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Abstract

Predicting how increasing intensity of human–environment interactions affects pathogen 

transmission is essential to anticipate changing disease risks and identify appropriate mitigation 

strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such 

responses are notoriously difficult to isolate because pathogen transmission depends on a suite 

of ecological and social responses in vectors and hosts that may differ across species. Here we 

use the emerging tools of cumulative pressure mapping and machine learning to better understand 

how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, 

respond to multidimensional effects of human pressure. We find that not only is human footprint

—an index of human pressure, incorporating built environments, energy and transportation 

infrastructure, agricultural lands and human population density—an important predictor of VBD 

occurrence, but there are clear thresholds governing the occurrence of different VBDs. Across a 

spectrum of human pressure, diseases associated with lower human pressure, including malaria, 

cutaneous leishmaniasis and visceral leishmaniasis, give way to diseases associated with high 
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human pressure, such as dengue, chikungunya and Zika. These heterogeneous responses of VBDs 

to human pressure highlight thresholds of land-use transitions that may lead to abrupt shifts in 

infectious disease burdens and public health needs.

Humans have interacted with the environment and modified landscapes for millennia, but 

the rate of modification has accelerated in the past century1. Today, nearly 95% of the 

Earth’s terrestrial surface has been modified by humans, with almost 60% under intense 

or moderate pressure1,2. While anthropogenic environmental changes have cascading, and 

sometimes irreversible, impacts on natural and social systems3, we have only recently 

begun to quantify the extent and intensity of human pressure on a planetary scale4,5. 

Advances in satellite imagery, computational capacity and high-resolution data have led 

to the ability to map cumulative human pressure through time and space, opening the door 

to interdisciplinary applications for understanding the consequences of human pressures for 

human and planetary health.

When humans modify landscapes—either through large-scale conversion of natural habitat 

or in more localized and smaller-scale ways, such as hunting, selective logging and artisanal 

gold mining—they alter habitat structures and species interactions, each of which can shift 

the transmission of vector-borne diseases (VBDs)6,7. Recent decades have witnessed the 

emergence, re-emergence and geographic shifts of VBDs in many regions across the globe. 

These changes may have arisen from various human impacts on the environment and local 

ecology, including economic globalization, land use and climate change8–13. Arthropod 

disease vectors and the pathogens they transmit are highly sensitive to their environment, 

through a suite of traits that respond in complex, nonlinear and interactive ways14,15. 

Often, vectors and pathogens (that is, disease systems) occupy their own unique niche so 

that each transmission cycle responds distinctly to environmental change. With increasing 

anthropogenic pressure, one would expect transitions in the occurrence of different diseases; 

for instance, disease systems adapted to agricultural mosaics may be replaced by disease 

systems that thrive in urban sprawl. Yet, limited understanding of the relationships between 

different VBDs and human–environment interactions hinders projections of how disease 

assemblages collectively change across complex and changing landscapes16. The ability to 

anticipate these transitions would support a dynamic public healthcare infrastructure that can 

adapt to changes in disease occurrence through space and time.

One approach for investigating the effects of land-use change on VBD transmission uses 

broad classifications of land-use and land-cover classes, such as ‘urban area’ or ‘forest 

area’17. This is primarily because large-scale land conversions can be easily detected and 

monitored via space-borne satellites, and the detection of land-cover conversion is becoming 

ever more fine-scale. However, because pathogens respond to multidimensional features 

within a landscape (Supplementary Fig. 1), individual land-use classes are limited when 

predicting thresholds of change that may promote VBD occurrence. This is particularly 

challenging to quantify holistically across large land-use gradients and across different 

VBDs with unique ecologies. Moreover, assessments that use land-cover classes alone are 

inadequate to identify relationships between anthropogenic pressures on land and VBD 

transmission risks because they cannot always distinguish pressures that degrade, but do 
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not outright convert, natural ecosystems5,14. This makes it difficult to separate the coupled 

natural and human processes that drive the association between specific land-use classes and 

disease.

Human footprint index (hereafter, human footprint) offers an ideal link between large-scale 

studies that use land-use classes and small-scale studies that have more detailed data 

because it is a single metric that captures the multidimensional influence of humans on 

land as it changes through space and time. Human footprint combines cumulative pressure 

mapping of eight indices at a fine spatial resolution (30 arcsec): (1) built environments, (2) 

population density, (3) electric infrastructure, (4) crop lands, (5) pasture lands, (6) roads, (7) 

railways and (8) navigable waterways2,18,19. Calculated as a continuous scale of increasing 

human pressure from 0 to 50, specific ranges of human footprint have been associated 

with variation in ecosystem function and integrity. Areas with human footprints of <4 are 

generally considered intact ecosystems that contain mostly natural habitat and maintain 

ecosystem integrity2. Studies on species extinctions have identified a human footprint 

threshold of ≥3 as a tipping point in which extinction events occur20. Areas with human 

footprints between 4 and 7 tend to be dominated by agricultural production, which exerts 

moderate to high human pressure on land4. Intense human pressure has been defined as 

areas with human footprints >12 (refs. 4,20). Since its early development in 2002, human 

footprint has been applied in a range of settings including biodiversity conservation20,21, 

climate change assessments22,23 and policy development24, but not to VBDs. Human 

footprint offers a unique opportunity to investigate thresholds of human pressure on VBDs 

across highly heterogenous environments that may promote or reduce disease risks at a 

broad geographic scale. In short, human footprint synthesizes pressures that might affect 

pathogen transmission and disease through multiple interrelated mechanisms, including 

changes in human mobility, vector (and reservoir host) habitat, contact between vectors and 

hosts, socioeconomic conditions and practices, and access to disease control measures and 

healthcare, among others.

We focus on Brazil as a case study of global patterns of human pressure and their 

relationships with VBDs because it is a large, ecologically and socio-economically diverse 

country that contains many biogeographic zones, intense and variable land-use pressures, 

a high incidence of multiple VBDs with contrasting ecologies and a long-standing 

nationwide disease surveillance system. Within Brazil we focus our analysis on the six 

most common VBDs of public health importance: dengue, chikungunya, malaria, Zika, 

cutaneous leishmaniasis and visceral leishmaniasis (Table 1). Aside from their public 

health importance, these diseases occur endemically within Brazil, are nationally notifiable 

and differ spatially and over time in patterns that probably reflect local socio-ecological 

conditions (Figs. 1 and 2). Our aim is to compare responses to human pressure among 

diseases with distinct ecologies, as a foundation for anticipating potential future disease 

responses to land-use change. Specifically, we test several key hypotheses: (1) land-use 

pressure and associated degradation, as captured by human footprint, is an important 

predictor of VBD occurrence (that is, whether or not at least one case is detected within 

a municipality in a given year); (2) the relationship with human footprint is nonlinear 

and differs predictably among VBDs on the basis of transmission ecology, with sylvatic 

and frontier diseases (malaria and cutaneous leishmaniasis) peaking at a lower human 
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footprint than peri-urban and urban diseases (visceral leishmaniasis, dengue, chikungunya, 

Zika); (3) the predictive power of the human footprint on VBDs goes beyond that of total 

population size, capturing additional variation; (4) the suitability of other climatic factors 

such as temperature and rainfall promote VBD occurrence; and (5) in contrast to land-use 

classes alone, human footprint allows for easy-to-interpret comparisons of the response of 

multiple VBDs to human modified environments. Our goal is to understand the utility of 

human footprint as a predictor of VBDs with differing ecologies and to explore nonlinear 

relationships—in particular, threshold effects and transitions in disease assemblages across 

a gradient of landscapes—rather than to identify all possible predictors or to make causal 

inference, both of which are important future directions.

Results and Discussion

Landscapes contain multiple VBDs, and while each system may respond to different 

individual features of a landscape, human footprint predicts disease occurrence across all six 

focal VBDs (mean importance = 10.46–44.91%, where the mean importance is the percent 

increase in standardized model error when the focal covariate is permuted). In the case of 

dengue and malaria, human footprint was greatly more important than any single land-use 

category (Fig. 3 and Supplementary Tables 1–7). As hypothesized, relationships between 

human footprint and local pathogen transmission were nonlinear and varied in direction 

among pathogens (Fig. 4a and Supplementary Table 8). Specifically, we found that human 

footprint had an increasing relationship with disease occurrence for the urban diseases 

(dengue, chikungunya and Zika) and a decreasing relationship for the sylvatic or frontier 

diseases (malaria and cutaneous leishmaniasis). The relationship of visceral leishmaniasis, 

a formerly rural disease now expanding into peri-urban areas25, with human footprint was 

a hybrid of the responses of urban and sylvatic diseases, steeply declining with a human 

footprint between 8 and 17 then increasing with a human footprint above 17. Our results 

provide a basis for comparing shifts in VBD assemblages across landscapes, rather than 

focusing on single pathogens.

The distinct threshold responses across VBDs highlight the need for policies that account 

for the potentially varied impacts of human pressure on pathogen transmission. Specifically, 

while this analysis is descriptive and does not explicitly capture changes over time, we found 

that gradients in human footprint correspond to gradients in the occurrence of different 

diseases, which require distinct control strategies. Supporting this idea, all of the focal 

diseases that have been present in Brazil since the early twenty-first century have shifted in 

distribution and incidence in the past decade (Supplementary Fig. 2); however, comparable 

human footprint data with which to directly test this prediction are not available for the 

historical period.

Pathogen transmission is a complex process that responds to multiple aspects of 

environmental change14. For example, climate, land use, ecosystem transitions and mobility 

affect the probability of humans encountering infectious vectors, whose presence in turn 

depends on environmentally sensitive factors such as vector abundance, contact with 

infectious reservoirs and vector competence. Identifying human footprint thresholds can 

help predict tipping points at which human activities might lead to qualitative changes in 
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disease risk. Specifically, our results show that areas that have undergone high to intense 

human pressure (a human footprint between 6 and 14) are more likely to harbour diseases 

transmitted by the urban mosquito Aedes aegypti (dengue, chikungunya and Zika) and less 

likely to harbour the more sylvatic and rural diseases (malaria, cutaneous leishmaniasis 

and visceral leishmaniasis) (Fig. 4a and Supplementary Table 8). The relative importance 

of human footprint and the estimated human footprint transition threshold differs among 

pathogens, probably reflecting their unique disease ecology (Figs. 3 and 4). For example, 

the probability of malaria occurring in Brazil steeply declines at a human footprint 

above 5, which is associated with transitions between intact ecosystems and intensive 

agricultural practices, supporting previous findings that malaria transmission increases with 

frontier forest clearing26. By contrast, dengue, chikungunya and Zika steadily increase in 

occurrence with human footprint, and their probability of occurrence is maximized at a 

human footprint above 8–12. These values correspond to intense human pressure, including 

built environments, high population density and extensive transportation networks (such as 

roads, railways or navigable waterways). These urban environments are established habitats 

for populations of Ae. aegypti, the primary vector of dengue, chikungunya and Zika in 

Brazil27,28.

Total population was the most important predictor of occurrence for all VBDs except 

dengue, for which human footprint and temperature were equally important (Fig. 3). Using 

both human footprint and total population, which were not strongly correlated (correlation 

coefficient r = 0.30) (Supplementary Fig. 3), in a single model allowed us to distinguish the 

impact of humans on the land from the impact of the total population. Urbanization was not 

included in the model as it is the most highly weighted contributor to calculations of human 

footprint and thus was strongly correlated with human footprint2. Unlike human footprint, 

which showed nuanced and nonlinear impacts that qualitatively differed by VBD ecology, 

population size had a monotonically increasing relationship with probability of disease 

occurrence (Supplementary Fig. 4). This positive relationship was expected because larger 

populations have a greater number of susceptible hosts, a higher probability of introduction 

and an increased capacity for disease detection and reporting.

The relationships of Zika and visceral leishmaniasis to human footprint merit further 

discussion. Although human footprint greatly improved model performance, for these 

two pathogens, human footprint was equal to but not better than land-class categories in 

importance for predicting occurrence (Fig. 3). Furthermore, in other land-class studies, Zika 

transmission has been associated with cropland and grassland areas29, but here we found 

the measure of footprint threshold (the value at which Zika reaches 50% of its highest 

probability of occurrence) to be the highest (human footprint = 12.89 with 95% CI of 

12.82 to 12.96) of any selected VBD. The recent introduction of Zika into Brazil in 2015 

may play a role in this discrepancy because the explosive, country-wide epidemic was 

probably driven by high host susceptibility and stochastic effects of early introductions30, 

and may not fully represent the equilibrium socio-environmental conditions associated with 

endemic transmission. A visual comparison with spatial patterns of chikungunya incidence 

(Fig. 1) supports this point, as the pathogens share a vector and socio-ecological conditions 

underlying transmission, yet had distinct incidence patterns that may reflect the impact of 

stochasticity during emerging epidemics. It is therefore likely that, while Zika occurrence 
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increases with human footprint, epidemic case data from Brazil exaggerate this relationship 

due to the high susceptibility of human population and the explosive spread of emerging 

pathogens in urban areas31.

Visceral leishmaniasis had a non-monotonic relationship with human footprint, such that the 

probability of visceral leishmaniasis occurrence initially decreased and then increased with 

higher human footprint values, which was overall relatively less important than for the other 

focal VBDs (Figs. 3 and 4). By contrast, we had hypothesized that, as a peri-urban disease 

that cycles between sandflies, domestic dogs and humans, visceral leishmaniasis would 

monotonically increase with human footprint. It is possible that the observed relationship is 

a result of the low overall incidence and geographic range of visceral leishmaniasis, which 

may be confounded with spatial patterns of human footprint (Figs. 1 and 2). Alternatively, 

it is possible that human footprint does not capture the multiple socio-environmental 

conditions involved in visceral leishmaniasis transmission ecology as well as it does for 

other VBDs. Recent work in the Brazilian state of São Paolo has found a link between 

deforestation and visceral leishmaniasis as the disease has spread from formerly endemic 

rural areas into urban areas in conjunction with the development of an oil pipeline25. As for 

most of the other focal VBDs, human population was very important for predicting visceral 

leishmaniasis occurrence, and in this case may represent the joint effect of human population 

on the availability of susceptible humans and dogs. The Ministry of Health estimates that 

there is one dog for every four people in Brazil, suggesting a strong linear relationship 

between human population size and the number of reservoir hosts32.

In addition to the impacts of human footprint and population size, we expected climate to 

play an important role in determining VBD transmission because temperature, precipitation 

and humidity are known to constrain vector distributions and biology33,34. We hypothesized 

that temperature would have a nonlinear, increasing relationship with the transmission of 

all six VBDs. All focal pathogens showed a positive relationship with average annual 

temperature that increased steeply between 20 °C and 27 °C, indicating an important 

temperature threshold for disease occurrence. Dengue, cutaneous leishmaniasis and 

chikungunya had relatively lower threshold temperatures, reaching 50% of their maximum 

occurrence probabilities at 22–23 °C, while Zika, malaria and visceral leishmaniasis reached 

50% of their maximum occurrence probability at higher temperatures of 25–27 °C (Fig. 

4b). Temperature directly affects vector ecology, competence and parasite infectivity, and 

our results support its importance for all six focal VBDs (Fig. 3). Identifying more 

precise differences in thermal responses of diseases (for example, ref. 33) from this kind 

of observational study is challenging because climate is confounded by the geographic 

associations of diseases with land use and other factors. For example, malaria in this region 

is largely restricted to the Amazon rainforest, which is closer to the Equator and therefore 

warmer than other parts of Brazil. Rainfall was also an important predictor for all six VBDs 

(Fig. 3), as expected from the reliance of vectors on standing water and/or humid habitats for 

breeding.

Accelerating rates of land conversion, human population growth, demand for resources and 

climate change make it essential to identify thresholds of human pressures that correspond to 

increased or decreased risk of VBD transmission. Here we compared the multidimensional 
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relationship between human activities, measured as human footprint, with the transmission 

of multiple VBDs at a broad geographic scale using a machine learning approach (Methods 

and Supplementary Fig. 5). This study is a first large-scale test of the hypothesis that human 

footprint has multidimensional, distinct and nonlinear effects on VBDs that mirror their 

transmission ecology, and our findings support this hypothesis.

There are several important limitations to this approach that future work should address. 

First, this study is observational and does not necessarily capture underlying causal 

mechanisms. It is subject to under-reporting of disease cases (particularly for pathogens that 

frequently cause asymptomatic infection) and measurement error and autocorrelation among 

environmental covariates. Second, while human footprint represents an important advance 

in globally accessible, high-resolution mapping of multidimensional impacts of humans on 

landscapes, it is currently only available for recent time periods and is updated infrequently. 

As a result, we had to interpolate between 2013 and 2019 and across two methods (the 

original computation and a validated machine learning method2,18) to calculate human 

footprint for each study year. This is limiting because the assumption of a constant, linear 

change in human footprint from year to year probably biases our results to be conservative 

because we are not able to catch year-specific shocks in human pressure that could result in 

rapid changes in VBD occurrence. We also hypothesize that the rate at which a municipality 

changes in human footprint from one year to the next is important for disease occurrence 

and, if available, would better define the tipping points in our partial dependence plots 

(PDPs) and reduce the uncertainty in our variable importance measures. Third, the socio-

ecological predictors of disease occurrence may not be the same as the drivers of outbreak 

size, so the areas that have a high probability of disease occurrence are not necessarily 

those with the highest disease risk or burden. In particular, disease incidence can vary 

substantially due to variation in susceptible host population size, vector control measures 

and access to healthcare and other services. Our primary goal was to capture the land-use 

niches of multiple VBDs in a comparative approach and to identify critical thresholds across 

which a more intense human footprint could lead to shifts in disease occurrence. Important 

directions for future work include conducting causal analyses to understand whether shifts 

across human footprint thresholds lead to shifts in VBD occurrence (and at what timescales) 

and investigating how human pressure interacts with socioeconomic variables as drivers of 

VBD incidence.

Comparing six important VBDs in Brazil, we found that human footprint is an important 

predictor of local occurrence and that its nonlinear effects vary predictably with the 

transmission ecology of each VBD. In a critical window in which human footprint changes 

from moderate (4–7) to high (7–12) to intense (>12), disease occurrence abruptly shifts from 

malaria, cutaneous leishmaniasis and visceral leishmaniasis to dengue, chikungunya and 

Zika (arboviruses transmitted by the urban mosquito Ae. aegypti and diseases that require 

distinct responses in vector control, diagnostics and environmental management). Because 

biomedical and chemical approaches alone have failed to sustainably eliminate these VBDs, 

managing the socio-ecological settings that promote pathogen transmission is a critical 

frontier for planetary health. In conjunction with climatic pressures, human pressure presents 

a major risk for disease emergence and transmission, threatening the well-being of humans 

and the environment.
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Methods

Study location and VBDs

We focused our analysis on six endemic VBDs in Brazil. The diseases are associated with a 

significant global health burden (collectively estimated to cause more than 620 million cases 

worldwide annually) but vary in their vector and reservoir host ranges and their hypothesized 

ecological and climatic niches. Moreover, the six VBDs encompass a range of diseases 

classically considered to be frontier, rural or urban. As a result, we expected variations in 

their responses to Brazil’s large range of human footprint. We initially included yellow fever 

virus as a seventh disease, but extreme data sparsity (only 64 cases reported throughout the 

study period) restricted analysis of this pathogen. Brazil is an ideal country in which to test 

environmental predictors of VBDs because (1) data on infections are publicly available for 

more than 5,500 municipalities, (2) Brazil has diverse and concentrated land-use types and 

anthropogenic pressures (for example, ranging from pristine forests to intensive agricultural 

production and high-density cities), (3) Brazil spans a range of climatic conditions, from 

equatorial tropical conditions to more temperate conditions in the south of the country.

Data collection and preparation

For all diseases except malaria, annual case data were collected from the Brazilian 

national disease surveillance system (SINAN) for each municipality from 2013 to 201935. 

For malaria, disease notification data were collected from the Brazil Epidemiological 

Surveillance Information System for Malaria (SIVEP–MALARIA) for two parasites 

(Plasmodium vivax and Plasmodium falciparum) for each municipality and year36. 

While we collected and mapped data on case incidence (Fig. 1), we modelled disease 

occurrence (binary: whether or not a disease occurs in a municipality in a given year) 

here to capture the ecological niche for each disease with respect to land use and 

other environmental variables. The dengue, malaria, visceral leishmaniasis and cutaneous 

leishmaniasis analyses included 38,893 municipality–year observations; Zika included 

22,276 municipality–year observations (reported in 2016–2019, inclusive); and chikungunya 

included 16,707 municipality–year observations (reported in 2017–2019, inclusive).

Human footprint was included as the primary measure of anthropogenic pressure. We 

assumed that the probability of pathogen occurrence directly increases with population 

size and expected socioeconomic factors to influence rates of transmission through multiple 

pathways (for example, housing quality, investment in control measures, education and 

awareness of disease risk factors). However, we were primarily interested in landscape 

changes and environmental degradation, as these factors were expected to strongly influence 

the ecology of the focal vector species and the pathogens they transmit and how human 

populations interact with and use land; they may also be broadly predictive of disease 

occurrence across both ecological and socioeconomic contexts. Therefore, to isolate 

landscape level changes of human footprint, we included human population as a covariate 

in our models. Human footprint is a global, dimensionless index of human pressure on the 

land surface and is calculated from eight different human pressures: (1) built environments, 

(2) population density, (3) electric infrastructure, (4) crop lands, (5) pasture lands, (6) 

roads, (7) railways and (8) navigable waterways. The average annual human footprint for 
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each municipality was calculated from two datasets: the estimate for 20132 and an updated 

machine learning estimate for 201918, both of which calculated human footprint at 1 km 

spatial resolution. The average human footprint for each municipality was extracted for 2013 

and 2019 using a shapefile with municipality boundaries in R (version 4.0.2) (ref. 37). The 

extracted values were then interpolated for the years 2014–2018, assuming a constant rate of 

change. Population data per municipality per year from 2013 to 2019 were extracted from 

the WorldPop database38.

Temperature, precipitation and humidity are known to mediate the transmission of VBDs 

through several mechanisms including reproduction, development, behaviour and population 

dynamics33,34. For our analysis, we were interested in climate variables that constrain 

vector biology but also capture variation between municipalities on an annual scale. We 

originally considered annual mean temperature, cumulative precipitation, the total number 

of wet days climate extremes (minimum temperature, maximum temperature, minimum 

precipitation, maximum precipitation) and climate variance (temperature seasonality). There 

was high correlation, however, between many of these variables, and only the annual mean 

temperature, cumulative precipitation and the total number of wet days were used in the 

final analysis. Climate data were extracted from the Climate Research Unit, a global gridded 

satellite dataset with a resolution of 0.5° × 0.5° (ref. 39) (Fig. 2c and Supplementary Fig. 

6a,b). Average climate data were extracted using a shapefile of municipality boundaries in R, 

for each municipality and year from 2013 to 2019.

Three land-class categories were included in the analysis: pasture, cropland and forest 

area (Fig. 2d and Supplementary Fig. 6c,d). For each municipality, the total area of each 

land-class category from 2013 to 2019 was collected from MapBiomas40, a network that 

produces annual land-use and land-class maps for Brazil using Google Earth Engine 

cloud computing technology to process Landsat data. The percentage cover for each of 

the three categories was then calculated from the total area of the municipality for each 

year. Percentage cropland areas were log-transformed for normalization. While we included 

per cent cover of major land-use and land-cover categories (forest, cropland, pasture), we 

excluded urban cover. Urbanization is a highly weighted factor in human footprint, which 

includes built environment, night-time lights and the density of roads. However, because 

human footprint also includes information on population density, crop and pasture cover, 

railways and navigable rivers, our central argument here is that it more holistically captures 

the multidimensional effects of human pressure that may be related to VBD transmission, 

and therefore is a better predictor than urban cover alone.

Statistical analysis

The temporal resolution of human footprint and land-cover data limited our analysis to 

an annual scale. The analysis methods are summarized in Supplementary Fig. 2. Briefly, 

we used a machine learning approach to assess the relationships between human footprint, 

climate, land-class categories and vector presence and the occurrence of six VBDs in Brazil. 

Machine learning approaches are increasingly being applied in disease ecology because they 

can accommodate complexity and nonlinearity to identify linkages among environmental 

factors and disease41. To understand the predictors of occurrence for each VBD, we used a 
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random forest model, a versatile machine learning technique that uses randomized recursive 

partitioning to solve complex prediction, regression and classification problems. These 

models work by repeatedly drawing bootstrap samples from the original sample and a 

random selection of predictors to grow a predetermined number of decision trees across 

which results are pooled42.

Although collinearity does not influence random forest model performance, it can distort the 

magnitude of the variable importance and complicate the interpretation of variable response 

curves43. The direction and strength of relationships between explanatory variables was 

assessed using Pearson’s correlation and Spearman tests and calculated using the package 

corrplot in R44. We considered a correlation coefficient of >0.7 to indicate high correlation 

between variables45 and removed one of the two correlated variables based on a priori 

empirical knowledge. Ultimately, we excluded climate extremes (minimum temperature, 

maximum temperature, minimum precipitation, maximum precipitation), climate variance 

(temperature seasonality) and percentage urban cover.

Once the full dataset had been cleaned and compiled, the modelling process involved the 

following steps:

• Explanatory variables: all environmental predictors were included in each 

model, except in the supplementary model that includes vector occurrence 

(Supplementary Fig. 7), in which only the presence of the most relevant vector 

was used for each disease (for example, the presence of Anopheles was only 

used in the malaria models) (Supplementary Table 9).

• Model training, tuning, selection: for each model iteration, the optimal number 

of variables randomly sampled as candidates for each split (mtry) and node size 

was calculated using the tune function in the randomforestSRC package in R46. 

The tune function estimated model performance (out-of-bag error) for a range of 

combinations of mtry and node size values and selected the optimal values as the 

combination that yielded the lowest model error. All models were grown to 500 

trees to maximize model performance and minimize computational costs.

• Model analysis: classification analysis was performed with the imbalance 

function in the randomforestSRC package, using the random forest quantile-

classifier method47.

• Model validation: spatiotemporal cross-validation was used to evaluate model 

performance to better understand the predictive power of the model in 

geographic regions and years not used for training. Municipalities in Brazil were 

split geographically into 15 folds using the R package spatialsample48. The folds 

were assigned using k-means clustering, in which each municipality belongs to 

a cluster with the nearest mean centroid. The data were then split into three 

expanding windows: (1) data from 2013 to 2016 were used in the training set, 

and data from 2017 were used as the test set, (2) data from 2013 to 2017 were 

used for training and data from 2018 were used for testing, (3) data from 2013–

2018 were used for training and data from 2019 were used for testing. Within 

each window, the model was then tuned and trained 15 times, where, for each 
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iteration, 14 folds were used to train the model, and the hold-out fold was used to 

evaluate model performance (see below). In summary, the test set only contained 

municipalities that were unique in both space and time in comparison to the 

training set. In total, for all pathogens except chikungunya, the model was trained 

and tested 45 times. For chikungunya, which was detected in Brazil starting in 

2017, the model was trained and tested 30 times.

We calculated three groups of metrics from the random forest models for each pathogen. 

First, we assessed overall model performance by calculating model sensitivity, specificity 

and the area under the receiver operating characteristic curve based on the spatiotemporal 

cross-validation. For the out-of-sample model performance metric, we calculated the mean 

and 95% confidence interval around each of these values.

Second, we calculated variable importance, which can be interpreted as the contribution of 

each explanatory variable to the prediction accuracy of the model using the computationally 

optimized ‘random’ algorithm in the randomforestSRC package. The contributions to the 

prediction accuracy were estimated by calculating the per cent increase in the standardized 

mean squared error when the focal variable was permuted. To test whether each variable 

significantly contributed to model accuracy, we conducted a permutation-based significance 

test using a subsampling method. This estimated the probability (permutation-based P value) 

that the change in model accuracy when the covariate is permuted versus not permuted was 

greater than or equal to 0 (that is, that the null hypothesis is supported).

Finally, we assessed the overall form and direction in which each explanatory variable 

relates to disease occurrence using PDPs. PDPs depict the relationship between the 

probability of disease occurrence and the variable of interest across a range of values for 

that feature. At each value of the feature, the model was evaluated for all values of the 

other covariates; the final model output was the average predicted probability across all 

model inputs. The data frame underpinning the PDPs was constructed using the plot.variable 

function in the randomforestSRC package in R, and the relationships between each feature 

and the predicted probabilities were plotted with ggplot2, using a loess transformation (that 

is, locally weighted smoothing). To compare the qualitative shape of PDPs across pathogens, 

the PDPs in the main text were scaled by their minimum and maximum and plotted on a 

single plot. We defined a threshold as the value at which a pathogen reaches 50% of its 

maximum occurrence probability. As a result, these scaled PDPs should be interpreted as 

comparing the direction and nonlinearity of responses of different diseases to environmental 

predictors, but not their absolute magnitude or relative importance (which is conveyed in 

variable importance plots). Unscaled PDPs are presented in Supplementary Figs. 8–11. To 

generate measures of uncertainty around our estimates of the relationship between each 

covariate and pathogen occurrence, we used a bootstrapping approach where the model was 

iterated 50 times using different subsets of 80% of the full dataset. Our results displayed the 

average relationship across model iterations as well as a PDP per iteration.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

E.A.M. and E.B.S. were supported by the National Institutes of Health (grant no. R35GM133439) and E.A.M., 
A.J.M. and C.K.G. were supported by the National Science Foundation and the Fogarty International Center (grant 
no. DEB-2011147). A.J.M. was additionally supported by NSF (grant no. DEB-2032276). E.A.M. was additionally 
supported by the National Institute of Allergy and Infectious Diseases (grant nos R01AI168097 and R01AI102918) 
and by seed grants from the Stanford Woods Institute for the Environment, King Center on Global Development, 
Center for Innovation in Global Health and Terman Award. We thank G. Vadmal for compiling the sandfly 
occurrence data from the Global Biodiversity Information Facility, and L. Mandle, A. Lescano, E. Lambin and the 
Mordecai and Hamish McCallum lab groups for constructive feedback throughout the development of this study. 
We also thank J. Watson and H. Beyer for early guidance on human pressure metrics.

Data availability

All datasets that have been used for this study are publicly available and links have been 

provided for each within the Methods and in the GitHub repository at https://github.com/

ckglidden/human-footprint-index-VBD. Source data are provided with this paper.

References

1. Ellis EC et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. 
Acad. Sci. USA 118, e2023483118 (2021). [PubMed: 33875599] 

2. Williams BA et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. 
One Earth 3, 371–382 (2020).

3. Kuipers KJJ et al. Habitat fragmentation amplifies threats from habitat loss to mammal diversity 
across the world’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).

4. Venter O. et al. Sixteen years of change in the global terrestrial human footprint and implications for 
biodiversity conservation. Nat. Commun 7, 12558 (2016). [PubMed: 27552116] 

5. Watson JEM & Venter O Mapping the continuum of humanity’s footprint on land. One Earth 1, 
175–180 (2019).

6. Foley JA et al. Global consequences of land use. Science 309, 570–574 (2005). [PubMed: 
16040698] 

7. Glidden CK et al. Human-mediated impacts on biodiversity and the consequences for zoonotic 
disease spillover. Curr. Biol 31, R1342–R1361 (2021). [PubMed: 34637744] 

8. Grobbelaar AA et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis 
22,1854–1855 (2016). [PubMed: 27536787] 

9. Gubler DJ Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic 
problem in the 21st century. Trends Microbiol. 10, 100–103 (2002). [PubMed: 11827812] 

10. Hotez PJ Neglected tropical diseases in the Anthropocene: the cases of Zika, Ebola, and other 
infections. PLoS Negl. Trop. Dis 10, e0004648 (2016). [PubMed: 27058728] 

11. Paixão ES, Teixeira MG & Rodrigues LC Zika, chikungunya and dengue: the causes and threats of 
new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).

12. Rosenberg R. et al. Vital signs: trends in reported vectorborne disease cases - United States and 
territories, 2004-2016. Morb. Mortal. Wk. Rep 67, 496–501 (2018).

13. World Malaria Report 2020:20 Years of Global Progress and Challenges (WHO, 2020); https://
apps.who.int/iris/handle/10665/337660

14. Lambin EF, Tran A, Vanwambeke SO, Linard C & Soti V Pathogenic landscapes: interactions 
between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr 9, 54 (2010). 
[PubMed: 20979609] 

Skinner et al. Page 12

Nat Sustain. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ckglidden/human-footprint-index-VBD
https://github.com/ckglidden/human-footprint-index-VBD
https://apps.who.int/iris/handle/10665/337660
https://apps.who.int/iris/handle/10665/337660


15. Shocket MS et al. Transmission of West Nile and five other temperate mosquito-borne viruses 
peaks at temperatures between 23°C and 26°C. eLife 9, e58511 (2020). [PubMed: 32930091] 

16. Kilpatrick AM & Randolph SE Drivers, dynamics, and control of emerging vector-borne zoonotic 
diseases. Lancet 380, 1946–1955 (2012). [PubMed: 23200503] 

17. Franklinos LHV, Jones KE, Redding DW & Abubakar I The effect of global change on mosquito-
borne disease. Lancet Infect. Dis 19, e302–e312 (2019). [PubMed: 31227327] 

18. Keys PW, Barnes EA & Carter NH A machine-learning approach to human footprint index 
estimation with applications to sustainable development. Environ. Res. Lett 16, 044061 (2021).

19. Venter O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 
(2016). [PubMed: 27552448] 

20. Di Marco M, Ferrier S, Harwood TD, Hoskins AJ & Watson JEM Wilderness areas halve the 
extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019). [PubMed: 31534225] 

21. Hill JE, DeVault TL, Wang G & Belant JL Anthropogenic mortality in mammals increases with the 
human footprint. Front. Ecol. Environ 18, 13–18 (2020).

22. Elsen PR, Monahan WB & Merenlender AM Topography and human pressure in mountain ranges 
alter expected species responses to climate change. Nat. Commun 11, 1974 (2020). [PubMed: 
32332913] 

23. Su J, Yin H & Kong F Ecological networks in response to climate change and the human footprint 
in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol 36, 2095–2112 (2021).

24. Hansen AJ et al. A policy-driven framework for conserving the best of Earth’s remaining moist 
tropical forests. Nat. Ecol. Evol 4, 1377–1384 (2020). [PubMed: 32778752] 

25. Dos Santos CVB, da Paixão Sevá A, Werneck GL & Struchiner CJ Does deforestation drive 
visceral leishmaniasis transmission? A causal analysis. Proc. R. Soc. B 288, 20211537 (2021).

26. MacDonald AJ & Mordecai EA Amazon deforestation drives malaria transmission, and malaria 
burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019). [PubMed: 
31611369] 

27. Honório NA et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an 
urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 
191–198 (2003).

28. Rodrigues NB et al. Brazilian Aedes aegypti as a competent vector for multiple complex arboviral 
coinfections. J. Infect. Dis 224, 101–108 (2021). [PubMed: 33544850] 

29. Weinstein JS, Leslie TF & von Fricken ME Spatial associations between land use and infectious 
disease: Zika virus in Colombia. Int. J. Environ. Res. Public Health 17, E1127 (2020).

30. Heukelbach J, Alencar CH, Kelvin AA, de Oliveira WK & Pamplona de Góes Cavalcanti L. Zika 
virus outbreak in Brazil. J. Infect. Dev. Countr 10, 116–120 (2016).

31. Lowe R et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. 
Environ. Res. Public Health 15, E96 (2018).

32. Alves MCGP, de Matos MR, de Lourdes Reichmann M & Dominguez MH Estimation of the dog 
and cat population in the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005). [PubMed: 
16341397] 

33. Mordecai EA et al. Thermal biology of mosquito-borne disease. Ecol. Lett 22, 1690–1708 (2019). 
[PubMed: 31286630] 

34. Gage KL, Burkot TR, Eisen RJ & Hayes EB Climate and vectorborne diseases. Am. J. Prev. Med 
35, 436–450 (2008). [PubMed: 18929970] 

35. Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da 
Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-
notificacao-de-2007-em-diante-sinan/

36. SIVEP - MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://
200.214.130.44/sivep_malaria/

37. R Core Team. R: A language and environment for statistical computing (R Foundation for 
Statistical Computing, 2020); https://www.R-project.org/

38. Sorichetta A et al. High-resolution gridded population datasets for Latin America and the 
Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015). [PubMed: 26347245] 

Skinner et al. Page 13

Nat Sustain. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/
https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/
http://200.214.130.44/sivep_malaria/
http://200.214.130.44/sivep_malaria/
https://www.R-project.org/


39. Harris I, Osborn TJ, Jones P & Lister D Version 4 of the CRU TS monthly high-resolution gridded 
multivariate climate dataset. Sci. Data 7, 109 (2020). [PubMed: 32246091] 

40. Souza at. al. Reconstructing three decades of land use and land cover changes in Brazilian biomes 
with Landsat archive and Earth Engine. Remote Sens. 12, 10.3390/rs12172735 (2020).

41. Fountain-Jones NM et al. How to make more from exposure data? An integrated machine learning 
pipeline to predict pathogen exposure. J. Anim. Ecol 88, 1447–1461 (2019). [PubMed: 31330063] 

42. Breiman L Random forests. Mach. Learn 45, 5–32 (2001).

43. Genuer R, Poggi J-M & Tuleau-Malot C Variable selection using random forests. Pattern Recogn. 
Lett 31, 2225–2236 (2010).

44. Wei T et al. Package ‘corrplot’. Statistician 56, e24 (2017).

45. Ratner B The correlation coefficient: its values range between +1/−1, or do they? J. Target. Meas. 
Anal. Mark 17, 139–142 (2009).

46. Ishwaran H & Kogalur UB Fast unified random forests for survival, regression, and classification 
(RF-SRC) (2019).

47. O’Brien R & Ishwaran H A random forests quantile classifier for class imbalanced data. Pattern 
Recognit. 90, 232–249 (2019). [PubMed: 30765897] 

48. Silge J & Mahoney M spatialsample: spatial resampling infrastructure. R version 0.2.1 (2023).

49. Bhatt S et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013). 
[PubMed: 23563266] 

50. Weaver SC & Forrester NL Chikungunya: evolutionary history and recent epidemic spread. Antivir. 
Res 120, 32–39 (2015). [PubMed: 25979669] 

51. Puntasecca CJ, King CH & LaBeaud AD Measuring the global burden of chikungunya and Zika 
viruses: a systematic review. PLoS Negl. Trop. Dis 15, e0009055 (2021). [PubMed: 33661908] 

52. Baeza A, Santos-Vega M, Dobson AP & Pascual M The rise and fall of malaria under land-use 
change in frontier regions. Nat. Ecol. Evol 1, 108 (2017). [PubMed: 28812707] 

53. de Araújo Pedrosa F & de Alencar Ximenes RA Sociodemographic and environmental risk factors 
for American cutaneous leishmaniasis (ACL) in the State of Alagoas, Brazil. Am. J. Trop. Med. 
Hyg 81, 195–201 (2009). [PubMed: 19635869] 

54. Gonçalves NV et al. Cutaneous leishmaniasis: spatial distribution and environmental risk factors in 
the state of Pará, Brazilian Eastern Amazon. J. Infect. Dev. Countr 13, 939–944 (2019).

55. Leishmaniasis (Pan American Health Organization, 2022); https://www.paho.org/en/topics/
leishmaniasis

56. Harhay MO, Olliaro PL, Costa DL & Costa CHN Urban parasitology: visceral leishmaniasis in 
Brazil. Trends Parasitol. 27, 403–409 (2011). [PubMed: 21596622] 

Skinner et al. Page 14

Nat Sustain. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.paho.org/en/topics/leishmaniasis
https://www.paho.org/en/topics/leishmaniasis


Fig. 1 |. Disease incidence for the six VBDs.
a–f, Log-transformed average annual cases per 1,000 per municipality (colour scale) for 

dengue (a), chikungunya (b), Zika (c), malaria (d), cutaneous leishmaniasis (e) and visceral 

leishmaniasis (f). The average incidence is shown here for illustration, but models are based 

on the binary occurrence of each disease within each municipality per year (municipality–

year level response). The averages are calculated from 2013 to 2019 in a,d–f, from 2017 to 

2019 in b and from 2016 to 2019 in c. Grey municipalities did not report any cases of the 

disease during the study period.
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Fig. 2 |. Environmental covariates that predict VBD occurrence in Brazil averaged from 2013 to 
2019.
a, Human footprint, ranging from 0 to 50, for which values from 4 to 7 indicate moderate 

pressure (typical for agricultural landscapes) and values greater than 12 indicate intense 

pressure. b, Log-transformed human population size. c, Average annual temperature. d, 

Percentage area forest cover.
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Fig. 3 |. The importance of environmental predictors of the occurrence of the six VBDs.
a–f, The contribution of variables to the prediction accuracy of the overall model (multiplied 

by 100 for visualization) for dengue (a), chikungunya (b), Zika (c), malaria (d), cutaneous 

leishmaniasis (e) and visceral leishmaniasis (f). The point represents the mean % change in 

model standard error when the selected variable is permuted, the error bars represent the 

95% confience interval across subsampling permutation iterations. The variables are colour 

coded according to their categories (anthropogenic, climatic and land-class variables are 

shown in red, blue and green, respectively).
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Fig. 4 |. Probability of disease occurrence across human footprint and temperature.
a,b, VBDs respond distinctly and nonlinearly to human footprint (a) and average annual 

temperature (b). Thin lines represent model output from each bootstrapped iteration, 

and thicker lines represent the mean value across the iterations. The dashed lines in a 
represent the threshold value at which a pathogen reaches 50% of its maximum occurrence 

probability.
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