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Abstract 

The Role of the HLA Gene Region and Environmental Risk Factors in Follicular Non-Hodgkin 
Lymphoma 

by  

Nicholas Kipp Akers 

Doctor of Philosophy in Environmental Health Sciences 

Designated Emphasis in Computational and Genomic Biology 

University of California, Berkeley 

Professor Martyn T. Smith, Chair 

The first genome-wide scans searching for follicular lymphoma (FL) risk factors revealed that a 
section of chromosome 6 powerfully impacts risk of this disease.  Common genetic variants 
within the human leukocyte antigen (HLA) gene region were shown to be associated with an 
approximate doubling of individual disease odds.  This dissertation aims to concurrently 
improve the resolution of, expand upon, clarify, and take the first steps in explaining these 
findings.  Chapter 1 provides a review of the broadly relevant literature, including the 
epidemiology of FL and related lymphomas, the molecular immunology of FL, and the HLA gene 
region.  Chapter 2 is a study making use of the highest possible resolution HLA genotyping 
methodology for its time, applied to an FL case-control study.  This study not only increased our 
knowledge of known risk factors, it also was the first study to demonstrate an association of FL 
with variation at HLA-DPB1.  Chapter 3 describes the method which will soon be used to localize 
to a single locus the associations which are ambiguously assigned to several genes.  Using pilot 
data, this study demonstrate the feasibility of performing genetic ancestry matching and HLA 
imputations on historically stored samples.  Chapter 4 uses data from several studies to identify 
two amino-acid positions, which may themselves explain a substantial portion of FL risk.  The 
fact that these amino acid positions lie in the key peptide binding groove of HLA-DRB1 gives 
some evidence that peptide binding is the mechanism by which these HLA associations are 
impacting FL development.  Finally, in Chapter 5 the peptide binding properties of HLA class II 
alleles are computationally investigated, examining potential environmental and internal 
proteomes likely to be encountered by HLA proteins.  This approach reveals that certain alleles 
which impact FL risk are predicted to be exceptionally strong or weak at binding peptides, and 
several candidate antigens are mined from the data.  Concluding in Chapter 6, the state of HLA-
FL research is summarized, and future research is recommended.    
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The Global Burden of Cancer and Non-Hodgkin Lymphoma 

Carcinogenesis is a global killer, responsible for an estimated 8.2 million deaths in 2012. 
Individuals living today carry a greater than 10% chance of death from cancer before age 75 (1).  
Within the United States, malignant neoplasms represented 23% of all deaths in 2011 (2).  
Discovering the environmental causes of cancers remains a crucial public health goal.  Tobacco 
smoke stands as a prime example of the ongoing benefits associated with the discovery of 
carcinogenic environmental exposures, with 157 million years of life saved in the half-century 
following the US surgeon general’s first report on smoking and health in the United States (3).   

Similar to lung cancer, non-Hodgkin lymphoma (NHL) incidence went up at an alarming rate 
from the 1960’s until the early 1990’s in the United States and elsewhere in the world (4,5).  
This trend would appear to indicate an environmental causal agent that grew more prevalent in 
this time-frame.  Unfortunately, however, the cause of this period of increased incidence 
remains mostly unknown (6).  Among United States cancer types, NHL was the 7th most 
frequent cancer by incidence (69,740 new cases) and total number of deaths caused (19,020 
deaths) in 2013 (7).   

NHL encompasses a heterogeneous group of cancers of the lymphatic system, excluding 
Hodgkin lymphoma.  Follicular lymphoma (FL) is the second most common subtype of NHL, 
after diffuse large B-cell lymphoma (DLBCL).  The exact proportion of NHL encompassed by FL 
varies, however, it appears that FL composes 15-32% of NHL cases, depending on the location 
(8–11).  Very little research has been published regarding environmental risk factors specific to 
FL; as a result, the epidemiological literature for NHL as a whole will be examined here.   

Classic epidemiology has revealed clues to the etiology of NHL.  Men are at a slightly increased 
risk of disease, with 1.4 cases in men for every case in women (12).  Age is a major risk factor, 
with incidence and mortality rates increasing to a peak after age 70 (7).  There is a major trend 
towards higher NHL incidence in developed countries, with the U.S./Canada, Australia/New 
Zealand, and Europe having the highest incidences, and Asian and African countries containing 
the lowest incidences (13).  NHL incidence in Caucasian-Americans is higher than in African-
Americans, whose incidence, in turn, is much higher than that of most African countries (11).  It 
is unclear if these effects are the result of differential reporting, environmental, or genetic 
effects; however, ample evidence exists indicating the latter two are key components of the 
disease.  

Environmental Causes of NHL   

The precipitous rise of NHL cases led to many studies investigating environmental causes of 
lymphoma.  The strongest and most relevant findings will be presented here, however, 
excellent reviews exist which summarize the literature more completely (5,14). 

Immunodeficiency 
Immune deficiency is one of the best described and clearest risk factors for NHL. Transplant 
recipients have a relative risk of 20-120, depending on the site of transplant (12).  HIV patients 
have a 14-350 fold increased risk of NHL, depending on the grade of NHL examined.  Individuals 
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born with genetic immune deficiencies are also at a great increased risk for NHL.  For example, 
subjects with Wiscott-Aldrich Syndrome that live to age 30 approach 100% risk of NHL.  It is 
clear that immune deficiency can be a causal factor for NHL and much can be learned from 
these examples.  However, due to the rarity of the above exposures, the vast majority of NHL 
cases cannot be explained by these risk factors.     
 
Infections 
Infectious agents are another well-established risk factor which can currently explain only a 
small percentage of NHL cases.  Some infectious agents are able to directly transform 
lymphocytes into lymphomas, including Epstein Barr Virus (EBV) (linked to Burkitt’s lymphoma), 
human herpesvirus 8 (primary effusion lymphoma), and human T lymphotrophic virus type I 
(adult T-cell lymphoma) (15).  In each of these cases, infection of lymphoma cells themselves 
has been demonstrated.   
 
A second group of pathogens appear to cause lymphoma indirectly, by chronic infection.  
Although hepatitis C virus (HCV) is known to primarily infect liver hepatocytes, the virus appears 
to play a major role in some cases of lymphoma.  Patients suffering from splenic lymphoma with 
villous lymphocytes who are positive for HCV undergo complete remission of the lymphoma 
after treatment with antiviral drugs.  The same treatment has no effect on those suffering from 
the same disease but who are negative for HCV infection (16).   This finding implies that HCV is 
necessary for some cases of lymphoma, despite no evidence that HCV infects lymphoma cells 
themselves.  Similarly, Helicobacter pylori infection appears to have a strong relationship with 
gastric mucosa associated lymphoid tissue (MALT) NHL as well as non-MALT gastric NHL.  It has 
been demonstrated that in gastric NHL, H. pylori infection precedes disease in 85% of cases (17).  
In most cases of gastric MALT NHL who test positive for H. pylori, antibiotic eradication of the 
bacterial infection leads to remission of the tumor (18).  Similar associations of bacterial 
infections and rare NHL subtypes include Campylobacter jejuni (small intestine NHL), Chlamydia 
psittaci (ocular adnexa NHL), and Borrelia afzelii (cutaneous NHL) (15).  It may be that other 
infections are contributing to more common subtypes of NHL, however, very little conclusive 
evidence for this exists.  

 
Chemical Exposures 
Chemical exposures have long been suspected as causal factors in NHL etiology, however, 
proving such a link has been difficult.  Certain occupations, including farmers, forestry workers, 
and petroleum, plastics, rubber and synthetics industry workers appear to carry an increased 
risk of NHL.  As a result, pesticides and organic solvents including benzene have been implicated 
(5), though reports have been inconsistent.  For example, a 2007 review found that 93% of 
studies observe some elevation of NHL risk with benzene exposure yet only 53% of studies 
contain statistically significant associations.  The authors suggest the healthy worker effect is 
responsible for driving a true association between benzene and NHL towards the null (19).  
Conversely, further meta-analyses attempting to answer the same question (20–22) found no 
significant increased risk of NHL in benzene exposed populations.  Despite this, the benzene 
hypothesis remains attractive for several reasons.  As a well characterized cause of acute 
myelogenous leukemia, benzene is a known carcinogen that targets cells in the bone marrow, 
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likely causing chromosomal aberrations (23).  Similar to leukemia, the cells of B-cell lymphomas 
differentiate in the bone marrow, and the FL subtype is characterized by a common 
chromosomal translocation (24).  It may be the case that benzene exposure leads to specific 
NHL subtypes, but the association has been obscured by non-associated subtypes.  Similar to 
benzene, exposure to pesticides, solvents, triclorethylene, styrene, nitrates, vinyl chloride and 
asbestos have been examined with relation to NHL in multiple studies, with heterogeneous 
findings.  Recently, environmental tobacco smoke exposure was associated with FL, but not 
other subtypes of NHL (25). 

Follicular Lymphoma Genetic Risk Factors 

Much can be inferred from genetic studies of NHL, including common polymorphisms that put 
individuals at greater risk, and mutations that appear more commonly in tumor cells.  Both 
serve as evidence of the molecular mechanisms at play in lymphomagenesis.  

Perhaps the signature genetic event arising in FL tumor cells is a translocation of the short arms 
of chromosomes 14 and 18.  This cytogenetic defect is present in about 90% of FL tumors(24), 
and appears to indicate a distinct subtype of diffuse large B cell lymphoma (DLBCL)(26).  The 
primary effect of this translocation is to place the promoter for an immunoglobulin gene in 
front of the anti-apoptotic protein BCL2, leading to increased expression of the oncogene.  
What causes the t(14;18) translocation is widely debated, however, it is clear that this mutation 
is not sufficient to cause disease, as the translocation can be detected in the circulating blood of 
nearly 50% of the human population(24).   

Based on familial aggregation and case-control studies, we can infer that NHL has a small, but 
important genetic basis for susceptibility.  For example, individuals with a history of a first-
degree relative with NHL are at a 1.7-fold increased risk of disease (10).  Although this effect 
could reflect shared environmental factors, other research implicates at least a partial genetic 
effect.  Case-control studies of NHL matched on ethnicity and other demographics have 
revealed key risk loci for the disease.  DNA extracted from blood, saliva, or buccal cells is 
considered germ line, meaning it is the same sequence that an individual was born with.  
Because of this, researchers can be confident that any differences observed in DNA sequences 
between cases and controls predated disease onset.   

Many genetic susceptibility factors for NHL have been published, however, genetic loci that 
have been validated in multiple studies are somewhat rare, and can be grouped into two major 
categories.  Not surprisingly, polymorphisms affecting DNA repair genes make up one of these 
groups.  Specifically, researchers have found that genetic changes which affect VDJ 
recombination breakpoint repair and recombination repair affect risk of NHL (27–29).  DNA 
damage is a nearly ubiquitous aspect of cancer, and chromosomal translocations play a major 
role in lymphomas, so these findings do not come as a shock.   

Polymorphisms in genes responsible for immune response, including the human leukocyte 
antigen (HLA) region, form a second group of susceptibility loci.  Risk of DLBCL has been 
associated with genetic variants in the TNF and IL10 genes(30).  The proteins these genes 
encode play key roles in immunoregulation and inflammation.  Furthermore, polymorphisms in 
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the CD40 and CD154 encoding genes have also been linked to NHL (31).  These proteins play a 
key role in B cell growth and differentiation (Figure 1).  In 2009, the first genome-wide 
association study (GWAS) of NHL was published (32), reporting a single nucleotide 
polymorphism (SNP) in the HLA class I region associated with FL (rs6457327, allelic OR = 0.59, p 
= 4.7x10-11).  A second GWAS revealed a second FL risk allele in the HLA class II region (33).  This 
finding was validated in 8 study populations on 3 different continents, and has a population 
attributable risk (34) of ~9% using the risk and frequency data from that GWAS, indicating a 
substantial fraction of cases would not have occurred in the absence of this risk factor.  Follow-
up sequencing demonstrated that several HLA class II alleles may be associated with FL (see 
references (33,35) and chapter 2). The classic HLA genes are responsible for the presentation of 
proteins in the body as a mechanism of immune surveillance.  At first daunting, these proteins, 
which appear to play a role in NHL risk, are all part of a group of key players in the germinal 
center reaction responsible for stimulating B cell growth and development.  
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Figure 1: Proliferation and Differentiation Signals in B cells.  Non-differentiated B cells require two 
signals to avoid apoptosis.  The first signal comes from cross-linking of B-cell receptors when binding 
antigen.  This leads to increased expression of B7 and HLA class II proteins, as well as endocytosis of the 
bound antigen.  The antigen is degraded when the endosome fuses with a lysosome.  A peptide 
fragment of that degraded antigen will then be bound to HLA class II proteins, which are brought to the 
surface.  At the surface, HLA class II bound peptide interacts with the T cell receptor of CD4+ T cells.  If 
the interaction is strong enough, CD4 will bind to the HLA class II protein, and B7 will act as a ligand for 
CD28.  This causes increased expression of CD40L and cytokines (including IL2, IL4, and IL5) by the T cell.  
CD40L will then act as a ligand for CD40, which is the second signal needed by the B cell to avoid 
apoptosis.  Cytokine receptors are expressed on the B cell, and it is the interaction of cytokines with 
their receptors which leads to activation and differentiation of B cells into proliferating effector B cells.   
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Molecular Biology of Follicular Lymphoma 

Follicular lymphoma is a malignant growth of a B cells, which appear in a nodular, germinal 
center-like state (36).  Much has been inferred about the development of FL cells based on the 
characteristics of these cells at the time of disease presentation. In order to appreciate the 
unique characteristics of a FL B cell, a background on the life cycle of a normal B cell is 
necessary.   

B cell Maturation and the Germinal Center 
B cells are the antibody producers of the immune system.  Antibodies, also referred to as the B 
cell receptor when membrane-bound, are encoded by immunoglobulin genes and act to 
specifically target foreign bodies so they may be eliminated.  B cells begin development in the 
bone marrow, where VDJ recombination, a process of genetic rearrangement, creates a unique 
DNA sequence for the B cell receptor.  These cells are tested for auto-reactivity; those bearing 
antibodies which bind too strongly to self-proteins are edited or removed via apoptosis.  Those 
B cells that are not self-reactive leave the bone marrow and enter the circulation, in order to 
encounter an antigen with their B cell receptor.  An antigen is a protein which invokes an 
immune response, such as protein from virus, bacteria, fungi, or a different species.  Often, 
antigens are brought to B cells by dendritic cells.  When a B cell encounters an antigen, the 
antigen causes cross-linking of B cell receptors, the first of two important signals that prevent B 
cell apoptosis.  With this first signal, the B cell migrates to a germinal center (Figure 2) (37).   
 
During the germinal center reaction the B cell receptor’s affinity for antigen is enhanced, and 
allows the B cell to differentiate into antibody producing plasma cells or long-lived memory B 
cells.  The first step of this process is known as affinity maturation, where B cells rapidly divide 
while undergoing somatic hypermutation, a process where point mutations, insertions, and 
deletions accumulate in the immunoglobulin gene sequence.  Many B cells are generated with 
slight changes to their antibody structure.  Those B cells arising from this process with lower 
affinity for the antigen undergo apoptosis, while those with improved affinity will survive to 
present antigen fragments in their HLA class II receptor to helper T cells (Figure 2).  This 
interaction with T cells is the second signal that causes a B cell to avoid apoptosis and 
proliferate.  Specifically, the HLA class II-peptide complex is bound by the T cell receptor, which 
has similarly been trained to react with self-HLA proteins binding non-self peptides.  Finally, B 
cells undergo class switching and mature into memory or plasma cells.  Class switch 
recombination is a DNA excision event that allows different classes of antibody to be produced.  
There are five major classes of immunoglobulin, each with unique roles within the immune 
system (37,38). 
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Figure 2: Life Cycle of a B cell.  1. B cells develop in the bone marrow, where they undergo V(D)J 
recombination to create unique B cell receptor sequences.  The t(14:18) chromosomal translocation is 
thought to arise from errors in this recombination.  Within the bone marrow, B cell receptors which react 
too strongly to self protein are selected against.  2. Mature, naive B cells exit the bone marrow and enter 
the periphery at a rate of ~5 x 10^6 per day.  The vast majority (~90%) do not encounter antigen and 
undergo apoptosis.  3.  Those that do encounter antigen migrate into a germinal center.  4.  Within the 
dark zone of the germinal center, B cells rapidly proliferate while undergoing somatic hypermutation.  
This process creates point mutations, insertions, and deletions in the B cell receptor sequence in order 
to create clones with increased affinity for antigen.  5.  As the B cells migrate from the dark zone to the 
light zone, their proliferation is now dependent on interactions with dendritic cells and T cells.  Follicular 
dendritic cells carry many antigens to the germinal center on their cell surface, and B cells must compete 
to bind antigen.  B cell receptors with high affinity for antigen will successfully bind antigen, while low 
affinity B cells will undergo apoptosis.  6.  High-affinity B cells will then present peptides from the 
antigen on HLA class II proteins to a CD4+ T cell.  This reaction can lead to class switch recombination of 
the immunoglobulin type, and differentiation into long lived memory B cells or plasma cells which 
secrete large amounts of antibody.  A negative reaction with the T cell may also lead to apoptosis.  
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Antigens and Follicular Lymphoma 

The aforementioned t(14:18) chromosomal translocation, present in nearly all FL tumors, as 
well as a large fraction of healthy individuals (24), is thought to occur very early in the life of a 
FL cell.  The translocation involves the same immunoglobulin genes which are rearranged during 
VDJ recombination, a strong indication that the t(14:18) translocation is a malfunction of the 
early stage process.  Roulland et al. demonstrated that the t(14:18) positive cells found in 
healthy individuals have unique characteristics resembling FL cells (39).  FL B cells have 
undergone class switch recombination on both alleles, while normal cells undergoing the same 
process will only recombine the allele being expressed (40).  When t(14:18) positive B cells in 
healthy individuals were examined, they, like FL B cells, had undergone class switch 
recombination on both alleles (39).  These studies indicate that pre-FL cells may be arising at a 
fairly common rate in healthy individuals.  It is therefore key to understand not only what 
influences the rate of t(14:18) positive B cells being produced, but also what impacts the 
transition from a non-malignant t(14:18) positive B cell to FL.   
 
The fact that FL cells have undergone class switch recombination indicates that these cells have 
encountered antigen, and that they may also rely on antigen interaction for sustained growth 
and survival.  Immunoglobulin gene sequencing of an FL patient indicated that mutations were 
accumulated sequentially, and preferentially towards non-synonymous changes (41).  The 
finding of cells within an FL patient that share some, but not all, of the primary tumor cell 
mutations indicates that distinct populations of FL/pre-FL cells evolve within the body.  
Furthermore, it suggests these changes occur stepwise, rather than with a single round of 
somatic hypermutation.  The mutations found in the immunoglobulin gene of FL cells also 
appeared to be more likely to cause amino-acid substitutions than would be expected by 
random chance.  This statistical unlikelihood is explained by the authors as resulting from a 
selective force, likely clonal populations are being selected for the B cell receptor’s affinity for 
antigen.   Taken as a whole, this study indicates that FL cells encounter antigen at several points 
in their lifetime, undergoing somatic hypermutation to improve their affinity for the antigen. 

A similar selective force appears to act on FL cells to ensure that they remain of the 
immunoglobulin M (IgM) class.  Evidence exists that FL cells undergo the germinal center 
reactions of somatic hypermutation and class switch recombination several times.  However, 
the majority of FL cells express surface IgM (39,40,42), indicating that this may also be an 
important factor to survival.  IgM is one of 5 major classes of immunoglobulin, characterized as 
the first class produced in a primary response to antigen, and has the highest antigen binding 
power of all classes (37). 

Researchers who have looked for the antigen specificity of FL cells have found some evidence of 
auto-reactivity.  Dighiero et al. (43) tested the reactive potential of FL patient derived 
hybridomas to a panel of 5 common human proteins, finding that in 8 of 31 FL cases the  
immunoglobulin was specific enough to bind to at least one of the human proteins, and in 2 
instances, bound to several of the human proteins.  The weakness of this study is that reactivity 
was only tested against five human proteins; a much larger panel of proteins would be ideal.  
However, the large fraction of FL immunoglobulins reacting to the select panel would seem to 
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indicate that the 26% reactive patients is actually an underestimate of the true number of FL 
patients with self-reactive immunoglobulins.  Interestingly, immunoglobulin itself was the 
protein most commonly invoking a reaction.  This may indicate that certain FL cells are self-
reactive, and therefore self-reliant for antigenic stimulation.  The aforementioned evidence that 
FL cells encounter antigen multiple times in their lifetime indicates the same antigen is present 
at multiple time points.  A self-antigen satisfies this requirement, however, other routes may 
lead to multiple encounters with the same antigen, such as a chronic infection.   

FL cells are dependent on germinal center interactions for survival.  In-vitro, FL cells will die 
without co-culture of CD4+ T-cells (44).  Perhaps not surprisingly, this proliferation appeared to 
be dependent on FL and T cells having similar antigen specificity.  B cells were isolated from six 
FL patients and were tested for the ability to induce proliferation in two different CD4+ T cell 
clones.  B cells from four patients induced proliferation in one of the T cell clones.  When 
cultured with this T cell population, the four reactive B cell populations showed marked growth 
and proliferation, while the two non-reactive B cell populations did not.  This effect could be 
interrupted by blocking the HLA class II receptor, which mediates T cell-B cell-antigen 
interactions.  These findings indicate that FL proliferation is dependent on T cell interactions 
mediated by HLA class II.  In a separate study, these T cell interactions were circumvented by  
treating FL cells with anti-CD40 antibody (to simulate CD154) and IL4 (45), two growth signals 
expected to be secreted in a germinal center reaction.  The researchers found the FL cells to be 
resistant to death, relative to normal germinal center cells, but not proliferative until treated 
with molecules that simulate T cell feedback.  Genetic changes such as the t(14:18) 
translocation will clearly cause cells to become resistant to death, but perhaps in FL, oncogenic 
proliferation is dependent on antigen-dependent reactions. 

Recent studies have indicated that CD4+ T cell interactions may be more complicated than 
previously described.   B-cell NHL tumors contain high levels of CD4+ regulatory T cells (T-regs) 
compared to control tissues, and these T-regs suppress proliferation of tumor fighting CD4+ and 
CD8+ T-cells (46,47).  Under normal physiological conditions, T-regs function to limit immune 
response, as a means of preventing auto-immune reactions.  In this case, however, they may be 
preventing the immune system from removing malignant cells.  Evidence indicates that T-
helper cells can be converted to T-regs by malignant FL B-cells in a process involving T-cell 
receptor stimulation (48).  Because HLA class II molecules interact with the T-cell receptor, this 
suggests a second mechanism by which these proteins may couple with antigen to impact FL 
risk.   

HLA Alleles and Immune Response 

HLA proteins appear key to the proliferation of FL cells based on both molecular examinations 
of FL cells and genetic association studies.  This gene family is well known for playing a 
prominent role in the immune system, for the population variability it contains, and for 
impacting the risk of numerous common diseases.  These topics and their relevance to FL risk 
will be explored. 

 



11 
 

Molecular Role of HLA 
The primary role of HLA molecules is to present antigen fragments to T cells as an immune 
surveillance mechanism.  HLA class I proteins are expressed on most cell types and present 
primarily intracellular peptides.  This serves to monitor for cellular infections with intracellular 
pathogens, as well as tumor antigens (49).  Under normal conditions, HLA class II proteins are 
expressed only on professional antigen presenting cells, including B cells, dendritic cells, and 
macrophages.  These cells are responsible for the uptake and presentation of extracellular 
antigens.  Following endocytosis or phagocytosis, antigens are degraded within the endosome 
or lysosome into peptide fragments.  These fragments are then loaded onto HLA class II 
molecules.  Class I proteins are restricted to presentation of peptides 8-10 amino acids in 
length, however, class II proteins are able to present peptides of a wider range of 12-24 amino 
acids (50).  These HLA bound peptides are brought to the cell surface to interact with T cells.   

A positive HLA-T cell reaction is central to innate and humoral immune responses.  In the case 
of B cell HLA class II interaction with CD4+ T cells, the result is a cascade of growth and 
proliferation signals, the details of which are outside the scope of this thesis.  Briefly however, 
when the T cell receptor docks onto HLA class II, CD4 binds to the HLA class II protein.  CD40 
and the B7 family of proteins on the B cell interact with CD40L and CD28 on the T cell, 
respectively (Figure 1).  These interactions are a form of bidirectional signaling, leading to 
proliferation of both interacting cells (37,51).  Within the germinal center, this feedback system 
recognizes those B cells which have evolved (via somatic hypermutation) to most effectively 
target and present antigen.  It is important then to understand what factors influence T cell 
response to HLA bound peptide.     

HLA-T cell interaction is dependent on the T cell receptor affinity for the combination of HLA 
allele and bound peptide.  What determines this affinity is still an important field of research.  
However, it is clear that how long a T cell receptor interfaces with HLA is key (52), with too 
short or too long interactions causing less proliferation.  Other factors have also been 
demonstrated to be important to T cell activation, such as dynamic structural changes of the T 
cell receptor, weak and heterogeneous interactions between costimulatory molecules, and the 
distance between cell membranes (53–56). Together, these factors make prediction of T cell 
response to antigen extremely difficult.    

Similar to the development of the B cell receptor, immature T cells rearrange their T cell 
receptor gene and undergo selection in the thymus based on T cell receptor affinity for HLA 
bound peptide.  Specifically, T cells with too strong affinity for self-HLA protein are negatively 
selected (to prevent auto-immune responses), while T cells with too weak affinity for self-HLA 
protein do not mature and die off.  This leaves only T cells with intermediate affinity which are 
driven to proliferate (50).  The specificity that this process imparts on the circulating population 
of T cells has important consequences.  T cell responses are not only antigen-specific, but also 
HLA protein specific.  HLA proteins are encoded by numerous genes, each with numerous 
different alleles.  Just as B cells are trained in the bone marrow to tolerate self-proteins, T cells 
are trained in the thymus to tolerate the HLA alleles carried by a given individual.   
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Figure 3. Map of the HLA region.  The HLA region is located on the short arm of chromosome 6, 
spanning more than three million nucleotides.  Class I genes, including HLA-A, HLA-B, and HLA-C are 
expressed on the surface of most cells, responsible for presenting peptides from intracellular antigens.  
Class II proteins are hetordimers, indicating that a functional HLA-DR protein requires amino acid chains 
from genes HLA-DRA1 and HLA-DRB1, for example.  Generally speaking, the most population sequence 
variation has been found on the beta genes, HLA-DRB1, HLA-DQB1, and HLA-DPB1.  Class II proteins are 
responsible for presenting peptides from extracellular antigens.  Class III includes the complement genes 
as well as TNF-α.  The HLA region is very gene-rich, and many genes have been omitted from this 
diagram.  Shown are the genes of focus in this dissertation.   

Population Variability of the HLA Complex 
Located on chromosome 6, the HLA complex spans over 3 million bases of the genome, and can 
be divided into 3 regions, named class I-class III (Figure 3).  While the function of class I and II 
genes was covered in the previous section, class III genes are part of the complement system 
(50), and they will not be covered here.  The genes of the class I and II regions display extensive 
sequence homology, indicative of a shared common ancestry.  It has been postulated that the 6 
genes and 10 pseudogenes of HLA class I, as well as the 11 genes and 8 pseudogenes of HLA 
class II resulted from extensive gene duplication events (57,58).  Much of this duplication is 
likely to have occurred early in vertebrate evolution (where HLA genes are referred to by their 
more broad title, the major histocompatability complex [MHC]).  This diversification of the 
proteins responsible for displaying antigen would have inferred a selective advantage by 
allowing individuals to present a broader spectrum of antigens, and thus improve immune 
response against infectious disease.   

Similar logic can explain the value of populations carrying genetic diversity within a given HLA 
gene.  Polymorphic alleles, i.e. different versions of a single gene, allow populations the benefit 
of greatly expanded variability in immune antigen presentation.  As a result, an astounding 
number of alleles have been discovered in certain class I and class II genes (Table 1).  The HLA 
gene region is the among the most polymorphic regions of the human genome (59,60), owing 
to the selective advantage for populations to diversify their alleles.  Beyond pathogen-driven 
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selection, selective mating may also play a role in generating the polymorphism of this region 
(61).  Mice have been observed to mate non-randomly, with less observed homozygosity at 
MHC loci than would be expected by chance (62).  Astoundingly, similar effects have been 
observed in humans, where studies indicate that women prefer the smell of HLA-mismatched 
men (63,64).  A third source of HLA polymorphism likely comes from crosses of early Homo 
sapiens with closely related hominid species (65).  The copious sequence variability observed in 
the HLA region does not however preclude extensive linkage among polymorphisms.  
 

  Class I Class II 
HLA Gene: A B C DRA DRB1 DQA1 DQB1 DPA1 DPB1 

Unique Alleles: 2,579 3,285 2,133 7 1,411 51 509 37 248 
Unique Proteins: 1,833 2,459 1,507 2 1,047 32 337 19 205 

Table 1: Polymorphism of the HLA region.  The number of alleles (unique DNA sequence) and proteins 
(unique amino acid sequence) are shown for several HLA genes in class I and class II.  These numbers 
represent the total number of unique sequences discovered, giving an indication of the extreme amount 
of population diversity within this gene group.  This degree of polymorphism indicates that at this locus, 
population level diversity is positively selected for.  This likely is due to the role of these proteins in the 
immune system recognizing infectious antigens.  Data gathered from the IMGT/HLA database release 
3.15 (66).   

Linkage disequilibrium (LD) exists within the HLA region, often spanning multiple genes and 
obscuring causal loci in genetic association studies.  The theoretical basis of LD is that mutations 
occur randomly, and are likely to arise just once.  A new mutation will therefore be linked to all 
other polymorphisms on that chromosome, only separated by recombination occurring at a 
rate proportional to genetic distance (67).  This simple model can be disrupted and LD 
generated by population effects including bottlenecks, genetic drift, and population mixture 
(68).  When LD is high between multiple markers, a haplotype is said to exist within which 
genotypes of each polymorphism are highly informative of each other.  Within the HLA region, 
extensive LD exists, particularly in Caucasian and Asian populations (69,70) .  Common 
haplotypes link the genes HLA-DQB1, -DQA1, and -DRB1, as well as between HLA-B and –C.  
Lower LD exists between HLA-DRB1 and HLA-B.  For example, within Caucasians, 14% of 
individuals carry the unique allele HLA-DRB1*15:01.  Of these, 98% carry HLA-DQB1*05:01.  In 
comparison, only 59% of DRB1*15:01 carriers also carry HLA-B*07:02 (69).   If these alleles 
dissociated randomly, the overlap percentages would each be only 14%.  This effect becomes 
problematic when a genetic association study discovers a locus within the HLA region impacting 
disease risk.  The LD will obscure the exact locus causing the effect (assuming such an exact 
locus exists), and researchers are limited to knowing only that an association exists with some 
aspect of a given haplotype.  This issue can sometimes be circumvented by looking in different 
populations, or by turning to studies of molecular effect.   
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Figure 4. Understanding HLA Allele Nomenclature.  With thousands of unique alleles, the HLA genes 
have specialized naming conventions.  The gene name is listed first, followed by an asterisk (*).  The first 
two digits after the asterisk indicate the serotype or allele group.  This convention dates to genetic 
typing was not possible, and individuals were typed by immune response.  The first four digits give all 
the information regarding amino acid sequence.  Beyond 4 digits, the resolution is increased to the level 
of non-synonymous nucleotide changes.  For example, HLA-DRB1*01:01:01 would have a different 
genetic sequence, but the same amino acid sequence, as HLA-DRB1*01:01:02.   

 
HLA Disease Associations  

Genetic association studies have linked variants in the HLA region with an overwhelming 
number of autoimmune and infectious diseases.  Multiple sclerosis (71), narcolepsy (72), type 1 
diabetes (73), malaria severity (74), progression to AIDS (75) and many others (76) have been 
associated with HLA genotypes.  In many cases, these associations are believed to be 
attributable to an associated allele's ability to efficiently present key disease antigen, and thus 
illicit an immune response.  In the examples of celiac disease the allele HLA-DQB1*02:01 is 
thought to uniquely present deamidated gliadin protein in a way that results in autoimmune 
attack in the small intestine (77).  For the hepatitis B virus infection (HBV), HLA-DRB1*03:01 is 
linked with non-response to vaccination, possibly due to this allele’s low-affinity for HBV 
envelope ligands (78).  In both cases, an allele puts carriers at increased risk of disease, likely 
because of inability to present key viral proteins to T cells.   

Certain cancers have also been associated with HLA alleles, raising questions about the role of 
antigen presentation and immune response in these malignancies.  Childhood B cell precursor 
acute lymphoblastic leukemia, a cancer with a similar cellular origin to FL, has been strongly 
associated with HLA-DPB1*06:01 (79).  Although it has not been demonstrated, the authors 
surmise DPB1*06:01 may interact with a bioactive molecule to create an inflammatory, 
leukemia inductive state in the bone marrow.  Cervical cancer, now known to be caused by 
infection with the herpes papilloma virus (HPV), also was associated with a DQB1-DRB1 
haplotype (80).  It is now understood that the HLA-cervical cancer association was actually due 
to these HLA alleles increasing likelihood of infection with the particularly carcinogenic HPV 
type 16.  These varied and unique mechanisms of HLA-associated disease susceptibility indicate 
that it will not be a simple task to determine the molecular pathway on which HLA alleles 
impact FL risk.   
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As with cervical cancer, it may be that FL is caused directly by carcinogenic infection, and 
patients carrying certain HLA alleles are less able to clear the infection.  A second, similar 
hypothesis is that infection is indirectly causing FL, by causing chronic inflammation, or by re-
stimulating pre-FL B cells and inducing their continued growth and accumulation of mutations.  
It is important to realize that the antigen(s) indicated in FL may not be infectious in origin 
however.  It may be that a self-antigen causes chronic stimulation under rare circumstances.  Or 
that there is no single antigen to FL, that each pre-FL cell evolves within the body until it is 
responsive to any antigen.  A simple explanation is that certain HLA alleles are in LD with 
promoter polymorphism which affects HLA gene expression and therefore FL risk.  Finally, the 
complex interactions with CD4+ T cells, which are dependent on HLA class II protein, must not 
be ignored.  If FL cells can reshape their tumor microenvironment, perhaps it is more the impact 
that an HLA allele has on the T cell which is crucial to FL development.  These hypotheses are 
presented to demonstrate the breadth of questions that must now be asked with regards to the 
causes of FL.    

It is clear that HLA class II alleles represent an ample opportunity for lymphoma researchers to 
learn about the origin of FL.  However, before in-depth analyses of molecular dynamics, in-vitro 
examinations of HLA bound antigens with T cells, or molecular epidemiology to search for FL 
antigens can be performed, the fine details of the genetic association must be uncovered.  
Which allele or alleles affect FL risk, precisely?  Within the associated haplotype, which gene 
contains the causal locus?  Can the risk and protective associations be summarized by a single 
genetic site? By answering these questions, the monumental task of testing the aforementioned 
hypotheses can be reduced significantly.  This thesis sets forth to answer these initial questions, 
as well as take the first steps towards understanding the molecular nature of HLA class II alleles 
impacting FL risk.         
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Abstract 
Follicular lymphoma (FL) is an indolent, sometimes fatal disease characterized by recurrence at 
progressively shorter intervals and is frequently refractive to therapy.  Genome-wide 
association studies have identified single nucleotide polymorphisms (SNPs) in the human 
leukocyte antigen (HLA) region on chromosome 6p21.32-33 that are statistically significantly 
associated with FL risk. Low to medium resolution typing of single or multiple HLA genes has 
provided an incomplete picture of the total genetic risk imparted by this highly variable region. 
To gain further insight into the role of HLA alleles in lymphomagenesis and to investigate the 
independence of validated SNPs and HLA alleles with FL risk, high-resolution HLA typing was 
conducted using next-generation sequencing in 222 non-Hispanic White FL cases and 220 
matched controls from a larger San Francisco Bay Area population-based case–control study of 
lymphoma. A novel protective association was found between the DPB1*03:01 allele and FL risk 
[odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.21–0.68]. Extended haplotypes 
DRB1*01:01-DQA1*01:01-DQB1*05:01 (OR = 2.01, 95% CI = 1.22–3.38) and DRB1*15-
DQA1*01-DQB1*06 (OR = 0.55, 95% CI = 0.36–0.82) also influenced FL risk. Moreover, 
DRB1*15-DQA1*01-DQB1*06 was highly correlated with an established FL risk locus, 
rs2647012. These results provide further insight into the critical roles of HLA alleles and SNPs in 
FL pathogenesis that involve multi-locus effects across the HLA region. 
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Introduction 
 
Follicular lymphoma (FL) is an indolent B-cell malignancy characterized by a highly variable 
clinical course and multiple relapses (1). Approximately one-third of FL cases transform to a 
more aggressive histology, usually diffuse large B-cell lymphoma (DLBCL), which is associated 
with a poor clinical outcome (2, 3). The molecular basis of FL has been fairly well characterized 
(4–6), although its root causes remain less clear. In recent genome-wide association studies 
(GWAS) of non-Hodgkin lymphoma (NHL) and validation within the large InterLymph 
consortium, we identified three independent susceptibility loci for FL on chromosome 6p21.3 in 
the human leukocyte antigen (HLA) class I and II regions (7–9).  Located in the HLA class 1 
region at 6p21.33 near psoriasis susceptibility region 1, rs6457327 was inversely associated 
with risk of FL (P-value = 4.7 × 10-11) (8). In the HLA class II region at 6p21.32, two single 
nucleotide polymorphisms (SNPs), rs10484561 and rs7755224, were associated with twofold 
increased risks of FL (P-values = 1.12 × 10-29 and 2.0 × 10-19, respectively) (7). rs10484561 and 
rs7755224 are in total linkage disequilibrium (LD) and are located 29 and 16 kb centromeric of 
HLA-DQB1, respectively. On the basis of a tag SNP analysis, we inferred that rs10484561 may be 
part of a high-risk extended haplotype, DRB1*01:01-DQA1*01:01-DQB1*05:01 (7). Another 
class II locus in the HLA-DQB1 region, rs2647012, was inversely associated with FL risk after 
adjusting for rs10484561 [Odds ratio (OR) = 0.70, P-value = 4 × 10-12] (9). In subsequent 
studies, we confirmed a positive association between FL risk and the DQB1*05 allele group (P-
value = 0.013) and identified the DQB1*06 allele group as protective for FL (P-value = 4.5 × 10-
5) (10). An independent study further supported DRB1*01:01 as a risk locus for FL (11).  Taken 
together, these studies suggest that genetic variation in the HLA region plays an important role 
in the etiology of FL. 

HLA class I- and class II-restricted CD8+ and CD4+ T-cell responses are essential for the immune 
system to mount a successful antitumor immune defense or to remove infected cells. A defect 
in these important processes could allow pathogenic cells to escape host immune recognition 
that may increase the likelihood of lymphomagenesis. To further pinpoint risk-associated HLA 
alleles and haplotypes in the pathogenesis of FL, we investigated whether previously validated 
FL-associated GWAS SNPs (rs6457327, rs10484561, and rs2647012) and HLA alleles were 
independent risk factors for FL. To this end, we extended the analysis of our NHL case–control 
study to determine HLA class I (HLA-A, -B, and -C) and class II (DRB1/3/4/5, DQA1, DQB1, and 
DPB1) alleles using high-resolution HLA typing by next-generation Roche GS FLX 454 
(Pleasonton, CA) sequencing in 222 non-Hispanic White FL cases and 220 controls frequency-
matched by sex and age in 5-year groups. 

 

 

Materials and methods 
 
Study population 
Samples sequenced at HLA included non-Hispanic White FL cases (n = 222) and frequency-
matched controls (n = 200) who were part of a population-based case–control study of NHL 
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conducted in the San Francisco Bay Area that included 2055 patients newly diagnosed with NHL 
from 2001 to 2006 frequency-matched to 2081 control participants.  The majority of these FL 
cases were included in the previously described GWAS (92.8%) (7) and DQB1 typing study 
(95.9%) (10). Eligible patients were identified by the Cancer Prevention Institute of California’s 
rapid case ascertainment and by SEER abstract, were 20 to 85 years old at diagnosis, alive at 
first contact, residents of one of six Bay Area counties, able to complete an interview in English, 
and had no prior history of hematopoietic cancer or physician indicated contraindications to 
contact. Eligible controls were identified by random digit dial, and by random sampling of the 
Centers for Medicare and Medicaid Services lists for individuals aged 65 years or older and were 
frequencymatched to cases by 5-year age group, sex, and county of residence. Blood and/or 
buccal cells were collected from 85% of eligible study participants. Eligible NHL patients also 
provided consent (98%) to access their diagnostic materials to confirm diagnosis of NHL and for 
consistent classification of NHL subtype by the study pathologist using the WHO classification. 
 
HLA genotyping by next-generation sequencing 
High-resolution sequencing to obtain HLA genotypes (as in the IMGT/HLA database v3.6.0, 
http://www.ebi.ac.uk/imgt/ hla/) was carried out as previously described in detail (12, 13).  
Briefly, next-generation clonal sequencing of exonic amplicons was performed using the Roche 
454 GS FLX massively parallel pyrosequencing system (14). Roche-developed polymerase chain 
reaction (PCR) primers to exons 2–4 for HLA class I (A, B, and C), exons 2–3 for class II DQB1, 
exon 2 for DRB1/3/4/5, DQA1, and DPB1; 11 multiplex identification tags were used in the 10-
ng sample template amplifications. Primary HLA amplicons were purified to remove short 
artifacts, and then pooled in equimolar concentrations for emulsion PCR, bead recovery, and 
pyrosequencing.  Sequence data analysis was accomplished using the ATF software (Conexio 
Genomics, Perth, Australia). In almost all HLA analyses to date, it has been cost-prohibitive to 
analyze all genomic regions for each gene to determine the unambiguous genotype of each 
sample, and until most of the genomic region of the genes is sequenced, there will always be a 
level of ambiguity due to the high degree of polymorphism of HLA genes. The Roche GS FLX 454 
clonal sequencing of HLA described here consequently results in some residual ambiguity 
which, although limited compared to other sequencing methods, must still be reduced for 
analysis.  To do this, the alleles analyzed here were called based on the most common ‘lowest 
number’ alleles from a list of possible genotypes derived by clonal sequence analysis of 
particular exons. The allelic genotype calls and the related total possible six digit alleles from 
resolved genotypes and unresolved ambiguity are listed for each locus in Tables S1–8, 
Supporting Information. The nature of the clonal sequencing dramatically reduces the level of 
possible ambiguity using traditional Sanger sequencing, and this is the first time that a 
complete ambiguity table has been reported for HLA genotypes in an association study. 
Genotypes derived from a total of 89 samples (27 for HLA-A, 39 for HLA-B, 18 for HLA-C, and 5 
for HLA-DRB1) which failed at least one exon analysis by the clonal sequencing method were 
resequenced and retested using Luminex LABType SSO kits (One Lambda Inc., Canoga Park, CA).  
This method uses sequence-specific oligonucleotide probes bound to fluorescently coded 
microspheres to identify the HLA alleles in an amplified DNA sample, and alleles were identified 
using HLA FUSION software, v2.0.0 (One Lambda Inc.). Data from the LABType high-resolution 
bead kits were used in addition to the sequencing data to fill in exon gaps to resolve the 

http://www.ebi.ac.uk/imgt/
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genotypes at a level comparable to the 454 genotypes. The HLA nomenclature used for the 
current data in this article reflects the newest iteration of rules (2010) 
(http://hla.alleles.org/announcement.html) to describe HLA alleles, while all older data are 
presented as they were originally noted in the earlier publications. 
 
Data Analysis  
Haplotype frequencies for cases and controls were estimated using the iterative expectation-
maximization algorithm implemented in the PYPOP software (15). LD between HLA alleles and 
rs6457327, rs10484561, and rs2647012 was measured in our control population using PYPOP 
that calculates Dand chi-squared values based on observed and expected frequencies of 
haplotypes. Deviations from Hardy–Weinberg equilibrium (HWE) in controls were tested with 
the ARLEQUIN software v3.5.1.2 (16) using a Markov chain method with exact P-value 
estimation (17). No significant departure from HWE was observed for any loci at a P < 0.001 
level.  For each individual allele or haplotype, the independence of the number of observed and 
unobserved counts in cases and controls was determined using the ‘fisher.test’ function from 
the ‘STAT’ package in R (http://stat.ethz.ch/R-manual/Rpatched/ 
library/stats/html/00Index.html). ORs and 95% confidence intervals (CIs) were estimated as 
further measures of the magnitude of the association between alleles or haplotypes and 
disease status. The ‘p.adjust’ function from the same package in R was used to adjust the P-
values for the number of independent statistical tests at each locus using the Bonferroni 
correction. 

Unconditional backward stepwise logistic regression methods in STATA version 11 (StataCorp, 
College Station, TX) were used to assess independence of individual risk loci.  All established or 
suspected risk factors in the classic HLA regions (rs6457327, rs2647012, rs10484561-
DRB1*01:01-DQA1*01:01-DQB1*05:01, DRB1*15-DQA1*01-DQB1*06, DRB1*13-DQA1*01-
DQB1*06, and DPB1*03:01) were included and the final best fitting model was determined 
based on a likelihood ratio test. A P-value threshold of 0.10 was the criteria used for remaining 
in the model. For these analyses, one allele of each haplotype was used as a proxy for the 
haplotype as a whole (DQB1*05:01, DRB1*15, and DRB1*13 ).  Due to collinearity, DRB1*15 
and rs2647012 were assessed as a single variable where 0 indicated presence of neither allele, 
1 indicated presence of rs2647012 alone, and 2 indicated the presence of both rs2647012 and 
DRB1*15. All other alleles of interest were coded as present vs absent. 

Results 

The association results for all HLA class I and II alleles with P-values <0.05 are shown in Table 1. 
We identified a novel protective allele, DPB1*03:01, associated with risk of FL (OR = 0.39, 95% 
CI = 0.21–0.68, adjusted P-value = 8.30 × 10-3; Table 2) that was not in significant LD with any 
HLA alleles previously shown to be associated with FL (D’= 0.30 with rs10484561, D’ = 0.04 with 
rs6457327, and D’ = 0.03 with rs2647012; Table 3). DPB1 is located centromeric to DRB1, DQA1, 
and DQB1 and is separated from these genes by a recombination hotspot (18). Using backward 
stepwise logistic regression methods to analyze HLA alleles and previously identified SNPs of 
interest, the final best fitting model showed that DPB1*03:01 was independently associated 
with FL (Table 4). 

http://hla.alleles.org/announcement.html
http://stat.ethz.ch/R-manual/Rpatched/
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Allele Case alleles 
(freq) 

Control alleles 
(freq) 

*OR (95% 
CI) 

p-value †Bonf. p 

C*04:01 70 (0.159) 44 (0.102) 1.67 (1.1-2.56) 1.56E-02 2.81E-001 
C*06:02 48 (0.109) 24 (0.056) 2.08 (1.22-3.62) 4.50E-03 8.10E-002 
C*07:02 38 (0.086) 61 (0.141) 0.58 (0.36-0.9) 1.38E-02 2.48E-001 
C*16:01 7 (0.016) 18 (0.042) 0.37 (0.13-0.95) 2.56E-02 4.60E-001 
B*07:02 34 (0.077) 58 (0.133) 0.54 (0.34-0.87) 7.95E-03 2.86E-001 
B*35:01 43 (0.097) 26 (0.06) 1.7 (1-2.94) 4.45E-02 1.00E+000 
B*50:01 8 (0.018) 1 (0.002) 8 (1.07-356.03) 3.81E-02 1.00E+000 

DRB1*01:01 54 (0.122) 31 (0.07) 1.84 (1.13-3.02) 1.17E-02 3.16E-01 
DRB1*01:02 17 (0.038) 5 (0.011) 3.48 (1.22-12.15) 1.56E-02 4.21E-01 
DRB1*15:01 41 (0.093) 71 (0.161) 0.53 (0.34-0.81) 2.37E-03 6.40E-002 
DRB5*01:01 42 (0.095) 71 (0.161) 0.55 (0.35-0.83) 3.43E-03 3.09E-02 

DRB3/4/5*ABSENT 99 (0.224) 60 (0.136) 1.83 (1.27-2.65) 8.41E-04 7.57E-03 
DQA1*01:01 97 (0.22) 55 (0.125) 1.98 (1.36-2.9) 2.39E-04 1.67E-03 
DQA1*01:02 64 (0.145) 101 (0.23) 0.57 (0.4-0.82) 1.82E-03 1.27E-02 
DQB1*03:03 29 (0.066) 15 (0.034) 1.98 (1.01-4.03) 4.33E-02 7.37E-001 
DQB1*05:01 89 (0.201) 43 (0.098) 2.31 (1.54-3.51) 1.90E-05 3.23E-04 
DQB1*06:02 41 (0.093) 69 (0.158) 0.55 (0.35-0.84) 4.21E-03 7.15E-002 
DPB1*03:01 19 (0.043) 46 (0.105) 0.39 (0.21-0.68) 4.61E-04 8.30E-03 
DPB1*17:01 2 (0.005) 9 (0.02) 0.22 (0.02-1.06) 3.71E-02 6.68E-001 
DPB1*20:01 1 (0.002) 8 (0.018) 0.12 (0-0.92) 2.07E-02 3.72E-001 

Table 1. HLA class I and II allele counts, odds ratios and 95% confidence intervals in follicular lymphoma 
cases and controls (2n =444 cases, 440 controls) from a population-based case-control study of non-
Hodgkin lymphoma in the San Francisco Bay Area. Only alleles with p-values < 0.05 are shown. *Odds 
ratios (OR), 95% confidence interval (95% CI), and p-values were obtained using the 'fisher.test' function 
form he 'stat' package in R. †p-values were adjusted for the number of alleles tested using a Bonferroni 
correction. 
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Allele Case count 
(freq.) 

Control Count 
(freq.) 

*OR (95% CI) *P-value †Bonf. p 

DPB1*01:01 22 (0.050) 25 (0.057) 0.87 (0.46-1.64) 6.56E-01 1.00E+000 
DPB1*02:01 79 (0.179) 66 (0.150) 1.23 (0.85-1.79) 2.76E-01 1.00E+00 
DPB1*03:01 19 (0.043) 46 (0.105) 0.39 (0.21-0.68) 4.61E-04 8.30E-03 
DPB1*04:01 193 (0.437) 181 (0.411) 1.11 (0.84-1.46) 4.54E-01 1.00E+00 
DPB1*04:02 51 (0.115) 46 (0.105) 1.12 (0.72-1.75) 6.67E-01 1.00E+00 
DPB1*05:01 7 (0.016) 6 (0.014) 1.16 (0.33-4.23) 1.00E+00 1.00E+00 
DPB1*06:01 10 (0.023) 3 (0.007) 3.37 (0.86-19.2) 8.99E-02 1.00E+00 
DPB1*09:01 1 (0.002) 1 (0.002) 1 (0.01-78.27) 1.00E+00 1.00E+00 
DPB1*10:01 9 (0.020) 7 (0.016) 1.29 (0.42-4.1) 8.02E-01 1.00E+00 
DPB1*11:01 11 (0.025) 8 (0.018) 1.38 (0.5-3.99) 6.44E-01 1.00E+00 
DPB1*13:01 17 (0.038) 7 (0.016) 2.47 (0.96-7.13) 6.04E-02 1.00E+00 
DPB1*14:01 7 (0.016) 8 (0.018) 0.87 (0.27-2.77) 8.02E-01 1.00E+00 
DPB1*15:01 3 (0.007) 4 (0.009) 0.75 (0.11-4.43) 7.25E-01 1.00E+00 
DPB1*16:01 3 (0.007) 4 (0.009) 0.75 (0.11-4.43) 7.25E-01 1.00E+00 
DPB1*17:01 2 (0.005) 9 (0.020) 0.22 (0.02-1.06) 3.71E-02 6.68E-01 
DPB1*19:01 2 (0.005) 4 (0.009) 0.5 (0.05-3.48) 4.51E-01 1.00E+00 
DPB1*20:01 1 (0.002) 8 (0.018) 0.12 (0-0.92) 2.07E-02 3.72E-01 
DPB1*23:01 2 (0.005) 6 (0.014) 0.33 (0.03-1.85) 1.77E-01 1.00E+00 
Table 2. HLA-DPB1 allele counts, odds ratios and 95% confidence intervals in follicular lymphoma cases 
and controls (2n =444 cases, 440 controls) from a population-based case-control study of non-Hodgkin 
lymphoma in the San Francisco Bay Area. Only alleles with p-values < 0.05 are shown. *Odds ratios (OR), 
95% confidence interval (95% CI), and p-values were obtained using the 'fisher.test' function form he 
'stat' package in R. †p-values were adjusted for the number of alleles tested using a Bonferroni 
correction 

 

As a follow-up to further explore independence between the GWAS SNP, rs10484561, and 
DRB1, DQA1, and DQB1 alleles, we confirmed our previous tag SNP analysis (7) implicating the 
extended haplotype, DRB1*01:01-DQA1*01:01-DQB1*05:01, as a risk factor for FL. Each allele 
of the haplotype was in strong LD with rs10484561 (D’ = 0.93, 1.0, and 1.0, respectively; Table 
3) and was associated with increased risk of FL (Table 5). 
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Allele 1 Allele 2 Haplotype Freq. Observed Expected D' ChiSq 
rs10484561 ‘G’ DQB1*05:01 0.111 18.0 2.1 1.00 152 
 DQA1*01:01 0.111 18.0 2.7 1.00 116 
 DRB1*01:01 0.086 14.0 1.7 0.93 113 
 DRB3/4/5*ABSENT 0.111 18.0 2.8 1.00 111 
       
rs6457327 ‘A’ C*07:02 0.134 22.0 7.9 0.93 45 
 B*07:02 0.122 20.0 6.8 1.00 44 
 C*03:04 0.049 8.0 2.7 1.00 16 
 B*44:03 0.049 8.0 2.7 1.00 16 
 C*02:02 0.043 7.0 2.4 1.00 14 
  C*16:01 0.043 7.0 2.4 1.00 14 
             
rs2647012  ‘A’ DQA1*01:02 0.191 31.3 15.1 0.86 39 
 DQB1*06:02 0.159 26 11.6 1.00 39 
 DRB1*15:01 0.159 26 11.6 1.00 39 
 DRB5*01:01 0.159 26 11.6 1.00 39 
 DRB1*03:01 0.152 25 11.1 1.00 37 
 DQB1*02:01 0.159 26 12.0 0.96 35 
       
DPB1*03:01 (46) rs10484561*T 0.108 17.5 16.9 0.30 0.23 
 rs2647012*G 0.069 11.4 11.1 0.03 0.02 
  rs6457327*C 0.082 13.5 13.2 0.04 0.02 
        
DQB1*06  DRB1*15 0.174 76.0 22.0 0.95 224 

DQB1*06:02 DRB1*15:01 0.158 69.0 11.2 1.00 423 
DQB1*06:01  DQB1*15:02 0.018  8 0.1 1.00  438 

       
DQB1*06 DRB1*13 0.098 43 13.9 0.8 95 

DQB1*06:04 DRB1*13:02 0.032 14.0 0.7 0.93 281 
DQB1*06:09 DRB1*13:02 0.014  6 0.3  1.0 127 
DQB1*06:14 DRB1*13:01 0.005 2 0.1 1.0 38 
DQB1*06:03 DRB1*13:05 0.002 1 0.04 1.0 21 

        
Table 3. Linkage equilibrium (LD) values in the control population for selected allele combinations 
spanning the HLA region. LD valus were estimated with the Pypop software (http://www.pypop.org/). 
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 Stepwise logistic regression 
Allele* Odds Ratio Std. Error 95% CI z-score p-value 
DPB1*03:01 0.29 0.11 0.14 - 0.6 -3.32 0.001 
DQB1*05:01 1.75 0.56 0.94 - 3.29 1.75 0.08 
rs6457327 0.66 0.14 0.44 - 1.01 -1.93 0.054 
rs2647012 + DRB1*15 0.53 0.10 0.37 - 0.75 -3.54 <0.001 
Table 4. Best fitting model from multivariable backward stepwise logistic regression of known HLA risk 
loci* associated with follicular lymphoma risk. *HLA alleles and SNPs coded as present/absent (a 
dominant effect model) included rs6457327, rs2647012, DQB1*05:01 (as a proxy for the rs10484561-
DRB1*01:01-DQA1*01:01-DQB1*05:01 haplotype), DRB1*15 (as a proxy for DRB1*15-DQA1*01-
DQB1*06), DRB1*13 (as a proxi for DRB1*13 - DQA1*01 - DQB1*06), and DPB1*03:01. The rs2647012 
and DRB1*15 allele effects were assessed as 0 = carrier of neither allele, 1 = carrier of rs2647012, and 2 
= carrier of both rs2647012 and DRB1*15.  Likelihood ratio test p-value cutoff of 0.10 was used as 
criteria for significant contribution to the model. 

 

Haplotype and Individual Alleles Case count 
 

Control Count 
 

*OR (95% CI) *P-value *Bonf.  p 
DRB1*01 -DQA1*01-DQB1*05 78 (0.178) 39 (0.089) 2.22 (1.45-3.43) 1.43E-04 2.23E-03 
DRB1*01:01 54 (0.122) 31 (0.070) 1.84 (1.13-3.02) 1.17E-02 3.16E-001 
DRB1*01:02 17 (0.038) 5 (0.011) 3.48 (1.22-12.2) 1.56E-02 4.21E-01 
DRB1*01:03 10 (0.023) 5 (0.011) 1.99 (0.62-7.50) 2.98E-01 1.00E+00 

DQA1*01:01 97 (0.22) 55 (0.125) 1.98 (1.36-2.90) 2.39E-04 1.67E-03 
DQB1*05:01 89 (0.201) 43 (0.098) 2.31 (1.54-3.51) 1.90E-05 3.23E-04 

Table 5. HLA DRB1*01- DQA1*01-DQB1*05 haplotype and allele counts, odds ratios and 95% confidence 
intervals in follicular lymphoma cases and controls (2n=444 cases, 440 controls) from a population-
based case-control study of non-Hodgkin lymphoma in the San Francisco Bay Area. *Odds ratios (OR), 
95% confidence intervals (CI);  p-values are based on a Bonferroni (Bonf) correction for the number of 
alleles tested at each locus (16 DRB1-DQA1-DQB1 haplotypes [2 digit], 27 DRB1 alleles [4 digit], 7 DQA1 
alleles [4 digit], and 17 DQB1 alleles [4 digit]). 

 

DQB1*06 and DRB1*13 have been reported as protective alleles for FL (10, 11). Because 
DQB1*06 is known to exist in haplotypes with both DRB1*13 and DRB1*15 in Caucasian 
populations, it was unclear which haplotypes may be responsible for these associations. Here, 
we found that the DQB1*06 and DRB1*15 alleles were significantly associated with decreased 
FL risk (Table 6), and that although non-significant after correction, the frequency of the 
haplotypes DRB1*15-DQA1*01-DQB1*06 and DRB1*13-DQA1*01-DQB1*06 were similarly 
decreased in cases (Table 6). Logistic regression analysis showed that DRB1*13-DQA1*01-
DQB1*06 was no longer associated with FL risk after adjustment for other FL-associated HLA 
alleles (OR = 0.92, P = 0.83; Table 4). We also found that all carriers of the protective 
DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype were carriers of the rs2647012 A allele, 
although the minor allele frequency of rs2647012 (0.40) was higher than the frequency of the 
linked DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype (0.16). LD between rs2647012 and the 
individual alleles of the haplotype corroborated the high LD between rs2647012 and 



30 
 

DRB1*15:01-DQA1*01:02-DQB1*06:02 (D’ = 1, 0.86, and 1, respectively; Table 3).  Limiting the 
dataset to those individuals without DRB1*15:01-DQA1*01:02-DQB1*06:02 showed a modest 
effect of rs2647012 on FL risk (OR = 0.70, 95% CI = 0.45–1.1, P = 0.10). 

 

Haplotype and Individual Alleles Case Count 
(freq.) 

Control 
Count (freq.) 

*OR (95%CI) *P-value †Bonf.  p 

DRB1*15   - DQA1*01    - DQB1*06 45.0 (0.103) 76.0 (0.174) 0.55 (0.36-0.82) 3.18E-03 5.09E-02 
DRB1*13   - DQA1*01   - DQB1*06 24.0 (0.055) 43.0 (0.098) 0.53 (0.30-0.92) 2.15E-02 3.44E-01 
DRB1*15  45 (0.102) 79 (0.180) 0.52 (0.34-0.78) 9.60E-04 1.25E-002 
DRB1*13 31 (0.07) 50 (0.114) 0.59 (0.36-0.96) 2.69E-02 3.50E-001 

DQA1*01:02 64 (0.145) 101 (0.23) 0.57 (0.4-0.82) 1.82E-03 1.27E-02 
DQA1*01:03 19 (0.043) 32 (0.073) 0.58 (0.3-1.07) 8.25E-02 5.78E-001 

DQB1*06 73 (0.165) 122 (0.279) 0.51 (0.36-0.72) 6.52E-05 3.26E-04 

Table 6.  HLA-DRB1*15 and DRB1*13 haplotypes and constituent alleles and risk of follicular lymphoma 
(2n=444 cases, 440 controls). *Odd ratios (OR), 95% confidence intervals (CI) and p-values were obtained 
using the 'fisher.test' function from the 'stat' package in R.  †P-values were adjusted for the number of 
alleles tested at each locus using a Bonferroni correction (16 DRB1-DQA1-DQB1 haplotypes [2 digit], 13 
DRB1 alleles [2 digit], 7 DQA1 alleles [4 digit], and 5 DQB1 alleles [2 digit]). 

 

For HLA class I loci, no significant associations with FL risk were found (Table 1). However, we 
found that the C*07:02 and B*07:02 alleles were linked to rs6457327 ‘A’ carriers (D’ = 0.93 and 
1.0, respectively; Table 3). Restricting the dataset to those individuals without C*07:02 or 
B*07:02 made little change on the estimated risk statistic for rs6457327 (OR = 0.55, 95% CI = 
0.30–1.00, P = 0.05). 

Discussion 

Previous GWAS and low to medium resolution HLA typing studies have identified major FL-
susceptibility loci in the HLA class I and II regions. As a follow-up, we conducted next-
generation, high-throughput HLA sequencing of class I (HLA-A, -B, and -C) and class II 
(DRB1/3/4/5, DQA1, DQB1, and DPB1) alleles to determine the independent role of HLA alleles 
and SNPs as susceptibility factors for FL. This study provides the first examination of DPB1 
alleles in FL cases, as well as the highest resolution and most complete characterization of HLA 
class I and II alleles to date. Here, we found that DPB1*03:01, DQB1*05:01, rs6457327, and 
DRB1*15 all independently influence FL risk. Specifically, we identified a novel, inverse 
association between the DPB1*03:01 allele and risk of FL that was independent of other HLA 
class II alleles based on LD and logistic regression analyses (Table 4). The low LD between DPB1 
and other class II loci is likely a result of the high level of recombination in the region (18). 
Interestingly, previous studies found that the DPB1*03:01 allele was positively associated with 
risk of nodular sclerosing HL (NSHL) (19, 20). Opposite effects with the same HLA alleles on the 
risk of FL and NSHL were also observed for the DRB1*15:01-DQA1*01:02-DQB1*06:02 
haplotype (high risk for NSHL and low risk for FL) (21). These findings suggest that HLA class II 
alleles may modulate risk for NSHL and FL in a divergent manner. 
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Although non-significant, an inverse association with FL risk was found for DPB1*20:01, an 
allele closely related to DPB1*03:01, and positive associations were found with DPB1*06:01 
and DPB1*13:01 (Table 2). Examining these alleles at the amino acid level shows that the 
DPB1*03:01 and DPB1*20:01 alleles that are overrepresented in controls possess a glutamic 
acid rather than a lysine residue at position 69. These amino acids are oppositely charged, and 
reside in binding pocket 4, suggesting this change may impact DPB1 binding. Serological 
groupings may also be relevant at this locus (22). Characterizing each allele by DPB1 serological 
group showed the DP3 group, containing the 56E and 85-87EAV sequences, represents only 
11.8% of case alleles compared to 19.6% of control alleles. If validated, this may indicate a role 
for anti-DP serological activity in the etiology of FL. 

This study also confirmed our previous report based on a tag SNP analysis (7) that the 
DRB1*01:01-DQA1*01:01-DQB1*05:01 haplotype was associated with a twofold increased risk 
of FL, with DQB1*05:01 being the most significantly associated allele in the risk haplotype. 
There is some indication that the risk haplotype includes DRB1*01:02 and *01:03 (Table 5), 
although this finding will require replication in independent studies. 

We further investigated the inverse associations between the DQB1*06 and DRB1*13 alleles 
and FL risk. As previously described in Caucasians (23), we found that DRB1*13 was in strong LD 
with DQB1*06:03, *06:04, and *06:09 alleles, whereas DQB1*06:02 (the most common 
DQB1*06 allele) was in high LD with HLA-DRB1*15 (Table 3). Thus, we observed a decreased 
risk of FL with all alleles and haplotypes containing DRB1*13 or *15 and DQB1*06, with 
DQA1*01:02 or *01:03 (Table 6). Due to the extensive LD across DRB1, DQA1, and DQB1, it is 
unclear which loci drive these haplotype–disease associations. However, DRB1*13 did not 
affect FL risk after adjustment for other HLA alleles in logistic regression analyses suggesting 
that this association may be the result of confounding by other HLA alleles. 

We also showed that carriers of the DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype harbor 
the rs2647012 variant, which was previously reported as a protective allele for FL (9). This 
haplotype may be a causal variant driving the observed rs2647012 association with FL. Because 
there remained a modest reduction in FL risk for rs2647012 after adjusting for DRB1*15:01-
DQA1*01:02-DQB1*06:02, larger studies will be needed to determine the independent role of 
rs2647012 and the haplotype in disease risk. We further investigated LD between the HLA class 
I GWAS SNP, rs6457327 (8), and HLA class I alleles. Here, we found that the C*07:02 and 
B*07:02 alleles were in LD with the protective rs6457327 A allele. However, individuals with 
rs6457327 A had approximately the same risk regardless of C*07:02 and B*07:02 status, 
suggesting the role for a yet unidentified causal locus that is in LD with rs6457327.  HLA class II 
alleles may influence FL risk through several modes of action including effects on of T-cell 
activation, antigen presentation of infectious or tumor-associated peptides, and HLA 
protein/gene expression. FL and Burkitt lymphoma disrupt normal HLA class II-mediated 
antigen presentation by B-cells and dendritic cells to CD4+ T-cells as a mechanism to hinder 
their recognition by the immune system (24). Underexpression of HLA class II on HL Reed–
Sternberg cells is an independent adverse prognostic factor in classical HL (25), and loss of HLA 
class II expression on DLBCL tumor cells has been associated with poor survival (26). Further 
studies will be needed to clarify the functional role of HLA alleles in lymphomagenesis, which 
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will likely expand our knowledge of the deregulated cellular processes that drive FL and its 
progression. 

Use of cancer registry rapid case ascertainment and SEER abstracts to identify newly diagnosed 
NHL patients helped to diminish selection and participation bias in our study population, 
although patients with aggressive disease and poor prognosis are likely underrepresented. 
However, as FL in general is a more indolent lymphoma, effects of survival bias on case 
participation should not have affected these analyses.  Further, bias effects were diminished by 
the high participation rate for biospecimen collection in participants (~87%). The small number 
of non-White participants precluded analyses by race and ethnicity. Despite evidence of 
internal consistency in the magnitude and direction of many of our results, we had low power 
to test associations for low frequency variants and results from analyses with few ‘exposed’ 
should be interpreted conservatively and require validation in further studies.  In conclusion, 
these studies provide additional evidence that HLA alleles play essential roles in the 
pathogenesis of FL. As our findings show, this involves complex, multi-locus effects that span 
the HLA region. Because of the extensive and complex LD patterns within this region, studies in 
FL case–control populations from non-Caucasian ancestral pedigrees are underway that may 
help to distinguish between primary (causal) and secondary HLA signals. Because the causative 
alleles could be in non-coding (nc) regions that effect gene expression, studies are currently 
underway to test differential allelic gene expression of ncSNPs in high LD with HLA susceptibility 
alleles. Moreover, the contribution of HLA alleles in the pathogenesis of FL and other subtypes 
of NHL is a major focus of future studies within InterLymph where the HLA alleles identified 
here and in other independent case–control studies of NHL will be tested for further validation.  
Thus, we anticipate that substantial progress will be made in the near future that will help to 
elucidate the genetic basis of NHL. Such data will likely highlight pathways and components 
that may be amenable to therapeutic modulation. 
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Abstract 
 
After extensive research, significant ambiguity remains over which genetic loci within the HLA 
class II region impact follicular lymphoma risk.  In order to resolve this important question, 
genetic epidemiologists will need to move beyond Caucasian study populations, which have 
dominated this research field.  Populations with African ancestry in particular are known to 
carry unique haplotypes that may be highly informative in the search for causal variants of 
follicular lymphoma.  Obtaining sufficient subjects to make meaningful comparisons, however, 
may require supplementing existing lymphoma biobanks with historical samples stored as 
formalin-fixed, paraffin-embedded (FFPE) tissues.  This sample type is abundant, yet unmatched 
to healthy controls.  Furthermore, DNA from this source is technically difficult to work with, 
often fragmented to very short lengths.  We present here a methodology to circumvent these 
issues; using array hybridization to determine genotypes and using publicly available data to 
create ancestry matched controls.  With pilot data, we demonstrate that HLA class II allele calls 
from FFPE DNA can be obtained that are of comparable confidence to those derived from non-
FFPE DNA.  This study, even when reduced to just 16 quality control filtered cases and 64 
ancestry matched controls, was able to detect previously described associations at HLA-
DQB1*06 and HLA-DRB1*15.  We present these results here and set forth guidelines for 
improving allele calls in larger, future studies using FFPE derived DNA.   
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Introduction 
 
With the recent discovery of HLA class II alleles impacting follicular lymphoma (FL) risk (1,2), 
significant research has since been dedicated to better characterizing this important 
association.  Studies that have been performed include genome-wide association (3,4), targeted 
sequencing (5), amino acid analysis (6), expression quantitative trait localization (7), and 
molecular characterization (8).  Despite the successes of these studies, the HLA class II-FL 
association remains ambiguous.  Of primary concern, there is not strong evidence to localize 
this association to a particular locus.  Rather, researchers must rely on associated haplotypes, 
which span several polymorphic genes, including HLA-DRB1, HLA-DQA1, and HLA-DQB1. 
 
Resolution of this ambiguity will have multiple benefits to researchers of FL.  As with all genetic 
associations, the motivation for discovery is translation of this newfound knowledge into viable 
preventative measures and improved medicines for treatment.  These desirable outcomes 
require a fundamental understanding of the mechanism with which a genetic change is 
impacting disease risk.  The complex role of the HLA class II protein group within the immune 
system obscures this mechanism.  Likely a complete understanding the impact of these proteins 
on FL risk will be achieved only with the aid of in-vitro or animal model based studies.  Until the 
precision of the HLA class II-FL associations is improved from haplotypes to individual genes, 
however, these mechanistic studies will be unable to know, with confidence, which genetic loci 
to test.  As a result, each experiment is two-to-three times more labor intensive and costly.   
 
The FL-associated haplotypes spanning HLA-DRB1, HLA-DQA1, and HLA-DQB1 are virtually 
unbroken in Caucasian populations.  Genetic association studies limited to this ethnicity (1,3,5) 
have little power to distinguish FL associated alleles of HLA-DRB1 and HLA-DQB1. In contrast, 
African-American populations are predicted to harbor highly informative genotypes that are 
not typically found in other populations (9).  Specifically, 9% of African-Americans have been 
recorded carrying DQB1*05:01 without DRB1*01:01.  The same percentage carry DRB1*13 
without DQB1*06 (Table 1). 
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  FL Risk Allele Frequencies Haplotypes Frequencies 

Population 
DRB1*

01 
DQB1 

*05:01   
DQB1*05:01  + NOT 

DRB1*01 
DRB1*01 + NOT  

DQB1*05:01 

Caucasian 0.12 0.12   0.01 0.00 
AfrAm. 0.07 0.16   0.09 0.00 
Asian-PI 0.03 0.08   0.06 0.00 
Hispanic 0.08 0.11   0.04 0.00 

  
FL Protective Alleles 

Frequencies Haplotypes Frequencies 

Population 
DRB1
*15 

DRB1 
*13 

DQB1*
06 

DQB1*06 + NOT 
DRB1*13/15 

DRB1*13 + NOT 
DQB1*06 

DRB1*15 + NOT 
DQB1*06 

Caucasian 0.15 0.11 0.25 0.00 0.01 0.00 
AfrAm. 0.14 0.18 0.27 0.05 0.09 0.00 
Asian-PI 0.17 0.07 0.22 0.05 0.01 0.07 
Hispanic 0.09 0.11 0.18 0.01 0.03 0.00 

Table 1. FL associated allele frequencies in four U.S. populations.  Data was taken from Maier et al.’s 
(9) survey of the United States National Bone Marrow Donor Program and includes >500 individuals for 
each ethnic group typed at HLA-DRB1 and HLA-DQB1.  Non-Caucasian populations need to be examined 
to distinguish FL associated HLA-DRB1 alleles from their HLA-DQB1 haplotype partners.  PI: Pacific 
Islander.  

 
An examination of HLA alleles in a population of African-American FL patients would likely 
provide key insights into the specific loci of association for this disease; however, such a 
population was not immediately available in either of the San Francisco-Bay Area based case-
control studies of non-Hodgkin lymphoma (NHL) (10).  African-Americans have a 2-3 fold lower 
incidence of FL than Caucasian-Americans (11), and are a minority population in the six counties 
within our study area.  As a result, our study alone is underpowered to make comparisons of 
statistical significance. 
 
One method of obtaining FL case subject DNA is to gather samples from formalin-fixed, 
paraffin-embedded (FFPE) tissue archives.  These archives, originally designed to preserve 
morphological features of cells, go back as far as 100 years, and are vast in size, containing 
preserved tissues of virtually all known disease (12,13). In recent years, they have seen 
resurgence in use due to increased interest in the nucleic acids also preserved.  An examination 
of PubMed publications shows an exponential increase in the use of the term “FFPE”, beginning 
just after completion of the human genome project in 2001 (Figure 1).  
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Figure 1.  Exponential Growth of FFPE Research. Shown are the number of papers published each year 
containing the terms, “FFPE”, “TCE” and “GWAS”.  “TCE” and “GWAS” were used as comparisons across 
the same research and publication environment.  The left-hand y-axis scale refers to publications per 
year containing “FFPE” or “GWAS,” while the right-hand y-axis scale refers to publications containing 
“GWAS.” Data gathered from (14). 
 
Although the FFPE tissue archive is vast, using these samples presents technical and 
methodological challenges.  FFPE-extracted DNA and RNA are often of lower quality than 
nucleic acids preserved by other methods.  The fixation process causes the formation of DNA-
protein cross-links, and FFPE-extracted DNA is often very fragmented.  These traits make 
amplification and hybridization less reliable in FFPE-extracted DNA (13,15).  However, with the 
increased attention that this field has gained, there are many published guidelines and 
methodologies for optimal extraction (16–18), as well as numerous commercially available kits 
for sale.   
 
Epidemiologically, there is a problem in obtaining cases that have not been matched to healthy 
controls when deriving DNA from FFPE tissues. Well-matched controls are crucial to draw 
meaningful conclusions from any case-control study.  This issue is compounded by the 
increased importance of ethnicity matching when performing genetic analyses of an admixed 
population (19).  To circumvent potential genetic biases arising in our data, a combination of 
careful control selection and population stratification adjustment must be employed.  
Population stratification may be measured by applying principle components analysis to 
ancestry informative genetic markers (20).  The axes of variation calculated in this analysis can 
then be used to adjust measured genotypes by subtle ancestry differences between case and 
control populations (21).  This general methodology has previously been successfully used to 
examine the HLA region in an admixed population, using less than 10,000 SNPs to infer 
population structures (22).  An alternative to this ‘virtual matching’, axes of ancestral variation 
may be used to directly match specific controls to cases (23,24).  This of course requires having 
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controls with similar ancestry to each case.  Making use of large, publicly available datasets 
should provide matches in most cases (23,25).   
 
HLA typing of FFPE tissues is a technically difficult task due to the highly fragmented nature of 
FFPE-extracted DNA.  Classic sequence-based typing techniques for HLA class II genes have 
relied on polymerase chain reaction (PCR) amplification of ~200 base pair products (26,27), a 
task that is not reliable with fragmented DNA.  A viable alternative to amplification and 
sequencing techniques for FFPE DNA may be SNP genotyping. SNP arrays have shown utility as 
a method for genotyping FFPE DNA (28) as well as for inferring HLA allele types (29,30).  ‘Tag-
SNP’ HLA typing relies on population specific linkage disequilibrium (LD) and large training data 
sets to create HLA allele predictive algorithms that use on HLA region SNPs as input.  Tag-SNP 
HLA typing has been developed into several software packages (31,32) specifically designed to 
predict HLA allele types from SNP-genotyping arrays.  To the best of our knowledge, it has not 
been tested whether SNP array data from FFPE tissues is reliable for imputing HLA alleles.  
 
We set forth to develop a protocol to robustly compare HLA types of African American FL case 
DNA extracted from FFPE to genetically matched controls.  In completing this task, we present 
here a broadly applicable methodology that may be of interest to researchers using FFPE 
extracted DNA, performing HLA-tag SNP genotyping, or to those performing genetic analyses in 
an admixed population.  The pilot data shown here indicates that this method is reliable and 
that HLA allele types imputed from FFPE extracted DNA are of comparable quality to other DNA 
sources.     
 

Methods 

FFPE Samples and DNA extraction 
In total, 33 African-American FL-case FFPE tissue blocks from were gathered from the Los 
Angeles County Residual Tissue Repository.  10μM slices were taken from each sample and DNA 
was extracted using the High Pure FFPET DNA Isolation Kit (Roche Diagnostics—Indianapolis, IN, 
USA) according to the manufacturer’s protocol.  DNA was quantified using the Quant-It 
PicoGreen dsDNA assay kit (Thermo-Fisher Scientific, Waltham, MA, USA).  DNA quality was 
assessed using the Infinium HD FFPE QC Assay kit (Illumina—San Diego, CA, USA), a real-time 
polymerase chain reaction (qPCR) assay that compares performance of FFPE extracted DNA to 
equivalent amounts of high-quality positive control DNA.  Twelve FFPE DNA samples of varying 
quality were taken forward for genotyping, including one duplicate sample that was extracted 
twice.   
 
Non-FFPE FL Samples 
African-American FL cases were also drawn from a San Francisco Bay Area population-based 
study of Non-Hodgkin Lymphoma.  Details of the study have been previously reported (10); 
however, cases for the research presented here were selected for FL diagnosis, with available 
DNA, and self-reported as African-American.  Nine subjects were identified in this way, with 
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DNA extracted from whole blood, clotted blood, or buccal cells.  DNA was previously extracted 
and stored at -80°C, but was quantified prior to genotyping for this study.   
 
HLA-DQB1 Allele Typing 
HLA-DQB1 alleles were typed in FL samples with sufficient DNA using two different assays.  
Multiplexed, ligation-dependent probe amplification (MLPA) is able to provide 2-4 digit typing 
resolution for this gene (33).  An alternative assay using sequence-based typing (SBT) was also 
employed which generally is able to provide 4-digit resolution (27).   
 
Genome-Wide Genotyping 
Genotyping was performed on HumanOmniExpress 12.1 chips according to the Illumina 
Infinium HD Assay Ultra protocol (Illumina—San Diego, CA, USA).   Chips were scanned using an 
Illumina HiScan, and quality control was assessed with Illumina Genome Studio software.  
 
Non-FL Controls 
Individual-level SNP data was obtained via the database of Genotypes And Phenotypes (www. 
dbgap.ncbi.nlm.nih.gov/) for consenting individuals participating in the Jackson Heart Study 
(data accession phs000499.v2.p1).  The Jackson Heart Study is a cohort of non-institutionalized 
African-Americans, with genome-wide data available for some individuals (34).  In total, data 
from 828 unrelated individuals was used in this study, after removal of related individuals and 
selection for consenting subjects with genome-wide SNP genotypes.  The work presented here 
has been approved by the Committee for the Protections of Human Subjects at the University 
of California, Berkeley, and the University of Alabama, Birmingham, as well as the National 
Heart, Lung, and Blood Institute dbGAP data access committee. 
 
HLA Region Imputation 
SNP locations for all data sets used were normalized to the same genome-assembly, NCBI36, 
using the liftover tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver).  Data were converted 
between formats using the April 15, 2014 release of PLINK 1.90 alpha (https://www.cog-
genomics.org/plink2/) and gtool 0.7.5 
(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html).  To improve our ability to 
call HLA allele types, SNPs not genotyped in our samples were imputed using Impute2.3.0 
(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html)(35), using the 1000 Genomes Project 
pilot data as a reference (36).  SNPs in the chromosome 6 interval from 25.5Mbp to 33.5Mbp 
were imputed, with only those imputed SNPs with greater than 90% probability used in the 
next phase of analysis.   
 
HLA Alleles via Tag-SNPs 
HLA-DRB1 and HLA-DQB1 alleles were called for both FL cases and controls using the package 
HIBAG (32), on the statistical software R (http://www.r-project.org/).  HIBAG infers HLA alleles 
from HLA region SNP genotypes using models trained on datasets containing both allele and 
SNP information.  We used 4-digit HLA-DRB1 and HLA-DQB1 typing models trained on an 
African-American cohort with previously demonstrated high accuracy for this population 
(graciously provided by Dr. Albert Levin, Henry Ford Health System, Detroit, MI).  HIBAG 

http://genome.ucsc.edu/cgi-bin/hgLiftOver
https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.r-project.org/
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outputs the posterior probability of an allele call; using a posterior probability cutoff of >0.10, 
these models achieved 89.8 % accuracy at HLA-DRB1 and 97.6% accuracy at HLA-DQB1, across a 
sample size of >150 individuals (37).   
 
Association Testing with Adjustment for Population Stratification 
Potential differences in population ancestry between our California-derived FL cases and the 
control population drawn from Mississippi were accounted for using Eigensoft v5.0.1 
(http://www.hsph.harvard.edu/alkes-price/software/) (21).  Genotypes for 11 diverse 
populations were downloaded from the International Hapmap Project Phase 3 (38), and 
offspring were removed, resulting in 970 individuals.  This dataset was merged with our case 
and control data using Eigensoft mergit, resulting in 1,819 individuals with overlapping data at 
153,315 SNP positions.  Principle components analysis was performed using Eigensoft 
smartpca, with the special parameter, “lsqproject: YES” to use a least squares approach for 
missing data points.  Principle components were generating using only HapMap data, and then 
projected onto our cases and controls.  After 5 outlier removal iterations, 61/970 HapMap 
subjects were removed using smartpca’s default parameters.  Regions of long linkage 
disequilibrium, including the HLA region, were excluded from this analysis as recommended by 
Price et al. (21).  The principle components (or eigenvectors) were extracted for the case and 
control samples, and input into the Eigensoft smarteigenstrat program, with HLA allele call 
genotypes.  The smarteigenstrat program then calculates a χ² value for each locus tested, using 
ancestry-adjusted genotypes and ancestry-adjusted case-status. 
 
A second, perhaps more tangible, strategy for ancestry adjustment is to match controls to cases 
based on proximity in the multi-dimensional space of principle components (23,24).  The 
benefit of this is the ability to perform a more classic comparison of alleles between cases and 
controls.  To aid in this, a script was written in Perl (http://www.perl.org/) to match controls to 
each case, with variable inputs for the number of controls to match, the number of principle 
components to match on, and a maximum distance between matched samples (See 
Supplementary Materials).  For each subject, values at each eigenvector were weighted by 
multiplying the square root of the eigenvalue by the unweighted eigenvector.   The Euclidean 
distance in multidimensional eigenvector space was calculated for each case-control 
combination, and the controls closest to each case were selected as a comparison group 
(without allowing the same control to be used twice).  The R command “fisher.test” in the 
“stat” package was then used to calculate odds ratios, confidence intervals, and p-values. 
 
Results 
 
FFPE DNA was initially assessed for performance using call rate on the Illumina OmniExpress 
chip.  We observed a wide range in SNP call rates (0.53-0.92) that was strongly correlated with 
qPCR performance (R2 = 0.78—Figure 2).  In contrast, all SNP call rates in our African-American 
DNA extracted from non-FFPE tissues were >0.996. 

 

http://www.hsph.harvard.edu/alkes-price/software/
http://www.perl.org/
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Figure 2. qPCR Performance Predicts SNP Call Success in FFPE DNA.  The quality of FFPE DNA can be 
assessed by comparing the qPCR Cq values of FFPE DNA and high quality reference DNA.  The x-axis here 
shows these differences with a lower value indicating higher quality DNA.  A wide range of Cq values 
was input to assess the ability of the SNP array to genotype lower quality samples.  There was a strong 
trend towards improved SNP call rate with better qPCR performance.     
 
To improve our ability to call HLA alleles, ungenotyped SNPs in the HLA region were imputed 
using IMPUTE2.  Using internal cross-validation built into IMPUTE2, we measured the 
concordance of known SNP genotypes with imputed calls on these genotypes when masked.  
Using a maximum probability cutoff of >0.9; control, non-FFPE case, and FFPE case samples had 
98.2%, 97.4%, and 85.4% concordance, respectively.   
 
HLA allele calls were imputed using HIBAG, which gives a posterior probability for the most-
likely allele call.  All samples examined were above a posterior probability cutoff of 0.10 for 
HLA-DQB1.  All but 1 FFPE sample (9%) and 4 control samples (0.5%) were above this cutoff for 
HLA-DRB1.  Interestingly, posterior probability of HLA allele calls was not strongly correlated 
with SNP call rate (Supplementary Figure 1).  HLA-DQB1 allele calls in FL cases were validated 
using laboratory data, with SBT and MLPA typing providing HLA-DQB1 allele calls for 18/18 non-
FFPE case alleles, and 16/24 FFPE case samples.  FFPE DNA samples performed inconsistently in 
laboratory assays, exhibiting poor amplification during PCR steps.  Of the 18 non-FFPE case 
alleles, HIBAG and laboratory assays agreed on 16 alleles (89%).  Among FFPE derived samples, 
HIBAG called the same allele as laboratory assays in 13/16 alleles (81%) (Supplementary Table 
1).  Examining the larger population of control samples, imputed HLA allele frequencies aligned 
well with expected frequencies based on previously published frequencies (Table 2).  
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Allele N Freq. Exp. 
DRB1*01 112 0.07 0.07 
DQB1*05:01 271 0.16 0.16 
DQB1*05:01 NOT DRB1*01 142 0.09 0.09 
DRB1*13 277 0.17 0.18 
DRB1*15 217 0.13 0.14 
DQB1*06 436 0.26 0.27 
DRB1*13 NOT DQB1*06 91 0.05 0.09 
DQB1*06 NOT DRB1*13/15 63 0.04 0.05 

Table 2. Imputed Allele Frequencies vs. Expected.  Shown are allele counts and frequencies for 828 non 
FL African-American subjects, imputed based on SNP genotypes.  The expected frequencies in the 
rightmost column are based on a self-reported African American group of bone marrow donors (9).  
Most alleles and haplotypes were very close in frequency to the previously published estimates for this 
ethnicity, giving confidence to this method of allele typing.  N = Total number of alleles or haplotypes 
imputed, Freq.=Frequency, Exp.=Expected frequency.  

Principle components analysis was used to infer ancestry among our cases and controls.  
Supplementary Table 2 shows the top 10 computed eigenvectors for the 11 worldwide 
populations in HapMap, and the proportion of variance explained by each eigenvector. This 
table demonstrates that after the top three eigenvectors, each additional component explains 
<1% of the total genetic variance.  The eigenvectors calculated using HapMap3 samples were 
projected onto our FL cases and controls to assess ancestry of our subjects.  Figure 3 shows the 
first four eigenvectors; however, similar charts for eigenvectors 5-10 can be seen in 
Supplementary Figures 2-4.  There is a clear spread of ancestry among the African-American 
subjects, particularly along the first three eigenvectors.  However, control subjects, case 
subjects, and African-American HapMap populations overlapped well, particularly in the first 
two eigenvectors.  There was a group of four FL case subjects (including both versions of the 
one duplicate sample) that appeared to be outliers from the rest of the African-American 
samples.  These cases were all derived from FFPE tissue, but were not associated with SNP call 
rate or any other notable trait (Supplementary Table 1).  This could indicate issues with 
ancestry reports in the FFPE tissue archive.   

 

 

 

 

 



45 
 

Figure 3. FL Cases and 
Controls Projected onto Top 
Axes of Variation.  The upper 
panel plots the top two 
eigenvectors, while 
eigenvectors 3 and 4 are 
plotted in the bottom panel.  
Shown as pink diamonds are 
FL case subjects.  These 
samples were recorded or 
self-reported as African-
American, however a great 
deal of ancestral variation 
appears to exist in these 
samples, emphasizing the 
need to use genetic variation 
to assist in matching controls.  
Control subjects from the 
Jackson Heart Study had 
variation along the first 3 
eigenvectors, but aligned well 
with the African-American 
HapMap population ‘ASW’.  
These individual eigenvector 
values will be used to correct 
for population stratification 
or match controls on 
ancestry. Population codes: 
ASW: African ancestry in 
Southwest USA; CEU: Utah 
residents with Northern and 

Western European ancestry from the CEPH collection; CHB: Han Chinese in Beijing, China; CHD: Chinese 
in Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, Texas; JPT: Japanese in Tokyo, 
Japan; LWK: Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, California; MKK: Maasai in 
Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria.     

 

Matching controls to cases on the top 3 principle components resulted in 5 FL samples (4 
subjects and 1 duplicate) being removed as outliers for which no controls could be matched.  
The other 16 cases were matched to 4 controls each (Figure 4).  Variation of these samples on 
eigenvectors 5-10 can be seen in Supplementary Figures 5-7.   
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Figure 4. Ancestry Matched FL Cases and Controls.  A reduction of Figure 3, this figure shows African-
American FL cases derived from FFPE and non-FFPE sources (green) and the top four controls for each 
case (red), matched by weighted Euclidean distance to the top 3 eigenvectors.  Each control was allowed 
to match to only one case.  

Association tests were run on 8 HLA alleles and haplotypes using two methods, Fisher’s exact 
test with 16 cases and 64 ancestry matched controls, and the smarteigenstrat χ² test making 
use of 21 cases and 828 controls.  The results of these tests are shown in Table 4. Two alleles, 
DRB1*15 and DQB1*06 were significantly associated with FL (p<0.05) according to both 
methodologies.  Using matched controls, the allele DQB1*05:01 approached significance when 
considering all carriers (p = 0.08), or subjects that carry the allele without DRB1*01 (p = 0.14).    
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Allele / Haplotype 
Cases 

(%) 
Controls 

(%) OR 95% CI 
p- 

value Eig. χ² Eig. p 
DRB1*01 2 (0.13) 4 (0.06) 2.12 (0.26, Inf) 0.34 0.01 0.92 
DQB1*05:01 7 (0.44) 14 (0.22) 2.74 (0.88, Inf) 0.08 0.26 0.61 
DQB1*05:01 without DRB1*01 5 (0.31) 10 (0.16) 2.42 (0.67, Inf) 0.14 0.88 0.34 
DRB1*13 4 (0.25) 20 (0.31) 0.74 (0, 2.37) 0.44 0.00 1.00 
DRB1*15 1 (0.06) 23 (0.36) 0.12 (0, 0.72) 0.02 4.83 0.03 
DQB1*06 3 (0.19) 35 (0.55) 0.19 (0, 0.67) 0.01 7.87 0.005 
DRB1*13 without DQB1*06 1 (0.06) 7 (0.11) 0.55 (0, 3.79) 0.50 0.45 0.50 
DQB1*06 withot DRB1*13/15 0 (0) 4 (0.06) 0.00 (0, 4.52) 0.40 1.40 0.23 
 
Table 4. Association of HLA Class II Alleles with FL.  The leftmost columns were calculated using 
ancestry-matched controls (N=64) to African-American FL cases (N=16).  The R command ‘fisher.test’ 
was used to calculate odds ratios, 95% confidence intervals and 1-tailed p-values for each allele or 
haplotype.  A subject was counted if they carried one or two copies of the allele.  In the case of 
haplotypes, subjects were counted if they carried one or two copies of the first allele listed and zero 
copies of the second allele listed. The right-most columns were created using the smarteigenstrat 
ancestry correction to calculate χ² values and the corresponding p-values with 1 degree of 
freedom.  Abbreviations: OR: odds ratio, CI: confidence interval, p: p-value, Inf: infinite. Eig: 
Eigenstrat.    
 

Discussion 

This paper presents a methodology that can be used in genetic epidemiological studies making 
use of FFPE tissues.  We provide recommendations for optimizing quality of DNA extracted 
from FFPE tissues and show that even low-quality DNA can provide robust HLA allele calls.  
Using this methodology, we have created promising pilot data that aligns well with previously 
described associations, indicating that our strategy is sound. 
 
Optimization of FFPE DNA extraction is crucial to success in downstream applications.  We have 
found that tissue slices 10um or less more readily undergo protein digestion, and produce 
higher quality DNA.  When it is impossible to obtain an entire tissue block, it is preferable to 
obtain a 10um tissue section, rather than a small ‘core’ of the entire tissue block. We found 
that working with tissue cores was prohibitively difficult, given the physical challenge of taking 
10um sections from millimeter wide cores. It is advisable not to store tissues in thin sections for 
long, due to atmospheric oxidation; however, we have extracted robust, high-quality DNA from 
sections exposed to air for several days while in transit.  All FFPE DNA will be fragmented as a 
result of the fixation process.  Therefore, it is preferable to perform DNA extraction that 
removes small size DNA fragments. We’ve found that the Roche High Pure FFPET DNA Isolation 
Kit, which uses High Pure Filter Columns, effectively removes all DNA less than 100nt in length. 
This is a simple and elegant solution to removing DNA fragments which have potential to 
interfere with downstream applications.  We show here that improved DNA quality is directly 
and strongly correlated with improved performance in genome-wide SNP genotyping assays 
(Figure 2). 
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Higher SNP call rates were associated with improved sample performance during imputation of 
ungenotyped SNPs, as measured by the concordance of known SNP genotypes with imputed 
genotypes.  High quality imputations greatly aid in expanding the total number of SNPs in a 
region.  This can become important when downstream applications rely on the overlap of 
specific SNPs, as is the case when calculating principle components across different 
populations, or performing HLA allele imputations using a SNP-based model.   

Despite a number of our FFPE derived samples showing relatively poor SNP call rates, our HLA 
allele calling performed well overall, with a comparable successful call rate compared to non-
FFPE DNA.  The models we used to impute HLA alleles are reported to achieve 89.8 % accuracy 
at HLA-DRB1 and 97.6% accuracy at HLA-DQB1 when a posterior probability cutoff of 0.10 is 
used (37).  At the HLA-DRB1 locus, we observed ranges of posterior probability from 0.16-0.85 
and 0.09-0.53 for non-FFPE and FFPE extracted samples, respectively.  These ranges were 0.12-
0.91 and 0.15-0.85 at HLA-DQB1 (Supplementary Table 1).  These values indicate that we could 
likely expect greater than 90% accuracy in HLA-DRB1 call rates and greater than 98% accuracy 
in HLA-DQB1 call rates.  Testing HLA-DQB1 allele imputations with other allele typing assays 
yielded lower than 98% agreement however.  Alleles imputed from SNPs were in agreement 
with alleles typed using MLPA and/or SBT in 81% of FFPE sample alleles, and 89% of non-FFPE 
sample alleles.  All discordant alleles had posterior probabilities <0.4, indicating a higher 
stringency cutoff may be appropriate.  It should also be noted that no HLA typing method is 
100% accurate, and there is no reported reliable method for HLA typing FFPE tissues.  Given 
these issues, we consider our results a success.    

The value of SNP-array based allele typing vs classic HLA typing in these FFPE samples is most 
clear when we examine the total call rate.  A combination of MLPA and SBT, run twice for each 
sample, yielded 3/12 samples with no reliable HLA-DQB1 allele calls and an additional 2/12 
samples with just one allele called.  HIBAG gave allele calls for each sample with posterior 
probabilities to indicate the quality of the call.   

We observed four FFPE-derived FL cases with ancestry that was discordant from other observed 
African-American populations (Figure 3). These samples did not have exceptionally low SNP call 
rates (Supplementary Table 1), indicating that these samples may not be African-American, as 
reported.  There are numerous reasons why historical samples may have incorrect ethnicity 
records: initial recording of ethnicity may have been performed improperly, discordant 
ethnicities may have been merged for simplicity, or patients themselves may have been 
motivated to report incorrect ethnicity information.  This finding underscores the value of 
genome-wide ancestry information in a study such as this.   

Association tests run using the samples we had available were remarkably consistent with 
previous findings.  Table 4 shows that all previously described FL risk alleles had odds ratios 
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(OR) greater than 2.0, and all previously described FL protective alleles less than 0.75.  Of 
course, there is limited power with such few cases to demonstrate that these ORs differ from 
1.0 with any confidence.  Despite this, our numbers do indicate that the alleles HLA-DQB1*06 
(OR=0.19, 95% confidence interval [CI] = (0, 0.67), p = 0.01) and HLA-DRB1*15 (OR=0.12, 95% CI 
= (0, 0.72), p = 0.02) have ORs significantly less than 1.0 (α = 0.05).  These results are consistent 
when eigenstrat genotype/phenotype ancestry corrections are made on our full dataset rather 
than using ancestry matched controls (Table 4).  These allele associations are an encouraging 
sign that the methodology used in this study is working.  Far greater sample numbers will be 
needed to resolve the ambiguity in FL associated HLA haplotypes; however, the early trends 
observed here indicate that this process can be successful when applied on a larger scale. 

In summary, we show here that FFPE tissues represent a viable source of FL patient DNA, and 
this DNA produces high-quality HLA class II allele calls.  The combination of genome-wide SNP 
arrays, SNP imputation, and tag-SNP HLA typing was robust even with low quality FFPE DNA.  
Concordance rates of HLA allele calls between this method and other HLA typing methods were 
similarly high in FFPE and non-FFPE extracted DNA.  We show that genome-wide SNPs can be 
used to assess ancestry in FFPE extracted DNA, and that this process is crucial when selecting a 
non-diseased comparison group.  Finally, we show that even with a very small number of cases, 
the effect of certain HLA alleles on FL risk becomes evident using this method.  The use of FFPE 
tissues, publicly available sequence databases, and admixed populations in disease research will 
likely grow in the coming years.  The techniques outlined here are broadly applicable to this 
related research, and can be considered guidelines for use of FFPE DNA in genetic 
epidemiology, particularly in an admixed population.    
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Eigenvector Eigenvalue % Variance Cumulative % Variance 
1 76.4 8.4 8.4 
2 30.2 3.3 11.7 
3 12.3 1.4 13.1 
4 7.5 0.8 13.9 
5 6.9 0.8 14.7 
6 6.0 0.7 15.4 
7 3.3 0.4 15.7 
8 1.7 0.2 15.9 
9 1.4 0.2 16.1 

10 1.4 0.2 16.2 
Supplementary Table 2. Principle Components Variance Explained.  The Eigensoft script smartpca 
calculated eigenvalues and eigenvectors for the HapMap3 dataset.  Proportion of variance explained by 
eigenvector K was calculated by dividing eigenvalue K by the sum of all eigenvalues.  With this 
methodology, we can see that after 3 principle components there is diminishing value to considering 
more eigenvectors.    
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Supplementary Figure 1.  SNP Call Rate and HLA Allele Call Confidence.    Initial SNP call rates from the 
Illumina Omni-Express Chip are plotted against the posterior probability of the most likely HLA allele 
calls from HIBAG.  The samples plotted here are the 21 African-American FL cases from FFPE and non 
FFPE tissues.  There is a trend towards more data providing higher confidence allele calls; however, the 
correlation is low, indicating call rate is not the major source of variation in this data.  Certain alleles are 
likely more difficult to call with confidence.   
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Supplementary Figure 2. FL Cases and Controls with HapMap Samples.  Eigenvectors were calculated 
using HapMap3 samples, and then projected onto African American FL cases and controls.  Eigenvectors 
5 and 6 are shown here.  Population codes: ASW: African ancestry in Southwest USA; CEU: Utah 
residents with Northern and Western European ancestry from the CEPH collection; CHB: Han Chinese in 
Beijing, China; CHD: Chinese in Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, Texas; 
JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, 
California; MKK: Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria. 
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Supplementary Figure 3. FL Cases and Controls with HapMap Samples.  Eigenvectors were calculated 
using HapMap3 samples, and then projected onto African American FL cases and controls.  Eigenvectors 
7 and 8 are shown here.  Population codes: ASW: African ancestry in Southwest USA; CEU: Utah 
residents with Northern and Western European ancestry from the CEPH collection; CHB: Han Chinese in 
Beijing, China; CHD: Chinese in Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, Texas; 
JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, 
California; MKK: Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria. 
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Supplementary Figure 4. FL Cases and Controls with HapMap Samples.  Eigenvectors were calculated 
using HapMap3 samples, and then projected onto African American FL cases and controls.  Eigenvectors 
9 and 10 are shown here.  Population codes: ASW: African ancestry in Southwest USA; CEU: Utah 
residents with Northern and Western European ancestry from the CEPH collection; CHB: Han Chinese in 
Beijing, China; CHD: Chinese in Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, Texas; 
JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, 
California; MKK: Maasai in Kinyawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria.   



59 
 

 

Supplementary Figure 5. FL Ancestry Matched FL Cases and Controls.  A reduction of Supplementary 
Figure 2, this shows African-American FL cases derived from FFPE and non-FFPE sources (green) and the 
top four controls for each case (red), matched by weighted Euclidean distance to the top 3 eigenvectors.  
Each control was allowed to match to only one case.  Despite these eigenvectors not being used in the 
control matching process, the two populations do not appear different.   
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Supplementary Figure 6. FL Ancestry Matched FL Cases and Controls.  A reduction of Supplementary 
Figure 3, this shows African-American FL cases derived from FFPE and non-FFPE sources (green) and the 
top four controls for each case (red), matched by weighted Euclidean distance to the top 3 eigenvectors.  
Each control was allowed to match to only one case.  Despite these eigenvectors not being used in the 
control matching process, the two populations do not appear different.  

  



61 
 

  

Supplementary Figure 6. FL Ancestry Matched FL Cases and Controls.  A reduction of Supplementary 
Figure 4, this shows African-American FL cases derived from FFPE and non-FFPE sources (green) and the 
top four controls for each case (red), matched by weighted Euclidean distance to the top 3 eigenvectors.  
Each control was allowed to match to only one case.  Despite these eigenvectors not being used in the 
control matching process, the two populations do not appear different.  
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Supplementary Material: Code Used to Match Cases and Controls.  The code below, named 
pcamatcher.pl, can be used in a linux computing environment to create controls matched to cases on 
the top eigenvectors from Eigensoft output.   
 
#! /usr/bin/perl 
use warnings; 
 
#pcamatcher.pl by Kipp Akers 
# script to match cases to controls on principle components, using 
eigensoft.evec file 
# usage: pcamatcher.pl input.evec numberofpcs youroutputname  
 
open (INPUT, $ARGV[0]) or die $!; 
$outfile = $ARGV[2]; 
$totalPCs = $ARGV[1]; 
print "reading input file $ARGV[0]\n"; 
open (OUT, ">$outfile") or die $!; 
$counter = 0; 
$numcontrols =0; 
$numcases = 0; 
$controlstomatch = 4; #adjustable: number of controls to match 
@comparison = (); 
$distcutoff = .1;   #adjustable: max distance between a case and control.  
0.1 seems reasonable.   
%usedcontrols = (); 
print OUT "CaseID\tMatchedControlID\tEuclidDist\tMatchRank\tOther Parameters: 
Matching $controlstomatch controls on $totalPCs PCs with distance cutoff 
$distcutoff\n";  
 
while (<INPUT>) { 
    $counter++;  
    chomp; 
    $_ =~ s/^\s+//; 
    if ($counter ==1) { 
        @eigenvalues = split(/\s+/, $_);#we'll use these as weights: 0=trash 
    } 
    else { 
        my @wholeline= split(/\s+/, $_); #0-ID #2-(x-1): eigenvals,#[-
1]:phenotype 
        if ($wholeline[-1] =~ m/Control/) { 
            $numcontrols++; 
            $controls[$numcontrols][0] = $wholeline[0]; #ID name 
            foreach my $x (1..$totalPCs) { 
                $controls[$numcontrols][$x] = 
$wholeline[$x]*sqrt($eigenvalues[$x]); 
                 #this builds an array of arrays: $controls[indiv 
number][PCnum] = weighted eigenscore 
            } 
        }    
                if ($wholeline[-1] =~ m/Case/) { 
                        $numcases++ ; 
                        $cases[$numcases][0] = $wholeline[0]; #ID name 
                        foreach my $x (1..$totalPCs) { 
                                $cases[$numcases][$x] = 
$wholeline[$x]*sqrt($eigenvalues[$x]); 
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                        }         #this builds an array of arrays: 
$cases[indiv number][PCnum] = weighted eigenscore 
                } 
    } 
} 
close (INPUT); 
open (OUT2, ">allcombinations.txt") or die $!; 
foreach my $caseindex (1..$numcases) { #cycle through all the cases 
    %control_dist = (); 
    @casescores = (); 
    foreach my $PCs (1..$totalPCs) { 
        push (@casescores, $cases[$caseindex][$PCs]); #create an array, 
@casescores, with all the weighted vals.  
    } 
    foreach my $controlindex (1..$numcontrols) { #cycle through all controls 
        @comparison = @casescores;  
        foreach my $PCs (1 ..$totalPCs) { #this loop should create a 
2xtotalPCs array ie (case1, case2, case3, control1, control2, control3) 
            push (@comparison, $controls[$controlindex][$PCs]);      
        } 
        $compdistance = &distance(@comparison); #calculate euclidian distance 
        $control_dist{$controls[$controlindex][0]} = $compdistance ;#hash of 
distances from case.  key is controlID 
    } 
    #print OUT2 "$cases[$caseindex][0]\n";  #this block can be used to print 
out all the combinations, if needed 
    #while ( my ($key, $value) = each%control_dist) { 
        #print OUT2 "$key\t$value\n";   
    #} 
    my @sortedmatches = sort { $control_dist{$a} <=> $control_dist{$b} } keys 
(%control_dist) ; #sort the controls by distance 
    $tempcounter = 0; 
    $tempcounter2 =0; 
    while ($tempcounter2 < $controlstomatch) {  
        #$tempcounter++; 
        if ($control_dist{$sortedmatches[$tempcounter]} > $distcutoff) { #if 
its a bad enough match 
            print "No more controls found for $cases[$caseindex][0] after 
$tempcounter2 successes. Lowest distance: 
$control_dist{$sortedmatches[$tempcounter]}\n"; 
            $tempcounter2 = $controlstomatch; 
        } 
        else { 
            if (exists $usedcontrols{$sortedmatches[$tempcounter]} ) {#if the 
control has already been matched 
                #print "subtracing"; 
            }  
            else {   
                print OUT 
"$cases[$caseindex][0]\t$sortedmatches[$tempcounter]\t$control_dist{$sortedma
tches[$tempcounter]}\tnthbest:$tempcounter\n"; #print the matches 
                $usedcontrols{$sortedmatches[$tempcounter]} = 1; 
                $tempcounter2++; 
            } 
        }    
        $tempcounter++; 
    } 
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} 
 
 
 
#this subroutine copied directly from Orwant et al "Mastering Algorithms with 
Perl" 
# distance( @p ) computes Euclidean distance between 2 d-dimensional points 
# example: 3-D points : ( $x0, $y0, $z0, $x1, $y1, $z1) 
 
sub distance {      #this subroutine copied directly from Orwant et al 
"Mastering Algorithms with Perl" 
    my @p = @_;     #the coordinates of the points 
    my $d = @p / 2; #the number of dimensions 
    # the case of 2 dimensions is optimized 
    return sqrt( ($_[0] - $_[2])**2 + ($_[1] - $_[3])**2 ) 
        if $d == 2; 
     
    my $S = 0;  #the sum of the squares 
    my @p0 = splice @p, 0, $d;  #the starting point 
 
    for ( my $i = 0; $i < $d; $i++ ) { 
        my $di = $p0[ $i ] - $p[ $i ]; #Difference.... 
        $S += $di * $di;    #squared and summed 
    } 
    return sqrt( $S ); 
}    
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Abstract  
Non-Hodgkin lymphoma represents a diverse group of blood malignancies, of which follicular 
lymphoma (FL) is a common subtype. Previous genome-wide association studies (GWASs) have 
identified in the human leukocyte antigen (HLA) class II region multiple independent SNPs that 
are significantly associated with FL risk. To dissect these signals and determine whether coding 
variants in HLA genes are responsible for the associations, we conducted imputation, HLA 
typing, and sequencing in three independent populations for a total of 689 cases and 2,446 
controls. We identified a hexa-allelic amino acid polymorphism at position 13 of the HLA-DR 
beta chain that showed the strongest association with FL within the major histocompatibility 
complex (MHC) region (multiallelic p = 2.3 x 10-15). Out of six possible amino acids that occurred 
at that position within the population, we classified two as high risk (Tyr and Phe), two as low 
risk (Ser and Arg), and two as moderate risk (His and Gly). There was a 4.2-fold difference in risk 
(95% confidence interval = 2.9–6.1) between subjects carrying two alleles encoding high-risk 
amino acids and those carrying two alleles encoding low-risk amino acids (p =1.01 x 10-14). This 
coding variant might explain the complex SNP associations identified by GWASs and suggests a 
common HLA-DR antigen-driven mechanism for the pathogenesis of FL and rheumatoid 
arthritis. 
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Four genome-wide association studies (GWASs) have recently revealed complex associations 
between genetic variants in the human leukocyte antigen (HLA) region and follicular lymphoma 
(FL) risk, (1–4) particularly two independent associations tagged by rs10484561 (1) and 
rs2647012 (2) within the HLA class II region. Further imputation with tag SNPs (1,5) and HLA 
typing (6) revealed that coding-sequence variation in the molecules encoded by the 
extended HLA-DRB1 0101-HLA-DQA1 0101-HLA-DQB1 0501 haplotype might be responsible 
for the association at rs10484561 and that the DRB1 15-DQA1 01-DQB1 06 haplotype might 
partly explain the association at rs2647012 (6). A recent analysis also observed the association 
between gene-expression changes and rs2647012, but not rs10484561 (7). These previous 
findings indicate an important role of genetic variation in the HLA class II region in FL 
pathogenesis, but the underlying causal variants that drive the association are still unknown. 
Each extended haplotype and classical HLA allele is defined by a precise combination of coding 
differences at various amino acid (AA) positions in the encoded HLA molecules, and it is 
possible that changes at the AA level might impact antigen binding and therefore influence 
disease pathogenesis through altered immune response. 

To determine whether specific coding variants within HLA genes contribute to the diverse 
association signals, we imputed dense SNPs (by using 1000 Genomes Project data (8)) and 
classical HLA alleles and coding variants across the HLA region (b36, chr6: 20–40 Mb) in our 
GWAS discovery sample of 379 cases and 791 controls (2) from Sweden and Denmark (the 
Scandinavian Lymphoma Etiology [SCALE] study). Imputation of classical HLA alleles and their 
constituent single-nucleotide variants and corresponding AAs was performed with BEAGLE as 
previously described (9,10). The reference panel was constructed with the use of genotype data 
from the Major Histocompatibility Complex (MHC) Working Group of the Type 1 Diabetes 
Genetics Consortium; these data consist of 2,537 SNPs genotyped in the MHC region and 
classical types at 4-digit resolution from 11,173 individuals. On the basis of the EMBL-EBI 
Immunogenetics HLA Database, AA variants (based on codons) were coded as binary markers 
(present or absent) in the reference panel. The final reference panel for imputation contained 
2,767 unrelated founder individuals of European descent from collections across Europe, the 
United Kingdom, and North America (9,10) and data for 263 classical HLA alleles and 372 AA 
positions. We used default parameters for BEAGLE (ten iterations of phasing and imputation 
and testing four pairs of haplotype pairs for each individual at each iteration) (9,10) (average 
BEAGLE r2 = 0.96). SNPs were imputed with IMPUTE2 (v.2.2.2) (11) on the basis of phased 
genotype data from the 1000 Genomes Project Phase I integrated variant set v.3 (8) (average 
info score for SNPs with MAF > 0.01 = 0.90). We set all SNP genotypes imputed with genotype 
probability lower than 0.9 to missing and analyzed all imputed HLA genotypes. SNPs imputed 
with an info score < 0.8 in IMPUTE2, >10% missing data, or MAF < 0.01 were excluded from 
further analyses. A total of 71,954 SNPs (average info score = 0.97), 263 classical HLA alleles 
(two- and four-digit resolution), and 372 AA positions were imputed. Of these, 86 AA positions 
were “multiallelic,” i.e., had three to six different residues encoded at each position across all 
our samples. 

We conducted trend tests on all the imputed biallelic variants while adjusting for PC1-3 as 
covariates (2) (genomic inflation in the GWAS = 1.028). For multiallelic AA sites (triallelic, 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib8
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib9
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib8
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quadrallelic, penta-allelic, or hexa-allelic), we performed the global multiallelic test at each site 
and further tested every possible combination of one, two, or three encoded AAs against the 
rest. Association tests were performed on both the best-guess genotypes and the allelic 
dosages as determined from the imputed genotype probabilities, which accounted for any 
uncertainties in the imputed genotypes. The results were checked for consistency between the 
two methods, and the results from best-guess genotypes were presented. We also performed 
global multiallelic (genotypic) tests while taking into account all alleles at each multiallelic 
position. The multiallelic test was performed as follows: convert k-alleles to k-1 bialleles, invoke 
the glm function in R to estimate the multivariate model, and use the likelihood ratio test to 
compute the global multiallelic test p values. We performed all conditional logistic regression 
analyses with PLINK (12) by entering any five out of six alleles encoding AA 13 as covariates. 
Pairwise linkage disequilibrium (LD; r2) between SNPs and alleles were measured in PLINK.  

 No. of Cases (Freq.) No. of Controls (Freq.) OR (95% CI) P 

Ser + Arg at AA 13     

Discovery 379 (0.379) 791 (0.509) 0.591 (0.495-0.707) 
7.83 x 10-9 

Dosage:  
8.26 x 10-9 

Replication 1 222 (0.439) 220 (0.573) 0.584 (0.446-0.766) 1.01 x 10-4 

Replication 2 88 (0.403) 1,435 (0.515) 0.640 (0.469-0.872) 4.69 x 10-3 

Meta-analysis 
P OR Phet I2 

6.51x10-14 0.598 0.893 0 

Tyr + Phe at AA 13    

Discovery 379 (0.326) 791 (0.228) 1.660 (1.363-2.020) 
4.87 x10-7 

Dosage: 
4.69x10-7 

Replication 1 222 (0.365) 220 (0.239) 1.822 (1.355-2.450) 7.15x10-5 
Replication 2 88 (0.375) 1,.435 (0.226) 1.954 (1.437-2.660) 1.90 x10-5 

Meta-analysis 
P OR Phet I2 

2.00 x10-14 1.760 0.659 0 

Table 1. Association Statistics from Testing Protective Alleles versus All Others and Risk Alleles versus 
All Others at AA 13 of HLA-DRB1. Abbreviations: OR, odds ratio; CI, confidence interval; AA, amino acid; 
Phet, Cochran’s Q test p value; and I2, inconsistency measure. 

Among all the variants tested, the top signal of association came from a combination of two 
possible genotypes, coding for either Ser or Arg at the hexa-allelic AA 13 encoded by exon 2 
of HLA-DRB1. This variant showed stronger association (Table 1; pSer+Arg13 = 7.8 × 10−9, odds ratio 
[OR] = 0.59; 95% confidence interval [CI] = 0.50–0.70) than any other HLA variant or SNP 
(genotyped or imputed) tested in our study and the strongest association in global multiallelic 
tests across all AA positions (multiallelic p = 7.4 × 10−8). AA 13 genotypes accounted for slightly 
more variance in FL risk (3.1%) than both rs2647012 and rs10484561 combined (3.0%). The 
strongest-associated imputed classical HLA allele across all two- and four-digit alleles was HLA-
DQB1 06 (OR = 0.63; 95% CI = 0.51–0.78; p = 2.05 × 10−5), which could be accounted for by 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710749/#bib12
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rs2647012 alone (ORadj rs2647012 = 0.86; 95% CI = 0.65–1.15; padj rs2647012 = 0.32). The top imputed 
SNP was rs9268839, in complete LD (r2 = 1; crude OR = 1.64; 95% CI = 1.37–1.95; p = 4.57 × 
10−8) with rs9378212 (which we previously reported and validated technically by Taqman 
genotyping (2)) and partially correlated with rs2647012 (r2 = 0.56) and rs10484561 (r2 = 0.15) 
(ORadj 2snps = 1.25; 95% CI = 0.94–1.64; padj 2snps = 0.12). The FL-associated HLA SNPs reported in a 
recent GWAS (4) were also not independent of these previously reported SNPs in our data set 
(Table S1).  

 

 
a) Discovery (p=7.4x10-8)    b) Replication  (p=5.3 x 10-4) 

 
 
c)  Replication 2 (p=6.6x10-4) 

 
 
 
 
Figure 1. Allele frequencies of each amino acid at 
position 13 in a) the SCALE GWAS discovery dataset 
(379 cases, 791 controls) and b) the San Francisco 
dataset (222 cases, 220 controls) and c) the 
Swedish validation dataset (88 cases, 1435 
controls)   
 

Six alleles were present at AA position 13 within our samples and in the reference panel 
(9,10); those encoding Ser and Arg showed low risk of FL, those encoding Tyr and Phe showed 
high risk, and those encoding His and Gly showed moderate risk (Figure 1, Table S2, and 
Figure S2). Conditioning upon the alleles at position 13 was sufficient to eliminate all the 
association signals within the vicinity in our study (chr6: 32–33 Mb; Table S3 and Figure S1). 
Dosage analyses (Table 1), HLA typing, (10) and sequencing analyses (13,14) confirmed high 
accuracy of the imputation (BEAGLE r2 = 0.99) at this position and high genotype concordance 
across these platforms (~98%; see below). 

To validate the associations, we evaluated genotypes at AA 13 in two independent data sets of 
222 FL cases and 220 controls from San Francisco (6) (replication 1) and 88 FL cases and 1,435 
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controls from Sweden (replication 2) by using a combination of Sanger sequencing (replication 
2 cases), (13,14) canonical HLA typing (replication 2 controls), (10) and GS-FLX sequencing 
(replication 1) (6). Replication 1 included non-Hispanic white FL cases and controls who were 
part of a population-based case-control non-Hodgkin lymphoma (NHL) study conducted in the 
San Francisco Bay Area from 2001 to 2006 (6). Controls were matched according to the number 
or frequency of cases in 5-year age groups, sex, and county of residence. We carried out HLA 
typing in these samples by using the Roche high-resolution HLA primer set and subsequently 
performed GS-FLX sequencing as previously described (6). Replication 2 included 19- to 83-year 
old (median age = 58 years) FL cases of Swedish descent and with available fresh frozen tumor 
material assembled in the Uppsala-Örebro region from 1970 to 2006 (15); these cases were 
typed by PCR amplification and Sanger sequencing (replication 2). Primer sequences for the 
amplification of HLA-DRB1exon 2 were obtained from previously published work (13,14). PCR 
products were purified with the use of AMPure XP (Agencourt) solid-phase-reversible-
immobilization beads and run on a Bioanalyzer (Agilent) or 15% polyacrylamide gel for ensuring 
that excess primers were removed prior to sequencing. Sequence reads were visually inspected 
at the codon position encoding AAs 11 and 13, and genotypes were manually called (Figure S3) 
on the basis of expected codons at both positions and flanking ones according to sequences 
from the EMBL-EBI Immunogenetics HLA Database. For controls in replication 2, we used a 
second independent set of 1,435 Swedish control subject samples collected within the 
Epidemiological Investigation of Rheumatoid Arthritis (EIRA) study from 1995 to 2006. HLA 
typing was carried out in the control samples from the EIRA study with the use of sequence-
specific primer PCR (DR low-resolution kit; Olerup SSP) as previously described (16).  All 
discovery and replication studies were conducted in accordance with the ethical standards of 
the respective institutional review board of each institution, and informed consent was 
obtained from study participants. 

We first tested the accuracy of the imputed genotypes by amplification and Sanger sequencing 
(13,14) of DRB1 exon 2 in a subset of our discovery samples. We observed high concordance 
between imputed genotypes and those inferred from the sequence chromatograms (Figure S3) 
(n = 92, 98.4% allelic, 97% genotypic concordance) and those inferred from HLA types (8) (Table 
S6; n = 596, 98.6% allelic, 97.3% genotypic concordance), confirming the high accuracy of the 
imputed genotypes and the reliability of the association results in our samples. To assess the 
accuracy of the AA genotypes inferred from canonical HLA typing data, we also Sanger 
sequenced a subset of 189 EIRA controls and found the alleles to be 97.6% concordant; hence, 
there are not likely to be any major biases because of the use of different genotyping platforms 
in replication 2. 

We observed consistent direction of associations at all of the high- and low-risk residues at AA 
13 across the three study populations (Figure 1, Table S2). Although the association did not 
reach statistical significance for some of the individual alleles (Table S2), it remained significant 
for the combined protective (encoding Ser or Arg) and risk (encoding Tyr or Phe) alleles in all 
the studies (Table 1). In the meta-analysis of all three populations, there was strong evidence of 
association between the AA 13 polymorphism and FL risk and no evidence of heterogeneity 
(multiallelic p = 2.3 × 10−15; pSer+Arg13 = 6.5 × 10−14; ORSer+Arg13 = 0.60; heterogeneity I2 = 0) (Table 
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1). Across the three data sets, there was a 4.2-fold difference in risk (95% CI = 2.9–6.1) between 
subjects carrying two high-risk alleles and those carrying two low-risk alleles (Cochran-Mantel-
Haenszel p = 1.01 × 10−14). 

Conditional analyses followed by meta-analyses across all three data sets suggested that the AA 
13 polymorphism might fully explain associations observed at SNPs rs2647012 (p = 4.72 × 
10−11 before adjustment; p = 0.804 after adjustment) and rs10484561 (p = 2.61 × 10−11 before 
adjustment; p = 0.356 after adjustment) (Table S3). However, there was evidence of 
heterogeneity in the results of the conditional analysis across the three data sets (Q < 0.05; I2 > 
70%). In particular, there was residual association at rs10484561 and rs2647012 after 
adjustment for the genetic effects at AA 13 in the replication 1 data set (Table S3). Conversely, 
conditioning on genotypes at rs2647012 (multiallelic p = 1.68 × 10−7), rs10484561 (multiallelic p 
= 7.58 × 10−7), or both SNPs (multiallelic p = 0.005) did not fully eliminate the association 
observed at AA 13, suggesting that the genotypes at AA 13 are well tagged, but not fully tagged, 
by these two SNPs. 

Further haplotype analysis indicated that the minor C allele at rs10484561 partially tags the 
haplotypes carrying the high-risk allele encoding Phe (OR = 1.81; 95% CI = 1.51–2.18), whereas 
the minor T allele at rs2647012 partially tags the haplotypes carrying the low-risk alleles 
encoding Ser (OR = 0.69; 95% CI = 0.59–0.81) and Arg (OR = 0.67; 95% CI = 0.55–0.82) (Table 
S4). For this analysis, genotypes (six imputed alleles at AA 13 and two SNPs) were phased with 
the PHASE program (17) with default parameters. Phased haplotypes were then tested for 
association with FL with the use of logistic regression analysis in PLINK. Only haplotypes with 
minor allele frequencies > 1% in controls were analyzed. It is interesting to note that some rare 
(allele frequencies ~2%) haplotypes, such as Phe-C-A (Table S4), are not tagged by rs10484561 
and rs2647012 but showed diverse associations across the three study populations, and this 
contributed to the large heterogeneity of the results of conditional association analysis across 
the three data sets above. Further studies with much larger sample sizes will be needed for 
evaluating the effects of these rare haplotypes. Taken together, our data suggest that the hexa-
allelic AA 13 polymorphism might be the primary driver of the association within the region, 
whereas the diverse associations at multiple SNPs might be due to their differential tagging 
effects of various AA risk variants. 

AA 13 is located in the middle of the peptide binding groove of the HLA-DR heterodimer 
molecule (Figure S2) and is thus well positioned to directly interact with bound peptides. This 
position, together with positions 70, 71, and 74, has been shown to play important roles in the 
binding-specificity profile of pocket 4, which is one of the most important pockets for antigen 
interaction and presentation by the HLA-DR molecule (18). Chemical properties of the side 
chain at this position might have a direct effect on antigen binding and recognition within the 
binding groove. The high-risk alleles at AA 13 both encode AAs with bulky hydrophobic side 
chains (Phe and Tyr), whereas the low-risk alleles encode AAs with polar or charged side chains 
(Figure S2). The roles of the moderate-risk alleles (encoding His and Gly) will need to be further 
explored in larger samples and/or functional assays. Although our results seem to suggest that 
variation at position 13 plays an important role in influencing FL risk, other nearby residues 
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within the extended HLA haplotype might also influence peptide binding, and detailed 
functional work will be needed for proving the importance of this single position. 

Residues at AA 13 are in high LD with nearby residues at AA 11, the second-best-associated 
coding variant (multiallelic p = 3.6 × 10−7) in discovery GWASs (Table S5). Given the close 
proximity and tight LD between the two variants, we were unable to distinguish the effects 
without additional functional investigation. Variants at HLA-DRB1 AAs 11 and 13 have 
previously been shown to associate with risk of rheumatoid arthritis (RA) (10). RA is an 
autoimmune disorder with a well-established correlation with NHL risk (mostly with the diffuse 
large B cell NHL subtype, but also with FL) (19). Although the patterns of association at AAs 11 
and 13 differ between RA and FL, (10) the shared associations between the variants at HLA-
DRB1 AAs 11–13 and FL and RA clearly suggest the involvement of common HLA-DR antigen-
driven pathogenesis in the two different diseases. Further studies on large cohorts with 
detailed clinical information on both diseases are likely to reveal information on the shared or 
distinct etiological mechanisms of RA and lymphoma pathogenesis. In vitro biochemical studies 
will be needed for testing the effects of mutants with different combinations of AAs at these 
two positions on binding of a relevant autoantigen or tumor antigen to the beta chain of HLA-
DR. 

We have performed comprehensive imputation of SNPs, classical HLA alleles, and HLA coding 
variants by using a large reference panel of European subjects. Recent evaluation studies have 
demonstrated high accuracy of the imputations of these coding variants (20). Although our 
imputation confidence was high (BEAGLE r2 = 0.96), there might have been minor inaccuracies 
owing to the nature of the imputation. It is possible that the GWAS samples might have been 
differentiated (in terms of population structure) relative to the reference samples used for the 
HLA imputations. We expect that this would have led to a consistent loss of imputation 
accuracy and therefore of power in both cases and controls and hence do not expect a 
differential bias in terms of imputation accuracy between cases and controls (a differential 
bias could inflate type 1 error). Nonetheless, we have confirmed the accuracy of genotypes at 
the most significant imputed variants by direct Sanger resequencing and additional HLA typing 
using sequence-specific primer PCR and have demonstrated high concordance. We have also 
replicated the results in two independent sample collections that were directly genotyped with 
experimental methods. We anticipate that there might be haplotypes or variants, especially 
rare ones with allele frequencies < 1%, that are poorly tagged and hence might have been 
missed in this analysis. In particular, there might be additional rare causal variants that could 
account for the residual association observed in replication 1. Our current sample size is, 
however, not large enough for a conclusive assessment of these possibilities, and the analysis 
of much larger reference panels and GWAS sample sizes will be needed for accurately 
evaluating the associations of these rare haplotypes. 

In summary, through a comprehensive imputation and further experimental validation analysis 
of the HLA region (Figure S4), we have shown that the variants at a single hexa-allelic AA 
position (13) of HLA-DRB1 influence FL risk. This AA might account for most of the currently 
observed independent SNP signals previously identified through GWASs in populations of 
European descent. There was, however, an indication of residual associations in the replication 
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1 data set, and confirming these results therefore warrants further study. Nevertheless, here 
we show strong evidence that coding variants at a single AA position of HLA-DRB1 contribute to 
multiple association signals observed for FL. Our findings further suggest that this multiallelic 
AA polymorphism might explain a significant portion of the genetic associations observed for FL 
within the HLA class II region. 
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Supplemental Tables and Figures 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure S1. Region Association Plot before and after Conditioning on Alleles at Position 13. 
Regional association plot of bi-allelic logistic regression test P-values done on imputed amino 
acid alleles and SNPs surrounding rs2647012 and rs10484561 before (black) and after (red) 
conditioning on alleles at position 13 in SCALE GWAS samples 
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Figure S2. Six Possible Encoded Amino Acids at Position 13 in the HLA-DR Binding 
Groove.  Amino acid 13 (yellow) in the binding groove of structure (PDB ID: 1AQD) of HLA-DR1 
(DRA, DRB1 0101, Phe at position 13) protein (extracellular domain) complexed with 
endogenous peptide (red). Other amino acid alleles were mutated in silico using the 
DeepView/Swiss-PdbViewer program (http://spdbv.vital-it.ch/). 

http://spdbv.vital-it.ch/)
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Figure S3. Genotyping of Amino Acid 13 Based on Sequence Chromatograms. All 21 
genotypes (the two residues present in each individual, each coded as Y=Tyr, F=Phe, G=Gly, 
S=Ser, R=Arg, H=His) could be called and distinguished by visual inspection of the 
chromatograms. 



79 
 

 
 
 
Figure S4. Flowchart on Study Design and Data Acquisition 

 
Flowchart on the imputation, association testing (showing filters for SNPs imputed by 
IMPUTEv2) and selection of variants for validation in additional samples. The datasets (and 
sample sizes) used as reference panels for imputation are shown in red boxes and the 
discovery or replication datasets used for association testing are shown in blue boxes. 

  



80 
 

  



81 
 

  



82 
 

 



83 
 

 

 



84 
 

Table S6. Amino Acid Residue Found at Positions 11 and 13 of Each Classical HLA-DRB1 
Allele 

 
HLA type 11 13 

DRB1*01:01 Leu Phe 
DRB1*01:02 Leu Phe 
DRB1*01:03 Leu Phe 
DRB1*01:04 Leu Phe 
DRB1*03:01 Ser Ser 
DRB1*04:01 Val His 
DRB1*04:02 Val His 
DRB1*04:03 Val His 
DRB1*04:04 Val His 
DRB1*04:05 Val His 
DRB1*04:06 Val His 
DRB1*04:07 Val His 
DRB1*04:08 Val His 

DRB1*07 Gly Tyr 
DRB1*08 Ser Gly 
DRB1*09 Asp Phe 

DRB1*10:01 Val Phe 
DRB1*11:01 Ser Ser 
DRB1*11:02 Ser Ser 
DRB1*11:03 Ser Ser 
DRB1*11:04 Ser Ser 
DRB1*12:01 Ser Gly 
DRB1*13:01 Ser Ser 
DRB1*13:02 Ser Ser 
DRB1*13:03 Ser Ser 
DRB1*13:04 Ser Ser 
DRB1*14:01 Ser Ser 
DRB1*14:02 Ser Ser 
DRB1*14:03 Ser Ser 
DRB1*14:04 Ser Gly 
DRB1*15:01 Pro Arg 
DRB1*16:01   Pro   Arg   

 
Data from the EMBL-EBI Immunogenetics HLA Database (http://www.ebi.ac.uk/imgt/hla/) 
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Abstract 
The recent association of HLA class II alleles with altered risk of follicular lymphoma gives 
strength to the hypothesis that this is an antigen-driven disease.  Although much research has 
been dedicated to characterizing the antigen-peptide binding preferences of HLA class II alleles, 
the ability of each allele to bind likely environmental antigens has never been characterized.  
Using the software NetMHCII, we predicted the binding of 23 HLA class II alleles to 11,545 
protein sequences, selected as likely to be presented via the class II pathway.  We found that 
significant variability in capacity to bind antigen peptides exists from allele-to-allele.  The 
follicular lymphoma risk allele, HLA-DRB1*01:01, is consistently predicted to bind more 
peptides with higher affinity than any other class II allele.  DQB1*05:01, in high linkage 
disequilibrium with DRB1*01:01 particularly in European populations, was routinely predicted 
to bind among the least number of peptides per protein.  These findings may indicate that a 
more general mechanism of antigen-induced lymphomagenesis may influence follicular 
lymphoma risk, rather than specific antigen binding.  Given the important role of HLA alleles in 
influencing susceptibility to a number of adverse health outcomes, these findings may be 
broadly applicable for researchers in the fields of infectious diseases, vaccine design, and 
immunology.   
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Introduction 
 
Follicular lymphoma (FL) is a cancer of immune system B cells.  Although the disease is usually 
indolent, approximately 30% of cases will transform to a more aggressive subtype of lymphoma 
with poor survival (1).  It is estimated that 10,000-22,000 new cases of FL are diagnosed in the 
United States each year (2,3).  Although treatment options have improved, FL for the most part 
remains an uncurable disease.  Uncovering the causal factors for this disease would benefit not 
only the patients of FL, but possibly other subtypes of lymphoma as well.   
  
The recent discovery that carrying certain HLA alleles has a profound impact on an individual’s 
risk of developing FL indicates an antigen-based etiology for this disease.  The haplotype HLA-
DQB1*05:01-DRB1*01 has been demonstrated to nearly double FL risk (4–6) while HLA-
DQB1*06-DRB1*15 and DPB1*03:01 are associated with decreased risk of FL (6,7).  Recently, 
these findings have been confirmed in the largest study of FL to date, with indications that 
amino acid changes in the HLA peptide binding groove are key to FL risk (8).   In previous 
studies, we have shown that carriers of the protective haplotype HLA-DQB1*06:02-DRB1*15:01 
express higher levels of HLA-DQB1, suggesting that perhaps greater HLA class II expression was 
protective for FL (9,10).  Other FL-associated alleles, however, were not associated with gene 
expression changes.     
 
The HLA class II-FL association is not altogether surprising in light of the molecular features of 
this disease.  FL cells exist in a germinal center state (11), dependent on interactions with 
germinal center T-cells for survival (12,13).  These interactions are mediated by HLA class II 
proteins on the FL cell surface.  Furthermore, FL B-cells have undergone somatic hypermutation 
and class switch recombination to enhance their B-cell receptor affinity for antigen (14,15).  
This implies that FL cells have successfully bound antigen peptide in the HLA class II receptor for 
T-cells in the past.  These results prompted researchers to hypothesize that FL was an antigen-
driven disease (11), though the more general hypothesis of antigen-driven lymphoproliferative 
disease is much older (16).  
 
If FL is being driven by a particular antigen, discovering the nature of this antigen could have a 
major impact on our understanding of this disease.  Unfortunately, classic epidemiology does 
not present a strong case for any one antigen.  Studies of common infectious agents have not 
provided strong evidence of association with FL (17).  Dietary antigens also have not been 
associated with FL (18,19).  These failings may have to do with the long latency period of FL, the 
difficulty in characterizing exposure to dietary and infectious antigens, or it may be that FL is 
driven by self-antigen.  Previous evidence does indicate that FL B-cells are prone to self-
reactivity (20).  The discovery of HLA alleles impacting FL risk gives us an alternative method for 
discovering antigens that may be driving FL.   
 
Each HLA allele has a unique amino acid sequence and therefore a unique, three-dimensional 
peptide binding pocket.  Each allele’s peptide binding pocket has been shown to possess 
different ‘preferences’ for the biochemical aspects of the peptides it binds.  Stronger affinity of 
allele for peptide is associated with increased likelihood of immune response (21).  This feature 
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is likely the reason for many of the HLA allele associations with infectious and autoimmune 
disease (22).  One allele may be binding a disease-relevant antigen with particularly high or low 
affinity, changing the risk of disease for those who harbor the allele. By measuring the affinity 
of alleles for specific peptides in-vitro, a wealth of data was produced characterizing the 
specifics of allele peptide binding preferences (23,24).   
 
Machine learning methods have generated formulas for predicting the strength with which an 
HLA allele will bind a peptide sequence.  At least 34 unique software packages exist to predict 
peptide binding epitopes of alleles (http://mba.biocuckoo.org/links.php).  Restricting to 
software capable of providing quantitative binding predictions for HLA-DR, -DQ, and -DP 
reduces this list significantly.  Of the remaining, NetMHCII stands out for its ability to predict 
many alleles and for outperforming competitors in benchmark studies (25,26).  Using four 
unique datasets, NetMHCII was consistently better able to predict peptide binding across HLA-
DR alleles.   NetMHCII uses NN-align, a neural network based, machine learning methodology, 
to predict class II binding affinities.   This program will move progressively through a protein 
sequence and calculate predicted 50% inhibitory concentration (IC50) for each peptide 
subsequence of the protein.  A lower IC50 value is indicative of a more strongly bound peptide. 
 
Despite the availability of HLA peptide prediction algorithms and of proteome sequences, there 
has been no prior study of proteome-wide HLA class II binding affinities that we are aware of.  
This more basic application of the concepts presented here may have implications for 
researchers of other HLA associated diseases, vaccine design, and population genetics.  Similar 
research has been performed examining HLA class I alleles (27), where researchers found that 
large variation peptide binding capacity exists for class I alleles, and that using IC50 cutoffs is 
more appropriate than allele rank cutoffs. 
 
Using state-of-the-art HLA-peptide binding prediction software, we sought to determine the 
ability of FL-associated HLA alleles to bind potentially antigenic proteins from human and 
pathogenic datasets.  Our hypothesis was that FL-associated alleles present a fraction of 
antigens uniquely (either stronger or weaker) and that these antigens will represent strong 
candidates for further study.   
 
Methods 
 
All computing was performed in Red Hat Enterprise Linux Server release 6.5 
(http://www.redhat.com/), on a Rocks version 6.1 cluster 
(http://www.rocksclusters.org/wordpress/?page_id=449).  This cluster has 12 nodes, each with 
8 Intel Xeon E5520 2.27GHz CPUs. 
 
Antigenic Proteomes 
Protein sequences were downloaded from the Uniprot database (http://www.uniprot.org/), 
selecting for sequences likely to be presented via the class II pathway.  These queries resulted 
in 2,339 human, 6,287 bacterial, and 2,919 viral sequences (Table 1) which were downloaded 
directly in FASTA format.  Restriction to only hand-reviewed sequences significantly reduced 

http://mba.biocuckoo.org/links.php
http://www.rocksclusters.org/wordpress/?page_id=449
http://www.uniprot.org/
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our dataset, however, non-reviewed sequences cause erratic patterns in our data. This is likely 
the result of sequence overlap and over-represented sequences (Supplementary Figure 1).  
 

Human Antigens Results 
(taxonomy: 9606 AND reviewed:yes AND fragment:no) AND    
     (go:"extracellular region [0005576]" OR go:"cell outer membrane [0009279]" OR  
     location:"Secreted [SL-0243]") 2,339 
Bacterial Antigens Results 
(taxonomy:"Bacteria [2]" AND reviewed:yes AND fragment:no) AND    
     (go:"extracellular region [0005576]" OR go:"cell outer membrane [0009279]" OR  
      go:"cell wall [0005618]"  OR location:"Secreted [SL-0243]") 6,287 
Viral Antigens Results 
(taxonomy:"Viruses [10239]" AND host:9606 AND fragment:no AND reviewed:yes)    
     AND (keyword:"Virion [KW-0946]" OR keyword:capsid) 2,919 
Total: 11,545 

 
Table 1. Search terms used for gathering antigenic proteomes.  The Uniprot database (http://www.uniprot.org/) 
was queried to reduce proteomic datasets to phyla-specific proteins likely to be encountered by antigen-
presenting cells in humans.  The search term “9606” is the organism code for humans.  The right column lists the 
number of antigenic sequences found.   
 
NetMHCII 
NetMHCII version 2.2 was downloaded from (http://www.cbs.dtu.dk/cgi-bin/nph-
sw_request?netMHCII).  Scripts were written in Bash 
(https://www.gnu.org/software/bash/bash.html) to test each downloaded protein sequence 
for each available HLA class II allele (Table 2).  Bound cores below a 50% inhibitory 
concentration (IC50) threshold of 2,000nM were kept for further analysis.  Variable peptide 
length was tested by repeating this procedure with –l (peptide length) option set to 12, 15, 18, 
and 21 amino acids.  These lengths were selected as a reasonable range of previously 
described, naturally bound peptides (28–30), though ~15 amino acids is generally agreed as the 
most common length of bound peptides.  
  

http://www.uniprot.org/
http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCII
http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?netMHCII
https://www.gnu.org/software/bash/bash.html
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Allele NetMHCII Key Allele NetMHCII Key 
DPB1*01:01 HLA-DPA10201-DPB10101 DRB1*01:01 HLA-DRB10101 
DPB1*02:02 HLA-DPA10103-DPB10201 DRB1*03:01 HLA-DRB10301 
DPB1*03:01 HLA-DPB10301-DPB10401 DRB1*04:01 HLA-DRB10401 
DPB1*04:01 HLA-DPA101-DPB10401 DRB1*04:04 HLA-DRB10404 
DPB1*04:02 HLA-DPA10301-DPB10402 DRB1*04:05 HLA-DRB10405 
DPB1*05:01 HLA-DPA10201-DPB10501 DRB1*07:01 HLA-DRB10701 
DQB1*02:01 HLA-DQA10501-DQB10201 DRB1*08:02 HLA-DRB10802 
DQB1*03:01 HLA-DQA10501-DQB10301 DRB1*09:01 HLA-DRB10901 
DQB1*03:02 HLA-DQA10301-DQB10302 DRB1*11:01 HLA-DRB11101 
DQB1*04:02 HLA-DQA10401-DQB10402 DRB1*13:02 HLA-DRB11302 
DQB1*05:01 HLA-DQA10101-DQB10501 DRB1*15:01 HLA-DRB11501 
DQB1*06:02 HLA-DQA10102-DQB10602     

Table 2. HLA alleles tested. In this table are the 23 HLA class II proteins tested in this study, with the 
NetMHCII key used to call for this allele, and the simplified allele names used throughout this text.   
 
Data Processing 
Scripts were written in perl (www.perl.org) to aggregate and simplify NetMHCII output data.  
Output lines with redundant inner ‘core’ sequence but slightly different peptide sequence were 
reduced to just one peptide. The number of peptides bound under affinity IC50 = 50nM (strong 
binders), IC50 = 500nM (weak binders) and IC50 < 1100nM (predicted to bind) were counted, 
with affinity cutoffs as described in (26,31).  The broad IC50 cutoff of 1100nM was used in an 
attempt to capture a high percentage of true binders, at the risk of also capturing some false-
positives.  Previous, similar analyses have found that appropriate cutoffs vary by allele, ranging 
as high as 944nM for class I alleles (27).  These values were then adjusted by the length of the 
protein sequence, in order to normalize the data (Supplementary Figure 1). Finally, data were 
visualized and statistical comparisons were made in R.  All scripts, as well as the analysis 
pipeline used in this project are available in the Supplementary Materials.  
 
 
Results 
 
In order to make meaningful comparisons between alleles, a biologically relevant affinity cutoff 
was needed.  Comparing the profiles of all alleles tested as strong (IC50 <50nM), weak (IC50 < 
500nM) and ‘predicted to bind’ (IC50 <1100nM), affinities demonstrated a major shift in the 
data as the affinity cutoff was increased (Figure 1).  Restriction to just strongly bound peptides 
resulted in zero data points for many allele-protein combinations.  Increasing our data to 
include all peptides predicted to bind to some extent (IC50 <1100nM) resulted in much more 
normally distributed data for each allele.  The length of bound peptide used for predictions did 
not influence this.  Figure 1 shows predictions for the bacterial protein dataset, however, this 
trend also was similar for human (Supplementary Figure 2) and viral (Supplementary Figure 3) 
proteins.  

http://www.perl.org/
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Figure 1. Strength of Peptide Binding.  The number of peptides bound per protein is graphed in the 
histograms.  The scale of the x-axis is the number of bound cores, adjusted for length of the protein.  For 
example, 0.1 would indicate 10 peptides predicted to bind for a 100 amino-acid length protein.  For a 
very low affinity (IC50 <50nM) cutoff value, the data are bound by zero on the left (A,D) indicating many 
alleles are not predicted to bind any peptides from a given protein IC50 =50.  This problem was partly 
resolved by examining weakly (IC50 <500nM) bound peptide predictions (B,D), however for some alleles 
more than others.  By raising the affinity threshold to IC50 < 1100nM, the histograms appeared normally 
distributed without being bound by zero, and remained within a biologically relevant range (C,F).  These 
trends held when we examined peptide lengths = 15 (A,B,C) and 21 (D,E,F).  The data shown here are for 
bacterial proteins only (n=6,287); however, human and viral proteomes gave similar results 
(Supplementary Figures 2,3).   

The length of peptide used to make binding predictions was next examined.  Box-plots of 
binding predictions for all alleles tested were created at 4 different peptide lengths (12, 15, 18, 
and 21 amino acids).  These plots indicate that the length of peptide used to predict binding 
affinity does impact the predicted binding profile quite strongly for some alleles (Figure 2).  In 
particular, several alleles that are predicted to bind very few 12- and 15-mer peptides were 
predicted to bind a substantially greater number of 18- and 21-mer peptides.  Conversely, those 
alleles predicted to bind the greatest number of 12- and 15-mer peptides appeared to have a 
slightly decreased affinity for 18- and 21-mer peptides.  Based on these observations, it is clear 
that binding affinity prediction can be strongly influenced by the length of peptide used.  Figure 
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2 shows this trend in the bacterial protein dataset, however the trend was similar for human 
and viral proteins (Supplementary Figures 4,5). 

 

Figure 2. Peptide length influence on HLA class II binding. Each box represents peptide prediction data 
for one allele, at one peptide length, and 6,287 bacterial proteins.  For each protein, the number of 
unique peptides which are predicted to be bound at IC50 <1100nM was divided by the length of the 
protein.  Each box contains a line for the median, and is bound at the 1st and 3rd quartile (i.e., each box 
contains 50% of all data).  The whiskers extend to the most extreme data point which is no more 
than 1.5 times the interquartile range (the length of the box).   

The source of proteins was examined to determine if phylum-specific trends in peptide binding 
prediction exist for HLA class II alleles.  Human, bacterial, and viral proteomes as described in 
the methods are plotted in Figure 3 for each allele, at predicted peptide lengths of 15 and 21 
amino acids.  Slight differences indicate that most DRB1 and DPB1 alleles will bind viral protein 
peptides with more affinity than bacterial or human protein peptides.  DQB1 alleles, conversely, 
bind bacterial proteins peptide with higher affinity than human and viral protein peptides.  
However, this trend is dwarfed by the effect that the allele itself has in prediction of binding 
affinity, regardless of the protein source.   
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Figure 3. Influence of protein source on predicted binding affinity.  Three protein datasets sourced 
from humans (n = 2,339), bacteria (n = 6,287), and viruses (n = 2,919) are shown in allele-specific binding 
prediction boxplots.  For each protein, the adjusted number of peptides predicted to bind at IC50 
<1100nM are shown.   

Figures 2 and 3 indicated that there was substantial allele-to-allele variation in the number of 
peptides predicted to be bound for a given protein.  Table 3 illustrated the potential for 
proteome-wide differences in peptide-binding capacity influencing FL risk.  Alleles were ranked 
by their median predicted binding capacity for human, bacterial and viral proteomes at two 
different peptide lengths.  The DRB1*01:01 allele, associated with increased FL risk, was 
consistently predicted to bind the most peptides per protein, across datasets.  Interestingly, the 
haplotype partner of this allele, DQB1*05:01, was consistently predicted to bind among the 
least peptides per protein.    
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  Peptide Length 15 Peptide Length 21 FL Risk Affect 
Allele Human Bacteria Virus Human Bacteria Virus (reference) 
DRB1*01:01 1 1 1 1 1 1 Increased Risk 

(4,6,8) DQB1*05:01 23 23 23 20 20 21 
DRB1*15:01 9 11 9 13 15 14 Decreased Risk 

(5–8) DQB1*06:02 4 3 4 4 3 4 

DPB1*03:01 16 21 17 23 23 23 Decreased Risk 
(6,8) 

Table 3.  Allele ranks for peptide binding. For all alleles tested (n = 23) the median of predicted peptides 
bound was calculated for three phyla and 2 peptide lengths.  The values shown here are the allele ranks 
by median value.  DQB1-DRB1 haplotypes are boxed, with their reported effect on FL risk shown in the 
far-right column.       

The degree to which each allele is predicted to present unique peptides was also investigated.  
For each protein sequence, the number of peptide sequences presented by a given allele, but 
not presented by any other allele (below affinity IC50 = 1100nM) was counted.  Figure 4 
summarizes this data, showing that most alleles will present 0-2 unique peptides per protein. 
However, there are a few notable outliers, with DQB1*03:01 presenting the greatest number of 
unique peptides per protein, by median.   
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Figure 4. Unique peptides presented per protein.  For all alleles and all proteins tested (n=11,545), the 
number of unique peptides presented is shown.  A peptide presented by one allele, but not any other 
has the potential to invoke a unique immune response that may influence disease outcome.  Although 
the median number of unique alleles presented per protein was less than 3, there are some outliers.  
These values coincide strongly with the binding affinity values in Figure 3 and Table 3.   
 
Supplementary Tables 1 and 2 contain lists of proteins which may serve as candidate FL 
antigens.  These tables were compiled by searching for proteins with exceptional peptide 
binding profiles for FL-associated alleles.  This includes proteins with significantly greater or 
fewer peptides presented by FL-associated alleles (Supplementary Table 1), and proteins with 
greater or fewer unique peptides presented by FL-associated alleles (Supplementary Table 2).  
These differences were assessed using a Z-score, calculated across all HLA Class II alleles tested.    
 
Discussion 

We examined 23 HLA class II alleles for meaningful differences in the affinity for which they are 
predicted to bind human, viral, and bacterial proteins. The computational pipeline for this 
project created peptide binding affinity predictions for numerous sequences within each of 
11,545 proteins, at 4 different peptide lengths, and for 23 different alleles.  This resulted in 
~2x109 unique peptide binding predictions.  The data presented here indicate that there is a 
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large amount of allele-to-allele variation in the predicted affinity of HLA class II alleles for 
natural antigen peptides.  This finding was resilient even after correction for source of protein, 
length of predicted peptide, and the affinity cutoff used to count bound peptides.  Given the 
impact that genetic variation at the HLA locus has on risk of FL, other diseases, and vaccine 
efficacy, these differences in peptide binding may be widely informative toward our 
understanding of the etiology of HLA-allele associated health outcomes.  

A peptide binding affinity cutoff was necessary to enumerate total bound peptides per 
protein/allele combination.  Figure 1 shows that once adjusted for protein length, “Strong 
Binders”, described as having IC50 < 50nM, was too stringent of a cutoff.  For many 
allele/protein combinations, no peptides are predicted to be bound below this threshold, 
resulting in histograms strongly bound on the left by zero (Figure 1A,D).  The IC50 cutoff of 
1100nM was selected for further analyses in an attempt to capture a high percentage of true 
binders for all alleles tested, even those with relatively weak binding profiles. This cutoff also 
created normally distributed data for all alleles.    

HLA class II proteins are known to bind a wide range of peptide lengths (28,30), and this 
parameter appears to effect the predicted peptide binding capacity of alleles.  Figure 2 
indicates that the effect of increasing the length of peptide when making binding predictions 
has a dramatic effect for several alleles.  This result, while intriguing, does not fully align with 
previously observed data.  Chicz and colleagues (29) observed the naturally bound repertoire of 
peptides for several of these alleles, including DRB1*03:01, DRB1*04:01, DRB1*07:01, and 
DRB1*15:01.  Each of these alleles was observed binding the most peptides from 15-18 amino 
acids in length.  If DRB1*04:01 bound longer peptides with a higher affinity, as predicted in 
Figure 2, this could be expected to have higher affinity for naturally bound peptides.  This is not, 
however, the case in the Chicz et al. data, which shows DRB1*04:01 binds relatively few 
peptides greater than 20 amino acids in length.  There are two reasonable explanations for this 
disagreement.  The relatively small number of long peptides in the data used to train NetMHCII 
may be causing a bias, and these predictions should be considered lower confidence.  A second 
explanation is that peptide binding assays are not fully reflective of the peptide selection 
process within the cell, and shorter, lower affinity peptides are more available in-vivo. While we 
have more confidence in shorter, 15-mer peptide predictions, two peptide lengths, 15 and 21, 
have subsequently been shown in each analysis.   

Researchers have hypothesized that certain HLA genes have co-evolved with infectious 
antigens, and that, for example, HLA-B has evolved specifically to bind viral antigens (32,33).  
Our data provide some evidence of gene-wide trends toward phylum-specificity.  Five of six 
tested DQB1 alleles bind more peptides from bacterial proteins, by median, than human or viral 
proteins.  Conversely, 8/11 DRB1 alleles and all DPB1 alleles bind more peptides from viral 
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proteins than human or bacterial proteins (Figure 3).  This trend holds when alleles are 
averaged across each gene (Supplementary Figure 6).  Using the Students 2-tailed T-test, DQB1 
alleles on average bound significantly more peptides from bacterial proteins than human or 
viral sources, while DRB1 and DPB1 bound significantly more peptides from viral proteins than 
human or bacterial sources (all p-values <3.5*10-26—Supplementary Table 3).  However, it 
should be noted that this phylum effect appears to be dwarfed by the allele-specific variability 
in overall peptide binding capacity.   

The most striking trend observed in the data was the wide range across alleles in the number of 
peptides which are predicted to be bound.  The potential impacts of this are numerous.  
Presenting more peptides per protein could have several consequences.  Antigens will be more 
likely to be HLA-bound and presented to the immune system.  However, an immunogenic 
peptide may go unrecognized when diluted among several other strongly bound peptides from 
the same protein.  Autoimmunity may be more likely, as a diverse array of self-peptides may be 
more likely to escape negative selection.  Additionally, a stronger, more diverse presentation of 
peptides is likely to impact T-cell selection in the thymus.   

The FL risk allele DRB1*01:01 is predicted to bind the most peptides per protein, regardless of 
source or peptide length, while its haplotypic partner, DQB1*05:01, is predicted to bind among 
the least (Table 3).  This may indicate that DRB1*01:01 increases FL risk via enhanced 
presentation, or that DQB1*05:01 increases FL risk through inability to present peptides.  
Genetic epidemiological studies will be needed to determine the potential causal FL risk allele; 
however, antigen binding capacity is an appealing hypothesis to explain the association of 
either allele.  These results suggest that FL-associated alleles impact FL risk through general 
antigen interactions, rather than impacting the presentation of one or a few antigens.  Similar 
to the risk alleles, the FL protective DQB1*06:02 has high overall affinity for peptides, whereas 
its haplotypic partner, DRB1*15:01, has average affinity for peptides.  It may be that FL is 
affected by which gene presents certain peptides, DQB1 or DRB1.   

If over- or under-presentation of a FL-specific antigen impacts disease risk, we may see this 
antigen stand out in our data.  By comparing the number of peptides bound to FL-associated 
alleles with summary data of all alleles, a z-score may be calculated.  Similarly, we can find in 
our data those proteins for which FL associated alleles are predicted to present unique 
peptides, not presented by any other alleles (Figure 4).  If FL progression is impacted by a 
unique allele/peptide interaction with the immune system, it is likely that this peptide is 
presented by only an FL associated allele.  As an example, deamidated gliadin peptides which 
are uniquely immunogenic in celiac disease (34), are predicted to be bound by only celiac 
disease associated allele DQB1*02:01 (data not shown).   Candidate antigen proteins were 
compiled for FL, calculated based on the total number of peptides presented (Supplementary 
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Table 1) or the number of unique peptides presented (Supplementary Table 2), compared to all 
other alleles for each tested protein.  These proteins may serve as interesting candidates for 
further functional testing.  For example, DRB1*01:01 is predicted to bind more peptides than 
average for the IL1B, IL36A, and IL8 proteins (Uniprot IDs P01584, Q9UHA7, P10145: 
Supplementary Table 1).  These interleukin proteins are active in regulating immune response, 
and are likely to be encountered by pre-FL B-cells.  It may be that DRB1*01:01 can elicit 
immunogenicity and growth signals by strongly presenting these proteins.   

DQB1*05:01 is predicted to only bind one peptide from the three B melanoma antigen proteins 
(Uniprot IDs Q13072, Q86Y28, and Q86Y27: Supplementary Table 1).  This protein family is only 
expressed in the testis and certain melanoma, bladder and lung cancer tissues (35) where it is 
targeted by T-cells as a cancer antigen.  Although expression of this protein family has not been 
detected in lymphoma tissues, DQB1*05:01 may be similarly unable to present peptides from 
lymphoma cancer antigens.       

In conclusion, we demonstrate here that there exists a wide range in the predicted binding 
capacity of HLA class II alleles.  Interestingly, the antigen binding capacities of the FL-risk alleles 
DRB1*01:01 and DQB1*05:01 appear to fall at the opposite ends of the spectrum, indicating 
that there may a relationship between FL risk and the capacity of HLA class II proteins to bind 
antigen peptides.  To the best of our knowledge, this is the first large-scale study comparing 
predicted binding capacity of HLA class II alleles.  The results shown here have a broad 
application to numerous fields that rely on HLA class II allele specificity, including research in 
infectious diseases, vaccine design, and immunology.   
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Supplementary Tables and Figures 

 

 

Supplementary Figure 1.  Normalization of Peptide Binding Data.  Observing total peptide binding 
predictions from non-reviewed Uniprot viral sequences (top panel), an erratic distribution pattern 
emerged (top panel).  This was greatly aided by normalization of bound cores to the total length of each 
protein (middle panel).  The total number of cores able to be bound by a single allele is greatly 
influenced by protein length, and adjusting for this variable makes allele-specific differences in binding 
capacity far more clear.  Limiting our dataset to only Uniprot hand-reviewed sequences also aided in 
normalization of this data (bottom panel).   This may be due to highly similar sequences uploaded to the 
Uniprot database multiple times, causing local spikes in the data.  As a result of this observation, we 
decided to focus our study on only hand-reviewed sequences in the database.   
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Supplementary Figure 2.  The number of peptides bound per protein is graphed in histograms.  The 
scale of the x-axis is number of bound cores, adjusted for length of the protein.  For example 0.1 would 
indicate 10 peptides predicted to bind for a 100 amino-acid length protein.  For too low of an affinity 
(IC50 <50nM) cutoff value, the data is bound by zero on the left (A,D) indicating many alleles are not 
predicted to bind any peptides from a give protein below IC50 =50.  This problem is mostly fixed by 
examining weakly (IC50 <500nM) bound peptide predictions (B,D), however for some alleles more than 
others.  Raising the affinity threshold to IC50 < 1100nM left us with histograms that appeared normally 
distributed without being bound by zero, while remaining within a biologically relevant range (C,F).  

 

 

Supplementary Figure 3.  Similar to Supplementary Figure 2, this figure shows decreasingly zero-bound, 
normally distributed data as the affinity cutoff for categorizing bound cores is increased, for viral protein 
datasets.   
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Supplementary Figure 4.  Peptide length influence on HLA class II binding human proteins. Each box 
represents peptide prediction data for one allele, at one peptide length, and 2,339 human proteins.  For 
each protein, the number of unique peptides which are predicted to be bound at IC50 <1100nM was 
divided by the length of the protein.  Each box contains a line for the median, and is bound at the 1st and 
3rd quartile (ie. each box contains 50% of all data).  The whiskers extend to the most extreme data point 
which is no more than 1.5 times the interquartile range (the length of the box).   

 

 

Supplementary Figure 5.  Peptide length influence on HLA class II binding proteins. Similar to 
Supplementary Figure 4, this figure shows that similar to human and bacterial protein datasets, peptide 
length influences predicted binding affinity in viral proteins. 
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Supplementary Figure 6.  Gene-wide differences in peptide presentation.  Shown are box-plots of the 
average number of peptides presented for each of 2,339 human, 6,287 bacterial and 2,919 viral proteins 
across three HLA class II genes.  The number of peptides presented per protein has been adjusted by the 
total length of each protein.  This figure includes data from 11 HLA-DRB1, 6 HLA-DQB1, and 6 HLA-DPB1 
alleles.  The peptide length used in these predictions was 15 amino acids.      
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Supplementary Figure 7.  Analysis Pipeline.  This figure demonstrates the data pipeline used to process 
11,545 protein sequences and 23 HLA Class II alleles binding predictions from NetMHCII.  A combination 
of allele and protein sequence is fed into NetMHCII, generating binding predictions.  This output is 
cleaned up, and joined with the data from all other allele/protein combinations.  The nmhc_analyzer.pl 
script is used to compress this data and summarize each protein using a number of metrics.  This script 
also searches for candidate antigen proteins that were presented exceptionally by FL associated alleles.  
Data was then output, where it was normalized by peptide length, separated by protein source, and fed 
into R.  R was used to create histograms, box-plots, and T-tests presented in the text.  
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DQB1*
05:01 
Rank Bound Avg. S.D Z ID Protein  Species 

1 1 3.91 1.31 -2.22 Q13072 B melanoma antigen 1  Homo sapiens  
2 0 9.65 4.37 -2.21 P62158 Calmodulin  Homo sapiens  
3 3 33.04 13.68 -2.20 P08758 Annexin A5  Homo sapiens  
4 0 3.48 1.59 -2.19 P86395 Bacteriocin SRCAM 37 Paenibacillus polymyxa  
5 1 3.65 1.23 -2.16 Q86Y28 B melanoma antigen 4  Homo sapiens  
6 2 7.04 2.36 -2.13 P0C046 Virulence factor EsxA Staphylococcus aureus  
7 2 7.04 2.36 -2.13 Q5HJ91 Virulence factor EsxA Staphylococcus aureus  
8 2 7.04 2.36 -2.13 Q6GCJ0 Virulence factor EsxA Staphylococcus aureus  
9 2 7.04 2.36 -2.13 Q6GK29 Virulence factor EsxA Staphylococcus aureus  

10 2 7.04 2.36 -2.13 Q7A1V4 Virulence factor EsxA Staphylococcus aureus  
11 2 7.04 2.36 -2.13 Q7A7S4 Virulence factor EsxA Staphylococcus aureus  
12 2 7.04 2.36 -2.13 Q99WU4 Virulence factor EsxA Staphylococcus aureus  

13 2 13.2 5.31 -2.10 Q9K1F0 
Outer membrane protein 
assembly factor BamE 

Neisseria meningitidis 
serogroup B  

14 1 9.83 4.25 -2.08 P09312 Envelope protein US9  Varicella-zoster virus  
15 1 9.83 4.25 -2.08 Q77NN6 Envelope protein US9  Varicella-zoster virus  

16 4 21.9 8.68 -2.06 P20338 
Ras-related protein Rab-
4A Homo sapiens  

17 8 43.7 17.44 -2.05 P50453 Serpin B9  Homo sapiens  
18 1 3.78 1.38 -2.02 Q86Y27 B melanoma antigen 5  Homo sapiens  

19 0 3.09 1.53 -2.01 O33690 
Competence-stimulating 
peptide  Streptococcus oralis 

20 3 9.13 3.05 -2.01 P10599 Thioredoxin  Homo sapiens  
21 1 22.09 10.51 -2.01 P52823 Stanniocalcin-1  Homo sapiens  

DRB1*
01:01 
Rank Bound Avg. S.D Z ID Protein  Species 

1 46 14.83 8.11 3.85 P05856 Protein Nef  
HIV type 1 group M 
subtype B  

2 40 13.09 7.24 3.72 P69440 Adenylate kinase 
Mycobacterium 
tuberculosis  

3 23 6.00 4.82 3.52 Q30KP8 Beta-defensin 136  Homo sapiens  

4 221 85.26 38.70 3.51 Q9ULD4 
Bromodomain and PHD 
finger-containing protein 3 Homo sapiens  

5 40 13.61 7.58 3.48 P20886 Protein Nef  
HIV type 1 group M 
subtype B  

6 79 34.35 12.90 3.46 O34656 Spore coat protein I Bacillus subtilis  
7 42 13.26 8.42 3.41 Q9UHA7 Interleukin-36 alpha  Homo sapiens  

8 53 21.52 9.24 3.41 O53894 Response regulator MprA 
Mycobacterium 
tuberculosis  

9 47 15.30 9.35 3.39 B1JEP9 
Outer-membrane 
lipoprotein LolB Pseudomonas putida  

10 39 15.52 6.94 3.38 Q9IDV1 Protein Nef  HIV type 1 group N  

11 39 13.09 7.67 3.38 O89293 Protein Nef  
HIV type 1 group M 
subtype F1  
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12 22 8.30 4.08 3.35 P10145 Interleukin-8  Homo sapiens  

13 41 14.52 7.90 3.35 P19546 Protein Nef  
HIV type 1 group M 
subtype B  

14 38 14.87 6.92 3.34 Q9QBY9 Protein Nef  
HIV type 1 group M 
subtype F2  

15 47 15.30 9.48 3.34 B0KND8 
Outer-membrane 
lipoprotein LolB Pseudomonas putida  

16 40 14.91 7.51 3.34 P19545 Protein Nef  
HIV type 1 group M 
subtype B  

17 153 58.43 28.35 3.34 Q13421 Mesothelin  Homo sapiens  
18 36 13.09 6.88 3.33 P36921 Cell wall enzyme EbsB Enterococcus faecalis  

19 48 16.48 9.47 3.33 Q1IEY4 
Outer-membrane 
lipoprotein LolB 

Pseudomonas 
entomophila  

20 36 13.48 6.79 3.31 Q9Q713 Protein Nef  
HIV type 1 group M 
subtype H  

21 81 33.30 14.41 3.31 Q14515 SPARC-like protein 1  Homo sapiens  

22 37 13.83 7.03 3.30 P04602 Protein Nef  
HIV type 1 group M 
subtype D  

23 43 15.74 8.28 3.29 P03407 Protein Nef  
HIV type 1 group M 
subtype B  

24 49 16.00 10.03 3.29 A5VYG2 
Outer-membrane 
lipoprotein LolB Pseudomonas putida  

25 44 15.61 8.63 3.29 Q70627 Protein Nef  
HIV type 1 group M 
subtype B  

26 48 15.91 9.78 3.28 Q88PX4 
Outer-membrane 
lipoprotein LolB Pseudomonas putida  

27 39 16.52 6.85 3.28 D0ZWR8 
Salmonella pathogenicity 
island 2 protein C  Salmonella typhimurium  

28 39 16.52 6.85 3.28 P0CZ04 
Salmonella pathogenicity 
island 2 protein C  Salmonella typhimurium  

29 36 13.17 6.97 3.27 P05858 Protein Nef  
HIV type 1 group M 
subtype B  

30 37 13.17 7.28 3.27 Q9WC61 Protein Nef  
HIV type 1 group M 
subtype J  

31 38 13.22 7.58 3.27 Q9QSQ6 Protein Nef  
HIV type 1 group M 
subtype F1  

32 46 16.09 9.15 3.27 Q888C4 
Outer-membrane 
lipoprotein LolB 

Pseudomonas syringae 
pv. tomato  

33 54 23.22 9.42 3.27 P01584 Interleukin-1 beta  Homo sapiens  

34 112 43.74 20.91 3.27 A5VZC8 
Membrane-bound lytic 
murein transglycosylase F  Pseudomonas putida  

35 28 8.74 5.91 3.26 P01599 
Ig kappa chain V-I region 
Gal Homo sapiens  

36 85 35.43 15.21 3.26 P16779 Protein UL38 Human cytomegalovirus  

37 37 14.17 7.01 3.26 P04604 Protein Nef  
HIV type 1 group M 
subtype D  

38 51 17.78 10.22 3.25 P0A672 
Iron-dependent repressor 
IdeR 

Mycobacterium 
tuberculosis  

39 117 47.65 21.34 3.25 B1KLC4 
Membrane-bound lytic 
murein transglycosylase F  Shewanella woodyi  
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40 112 43.17 21.19 3.25 Q88P17 
Membrane-bound lytic 
murein transglycosylase F  Pseudomonas putida  

41 78 29.04 15.09 3.25 P00813 Adenosine deaminase  Homo sapiens  

42 110 43.04 20.65 3.24 B1JDH3 
Membrane-bound lytic 
murein transglycosylase F  Pseudomonas putida  

43 45 15.48 9.11 3.24 P04324 Protein Nef  
HIV type 1 group M 
subtype B  

44 28 11.74 5.03 3.23 Q5EBL8 
PDZ domain-containing 
protein 11  Homo sapiens  

45 43 15.30 8.57 3.23 C3KDC3 
Outer-membrane 
lipoprotein LolB 

Pseudomonas 
fluorescens  

46 62 28.04 10.52 3.23 Q9PCR3 

Monofunctional 
biosynthetic peptidoglycan 
transglycosylase  Xylella fastidiosa  

47 48 17.35 9.52 3.22 A4XR58 
Outer-membrane 
lipoprotein LolB Pseudomonas mendocina  

48 77 31.52 14.12 3.22 P44567 Lipid A biosynthesis  Haemophilus influenzae  

49 46 16.39 9.21 3.22 Q48MV7 
Outer-membrane 
lipoprotein LolB 

Pseudomonas syringae 
pv. phaseolicola  

50 34 10.61 7.29 3.21 Q8WXF3 Relaxin-3  Homo sapiens  
DRB1*
15:01 
Rank Bound Avg. S.D Z ID Protein  Species 

1 33 10.96 7.27 3.03 Q17RF5 
Uncharacterized protein 
C4orf26 Homo sapiens  

2 19 5.78 4.70 2.81 Q14508 
WAP four-disulfide core 
domain protein 2  Homo sapiens  

3 17 6.57 4.07 2.57 Q8N690 Beta-defensin 119  Homo sapiens  

4 26 9.78 6.48 2.50 P48061 
Stromal cell-derived factor 
1  Homo sapiens  

5 46 21.70 9.81 2.48 Q8IZ96 

CKLF-like MARVEL 
transmembrane domain-
containing protein 1  Homo sapiens  

6 16 6.22 3.95 2.47 O95925 Eppin  Homo sapiens  

7 58 25.74 13.40 2.41 P10966 
T-cell surface glycoprotein 
CD8 beta chain  Homo sapiens  

8 16 4.87 4.66 2.39 Q8IUB3 Protein WFDC10B Homo sapiens  

9 2 0.43 0.66 2.36 Q7M0J9 Anantin  
Streptomyces 
coerulescens 

10 23 8.43 6.33 2.30 Q08648 
Sperm-associated antigen 
11B  Homo sapiens  

11 20 8.35 5.08 2.29 P08493 Matrix Gla protein  Homo sapiens  

12 43 20.74 9.97 2.23 P23560 
Brain-derived 
neurotrophic factor  Homo sapiens  

13 89 43.26 20.61 2.22 Q11203 

CMP-N-
acetylneuraminate-beta-
1,4-galactoside alpha-2,3-
sialyltransferase  Homo sapiens  

14 11 4.39 3.01 2.19 Q30KQ9 Beta-defensin 110  Homo sapiens  



110 
 

15 31 14.57 7.49 2.19 Q9NY56 
Odorant-binding protein 
2a  Homo sapiens  

16 41 22.48 8.64 2.14 Q9BT67 
NEDD4 family-interacting 
protein 1 Homo sapiens 

17 21 8.35 6.15 2.06 Q9UNK4 
Group IID secretory 
phospholipase A2  Homo sapiens  

18 9 4.30 2.29 2.05 P15515 Histatin-1  Homo sapiens  

19 118 60.96 27.90 2.04 P48740 
Mannan-binding lectin 
serine protease 1  Homo sapiens  

20 41 18.57 11.01 2.04 Q99674 
Cell growth regulator with 
EF hand domain protein 1  Homo sapiens  

DQB1*
06:02 
Rank Bound Avg. S.D Z ID Protein  Species 

1 10 1.48 2.31 3.68 P85148 Bacteriocin E50-52 Enterococcus faecium  

2 3 0.39 0.78 3.33 P01560 
Heat-stable enterotoxin 
ST-2  Escherichia coli 

3 24 7.17 6.11 2.75 P96363 ESAT-6-like protein EsxJ 
Mycobacterium 
tuberculosis 

4 24 7.22 6.13 2.74 O07932 
Putative ESAT-6-like 
protein 10 

Mycobacterium 
tuberculosis 

5 10 3.91 2.25 2.70 Q03709 Lysis protein for colicin E7 Escherichia coli 
6 22 7.52 5.37 2.70 Q9HD89 Resistin  Homo sapiens  

7 24 7.35 6.31 2.64 O05299 ESAT-6-like protein EsxK 
Mycobacterium 
tuberculosis 

8 16 4.52 4.36 2.63 Q66A25 
Major outer membrane 
lipoprotein  

Yersinia 
pseudotuberculosis 
serotype I  

9 16 4.52 4.36 2.63 Q8ZDZ6 
Major outer membrane 
lipoprotein  Yersinia pestis 

10 24 7.39 6.32 2.63 P95243 
Putative ESAT-6-like 
protein 7 

Mycobacterium 
tuberculosis 

11 18 6.30 4.47 2.62 Q01523 Defensin-5  Homo sapiens  

12 44 17.70 10.32 2.55 Q0T677 Cell division inhibitor SulA 
Shigella flexneri serotype 
5b  

13 44 17.70 10.32 2.55 Q83RX1 Cell division inhibitor SulA Shigella flexneri 
14 37 16.22 8.18 2.54 A7MFW4 Cell division inhibitor SulA Cronobacter sakazakii  

15 11 3.00 3.16 2.53 B0B816 
Small cysteine-rich outer 
membrane protein OmcA  

Chlamydia trachomatis 
serovar L2  

16 11 3.00 3.16 2.53 P0DJI1 
Small cysteine-rich outer 
membrane protein OmcA  Chlamydia trachomatis 

17 37 12.74 9.61 2.53 Q672H9 Protein VP2  Sapporo virus  
18 44 17.83 10.36 2.53 Q31YM1 Cell division inhibitor SulA Shigella boydii serotype 4  
19 5 2.13 1.14 2.52 P0CJ68 Humanin-like protein 1  Homo sapiens  
20 5 2.13 1.14 2.52 P0CJ75 Humanin-like protein 8  Homo sapiens  
21 10 3.91 2.43 2.51 P15176 Lysis protein for colicin E9 Escherichia coli 
22 5 1.83 1.27 2.51 P0CJ76 Humanin-like protein 9  Homo sapiens  
23 44 17.96 10.42 2.50 A7ZK62 Cell division inhibitor SulA Escherichia coli O139:H28  

http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
http://www.uniprot.org/taxonomy/83331
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Supplementary Table 1.  Candidate FL Antigens—Number of Peptide Presented. This table gives the 
top 50 candidate antigens for each of 4 FL associated alleles.  For each protein, the total number of 
15mer peptides predicted to be presented with affinity IC50 < 1,100nM was calculated for each allele.  
Protein wide averages and standard deviations were then calculated based on all 23 HLA class II alleles 
tested.  Based on the number of peptides bound by the FL associated allele, the average, and standard 
deviation for a given protein, z-scores were calculated.  Shown are the top 50 z-scores with absolute 
value >2.0 for 4 FL associated alleles.  There was no overlap between the four lists.   

 

24 44 17.96 10.42 2.50 A7ZYR0 Cell division inhibitor SulA Escherichia coli O9:H4  
25 44 17.96 10.42 2.50 B1IVX4 Cell division inhibitor SulA Escherichia coli  
26 44 17.96 10.42 2.50 B1LJ40 Cell division inhibitor SulA Escherichia coli  
27 44 17.96 10.42 2.50 B1X8R2 Cell division inhibitor SulA Escherichia coli  

28 44 17.96 10.42 2.50 B2TTT7 Cell division inhibitor SulA 
Shigella boydii serotype 
18  

29 44 17.96 10.42 2.50 B5YT88 Cell division inhibitor SulA Escherichia coli O157:H7  
30 44 17.96 10.42 2.50 B6I933 Cell division inhibitor SulA Escherichia coli  
31 44 17.96 10.42 2.50 B7LE58 Cell division inhibitor SulA Escherichia coli  
32 44 17.96 10.42 2.50 B7M887 Cell division inhibitor SulA Escherichia coli O8  

33 44 17.96 10.42 2.50 B7N3C1 Cell division inhibitor SulA 
Escherichia coli 
O17:K52:H18  

34 44 17.96 10.42 2.50 C4ZQ84 Cell division inhibitor SulA Escherichia coli  
35 44 17.96 10.42 2.50 P0AFZ5 Cell division inhibitor SulA Escherichia coli  
36 44 17.96 10.42 2.50 P0AFZ6 Cell division inhibitor SulA Escherichia coli O157:H7 
37 44 17.96 10.42 2.50 Q1JQN1 Cell division inhibitor SulA Escherichia coli 
38 44 17.96 10.42 2.50 Q3Z3G3 Cell division inhibitor SulA Shigella sonnei  
39 44 18.04 10.46 2.48 B7UN37 Cell division inhibitor SulA Escherichia coli O127:H6  

40 43 17.70 10.25 2.47 A1A9M7 Cell division inhibitor SulA 
Escherichia coli O1:K1 / 
APEC 

41 43 17.70 10.25 2.47 B7MIB2 Cell division inhibitor SulA Escherichia coli O45:K1  
42 43 17.70 10.25 2.47 Q1RDQ5 Cell division inhibitor SulA Escherichia coli  
43 44 18.30 10.50 2.45 B7MS69 Cell division inhibitor SulA Escherichia coli O81  

44 44 18.30 10.50 2.45 Q0TJA2 Cell division inhibitor SulA 
Escherichia coli 
O6:K15:H31  

45 44 18.30 10.50 2.45 Q8FJ79 Cell division inhibitor SulA Escherichia coli O6:H1  

46 11 3.04 3.30 2.41 C4PRC2 
Small cysteine-rich outer 
membrane protein OmcA  

Chlamydia trachomatis 
serovar B  

47 11 3.04 3.30 2.41 P0CC05 
Small cysteine-rich outer 
membrane protein OmcA  Chlamydia trachomatis  

48 9 3.39 2.33 2.41 P10099 Lysis protein for colicin E8 Escherichia coli 
49 42 18.13 9.96 2.40 B7NM15 Cell division inhibitor SulA Escherichia coli O7:K1  
50 43 17.70 10.59 2.39 B7LNW8 Cell division inhibitor SulA Escherichia fergusonii  
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DRB1* 
01:01 
rank Unique Avg. S.D. Z ID Protein Name Species 

1 7 0.96 1.55 3.90 P0A5X0 30S ribosomal protein S10 
Mycobacterium 
tuberculosis  

2 11 1.48 2.47 3.86 O11459 
Membrane-associated 
protein VP24 Zaire ebolavirus  

3 4 0.39 0.94 3.84 P17797 
Outer membrane 
lipoprotein virB7 

Agrobacterium 
tumefaciens  

4 10 1.22 2.30 3.83 P35964 Virion infectivity factor  
HIV type 1 group M 
subtype B  

5 17 3.04 3.65 3.82 P16442 
Histo-blood group ABO 
system transferase  Homo sapiens  

6 19 3.26 4.16 3.78 P00813 Adenosine deaminase  Homo sapiens  

7 3 0.35 0.71 3.71 P0A3W4 
Outer membrane 
lipoprotein virB7 Rhizobium radiobacter  

8 3 0.35 0.71 3.71 P0A3W5 
Outer membrane 
lipoprotein virB7 

Agrobacterium 
tumefaciens  

9 19 2.70 4.40 3.70 P50469 M protein, serotype 2.2 Streptococcus pyogenes 

10 10 1.57 2.29 3.68 Q6V1Q3 
Membrane-associated 
protein VP24 Zaire ebolavirus  

11 15 2.83 3.31 3.68 Q02104 Lipase 1  Psychrobacter immobilis 

12 7 1.17 1.59 3.67 A8MT79 
Putative zinc-alpha-2-
glycoprotein-like 1 Homo sapiens  

13 8 1.26 1.84 3.66 P55145 

Mesencephalic astrocyte-
derived neurotrophic 
factor  Homo sapiens  

14 8 1.35 1.82 3.65 Q9UHA7 Interleukin-36 alpha  Homo sapiens  
15 7 0.96 1.66 3.63 P19875 C-X-C motif chemokine 2  Homo sapiens  
16 17 2.65 3.97 3.61 P13050 IgA receptor Streptococcus pyogenes 

17 18 2.87 4.19 3.61 O75493 
Carbonic anhydrase-
related protein 11  Homo sapiens  

18 9 1.35 2.12 3.60 Q05322 
Membrane-associated 
protein VP24 Zaire ebolavirus  

19 11 1.70 2.62 3.55 P05898 Virion infectivity factor  
HIV type 1 group M 
subtype B  

20 18 2.57 4.38 3.53 P16946 
Virulence factor-related M 
protein 

Streptococcus pyogenes 
serotype M49 

21 3 0.43 0.73 3.52 Q8N104 Beta-defensin 106  Homo sapiens  

22 12 1.87 2.88 3.52 Q6UX52 
Uncharacterized protein 
C17orf99 Homo sapiens  

23 12 2.04 2.84 3.51 P46233 
Sodium-type flagellar 
protein MotY 

Vibrio parahaemolyticus 
serotype O3:K6  

24 10 1.74 2.36 3.50 P22107 
TraT complement 
resistance protein Salmonella typhimurium 

25 6 1.26 1.36 3.50 P22301 Interleukin-10  Homo sapiens  

26 4 0.39 1.03 3.49 P0DMC3 
Apelin receptor early 
endogenous ligand  Homo sapiens  
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27 14 3.04 3.14 3.49 P15088 Mast cell 
carboxypeptidase A  

Homo sapiens  

28 8 1.26 1.94 3.48 P68608 
DNA-directed RNA 
polymerase 22 kDa subunit  Vaccinia virus  

29 9 1.87 2.05 3.48 Q06092 Protein UL24 homolog Human herpesvirus 6A  
30 8 1.57 1.85 3.47 Q9ZCD8 Phospholipase D  Rickettsia prowazekii  
31 4 0.57 0.99 3.46 Q8NES8 Beta-defensin 124  Homo sapiens  
32 8 1.61 1.85 3.45 Q14116 Interleukin-18  Homo sapiens  

33 2 0.22 0.52 3.44 P81052 Bacteriocin leucocin-B 
Leuconostoc 
mesenteroides 

34 12 2.48 2.78 3.43 Q6GE14 
Gamma-hemolysin 
component A  Staphylococcus aureus  

35 9 1.65 2.14 3.43 Q8Z6A0 
Outer-membrane 
lipoprotein LolB Salmonella typhi 

36 5 1.00 1.17 3.43 Q2FWV6 
Staphylococcal 
complement inhibitor  Staphylococcus aureus  

37 5 1.00 1.17 3.43 Q99SU9 
Staphylococcal 
complement inhibitor  Staphylococcus aureus  

38 13 2.30 3.13 3.42 Q1PDC8 Matrix protein VP40  
Lake Victoria 
marburgvirus  

39 3 0.35 0.78 3.42 A9Q0M7 Bacteriocin ubericin-A Streptococcus uberis 
40 3 0.35 0.78 3.42 P06962 Lysis protein for colicin A Citrobacter freundii 
41 3 0.35 0.78 3.42 P36500 Lantibiotic salivaricin-A Streptococcus salivarius 

42 9 1.61 2.17 3.41 P03253 Protease  
Human adenovirus C 
serotype 5  

43 7 1.26 1.68 3.41 P04597 Virion infectivity factor  
HIV type 1 group M 
subtype D  

44 5 0.78 1.24 3.40 Q77375 Protein Vpr  HIV type 1 group O  
45 13 2.04 3.23 3.40 Q9UBU2 Dickkopf-related protein 2  Homo sapiens  

46 9 1.57 2.19 3.39 P03252 Protease  
Human adenovirus C 
serotype 2  

47 3 0.52 0.73 3.39 P45453 Competence pheromone Bacillus subtilis  

48 11 2.65 2.46 3.39 Q79FX8 
Hydroxymycolate synthase 
MmaA4  

Mycobacterium 
tuberculosis  

49 9 1.61 2.19 3.38 A9MW01 
Outer-membrane 
lipoprotein LolB Salmonella paratyphi B  

50 9 1.61 2.19 3.38 B4SUG5 
Outer-membrane 
lipoprotein LolB Salmonella newport  

DQB1* 
06:02 
rank Unique Avg. S.D. Z ID Protein Name Species 

1 7 0.57 1.47 4.37 P85148 Bacteriocin E50-52 Enterococcus faecium  

2 5 0.48 1.08 4.18 P06963 
Lysis protein for colicins E2 
and E3 Escherichia coli 

3 12 1.96 2.42 4.15 Q04470 
Type-2Aa cytolytic delta-
endotoxin  

Bacillus thuringiensis 
subsp. kyushuensis 

4 10 1.09 2.15 4.14 P04118 Colipase Homo sapiens  

5 7 0.74 1.54 4.06 P01215 
Glycoprotein hormones 
alpha chain  Homo sapiens  
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6 4 0.39 0.89 4.05 Q03709 Lysis protein for colicin E7 Escherichia coli 
7 9 1.87 1.77 4.04 Q9JFA5 Core protein D3  Vaccinia virus  
8 10 1.91 2.02 4.00 O57210 Core protein D3  Vaccinia virus  
9 10 1.91 2.02 4.00 P21009 Core protein D3  Vaccinia virus  

10 7 0.74 1.57 3.98 P0A564 
6 kDa early secretory 
antigenic target 

Mycobacterium 
tuberculosis  

11 7 0.74 1.57 3.98 P0A565 
6 kDa early secretory 
antigenic target  Mycobacterium bovis  

12 11 1.78 2.33 3.95 Q3IK97 
Outer-membrane 
lipoprotein LolB 

Pseudoalteromonas 
haloplanktis  

13 4 0.48 0.90 3.92 P33835 
Virion membrane protein 
A9 Variola virus  

14 12 1.65 2.66 3.90 Q82TQ2 
Outer-membrane 
lipoprotein LolB Nitrosomonas europaea  

15 7 0.83 1.59 3.89 P10513 Pilin Escherichia coli 

16 9 1.09 2.04 3.87 Q92M53 

Outer membrane 
lipoprotein omp10 
homolog Rhizobium meliloti  

17 33 5.09 7.22 3.86 P18047 Fiber protein 1  
Human adenovirus F 
serotype 40  

18 5 0.39 1.20 3.85 P0A310 Bacteriocin sakacin-A Lactobacillus sakei 
19 5 0.39 1.20 3.85 P0A311 Bacteriocin curvacin-A Lactobacillus curvatus 
20 11 1.43 2.48 3.85 P16795 Glycoprotein N  Human cytomegalovirus  
21 10 1.57 2.19 3.85 A7MFW4 Cell division inhibitor SulA Cronobacter sakazakii  

22 33 5.13 7.24 3.85 P16071 
Hemagglutinin-
neuraminidase  

Human parainfluenza 1 
virus  

23 10 1.30 2.27 3.84 A8AIC1 Cell division inhibitor SulA Citrobacter koseri  

24 9 1.13 2.05 3.84 P06311 
Ig kappa chain V-III region 
IARC/BL41 Homo sapiens  

25 4 0.39 0.94 3.84 P21185 Lysis protein for colicin E1* Shigella sonnei 
26 7 0.83 1.61 3.83 P04737 Pilin  Escherichia coli  
27 27 4.39 5.91 3.82 P13119 Flagellin B Rhizobium meliloti  

28 18 3.22 3.87 3.82 Q8YB48 
Glucose/galactose 
transporter 

Brucella melitensis 
biotype 1  

29 12 2.26 2.58 3.77 P18773 Esterase  Acinetobacter lwoffii 
30 4 0.43 0.95 3.77 P13345 Lysis protein for colicin E6 Escherichia coli 
31 9 1.35 2.04 3.76 B7MS69 Cell division inhibitor SulA Escherichia coli O81  

32 9 1.35 2.04 3.76 Q0TJA2 Cell division inhibitor SulA 
Escherichia coli 
O6:K15:H31  

33 9 1.35 2.04 3.76 Q8FJ79 Cell division inhibitor SulA Escherichia coli O6:H1  

34 21 3.65 4.62 3.76 P12446 
Polyprotein p42 [Cleaved 
into: Protein M1'  Influenza C virus  

35 13 2.39 2.82 3.76 Q9PK23 
Putative outer membrane 
protein TC_0650 Chlamydia muridarum  

36 7 0.87 1.63 3.76 P14496 Pilin Escherichia coli 

37 8 1.22 1.81 3.75 P60672 
Envelope protein A28 
homolog  

Yaba monkey tumor 
virus  



115 
 

38 13 2.26 2.86 3.75 P05777 Matrix protein 1  Influenza A virus  

39 9 1.43 2.02 3.75 P19249 
Thermostable direct 
hemolysin 1  

Vibrio parahaemolyticus 
serotype O3:K6  

40 22 4.09 4.79 3.74 Q65RJ5 
Membrane-bound lytic 
murein transglycosylase F  

Mannheimia 
succiniciproducens  

41 9 1.48 2.02 3.72 A7ZK62 Cell division inhibitor SulA 
Escherichia coli 
O139:H28  

42 9 1.48 2.02 3.72 A7ZYR0 Cell division inhibitor SulA Escherichia coli O9:H4  
43 9 1.48 2.02 3.72 B1IVX4 Cell division inhibitor SulA Escherichia coli  
44 9 1.48 2.02 3.72 B1LJ40 Cell division inhibitor SulA Escherichia coli  
45 9 1.48 2.02 3.72 B1X8R2 Cell division inhibitor SulA Escherichia coli  

46 9 1.48 2.02 3.72 B2TTT7 Cell division inhibitor SulA 
Shigella boydii serotype 
18  

47 9 1.48 2.02 3.72 B5YT88 Cell division inhibitor SulA Escherichia coli O157:H7  
48 9 1.48 2.02 3.72 B6I933 Cell division inhibitor SulA Escherichia coli  
49 9 1.48 2.02 3.72 B7LE58 Cell division inhibitor SulA Escherichia coli  
50 9 1.48 2.02 3.72 B7M887 Cell division inhibitor SulA Escherichia coli O8  

 

Supplementary Table 2. Candidate FL Antigens—Uniquely Presented Peptides.  This table gives the top 
50 candidate antigens for FL associated alleles DRB1*01:01 and DQB1*06:02.  For each protein, the total 
number of 15mer peptides predicted to be presented with affinity IC50 < 1,100nM was calculated for 
each allele.  Within those, the subset of ‘unique peptides’ presented by one allele, but no others, was 
tabulated. Averages and standard deviations were calculated based for all 23 HLA class II alleles tested.  
Based on the number of unique peptides bound by the FL associated allele, the average, and standard 
deviation for a given protein, z-scores were calculated.  Shown are the top 50 z-scores for DRB1*01:01 
and DQB1*01:01.  There was no overlap between the two lists. 
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Comparison T-statistic Degrees of Freedom 2-Tailed p-value 
DRB1: Human vs. Virus -21.8 4890.4 2.9E-100 
DRB1: Bacteria vs. Virus -13.8 5126.4 7.8E-43 
DRB1: Human vs. Bacteria -13.2 3642.9 1.1E-38 
DQB1: Human vs. Virus -11.9 4760.0 4.5E-32 
DQB1: Bacteria vs. Virus 25.1 7667.2 2.1E-133 
DQB1: Human vs. Bacteria -34.3 5232.3 1.8E-232 
DPB1: Human vs. Virus -15.1 5217.1 9.4E-51 
DPB1: Bacteria vs. Virus -28.7 5013.9 1.3E-167 
DPB1: Human vs. Bacteria 10.7 4150.6 3.5E-26 

 

Supplementary Table 3.  T-tests comparing means of peptides presented.  T-tests were performed to 
compare human, bacterial, and viral protein peptide presentation within the HLA-DRB1, DQB1, and 
DPB1 genes.  Each test was performed using the R command ‘t.test’, with the alternative hypothesis 
being that the true difference in means between each group was not equal to zero.  The command 
default of using Welch modification to calculate the degrees of freedom was also used.  A negative T-
statistic indicates the mean of the group listed first is lower than the group listed second.   
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Supplementary Materials:  netmhc_submit.sh. This short script is an overall wrapper, designed to feed 
fasta sequences into netMHCII, take the output, and send it to netmhcreader.pl 

#!/bin/sh 
#$ -cwd 
#$ -V 
#$ -j y 
#$ -S /bin/sh 
#netmhc_submit.sh 
 
FILENAME=$BLASTDB/uniprot-all-antigens.fasta #our FASTA sequences to be 
tested 
ALLELE=HLA-DRB10101,HLA-DRB10301  #the HLA alleles being ran 
PREFIX=dr1 
FILE1=$PREFIX-tempfile 
FILE2=$PREFIX-tempfile2 
LIMIT=0.295  #cutoff of IC50 = 2000 
 
for LENGTH in 12 15 18 21 #cycle through different peptide lengths 
do 
    OUTFILE=$PREFIX-$LENGTH 
    count0= 
    exec 3<&0 
    exec 0< $FILENAME 
    echo "START $(date)" >>log-$OUTFILE  #create a log file.   
    cnt=0  #seed a counting variable 
    while read LINE     #go through the FASTA file 
    do 
    if [[ "$LINE" == \>* ]]; then   #when you see a sequence header 
            cnt=$((cnt + 1))    #skip the first header (it would send nothing 
to netmhcii) 
        if [[ "$cnt" -gt 1 ]]; then  
            netMHCII -a $ALLELE -l $LENGTH -t $LIMIT -s $FILE1 > $FILE2  
#call netMHCII 
            perl netmhcreader.pl $FILE2 $COLLECT $OUTFILE #send the output to 
a perl script for reading.  
        fi 
            echo "$LINE" > $FILE1 
    else 
            echo "$LINE" >> $FILE1 
    fi 
    done 
    netMHCII -a $ALLELE -t $LIMIT -s $FILE1 > $FILE2    #for the last 
sequence 
    perl netmhcreader.pl $FILE2 $OUTFILE 
    exec 0<&3 
    echo "END netmhcii & netmhcreader $(date)">>log-$OUTFILE 
done 
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Supplementary Materials: netmhcreader.pl. This script takes the output from NetMHCII, which is 
designed to be visually examined, and reformats it for ease of use downstream.   

#! /usr/bin/perl 
# netmhcreader.pl by kipp akers 
#use this script to scan through netMHCii output files, removing all the 
extra stuff.  
#usage: perl netmhcreader.pl netmhcii.output output.filename 
 
#Collect all the gathered data 
$filename = $ARGV[1]; #argument 2 is the filename prefix 
$filename = $filename . "tophits.txt"; 
open(TEMPOUT, $ARGV[0]) or die "can't open your file: $!"; #create temporary 
file 
open (OUTPUT, ">>$filename") or die "write-to file error: $! \n"; #create the 
output file 
        while ($_ = <TEMPOUT>) { #read the file 
                $_ =~ s/^\s+//; #remove leading whitespace 
                if ($_ =~ /^HLA-/) { #if the line starts with HLA- (ie. if it 
has peptide binding data) 
                                print OUTPUT "$_"; #collect it.  
                } 
        } 
        ##print "there are $counter lines in $file\n"; 
close (OUTPUT); 
close(TEMPOUT); 
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Supplementary Materials: nmhc_analyzer.pl. This script in perl will take in large sets of NetMHCII 
output data (adjusted by netmhcreader.pl) and perform a number of tasks.  The first phase greatly 
compresses the data into a much smaller format.  The second phase sorts the data and adds in missing 
lines when a protein/allele combination is not predicted to bind any proteins.  Finally the third phase 
calculates a number of statistics for each protein sequence, asking if our alleles of interest bind this 
protein uniquely/more strongly etc.   

#! /usr/bin/perl 
use warnings; 
use Scalar::Util qw(looks_like_number); 
#nmhc_analyzer.pl by kipp akers 
#take an netmhcii (sorted- -s flag used) output and extract meaningful stats. 
#USAGE r2analyzer.pl <netMHCiisortedresultsfile> optional:SKIP 
 
####PHASE 1===OPEN INDIVIDUAL NETMHCII FILES AND PROCESS EACH ALLELE/PROTEIN 
COMBO INTO 1 LINE.   
#ADJUSTABLE VARIABLES# 
$cutoff1 = 50; 
$cutoff2 = 500; 
$cutoff3 = 1100; 
$topnumb = 5; 
 
#SET SOME VARIABLES 
@split = NULL; 
@nsplit = NULL; 
$currentallele=NULL; 
$count = 0; 
$count1 = 0; 
$count2 = 0; 
$count3 = 0; 
@allelelist = qw( 
    HLA-DPA101-DPB10401 
    HLA-DPA10103-DPB10201 
    HLA-DPA10201-DPB10101 
    HLA-DPA10201-DPB10501 
    HLA-DPA10301-DPB10402 
    HLA-DPB10301-DPB10401 
    HLA-DQA10101-DQB10501 
    HLA-DQA10102-DQB10602 
    HLA-DQA10301-DQB10302 
    HLA-DQA10401-DQB10402 
    HLA-DQA10501-DQB10201 
    HLA-DQA10501-DQB10301 
    HLA-DRB10101 
    HLA-DRB10301 
    HLA-DRB10401 
    HLA-DRB10404 
    HLA-DRB10405 
    HLA-DRB10701 
    HLA-DRB10802 
    HLA-DRB10901 
    HLA-DRB11101 
    HLA-DRB11302 
    HLA-DRB11501 
); 
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if ($ARGV[1] ne "SKIP"){ ####Skip trick.  Use argument 1 SKIP to activate 
 
#READ AND PROCESS NETMHCII DATA 
open (READFILE, "<", $ARGV[0]) || die "cannot open the read file: $!\n"; 
open (OUTFILE, ">", "step1out.txt") || die "cannot open writefile1: $!\n"; 
    while (<READFILE>) { 
        chomp; 
        $count++; 
        $_ =~ s/WB\s+|SB\s+//; #remove the binder designations from netMHCII 
        @split = split (/\s+/, $_); # 0:allele 1:amino# 2:peptide 3:core 
4:affinity 5:aff.in.nM 6:%random 7:ID 
        if (($currentallele ne NULL) && (($currentallele ne $split[0]) || 
($split[7] !~ $proteinid))) {  
                    #if it's a new allele/protein combination, do math, 
output it all to one line, then clear the variables. 
            #CALCULATE STATS AND OUTPUT 
            $avg1 = &average(\@cutoff1_affs); #average of binding affinity 
under cutoff1.   
            $std1 = &stdev(\@cutoff1_affs); 
            $med1 = &median(\@cutoff1_affs); 
            $avg2 = &average(\@cutoff2_affs); 
            $std2 = &stdev(\@cutoff2_affs); 
            $med2 = &median(\@cutoff2_affs); 
            $avg3 = &average(\@cutoff3_affs); 
            $std3 = &stdev(\@cutoff3_affs); 
            $med3 = &median(\@cutoff3_affs); 
            $avgt = &average(\@topcount_affs); 
            $stdt = &stdev(\@topcount_affs); 
            $medt = &median(\@topcount_affs); 
            print OUTFILE 
"$proteinid\t$currentallele\t$count1\t$avg1\t$med1\t$std1\t$count2\t$avg2\t$m
ed2\t$std2\t$count3\t$avg3\t$med3\t$std3\t$avgt\t$medt\t$stdt\t@coresarray\n"
; 
            #CLEAR VARIABLES 
            %cores = (); 
            $currentallele = $split[0]; 
            @nsplit = split (/\|/, $_); #pull the name from between brackets 
            $proteinid = $nsplit[1]; 
            $count1 = 0; 
            $count2 = 0; 
            $count3 = 0; 
            $topcount = 0; 
            @cutoff1_affs = (); 
            @cutoff2_affs = (); 
            @cutoff3_affs = (); 
            @topcount_affs = (); 
            @coresarray = (); 
        } 
        #PROPERLY INITIATE 
        if ($currentallele eq NULL) {#for the first line.  
            $currentallele = $split[0]; 
            @nsplit = split (/\|/, $_); #pull the name from between brackets 
            $proteinid = $nsplit[1]; 
        } 
         
        ####MEAT N POTATOES--Where most stuff happens.  
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        next if (exists $cores{$split[3]});  #if the core has already been 
counted, skip it.    
        $cores{$split[3]} = 1;#if the core is new, create a new hash key-
pair. split[3] is the core sequence 
        $topcount++; #to index the the properties of the top X bound cores, I 
use this.   
        #Begin cutoff specific accounting    
        if ($split[5] < $cutoff1) { #if the affinity is less than my set 
cutoff 
            $count1++;  #count it 
            push (@cutoff1_affs, $split[5]); #add it to the array 
        } 
        if ($split[5] < $cutoff2) { 
            $count2++; 
            push (@cutoff2_affs, $split[5]); 
        } 
        if ($split[5] < $cutoff3) { 
            $count3++; 
            push (@cutoff3_affs, $split[5]); 
            push (@coresarray, $split[3]); 
        } 
        if ($topcount <= $topnumb) { #if we haven't reached the X in our top 
X bound peptides 
            push (@topcount_affs, $split[5]); 
        } 
    } 
#CALC STATS AND OUTPUT (FOR LAST PROTEIN/ALLELE COMBO) 
$avg1 = &average(\@cutoff1_affs); 
$std1 = &stdev(\@cutoff1_affs); 
$med1 = &median(\@cutoff1_affs); 
$avg2 = &average(\@cutoff2_affs); 
$std2 = &stdev(\@cutoff2_affs); 
$med2 = &median(\@cutoff2_affs); 
$avg3 = &average(\@cutoff3_affs); 
$std3 = &stdev(\@cutoff3_affs); 
$med3 = &median(\@cutoff3_affs); 
$avgt = &average(\@topcount_affs); 
$stdt = &stdev(\@topcount_affs); 
$medt = &median(\@topcount_affs); 
print OUTFILE 
"$proteinid\t$currentallele\t$count1\t$avg1\t$med1\t$std1\t$count2\t$avg2\t$m
ed2\t$std2\t$count3\t$avg3\t$med3\t$std3\t$avgt\t$medt\t$stdt\t@coresarray\n"
; 
close OUTFILE; 
close READFILE; 
 
###PHASE 2 SORT THE OUTFILE/ADD MISSING LINES.   
### make sure you have the env var LANG set to C before this.  I have 
modified my .bashrc file.     
#SORT 
system("sort -b -k 1 -k 2 step1out.txt >sortedtemp.txt"); #sort on protein id 
then on allele 
#ADD IN MISSING LINES## 
    #if no cores bind below the set threshold nmhc outputs nothing.  I want 
zeros in my file.   
open (TEMP, "<", "sortedtemp.txt") || die "cannot open sortedtemp.txt for 
reading: $!\n"; 
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open (OUTFILE2, ">", "step2out.txt") || die "cannot create step2out.txt: 
$!\n"; 
$proteinid = ''; 
$tempcounter = 0; 
@missing = (); 
while (<TEMP>) { #read through the file 
        chomp; 
        while ($_ !~ /$allelelist[$tempcounter]/) {#if the line doesn't match 
the predicted allele (ie if there is a missing line) 
                if ($proteinid ne '') { 
                        print OUTFILE2 
"$proteinid\t$allelelist[$tempcounter]\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0
\t0\n"; # filler line of zeros 
                        $tempcounter++; #tempcounter keeps track of what 
allele we should be at.  
                } 
                else { 
                        push(@missing, $tempcounter); #@missing is the array 
of alleles with missing data.  
                        $tempcounter++; 
                } 
                if ($tempcounter > 22) { #if we're on the last allele-#23 
                        $tempcounter = 0; #clear everything.  
                        $proteinid = ''; 
                } 
        } 
        @split = split (/\s+/, $_); # 0:proteinid 1:alleleid 
        $proteinid = $split[0]; 
        if (@missing) { #if the missing array has values 
                foreach (@missing) { 
                        print OUTFILE2 
"$proteinid\t$allelelist[$_]\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\n"; 
                } 
                @missing = (); 
        } 
        $tempcounter++; 
        if ($tempcounter >22) { 
                $tempcounter = 0; 
                $proteinid = ''; 
        } 
        print OUTFILE2 "$_\n"; 
} 
close TEMP; 
close OUTFILE2; 
###End SKIP trick.  this can be moved around for convenience when 
troubleshooting.  
} 
###PHASE 3 LOOK FOR INTERESTING PROTEINS### 
#ADJUSTABLE VARIABLES 
#only change if you run more alleles than 6dp/6dq/11dr 
@dp = (1..6); 
@dq = (7..12); 
@dr = (13..23); 
$dr01 = 13; 
$dq05 = 7; 
$dq06 = 8; 
$dr15 = 23; 
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@allnr = (1,2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23); #all non-
risk alleles 
@allnp = (1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22);  #all non-
protective alleles.  
#SET VARIABLES 
$cycler = 0; 
@AoH = (); 
@dataline = (); 
$count = 0; 
$drtopcount = 0; 
$dqtopcount = 0; 
 
##OPEN UP OUTPUT FILES/READFILES### 
open (OUTFILE3, ">", "unique_cores.txt") || die "cannot open step 3 output 
file: $!\n"; 
    print OUTFILE3 "Comparison\tProteinID\tCore_seq\tRank\n"; 
open (OUTFILE4, ">", "numberof_cores.txt") || die "cannot open step 3 output 
file: $!\n"; 
    print OUTFILE4 
"Comparison\tProteinID\tRisk_Allele_Cores\tNR_Average\tNR_stdev\n"; 
open (OUTFILE5, ">", "uniques_per_protein.txt") || die "cannot open step 3 
output file:$!\n"; 
open (READFILE2, "<", "step2out.txt") || die "cannot open the read file2: 
$!\n"; #open the sorted file with my peptide binding summaries 
while (<READFILE2>) { 
    chomp; 
    $count++; 
    $cycler++; 
    if ($cycler > 23) { #after I've indexed all the alleles for a given 
protein.  
       ###is there a difference between risk/non-risk and average for this 
protein? 
        $avgnumcores = &average(\@allnumofcores); 
        $stdnumcores = &stdev(\@allnumofcores); 
        #DQ05 vs all alleles 
        if (abs($avgnumcores-$allnumofcores[($dq05-1)]) > (2*$stdnumcores)){ 
#sign. test: if DQ05 has abs(z-score) >2 
            print OUTFILE4 "DQ05vsALL\t$dataline[0]\t$allnumofcores[($dq05-
1)]\t$avgnumcores\t$stdnumcores\n"; 
        } 
        #DR01 vs all alleles  
        if (abs($avgnumcores-$allnumofcores[($dr01-1)]) > (2*$stdnumcores)){  
            print OUTFILE4 "DR01vsALL\t$dataline[0]\t$allnumofcores[($dr01-
1)]\t$avgnumcores\t$stdnumcores\n"; 
        } 
        #DQ06 vs. all alleles 
        if (abs($avgnumcores-$allnumofcores[($dq06-1)]) > (2*$stdnumcores)){ 
                        print OUTFILE4 
"DQ06vsALL\t$dataline[0]\t$allnumofcores[($dq06-
1)]\t$avgnumcores\t$stdnumcores\n";  
        } 
        #DR15 vs. all alleles 
        if (abs($avgnumcores-$allnumofcores[($dr15-1)]) > (2*$stdnumcores)){ 
#sign test 
                            print OUTFILE4 
"DR15vsALL\t$dataline[0]\t$allnumofcores[($dr15-
1)]\t$avgnumcores\t$stdnumcores\n";  
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        } 
        ###CHECK THE CORES FOR UNIQUENESS 
        #tally the number of unique cores presented 
        foreach $allele (1..23) { 
            $uniques_for_this_allele= 0;  
            while (($key, $value) = each %{$AoH[$allele]}) {#this cycles 
through the cores of our $AoH[risk allele] 
                                $testcount =0; 
                                foreach $x (1..23) { #cycle through all the 
comparison alleles 
                                        if (exists $AoH[$x]{$key}) { #if 
another allele presents the core 
                                                $testcount++; #tally 
                                        } 
                                } 
                             if ($testcount == 1) { #ie if the above core is 
unique 
                                        $uniques_for_this_allele++; 
                                 } 
                         } 
            print OUTFILE5 
"Allele:$allele\t$dataline[0]\t$uniques_for_this_allele\n";       
        } 
 
        ##DQ05 vs ALLNR 
        while (($key, $value) = each %{$AoH[$dq05]}) {#this cycles through 
the cores of our $AoH[risk allele] 
            $testcount =0; 
            foreach $x (@allnr) { #cycle through all the comparison alleles  
                if (exists $AoH[$x]{$key}) { #if another allele presents the 
core 
                    $testcount++; #tally 
                } 
            } 
            if ($testcount == 0) { #ie if the above core is unique 
                my $adjvalue = ($value-16); 
                if ($adjvalue < $topnumb) {##topcores vs. all cores 
                    print OUTFILE3 
"DQ05vsAll\t$dataline[0]\t$key\t$adjvalue\n"; 
                } 
            } 
        } 
        ##DR01 vs ALLNR 
        while (($key, $value) = each %{$AoH[$dr01]}) {#this cycles through 
the cores of our $AoH[risk allele] 
            $testcount =0; 
            foreach $x (@allnr) { #cycle through all the comparison alleles  
                if (exists $AoH[$x]{$key}) { #if another allele presents the 
core 
                    $testcount++; #tally 
                } 
            } 
            if ($testcount == 0) { #ie if the above core is unique 
                my $adjvalue = ($value-16); 
                if ($adjvalue < $topnumb) {##topcores vs. all cores 
                    print OUTFILE3 
"DR01vsALL\t$dataline[0]\t$key\t$adjvalue\n"; 
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                } 
            } 
        } 
        ##DR15 vs ALLNP 
        while (($key, $value) = each %{$AoH[$dr15]}) {#this cycles through 
the cores of our $AoH[risk allele] 
                $testcount =0; 
                foreach $x (@allnp) { #cycle through all the comparison 
alleles 
                        if (exists $AoH[$x]{$key}) { #if another allele 
presents the core 
                                $testcount++; #tally 
                        } 
                } 
                if ($testcount == 0) { #ie if the above core is unique 
                        my $adjvalue = ($value-16); 
                        if ($adjvalue < $topnumb) {##topcores vs. all cores 
                                print OUTFILE3 
"DR15vsALLnp\t$dataline[0]\t$key\t$adjvalue\n"; 
                        } 
                } 
        } 
        ##DQ06 vs ALLNP 
        while (($key, $value) = each %{$AoH[$dq06]}) {#this cycles through 
the cores of our $AoH[risk allele] 
                $testcount =0; 
                foreach $x (@allnp) { #cycle through all the comparison 
alleles 
                        if (exists $AoH[$x]{$key}) { #if another allele 
presents the core 
                                $testcount++; #tally 
                        } 
                } 
                if ($testcount == 0) { #ie if the above core is unique 
                        my $adjvalue = ($value-16); 
                        if ($adjvalue < $topnumb) {##topcores vs. all cores 
                                print OUTFILE3 
"DQ06vsALLnp\t$dataline[0]\t$key\t$adjvalue\n"; 
                        } 
                } 
        } 
        #RESET VARIABLES 
        @AoH = (); 
        $drtopcount = 0; 
        $dqtopcount = 0; 
        $cycler = 1;             
        @allnumofcores =(); 
        @drnumofcores = (); 
        @dqnumofcores = (); 
        #sleep(1); 
         
    } 
    ##TEMPORARY STORAGE 
    @dataline = split (/\s+/, $_); #take the line and split it 
    ###########CORES############### 
    for my $i (17..$#dataline) {#17+ on are the core seqs 
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        my $core = $dataline[$i];#this for loop should put all core data for 
1 protein into an AoHs (array of hashes) 
        $AoH[$cycler]{$core} = $i; #dataformat:  $AoH[allele#]{core 
sequence}=rank+16 if it exists.   
    } 
    #PRESENTABLES 
    push (@allnumofcores, $dataline[10]); #note the allele number =/= array 
index here, b/c index starts at zero 
        #dataline[10] is the number of (cutoff3) bound peptides. 
}    
         
sub average{ ###compliments to kate in edwards lab at SDSU.  Adapted for 
missing data. 
        my($data) = @_; 
        if (not @$data) { 
                return(0); 
        } 
        my $total = 0; 
        my $number = 0; 
        foreach (@$data) { 
                if (looks_like_number($_)) { 
                        $total += $_; 
                        $number++; 
                } 
        } 
        my $average = $total / $number; 
        return $average; 
} 
 
sub median { ##adapted.  NOTE that this relies on the ordered data I know I 
have.   
    my($data) = @_; 
    if (not @$data) { 
            return(0); 
    } 
    my $midpoint = @$data/2; 
    if ($midpoint =~ m/\D/ ) {#if it has a decimal 
        $upper = $midpoint - 0.5;#minus because arrays start at zero 
        $median = @$data[$upper]; 
    } 
    else { 
        $lower = @$data[$midpoint]; 
        $upper = $midpoint - 1; #minus because arrays start at zero 
        $upper = @$data[$upper]; 
        $median = ($upper + $lower)/2; 
    } 
    return $median; 
} 
sub stdev{ ###compliments to kate in edwards lab at SDSU 
        my($data) = @_; 
        if(@$data == 1){ 
                return 0; 
        } 
        my $average = &average($data); 
        my $sqtotal = 0; 
        my $number = 0; 
        foreach(@$data) { 
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                if (looks_like_number($_)) { 
                        $number++; 
                        $sqtotal += ($average-$_) ** 2; 
                } 
        } 
        my $std = ($sqtotal / ($number-1)) ** 0.5; 
        return $std; 
} 
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Chapter 6  

Summary and Conclusions 
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This dissertation set forth to bring research of HLA alleles and their effect on FL risk one step 
closer to positively impacting the public.  Preventing lymphoma and other HLA associated 
diseases remains a public health priority.  With a better understanding of how HLA genetic 
changes are impacting individual risk of FL, we position ourselves to make great improvements 
in the lives of many individuals.  Advancements in our knowledge of how this gene region 
impacts this one lymphoma subtype have the potential to be widely applicable to a number of 
common cancers and autoimmune diseases.   

The preceding chapters have demonstrated that there are several independent risk factors for 
FL within the HLA class II gene region.  A locus increasing FL risk and a locus decreasing FL risk 
both appear to exist in the region spanning HLA-DQB1 and HLA-DRB1.  These associations may 
in fact both be localized to a single amino acid position of HLA-DRB1.  A third, independent, FL 
associated allele appears to exist at HLA-DPB1. 

A growing body of evidence appears to indicate that peptide presentation plays a major role in 
the etiology of FL.  This hypothesis is supported in this dissertation by indications that the 
amino-acid positions most associated with FL reside within the peptide binding groove of HLA-
DRB1.  Variation at these residues has previously been shown to influence peptide binding, and 
is shown here to effect individual FL risk.  Further evidence of the importance of peptide 
binding to FL is given using a computational approach.  When tested for their predicted ability 
to bind environmental proteomes, FL-associated alleles HLA-DRB1*01:01 and HLA-DQB1*05:01 
were shown to be consistent outliers.  These alleles are predicted to bind environmental 
peptides stronger and weaker, respectively, than their non-FL associated counterparts.  This 
indicates that FL risk may be attenuated by the strength with which an individual binds an 
antigen, or group of antigens.     

For a number of reasons, these are very exciting conclusions.  The discovery of multiple, 
independent, risk loci for this disease within the HLA region underscores two major points.  
First, given the population frequency and the degree of increased risk associated with these 
alleles, it appears that a large percentage of population risk for FL is attributable to this gene 
region.  When coupled with the recent discovery that t(14:18) positive cell counts predict FL risk 
up to 15 years in advance of disease presentation (1), we likely have the ability to characterize 
individual risk for FL using just a small amount blood and simple genotyping.   Secondly, the 
breadth of these associations indicates that these proteins may be central to development of 
FL.  Molecular characterization of this disease association will be crucial in determining not only 
how to treat FL, but how to prevent it as well.  

A number of studies were performed concurrently with this dissertation, and their findings are 
a great supplement to the research presented here.  Sillé et al. demonstrated that in-vitro, the 
FL protective haplotype spanning HLA-DRB1 and HLA-DQB1 is associated with increased 
expression of HLA-DQB1 (2).  This finding expanded upon and confirmed a previous report 
making use of publicly available RNA-Seq data (3).  The implication of this research is that the 
causal locus for this protective association is a regulatory feature which increases HLA-DQB1 
expression.  One can further hypothesize that increased HLA-DQB1 protein levels are FL-
protective.  These findings do not at all contradict the research presented in this dissertation.  
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The data presented in Chapter 5 indicates that the FL risk haplotype spanning HLA-DRB1*01 
and HLA-DQB1*05:01 may be functioning via particularly strong or weak peptide binding.  In 
that chapter, FL protective alleles HLA-DRB1*15:01 and HLA-DQB1*06:02 were average 
compared to other HLA Class II alleles.  Perhaps these two HLA associations are functioning in 
different ways to affect the same molecular pathway.  HLA-DQB1*06:02 may be FL-protective 
by being highly expressed and presenting peptides with average strength, while HLA-
DQB1*05:01 induces FL risk by being expressed at average levels but presenting peptides with 
below average strength.  This is just one hypothesis to explain the observed data.  A second 
hypothesis is that increased HLA-DQB1 expression is protective by recognizing and targeting 
pre-FL B cells, while HLA-DRB1*01’s strong binding of peptides creates enhanced antigenic 
stimulation, leading to a pro-inflammatory state and increasing FL risk.  There appears to be 
much left to discover within this field.  

Fascinating research has come from an extremely high-powered genome-wide association 
study of FL (4).  By making use of exceptionally large numbers of FL cases and controls, these 
investigators were able to detect more subtle FL-associated loci outside of the HLA region.  In 
doing so, FL risk alleles were discovered in genes impacting B-cell differentiation and signaling, 
as well as known B cell lymphoma oncogenes.  This research is still under review, but the 
findings will no doubt play a large role in directing the next wave of lymphoma research.  As 
more and more genomic associations with FL are discovered, the pathways on the causal map 
of this disease will be become clear.  That information will be an invaluable resource to 
molecular biologists and medical researchers studying the events that lead to formation of FL.   

The role of regulatory T cells in the development of FL remains a fascinating research area 
which may be dependent on HLA class II alleles.  Research shows that FL cells enable the 
conversion of helper T cells to regulatory T cells (5), presumably a feature that improves 
survival by suppressing anti-tumor immune response.  More recent research has focused on 
reversing the FL tolerant state within FL patients by triggering certain toll-like receptors (6).  
With this treatment, regulatory T cells were inhibited and effector T cell function was restored.  
This strategy has had success in-vitro; however, it remains to be seen if these results will hold 
when treating patients.  With a diverse treatment population, the effect of HLA variability may 
need to be accounted for.  It is clear that interactions between FL cells and T cells are HLA class 
II dependent.  This was initially shown many years ago (7), but confirmed once again more 
recently (6).  The extent to which genetic variability at the HLA class II locus affects T cell 
interactions in FL patients remains understudied.   

Similarly, other cellular residents of the FL microenvironment may be attenuating FL risk via 
HLA class proteins.  The survival time for FL patients is highly dependent on the population of 
non-malignant cells within the FL tumor (8).  While the presence of T cells generally indicates 
favorable outcome, macrophages and dendritic cells are associated with shorter survival.  Of 
course, the latter two are both professional antigen-presenting cells which express HLA class II 
proteins.  Perhaps relatedly, it was recently reported that CD14+ dendritic cells localizing to the 
follicle were associated with shorter times to transformation among FL patients (9).  
Transformation is generally associated with a worse prognosis and shorter survival times.  
Previous research has shown that more aggressive B cell lymphoma is associated with increased 
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cells in the blood positive for CD14 and with low HLA-DRB1 (10).  It can be hypothesized that 
HLA class II alleles are attenuating FL risk via non-B cell antigen presenting cells.  This 
hypothesis coincides with what we know about the cellular function of HLA class II proteins on 
these cells and the research showing the impact these cells have on FL progression and survival.  
The difficulty of working with these cell types likely explains why this topic remains under-
utilized in research.    

Future studies aiming to build off the research presented here should begin with an expansion 
of the work presented in Chapter 3.  Discovering the causal locus of association within HLA 
haplotypes is an important task for all HLA-FL research.  The exact genetic change that impacts 
FL risk is unlikely to be revealed with genetic epidemiology alone; however, reducing the 
associated haplotype to a single associated gene will simplify this task greatly.  A well-designed 
study of FL in a non-Caucasian population could have strong power to detect the difference 
between FL associated alleles at HLA-DRB1 and HLA-DQB1.  This research is currently 
underway, with African-American and Asian-American FL case DNA being gathered for genome-
wide genotyping.     

Further work is also needed to better characterize the bound peptide profile of cells in FL and 
non-FL states.  Chapter 5 demonstrates that certain HLA alleles are likely to present antigen 
peptides with higher affinity, and that this may be influencing FL risk.  A follow-up study to 
characterize the HLA Class II bound peptide repertoire, both in-vitro and in-vivo, is needed.  An 
in-vitro system would allow the testing of antigen presenting cells for their ability to process 
and present candidate FL antigens, such as those highlighted in Chapter 5.  The greatest impact 
research, however, is likely to come from an examination of those peptides being presented by 
HLA class II proteins in FL patient tumor material.  This experimental design would allow an 
unprecedented look at the antigens which are present and impacting the growth and 
proliferation of FL cells and the FL microenvironment.  It is possible that a few specific antigens 
dominate HLA Class II proteins in fully developed FL cells.  It is also possible that FL cells have 
mutated to the point where any non-specific antigen will lead to FL cell proliferation.  Either 
finding would be an important discovery.  The methodology of such an experiment is complex, 
requiring collaboration between cancer biologists, immunologists and mass spectrometry 
experts.  Furthermore, acquiring fresh or frozen FL tumor material, in sufficient quantities to 
strip and quantify bound peptides, is a difficult task.  However, the potential for discovery of 
such an experiment far outweighs the difficulty of performing it, and I hope to see such 
research soon.      
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