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Abstract 

 
In this paper, we investigate the optimal spectrum management problem in 

multiuser frequency selective interference channels. First, a simple pairwise condition 

for FDMA to be optimal is discovered: for any two among all the users, as long as the 

normalized cross couplings between them two are both larger than or equal to 1/2, 

orthogonalization between these two users is optimal for every existing user. 

Therefore, this single condition applies to achieving all Pareto optimal points of the 

rate region. Furthermore, not only is this condition sufficient, but in symmetric 

channels, it is also necessary for FDMA to be always optimal. When the normalized 

cross couplings are less than 1/2, the optimal spectrum management strategy can be a 

mixture of frequency sharing and FDMA, depending on users’ power constraints. We 

first explicitly solve the sum-rate maximization problem in two user symmetric flat 

channels by solving a closed form equation, providing the optimal spectrum 

management with a clear intuition as the optimal combination of flat FDMA and flat 

frequency sharing. Next, we show that this result leads to a primal domain convex 

optimization formulation for generalizations to frequency selective channels. Finally, 

we show that all the general optimization problems with 2n ≥  users and an arbitrary 

weighted sum-rate objective function in non-symmetric frequency selective channels 

can be solved by primal domain convex optimization with the same methodology. 
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I. Introduction 
 

In multiuser communications systems, interference coupling between different 

users remains a major problem that limits the performance from the perspectives of 

both a user group and an individual user. A general multiuser interference channel is 

depicted in Figure 1.1. When the interference signal is strong enough to decode, 

interference cancellation techniques [1] [8] [12] [16] can be applied. However, to 

implement interference cancellation, not only is the complexity high, but also the 

users need to have prior knowledge of each other’s transmission schemes such as code 

books. In this paper, we make the assumption that the receivers do not apply 

interference cancellation. In this case, interference is treated as noise, and the 

interference limited nature of a multiuser communications system becomes even 

harsher. 
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Fig. 1.1 Multiuser Interference Channel 

 

We consider the scenario of multiple multicarrier communications systems 

contending in a common frequency band. There may sometimes be practical reasons 

to channelize the resources in some other fashion, e.g. in time. Here, we regard any 

such alternatives as equivalent to channelizing in the frequency domain [9] [15]. We 

investigate the optimal spectrum and power allocation that achieves an arbitrary 
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Pareto optimal point of the rate region. In this paper, the terms spectrum management, 

spectrum and power allocation, and co-existence strategy are interchangeable for 

purposes of this discussion.  

There are essentially two strategies for multiple users to co-exist:  

1. To avoid each other in the frequency domain, i.e. FDMA. 

2. To occupy a common band at the same time, i.e. frequency sharing. 

When the cross coupling gains are strong, users can co-exist in an FDMA 

manner so that there is no mutual interference. When the cross coupling gains are 

weak, they can share the same bandwidth, while the mutual interference is 

insignificant. This basic idea of interference management is applied in cellular 

networks by frequency re-use. It can be generalized to any wireless communication 

networks: the more densely the frequency-reused users are packed without loss of 

their rates, the higher is the spatial throughput achieved. As the cross coupling grows 

from being extremely strong to extremely weak, the preferable co-existence strategies 

intuitively shift from complete avoidance (FDMA) to pure frequency sharing. The 

characterization of the optimal co-existence strategies under arbitrary cross coupling 

conditions between the two extremes is the key problem this paper focuses on. 

We start from one extreme of the interference condition which is the strong 

coupling scenario, and investigate the weakest interference condition under which 

FDMA is still guaranteed to be optimal. In the literature, a pairwise coupling 

condition for FDMA to be optimal is proposed, and it applies to all Pareto optimal 

points of the rate region [7]. By pairwise we mean that whether two users should 

avoid each other only depends on the interference condition between those two users. 

For one typical Pareto optimal point which is the sum-rate maximization point, the 

required coupling strengths for FDMA to be optimal are further lowered [10]. (It is 

further claimed that these lowered coupling conditions also apply to the weighted 
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sum-rate maximization problem [11]). However, this condition is a group-wise one, 

meaning that the couplings between all users are required to be strong. 

We relax the previous results to a simple pairwise condition for FDMA to be 

optimal: for any two users, as long as the two normalized cross couplings between 

them are both larger than or equal to 1/2, FDMA between these two users is optimal 

for every existing user. Thus, this condition applies to achieving all Pareto optimal 

points of the rate region. We also obtain an interesting related result: no matter what 

the cross coupling conditions are, from any individual user’s point of view, it always 

prefers its interferers, i.e. the other users, to coexist in an FDMA manner. (Notice that 

from the other users’ points of view, however, an FDMA among themselves is not 

necessarily always preferable, since the couplings among them might be weak.) 

With the proposed condition, the problem space is divided into two parts along 

the axis of interference coupling. When the interference coupling is less than 1/2 in 

symmetric channels, we provide a precise characterization of the non-empty power 

constraint region within which frequency sharing between two users leads to a higher 

rate than an FDMA between them. That is to say, the proposed condition for FDMA to 

be always optimal is not only sufficient in all channels, but also necessary at least in 

symmetric channels. 

With the interference coupling less than 1/2, the form of the optimal spectrum 

management strategy depends on the power constraints of the users. Toward one 

extreme, with users’ power constraints approaching infinity, FDMA outperforms 

frequency sharing. This is because frequency sharing is interference limited and leads 

to a finite upper bound on the achievable rate, whereas FDMA avoids the interference 

completely and allows the rate to go logarithmically to infinity. Toward the other 

extreme, with users’ power constraints approaching zero, frequency sharing becomes 

(if not exactly optimal) infinitely close to optimal. This is because the interference 
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becomes negligible compared to the noise level, and each user should simply perform 

waterfilling over the noise across the whole band, resulting in frequency sharing of all 

users. Generally, the optimal spectrum management can be FDMA, or frequency 

sharing, or a mixture of the two. Finding the optimal spectrum and power allocation 

that maximizes a weighted sum-rate is in the form of a non-convex optimization 

problem [18]. Although a non-convex optimization is hard to solve, the Lagrangian 

dual problem is always a convex optimization [2]. It is shown in the literature that the 

duality gap actually goes to zero when the number of sub-channels goes to infinity 

[19]. This fundamentally justifies the asymptotic optimality of solving the problem in 

the dual domain, and many spectrum balancing algorithms using dual methods have 

been developed [3] [4] [13] [19]. 

We approach this non-convex optimization problem from the primal perspective, 

finding explicit characterizations of the optimal spectrum management. We develop a 

new method of solving this non-convex optimization by formulating it into an 

equivalent primal domain convex optimization. We start with the sum-rate 

maximization problem in two-user symmetric flat channels. We provide the solution, 

namely the optimal spectrum and power allocation scheme by solving a closed form 

equation. Both the method we use and the solution we get have a clear intuition of 

combining FDMA and frequency sharing in an optimal way, and this solution is 

obtained analytically instead of by waiting for the resulting spectrum and power 

allocation that an algorithm converges to. With this solution, the optimal spectrum and 

power allocation for any frequency selective channel can be naturally obtained by a 

primal domain convex optimization.  

The key idea of the above method is a two-step procedure: 

1. Explicitly solve the flat channel case. 

2. Obtain the solution of frequency selective channels by forming a primal 
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domain convex optimization based on the solutions of flat channels. 

By generalizing this method, we show that all the general optimization problems 

with 2n ≥  users and an arbitrary weighted sum-rate objective function in 

non-symmetric frequency selective channels can be solved by formulating an 

equivalent primal domain convex optimization. Its solution then provides the 

performance limit for all practical algorithms. In retrospect, the methodology we 

provide shares some common insight with the time sharing condition discussed in 

[19]. 

Table 1 summarizes the various forms of the multiuser interference channel 

coexistence problems, the prior art, and in which sections we present solutions that 

improve upon these prior results. In the conclusion, we suggest research directions for 

the problems in the table that are not addressed in this paper. 
 

TABLE 1  
PROBLEMS, PRIOR ARTS, AND RELATED SECITIONS IN THIS PAPER 

Problems Prior Art  Our Results

Spectrum Management in Cooperative Scenarios   

Conditions for FDMA schemes to be optimal [7][10][11] Section III Strong 
Interference 
Scenarios Finding optimal schemes with FDMA constraints [17][10]  

Primal domain solution:  
Convex formulation and its solution 
as the optimal combination of 
FDMA and frequency sharing 

 
Section IV 
Section V 

Continuous 
Frequency 
Scenarios 
 

Dual domain methods [19]  

 

General 
Interference 
Scenarios 

Discrete Frequency Scenarios: 
Approximation Algorithms 

[3][4][5] 
[13][14][19] 

 

Spectrum Sharing in Non-cooperative Scenarios: Nash Equilibriums [6][7]18]  
Incorporating Interference Cancellation [8][12] [1][16]  
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II. Channel Model and Two Basic Co-existence Strategies 

A. Interference Channel Model 

As depicted in Figure 1.1, an n  user interference channel is modeled by 

, 1, 2,...,i ii i j ji i
j i

y H x x H n i n
≠

= + + =∑ . 

where ix  is the transmitted signal of user i , and iy  is the received signal of user i  

including additive Gaussian noise in , (a user corresponds to a pair of transmitter and 

receiver). iiH  is the direct channel gain from the transmitter to the receiver of user i . 

jiH  is the cross coupling gain from the transmitter j  to the receiver i . We assume 

the transmission is over the interference channel without interference cancellation: for 

every user i , only the signal from its transmitter is decodable, and interference from 

other users is treated as noise. We assume that the channel is frequency selective over 

the band 1 2( , )f f . The channel gains iiH  and jiH  are denoted as ( )iiH f  and 

1 2( ), ( , )jiH f f f f∈ . Denote the transmit power spectrum density of user i  by 

( )iP f , and the noise power spectrum density at receiver i  by ( )i fσ .  

We have the achievable rate for user i :  

2

1

2

2

( ) ( )
log 1

( ) ( ) ( )

f i ii
i f

i j ji
j i

P f H f
R df

f P f H fσ
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟+⎜ ⎟
⎝ ⎠

∫
∑

. 

Normalizing the channel gains and noise power by the direct channel gains, we have 
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2

1

( )log 1
( ) ( ) ( )

f i
i f

i j ji
j i

P fR df
N f P f fα

≠

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟+⎜ ⎟
⎝ ⎠

∫
∑

, 

where 2

( )( )
( )

i
i

ii

fN f
H f
σ and 

2

2

( )
( )

( )
ji

ji
ii

H f
f

H f
α .  

Thus, finding the optimal coexistence strategy corresponds to optimizing over 

the power and spectrum allocation functions ( ), 1, 2,...,iP f i n= .  

B. Two Basic Co-existence Strategies and One Basic Transformation 

There are essentially two co-existence strategies for users to reside in a common 

band: frequency sharing and FDMA. We introduce two basic forms of these two 

strategies: Flat Frequency Sharing and Flat FDMA, both defined in flat channels. We 

will see that these two basic strategies are the building blocks of all non-flat 

co-existence strategies in frequency selective channels. 

Consider a flat channel in the frequency band 1 2( , )f f : 

1 1 2 2( ) , ( )N f n N f n= = , 21 21 12 12( ) , ( )f fα α α α= = , 1 2( , )f f f∀ ∈ . 

A flat frequency sharing scheme of two users is defined as any power allocation 

in the form of 

1 1 2 2 1 2( ) , ( ) , ( , )P f p P f p f f f= = ∀ ∈ . 

A flat FDMA scheme of two users is defined as any power allocation in the form 

of 

1 2
1 2

1 2

( ) ( ) 0
, ( , )

( ) ( )
P f P f

f f f
P f P f p

=⎧
∀ ∈⎨ + =⎩

 

Illustrations of the power allocations of these two basic co-existence strategies are 
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depicted in Figure 2.1. 

            
Flat Frequency Sharing                      Flat FDMA 

   (Before flat FDMA re-allocation)         (After flat FDMA re-allocation) 
Fig. 2.1 power allocations of flat frequency sharing and flat FDMA, also an 

illustration of flat FDMA re-allocation 
 

Next, we introduce a basic transformation from flat frequency sharing to flat 

FDMA: flat FDMA re-allocation. A flat FDMA re-allocation is defined to be the 

following scheme that transforms a flat frequency sharing to a flat FDMA:  

user 1 re-allocates all of its power within a sub-band 1
1

1 2

pW W
p p

′=
+

 with a flat 

power spectral density (PSD) 1 1 2p p p′ = + ; user 2 re-allocates all of its power within 

another disjoint sub-band 2
2

1 2

pW W
p p

′ =
+

 with the same flat PSD 2 1 2p p p′ = + .  

The power allocations before and after a flat FDMA re-allocation are also 

illustrated in Figure 2.1. Clearly, the total power of each user does not change after 

this re-allocation, i.e. 1 1 1 1 2 2 2 2,P p W p W P p W p W′ ′ ′ ′= = = = .  

Similarly, we define flat frequency sharing schemes, flat FDMA schemes, and 

flat FDMA re-allocation in n -user flat channel cases.  

The reasons we introduce and investigate these three basic concepts are as 

follows: 
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1. Flat frequency sharing and flat FDMA are the building blocks of all non-flat 

cases: with an arbitrary multiuser spectrum and power allocation in a frequency 

selective channel, by looking at the infinitesimal sub-channels around every 

frequency point, the channel becomes flat, and the power allocation scheme 

becomes either flat frequency sharing or flat FDMA. 

2. Flat FDMA re-allocation has the key property of power invariance. It serves as 

a powerful tool while comparing frequency sharing schemes with FDMA 

schemes under the same power constraint. 
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III. The Conditions for the Optimality of FDMA 
 

In this section, we investigate the conditions under which the optimal spectrum 

and power allocation is FDMA in the general communication environments. Instead 

of working with a specific optimization goal, we show that our results apply to all 

Pareto optimal points of the achievable rate region.  

We first show a coupling condition under which FDMA is optimal within a group 

of strongly coupled users. In real communication networks, however, there are usually 

users not strongly enough (maybe just moderately) coupled with some other users. For 

these users outside the strongly coupled group, we show that they always benefit from 

an FDMA within the strongly coupled group. Interestingly, we show that this result 

actually does not require the strongly coupled condition within this group. With these 

results, a simple pairwise condition is naturally obtained: for any two users, as long as 

the normalized cross couplings between them are both larger than or equal to 1/2, 

every existing user will benefit from an FDMA between these two users. In this 

section, we show the sufficiency of this condition. In Section IV, we show that it is 

also necessary at least in symmetric channels. 

A. The Optimality of FDMA within Strongly Coupled Users 

In this section, we prove a sufficient condition for the n -user scenarios under 

which the optimal spectrum and power allocation must be FDMA. This condition 

requires that between every pair of users, the cross couplings normalized by the direct 

channel gains must be stronger than a threshold. We begin with two-user flat channels, 

and extend the results to n -user frequency selective channels. 

Theorem 1 Consider a two-user flat interference channel: 1 1 2 2( ) , ( )N f n N f n= = , 

21 21 12 12( ) , ( )f fα α α α= = , 1 2( , )f f f∀ ∈ . Suppose the two users co-exist in a flat 
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frequency sharing manner: 1 1 2 2 1 2( ) , ( ) , ( , )P f p P f p f f f= = ∀ ∈ . If  

12 21
1 1
2 2

andα α≥ ≥ , 

then with a flat FDMA power re-allocation, both users’ rates will be higher or kept the 

same.  

Before proving Theorem 1, we provide the following lemma first: 

Lemma 1  If 1( ) log( )c xf x
x c x

+
=

−
, 1c > , then (1) ( )f f x≥ ， (0, 1]x∀ ∈   

Proof: 

We want to show 
2 2

2 2 2

2 ( ) log( )
( ) 0, (0,1]

( )

c xcx c x
c xf x x

x c x

+− −
−′ = ≥ ∈

−
 

Since 1c > , it is equivalent to show 2 2

2 log( )cx c x
c x c x

+
≥

− −
, (0,1]x∈ . 

Let 2 2

2( ) , [0, 1]cxg x x
c x

= ∈
−

, and ( ) log( ), [0, 1]c xh x x
c x
+

= ∈
−

. We have 

2 2

2 2 2

2 ( )( )
( )
c c xg x
c x

+′ =
−

, 2 2

2( ) ch x
c x

′ =
−

 

We see that 
2 2

2 2( ) ( ) ( )c xg x h x h x
c x
+′ ′ ′= ≥
−

. 

Since (0) (0) 0g h= = , we have ( ) ( ), [0, 1]g x h x x≥ ∈ , i.e.  

2 2

2 log( )cx c x
c x c x

+
≥

− −
, (0,1]x∈  

( ) 0, (0,1]f x x′⇒ ≥ ∈  

Therefore, (1) ( )f f x≥ ， (0, 1]x∀ ∈ .                                      ■ 

Proof of Theorem 1: 

As shown in Figure 3.1, at the receiver of user 1, the received PSD is the sum of 

1p , 21 2pα , and 1n . Similarly at the receiver of user 2, the received PSD is the sum of 
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2p , 12 1pα , and 2n . 

             

α12p1

p2

n2

f1 f2

PSD

f
 

Fig. 3.1 The PSD composition at receiver 1 and receiver 2 
 

The rate of user 1 is 

2

1

1 1 1
1 2 1

1 2 21 1 2 21 1 2 21

log 1 ( ) log 1 log 1
f

f

p p pR df f f W
n p n p n pα α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + = − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫  

where 1 2W f f= −  is the bandwidth. Similarly, 2
2

2 1 12

log 1 pR W
n pα

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

. 

With a flat FDMA power re-allocation, we have 1
1

1 2

pW W
p p

′=
+

, 1 1 2p p p′ = + , 

2
2

1 2

pW W
p p

′ =
+

,  2 1 2p p p′ = + . The power allocations before and after this 

re-allocation are depicted in Figure 2.1.  

Now, we prove that after the flat FDMA re-allocation, both user’s rates can only 

be higher or the same. It is sufficient to prove it for user 1, since user 2’s case is 

symmetric to user 1. Denote user 1’s rate after re-allocation by  

1 1 1 2
1 1

1 1 2 1

log 1 log 1p p p pR W W
n p p n

⎛ ⎞ ⎛ ⎞′ +′ ′= + = +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 

Notice that  
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1

1 1 2 1
1

1 21 2 21 1 2 21
21

1 2 1 2

1 2

1 1 2 1 1 2 1 2
1 1

11 2 1 1 2 1

1 2

ˆ
log 1 log 1 log 1

ˆ ˆ

1ˆlog 1 log 1 log 1
ˆ

p
p p p pR W W Wn pn p n p

p p p p

p p
p p p p p p p pR W W p Wnp p n p p n

p p

α αα

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞+⎜ ⎟= + = + = +⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎝ ⎠ ⎝ ⎠+⎜ ⎟+ +⎝ ⎠

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟′ = + = + = +⎜ ⎟ ⎜ ⎟+ + ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟+⎝ ⎠

, 

where the power and noise normalized by the sum-power are  

1 2 1
1 2 1

1 2 1 2 1 2

ˆ ˆ ˆ, ,p p np p n
p p p p p p+ + +

. 

WLOG, we will use the normalized power and noise in the remainder of the 

proof. Since 1n  can be arbitrarily chosen in our problem, using normalized terms is 

equivalent to adding the assumption that 1 2 1p p+ = . With this assumption, we can 

re-express the rates as 1
1 1 1

1 1 21 1

1log 1 , log 1
(1 )

pR W R p W
n p nα

⎛ ⎞ ⎛ ⎞
′= + = +⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

.  

We want to show that if 21
1
2

α ≥ , we have 1 1R R′ ≥ . Since 
21 21

1 11 1
2 2

R R
α α= >

≥ , it is 

sufficient to show that 21 1 1
1
2

R Rα ′= ⇒ ≥ .  

With 1 2 21
11,
2

p p α+ = = , 

1
1 1 1

11
1

1log 1 log 1 1
2

pR R p W W pn n

⎛ ⎞
⎜ ⎟⎛ ⎞

′ ≥ ⇔ + ≥ +⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟+
⎝ ⎠

 

1 1 1

1 1 1 1

1 2 11log log
2 1

n n p
n p n p

⎛ ⎞ ⎛ ⎞+ + +
⇔ ≥⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

 

Notice that 1 1

1 1

1 2 1 11log log
1 2 1 1

n n
n n

⎛ ⎞ ⎛ ⎞+ + +
=⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

. Define function  

1( ) log( )c xf x
x c x

+
=

−
, where 12 1c n= + . Thus, 1 1 1(1) ( )R R f f p′ ≥ ⇔ ≥ .  
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Since we assume 1 2 1p p+ = , 1 (0,1]p ∈ . From lemma 1, 1(1) ( )f f p≥ . Thus, 

we conclude that  

21 1 1
1
2

R Rα ′≥ ⇒ ≥ . 

By symmetry, we also have 12 2 2
1
2

R Rα ′≥ ⇒ ≥ . 

That is to say, when 12 21
1 1,
2 2

α α≥ ≥ , a flat FDMA power re-allocation leads to 

rates higher than or equal to the flat frequency sharing for both users.             ■ 

Theorem 1 can be generalized to the n -user case as the following corollary. 

Corollary 1.1 Consider an n-user flat interference channel: ( )i iN f n= , ( )ji jifα α= . 

Suppose the n users co-exist in a flat frequency sharing manner: 

1 2( ) , ( , )i iP f p f f f= ∀ ∈ , 1, 2,3,...,i n= . If  

1 ,
2ji j iα ≥ ∀ ≠ , 

then with a flat FDMA power re-allocation scheme, all users’ rates will be higher or 

kept the same.  

Proof: 

Suppose we have n users. We first generalize the flat FDMA power re-allocation to n 

users: Each user i  re-allocates all its power within a sub-band 

1

i
i n

j
j

pW W
p

=

′=

∑
 disjoint 

from all other users’ frequency occupation, with a flat PSD 
1

n

i j
j

p p
=

′ = ∑ . The power 

before and after re-allocation are depicted in Figure 3.2. 
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        Before re-allocation                   After re-allcoation 

Fig. 3.2 PSDs before and after flat FDMA re-allocation of flat frequency sharing 
 

Clearly, the total power of each user does not change after re-allocation.  

Next, we show that every user’s rate can only increase or be the same after this power 

re-allocation. It is sufficient to show 1 1R R′ ≥ , with 1 ,
2ji j iα ≥ ∀ ≠ , the normalization 

assumption 
1

1
n

i
i

p
=

=∑ , and 1R′  and 1R  defined as follows: 

1
1

1 1
2

log 1 n

j j
j

pR W
n p α

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
 is user 1’s rate before the FDMA re-allocation. 

1
1 1 1

1 1

1log 1 log 1pR W p W
n n

⎛ ⎞ ⎛ ⎞′
′ ′= + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 is user 1’s rate after the FDMA re-allocation. 

From the results we derived in the two user case (Theorem 1), 

1 1 1
1 1

1 1 1 1 1
2 2

log 1 log 1 log 11 1(1 )
2 2

n n

j j j
j j

p p pR W W W R
n p n p n p α

= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′≥ + = + ≥ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑

 

The second inequality comes from 1
1 , 2,3,...,
2j j nα ≥ = . 
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From symmetry, we have , 1, 2,...,i iR R i n′ ≥ ∀ =  

That is to say, a flat FDMA power re-allocation (Figure 3.2) leads to higher rates than  

the flat frequency sharing for all the users.                                  ■ 

This sufficient condition can also be generalized to frequency selective channels. 

Corollary 1.2 Consider an n -user frequency selective interference channel. We make 

one assumption for pure mathematical convenience which does not affect the 

generality of the problem: , , ( )jii j fα∀  and ( )iN f  are uniformly continuous in the 

band 1 2( , )f f . Suppose we have an arbitrary spectrum and power allocation scheme 

( ), 1, 2,3,...,iP f i n=  with some frequency sharing (overlapping) in the band 1 2( , )f f . 

Again we assume all ( )iP f  are uniformly continuous in the band 1 2( , )f f . If  

1 2
1( ) , , ( , )
2ji f j i f f fα ≥ ∀ ≠ ∀ ∈ , 

then we can always find an FDMA power re-allocation scheme ( ), 1, 2,...,iP f i n=  

satisfying 2 2

1 1

( ) ( ) , 1, 2,...,
f f

i if f
P f df P f df i n= =∫ ∫  with which all user’s rates are 

higher or kept the same.  

Proof:  

An arbitrary power and spectrum allocation with frequency sharing is depicted in 

Figure 3.3. 
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Fig. 3.3 An arbitrary n user power allocation 

 

Now we divide the band 1 2( , )f f  into infinitely many frequency bins. From uniform 

continuity, let all frequency bins have sufficiently infinitesimal widths so that within 

any bin 1 2 1 2( , ), 0f f f f′ ′ ′ ′− →  we have the following: 

1 2( , ),f f f i j′ ′∀ ∈ ∀ ≠  

1. channel gains become flat: 0
1( ) ( ) ,
2ji jif fα α→ ≥ for some 0 1 2( , )f f f′ ′∈   

2. noise power become flat: 0( ) ( ),N f N f→  for some 0 1 2( , )f f f′ ′∈  

3. users’ power become flat: 0( ) ( ),i iP f P f→  for some 0 1 2( , )f f f′ ′∈  

Next we construct an FDMA power re-allocation by constructing an FDMA power 

re-allocation for every bin in 1 2( , )f f : if there’s no user or only one user’s power in 

it, we do nothing; Otherwise we apply Corollary 1.1 within this bin and create an 

FDMA power re-allocation for all users within this bin. The three conditions we just 

obtained from letting every bin sufficiently infinitesimal enables that theorem 1 can 

be successfully applied. 

With this procedure, we finally obtain an FDMA power re-allocation scheme of all 

users satisfying , 1, 2,...,i iR R i n′ ≥ = . In other words, the rate of every user will be 

higher or unchanged after this FDMA power re-allocation.         ■ 
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We conclude with re-stating Corollary 1.2 as follows: pick any sub-band 

1 2( , )f f′ ′ , as long as all the users having power within this sub-band are strongly 

coupled - precisely characterized by 1 2
1( ) , , ( , )
2ji f j i f f fα ′ ′≥ ∀ ≠ ∀ ∈ , then for any 

power allocation scheme having frequency sharing happening anywhere within this 

sub-band, there always exists an FDMA power re-allocation scheme (with the total 

allocated power unchanged for each user) that leads to a rate higher than or equal to 

the original sharing scheme for every existing user. 

B. FDMA Within a Subset of Users Benefits All Other Users 

We have seen that by properly separating strongly coupled users (with 
1( )
2ji fα ≥ ) to orthogonal channels (FDMA), every individual user among them will 

have a rate higher than or equal to the rate of any frequency sharing (overlapping) 

scheme. In this section, we show that an FDMA among a group of users not only 

benefits those users inside the group if they are strongly coupled, but also benefits 

every other user outside the group regardless of all the coupling conditions. This 

result completes the fundamental truth that the optimal spectrum and power allocation 

must have all the strongly coupled users (among all the users) orthogonally separated 

in the frequency band.  

We begin with two-interferer flat channels, and extend the results to n -interferer 

frequency selective channels. 

Theorem 2  Consider a three-user (one user + two interferers) flat channel: 

( )i iN f n= , ( )ji jifα α= . Suppose the three users co-exist in a flat frequency sharing 

manner: 1 2( ) , ( , ), 0,1,2i iP f p f f f i= ∀ ∈ = . From user 0’s perspective, a flat FDMA 

power re-allocation of its two interferers, namely user 1 and user 2, always leads to a 
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rate higher than or equal to the original rate for user 0. 

Proof: 

At the receiver of user 0, the received PSDs before and after the flat FDMA 

power re-allocation of its interferers are depicted in Figure 3.4. 

      
Before re-allocation                    After re-allocation 
Fig. 3.4 PSD compositions at receiver 0 before and after the flat FDMA 

re-allocation of user 1 and user 2 
 

Thus user 0’s rate before re-allocation is 0

10 1 20 2 0

log 1 pR W
p p nα α

⎛ ⎞
= +⎜ ⎟+ +⎝ ⎠

. 

User 0’s rate after re-allocation is  

0 0
1 2

10 1 0 20 2 0

0 01 2

1 2 10 1 2 0 1 2 20 1 2 0

1 1
' '

1 1
( ) ( )

p pR W W
p n p n

p pp pW W
p p p p n p p p p n

α α

α α

⎛ ⎞ ⎛ ⎞
′ ′ ′= + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟+ + + + + +⎝ ⎠ ⎝ ⎠

 

Notice that  

01 2 1 1 2 2
10 20

0 1 2 0 1 2 0

1log 1R W
np p p p p p

p p p p p p p
α α

⎛ ⎞
⎜ ⎟
⎜ ⎟= +⎜ ⎟⎛ ⎞ ⎛ ⎞+ +

+ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠
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10 1 20 2 0

1log 1
ˆ ˆˆ ˆ ˆ

W
p p nα α

⎛ ⎞
= +⎜ ⎟+ +⎝ ⎠

 

1 2

1 2 1 20 01 2 1 2
10 20

0 0 0 0

1 2
10 0 20 0

1 11 1

1 1ˆ ˆ1 1
ˆ ˆˆ ˆ

p pR W W
p p p pn np p p p

p p p p

p W p W
n n

α α

α α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟′ = + + +⎜ ⎟ ⎜ ⎟+ +⎛ ⎞ ⎛ ⎞+ +

+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

, 

where the normalized power, noise and coupling gains are  

01 2 1 2 1 2
0 1 2 10 10 20 20 0

1 2 1 2 0 0 0

ˆ ˆˆ ˆ ˆ ˆ1, , , , , np p p p p pp p p n
p p p p p p p

α α α α+ +
+ +

 

WLOG, we will use the normalized power, channel gains, and noise in the 

remainder of the proof. Since 10 20 0, , nα α  can be arbitrarily chosen in our problem, 

using normalized terms is equivalent to adding the assumption 0

1 2

1
1

p
p p

=⎧
⎨ + =⎩

. With this 

assumption, we can re-express the rates as 

10 1 20 1 0

1 1
10 0 20 0

1log 1
(1 )

1 11 (1 ) 1

R W
p p n

R p W p W
n n

α α

α α

⎛ ⎞
= +⎜ ⎟+ − +⎝ ⎠

⎛ ⎞ ⎛ ⎞
′ = + + − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

Notice that 
1

1 11

0
20 0 10 00 11

1 11 , 1
p

p pp

R W R R W R
n nα α=

= ==

⎛ ⎞ ⎛ ⎞
′ ′= + = = + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

Furthermore, R′  is a linear function of 1p , while R  is a convex function of 

1p : 
22

10 20 0 20 1 10 1
2 2

1 20 0 10 1 20 1 20 0 10 1 20 1

( ) (1 2 2 (1 ) 2 ) 0
( ) (1 )

n p pR W
p n p p n p p

α α α α
α α α α α α

− + + − +∂
= ≥

∂ + + − + + + −
. 

Therefore, 1 [0,1],p R R′∀ ∈ ≥ .  
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A graphical interpretation is depicted in Figure 3.5. 

rate

p10 1

R’

R

 
Fig. 3.5 Graphical illustration of R R′ ≥  for user 0  

 
We conclude that a flat FDMA power re-allocation of the two interferers of one 

user (Figure 3.4) always leads to a rate higher than or equal to the original rate for this 

user.                                                                ■ 

Theorem 2 can be generalized to an arbitrary number of users case as stated in 

the following corollary. 

Corollary 2.1 Consider an 1n + -user (one user + n  interferers) flat channel: 

( )i iN f n= , ( )ji jifα α= . Suppose the 1n +  users co-exist in a flat frequency 

sharing manner: 1 2( ) , ( , ), 0,1,2,...,i iP f p f f f i n= ∀ ∈ = . From user 0’s perspective, a 

flat FDMA power re-allocation of its n  interferers, namely user 1, user 2, … , user 

n , always leads to a rate higher than or equal to the original rate for user 0. 

Proof:  

Suppose we have one user 0 and n interferers of it: user 1, user 2, … , user n.  

Assume within the band of interest 1 2 2 1( , ),f f W f f= − , the channel and noise are 

flat: 0 ( )N f = 0n , 0 0( ) , 1, 2,...,i if i nα α= = . Suppose we have a flat frequency 

sharing power allocation scheme, in which user 0, 1, 2, …, n’s power allocation are all 

flat over the band 1 2( , )f f : ( ) , 0,1,2,...,i iP f p i n= = .  
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Next, we will prove that by a flat FDMA power re-allocation of the n interferers of 

user 0, user 0’s rate will be higher or kept the same. We prove it by induction starting 

from 2n = . 

)i  When there are 2n =  interferers, this is the case we proved in Theorem 2. 

)ii  Assume when there are n k=  interferers, the statement is proved. 

When 1n k= + : 

At the receiver of user 0, the received PSD is depicted in Figure 3.6. 

 
Fig. 3.6 PSD at receiver 0 with flat frequency sharing of its n interferers 

 
Now, we apply the flat FDMA re-allocation in Theorem 2 to the interference from 

user 1 and user 2 only. In other words, we treat 
1

0 0
3

k

i i
i

n pα
+

=

+∑  all as noise. The PSD at 

the receiver 0 after re-allocation of user 1 and user 2 is depicted in Figure 3.7. 
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Fig. 3.7 PSD at receiver 0 after flat FDMA re-allocation of user 1 and 2  

 
From Theorem 2, we know that this step of separating user 1 and user 2 (out of total 

1k +  interferers) can only lead to a higher or an unchanged rate of user 0. 

With the separation of user 1 and user 2, the band 1 2( , )f f  can be divided into 2 

disjoint sub-bands, each with bandwidth 1
1

1 2

pW W
p p

′=
+

 and 2
2

1 2

pW W
p p

′ =
+

. We 

denote them as (1) (1)
1 2( , )f f  and (1) (1)

2 3( , )f f . The PSD within the two sub-bands are 

depicted in Figure 3.8. 

 
Fig. 3.8 PSDs at receiver 0 viewed as in two disjoint sub-bands after flat FDMA 

re-allocation of user 1 and 2 



 24

 
As a result, we see that within each sub-band, the problem is exactly in an n k=  

interferers situation. By the induction assumption, within each sub-band, a flat FDMA 

re-allocation of the k  interferers will have user 0’s rate higher or unchanged. 

By combining the two-step FDMA re-allocation, we finally obtain a flat FDMA power 

re-allocation of the 1k +  interferers with which user 0’s rate is higher or unchanged.  

■ 

Finally, the benefits of an FDMA within a subset of users to the other users can 

be generalized to frequency selective channels. 

Corollary 2.2 Consider an 1n + -user (one user + n  interferers) frequency selective 

channel. As in Corollary 1.2, we assume ( )ji fα , ( )iN f  are uniformly continuous 

in the band 1 2( , )f f . Given an arbitrary (uniformly continuous) spectrum and power 

allocation scheme ( ), 0,1,2,...,iP f i n= , in which user 1, user 2, … , user n are not 

completely FDMA, then from user 0’s perspective, there is always a corresponding 

FDMA power re-allocation of its n  interferers, namely user 1, user 2, … , user n , 

that leads to a rate higher than or equal to the original rate for user 0. 

Proof:  

The proof in this general case follows the same idea as we did in Corollary 1.2: 

We divide the band 1 2( , )f f  into infinitely many frequency bins. From uniform 

continuity, let all frequency bins have sufficiently infinitesimal widths so that within 

any bin 1 2 1 2( , ), 0f f f f′ ′ ′ ′− →  we have the following: 

1 2( , ),f f f i j′ ′∀ ∈ ∀ ≠  

1. channel gains become flat: 0
1( ) ( ) ,
2ji jif fα α→ ≥ for some 0 1 2( , )f f f′ ′∈   

2. noise power become flat: 0( ) ( ),N f N f→  for some 0 1 2( , )f f f′ ′∈  
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3. users’ power become flat: 0( ) ( ),i iP f P f→  for some 0 1 2( , )f f f′ ′∈  

Next we construct an FDMA power re-allocation of the interferers 1, 2,...,n  by 

constructing an FDMA power re-allocation of them for every bin in 1 2( , )f f : if 

there’s no interferer or only one interferer’s power in it, we do nothing; Otherwise 

we apply the FDMA re-allocation from Corollary 2.1 for all users within this bin. 

The three conditions we just obtained from letting every bin sufficiently infinitesimal 

enables that the results from Corollary 2.1 can be successfully applied. 

With this procedure, we finally obtain an FDMA power re-allocation scheme of all 

1, 2,...,n  interferers, with which user 0’s rate will be higher or unchanged.       ■ 

Notice that Theorem 2 and its two corollaries do not have any assumption on the 

strength of the cross couplings ( )ji fα . Thus, from any one particular user’s 

perspective, an FDMA of its interferers is always preferred regardless of all the cross 

coupling conditions. 

Yet in the case that 1 1, with ( ) and ( )
2 2ji iji j f fα α∃ ≥ ≥ , combining Theorem 

1 and Theorem 2 does give us another very strong insight into the conditions under 

which the optimal co-existence strategies must be FDMA:  

Suppose there are ( 2)n ≥  users, for any two users ,i j , for any frequency band 

1 2( , )f f′ ′ , if the normalized cross coupling gains 
2

2

( ) 1( )
2( )

ji
ji

ii

H f
f

H f
α = ≥  and 

2

2

( ) 1( )
2( )

ij
ij

jj

H f
f

H f
α = ≥  1 2( , )f f f′ ′∀ ∈ , then no matter from which user’s point of view, 

an FDMA of user i  and user j  within this band is always preferred. The reason is as 

follows: Suppose the spectrum and power allocation for user andi j  are not FDMA, 
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then with a proper FDMA re-allocation of user andi j ,  

1. Theorem 1 guarantees that user andi j ’s rates will be higher or kept the 

same). 

2. Theorem 2 guarantees that all the other 2n −  users’ rates will be higher or 

kept the same.) 

The pairwise condition 1( )
2ji fα ≥  and 1( )

2ij fα ≥  is very convenient to use 

because it makes determining whether any two users should be orthogonally 

channelized depend only on the coupling conditions between the two of them. On 

the other hand, since this condition guarantees that an FDMA between user i and 

user j benefits every existing user, we conclude that under this condition, all the 

Pareto optimal points of the achievable rate region must be achieved with these two 

users being orthogonal (FDMA). 
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IV. Optimal Spectrum Management in Two-User Symmetric 

Channels 
 

In this section, we continue to analyze the optimal spectrum management in the 

cases with 1( )
2

fα < . We give a complete analysis of the two-user symmetric 

Gaussian interference channels defined as follows: 

            12 21 1 2

1 2 1 2

1( ) ( ) , ( , )
2

( ) ( ), ( , )

f f f f f

N f N f f f f

α α⎧ = < ∀ ∈⎪
⎨
⎪ = ∀ ∈⎩

               (4.1) 

We choose the objective to be the sum-rate of the two users 1 2 1 2( , )f R R R R= + . 

General problems with 2n ≥  users and an arbitrary weighted sum-rate objective 

function in non-symmetric channels are discussed later in Section V. 

Here, a sum-power constraint ( )2

1
1 2( ) ( )

f

f
P f P f df P+ ≤∫ , or equivalently, equal 

power constraints 2

1

( ) , 1, 2
2

f

if

PP f df i≤ =∫  are assumed. (Equivalency are shown 

later in this section.) We begin with flat channels, and obtain the optimal spectrum and 

power allocation by solving a closed form equation. With this result, we show that the 

non-convex optimization problem over the spectrum and power allocation in 

symmetric frequency selective channels can be equivalently transformed into a 

convex optimization in the primal domain. The key insights are twofold: 

1. Achievability: In flat channels, for any sum-rate function (as a function of 

power constraints) that is achievable, the convex hull of this sum-rate function is 

also achievable. 

2. Optimality: In flat channels, the convex hull of the sum-rate functions of flat 

frequency sharing and flat FDMA is in fact an upper bound (and hence optimal 

from its achievability) of the actual sum-rate, essentially due to the fact that all 
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spectrum management schemes are built with flat frequency sharing and flat 

FDMA. Consequently the optimal solution can be obtained by solving a closed 

form equation. This result then naturally leads to a primal domain convex 

optimization formulation without loss of optimality in frequency selective 

channels. 

A. Solution of the Flat Channel Cases with Sum-Power Constraint, 

or Equivalently, Equal Power Constraints 

Consider a two-user flat symmetric Gaussian interference channel model: 

12 21 1 2

1 2 1 2

1( ) ( ) , ( , )
2

( ) ( ) , ( , )

f f f f f

N f N f n f f f

α α α⎧ = = < ∀ ∈⎪
⎨
⎪ = = ∀ ∈⎩

 

First, we have the following theorem on the condition under which a flat FDMA 

scheme is better than a flat frequency sharing scheme. 

Theorem 3  For any flat frequency sharing power allocation, a flat FDMA power 

re-allocation (Figure 2.1) leads to a higher or unchanged sum-rate if and only if 

1 2
2

1 12
2

p p
n α α
+ ⎛ ⎞≥ −⎜ ⎟

⎝ ⎠
 

Proof:  

The rates of user 1 and user 2 with flat frequency sharing are 

1 2
1 2

2 1

log(1 ), log(1 )p pR W R W
n p n pα α

= + = +
+ +

 

As we did in Section III, if we normalize the power and noise by the sum-power: 

1
1

1 2

ˆ pp
p p

=
+

, 2
2

1 2

ˆ pp
p p

=
+

, 
1 2

ˆ nn
p p

=
+

, we get 

1 1
1 2

1 1

ˆ ˆ1log 1 , log 1
ˆ ˆ ˆ ˆ(1 )

p pR W R W
n p n pα α

⎛ ⎞ ⎛ ⎞−
= + = +⎜ ⎟ ⎜ ⎟+ − +⎝ ⎠ ⎝ ⎠
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WLOG, we add the assumption that 1 2 1p p+ = . The sum-rate with flat frequency 

sharing is then given by 

1 1
1 1 2

1 1

(1 )( ) log(1 ) log(1 )
(1 )

p pf p R R W
n p n pα α

⎛ ⎞−
= + = + + +⎜ ⎟+ − +⎝ ⎠

 

a. Convexity/Concavity of the sum-rate 1( )f p . 

Compute the second derivative of 1( )f p , 

( ) ( ) ( )

2 2 2 2

1 12 2
1 1 1 1

(1 ) (1 )( ) , [0,1]
(1 ) ( ) 1 (1 ) (1 )

f p p
n p n p n p n p

α α α α
α α α α α

− −′′ = + − − ∈
+ − + + − − + + −

Now 1 [0,1]p∀ ∈ , 1( )f p′′  is a function of α , denote it by ( )g α .  

Compute ( )g α′ , we get 

( ) ( ) ( )3 3 3 3
11 1 1

2(1 )(1 ) 2(1 )(1 ) 2 2( )
( )1 (1 ) (1 ) (1 )

n n n ng
n pn p n p n p

α α α αα
αα α α α

− + − +′ = + + +
++ − − + + − + −

 

Since 1
1 , 1
2

pα < < , we have 

1
1( ) 0, [0,1], 0
2

g pα α′ > ∀ ∈ < <  

In conclusion, with any 1p  and n  fixed, 1( )f p′′  increases when α  increases 

(Figure 4.1). 
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2

1 1 12
2n α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

Fig. 4.1 Changes of the shape of 1( )f p  as α  changes 

When α  has the critical value that satisfies 2

1 1 12
2 nα α

⎛ ⎞− =⎜ ⎟
⎝ ⎠

, or equivalently,  

1

2

1 12
2

n
α α

−
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, we have 

1 1
1

1 1

1 1 1 1

1 1 1 1

1 1 1

1 1

(1 )( ) log(1 ) log(1 )
(1 )

(1 )( (1 2 )) (1 )(1 (2 1))log log
(1 (2 1)) ( (1 2 ))

(1 )( (1 2 )) (1 )(1 (2log
(1 (2 1))

p pf p W
n p n p

p p p pW
p p p p

p p pW
p p

α α

α α α α
α α α α

α α α α
α α

⎛ ⎞−
= + + +⎜ ⎟+ − +⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− + − − − + −
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + − + −⎝ ⎠ ⎝ ⎠⎝ ⎠

− + − − − +
=

− + −
1

1 1

1))
( (1 2 ))

p
p pα α

⎛ ⎞−
⎜ ⎟+ −⎝ ⎠

 

2

2

(1 )logW α
α
−

=                                          (4.2) 

In this case, we see that 1( )f p  is a constant function that does not depend on 1p . 

Clearly, 1( ) 0f p′′ = .  
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Denote this critical value by 0α , 2
0 0

1 1 12
2n α α

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. Notice that 2

1 1
2α α

−  is a 

decreasing function of α  when 10
2

α< < .  

Therefore, as depicted in Fig. 4.1, 

when 0α α> , i.e. 2

1 1 12
2n α α

⎛ ⎞> −⎜ ⎟
⎝ ⎠

, 1 1 1( ) 0, [0,1], ( )f p p f p′′ > ∀ ∈  is convex; 

when 0α α< , i.e. 2

1 1 12
2n α α

⎛ ⎞< −⎜ ⎟
⎝ ⎠

, 1 1 1( ) 0, [0,1], ( )f p p f p′′ < ∀ ∈  is concave. 

when 0α α= , i.e. 2

1 1 12
2n α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 1 1 1 1( ) ( ) 0, [0,1], ( )f p f p p f p′′ ′= = ∀ ∈  is 

constant. 

b. Comparison between sum-rates of flat frequency sharing and flat FDMA 

re-allocation. 

With a flat FDMA re-allocation and the normalization 1 2 1 21p p p p′ ′+ = = = , the rates 

of user 1 and user 2 become  

1 1 1 1

2 2 2 1

1log(1 ) log(1 )

1log(1 ) (1 ) log(1 )

R W p p W
n

R W p p W
n

⎧ ′ ′ ′= + = +⎪⎪
⎨
⎪ ′ ′ ′= + = − +
⎪⎩

 

The sum-rate with the flat FDMA re-allocation is given by 

1 1 2
1( ) log(1 )h p R R W
n

′ ′= + = +                 (4.3) 

It is consistent with the fact that the sum-rate of FDMA does not depend on the cross 

interference gain α , since there is no interference when FDMA is used. 

When 0α α= , i.e. 2

1 1 12
2n α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, substitute this into (4.3), we get 
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2

1 2 2

1 1 1 (1 )( ) log(1 ) log 1 2 log
2

h p W W W
n

α
α α α

⎛ ⎞⎛ ⎞ −⎛ ⎞= + = + − = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Compared it with (4.2), we see that in this case 1 1 1( ) ( ) , [0,1]f p h p constant p= = ∈ . 

In other words, when 2

1 1 12
2n α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, the flat frequency sharing and its flat FDMA 

re-allocation have the same sum-rate 
2

2

(1 )logW α
α

⎛ ⎞−
⎜ ⎟
⎝ ⎠

, regardless of 1p .  

Furthermore, since 1
1(0) (1) ( ) log(1 )f f h p W
n

= = = +  always holds, with the 

convexity/concavity conditions derived above, we have 

when 2

1 1 12
2n α α

⎛ ⎞> −⎜ ⎟
⎝ ⎠

, 1( )f p  is convex ⇒  1 1 1( ) ( ), [0,1]f p h p p≤ ∀ ∈ ; 

when 2

1 1 12
2n α α

⎛ ⎞< −⎜ ⎟
⎝ ⎠

, 1( )f p  is concave ⇒  1 1 1( ) ( ), [0,1]f p h p p≥ ∀ ∈ . 

Finally, we remove the normalization 1 2 1p p+ = , and concludes that for a flat 

frequency sharing power allocation, a flat FDMA re-allocation leads to a higher or 

unchanged sum-rate if and only if 1 2
2

1 12
2

p p
n α α
+ ⎛ ⎞≥ −⎜ ⎟

⎝ ⎠
.                    ■ 

When 1
2

α < , we have 2

1 12 0
2α α

⎛ ⎞− >⎜ ⎟
⎝ ⎠

. In this case, as long as 

1 2
2

1 10 2
2

p p
n α α
+ ⎛ ⎞< < −⎜ ⎟

⎝ ⎠
, FDMA schemes are clearly not optimal because flat 

frequency sharing has a higher rate than flat FDMA (which is the optimal FDMA 

scheme in flat channels). Thus, to guarantee the optimal spectrum and power 

allocation to be FDMA regardless of the power constraints, the coupling conditions 
1( )
2ji fα ≥  are not only sufficient, but also necessary in symmetric channels. 
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Given noise level n  and cross coupling gains α , Theorem 3 provides us a 

power region FDMAP  within which flat FDMA has a higher sum-rate than flat 

frequency sharing, depicted as the shaded area in Figure 4.2 (with complement region 

FDMAP  also depicted). 

2

1 12
2α α

⎛ ⎞−⎜ ⎟
⎝ ⎠

2

1 12
2α α

⎛ ⎞−⎜ ⎟
⎝ ⎠

FDMAP

1
1

pp
n

=

2
2

pp
n

=

FDMAP

 
Fig. 4.2 The region in which flat FDMA has higher sum-rate than flat frequency 

sharing 
 

If we normalize the power by the noise instead of the sum-power: 1
1

pp
n

= , 

2
2

pp
n

= , the region becomes 1 2 2

1 2

1 12
2

0, 0
FDMA

p p
P

p p
α α

⎧ ⎛ ⎞+ ≥ −⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ ≥ ≥⎩

. Since 1 2,p p  and n  

are considered to be arbitrary here, using the noise-normalized terms 1 2,p p  and 

1n =  is equivalent to the original formulation. From now on, instead of adding the 

assumption that 1 2 1p p+ = , we add the assumption that 1n =  WLOG. The sum-rate 

of flat frequency sharing becomes 

1 2
1 2 1 2

2 1

( , ) log(1 ) log(1 )
1 1

p pf p p R R W
p pα α

⎛ ⎞
= + = + + +⎜ ⎟+ +⎝ ⎠

 

With the sum-power constraint 1 2p p p+ ≤  only, the maximum achievable 
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sum-rate with flat frequency sharing *( )f p  is defined as the optimal value of the 

following optimization problem: 
*

1 2

1 2

1 2

( ) max ( , )
. .

0, 0

f p f p p
s t p p p

p p

=
+ ≤
≥ ≥

 

Next, we show the form and the concavity of *( )f p  in the region of FDMAP . 

Lemma 2  When 2

1 10 2
2

p
α α

⎛ ⎞< ≤ −⎜ ⎟
⎝ ⎠

,    * / 2( ) 2 log 1
1 / 2

pf p W
pα

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

  (4.4) 

is a concave function of the constraint p . The optimal flat frequency sharing scheme 

is 1 2 2
pp p= = . 

Proof:  

Clearly, the condition of p  implies 1 2( , ) FDMAp p P∈ . 

First, we find the solution to the optimization problem with equality sum-power 

constraint rather than inequality, i.e.  

1 2max ( , ),f p p 1 2 1. . , 0,s t p p p p+ = ≥  2 0p ≥   

where 2

1 10 2
2

p
α α

⎛ ⎞< ≤ −⎜ ⎟
⎝ ⎠

. 

With 1 2p p p+ = , 1 1
1 2 1

1 1

( , ) log(1 ) log(1 ) ( )
1 ( ) 1

p p pf p p W f p
p p pα α

⎛ ⎞−
= + + + =⎜ ⎟+ − +⎝ ⎠

. 

Directly from the proof of Theorem 3, we know that since 2

1 10 2
2

p
α α

⎛ ⎞< ≤ −⎜ ⎟
⎝ ⎠

, 

1( )f p  is a concave function of 1p , 1 [0, ]p p∀ ∈ . Furthermore, 1 1( ) ( )f p f p p= − , 

i.e. 1( )f p  is symmetric about 1 2
pp = . Therefore, 1( )f p  takes the maximum value 
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when 1 22
pp p= = , and the maximum value is * / 22 log 1

1 / 2
pf W

pα
⎛ ⎞

= +⎜ ⎟+⎝ ⎠
. 

We see that within the region FDMAP , i.e. 2

1 10 2
2

p
α α

⎛ ⎞< ≤ −⎜ ⎟
⎝ ⎠

, with sum-power of 

the two users unchanged, the maximum sum-rate is always achieved when the two 

users’ power are the same. It implies that the constraint 1 2p p p+ ≤  in the definition 

problem of *( )f p  can be equivalently replaced by 1 2p p p+ = . With this change of 

constraint, we have the expression of *( )f p : 

* / 2( ) 2 log 1
1 / 2

pf p W
pα

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

 

Computing the second derivative we get 

2 2
*

2 2 2

8(1 2 )( ) 0
(2 ) (2 )

d p pf p
dp p p p

α α α
α α
+ + +

= − <
+ + +

 

Therefore, *( )f p  is a concave function of the constraint p , when 

2

1 10 2
2

p
α α

⎛ ⎞< ≤ −⎜ ⎟
⎝ ⎠

.                                                  ■ 

In comparison, we compute the maximum achievable sum-rate with sum-power 

constraint for FDMA schemes. Clearly, with general sum-power constraint 

( )2

1
1 2( ) ( )

f

f
P f P f df P+ ≤∫ , the sum-rate of both users are equivalent to the rate of a 

single user with a power constraint P . With our flat channel assumption, according 

to the water-filling principle, the maximum sum-rate of both users is achieved when 

the power spectrum density over the whole channel is flat. In other words, both users’ 

powers are allocated mutually non-overlapped and collectively filling the whole band 

uniformly. Denote the flat power spectral density by Pp
W

= . We summarize the 
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above result in the following lemma. 

Lemma 3  The maximum achievable sum-rate with FDMA is 

*( ) log(1 )h p W p= +                         (4.5) 

where *( )h p  is defined as the optimal value of the following optimization problem: 

( )

( ) ( )

2

1

2 2

1 1

*
1 2

1 2

1 2 1 2 1 2

1 1 2 2

( ) max

. . ( ) ( ) ,

( ) ( ) 0, ( ) 0, ( ) 0, ( , )

log 1 ( ) , log 1 ( )

f

f

f f

f f

h p R R
Ps t P f P f df P p
W

P f P f P f P f f f f

R P f df R P f df

= +

+ ≤

= ≥ ≥ ∀ ∈

= + = +

∫

∫ ∫

 

Define the critical point 0 2

1 12
2

p
α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

. As a direct implication of Theorem 

3, it can be easily verified that * *
0 0( ) ( )f p h p= .  

We define the upper envelope of *( )f p  and *( )h p  to be  

*
0* *

*
0

( ), [0, ]
( ) max{ ( ), ( )}

( ), [ , )

f p p p
r p f p h p

h p p p

⎧ ∈⎪= = ⎨
∈ ∞⎪⎩

. 

Furthermore,  

0
0

3 2
* *

2

4( ) ( )
1 (1 ) p p

p p

d df p h p
dp dp

α α
α α =

=

= < =
− −

 when 10
2

α< < . (4.6) 

Thus, although *( )f p  is concave in 0[0, ]p  as proved in lemma 2, and *( )h p  

is clearly concave in 0[ , ]p ∞ , (4.6) implies that the upper envelope ( )r p  of those 

two functions is not concave in [0, )∞ .  

Next, we define *( )r p  to be the unique convex hull of ( )r p : 

1) Define the set of functions  

{ ( ) | ( ) concave; ( ) ( ), [0, )}S r p r p r p r p p= ≥ ∀ ∈ ∞ . 
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2) *( )r p  is the unique function satisfying  

*

*

( )
( ) ( ), [0, ), ( )

r p S
r p r p p r p S

⎧ ∈⎪
⎨

≤ ∀ ∈ ∞ ∀ ∈⎪⎩
 

A typical plot of *( )f p , *( )h p , and the convex hull of their upper envelope 

*( )r p  is given in Figure 4.3. Since *( )f p  and *( )h p  are themselves concave, 

finding the convex hull of the upper envelope boils down to finding their common 

tangent line.  

0 50 100 150 200 250
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6

50 60 70 80 90 100 110 120

4.2

4.3

4.4

4.5

4.6

4.7

4.8

 
Fig. 4.3 The maximum achievable rate as the convex hull of the rates of flat FDMA 

and flat frequency sharing 
 

In Figure 4.3, α  is chosen to be 0.1. *( )f p  and *( )h p  intersects at 

0 2

1 12 80
2

p
α α

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

. The two points of tangency are 54.931, 115.938f hp p= = . 

The slope of the common tangent line is 0.00855. 

In order to find the common tangent line of *( )f p  and *( )h p , the two points of 
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tangency fp  and hp  are determined by  

* *
* * ( ) ( )
( ) ( )

f h

h f

h fp p p p

h p f pd df p h p
dp dp p p= =

−
= =

−
, 

which simplifies to finding fp  by solving 

      
( )

( )( ) ( )
3(1 ) 4 2 ( 2)

log
2 (1 ) 2 4 (1 ) 2

f f f

f f f

p p p
p p p

α α α α
α α α

⎛ ⎞+ + − +
⎜ ⎟=
⎜ ⎟+ + + + +⎝ ⎠

       (4.7) 

and computing hp  by  

( )1 (1 ) 4 2
4h f fp p pα α α= + + +  

fp  and hp  can be obtained by solving the closed form equation (4.7) where 

various numerical methods can be applied. 

Next, we provide the main theorem of this sub-section, showing that *( )r p  is in 

fact the maximum sum-rate that the two users can achieve with a sum-power 

constraint. 

Theorem 4 The Maximum Sum-Rate and the Optimal Spectrum and Power Allocation 

in Flat Symmetric Gaussian Interference Channel with Sum-Power Constraint. 

In a flat symmetric Gaussian interference channel with 1
2

α <  (4.1), the maximum 

sum-rate defined as the optimal value of the following optimization problem  

( )2

1

2 2

1 1

1 2

1 2

1 2 1 2

1 2
1 2

2 1

max

. . ( ) ( ) ,

( ) 0, ( ) 0, ( , )

( ) ( )log 1 , log 1
1 ( ) 1 ( )

f

f

f f

f f

R R
Ps t P f P f df P p
W

P f P f f f f

P f P fR df R df
P f P fα α

+

+ ≤

≥ ≥ ∀ ∈

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∫

∫ ∫

  (4.8) 

is *( )r p , i.e. the convex hull of the upper envelope of *( )f p  and *( )h p . 

Proof: 
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i) *( )r p  is achievable. 

As in Figure 4.3, by definition of *( )r p , we see that  

* *

* *
* *

* *

( ) ( ) ,0

( ) ( )
( ) ( ) ( ) ,

( ) ( ) ,

f

h f
f f f h

h f

h

r p f p p p

h p f p
r p f p p p p p p

p p

r p h p p p

⎧ = < ≤
⎪

−⎪
= + − ≤ ≤⎨ −⎪

⎪ = ≥⎩

 

Clearly, when 0 fp p< ≤ , * *( ) ( )r p f p=  is achievable with flat frequency 

sharing as in lemma 2; when hp p≥ , * *( ) ( )r p h p=  is achievable with flat FDMA 

as in lemma 3. When f hp p p≤ ≤ , * * *( ) max{ ( ), ( )}r p f p h p>  strictly. In this case, 

choose λ  such that ( ), 0 1f h fp p p pλ λ= + − ≤ ≤ . We separate the band of the 

original channel into two orthogonal channels: 1C  with bandwidth (1 )Wλ− , and 

2C  with bandwidth Wλ .  

In 1C , we impose the sum-power constraint  

( )2

1
1

1 2( ) ( ) (1 )
f

C ff
P f P f df P W pλ+ ≤ − ⋅∫ . 

Define 1

1 (1 )
C

C f

P
p p

Wλ
=

−
. Thus, the rate with the optimal flat frequency 

sharing can be achieved as in lemma 2: 

1 1

* */ 2
( ) 2(1 ) log 1 (1 ) ( )

1 / 2
f

C C f
f

p
f p W f p

p
λ λ

α
⎛ ⎞

= − + = −⎜ ⎟⎜ ⎟+⎝ ⎠
 

In 2C , we impose the sum-power constraint 

( )2

2
1

1 2( ) ( )
f

C hf
P f P f df P W pλ+ ≤ ⋅∫  

Define 2

2

C
C h

P
p p

Wλ
= . Thus, the rate with the optimal flat FDMA can be 
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achieved as in lemma 3: 

2 2

* *( ) log(1 ) ( )C C h hh p W p h pλ λ= + =  

With these two power constraints in the two orthogonal sub-channels, the 

original power constraint ( )2

1
1 2( ) ( )

f

f
P f P f df P pW+ ≤ =∫  is automatically satisfied: 

( )
1 2

(1 ) ( )C C f h f h fP P W p W p p p p W pW Pλ λ λ+ = − ⋅ + ⋅ = + − = = . 

Therefore, the sum-rate 
1 1 2 2

* *( ) ( )C C C Cf p h p+  can be achieved in the original 

problem (4.8). Substitute p by ( )f h fp p pλ+ −  in the expression of 

* *
* * ( ) ( )
( ) ( ) ( )h f

f f
h f

h p f p
r p f p p p

p p
−

= + −
−

, we have  

1 1 2 2

* * * * *( ) (1 ) ( ) ( ) ( ) ( )f h C C C Cr p f p h p f p h pλ λ= − + = +  

Therefore, *( )r p  is achievable.  

The optimal spectrum and power allocation to achieve the sum-rate of *( )r p  is 

depicted in Figure 4.4. 

1 2 1(1 )( )f f fλ+ − −1f 2f

1 ~ (1 )C Wλ−

2 ~C Wλ

~the whole channel W

*
1 ( ) / 2fP f p=

*
2 ( ) / 2fP f p=

*
1 ( )

h

P f
p=

*
2 ( )

h

P f
p=

 

Fig. 4.4 The optimal spectrum and power allocation as a mixture of flat FDMA and 
flat frequency sharing 
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ii) *( )r p  is optimal. 

Suppose the maximum achievable sum-rate is ( )or p , with the optimal spectrum 

and power allocation 1 ( )oP f  and 2 ( )oP f  satisfying 

( )2

1
1 2( ) ( )

f o o

f
P f P f df P pW+ ≤ =∫  and achieving 

2

1

1 2

2 1

( ) ( )( ) log 1 log 1
1 ( ) 1 ( )

o ofo
o of

P f P fr p df
P f P fα α

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠
∫  

WLOG, we add the assumption of 1 ( )oP f  and 2 ( )oP f  being uniformly 

continuous as in Theorem 2 and Theorem 3.  

Define 1 2

2 1

( ) ( )( ; ) log 1 log 1
1 ( ) 1 ( )

o o
o

o o

P f P fr f p
P f P fα α

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

, then  

2

1

( ) ( ; )
fo o

f
r p r f p df= ∫  

Define 1 2( ) ( ) ( )o o op f P f P f= + . Notice that the expression ( ; )or f p  has the 

form of either a flat frequency sharing (if 1 2( ) 0, ( ) 0o oP f P f> > ) or a flat FDMA (if 

1 2( ) ( ) 0o oP f P f = ), with unit bandwidth. It corresponds to the fact we have mentioned 

in Section II: flat frequency sharing and flat FDMA are the two building blocks of all 

non-flat cases. Thus, with the above definition of ( )op f ,  

1 2
2 1

2 1 2 1

*

2 1

( ) ( )1( ; ) ( ) log 1 log 1
1 ( ) 1 ( )

1( ( )) .

o o
o

o o

o

P f P fr f p f f
f f P f P f

r p f
f f

α α
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⋅ − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + +⎝ ⎠ ⎝ ⎠⎝ ⎠

≤ ⋅
−

 

Thus, 2 2

1 1

*

2 1

1( ; ) ( ( ))
f fo o

f f
r f p df r p f df

f f
≤ ⋅

−∫ ∫ . 

Since *( )r p  is a concave function over [0, )∞ , by Jensen’s Inequality, 



 42

2 2

1 1

* *

2 1 2 1

1 1( ( )) ( )
f fo o

f f
r p f df r p f df

f f f f
⎛ ⎞

⋅ ≤ ⋅⎜ ⎟− −⎝ ⎠
∫ ∫ , 

and ( )2 2

1 1
1 2

2 1 2 1 2 1

1 1 1( ) ( ) ( )
f fo o o

f f
p f df P f P f df pW p

f f f f f f
⋅ = ⋅ + ≤ ⋅ =

− − −∫ ∫ , 

where 2 1W f f= − , and the inequality comes from the sum-power constraint (4.8). 

Since *( )r p  is a strictly increasing function over [0, )∞ , we have 

2

1

* *

2 1

1( ) ( )
f o

f
r p f df r p

f f
⎛ ⎞

⋅ ≤⎜ ⎟−⎝ ⎠
∫  

Therefore, we have in conclusion 2

1

*( ; ) ( )
f o

f
r f p df r p≤∫ , i.e. *( ) ( )or p r p≤ . 

Since we assume ( )or p  to be the maximum achievable sum-rate, and *( )r p  is 

achievable as proved previously in i), we conclude that *( )r p  is the maximum 

achievable sum-rate. Furthermore, the mixture of a flat frequency sharing and a flat 

FDMA shown in Figure 4.4 is the optimal spectrum and power allocation achieving 

*( )r p .                                                              ■ 

From Theorem 4, we know that given the following set of conditions,  

1) sum-power constraint P  (with noise power normalized to 1), 

2) bandwidth W , 

3) cross interference gain α  (with direct channel gains normalized to 1), 

with the definition of * */ 2, ( ) 2 log 1 , ( ) log(1 )
1 / 2

P xp f x W h x W x
W xα

⎛ ⎞= = + = +⎜ ⎟+⎝ ⎠
, 

the maximum achievable sum-rate *( )r p  is computed through the following steps:  

Procedure 4.1, 

1) Solve the two points of tangency fp  and hp  of the convex hull of *( )f x  

and *( )h x : 
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 a. Solve equation (4.7) numerically to find fp  

( )
( )( ) ( )

3(1 ) 4 2 ( 2)
log

2 (1 ) 2 4 (1 ) 2
f f f

f f f

p p p
p p p

α α α α
α α α

⎛ ⎞+ + − +
⎜ ⎟=
⎜ ⎟+ + + + +⎝ ⎠

. 

  b. Compute hp  by ( )1 (1 ) 4 2
4h f fp p pα α α= + + + . 

2) Compute the maximum achievable sum-rate *( )r p : 

 If fp p≤ , * * / 2( ) ( ) 2 log 1
1 / 2

pr p f p W
pα

⎛ ⎞
= = +⎜ ⎟+⎝ ⎠

; 

 If hp p≥ , * *( ) ( ) log(1 )r p h p W p= = + ; 

 If f hp p p< < , 
* *

* * ( ) ( )
( ) ( ) ( )h f

f f
h f

h p f p
r p f p p p

p p
−

= + −
−

. 

The optimal power allocation scheme { }* *
1 2( ), ( )P f P f  that achieves the 

maximum achievable sum-rate *( )r p  is obtained through the following steps:  

Procedure 4.2, 

1) If fp p≤ , allocate * *
1 2( ) ( ) ,

2
pP f P f f= = ∀ , i.e. flat frequency sharing in the 

whole band with equal power spectral density for the two users. 

2) If hp p≥ , allocate *
1 ( )P f  and *

2 ( )P f  such that 
* *

1 2
* *

1 2

( ) ( ) 0,

( ) ( ) ,

P f P f f

P f P f p f

⎧ = ∀⎪
⎨

+ = ∀⎪⎩
, 

i.e. flat FDMA of the two users (with no specific requirement for each individual 

user’s power.) 

3) if f hp p p< < ,  

a. Compute f

h f

p p
p p

λ
−

=
−

 

  b. Separate the bandwidth W into two disjoint channels:  

   1C  with bandwidth (1 )Wλ−  and 2C  with bandwidth Wλ . 
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  c. Allocate power as follows (Figure 4.4): 

In 1C , * *
1 2( ) ( )

2
fp

P f P f= = , i.e. flat frequency sharing with equal 

power spectral density. 

In 2C , 
* *

1 2
* *

1 2

( ) ( ) 0,

( ) ( ) ,h

P f P f f

P f P f p f

⎧ = ∀⎪
⎨

+ = ∀⎪⎩
, i.e. flat FDMA. 

This optimal spectrum and power allocation scheme *
1 ( )P f  and *

2 ( )P f  has the 

following two properties: 

1) The power constraint P  is always strictly met. 

2) There always exists an optimal power allocation with equal total power of the 

two users, i.e. 2 2

1 1

* *
1 2( ) ( )

2
f f

f f

PP f df P f df= =∫ ∫ , because  

a. The optimal flat frequency sharing always enforces equal PSD of the two users; 

b. The optimal flat FDMA does not have any requirement on how the sum-power 

is divided among the two users, meaning that we can always choose to divide the 

sum-power equally. 

Theorem 4 and the above procedures tell us the best we can do to maximize the 

sum-rate with sum-power constraint (4.8). Another form of optimization problem that 

often appears is with the individual power constraints as follows: 

2

1

2

1

2 2

1 1

1 2

1
1 1 1

2
2 2 2

1 2 1 2

1 2
1 2

2 1

max

. . ( ) ,

( ) ,

( ) 0, ( ) 0, ( , )

( ) ( )log 1 , log 1
1 ( ) 1 ( )

f

f

f

f

f f

f f

R R
Ps t P f df P p
W
PP f df P p
W

P f P f f f f

P f P fR df R df
P f P fα α

+

≤

≤

≥ ≥ ∀ ∈

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∫

∫

∫ ∫

 

Clearly, with individual power constraints, the optimal solution can be different 

from the problems with the sum-power constraint. However, as we have alluded to in 



 45

property 2) of the optimal spectrum and power allocation, the equal power constraints 

problems, namely 1 2P P= , can be equivalently transformed into problems with 

sum-power constraint as in the next corollary.  

Corollary 4.1 The Maximum Sum-Rate and the Optimal Spectrum and Power 

Allocation in Flat Symmetric Gaussian Interference Channels with Equal Power 

Constraints. 

In a flat symmetric Gaussian interference channel with 1
2

α <  (4.1), the maximum 

sum-rate defined as the optimal value of the following optimization problem  

       

2

1

2

1

2 2

1 1

1 2

1

2

1 2 1 2

1 2
1 2

2 1

max

. . ( ) ,
2

( )
2 2

( ) 0, ( ) 0, ( , )

( ) ( )log 1 , log 1
1 ( ) 1 ( )

f

f

f

f

f f

f f

R R
P Ps t P f df p

W
P pWP f df

P f P f f f f

P f P fR df R df
P f P fα α

+

≤

≤ =

≥ ≥ ∀ ∈

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∫

∫

∫ ∫

  (4.9) 

is *( )r p , i.e. the convex hull of the upper envelope of *( )f p  and *( )h p . 

At this maximum sum-rate point, both users have the same rate 
*( )
2

r p . 

Proof:  

First, the individual power constraints 

2

1

2

1

1

2

( )
2 2

( )
2 2

f

f

f

f

P pP f df W

P pP f df W

⎧ ≤ =⎪⎪
⎨
⎪ ≤ =
⎪⎩

∫

∫
 imply the 

sum-power constraint ( )2

1
1 2( ) ( )

f

f
P f P f df P pW+ ≤ =∫ . In other words, the domain 

of this problem with equal power constraints (4.9) is contained in the domain of which 

in Theorem 4 with sum-power constraint (4.8). Thus, the optimal value of the problem 

in Theorem 4 (4.8), namely *( )r p , is an upper bound of the optimal value of the 
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problem here (4.9). 

Recall the property of the optimal power allocation scheme with sum-power 

constraint: the optimal flat FDMA does not have any requirement on how the 

sum-power is divided among the users, meaning that we can always choose to divide 

the sum-power equally. We know that for the problem in Theorem 4 (4.8), we can 

always achieve the maximum achievable sum-rate *( )r p  with equal power for each 

user, i.e. 2 2

1 1
1 2( ) ( )

2
f f

f f

PP f df P f df= =∫ ∫ . In other words, *( )r p  is always achievable 

in the problem with equal individual power constraints here (4.9). 

Therefore, *( )r p  is the maximum achievable sum-rate for problem with equal power 

constraints (4.9).  

To obtain the optimal power allocation scheme with equal power constraints, we first 

obtain an optimal power allocation scheme with sum-power constraint by Procedure 

4.1. Then, we simply divide the flat-FDMA portion of the sum-power equally to the 

two users.                                                           ■ 

In this sub-section, we see that the maximum achievable sum-rate *( )r p  with 

sum-power constraint (4.8) or equal power constraints (4.9) can be computed with 

Procedure 4.1 efficiently. Concurrently, the optimal spectrum and power allocation 

scheme is readily obtained with Procedure 4.2, and is precisely characterized as in 

Figure 4.4.  

B. Generalization to the Cases of Frequency Selective Channels 

In this sub-section, we extend the sum-rate maximization problem to the 

symmetric frequency selective Gaussian interference channel. 
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12 21 1 2

1 2 1 2

1( ) ( ) ( ) , ( , )
2

( ) ( ) ( ), ( , )

f f f f f f

N f N f N f f f f

α α α⎧ = = < ∀ ∈⎪
⎨
⎪ = = ∀ ∈⎩

             (4.10) 

where ( )fα  and ( )N f  are assumed to be uniformly continuous. The 

maximum sum-rate with sum-power constraint is then defined as the optimal value of 

the following optimization problem: 

         

( )2

1

2

1

2

1

1 2

1 2

1 2 1 2

1
1

2

2
2

1

max

. . ( ) ( )

( ) 0, ( ) 0, ( , )

( )log 1
( ) ( ) ( )

( )log 1
( ) ( ) ( )

f

f

f

f

f

f

R R

s t P f P f df P

P f P f f f f

P fR df
N f P f f

P fR df
N f P f f

α

α

+

+ ≤

≥ ≥ ∀ ∈

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

∫

∫

∫

          (4.11) 

Cleary, the expression of the objective function 1 2R R+  are highly non-concave 

in terms of 1( )P f  and 2 ( )P f  and hard to deal with. However, since we have 

already explicitly solved the optimization problem in flat channels, we show that this 

non-convex optimization in frequency selective channels can be equivalently 

transformed into a convex optimization in the primal domain. The idea is that at every 

frequency point, the infinitesimal sub-band around this point is flat. Applying the 

solution we obtained for flat channels, the maximum sum-rate within this sub-band is 

an increasing concave function of the power constraint within this sub-band. 

Define the normalized PSD to be 1 2
1 2

( ) ( )( ) , ( )
( ) ( )

P f P fP f P f
N f N f

= = , and the 

normalized sum-PSD to be 1 2( ) ( ) ( )p f P f P f= + . At every frequency 1 2( , )f f f∈ , 

1. in the same form of (4.4) and (4.5) with ( )fα  instead of α , and 1W = : 
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* / 2( ; ) 2 log 1
1 ( ) / 2

pf p f
f pα

⎛ ⎞
+⎜ ⎟+⎝ ⎠

, *( ; ) log(1 )h p f p+ , 

and for every 1 2( , )f f f∈ , *( ; )r p f  is defined as the convex hull of 

{ }* *max ( ; ), ( ; )f p f h p f .  

2. ( )fp f , ( )hp f , and finally *( ; )r p f  are computed in the same way as in 

Procedure 4.1 with ( )fα  instead of α . 

Now we have the following theorem transforming (4.11) into a convex 

optimization. 

Theorem 5 The problem of maximizing the sum-rate in symmetric frequency 

selective Gaussian interference channels (4.11) has the same optimal value as the 

following optimization problem: 

       

2

1

2

1

*

( )

1 2

max ( ( ); )

. . ( ) ( ) , ( ) 0, ( , )

f

fp f

f

f

r p f f df

s t p f N f df P p f f f f≤ ≥ ∀ ∈

∫

∫
       (4.12) 

Proof:  

Denote the optimal value of (4.11) by *R , and the optimal value of (4.12) by oR . 

1) * oR R≤   

(4.11) is equivalent to 

2

11 2

2

1

*

( ), ( )

1 2

2 1

1 2

1 2 1 2

max ( )

( ) ( ). . ( ) log 1 log 1
1 ( ) ( ) 1 ( ) ( )

( ) ( ) ( )

( ) ( ) , ( ) 0, ( ) 0, ( , )

f

fP f P f

f

f

R r f df

P f P fs t r f
P f f P f f

P f P f p f

p f N f df P P f P f f f f

α α

=

⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+ =

≤ ≥ ≥ ∀ ∈

∫

∫

, 

Notice that the expression of ( )r f  has the form of either a flat frequency sharing (if 

1 2( ) 0, ( ) 0P f P f> > ) or a flat FDMA (if 1 2( ) ( ) 0P f P f = ). Thus,  
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*( ) ( ( ); )r f r p f f≤  

It leads directly to, 

2

1

2

1

* *

( )

1 2

max ( ( ); )

. . ( ) ( ) , ( ) 0, ( , )

f

fp f

f

f

R r p f f df

s t p f N f df P p f f f f

≤

≤ ≥ ∀ ∈

∫

∫
 

i.e. * oR R≤ . 

2) oR  is achievable, i.e. * oR R≥  

Denote the optimal solution of (4.11) by *
1 2( ), ( , )p f f f f∈ , 

2

1

* *( ( ); )
f o

f
r p f f df R=∫ . 

We divide the band 1 2( , )f f  into n  equal width frequency bins: 

1 1 2 2 3 3 4 1 2( , ), ( , ), ( , ), ... , ( , )n nf f f f f f f f f f+′ ′ ′ ′ ′ ′ ′ ′ , 1 , 1, 2,...,k k
Wf f k n
n+′ ′− = = . 

Let n →∞ . Within any bin 1 1( , ), 0k k k kf f f f+ +′ ′ ′ ′− → . From uniform continuity we 

have the following: 

1( , )k kf f f +′ ′∀ ∈  

1. channel gain becomes flat: 1ˆ( ) ( ) ,
2kf fα α→ < for some 1

ˆ ( , )k k kf f f +′ ′∈   

2. noise power becomes flat: ˆ( ) ( ),kN f N f→  for some 1
ˆ ( , )k k kf f f +′ ′∈  

Setting the sum-power constraint within this frequency bin to be *
1

ˆ( ) ( )k k kp f f f+′ ′⋅ − , 

an optimal power allocation as in Figure 4.4 for this frequency bin 1( , )k kf f +′ ′  can be 

obtained by Procedure 4.2, and a sum-rate of * *
1

ˆ ˆ( ( ); ) ( )k k k kr p f f f f+′ ′⋅ −  can be 

achieved within this frequency bin. 

Thus, a total sum-rate within the entire frequency band 1 2( , )f f   

* *
1

1

ˆ ˆ( ( ); ) ( )
n

k k k k
k

r p f f f f+
=

′ ′⋅ −∑  
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can be achieved, with a total weighted sum-power constraint of 

*
1

1

ˆ ˆ( ) ( ) ( )
n

k k k k
k

p f N f f f+
=

′ ′⋅ ⋅ −∑ . 

With n →∞ , 1 0k k
Wf f
n+′ ′− = → , we have  

2

1

* * * *
1

1

ˆ ˆ( ( ); ) ( ) ( ( ); )
n f o

k k k k f
k

r p f f f f r p f f df R+
=

′ ′⋅ − → =∑ ∫ , 

with  

2

1

* *
1

1

ˆ ˆ( ) ( ) ( ) ( ) ( )
n f

k k k k f
k

p f N f f f p f N f df P+
=

′ ′⋅ ⋅ − → ≤∑ ∫  

Therefore, with the weighted sum-power constraint 2

1

*( ) ( )
f

f
p f N f df P≤∫  satisfied, 

there exists a power allocation scheme achieving a sum-rate of  
2

1

* *( ( ); )
f o

f
r p f f df R=∫ , 

i.e. * oR R≥ . 

In conclusion, * oR R=                                                  ■ 

In the optimization problem (4.12) in Theorem 5, we have 

1. For any fixed 1 2( , )f f f∈ , the integrand of the objective function, namely 

*( ( ); )r p f f  is an increasing concave function of ( )p f . 

2. The power constraint 2

1

( ) ( )
f

f
p f N f df P≤∫  is linear in ( )p f   

Thus, (4.12) is in the form of a convex optimization. The intuition of this convex 

optimization is clear:  

1. The total power needs to be optimally distributed over the whole band. 

2. The power allocated to every sub-band needs to be optimally used within this 

sub-band to achieve the maximum sum-rate. 

In Section IV.A., we explicitly solved the 2nd step above, providing an increasing 
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concave sum-rate function of p *( ; )r p f  at every frequency point f. The original 

non-convex optimization problem is then naturally reduced to the 1st step above: a 

primal domain convex optimization. Since we also obtain the explicit characterization 

of the optimal spectrum and power allocation in flat channels (Procedure 4.2, Figure 

4.4), the optimal spectrum and power allocation in frequency selective channels are 

directly obtained after solving this convex optimization (4.12). 
Finally, for the same reason as in Section IV.A., the optimal solution with equal 

power constraints is the same as that with the corresponding sum-power constraint. 
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V. Optimal Spectrum Management in the General Cases 
 

In Section IV, we solved the sum-rate maximization problem in two-user 

symmetric frequency selective channels with equal power (or sum-power) constraints. 

In this section, we make the following four generalizations: 

1. two-user →  n-user 

2. equal power constraints →  arbitrary individual power constraints 

3. symmetric channel →  arbitrary non-symmetric channel 

4. sum-rate →  arbitrary weighted sum-rate 

Furthermore, the generality of frequency selective channels is preserved. 

The general optimization problem is thus the following: 

2

1

2

1

( ), 1,2,..., 1

1 2

max

. . ( ) , ( ) 0, ( , )

( )log 1
( ) ( ) ( )

i

n

i iP f i n i

f

f

f i
i f

i j ji
j i

w R

s t f df f f f f

P fR df
N f P f fα

=
=

≠

≤ ≥ ∀ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑

∫

∫
∑

P P P ,         (5.1) 

where ( )1( ) ( ),..., ( )nf P f P f=P  and ( )1,..., nP P=P .  

Define the rate density function as 

1

( )( ( ); ) log 1
( ) ( ) ( )

n
i

i
i

i j ji
j i

P fr f f w
N f P f fα=

≠

⎛ ⎞
⎜ ⎟
⎜ ⎟+
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
∑

P .        (5.2) 

Problem (5.1) can then be rewritten as  
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2

1

2

1

( ), 1,2,...,

1 2

max ( ( ); )

. . ( ) , ( ) 0, ( , )

i

f

fP f i n

f

f

r f f df

s t f df f f f f

=

≤ ≥ ∀ ∈

∫

∫

P

P P P
           (5.3) 

At every frequency point f, ( ( ); )r f fP  is a non-concave function of ( )fP , and 

this non-concavity is the key difficulty of all problems in this area of rate 

maximization. Clearly, the domain of ( ( ); )r f fP  has 1n +  dimensions: n 

dimensions of users’ power and one dimension of frequency. For every 1 2( , )f f f∈  

along the frequency dimension, we define *( ( ); )r f fP  as the convex hull of 

( ( ); )r f fP  along the n dimensions of users’ power: 

1) Define the set of functions 

{ ( ( ); ) | ( ( ); ) concave in ( );
( ( ); ) ( ( ); ) , ( ) 0}

S r f f r f f f
r f f r f f f

′ =
≥ ∀ ≥

P P P
P P P

 

2) *( ( ), )r f fP is the unique function satisfying 

*

*

( ( ); )
( ( ); ) ( ( ); ), ( ) 0, ( ( ); )

r f f S
r f f r f f f r f f S

′⎧ ∈⎪
⎨

′≤ ∀ ≥ ∀ ∈⎪⎩

P
P P P P

 

Next, we replace the original non-concave rate density function ( ( ); )r f fP  in 

(5.3) by its convex hull *( ( ); )r f fP : 

2

1

2

1

*

( ), 1,2,...,

1 2

max ( ( ); )

. . ( ) , ( ) 0, ( , )

i

f

fP f i n

f

f

r f f df

s t f df f f f f

=

≤ ≥ ∀ ∈

∫

∫

P

P P P
             (5.4) 

Now we have the following theorem generalizing Theorem 5 to all general cases: 

Theorem 6  The convex optimization (5.4) has the same optimal value as the original 

non-convex optimization (5.3). 

Proof:  
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Denote the optimal value of (5.3) by *R , and the optimal value of (5.4) by oR , 

1) * oR R≤ , because *( ( ); ) ( ( ); )r f f r f f≤P P , , ( )f f∀ P . 

2) We show that oR  is achievable, i.e. * oR R≥ . 

At any frequency point f, ( ) 0f∀ ≥P , by definition of the convex hull, there exists a 

set of points C  in the n-dimensional space of users’ power, and a weighting function 

( ( ))w fP  that satisfy 

i) *( ( ); ) ( ( )) ( ) ( ( ); )
C

r f f w f d f r f f=∫ P P P P *, ( ) ( )C r r∀ ∈ =p p p ; 

ii) ( ) ( ( )) ( ) ( )
C

f w f d f f=∫P P P P , 

iii) ( ( )) ( ) 1
C

w f d f =∫ P P . 

i.e., *( ( ); )r f fP  is generated as the weighted average of 
( )

( ( ); )
f C

r f f
∈P

P  with the 

weighting function ( ( ))w fP . 

We divide the band 1 2( , )f f  into n  equal width frequency bins: 

1 1 2 2 3 3 4 1 2( , ), ( , ), ( , ), ... , ( , )n nf f f f f f f f f f+′ ′ ′ ′ ′ ′ ′ ′ , 1 , 1, 2,...,k k
Wf f k n
n+′ ′− = = . 

Let n →∞ . Within any bin 1 1( , ), 0k k k kf f f f+ +′ ′ ′ ′− → . From uniform continuity we 

have the following: 

1( , )k kf f f +′ ′∀ ∈  

1. channel gain becomes flat: ˆ( ) ( ),kf fα α→ for some 1
ˆ ( , )k k kf f f +′ ′∈   

2. noise power becomes flat: ˆ( ) ( ),kN f N f→  for some 1
ˆ ( , )k k kf f f +′ ′∈  

Setting the power constraint within this frequency bin to be 1
ˆ( ) ( )k k kf f f+′ ′⋅ −P , then a 

weighed sum-rate of *
1

ˆ ˆ( ( ); )( )k k k kr f f f f+′ ′−P  can be achieved by first dividing 

1( , )k kf f +′ ′  into sub-bins with bandwidths allocated according to ˆ( ( ))kw fP , and then 
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applying flat frequency sharing with the corresponding ( )f C∈P  as the power 

spectral density in each sub-bin. In the mean time, the power constraint 

1
ˆ( ) ( )k k kf f f+′ ′⋅ −P  is met because ˆ ˆ( ( )) ( ) 1k k

C

w f d f =∫ P P  and 

ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( )k k k k
C

f w f d f f=∫P P P P . 

Thus, a total sum-rate within the entire frequency band 1 2( , )f f   

*
1

1

ˆ ˆ( ( ); )( )
n

k k k k
k

r f f f f+
=

′ ′−∑ P  

can be achieved, with a total sum-power constraint of 

1
1

ˆ( ) ( )
n

k k k
k

f f f+
=

′ ′⋅ −∑P . 

With n →∞ , 1 0k k
Wf f
n+′ ′− = → , we have  

2

1

* *
1

1

ˆ ˆ( ( ); ) ( ) ( ( ); )
n f

k k k k f
k

r f f f f r f f df+
=

′ ′⋅ − →∑ ∫P P  

with  

2

1
1

1

ˆ( ) ( ) ( )
n f

k k k f
k

f f f f df+
=

′ ′⋅ − → ≤∑ ∫P P P  

Thus, any rate of (5.4) can be achieved in (5.3) with the same power constraint 

satisfied. Therefore, the optimal value of (5.4) is achievable in optimization (5.3), i.e. 
* oR R≥ .                                                            ■ 

A fully worked out example as a special case of Theorem 6 is the case we 

addressed in Section IV. From Theorem 4, we obtained the convex hull *( ( ); )r p f f  

by solving a closed form equation. From Theorem 5, we use *( ( ); )r p f f  in the 

objective function and obtain the equivalent convex optimization. As a consequence 

of Theorem 6, although the primal objective function is non-concave in users’ power 
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at every frequency point (5.3), we can simply replace it with the convex hull of it, and 

solve the resulting convex optimization (5.4) without loss of optimality. The optimal 

spectrum and power allocation of (5.4) can be transformed to that of (5.3) according 

to the weighting function ( ( ))w fP  in the above proof. 

In this section, we formulated the optimal spectrum management in all general 

cases into an equivalent primal domain convex optimization. Several remarks on the 

consequences of our results are below. 

Remark 1. In Section IV, *( ( ); )r p f f  is defined as the convex hull of the upper 

envelope of flat frequency sharing and flat FDMA, whereas in this section 

*( ( ); )r f fP  is defined as the convex hull of simply flat frequency sharing, both 

leading to the same optimal value as the original non-convex optimization. The latter 

definition gives the most concise convex formulation of the originally non-convex 

problem, whereas the former definition is more explicit in characterizing the optimal 

spectrum management by capturing how it is optimally composed of FDMA and 

frequency sharing. In other words, there is a trade-off between simplicity of the model 

and the explicitness of the solution: If we use a model that captures more 

characteristics of the solution ( *( ( ); )r p f f ), although we need to obtain more 

knowledge (not only flat frequency sharing rates but also flat FDMA rates) to build 

this model, we end up with more explicit results (optimal combination of FDMA and 

frequency sharing) after solving the problem with this model. 

Remark 2. In wireless networks, there are often users excluded from the 

optimization group for practical reasons. These practical reasons can be i) the 

existence of other heterogeneous systems that are not cooperating, ii) the 

asynchronism of distributed adaptation algorithms that makes some users not able to 

cooperate instantaneously, iii) far away weakly coupled users are sometimes neglected, 
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and a local optimization is performed so that a faster decision can be made with loss 

of some but not much optimality. The excluded users’ arbitrary interference become 

non-symmetric noise to the group of cooperating users, and the normalized cross 

couplings can also be non-symmetric due to users’ different direct channel gains. 

When dealing with general non-symmetric cases, the generalized primal domain 

convex optimization we provide in this section serves as a baseline formulation that 

preserves optimality. However, as listed above, there are often good reasons for 

practical solutions to use a model that can be solved with lower complexity algorithms 

(e.g. reducing the scale of optimization by focusing on local cooperation) at the cost 

of some optimality. The fully worked out two-user case in Section IV (Procedures 4.1, 

4.2) serves as a first order optimization with the simplest realization. It is worth 

pointing out that although the optimal two-user co-existence strategy in Section IV 

does not guarantee global optimality for all users, the pairwise condition in Section III 

for any two users to use FDMA, as we proved, does guarantee global optimality. 

Remark 3. We have derived all results in the form of spectrum management. All 

these results also apply to resource management problems in other forms, e.g. finding 

optimal time division and sharing schemes. Since OFDMA is by nature managing the 

orthogonalization and sharing of time-frequency resource for all users, with its 

flexibility and low complexity in implementation, it is a strong contender for optimal 

multiuser time-frequency management (a combination of orthogonalization and 

sharing). 

Remark 4. Since interference cancellation is not assumed in this paper, inclusion 

of it could lead to higher capacity at some cost in implementation complexity. As a 

conjectured consequence if interference cancellation is applied, the greater part of the 

strong interferences will be cancelled, and the remaining optimization problem is then 

largely shifted into the sharing regime with low (residual) interference couplings.  
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VI. Concluding Remarks 
 

In this paper, we have analyzed the evolution of the optimal spectrum and power 

allocation from FDMA to frequency sharing as the coupling conditions change from 

extremely strong to extremely weak. We have shown that for any two users, as long as 

the two normalized cross couplings between them are both larger than or equal to 1/2, 

an FDMA between these two users benefits every existing user regardless of all users’ 

powers, and hence can be used to achieve any Pareto optimal point of the achievable 

rate region. Because this interference condition has a pairwise nature, viz. whether 

any two users should be orthogonalized only depends on the interference coupling 

between themselves, it leads foreseeably to distributed implementation. 

This condition cannot be further lowered as shown in two user symmetric flat 

channels: when this coupling condition is not satisfied, flat frequency sharing has a 

higher sum-rate than flat FDMA if and only if the power constraints fall in a precisely 

characterized region FDMAP  (which shrinks to zero as the interference coupling rises 

up to 1/ 2≥ ). In the sum-rate maximization problem in two-user symmetric channels 

with equal power constraints, by solving a closed form equation, we obtained the 

optimal spectrum and power allocation (which has the clear intuition of combining 

flat FDMA and flat frequency sharing in an optimal way) for the flat channel cases. 

Based on this result, we provided an equivalent primal domain convex optimization 

formulation of the frequency selective channel cases. 

For the general n-user weighted sum-rate maximization problems in frequency 

selective channels with arbitrary individual power constraints, we generalized our 

method in the two-user case and formulated the originally non-convex optimization 

into an equivalent primal domain convex optimization by replacing the non-concave 

objective function at every frequency point with its convex hull. This result provides 
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the performance limit and a new perspective into optimal algorithm designs in 

spectrum management. It also gives a direct insight in understanding why the convex 

dual problem has a zero duality gap: the primal problem is equivalent to a convex one. 

Understanding the optimization with the convex hull at every frequency point as the 

objective function and developing efficient algorithms to solve it are very interesting 

topics for future research. 

This paper has worked on the continuous frequency domain problems, and hence 

has infinite-dimension variables. The ideas from both the condition for the optimality 

of FDMA and the primal domain convex optimization formulation can be applied to 

discrete frequency spectrum management via approximation. With the new insights 

we obtained for this optimization problem, the rich literature in spectrum balancing 

algorithms [3] [4] [13] [19] can be reinterpreted, and the design of novel optimal 

algorithms is an interesting future research direction.  

Finally, while we have focused on optimal management schemes, in reality the 

performance loss resulting from use of FDMA when sharing is optimal can be quite 

low until well past the interference coupling threshold of 1/2. This may be exploited 

in the future design of practical low complexity distributed allocation algorithms. 
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