in a way that is consistent with the linear data in the model and the truly

binding resource and management constraints. Fortunately, this can be

achieved by a straightforward two step procedure.

The following theorem proves that if linear transformations of the

optimal dual values associated with the binding calibration constraints are

used as the coefficients in a quadratic cost term, the resulting optimal

solution to the quadratic program without any calibration constraints will

be identical to the fully constrained linear program. That is, the

transformed dual variables are the optimal estimates of the quadratic cost

coefficients that achieve the observed interior solutions. The term estimate

is used generally, since most programs are calibrated against a single year's

data which results in a deterministic onto mapping from the set of empirical

acreages to the set dual values.

Given a time series of base runs and resulting calibration duals the

optimal expected implicit cost can be estimated by two alternative methods.

For small dimension base run models, the mean implicit cost can be estimated

endogenously by a simultaneous self dual specification. Where the latter

approach is precluded by model dimensions or the length of the time series, a

time varying stochastic parameter approach (Duncan and Horn [1972]) can be

employed to estimate the systematic change in the expected implicit costs.

This analysis will be addressed in a subsequent paper.
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The P.O.P. Theorem

We define two problems PI and P2 whose eonstraint structure is shown for

two nonmarginal aetivities in Figures 2 and 3, respeetively. The revenue

component of the objeetive function f(x) can be thought of as linear or

nonlinear. Problem PI is the usual specification with a set of empirically

justified resouree eonstraints b and an equality calibration constraint for

each regional crop activity observed. The right hand side of the calibration

set is the actual acreages x plus a small but critical perturbation factor s,

without which the Fritz John constraint qualification (Aoki [1971]) is

violated (unless there are no binding resource constraints).

Problem P2 has the same (nxl) vector of possible activities x. the same

revenue function f(x) and the true resource constraints Ax ~ b, but the

offending calibration constraints have been removed and a concave but unknown

function of calibration constraint set has been added to the objective

function.

Problem PI. Max f(x)

(7) Subject to Ax < b

~
Ix = x + s x > 0

where x = nxl b = mxl. Rewriting in Lagrangian form and representing the

two sets of binding constraints by the vector functions gl(x) and g2(x). we

have:

Define an arbitrary concave vector function of the calibration constraint set
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Figure 2 L.P. Problem P1

Calibration
Constraints

••.•.•••••-, / True Resource Conslraint,

x,

Figure 3 pap Problem P2

gradient 0 0

...- f(x) ·1I2x'Ex"r"----

x, x,
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Problem PZ. Max f(x) + h(g (x»
Z

(9) Subject to Ax < b x > a

Proposition

* * *If the optimal solution to PI is characterized by x AI, AZ , the

*problem PZ has an optimal solution Xo equal to x if and only if

(10) V h(g (XO» = -A *
g 2 2

Necessity

Since f(x) is concave and continuous

D2fiuing the Jacobian matrix of the set of constraint vectors gl(x) with

The first order conditions for PI require that:

* * II(lZ) Vxf(x*) = Jx*(G1)T Al + Jx*(GZ)T AZ

The first order conditions for PZ are:

*(13) Vxf(xO) = -Jxo(GZ)T Vgh(g2(xO» + Jxo(GI)T Al

Equating (13) and (12) implies that:

*(14) Jxo(GZ)T Vgh(gZ(xO» = - Jx*(GZ)T A2

*liThe notation Vxf(x ) denotes the gradient function of f(x) with respect- *to the vector x at the optimal values x , and T superscript denotes the
transpose.
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Since the calibration constraint function gZ(x) is linear, the Jacobian is

constant and satisfaction of the constraint qualification implies that
Jx(GZ)-1 exists, therefore

*(15) 9gh(gZ(xO» = -A2 if XO = x*

Sufficiency

Substituting (11) into (14) and equating (13) to (14), the two revenue

function gradients are equal at their respective optimal solutions.

Si[~c~fex) is continuous and concave, equality of the gradients implies
equality of their arguments.

(17) *if Vgh(g2(xO» = -A2

Implementation of the P.O.P. Approach

Empirical implementation of positive programming is achieved in two

stages. The first stage starts with the data and specification of a

conventional LP (or OP) problem. The linear cost part of the Taylor series

expansion (4) V c(x) is incorporated as a vector of costs in the revenuex
function f(x). The actual regional crop acreages are increased by a small

perturbation ~ say (.005) x and are formulated as equality constraints. The

constrained LP problem is now run to obtain the dual values on the calibration

constraints for the nonmarginal crops. The ~ perturbation of the calibration

. --'r~int ri~ht hand side ensures that relevant resource constraints will be

binding on th~ marginal crops in the basis. The absence of a quadratic cost
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coefficient for the marginal crops is not a problem as they are constrained by

the active resource constraints.

Given the vector of dual values from PI for the nonmarginal crops they

are multiplied by the negative reciprocal of the observed acreage ~i and used

as the diagonal coefficients of the quadratic cost function in problem P2.

Problem P2 is then solved for the optimal base period solution. The principle

steps are:

~ Given a standard LP or OP and the vector of actual acreage grown x.

Perturb x by ~ and add the equality calibration constraints.

~ Run problem Pl. If x is Zxl (Z<n) problem PI will result in k,(k<m)

*binding resource constraints and Z-k values of A2i corresponding to the

binding calibration constraints.
£ From the Taylor series expansion (4) we know that the function h[g(xO)] is

quadratic in (x-x). Therefore, h[g(xO)J has the form I/2(~-x)TE(~-x) where

E is a £x2 positive semidefinite matrix. By the POP theorem

Given the minimal data set x, cross cost effects are restricted to

zero, and thus for the single period calibration case considered here E

is a diagonal matrix with nonzero elements eii where:2

corresponding to the nonmarginal cropping activities.

2With a larger time series on x the full matrix E with cross effects can
be estimated.
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i Using the values ell' the problem P2 is specified as

(20) Max f(x) - 1/2x'Ex

Subject to Ax < b x > 0

The problem PZ calibrates exactly with the base year vector x without spurious

constraints and is available for policy analysis in the knowledge that the

model response will be determined by economic comparative advantage and

resource constraints that have a clearly demonstrated empirical basis.

Estimation of Water Demands from the C.A.R.M. Model

Californian farmers are assumed to have the best knowledge of local

production effects. They are certainly aware of the variations in climatic

conditions which affect productivity and thus evaluate the expected value of

their profit function with a weighted average estimator of yield per acre.

Similarly, farmers base their price expectations on the past series of prices.

As stated in a more general way by Nerlove [42] p. 129.:

"[it is assumed] that economic agents base their forecast on past
values of the variable and that they optimize their forecast
given knowledge of some specification of the mechanism generating
the mechanism of the time series"

Based on these premises, the CARM yield coefficients n are set equal to their

6-year average. (A further study would be required to define the optimal

order of the yield moving average.) The regional equilibrium condition can
accordingly be stated as:

(21) Max: ~(~ ~, R '~)
x t-l
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subject to all constraints---
where:

n vector m: 1 of expected yield

z vector m: 1 of crop acreage-

E.t-1
vector n: 1 of lagged price

b vector m: 1 of input resource.

Perennial acreage is fixed over several years. Thus, in a single period

equilibrium, perennial acreage is not specified as an optimizing variable.

For this reason, CARM regional perennial levels are kept constrained to their

regional base year acreage in the Positive Quadratic Programming runs.

Besides, constraining perennial crops reduces the dimensionality of the

quadratic program.

The first step for CARM model calibration consists in computing the

gradient of the approximated objective function at the points defined by

empirically measured acreage. The constrained base run for calibration

contains 66 nonlinear variables. The constraint matrix has dimensions of

1109:1145 with 9,028 nonzero elements. As it is desired to construct a

continuous rather than stepped cost function, only one soil type is specified.

The computer code used for the computation is MINOS, a large scale in-core

nonlinear optimization model developed at the Stanford Optimization Laboratory

by Murtagh and Saunders [41J. It took 1175 iterations to solve the problem.

The computed values of the constraints gradients (the duals on

calibration constraints) provide a stringent test of the model consistency.

Negative (downward) gradients of the concave objective function are

contradictory with the profit-maximization and regional specialization

assumptions.
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In CARM, correction of minor misspecifications of the linear costs

yielded positive gradient values of the objective function at the·calibration

points. The implicit regional cost functions are computed neglecting the

second-order cross-derivative coefficients of the Hessian and are introduced

into the model objective function. After calibration, the model has a total

of 327 nonlinear variables.

Regional derived demands for irrigation water depend simultaneously on a

great number of variables, including demands for agricultural products,

supplies of ether input factors, substitution among products or input factors

and relative economic advantage among regions. Estimation of the regional

derived demands for irrigation therefore necessitates a full information

approach and the system has to be modeled as a multi-input and multi-output

sectorial equilibrium. Given the size of the problem, its complexity and the

limited data base available, only the programming approach appears to be

feasible at a reasonable cost. Linear programs do not model the partial

equilibrium conditions while existing quadratic models cannot disaggregate

results at the regional level.

To determine the regional derived demand functions for surface water in

California, parametric programming is applied to the POP model solution in

the CARM regions corresponding to the Central Valley in California, where

most of the agricultural production takes place (Figure 4). By modifying the

regional cost of surface water in the regions, the quantity of water used by

competitive farmers and the equilibrium regional acreage of crops are computed

for the base year 1978. The first scenario is one in which surface water

costs increase simultaneously in all parts of the state due to an increase in

energy costs. As a first approximation, the impact of an energy price
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WATER DEMANDS
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increase is assumed to be proportional to the current regional cost. The

regional costs of surface water are accordingly increased by 50 percent,

iOO percent, 150 percent, and 200 percent. Ground water costs are kept

constant but quantities pumped are allowed to increase by 15 percent above

1978 levels to account for substitution between surface and ground water. In

Table 1, the corresponding costs are displayed for the four parametric runs.

The corresponding short-run POP derived demand for irrigation water in

the CARM regions of the Central Valley are displayed in Figures 5 to 8. The

response of the different regions are quite different, ranging from completely

inelastic response (region 8) to more elastic responses (regions 5 and 11).

This disparity stresses the importance of a regional analysis. The

cor~esronding short-run elasticities are computed for three cost ranges and

are given in Table 2.

Existing empirical estimates of water demand elasticities are based on

the parameterization of nonequilibrium models. By contrast, the POP program

is a sectorial equilibrium approach in which cross-sectional and interregional

relevant information is used to estimate the demands for surface water.

Therefore, comparison of existing empirical ela~ticities estimates with the

regional FOP elasticies is difficult, since they are not established on the

same basis. For completeness and illustration, the POP regional elasticities

are nevertheless compared with two other sets of elasticities computed

recently in the San Joaquin Valley by Shumway [53} and Howitt !!al. {24J

(Table 3). In order to do so, only the water costs of the studied region are

increased while other regional water costs are held constant. Shumway's

r~8l1lts are projections of elasticities for 1980 computed for the west side of

the San Joaquin Valley with a statewide linear programming model. The
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Table 1. Costs of Surface Irrigation Water for the
Parametric --Runs

surface water
cost s [1978}----------------------------------------------------------------

increase 50% 100% 150% 200%----------------------------------------------------------------
region

1 2.0 3.0 4.0 5.0 6.0

2 5.3 8.0 10.7 13.3 16.0
3 6.0 9.0 12.0 15.0 18.0
4 6.0 9.0 12.0 15.0 18.0
5 7.0 10.5 14.0 17.5 21.0
6 8.0 12.0 16.0 20.0 24.0
7 8.0 12.0 16.0 20.0 24.0
8 1.0 1.5 2.0 2.5 3.0
9 8.0 12.0 16.0 20.0 24.0
10 7.0 10.5 14.0 17.5 21.0

11 16.1 24.2 32.2 40.3 48.3
12 93.8 140.6 187.5 234.8 281. 3

13 18.0 27.0 36.0 45.0 54.0
14 6.0 9.0 12.0 15.0 18.0
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TABLE 2. Short-run Price Elasticities of Surface Water
Central Valley of California

CARM price elasticity
region base year [1978]-----------------------------------------------------------------
cost increase 50-100% 100-150% 150-200%-----------------------------------------------------------------
3 Sacramento Valley -0.12 -0.27 -0.38
5 Delta -0.81 -1.33 -2.31
8 North San Joaquin -0.00 -0.00 -0.00
10 San Joaquin -0.40 -0.60 -0.88
11 West Side San Joaquin -1.77 -3.00 -10.00
14 Imperial Valley -0.31 -0.41 -0.54
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Table 3. Comparison of POP Price Elasticity With Other Empirical
Es timates in Wes t Side San Joaquin "'(Region10)

nonequilibrium models
equilibrium

models-----------------------------------------------------------------
Shumway
(LP)

Howitt et al.--(OP) (POP)

West side
San Joaquin San Joaquin

Region 11
+ 10-----------------------------------------------------------------

price range
s [1978J

15. - 25. -0.62 -1. os!

25. - 30. -0.71

30. - 40. -1. 21 -1.50

1Weighted average value
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estimates by Howitt et~. are computed with quadratic model of the San

Joaquin Valley and represent aggregate values.

The POP regional elasticities are in quantitative agreement with the two

sets of aggregate estimates. However. the POP elasticities are regional

values and thus represent a significant improvement on currently available

aggregate estimates.

The demonstration of the potential of POP is not complete without

illustrating the importance of the partial equilibrium approach. In Figure 9,

two different water demands are drawn for CARM region 14 (Imperial Valley).

The first curve displays the water demand of the Imperial Valley with respect

to a change in water cost, all other regional water costs being kept constant

at the base year level. The second curve represents the water demand in the

Imperial Valley with respect to a change in water cost when all water costs in

the State vary proportionally to their base year level. The important

difference between the two curves is caused by interregional effects. The

conclusion of the analysis is clear. Change in water costs of other regions

significantly impacts on the response of the Imperial Valley. This fact

stresses the importance of the POP partial equilibrium approach for modeling

the California agricultural sector and its resources by regions.

Conclusions

The POP estimates displayed on Table 2 could be improved and refined

by additional research. However, to our knowledge, they are the first

regional elasticity estimates to be derived from a statewide nonlinear

equilibrium model. Thus. they already have a significant policy value and

represent a good starting basis for State Agency pricing policy. For example,
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the POP approach may be particularly useful for the implementation of the

water transfers recently advocated in the California legislature'CKatz

-bill AB 3941).
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