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 ABSTRACT
Monitoring in the San Francisco Estuary 
(estuary) has fluctuated in sampling effort over 
time with changes to resources, objectives, and 
unforeseen events. I designed an approach to 
evaluate how reduced sampling would alter 
our ability to describe the status and trends of 
key species. This approach can evaluate the 
sensitivity of the estuary monitoring program to 
disruptions in sampling, and whether sampling 
effort could be reduced without compromising 
the information provided by these surveys. 
I simulated reduced sampling on top of the 
historical data record (1985–2018) by selectively 
removing data and evaluating the effect on model 
inference. The same model structure is fit to 
the full data set and several reduced data sets 
that represent simulations of reduced sampling 
effort. I then compared model predictions from 
reduced models to those from the full model 
to evaluate how reduced sampling may have 
affected our ability to detect key patterns in the 
data. In a case study, I applied this approach 

to Sacramento Splittail abundance trends from 
the Bay Study and the Suisun Marsh Fish Study 
otter trawls. Sampling reductions of 10% and 
20% had fairly low impacts on the overlap of 
reduced model predictions with those from the 
full model. These results demonstrate the utility 
of my approach, but they are not generalizable 
beyond our ability to detect trends in Splittail 
abundance from Bay Study and Suisun Marsh 
Fish Study otter trawl data. A thorough analysis 
should run these simulations on multiple species 
and multiple parameters (e.g., abundance, 
distribution, length). By simulating sampling 
reductions on top of historical conditions, this 
approach could evaluate differential effects in 
varying environmental or historical conditions 
(e.g., droughts, species declines, invasions). In 
addition, this approach can easily be extended 
to other functional groups (e.g., zooplankton, 
phytoplankton) as well as physical parameters 
(e.g., temperature, salinity, Secchi depth). 

KEY WORDS
Pogonichthys macrolepidotus, simulations, 
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INTRODUCTION
Ecological monitoring is a requisite for effective 
environmental management (Callahan 1984; 
Lindenmayer and Likens 2010). Long-term 
monitoring data sets are valuable for applied 
work in environmental management as well as 
in answering broader, fundamental questions 
in ecological and evolutionary biology (Callahan 
1984; Hobbie et al. 2003; Lindenmayer and 
Likens 2010). However, as with any long-term 
program, periodic review is needed to ensure the 
program is most effectively meeting its stated 
objectives and using its resources (Vos et al. 2000; 
Radinger et al. 2019). These periodic reviews 
are an opportunity to (1) evaluate whether the 
program is still producing useful information, 
(2) consider new management options that may 
change monitoring objectives, and (3) synthesize 
monitoring data to evaluate the relevance of the 
produced information and the adequacy and 
efficiency of the sampling design (Reynolds et al. 
2016).

The San Francisco Estuary (estuary) has a long 
history of ecological monitoring (Tempel et al. 
2021), rivalling that of many other large estuarine 
systems. Much of this monitoring is coordinated 
under the Interagency Ecological Program for the 
San Francisco Estuary (IEP), a consortium of state 
and federal agencies. The IEP conducts numerous 
seasonal and gear-specific monitoring surveys 
that measure water quality, fishes, zooplankton, 
phytoplankton, benthic organisms, and other 
variables. Sampling effort has fluctuated over 
time as stations have been added and removed, 
or events have interfered with normal sampling 
schedules (Gaeta 2021; Tempel et al. 2021). 
Previous reviews focused on single surveys or 
species have qualitatively reviewed sampling 
designs, resulting in improvements to a subset 
of the monitoring program (e.g., the review of 
winter-run Chinook Salmon monitoring [Johnson 
et al. 2017] and the review of the Delta Juvenile 
Fish Monitoring Program [IEP SAG 2013]). 
However, no studies have yet quantitatively 
investigated the effects of altered sampling effort 
across multiple estuary monitoring surveys. 
An optimal sampling program (optimizing cost 

and accuracy) may require shifts to the spatio-
temporal sampling effort. 

With a wealth of available historical data, one 
can look into the past to evaluate how different 
sampling design scenarios may have affected the 
quality of monitoring information. Specifically, 
I focus on the effects of reduced sampling effort 
to illustrate an approach that takes advantage 
of prior data. Understanding these effects is 
important for determining (1) the sensitivity of 
the estuary monitoring program to disruptions in 
sampling, and (2) whether sampling effort could 
be reduced without compromising the value of the 
information these surveys provide. Discovering 
redundancies in the sampling program could 
also help release resources to address issues 
of catchability (Huntsman and Mahardja 2021; 
Huntsman et al. 2022) or redirect monitoring 
efforts to less-sampled regions, taxa, or habitats. 
In this study, I developed a framework for data-
focused statistical evaluations of the estuary 
monitoring program. I then demonstrated this 
framework on the Bay Study and UC Davis Suisun 
Marsh Study (Suisun Study), by evaluating the 
ability of their otter trawls to describe the status 
and trends of a key fish species: the Sacramento 
Splittail (Pogonichthys macrolepidotus) (Figure 1). 

I designed the framework around the general 
question: how do the abilities of these surveys to 
monitor the status and trends of the estuary change 
when sampling is reduced? Specifically, I evaluated 
how much and along which axes (time or space) 
sampling could be reduced before the surveys no 
longer provided useful information. To address 
this question, I adopted an approach similar 
to the non-random sampling of previously-
collected monitoring data described by White 
and Bahlai (2021) and White (2019). In this 
approach, data points in a long-term monitoring 
data set are removed to simulate scenarios 
of altered sampling effort, and the resulting 
effects on model inference are evaluated. Rather 
than simulating data for a power analysis as 
many monitoring program design studies do 
(Gerrodette 1987; Rhodes and Jonzén 2011; Barry 
et al. 2017; Christie et al. 2019; Weiser et al. 2019), 
this approach makes full use of the historical 
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data set. By incorporating prior data, one can 
more accurately simulate how changes to the 
monitoring program’s design may have influenced 
past inferences (e.g., abundance trends used 
to guide management decisions), on top of 
the measured dynamics of the system as they 
appear in the historical data record. In contrast, 
simulation approaches rely on many assumptions 
that must be grounded in a deep understanding of 
the population and community dynamics of the 
system (White and Bahlai 2021). 

 The approach starts with fitting a statistical 
model to the full data set for a given species and 
gear type. The model structure should mirror the 
objectives of the surveys and review. Next, the 
data set is split into multiple reduced data sets 
that represent scenarios of reduced sampling 
effort. The same model structure is then fit to 
each reduced data set. The full model and all 
reduced models are used to generate fitted values 

(predictions) over a range of scenarios. Finally, 
the fitted values from each reduced model are 
compared to the full model to evaluate how the 
sampling reduction altered model inference 
(Figure 1). This approach assumes that the full 
model is closer to the “truth” than the reduced 
models. The model structure and scenarios could 
also be tailored to different time-scales. While 
the case study used this methodology to evaluate 
the ability to measure year-to-year trends in 
abundance, these methods could also be applied 
to long-term trends with a different model 
structure and set of scenarios.

Splittail Case Study
To demonstrate this approach, I analyzed 
Sacramento Splittail (Pogonichthys macrolepidotus) 
otter trawl catch from the Bay Study and Suisun 
Study (Figure 2). The Bay Study and Suisun Study 
both collect monthly samples with an otter trawl 
at a set of fixed stations (Figure 3) (Matern et al. 

Figure 1  Conceptual model of the simulation framework. The full data set is used to fit a model which is then used to generate model predictions 
across a range of scenarios. The scenarios in this example were a range of dates, and the model predictions were expected fish abundance. However, 
the scenarios could also be a range of covariate values such as salinity to evaluate the ability to assess habitat relationships, and the model predictions 
could be other parameters of interest such as fish length or fecundity. The full data set is then reduced to simulate sampling reductions and generate 
reduced data sets. The same model structure as used for the full model is then fit on each reduced data set, and each reduced model is used to generate 
predictions across the same range of scenarios. Model predictions from the reduced models are then compared to those from the full model to examine 
how sampling reductions may affect inference from monitoring data.

https://doi.org/10.15447/sfews.2022v20iss3art5
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Figure 2  Spatial distribution of Splittail at Bay 
Study and Suisun Study sampling stations. Point 
size represents average catch per otter trawl at 
each sampling station, adjusted for the mean 
sampling effort across all trawls. White-filled 
circles represent stations with no otter trawl 
Splittail catch.

Figure 3  Structure of the data set used in the Splittail case study. Samples were collected monthly at a set of fixed stations. The generalized linear mixed 
model used in this case study (Equation 1) considered one spatial dimension (stations [ i ]) and three temporal dimensions (months [  j ], seasons [ k ], and 
years  [ l ]). 
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2002; CDFW 2021; O’Rear et al. 2021). A complete 
description of the surveys, their sampling 
procedures, regulatory mandates, and changes 
over time can be found in Gaeta (2021). Splittail 
were identified as a representative species of a 
group also including Starry Flounder (Platichthys 
stellatus), Tule Perch (Hysterocarpus traskii), and 
Striped Bass (Morone saxatilis) from the otter trawl 
data used in this study (Gaeta and Beakes 2021) 
and they are a species of management concern in 
the estuary (Moyle et al. 2004; Sommer, Baxter, et 
al. 2007). Splittail are most abundant in brackish 
tidal sloughs, such as Suisun Marsh, but are 
commonly found in salinities from freshwater up 
to 18 ppt (Moyle et al. 2004). Splittail are strongly 
associated with seasonally inundated floodplains, 
where they spawn and the resulting juveniles rear 
(Sommer, Baxter, et al. 2007).

Splittail data were integrated as described in 
Bashevkin et al. (2021), and the integrated data 
set can be found in the package LTMRdata 
for the R statistical programming language 
(Bashevkin, Gaeta, Nguyen, et al. 2022a, 2022b). 
Briefly, data sets were obtained from the survey 
principal investigators and combined with their 
consultation. Fish smaller than 40 mm fork length 
were removed from the data set since they were 
not counted in all samples, and then counts were 
summed for all remaining fish lengths for each 
sample to obtain the total Splittail catch. This 
catch was rounded to the nearest integer value 
since some counts represented estimated values 
from sub-sampling that resulted in non-integers. I 
then filtered the resulting data set to remove years 
before 1985, when the Suisun Study sampling was 
less consistent and did not encompass all seasons. 

It is important to note that the data (catch) used in 
this case study are a metric of relative abundance, 
but not an estimate of true abundance, because 
of unresolved catchability issues. While some 
elements of the model used in this study—such as 
the station random intercept or the coefficient for 
the fixed effect of tow area (see Model Structure, 
below)—may partially account for catchability, I 
do not attempt to fully resolve catchability issues 
in my modeling framework because of the lack 
of available data. Therefore, biases related to 

variable catchability may influence the results I 
present and the results of any further studies that 
use these methods. However, with the appropriate 
catchability parameters, these considerations 
could be incorporated within the model 
structures used in this framework. Catchability 
issues are discussed in more detail in Huntsman 
and Mahardja (2021).

MATERIALS AND METHODS
Model Structure
One important motivation for these sampling 
programs is describing trends in species 
abundances over time (Gaeta 2021). To evaluate 
our ability to identify these trends on a time-
scale of management relevance, I focused the 
case study on year-to-year trends. The model 
structure was designed to fit this objective. I 
fit Bayesian generalized linear mixed models 
with a Poisson error distribution. Models were 
fit in the statistical programming language R 
v4.1.2 (R Core Team 2021) with the package brms 
(Bürkner 2017, 2018), which uses the probabilistic 
programming language Stan (Carpenter et al. 
2017). The response variable was catch, with fixed 
predictors for tow area (sampling effort for otter 
trawl), season coded as a factor, year coded as a 
factor, and the interaction between season and 
year. I also tested a model structure accounting 
for sampling effort with an offset of the log of tow 
area, but it was equivalent to the original model 
structure by exact ten-fold cross-validation using 
the ‘kfold’ function in the R package loo (Vehtari 
et al. 2017), so I used the original model structure. 
To capture the fluctuating year-to-year population 
levels, I coded season and year as factors to 
enable the model to estimate different values for 
each unique season and year. I included random 
intercepts for each station and sample (i.e., each 
unique monthly tow). I included the sample 
random intercept as an observation-level random 
effect to deal with over-dispersion (Harrison 
2014). The model that included the sample 
random intercept was superior to a Poisson model 
without the sample random intercept, and also 
superior to a negative binomial model without the 
sample random intercept by exact ten-fold cross-
validation. The model formula was:

https://doi.org/10.15447/sfews.2022v20iss3art5
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	 Count ijkl ~ Poisson (�ijkl) ,	 Eq 1 

	log(𝜆ijkl) =�1 + �2Towarea + �3i
 + �4k

 + �5kl
 + �i + �ijkl + �ijkl 

	 �[1-5] ~ Normal(0, 5), 

	 �i ~ Normal(0, �i ), 

	 �ijkl ~ Normal(0, �ijkl ), 

	 �i ~ HalfCauchy(0,5) 

	 �ijkl ~ HalfCauchy(0,5)

where λ represents the mean and variance of 
the Poisson distribution, β represents estimated 
coefficients, α represents varying intercepts, σ 
represents variance, ε represents the residual 
error, i represents station, j represents month, 
k represents season, and l represents year 
(Figure 3). As mentioned above, since this model 
does not adjust for catchability issues, it is only 
modeling catch, not the latent state of true 
abundance (Huntsman and Mahardja 2021). I used 
weakly informative priors as recommended by the 
package authors (Stan Development Team 2021).

Models were run for three chains, each with 5,000 
iterations, 1,250 of which were used for the warm-
up and discarded. All models were inspected 
to ensure adequate sampling by verifying the 
posterior effective sample size (> 100 per chain) 
and Rhat values (< 1.05) (McElreath 2015). The full 
model was further validated by inspecting the 
trace plots and ensuring model predictions fit the 
raw data. Lastly, temporal autocorrelation was 
inspected in the residuals by calculating partial 
autocorrelations for each sampling station with 
> 10 observations using the “pacf” function in 
the stats package. For a lag of 1 month, 56% of 
stations exhibited temporal autocorrelation, and 
for 2 months of lag that dropped to 44%, for 3 
months of lag to 28%, and for 4 months of lag to 
12%. Since I was very limited in computational 
time given the data-removal simulations (see Data 
Reductions, below), I decided not to incorporate 
an autocorrelation parameter in the models. 
The uncertainty from the models is likely 
underestimated because of this autocorrelation, 

but the primary objective of this exercise was not 
an accurate assessment of Splittail populations 
with appropriate uncertainty. Since my methods 
are evaluating relative changes in accuracy (see 
Evaluation of the Effects of Data Reductions, 
below), I assume that the error caused by 
autocorrelation remains consistent across the 
models.

Data Reductions
To assess the effects of reduced sampling effort, 
I used a combination of systematic and random 
data reductions. These data reductions were 
designed to produce meaningful scenarios of 
sampling reductions without requiring unrealistic 
computational power. Reduced sampling effort 
was modeled as reductions in either temporal 
(number of monthly samples per season) or 
spatial (number of sampling stations) effort. For 
the temporal reductions, seasons were defined 
as follows: Winter = December (of prior year) 
through February; Spring = March through 
May; Summer = June through August; and 
Fall = September through November. Temporal 
reductions were simulated as the removal of 1 or 
2 months per season, corresponding to 1/3 or 2/3 
reductions in effort. To ensure sampling months 
were still regularly spaced and to reduce the 
required computational time, these reductions 
were completed systematically by removing the 
first, second, and/or third month of each season 
(Figure 4). Spatial reductions were simulated by 
removing 1/10, 1/5, 1/3, 1/2, or 2/3 of sampling 
stations. Stations were randomly divided into 
n groups for each 1/n (n = 10, 5, 3, or 2) cut to 
sampling stations, then n reduced data sets were 
created with one of those groups removed in 
each data set (Figure 4). For the two-thirds cut, 
I randomly split the stations into three groups 
with one of three station groups present in each 
of three reduced data sets. Since the 86 stations 
could not always be evenly divided among groups, 
the group sizes differed by up to one station in 
some spatial-reduction scenarios. In total, this 
resulted in 29 reduced data sets (6 temporal and 
23 spatial), each used to fit a reduced model. The 
full data set had 21,323 observations of Splittail 
catch, and the smallest reduced model had 6,673 
observations. 
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Evaluation of the Effects of Data Reductions
I focused the evaluations of sampling reductions 
on the ability of the models to describe trends 
in abundance over time. Posterior calculations 
described below were completed with the 
tidybayes R package (Kay 2020). Each model 
was used to calculate fitted values (expected 
abundance values) for each season from 1985 
to 2018, retaining the full posterior distribution 
(11,250 post-warm-up model iterations) for each 
time point (Figures 5, 6A). These fitted values 
were calculated with the fitted method from the 
brms package as: 

	 e(𝛽1 + 𝛽2Towarea + 𝛽3l + 𝛽4k + 𝛽5kl + 𝛼i + 𝛼ijkl)	 Eq 2

with Towarea, αi , and αijkl set to 0 (the mean for 
each variable/parameter set). See Equation 1 for a 
definition of the model terms. 

Since the focused objective was on trends rather 
than abundance, I then calculated year-to-year 
expected abundance trends within each season. 
For each posterior draw (one of the 11,250 
iterations), and within each season, I subtracted 
the expected abundance in the prior year from 
the expected abundance in the current year 
(e.g., Winter 1986 draw #1 – Winter 1985 draw 
#1). I then divided this difference by the sum of 
both expected abundances to standardize by the 
temporally local magnitude and obtain the local 
trend (Figures 5, 6B). The full formula is: 

Figure 4  Specific sampling reductions implemented for the Splittail case study. Temporal sampling effort was reduced by removing 1 or 2 months of 
sampling per season, while spatial sampling effort was reduced by removing 1/10, 1/5, 1/3, 1/2, or 2/3 of sampling stations. Temporal reductions were 
systematic and based upon the 1st, 2nd, or 3rd month of each season. Spatial reductions were random by randomly assigned station “groups,” separately 
for each spatial cut (1/10, 1/5, 1/3, 1/2, or 2/3). The two-thirds spatial cut was replicated three times, with one of three station groups present in each reduced 
data set (as opposed to the remainder of the spatial cuts in which 1 of n station groups were removed in each reduced data set). Gray boxes represent 
portions of the full data set removed to create each reduced data set. 

https://doi.org/10.15447/sfews.2022v20iss3art5
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	 	 Eq 3

where LTs,y,d = local trend and As,y,d = expected 
abundance value for each season (s), year (y), and 
draw (d). Standardizing by the local magnitude 
ensured consistency in trend estimates, 
regardless of the direction of the trend or the 
magnitude of the expected abundance estimate 
(e.g., a change from 90 to 10 would be equivalent 
in magnitude to a change from 10 to 90 and a 
change from 900 to 100). To compare estimates 
of the local trend between the full and reduced 
models, I calculated the overlap between the 95% 
credible intervals of each reduced model with 
that of the full model. To do this, I selected the 
posterior local trend estimates from the reduced 
model that fell within their 95% quantiles, and 
calculated the proportion of those values that 
fell within the 95% credible intervals from the 
full model, for each season and year (Figure 5). 
I used the 95% quantiles from both the reduced 
and full models to ensure that complete overlap 

would equate to a proportional overlap value of 
1. The proportional overlap was averaged across 
replicate simulations and across years to create 
an overall metric of reduced model overlap 
with the full model. This metric of proportional 
overlap was used because it captures differences 
in both certainty (precision) and value (accuracy) 
between the full and reduced models. Precision 
and accuracy are both critical determinants of the 
usefulness of monitoring data. 

Variance Analysis
To understand the relative contributions of spatial 
and temporal factors to the variance in Splittail 
catch, I fit another Bayesian generalized linear 
mixed model with a Poisson error distribution. 
As before, the response variable was catch, and 
I included a fixed predictor for tow area and a 
sample-level random intercept to correct for over-
dispersion. I also included random intercepts for 
year, month, and station to estimate the amount 
of variance described by those three factors. 

Figure 5  Posterior processing workflow illustrated with example data. The full model and each reduced model were used to generate predictions for 
each year and season from 1985 to 2018 (the “scenarios” in Figure 1). “Draws” represent posterior samples. The full posterior distribution of those predictions 
was retained, represented by posterior draws 1-3 (of 11,250 total) in this figure. Within-season trends were then calculated for each posterior draw using 
Equation 3. Ninety-five percent credible intervals were calculated for the local trend estimates of the full model for each season and year. The proportion of 
95% quantile local trend values from the reduced models falling within those intervals were then calculated for the final metric. 
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Figure 6  Example model outputs and local trend estimates for the full model and one reduced model (1/2 of sampling stations randomly removed). Point 
estimates of predicted count were generated for each year and season from 1985 to 2018. The local trend was calculated from those point estimates for 
each year and season from 1986 to 2018 (the local trend estimate requires a prior-year predicted count so it could not be calculated for 1985). (A) Mean 
fitted values with 95% credible intervals that represent the expected number of fish caught per trawl for the average sampling effort (tow area). The y-axis 
was clipped at 0.8 to prioritize visualizing the majority of values that were < 0.1. (B) Mean local trend estimates (calculated with Equation 3) with 95% 
credible intervals. 

https://doi.org/10.15447/sfews.2022v20iss3art5
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Models were fit and evaluated for adequate 
sampling as described above. I then compared 
the parameter estimates for the variances of 
the random intercepts to evaluate their relative 
influences on the variability in Splittail catch. 

Code Availability
R code used in these analyses is available at  
https://github.com/sbashevkin/LTMRpilot/tree/
publication/Univariate%20analyses. 

RESULTS
The sampling-reduction scenarios assessed our 
ability to infer within-season year-to-year trends 
in Splittail abundance from the Bay Study and 
Suisun Study otter trawls. These results are not 
applicable to other species, gears, surveys, or 
parameters of interest. Throughout this section, 
I will use “overlap” to refer to the percentage or 
proportion of 95% quantile local trend estimates 
from reduced models that were within the 95% 
credible interval of local trend estimates from the 
full model.

The percent overlap of reduced model predictions 
with the full model predictions was fairly 
consistent across replicate data-reduction 
simulations. As sampling effort was reduced, the 
interannual variability in percent overlap tended 
to increase in the majority of simulations, often 
leading to larger divergences among replicate 
simulations (Figure 7). For example, in the 10% 
sampling station reduction, the simulations had 
consistently high percent overlap, with only 
2% of values below 75% overlap. In contrast, 
trend estimates from the 2/3 sample station 
reduction data set covered the full range from 
2.88% to 99.6% overlap, with replicates changing 
asynchronously year to year (Figure 7). Percent 
overlaps were especially high in the earliest years, 
before 1995. This was most notable in the station 
reductions of 10% to 50%, but can also be seen in 
the monthly reduction of 33% (Figure 7). 

Overall, the percent overlap of reduced models 
decreased linearly with the reduction in 
sampling effort (Figure 8). Removing 10% of 
sampling stations (spatial sampling effort) had 

a small effect on the percent overlap of model 
predictions; overlap was ≥ 90% for 92% of time 
points (Figure 7). However, some replicates of 
this scenario had a few instances of low percent 
overlap, especially in earlier years. Even some 
of the 33% reductions in sampling effort had 
low effects on the percent overlap of model 
predictions; overlap was ≥ 75% for 85% of time 
points (Figure 7). While there were some outlier 
simulations at lower reductions, the variability 
in model prediction percent overlap among years 
and replicates became much higher at sampling 
reductions of 33% and above (Figure 7). The 
overall averaged overlap declined to a low of 61% 
for simulations of 67% reduced sampling effort. 
Interestingly, for similar reductions in sampling 
effort, models with temporally reduced effort 
had very similar percent overlap to models with 
spatially reduced effort (Figure 8). 

While the reduced sampling effort simulations 
did not detect a difference between temporal 
and spatial reductions, the variance component 
analysis revealed wide differences. In this 
analysis, the spatial component (represented by 
station) contributed much more to the variability 
than the temporal components (represented 
by year and month). The variance parameter 
estimated for station was 7.5x greater than that for 
year, 11.8x greater than that for month, and 3.1x 
greater than that for the sample-level intercept 
(Figure 9). 

DISCUSSION
I designed and demonstrated a simulation-
based approach for evaluating the sensitivity of 
monitoring programs to changes in the sampling 
design. The approach worked well for a case study 
on Splittail sampled by the Bay Study and Suisun 
Study otter trawls. Below, I will briefly discuss 
the case study results, then the general approach 
and further extensions to apply it to the estuary 
monitoring program

Case Study
The case study evaluated the effects of reduced 
sampling on our ability to detect accurate trends 
in Splittail abundance from Bay Study and Suisun 

https://github.com/sbashevkin/LTMRpilot/tree/publication/Univariate%20analyses
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Figure 7  Proportional overlap in local trend estimates between the full model and each of the 29 reduced models. Overlap was quantified as the 
proportion of 95% quantile posterior values from each reduced model that fell within the 95% credible intervals of the full model. Values were calculated for 
each year and season from 1986 to 2018. Numbers on the right side of plots indicate the proportion of sampling reduced, with the source of that reduction 
(removed stations or months) noted on the far right. Differently colored lines indicate replicate simulations, but colors are only meaningful within a row of 
plots. Some values are missing in the month reductions, and these represent seasons not sampled after data from those months were removed. 
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Figure 9  Variance parameter estimates from the 
variance analysis. This estimates the relative contributions 
of each variable to the variability in the data. Variance 
parameters were estimated from a Bayesian generalized 
linear mixed model with random intercepts for each 
variable. 

Figure 8  Average proportional overlap (± SD) for each season and sampling reduction scenario. These data represent aggregations of the results in 
Figure 7 to facilitate the inspection of broad patterns. Colors correspond to the proportional reduction in sampling effort (also shown on the x-axis) and 
shapes delineate the source of that reduction (removed months or stations). Points are slightly shifted horizontally to facilitate visualization. 
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Study otter trawl data. I found that relatively low 
(10% to 20%) reductions in spatial sampling effort 
had fairly small effects on the percent overlap of 
reduced model predictions with the full model 
predictions. Greater reductions in temporal 
or spatial sampling effort reduced the percent 
overlap of model predictions, as well as the 
variability in this overlap among years and among 
replicate data-reduction scenarios. 

These results indicate that sampling effort 
reductions at a level of 10% to 20% may not 
have a large effect on our ability to monitor 
Splittail abundance trends with Bay Study and 
Suisun Study otter trawl data, within the spatial 
footprints of those surveys. However, given 
the variability among replicate simulations, 
the choice of stations to remove appears to be 
important. These results are not applicable to 
other species, gears, surveys, or parameters of 
interest. Within the footprints of the Bay Study 
and Suisun Study, Splittail are concentrated in 
the Suisun region, with very low to zero catch 
throughout much of San Francisco Bay (Figure 2). 
This may have contributed to the negligible 
effects of removing some stations, since the 
removal of stations with consistently low catch 
should have very little effect on model inference 
of trends in Splittail abundance. This may also 
explain the results of the variance analysis, 
in which the spatial component contributed 
much more to the variability in the data than 
the temporal or sample-level components. 
Consistently high catches in some stations 
(Suisun Marsh) and consistently low catches 
in other stations (San Francisco Bay) would 
have driven large differences in the individual 
random intercepts for stations in those two 
regions, and thus the large variance associated 
with the distribution of that random intercept. 
I chose to retain the full set of stations from 
each study despite the spatial concentration of 
Splittail catch because this would be necessary 
for a comprehensive monitoring evaluation that 
encompassed additional species which might be 
concentrated in different geographic areas (see 
below). 

In some of the simulations, there was a pattern 
of decreasing percent overlap over time. This was 
apparent in the sampling station reductions of 
10% to 50%, and to some extent in the monthly 
reduction of 33%. A likely cause of this pattern is 
the increase in number of sampling stations over 
time, which could have increased redundancy 
in the sampling program in later years. Of the 
86 total stations among the two surveys, 53 were 
sampled before 1995 and 85 were sampled in 1995 
and later. 

The Approach
The framework I describe was based on 
earlier work by White (2019) and White and 
Bahlai (2021). They describe the approach and 
benefits of experimenting with historical data 
to inform experimental design, and how this 
method compares with power simulations, field 
experiments, and comparative analyses (White 
and Bahlai 2021). This approach has been applied 
to identify the number of years of monitoring 
data needed to (1) detect population trends (White 
2019; Bahlai et al. 2021; Cusser et al. 2021), (2) 
quantify the reliability of population trends 
(Wauchope et al. 2019), and (3) design optimal 
sampling to detect ecosystem shifts (Bruel and 
White 2020). 

My simulation-based framework for evaluating 
survey designs was effective for the case study, 
but it has both strengths and weaknesses that 
should be considered before application. The 
ability to simulate sampling design changes 
using historical data on top of the past variability 
of the system is a major strength that grounds 
the results in an accurate representation of 
the environment. It allows us to examine how 
reduced sampling may have affected our ability to 
understand the system during droughts, climate 
cycles such as the El Niño-Southern Oscillation, 
or historical phenomena such as the pelagic 
organism decline (Sommer, Armor, et al. 2007). 
However, this advantage is also a limitation of 
retrospective analyses. By experimenting with the 
past, I was unable to evaluate where additional 
sampling might be needed. There may have been 
historical trends undetected by my methods 
because the historical sampling needed expansion 
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in ways these methods are unable to detect. I was 
also limited in my ability to evaluate the effects 
of emerging issues not present in the historical 
data set, such as further climate change and 
emerging contaminant issues. For this reason, 
the framework presented here should ideally 
be paired with a complementary analysis of 
sampling gaps.

I chose to base my analyses on statistical models 
of management-relevant parameters to ensure the 
results would be most useful. This grounded my 
evaluation of the sampling program in the same 
methods used to analyze the resulting data, which 
is a recommended approach in the design of 
monitoring programs (Radinger et al. 2019). 

By using Bayesian models, I was able to easily 
propagate uncertainty through the calculation of 
the local trend metric. This enabled comparisons 
of both point estimates and uncertainty 
magnitudes to capture the full effect of sampling 
design changes. It is also especially useful for 
analyses of irregular monitoring data such as the 
data I used, with its many changes to sampling 
sites (Radinger et al. 2019). However, Bayesian 
modeling (and any hierarchical modeling of 
large data sets) comes with a high computational 
cost, which can slow down project progress, 
increase monetary costs, or limit the number of 
simulations that can be performed. Nevertheless, 
the Stan modeling language is generally faster 
and more efficient than other Bayesian modeling 
languages such as BUGS or JAGS (Carpenter et 
al. 2017), and recent improvements—including 
within-chain parallelization—have enabled even 
greater speed-ups (Stan Development Team 2021). 

Extensions and Applications
My case study demonstrates the utility of the 
general approach, but much more must be done 
for a thorough analysis leading to changes in 
sampling effort. Starting with the randomized 
and stratified removal of sampling effort, as I 
have done, is an important first step to identify 
possible redundancies across multiple surveys. 
Next, more targeted analyses should identify 
precisely which months and stations contribute 
the least useful information (Figure 10). The same 

overall framework (Figure 1) would be used for 
these targeted analyses, but specific stations 
or months would be removed in simulations to 
evaluate the effects of new monitoring designs. 
The specific stations or months to be removed in 
the simulations could be chosen with a clustering 
approach as in Gaeta and Beakes (2021), based 
on geographic distance or temporal frequency, 
based on logistical concerns, or randomly. My 
framework would then be used to evaluate the 
effects of each proposed monitoring design on the 
accuracy of model inference, on top of historical 
conditions. 

An important first step to monitoring program 
design is a collaborative discussion between 
scientists and managers to delineate the 
objectives of the monitoring program (NRC 
1990). In particular, before redundancies 
can be identified, accuracy targets must be 
defined. Optimal accuracy will depend on the 
management questions as well as on practical 
considerations of sampling cost and complexity. 
Accuracy targets should be chosen in consultation 
with the monitoring staff, managers, and 
statisticians. This step is critical to define the 
goals of the monitoring program and ensure a 
tight coupling between these goals and the design 
of the review, so that the results directly inform 
improving the monitoring program’s ability to 
achieve its goals. 

The estuary monitoring program is composed 
of multiple intertwined sampling modalities, 
objectives, and mandates (Gaeta 2021; Tempel 
et al. 2021). The boat-based surveys monitor 
demersal, pelagic, and littoral fish communities; 
zooplankton; phytoplankton; benthic 
invertebrates; water quality; and contaminants. 
All of these sampling modalities are important 
and have been leveraged to better understand the 
estuary and improve management (e.g., Jassby 
et al. 1995; Cloern et al. 2007; Feyrer et al. 2007; 
Sommer, Armor, et al. 2007; Winder et al. 2011; 
Winder and Jassby 2011; Munsch et al. 2019). They 
are intertwined because multiple parameters 
are often collected by each survey (Tempel et al. 
2021) and even the non-focal parameters can be 
important data sources for understanding the 
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estuary (Bashevkin, Mahardja, and Brown 2022; 
Bashevkin and Mahardja 2022). Each survey 
measures water quality in some manner (although 
variables like nutrient concentrations and 
chlorophyll are more limited), zooplankton are 
often collected alongside fish samples (Bashevkin, 
Hartman, et al. 2022), and many of the sampling 
surveys share boats and crew. Thus, changes to 
one survey or set of surveys based on a single 
parameter have the potential to interfere with 
critical long-term monitoring data sets of other 
parameters equally important for estuarine 
management. Therefore, before changes 
are made to the monitoring program or any 
individual survey, simulations as described here 
must be performed for each affected parameter. 
Monitoring program changes based on optimizing 
the sampling of a narrowly-focused parameter 
like Splittail abundance could greatly impede our 
ability to monitor other fishes such as Longfin 
Smelt, or our valuable zooplankton monitoring 
program (Hartman et al. 2021). 

To evaluate the ability of these surveys to monitor 
the whole fish community, these analyses must be 
conducted on multiple species. Other species with 

different geographic distributions, seasonal or 
annual abundance trends, life-history strategies, 
or depth preferences would likely show different 
effects of reduced sampling. Representative 
or indicator species are commonly used in 
conservation to manage ecosystems without 
requiring analyses on every species (Poiani et 
al. 2000). These representative species could be 
selected with clustering approaches as in Gaeta 
and Beakes (2021). Results must then be compared 
across species to identify sampling stations or 
months of minimal value across all representative 
species (Figure 10). 

While this case study focused on our ability 
to detect trends in species abundance, other 
parameters should also be examined for a 
thorough evaluation. Models more focused on 
geographic distribution, fish size, fecundity, and 
the effects of environmental variables on any of 
these should also be considered (Figure 10). For 
example, to evaluate the ability of the monitoring 
surveys to detect the relationship between salinity 
and fish abundance, a model of fish abundance 
by salinity would be constructed, and the ability 
of reduced data sets to reproduce the relationship 

Figure 10  Framework for a thorough analysis of sampling reductions. First, the optimal number of sampling stations or months to be removed should 
be identified with random and stratified sampling reductions as in the Splittail case study (Figure 4). After the optimal level of sampling reduction has 
been identified, that level of reduction should be applied in a targeted manner to the full data set by removing as many combinations of months/stations 
as are computationally feasible to narrow down the best candidates for removal. The entire process should then be repeated for additional species and 
parameters (e.g., distribution, size, or habitat associations). The final results from each species and parameter must then be compared to identify how 
sampling effort could be reduced with the least effect on our understanding of the system. 
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obtained from a full model would be evaluated. 
These parameters are key for advancing our 
mechanistic understanding of the system, which 
can be leveraged to solve ecological problems 
(Radinger et al. 2019). The focal parameters 
should be chosen with consideration for the 
goals of the monitoring program, as well as the 
management objectives for the system. 

This framework can easily be extended to 
other types of monitoring beyond fishes. 
The basic approach requires fitting the same 
model structure to the full data set and a set 
of reduced data sets that represent scenarios 
of reduced sampling effort, then comparing 
model outputs from the reduced models to the 
full model (Figure 1). This could be applied to 
other functional groups (e.g., zooplankton and 
phytoplankton) as well as physical parameters 
(e.g., temperature, salinity, and Secchi depth). 

Once the sensitivity of all relevant parameters 
has been assessed, common redundancies can 
be identified for further action. This approach 
will minimize unexpected effects to important 
sampling modalities while identifying the best 
candidate options for increased efficiency. The 
long-term monitoring data set is a critically 
important resource for management and for 
furthering our scientific understanding of this 
estuary and aquatic systems more broadly 
(Callahan 1984; Hobbie et al. 2003; Lindenmayer 
and Likens 2010). Thus, any reductions in 
sampling effort must be undertaken carefully 
and with an informed understanding of the 
consequences for the monitoring program as a 
whole.
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