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A pipeline for automated deep 
learning liver segmentation 
(PADLLS) from contrast enhanced 
CT exams
Jayasuriya Senthilvelan & Neema Jamshidi*

Multiple studies have created state-of-the-art liver segmentation models using Deep Convolutional 
Neural Networks (DCNNs) such as the V-net and H-DenseUnet. Oversegmentation however continues 
to be a problem. We set forth to address these limitations by developing a an automated workflow 
that leverages the strengths of different DCNN architectures, resulting in a pipeline that enables 
fully automated liver segmentation. A Pipeline for Automated Deep Learning Liver Segmentation 
(PADLLS) was developed and implemented that cascades multiple DCNNs that were trained on more 
than 200 CT scans. First, a V-net is used to create a rough liver, spleen, and stomach mask. After 
stomach and spleen pixels are removed using their respective masks and ascites is removed using a 
morphological algorithm, the scan is passed to a H-DenseUnet to yield the final segmentation. The 
segmentation accuracy of the pipleline was compared to the H-DenseUnet and the V-net using the 
SLIVER07 and 3DIRCADb datasets as benchmarks. The PADLLS Dice score for the SLIVER07 dataset 
was calculated to be 0.957 ± 0.033 and was significantly better than the H-DenseUnet’s score of 
0.927 ± 0.044 (p = 0.0219) and the V-net’s score of 0.872 ± 0.121 (p = 0.0067). The PADLLS Dice score for 
the 3DIRCADb dataset was 0.965 ± 0.016 and was significantly better than the H-DenseUnet’s score 
of 0.930 ± 0.041 (p = 0.0014) the V-net’s score of 0.874 ± 0.060 (p < 0.001). In conclusion, our pipeline 
(PADLLS) outperforms existing liver segmentation models, serves as a valuable tool for image-based 
analysis, and is freely available for download and use.

Abbreviations
ASD  Average symmetric surface distance
BTCV  Beyond the cranial vault
CT  Computed tomography
DCNN  Deep convolutional neural network
HD  Hausdorff distance
kNN  K-nearest neighbor
HF  Hybrid fusion
HU  Hounsfield units
LiTS  Liver tumor segmentation
PADLLS  Pipeline for automated deep learning liver segmentation
RMSD  Root mean square symmetric surface distance
ROC  Receiver operating characteristic
ROI  Region of interest
RVD  Relative volume difference
SLIVER07  Segmentation of the liver competition 2007
VOE  Volumetric overlap error
WL  Window length
WW  Window width
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The growth and development of deep learning applications in biomedical imaging research have been profound 
in the past decade. To leverage these developments and to fully achieve goals of radiomic and radiogenomic 
objectives, fully automated organ segmentation will become increasingly important. The liver is a critical organ 
in health and disease, notably in oncologic disease (primary and metastatic) as well as endocrine and metabolic 
disorders, with computed tomography (CT) imaging playing a critical role for diagnosis, treatment planning, 
and follow-up for numerous hepatic  diseases1–3. Segmentation applications have increased dramatically, but 
growth has been limited by the widespread availability of tools and semi-automated approaches that require 
user input. Although these methods give physicians greater control over the nature of the segmentation, they 
are also subjective and time-consuming. As a result, there is a need for automated segmentation for advancing 
quantitative analyses of livers.

Traditional approaches for organ segmentation can be classified into three groups: region-based methods, 
classification and clustering methods, and hybrid  methods4. Region-based methods include thresholding and 
region  growing5. Disadvantages of these two methods include sensitivity to noise and segmentation accuracy 
dependence on the operator’s seed point selection, respectively. Classification methods, like k-Nearest Neighbor 
(kNN) and Maximum Likelihood Estimation, typically classify each pixel one at a time based on the training 
data. Clustering methods are similar to classification models with the exception that they do not require train-
ing data, including, for example, K-means and Expectation Maximization. The drawback to this category is the 
inability to factor in extensive spatial  information6. Hybrid methods are based on both the region of interest 
(ROI) and boundary information (calculating a gradient based on pixel values) but are hindered by the requisite 
user interaction for every slice that is segmented in a  series7.

Deep Convolutional Neural Networks (DCNNs) address many of the issues posed by earlier segmentation 
models. For instance, they can take into account both 2D and 3D spatial information. DCNNs are also highly 
adaptable, which is critical for liver segmentation as liver size, shape, and density vary widely from patient to 
patient. Additionally, once trained the method is fully automatic, so no user input is  required8. Conversely, there 
are drawbacks to DCNNs, such as the large amount of manually segmented training data, time, and computa-
tional power it takes to train the model. Running the model successfully also requires significant GPU resources 
and time. However, the success of DCNNs in image segmentation challenges like LiTS (Liver Tumor Segmenta-
tion) justifies the initial investment of time and  resources9.

Current state of the art liver segmentation DCNNs, such as the V-net from Gibson et al. and the H-DenseUnet 
from Li et al.10,11, have overcome many of the challenges related to liver segmentation such as separation from 
potential structures such as the heart and kidney as well as minimizing the confounding effect of diaphragmatic 
motion. However, there remain limitations to the results from each of these models, notably oversegmentation 
of the stomach, spleen, and/or ascites. In this paper, we define oversegmentation as the inclusion of non-hepatic 
voxels in the final liver mask due to indistinct anatomic boundaries between organs and structures. These types 
of problems increase the false positive error and compromise the validity of any subsequent analyses.

In order to solve this issue, we developed a robust, automated pipeline approach by cascading the V-net and 
H-DenseUnet and applying knowledge-based heuristics; the result is a Pipeline for Automated Deep Learning 
Liver Segmentation (PADLLS). The V-net’s spleen and stomach masks were used to modify the original CT 
volume to entirely remove all spleen and stomach voxels. Ascites was also removed from the dataset through 
thresholding and morphological processing. The resulting edited volume was passed to the H-DenseUnet to 
generate the final liver segmentation. Testing on benchmark datasets (3DIRCADb and SLIVER07) demonstrated 
that our approach outperforms the H-DenseUnet and V-net, which is indicative of a synergistic improvement in 
accuracy. A direct comparison of our pipeline to other state-of-the-art models supports these findings.

Methods
Preprocessing. Data from both SLIVER07 (Segmentation of the Liver Competition 2007)12 and 
 3DIRCADb13 are available in a different orientation and file format than that which the V-net, H-DenseUnet, 
and our segmentation pipeline required. Hence, each slice of SLIVER07 and 3DIRCADb CT scans was rotated 
clockwise by 90° and reflected about the vertical axis. All datasets were then converted from either DICOM or 
MHD to NIfTI, which is the format used by all networks in this manuscript. This was accomplished by extracting 
the raw data array from the DICOM or MHD file and creating an entirely new NIfTI file.

Test datasets. The final liver segmentation pipeline in Fig. 1 was tested on two public challenge CT datasets: 
SLIVER07 and  3DIRCADb13. Most of the scans in the SLIVER07 datasets were of diseased livers, with cysts and 
tumors. All images were also contrast enhanced. The pipeline was run on an NVIDIA Quadro RTX4000 with 
8 GB memory and a NVIDIA Tesla V100 with 32 GB memory. The SLIVER07 challenge provided 20 datasets 
in RAW and MHD format. These datasets were first converted to DICOM format before running them through 
the segmentation pipeline. Reference segmentations for each respective dataset were provided. The 3DIRCADb 
dataset with 20 contrast enhanced CT-scans (10 men and 10 women) and reference ‘gold standard’ manual 
segmentation was used as well. Seventy-five percent of the datasets in 3DIRCADb had hepatic tumors. Three 
additional datasets (multiphase CT scans) were used to test the effectiveness of ascites removal.

Initial V-net segmentation. The initial V-net segmentation was performed using the Dense V-net pro-
posed by Gibson et al.10. A summary of the network architecture is provided as follows. A 144 × 144 × 144 initial 
volume is provided as input to the network and convolutional downsampling is performed. The downsampled 
volume is then run through a series of dense feature stacks and convolutions, which are used to create activa-
tion maps at three resolutions. These maps are bilinearly upsampled, concatenated, and convolved to generate 
likelihood logits. Finally, an explicit spatial prior was added to these logits to generate the segmentation. The 
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network was trained to segment eight different organs: pancreas, esophagus, duodenum, stomach, liver, spleen, 
left kidney, and gallbladder. The data used to train this network originated from the Cancer Imaging Archive 
Pancreas-CT  dataset14 and Beyond the Cranial Vault (BTCV) Segmentation  Challenge15. The V-net was trained 
using the following probabilistic Dice score function to calculate an L2 regularization loss.

L is the logit result of the V-net with nine different classes. L becomes L′ upon the addition of a spatial prior 
called P , introduced by Gibson in a previous  work16. L′′l  is the result of applying the softmax function to L′ for 
some label l  . Rl is the ground truth segmentation for some organ l  . This network was trained for 6 h on a Titan 
X Pascal GPU with 12 GB of RAM. The liver segmentation from the V-net was used to define a bounding box 
for the subsequent H-DenseUnet. Further, using the stomach and spleen masks from the V-net, the stomach 
and spleen voxels were replaced with − 100 Hounsfield Units (HU) in the CT data passed to the H-DenseUnet 
in order to prevent any potential oversegmentation by the H-DenseUnet phase of the pipeline. Full architecture 
details of V-net can be found in Supplementary Table S1.

Ascites correction. Since the H-DenseUnet and V-net were both observed to overestimate liver volumes in 
imaging studies with ascites, we felt it was important to correct for this. Hence, a 3D binary mask of all pixels less 
than 15 HU was created (inclusive of ascites and peritoneal fat; see Statistics and Analysis). Then, image opening 
was performed with a disk of radius 2 pixels on each slice. Image opening is the erosion of an image followed by 
dilation using a structuring element. Spherical and circular structural elements were used throughout this paper 
because they best preserve the border contours of the binary image. It is intended to remove small binary objects. 
It can be described with the following formula:

Here, A is the binary image and B is the structuring element. ⊕ and ⊖ refer to image dilation and image erosion, 
respectively. Overall, these steps eliminated any parts of the liver or other organs that were lower than 15 HU in 
intensity. Subsequently, a binary area filter selecting objects that were greater in area than 1500 pixels was applied 

(1)pDicel
(
L′′l ,Rl

)
=

(
min

(
L′′l , 0.9

)

�Rl�2 +
∥∥min

(
L′′l , 0.9

)∥∥
2

)

(2)A ◦ B = (A⊖B)⊕ B

Figure 1.  Flowchart schematic outlining the PADLLS steps. First, the imported images are standardized with 
respect to orientation and format. Next, the V-net segments the study for the initial liver mask (in addition 
to the stomach and spleen). Oversegmentation correction is then applied though thresholding and finally the 
H-DenseUnet further refines the liver segmentation.
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to each image in the volumetric dataset. Finally, all CT dataset voxels that were included in this binary volume 
were set to − 100 HU in order to exclude ascites.

Final H-DenseUnet segmentation. The output of the V-net segmentation was passed to the H-DenseU-
net presented by Li et al.11. This network consisted of 3 critical components: a 2D DenseUnet, a 3D DenseUnet, 
and a Hybrid Fusion (HF) layer. The 2D DenseUnet is good at recognizing intra-slice features but fails to take 
into account information along the z-axis, whereas the 3D DenseUnet is good at recognizing inter-slice features 
but has a large computational cost. As a result, combining these two networks in a cascaded learning approach 
was determined to produce optimal segmentation results.

The H-DenseUnet was trained using a weighted cross-entropy loss function, seen below:

wc
i  represents the weight and yci  is the ground truth for pixel i . ŷic is the probability that a pixel i is found in class 

c , where the classes are background, lesion, and liver. This network was trained for 30 h using two NVIDIA Titan 
Xp GPUs (12 GB each).

First, the initial liver segmentation from the V-net was used to define a rough bounding box in the CT data, 
which was then resized to 224 × 224 × 12. Next, every three adjacent slices in the input volume (224 × 224 × 3) 
were passed to the 2D DenseUnet. These 2D segmentation results were concatenated with the 3D input volume 
(224 × 224 × 12) and fed into the 3D DenseUnet. Then, the HF layer was used to fuse the intra-slice and inter-slice 
features from the 2D DenseUnet and the 3D DenseUnet, respectively, to create a final liver segmentation. Full 
details of H-DenseUnet architecture can be found in Supplementary Table S2.

Post-processing. The result of the H-DenseUnet segmentation was truncated to only include slices that had 
liver pixels in them. Sometimes the liver segmentation included lung pixels near the hepatic dome. Hence, all 
pixels in the liver binary mask with values less than 0 HU were excluded from the final segmentation. Volume 
filtering was performed to select the largest object and image closing was performed with disk of radius 2 pixels. 
Liver and tumor masks from the H-DenseUnet were combined into one liver binary volume. Any holes in the 
mask were filled, and image closing was performed on the volume with a sphere of radius 3 pixels. Image closing 
is defined as the dilation of a binary image followed by erosion using a structuring element, intended to fill small 
holes in a binary image. It can be described with the following formula:

A is the binary image and B is the structuring element. ⊕ and ⊖ retain their meaning from Eq. (2). Schematic 
of full segmentation pipeline from start to finish can be seen in Fig. 1.

Statistics and analysis. For the ascites correction, a receiver operating characteristic (ROC) curve was 
generated across the range of 0 to 30 HU, with increments of 1 HU between 10 and 20 HU and increments 
of 5 HU otherwise. Volumetric Overlap Error (VOE), Relative Volume Difference (RVD), Average Symmetric 
Surface Distance (ASD), Root Mean Square Symmetric Surface Distance (RMSD), Hausdorff Distance (HD), 
and Dice score were calculated as metrics to comprehensively compare the segmentation results of the different 
algorithms. In the following formulas, A is the binary segmentation result and B is the ground truth mask. d is 
the Euclidean distance between two points. S(A) and S(B) are the surface of the ground truth mask and binary 
segmentation result, respectively.

Dice coefficients for the segmentation results were calculated as:

A Dice score of 1 reflects perfect segmentation of the entire study. VOE was calculated as a percent, where a 
VOE of 0% means a perfect segmentation. VOE was also used to compare the effect of ascites on the performance 
of the V-net and H-DenseUnet with our pipeline. The VOE was calculated as:

RVD was also calculated with the following formula:

An RVD of 0% means a perfect segmentation. ASD was calculated in millimeters with the following formula:

For all points on the surface of volume A, the Euclidean distance is calculated to the nearest surface point on 
volume B. This process is repeated for all surface points on volume B with respect to the nearest surface point 
on volume A. The mean of these distances yields the ASD. An ASD of 0 mm means a perfect segmentation. The 
RMSD in millimeters is calculated as follows:

(3)L
(
y, ŷ

)
= −

1

N

N∑

i=1
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wc
i y

c
i logŷi

c

(4)A · B = (A⊕ B)⊖B

(5)Dice = 2(A ∩ B)/(|A| + |B|)

(6)VOE = 100(1− (|A ∩ B|)/|A ∪ B|)

(7)RVD = 100((|A| − |B|)/|B|)

(8)ASD(A,B) =
1

|S(A)| + |S(B)|
×
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It is simply the root mean square of the distances calculated during the process of calculating ASD. An RMSD 
of 0 mm means a perfect segmentation. Hausdorff distance was calculated in millimeters with the following 
formula:

It is defined as the largest distance between the surface of A to the closest point in the surface of B. A Hausdorff 
distance of 0 mm means a perfect segmentation.

Statistical significance criterion was defined as p values < 0.05 with Welch’s t-test.
UCLA Institutional Review Board approval was obtained (IRB#: 10-001869) and included waiver of informed 

consent. The authors attest they are in compliance with human studies committees of the authors’ institutions 
and performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and 
its later amendments or comparable ethical standards.

Data availability. The SLIVER07 dataset analyzed in this study is available at https:// slive r07. grand- chall 
enge. org. The 3DIRCADb dataset analyzed in this study is available at https:// www. ircad. fr/ resea rch/ data- sets/ 
liver- segme ntati on- 3d- ircadb- 01/. The entire code base and dockerfile for the code environment in Python are 
provided at https:// github. com/ neema jamsh idi/ PADLLS  and is also available as a Docker image on Docker Hub 
at jaysen20/siml-liver-net.

Results
Component-wise validation. The validation of the individual components of the liver segmentation pipe-
line were recorded in their respective papers; the V-net used in the initial segmentation was trained with more 
than 90  datasets10 and the H-DenseUnet that was used was trained with more than 130  datasets11. Hence, the 
pipeline in this paper has been trained on more than 220 abdominal CT scans. The average Dice score per case 
for the H-DenseUnet was 0.961 for the LiTS  challenge9,11. On a multi-center dataset with 90 subjects, the aver-
age Dice score per case for the V-net was 0.95 for the  liver10. While these results are encouraging, each of the 
networks has limitations that can result in oversegmentation of the liver, for example by inappropriate inclusion 
of abdominal ascites or other (non-hepatic) abdominal organs as part of the liver mask.

Ascites correction. ROC analysis was used to identify an optimal threshold to remove ascites (Fig. 2). The 
ascites cutoff was selected at peak of the curve, 15 HU, a value that is consistent with the typical CT attenuation 
range of 5 to 15 HU for simple fluid. An example of the effects of the ascites correction for each of the individual 
DCNNs versus the pipeline are illustrated in Fig. 3. Figure 3A and C show that the V-net and H-DenseUnet 
have erroneously included abdominal fluid in their liver segmentations. However, once the ascites correction is 
applied, the liver segmentation contour becomes more accurate, as shown in Fig. 3B and D. The relative over-

(9)RMSD(A,B) =
1

|S(A)| + |S(B)|
×

√ ∑

sA∈S(A)

d2(sA, S(B))+
∑

sA∈S(A)

d2(sB, S(A)

(10)HD(A,B) = max
a∈A

{
min
b∈B

{d(a, b)}

}

Figure 2.  ROC curve for the ascites correction threshold. The threshold value was varied from 0 to 50 HU in 
increments of 5 HU to construct this curve. From 10 to 20 HU, the threshold was varied in increments of 1 HU. 
The optimal value of 15 HU was selected as the ascites threshold because it maximizes true positive rate and 
minimizes false positive rate.

https://sliver07.grand-challenge.org
https://sliver07.grand-challenge.org
https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://github.com/neemajamshidi/PADLLS
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segmentation of ascites by these networks was quantified by comparing their respective VOE% for the case in 
Fig. 3. These results are reported in Table 3, which reveals that PADLLS decreases ascites oversegmentation by 
approximately a factor of two and five for the V-net and H-DenseUnet, respectively.

A quantitative assessment of the ascites correction was performed through comparison of the Dice score 
with and without the correction. For 3DIRCADb, the average Dice improved from 0.926 to 0.965, a statistically 
significant difference based on Welch’s t-test (p = 0.0008). For SLIVER07, the average Dice improved from 0.940 
to 0.957, but this difference was not statistically significant (p = 0.170). Given the relatively small number of 
datasets in 3DIRCADb and SLIVER07, this difference may reflect a higher incidence of ascites in 3DIRCADb 
than SLIVER07. Regardless, we expect that correction of ascites may have a significant impact on potential 
applications for liver segmentation (e.g. tumor segmentation, radiomic studies, etc.).

Correction abdominal organ oversegmentation. The H-DenseUnet frequently oversegments by 
including portions of liver-adjacent organs (Fig. 4). Figure 4A and B are coronal and axial slices of the liver from 
a single example dataset used to demonstrate this phenomenon. Figure 4C shows an example 3D liver segmen-
tation volume performed by the H-DenseUnet that has erroneously included a large portion of the spleen. Our 
pipeline, however, solves this issue by removing the spleen (identified from the V-net segmentation) before feed-
ing this input into the H-DenseUnet. Figure 4D shows a 3D model of the liver from the same CT scan following 
PADLLS segmentation, notably without oversegmentation of the spleen or other abdominal organs.

Pipeline validation. Another exemplar illustrating the step wise improvement in segmentation during the 
intermediate steps is shown in Fig. 5. Figure 5A shows a preprocessed, unsegmented, axial CT slice. Figure 5B 
shows the V-net segmentation of the liver, stomach, and spleen. Figure  5C shows the result of the heuristic 
method of creating a binary ascites mask. Figure  5D was created by setting all stomach, spleen, and ascites 
pixels to − 100 HU using the yellow and purple segmentations from Fig. 5B and the ascites mask from Fig. 5C. 
Figure 5D then became the input for the H-DenseUnet. The final pipeline segmentation of the liver is provided 
in Fig. 5E.

The validation of the proposed liver segmentation pipeline was performed using the 3DIRCADb and 
SLIVER07 challenge datasets. The average Dice score for our pipeline for 3DIRCADb was 0.965 ± 0.016. The 
average Dice score for our pipeline for the SLIVER07 challenge was 0.957 ± 0.033. Tables 1 and 2 compare 
the average PADLLS Dice score to those of the V-net and H-DenseUnet for the SLIVER07 and 3DIRCADb 
benchmarks, respectively. From these tables we can see that PADLLS outperforms its constituent networks by a 
statistically significant margin (p < 0.05) for both benchmarks. Thus we believe our pipeline leverages strengths 
of different types of DCNN and further improves upon them in a synergistic fashion, as reflected by the boxplots 
of Dice scores for each network in each validation dataset (Fig. 6). Not only is the segmentation accuracy of 
PADLLS higher than both H-DenseUnet and V-net (Tables 1 and 2), but the segmentation error is also lower, 
suggesting greater consistency with PADLLS segmentation (Table 3).

Figure 3.  Example of PADLLS oversegmentation correction of ascites. (A) V-net liver segmentation with no 
ascites correction and (C) H-DenseUnet segmentation with no ascites correction. (B) and (D) are final pipeline 
segmentations with ascites correction. The yellow shading in all of the images demarcates the liver. Window 
width (WW) and window length (WL) of 30 and 150 HU were used, respectively.
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Figure 4.  Example of PADLLS oversegmentation correction of the spleen and stomach. Axial (A) and coronal 
(B) CT slices of the segmented dataset at the level of the liver. (C) H-DenseUnet segmentation of liver from 
3DIRCADb dataset that includes the spleen. (D) Final pipeline segmentation that accurately captures the lateral 
margin of the liver adjacent to the stomach but does not oversegment with the stomach or spleen. WW and WL 
of 350 and 40 HU were used, respectively.

Figure 5.  Example outlining intermediate pipeline steps. (A) An axial slice of a post-contrast CT image through 
the middle of the liver. (B) Initial result following V-net segmentation. Liver, stomach, and spleen are shaded 
orange, yellow, and purple, respectively. (C) Filter mask for ascites removal. (D) Input to the H-DenseUnet. Note 
that the stomach, spleen, and ascites pixels have been replaced with − 100 HU. (E) Final pipeline segmentation 
result with liver shaded in red. WW and WL are 400 and 50 for all of CT scans.
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Table 1.  Comparison of liver segmentation results on SLIVER07. An asterisk indicates a statistically 
significant difference in Dice score between our pipeline and another model (p < 0.05).

Model Year VOE (%) RVD (%) ASD (mm) RMSD (mm) HD (mm) Dice p value

V-net10 2018 21.15 ± 14.65 − 0.17 ± 0.16 3.55 ± 2.61 3.70 ± 2.27 83.90 ± 156.93 0.872 ± 0.121 0.0067*

H-DenseUnet11 2018 13.29 ± 7.38 0.0754 ± 0.1174 5.34 ± 8.13 6.85 ± 5.84 93.35 ± 131.38 0.927 ± 0.044 0.0219*

PADLLS 2022 8.14 ± 5.67 − 0.0056 ± 0.0812 1.72 ± 2.90 2.89 ± 5.26 33.63 ± 38.97 0.957 ± 0.033 –

Table 2.  Comparison of liver segmentation results on 3DIRCADb. An asterisk indicates a statistically 
significant difference in Dice score between our pipeline and another model (p < 0.05).

Model Year VOE (%) RVD (%) ASD (mm) RMSD (mm) HD (mm) Dice p value

V-net10 2018 21.85 ± 8.90 − 0.1726 ± 0.100 4.07 ± 2.05 4.07 ± 2.81 49.59 ± 49.40 0.874 ± 0.060  < 0.001*

H-DenseUnet11 2018 12.87 ± 6.87 0.0313 ± 0.1187 4.10 ± 4.63 5.89 ± 7.16 53.60 ± 43.69 0.930 ± 0.041 0.0014

PADLLS 2022 6.66 ± 2.89 − 0.0421 ± 0.033 1.31 ± 0.83 1.94 ± 1.85 29.73 ± 19.90 0.965 ± 0.016 –

Figure 6.  Statistical summary of the Dice coefficients for SLIVER07 (A) and 3DIRCADb (B) for our pipeline, 
H-DenseUnet, and V-net corresponding to left, middle, and right boxplots, respectively. Box and whisker 
plots with blue boxes showing the interquartile range, red line indicating the median, and red pluses indicating 
outliers. 3DIRCADb and SLIVER07 consist of 2823 and 4159 individual CT slices, respectively.

Table 3.  Comparison of Volumetric Overlap Errors (VOE) for the case in Fig. 3.

Model VOE (%)

V-net10 22.99

H-DenseUnet11 51.01

PADLLS 12.45
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Discussion
Solid organ segmentation, particularly the liver, has received much attention in recent years and while many 
reports have now been able to achieve excellent scores for segmentation, there remain multiple challenges for 
broad adoption of these methods, (1) over/under-segmentation problems still exist, (2) most approaches are still 
only semi-automated, (3) depending on the underlying architecture of the network, some may perform well at 
separation of the liver from the heart and diaphragm but poorly with the spleen or bowel, and vice-versa with 
other networks, (4) most do not make code-bases publicly/freely available, (5) those that are available are often in 
restricted formats for input/output. We sought to overcome these limitations and provide a deep learning, fully 
automated liver segmentation pipeline that leverages the strengths of 2D and 3D based learning architectures to 
result in a model that outperforms the current state of the art models.

DCNN based approaches for liver segmentation have made great advancements in recent years producing 
multiple strong-performing segmentation models, but each of these models have had different pros and cons to 
date; no single model has been able to combine the strengths of different network structures (e.g., U-nets versus 
V-nets). The 2D H-DenseUnet is good at identifying intra-slice features but fails to take into account informa-
tion along the z-axis, whereas the 3D V-net is good at inter-slice features but has a large computational cost. 
Furthermore, the majority of the top-performing models require some level of user interface and frequently have 
different input/output formats, thus limiting the potential for more wide-scale utility by the biomedical imaging 
community. Here we provide PADLLS as a fully automated pipeline leveraging the benefits of dense V-net and 
U-nets in addition to heuristic filters to correct oversegmentation problems.

Our pipeline was validated against the 3DIRCADb and SLIVER07 public datasets, which returned average 
Dice scores of 0.965 and 0.957, respectively; these scores were higher than the H-DenseUnet and V-net. The 
differences were statistically significant when compared to that of the V-net and H-DenseUnet for both the 
SLIVER07 and 3DIRCADb challenge. The improvement in performance supports the utility of the pipeline 
incorporating both network structures. Table 4 compares our pipeline to other segmentation algorithms that 
participated in the 3DIRCADb challenge in 2017 and some that were published after the challenge. PADLLS 
outperforms these networks as well. Supplementary Table S3 provides a comparison against additional networks 
that were only validated against a portion of the 3DIRCADb (including the mU-Net17).

Normal livers have a wide range of morphological configurations (6 classifications according to  Netter18, with 
an even larger number based on recent cadaveric  studies19), thus the potential for oversegmentation by adjacent 
abdominal organs (particularly the stomach and spleen) is a challenge with current top performing segmenta-
tion models. We solved this issue by removing abdominal organs with similar density and close proximity to the 
liver or touch the liver using the V-net. In this case, we removed the spleen and stomach. These improvements 
are likely to be even more significant in the analysis of patients with pathological disease or anatomic variations. 
Abdominal ascites, commonly seen in patients with chronic liver disease resulting in cirrhosis for example, can 
present a significant challenge for fully automated liver segmentation models. We solved this problem by con-
structing an initial liver segmentation map, then using an optimized threshold to remove ascites.

Despite the improved accuracy and precision of the pipeline, limitations exist, particularly with respect to 
scans with significant pathology or post-operative alterations in anatomy. There remain challenges and improve-
ments to be made including addressing pathological aspects of liver disease, such as cirrhotic contours, fatty 
liver, and mass detection.

One notable limitation of PADLLS is the computational cost incurred due to cascading networks. Once 
segmentation accuracies exceed 0.9, the incremental computational cost for improvement may be significant. 
For instance, PADLLS’ modest improvement over Zhang et al’s Dial-3DResUnet in the 3DIRCADb challenge 
(Table 4), comes with having nearly 80 million learnable parameters relative to approximately 8.4 million in the 
latter. Most of the computational cost in PADLLS comes from the H-DenseUnet, which has 80 million parameters 

Table 4.  Comparison of other liver segmentation models on 3DIRCADb challenge. An asterisk indicates a 
statistically significant difference in Dice score between our pipeline and another model (p < 0.05). A dash 
indicates inability to assess for statistical significance due to the absence of reported Dice score and standard 
deviations.

Model Year Dataset VOE (%) RVD (%) ASD (mm) RMSD (mm) Dice P value

Unet22 2017 3DIRCADb 14.21 ± 5.71 − 0.05 ± 0.10 4.33 ± 3.39 8.35 ± 7.54 0.923 ± 0.03 0.001*

ResNet23 2017 3DIRCADb 11.65 ± 4.06 − 0.03 ± 0.06 3.91 ± 3.95 8.11 ± 9.68 0.938 ± 0.02 0.03*

Li et al.24 2015 3DIRCADb 9.15 ± 1.44 − 0.07 ± 3.64 1.55 ± 0.39 3.15 ± 0.98 – –

Moghbel et al.25 2016 3DIRCADb 5.95 7.49 – – 0.911 –

Lu et al.26 2017 3DIRCADb 9.36 ± 3.34 0.97 ± 3.26 1.89 ± 1.08 4.15 ± 3.1atio6 – –

U-net +  GAN27 2018 3DIRCADb – – – – 0.94 –

Zhang et al.28 2020 3DIRCADb – – – – 0.958 –

DFS U-Net29 2021 LiTS – – – – 0.949 ± 0.031 –

MSN-Net30 2021 LiTS 4.41 ± 0.06 – – – 0.942 ± 0.01 –

Araújo et al.31 2022 LiTS 8.28 − 0.41 – – 0.9564 –

DALU-Net32 2022 Custom – – – – 0.899 ± 0.201 –

PADLLS 2022 3DIRCADb 6.66 ± 2.89 − 0.0421 ± 0.033 1.31 ± 0.83 1.94 ± 1.85 0.965 ± 0.016
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and takes 64.30 min per case on an 8 GB GPU. In contrast, the V-net only has about 12 million parameters 
and takes 4.44 s to segment every case. However when we ran PADLLS on the Hoffman2 cluster, segmentation 
only cost 162 s (32 GB GPU) per case, highlighting the point that over time due to improvements in hardware, 
the contribution of computational complexity to the overall computational cost decreases, thus the gains for 
improved accuracy (e.g. better liver segmentation resulting in improved accuracy and diagnostic capabilities for 
downstream applications) may offset the transiently increased computational costs (that will decrease over time).

In conclusion, we successfully developed a novel liver segmentation pipeline with a plethora of potential 
applications that are dependent on having a high quality, automated liver segmentation tool. The effectiveness of 
our pipeline in radiomics and clinical practice ought to be verified in future studies. In the hope that other inves-
tigators will benefit from this tool, we have made the source code freely available. We provide a fully automated 
CT liver segmentation algorithm that combines multiple DCNN architectures and provide it as a freely available 
tool that we hope will enable further biomedical imaging applications including  radiomics20 and  radiogenomics21.
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