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Persistent DNA methylation 
changes associated with prenatal 
mercury exposure and cognitive 
performance during childhood
Andres Cardenas1, Sheryl L. Rifas-Shiman2, Golareh Agha1, Marie-France Hivert2, Augusto A. 
Litonjua3, Dawn L. DeMeo3, Xihong Lin4, Chitra J. Amarasiriwardena5, Emily Oken2, Matthew 
W. Gillman   2 & Andrea A. Baccarelli1

Prenatal exposure to mercury, a known neurotoxic metal, is associated with lower cognitive 
performance during childhood. Disruption of fetal epigenetic programming could explain mercury’s 
neurodevelopmental effects. We screened for epigenome-wide methylation differences associated with 
maternal prenatal blood mercury levels in 321 cord blood DNA samples and examined the persistence 
of these alterations during early (n = 75; 2.9–4.9 years) and mid-childhood (n = 291; 6.7–10.5 
years). Among males, prenatal mercury levels were associated with lower regional cord blood DNA 
methylation at the Paraoxonase 1 gene (PON1) that persisted in early childhood and was attenuated in 
mid-childhood blood. Cord blood methylation at the PON1 locus predicted lower cognitive test scores 
measured during early childhood. Methylation at the PON1 locus was associated with PON1 expression 
in an independent set of cord blood samples. The observed persistent epigenetic disruption of the PON1 
gene may modulate mercury toxicity in humans and might serve as a biomarker of exposure and disease 
susceptibility.

Mercury (Hg) is a ubiquitous worldwide environmental contaminant that can persist in the environment and bio-
accumulates as methylmercury (MeHg) in the food chain. Elemental mercury is a natural metal that is primarily 
introduced in the air, water and food from coal burning power plants, artisanal mining activities and industrial 
applications1. Since the industrial revolution, mercury levels in surface water have tripled2. For the general public, 
the consumption of fish or seafood containing MeHg is the major source of exposure3.

MeHg crosses the placenta and the blood-brain barrier and accumulates in fetal tissues resulting in fetal blood 
concentrations that typically exceed maternal levels4. Prenatal effects of acute MeHg exposure were first doc-
umented in 1956, when industrial activity heavily polluted Japan’s Minamata bay causing coastal residents to 
consume highly contaminated seafood. Some infants born during this period suffered from severe neurological 
disabilities and fetal abnormalities5. Recent prospective epidemiological studies have shown that even moderate 
or low-level prenatal exposure to mercury in utero typical of regular fish consumption may be associated with 
lower cognitive test scores in children6–10. However, the dose-response relationship, mechanism of action and 
potential effect modifiers such as gender and timing of exposure have not been fully evaluated11.

The specific mechanisms of neurotoxicity and cognitive disruption associated with prenatal mercury exposure 
remain poorly characterized in humans. Nonetheless, the period of fetal development has been shown to be sen-
sitive to prenatal exposure, perhaps in part because of the dramatic DNA methylation changes and epigenomic 
remodeling that takes place early during embryogenesis, giving rise to cells and tissues with specific DNA meth-
ylation patterns12. The ability of mercury to cross the placenta and blood-brain barrier during development makes 
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it a candidate toxicant for the disruption of fetal programming events that could propagate through different germ 
layers during embryogenesis.

Although several studies have characterized DNA methylation changes in cord blood relative to prenatal 
environmental exposures, very few studies have evaluated the persistence of these changes into childhood13. 
Evaluating the persistence of epigenetic modifications is critical as DNA methylation is a dynamic process that can 
drift with age and other stochastic processes14. To date, three epigenome-wide association studies have been con-
ducted identifying unique genomic regions as well as individual CpG methylation disruption in cord blood15, 16  
and placenta17 of newborns prenatally exposed to mercury. However, these studies were limited in sample size 
(ranging from 41 to 141 samples) and did not evaluate whether the observed epigenetic alterations were per-
sistent, sex-specific or related to cognitive performance in childhood. Epigenetic responses to environmental 
conditions can be sex specific in terms of perception of exposure and subsequent response, particularly for neu-
rodevelopmental disorders18, 19. Furthermore, gender differences in MeHg neurotoxicity have been documented 
in epidemiological and animal models20, 21. Therefore, it is crucial to evaluate sex-specific epigenetic alterations in 
response to environmental conditions.

In the present study, we examined associations of prenatal mercury exposure with epigenome wide DNA 
methylation in cord blood, and evaluated if these epigenetic modifications persist in blood through early and 
mid-childhood. We also evaluated sex-specific differences in response to prenatal mercury exposure. We hypoth-
esized that persistent DNA methylation modifications in cord blood related to prenatal mercury exposure would 
also be associated with cognitive test scores measured in early childhood.

Results
A total of 321 mother-child pairs had available data on both maternal prenatal mercury exposure and cord blood 
DNA methylation. During early childhood (range: 2.9 to 4.9 years), 75 participants had whole blood samples 
available for analysis and 291 participants had samples available for mid-childhood analyses (range: 6.7 to 10.5 
years), Table 1. Mean maternal red blood cell mercury (RBC-Hg) concentration measured during the second 
trimester of pregnancy was 3.8 ng/g (SD = 3.1) and mean maternal fish intake during pregnancy was 1.5 serv-
ings per week (SD = 1.2). Prenatal mercury concentration in maternal erythrocytes was right skewed and so we 
log2-transformed it for analyses to approximate a log-normal distribution, Supplementary Fig. S1. Univariate 
associations among the main 30 principal components of DNA methylation data, explaining 51.4% of the vari-
ance, showed strong associations with estimated cell type composition and moderate associations with phenotype 
characteristics after the effective removal of technical batch effects, Fig. 1.

Regional DNA Methylation Analysis.  To identify Differentially Methylated Regions (DMRs) in the 
genome relative to prenatal mercury exposure, we implemented a regional based approach that is agnostic to 
both genomic annotation and direction of individual CpG associations. After stratifying on sex, a DMR covering 
9 CpGs of chromosome 7 in the Paraoxonase 1 gene (PON1) was hypomethylated by prenatal mercury exposure 
among boys (genomic coordinates: chr7:94,953,653–94,954,202; FDR < 0.05), Fig. 2. We did not identify any 
DMRs in girls, or in the overall population. Among males, the multivariate adjusted magnitude of association for 
each individual CpG site in the PON1 DMR ranged from a 1% to a 3.8% decrease in individual cord blood CpG 
methylation per doubling in maternal RBC-Hg concentrations, Table 2. Overall, mean cord methylation levels 
of all nine CpGs located in the PON1 locus were inversely associated with maternal RBC-Hg concentrations 
(β = −2.4%, 95% CI: −3.8, −1.0; P = 7.5 × 10−4), Table 2. Scatter plots with locally weighted smoothing lines 
by median prenatal mercury concentrations levels of the PON1 DMR are shown in Fig. 3. Individual cord blood 
methylation levels for the 9 CpGs in this DMR ranged from 25.2% to 98.9% (Fig. 4A) and they were strongly 
positively correlated with each other (ρ-range: 0.72 to 0.96), Fig. 4B.

To evaluate the persistence of association between prenatal mercury exposure and DNA methylation at the 
PON1 locus found in cord blood, we tested associations between prenatal mercury exposure with DNA meth-
ylation at the PON1 locus in blood collected in males at early and mid-childhood. In early childhood (n = 37), a 
doubling in prenatal mercury concentration was associated with a 4.6% decrease in mean methylation levels of 
the DMR in PON1, measured across the nine CpGs (β = −4.6%, 95% CI: −9.0, −0.1; P = 0.044). Investigating all 
9 CpGs individually, the inverse adjusted association of prenatal mercury exposure reached statistical significance 
in early childhood among five CpGs: cg07404485 (β = −4.2%, 95% CI: −7.8, −0.7), cg05342682 (β = −5.5%, 95% 
CI: −9.7, −1.3), cg21856205 (β = −3.1%, 95% CI: −5.5, −0.6), cg01874867 (β = −6.5%, 95% CI: −12.8, −0.3) 
and cg20119798 (β = −5.3%, 95% CI: −9.8, −0.7). In mid-childhood (n = 149), mean methylation levels of the 
PON1 DMR were marginally associated with prenatal mercury exposure for males (β = −1.2%, 95% CI: −2.5, 
0.1; P = 0.06). However, five individual CpG sites within the PON1 region were associated with maternal RBC-Hg 
concentrations: cg05342682 (β = −1.2%, 95% CI: −2.5, −0.01), cg19678392 (β = −1.8%, 95% CI: −3.3, −0.3), 
cg21856205 (β = −0.8%, 95% CI: −1.6, −0.01), cg17330251 (β = −2.1%, 95% CI: −4.1, −0.1) and cg01874867 
(β = −2.2%, 95% CI: −4.1, −0.3). Persistence of the association for the male-specific DMR in PON1 and prenatal 
RBC-Hg concentrations is summarized in Table 2.

Overall CpG-by-CpG analysis in cord blood.  In adjusted robust linear regression models, one CpG 
was differentially methylated relative to prenatal mercury exposure after using a Bonferroni adjusted level of 
significance, Fig. 5A. Namely, for every doubling in maternal RBC-Hg concentrations a 0.3% increase in cord 
blood methylation was observed for cg13340705 annotated to the WW Domain Binding Protein 11 Pseudogene 
1 (WBP11P1) located in chromosome 18 (β = 0.3%, 95% CI: 0.2, 0.5; P = 5.3 × 10−7). However, this association 
did not persist in early (β = −0.1%, 95% CI: −0.5, 0.3; P = 0.57) or mid-childhood (β = 0.03%, 95% CI:−0.2, 0.2; 
P = 0.81), Table 3.

http://S1
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Sex-specific CpG-by-CpG analysis in cord blood.  After stratifying by sex, one CpG in males 
(cg13416866) annotated to the Torsin Family 4, Member A gene (TOR4A) was hypermethylated relative to 
maternal RBC-Hg concentrations (β = 1.3%, 95% CI: 0.8, 1.7; P = 3.5 × 10−8), Fig. 5B. The effect estimate for 
the association between prenatal mercury exposure and methylation levels of this CpG measured during early 
childhood was similar in direction (β = 0.6%, 95% CI: −0.7, 2.0; P = 0.34) but not significant, likely due to sample 
size (N = 37). However, the association for this CpG was significant for methylation levels measured in blood at 
mid-childhood (β = 0.72%, 95% CI: 0.1, 1.4; P = 0.031), Table 3. No sites were found to be differentially methyl-
ated in cord blood for females in the CpG-by-CpG analyses, Fig. 5C.

DNA Methylation and Gene Expression.  To evaluate the functional relevance of methylation changes, 
we examined whether DNA methylation of the PON1 DMR and differentially methylated single CpGs were corre-
lated with gene expression in cord blood from an independent birth cohort (Biomarkers of Exposure to Arsenic; 
N = 38)22. In this independent set of samples we observed a moderate negative correlation between PON1 RNA 
expression and mean methylation levels of the nine CpGs in the DMR that approached statistical significance 

Study characteristic

Cord Blood Early childhood Mid-childhood

N = 321 N = 75 N = 291

Maternal characteristics Mean (SD) or n (%)

Pre-pregnancy BMI (kg/m2) 24.2 (4.9) 25.6 (6.0) 24.4 (4.9)

Age at enrollment (years) 31.9 (5.0) 32.0 (4.6) 32.2 (5.4)

Nulliparous

 No 167 (52%) 41 (54.7%) 157 (54%)

 Yes 154 (48%) 34 (45.3%) 134 (46%)

College graduate

 No 106 (33%) 21 (28%) 89 (30.6%)

 Yes 215 (67%) 54 (72%) 202 (69.4%)

Smoking status

 Never 216 (67.3%) 44 (58.7%) 209 (71.8%)

 Former 67 (20.9%) 18 (24.0%) 53 (18.2%)

 During pregnancy 38 (11.8%) 13 (17.3%) 29 (10%)

Any alcohol during pregnancy

 No 87 (27.1%) 21 (28.0%) 99 (34%)

 Yes 234 (72.8%) 54 (72.0%) 192 (66%)

Race/ethnicity

 White 248 (77.3%) 61 (81.3%) 206 (70.8%)

 Black 28 (8.7%) 5 (6.7%) 45 (15.5%)

 Hispanic 21 (6.5%) 2 (2.7%) 14 (4.8%)

 Other 24 (7.5%) 7 (9.3%) 26 (8.9%)

PPVT scores 105.7 (14.3 107.0 (13.0) 105.3 (16)

2nd trim RBC-Hg (ng/g) 3.8 (3.1) 4.2 (3.7) 4.0 (3.2)

2nd trim fish intake (servings/week) 1.5 (1.2) 1.3 (1.1) 1.7 (1.5)

Child characteristics Mean (SD) or n (%)

Sex

 Male 160 (49.8%) 37 (49.3) 149 (51.2%)

 Female 161 (50.1%) 38 (50.7) 142 (48.8%)

Age at sample collection

 Birth, (gestational age in weeks) 39.7 (1.6) — —

 Early childhood (2.9 to 4.9 years) — 3.4 (0.5) —

 Mid-childhood (6.7 to 10.5 years) — — 7.9 (0.8)

Race/ethnicity

 White 234 (72.9%) 58 (77.3%) 194 (66.7%)

 Black 31 (9.7%) 5 (6.7%) 46 (15.8%)

 Hispanic 14 (4.4%) 1 (1.3%) 11 (3.8%)

 Other 42 (13.1%) 11 (14.7%) 40 (13.7%)

Gestational age at birth (weeks) 39.7 (1.6) 39.6 (1.6) 39.6 (1.6)

PPVT score early childhood — 103.8 (12.9) —

WRAVMA score early childhood — 103.6 (9.7) —

Table 1.  Characteristics of mothers and children in the Project Viva eligible for analysis at birth (cord blood) 
and during early (2.9–4.9 years) and mid-childhood (6.7–10.5 years).
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(ρ = −0.30, P = 0.06), Fig. 6A. Two CpGs in the PON1 DMR located in the body of the gene and in the north 
shore region of a CpG island had the strongest association with expression: cg07404485 (ρ = −0.33, P = 0.04) 
and cg05342682 (ρ = −0.32, P = 0.04), respectively. Five other loci from the DMR reached marginal significance 
(P < 0.10), Fig. 6B. None of the CpGs found to be associated with prenatal mercury exposure in the CpG-by-CpG 
analyses correlated with gene expression of cord blood samples, Supplementary Table S1. The genomic tracks of 
the DMR in PON1 and annotation for the gene expression array used, mRNA, known SNPs and CpGs are shown 
in Supplementary Fig. S2.

DNA Methylation and Child Cognitive Performance.  In males, mean methylation levels in cord 
blood for the PON1 DMR were marginally associated with cognitive PPVT scores measured in early childhood 
(β = −2.6, 95% CI: −5.6, 0.3; P = 0.07). Within the PON1 DMR, four individual CpGs were significantly associ-
ated with cognitive scores measured in early childhood among males. Specifically, an inverse multivariate adjusted 
association was observed between DNA methylation levels and the PPVT cognitive scores for cg05342682 
(β = −3.2, 95% CI: −6.2, −0.2), cg21856205 (β = 4.5, 95% CI: −8.7, −0.1), cg17330251 (β = −1.9, 95% CI: −3.6, 
−0.1) and cg01874867 (β = −2.0, 95% CI: −3.7, −0.2). No significant associations were observed for individual 
CpG methylation levels of this region and WRAVMA cognitive test scores in males, Table 4. Although prenatal 
mercury exposure was not associated with PON1 methylation in females, mean cord blood methylation lev-
els of the PON1 DMR was associated with lower cognitive test scores for the PPVT in girls measured in early 
childhood (β = −2.6, 95% CI: −4.8, −0.4; P = 0.021) but not WRAVMA scores, Supplementary Table S2. For 
the CpG-by-CpG analyses methylation levels of cg13340705 in the WBP11P1 gene were marginally associated 
with WRAVMA cognitive test scores in the entire sample (β = 5.6, 95% CI: −0.6, 11.8; P = 0.07), Supplementary 
Table S3. Despite previously reported associations between prenatal mercury exposure and cognitive perfor-
mance within a large subset of the Project Viva cohort8, we did not observe evidence for an association between 
log2-tranformed RBC-Hg and PPVT cognitive scores (β = 1.2, 95% CI: −1.0, 3.4; P = 0.29) or with WRAVMA 
scores (β = 0.4, 95% CI: −1.3, 2.0; P = 0.66) in our smaller sample. Therefore, we were unable to estimate the 
mediated effects of exposure on cognitive performance in this subsample of the cohort.

Finally, we observed similar DNA methylation levels at the PON1 DMR measured in cord blood and in early 
or mid-childhood (Fig. 7A). Among 21 participants with repeated DNA methylation measurements we observed 
no significant changes in methylation at the PON1 DMR over time (β = −0.21%; 95% CI: −1.92, 0.78; P = 0.68), 
Fig. 7B.

Discussion
In this study we observed DNA methylation changes of a genomic region of the PON1 gene relative to prenatal 
mercury exposure in umbilical cord blood from males but not females, an association that persisted during early 
and mid-childhood. We also showed that higher DNA methylation levels of the PON1 region are associated with 
lower cognitive test scores in early childhood for both sexes. Based on publicly available reference datasets we 
observed that cord blood DNA methylation levels of the PON1 region is associated with decreased PON1 expres-
sion in cord blood. In individual CpG analyses, only one CpG of the WBP11P1 gene was associated with prenatal 
mercury exposure, but this association did not persist in early or mid-childhood. In male-specific site-by-site 
analyses, a CpG of the TOR4A gene was hypermethylated relative to prenatal mercury exposure and this associ-
ation persisted in mid-childhood. Taken together, these results suggest that moderate mercury exposure during 
pregnancy can lead to sex-specific functional epigenetic alterations that persist throughout childhood and are 
associated with cognitive performance.

Figure 1.  Principal component regression analysis: univariate association P-values between covariates of 
interest and the top 30 principal components that explain 51.4% of the variance for the entire DNA methylation 
data in cord blood.

http://S1
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The Paraoxonase 1 or arylesterase 1 gene (PON1) belongs to the serum paraoxonase family of enzymes pre-
viously shown to provide oxidative protection for high density lipoproteins and hypothesized to guard against 
atherosclerosis and metabolic syndrome23, 24. PON1 is synthesized in the liver and secreted into the plasma where 
it can metabolize toxic oxidized lipids25. The main substrates of PON1 are lactones, but promiscuous catalytic 
activity towards organophosphate triesters, arylesters, cyclic carbamates, glucuronides, oestrogen esters and thiol-
actones has also been documented26. Genetic polymorphisms in PON1 and enzyme activity have been associated 
with adverse perinatal health outcomes such as decreased fetal growth, pre-term birth and reductions in head 
circumference27, 28. Genetic variants as well as low enzymatic activity of PON1 have been shown to contribute to 
the neurodevelopmental toxicity of organophosphorus (OP) pesticides in animal models and human studies29, 30. 
PON1 protein has also been localized in brain regions of animal models as well as human tissue and experimen-
tally shown to interact with other proteins in the brain that are essential for brain homeostasis31.

In vitro models and human studies have shown that MeHg exposure exerts an inhibitory effect on PON1 
enzyme activity even after controlling for genetic variants including SNP-108 (rs705379), one of the major genetic 
determinants of PON1 expression32–34. The inhibitory mechanism of MeHg on PON1 has been hypothesized to 
be involved in the development of cardiovascular disease, potentially explaining epidemiological associations 

Figure 2.  Scatterplots for the associations between individual cord blood CpG methylation in the DMR of the 
PON1 gene and log2-transformed prenatal mercury exposure: red (fitted simple linear regression line) blue 
(locally weighted scatterplot smoothing).

PON1 DMR-CpGs Cord Blood (N = 160) Early childhood (N = 37) Mid-childhood (N = 149)

CpG ID Gene Region β-Coefficient (95% CI) P β-Coefficient (95% CI) P ‡β-Coefficient (95% CI) P

cg07404485 Body −2.2% (−3.5, −0.9) 7.2 × 10−4 −4.2% (−7.8, −0.7) 0.02 −1.1% (−2.5, 0.3) 0.11

cg05342682 Body −1.8% (−3.2, −0.5) 8.0 × 10−3 −5.5% (−9.7, −1.3) 0.01 −1.2% (−2.5, −0.01) 0.04

cg04155289 1stExon −1.7% (−2.8, −0.6) 3.3 × 10−3 −3.4% (−9.4, 2.5) 0.26 −0.6% (−1.6, 0.4) 0.18

cg19678392 1stExon; 5′UTR −2.9% (−4.6, −1.2) 8.5 × 10−4 −4.9% (−12.7, 2.8) 0.21 −1.8% (−3.3, −0.3) 0.02

cg21856205 1stExon; 5′UTR −1.6% (−2.5, −0.6) 9.9 × 10−4 −3.1% (−5.5, −0.6) 0.01 −0.8% (−1.6, −0.01) 0.03

cg17330251 TSS200 −3.7% (−5.9, −1.4) 1.6 × 10−3 −6.7% (−16.6, 3.1) 0.18 −2.1% (−4.1, −0.1) 0.04

cg01874867 TSS200 −3.8% (−6.1, −1.6) 8.2 × 10−4 −6.5% (−12.8, −0.3) 0.04 −2.2% (−4.1, −0.3) 0.02

cg20119798 TSS1500 −2.7% (−3.9, −1.4) 2.5 × 10−5 −5.3% (−9.8, −0.7) 0.02 −1.1% (−2.7, 0.4) 0.15

cg04871131 TSS1500 −1.0% (−1.6, −0.5) 1.5 × 10−4 −1.9% (−4.1, 0.3) 0.09 −0.2% (−1.0, 0.5) 0.52

Mean DMR methylation −2.4% (−3.8, −1.0) 7.5 × 10−4 −4.6% (−9.0, −0.1) 0.044 −1.2% (−2.5, 0.1) 0.06

Table 2.  Adjusted percent change in blood DNA methylation of males per doubling in prenatal mercury 
exposure for the differentially methylated region in the PON1 gene at birth (cord blood) and persistence during 
early and mid-childhood.
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with MeHg35. Furthermore, PON1 enzyme activity is lower in neonates but relatively stable in adults exhibiting 
age-dependent developmental changes through at least 7 years of age. The developmental change in enzyme activ-
ity might create a sensitive window for toxic exposures during fetal development25, 36, 37. In fact, hypersensitivity 
to mercury exposure (acrodynia, or “pink disease”) among infants exposed to mercury has been attributed to 
genetic variation and subsequent enzyme activity of PON138. A large prospective epidemiological study showed 
that PON1 genotype can modify the association of prenatal MeHg exposure and neurodevelopment, leading to 
stronger adverse effects in IQ deficits during childhood39. Interestingly, in a study of 896 Inuit adults, blood MeHg 
concentrations lowered PON1 enzyme activity independent of genetic variation, and there was no evidence of 
an interaction between MeHg and genetic variants of PON132. The lack of gene-environment interaction sug-
gests a third control mechanism involved in the relationship between genetic variation, exposure and subsequent 
enzyme levels.

Although PON1 genetic variants are better characterized, less is known about epigenetic control mechanisms. 
In a recent integrative genomic study, a single nucleotide polymorphism in PON1 (SNP-108; rs705379) was shown 
to be strongly associated with DNA methylation subsequently mediating PON1 enzyme activity in newborns, 
an association that persisted to nine years of age40. In another study of obese adults, a similar inverse correlation 
between PON1 methylation and catalytic activity of the enzyme was documented41. This is consistent with our 
observation in which increasing methylation levels at the PON1 DMR decreased gene expression using data 
from an independent set of cord blood samples. These results highlight DNA methylation as a control mecha-
nism involved in PON1 expression, underscoring the importance of the male-specific PON1 hypomethylation 
observed in our study relative to prenatal mercury exposure and subsequent association with cognitive test scores.

Sex-specific differences in DNA methylation for PON1 are unknown for humans. However, in a case-control 
study of myocardial infarction, female specific hypermethylation of PON1 was observed among cases com-
pared to controls42. Moreover, animal studies have documented male-specific histone modifications along with 
increased expression of PON1 in male offspring exposed to a high fat diet in utero43. This is consistent with our 

Figure 3.  Cord blood CpG methylation distribution and fitted locally weighted scatterplot smoothing (LOESS) 
lines in the DMR found in PON1 (9 CpGs) with low (blue) and high (red) prenatal mercury exposure among 
males. Rug plot represents the estimated CpG density in the region while the green area denotes a CpG Island.

Figure 4.  CpG sites in the differentially methylated region of PON1 gene associated with prenatal mercury 
exposure: (A) Boxplots for the distribution of DNA methylation levels at each CpG site and (B) correlations 
among all nine CpGs in the PON1 DMR.
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Figure 5.  Manhattan plots for the epigenome-wide association of prenatal mercury exposure and individual 
CpG methylation levels: (A) Overall analysis (B) males-specific analyses and (C) female-specific analyses (red 
solid line represents the Bonferroni adjusted level of significance).

Overall CpG-by-CpG analyses Cord Blood (N = 321) Early childhood (N = 75) Mid-childhood (N = 291)

CpG ID Gene CHR β-Coefficient (95% CI) P β-Coefficient (95% CI) P β-Coefficient (95% CI) P

cg13340705 WBP11P1 18 0.3% (0.2, 0.5) 5.3 × 10−7 −0.1% (−0.5, 0.3) 0.57 0.03% (−0.2, 0.2) 0.81

Male-specific CpG-by-CpG analyses Cord Blood (N = 160) Early childhood (N = 37) Mid-childhood (N = 149)

cg13416866 TOR4A 9 1.3% (0.8, 1.7) 3.5 × 10−8 0.6% (−0.7, 2.0) 0.34 0.72% (0.1, 1.4%) 0.031

Table 3.  Adjusted percent change in blood DNA methylation per doubling in prenatal mercury exposure for 
individual loci found to be differentially methylated at birth (cord blood) in the CpG-by-CpG analysis and 
persistence of associations during early and mid-childhood.

Figure 6.  Association between DNA methylation and gene expression of the PON1 gene at the DMR 
associated with prenatal mercury exposure from an independent birth cohort (N = 38): (A) scatter plot of mean 
methylation levels of the DMR in PON1 and gene expression and (B) individual correlation coefficients and 
corresponding P-values for each individual CpG site in the DMR.
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data in which male-specific hypomethylation of PON1 was observed for prenatal mercury exposure, potentially 
leading to an increase in expression. The observed sex-specific epigenetic modification might help explain sex dif-
ferences observed in mercury’s toxicity. For example, male-specific mercury associations have been documented 
in epidemiological studies for metabolic syndrome44, ADHD-related behavior, and neurodevelopment45, 46. An 
experimental study of mice prenatally exposed to mercury demonstrated that males have a higher expression 
of immune-related genes and miRNA levels compared to females, suggestive of potential sex-specific response 
during fetal development47.

DNA methylation of the PON1 region could serve as a mediator of genotype and gene expression, explaining 
age-dependent changes in enzyme activity and modulation of mercury’s neurotoxicity, as shown for OP pesticide 
exposure. However, our study lacks information on genetic variants to estimate the effect of DNA methylation 
conditional on genotype. Therefore sex-specific epigenetic differences in the region could partially be driven by 
genetic variation. Nevertheless, increasing levels of DNA methylation in the PON1 region was associated with a 
modest decrease in PPVT cognitive scores in both males and females, suggesting that epigenetic control of PON1 
could be implicated in cognitive development independent of prenatal mercury exposure or sex. As supported 
by the observed methylation-expression relationship in the BEAR birth cohort22 and previous studies40, DNA 
methylation regulates expression and enzymatic activity of PON1 providing a potential mechanism of mercury’s 
associated neurotoxicity. Furthermore PON1 might also serve as an important target for other toxic effects of 
mercury exposure.

Although the growing interest in PON1 has been so far focused in cardio-metabolic outcomes, there is evi-
dence that suggests that PON1 genotype and enzyme activity is associated with adult neurological diseases such 

PON1 CpG ID PPVT score (N = 135) WRAVMA total (N = 128)

Cord Blood Methylation β-Coefficient (95% CI) P β-Coefficient (95% CI) P

cg07404485 −2.1 (−3.7, −0.2) 0.19 0.03 (−2.2, 2.2) 0.97

cg05342682 −3.2 (−6.2, −0.2) 0.03 −1.5 (−3.7, 0.6) 0.15

cg04155289 −0.5 (−2.9, 4.0) 0.75 −0.4 (−2.8, 1.9) 0.72

cg19678392 −2.2 (−4.6, 0.2) 0.07 −0.4 (−2.1, 1.3) 0.64

cg21856205 −4.4 (−8.7, −0.1) 0.04 −1.1 (−4.2, 2.0) 0.48

cg17330251 −1.9 (−3.6, −0.1) 0.03 −0.3 (−1.5, 0.9) 0.64

cg01874867 −2.0 (−3.7, −0.2) 0.02 −0.4 (−1.7, 0.8) 0.48

cg20119798 −2.1 (−5.0, 0.7) 0.13 −0.5 (−2.4, 1.5) 0.64

cg04871131 −2.9 (−9.0, 3.2) 0.35 −1.1 (−5.3, 3.2) 0.62

Mean DMR methylation −2.6 (−5.6, 0.3) 0.07 −0.6 (−2.7, 1.4) 0.55

Table 4.  Adjusted associations for methylation levels of the 9-CpGs in the DMR of the PON1 gene in cord-
blood of males with cognitive test scores measured during early childhood. Estimated change in cognitive 
test scores per 10% increase in methylation of each CpG and mean methylation levels of the PON1 region. 
(PPVT = Peabody Picture Vocabulary Test; WRAVMA = Wide Range Assessment of Visual Motor Abilities).

Figure 7.  Mean methylation levels of the DMR in PON1 measured at three time points: (A) Distribution 
of mean methylation levels among all individuals and (B) individual trajectories for participants that were 
repeatedly measured during the study period (n = 21) and fitted regression line (red).
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as Parkinson and Alzheimer48. Furthermore, PON1 genetic variants and enzymatic activity have been linked to 
autism spectrum disorder in cross-sectional studies49, 50. However, we did not measure DNA methylation in the 
brain as a target tissue a common limitation of prospective epidemiological studies.

The CpG found to be differentially methylated for the entire sample relative to prenatal mercury exposure is 
located in the TSS1500 region of the WBP11P1 gene (cg13340705). The WW domain binding protein 11 pseu-
dogene 1 (WBP11P1) has no known function and the association was not persistent in early or mid-childhood 
suggesting, that this modification is transient at birth. The single CpG (cg13416866) associated with prenatal mer-
cury exposure in males in the Torsin Family 4, Member A gene (TOR4A) persisted into mid childhood but was 
not associated with cognitive scores. However, these individual loci have not been previously implicated in mer-
cury toxicity, and the evidence for functional or phenotypic association with cognitive performance was limited.

Finally, in the three previous epigenome-wide studies of prenatal mercury exposure no overlaps between 
differentially methylated regions or CpGs have been documented. One study that included epigenome-wide 
analysis of placenta samples found that DNA methylation of the EMID2 gene was associated with prenatal mer-
cury exposure and neonate behavior. Interestingly both the EMID2 and PON1 gene are located in a region of 
chromosome 7 (q21–q31), experimentally shown to be sensitive to genomic imprinting using human-mouse 
monochromosomal hybrids51. Additionally, this region in PON1 has been shown to have parent of origin specific 
methylation involved in the etiology of Silver-Russell syndrome, but PON1 remains a disputed imprinted gene in 
humans52. Future studies should evaluate if prenatal mercury exposure targets other imprinted genes from this 
region. Heterogeneity of the DNA methylation targets across studies suggests that mercury’s associated epigenetic 
disruption might be time-sensitive during fetal development, emphasizing the importance of collecting both 
sensitive and time-specific biomarkers of exposure. Furthermore, mercury exposure levels in our cohort were 
relatively low but comparable to the general US population53. Therefore our results might not be generalizable to 
populations exposed to higher levels of mercury.

Our study has several limitations. First, in the absence of genotype information it is not possible to determine 
if genetic variants are responsible for the observed methylation differences. However, it has been shown that 
MeHg exposure inhibits PON1 activity even after controlling for the major known genetic variants, suggesting a 
dominant epigenetic control mechanism for the enzyme. While we observed associations between DNA methyla-
tion and gene expression these associations may not be generalizable to our cohort. Another important limitation 
of our study is the use of adult reference DNA methylation data to impute white blood cell distribution, as adult 
blood might not accurately capture leukocyte distribution in childhood. However, we used a cord blood reference 
panel to estimate cell proportions at birth, including nucleated red blood cells, and the persistence of epigenetic 
modifications were robust to white blood cell composition adjustment using different panels for cord blood and 
child blood. We also lack mercury exposure information during early and mid-childhood or any pesticide expo-
sure information and therefore the relative contribution of postnatal exposures cannot be determined. The study 
was observational in nature and confounding cannot be ruled out.

The present study has many strengths that include the use of second trimester maternal red-blood cell mer-
cury concentrations, an unbiased biomarker with an estimated half-life of 72 days54 and over 70% of the red-blood 
cell mercury is estimated to be methylmercury55. It is expected that this biomarker captured prenatal exposures 
occurring during critical windows of embryogenesis and fetal development. Although our sample size is moder-
ate, this is the largest epigenome-wide study of prenatal mercury exposure conducted to date and the only one to 
prospectively test for persistence of epigenetic modifications at two time points during childhood. Our moderate 
sample size enabled us to evaluate sex-specific differences. Furthermore, this cohort has detailed anthropomor-
phic and demographic information that allowed us to control for many potential confounders and test for asso-
ciations with cognitive test scores during early childhood. Detailed information on maternal diet also allowed us 
to control for fish intake, previously shown to be beneficial for children’s cognitive development, minimizing the 
possibility for negative confounding8. The analyses of regional and individual CpG sites methylation variability is 
also an important strength of the present study. Lastly, the potential for functional changes in DNA methylation 
with gene expression was evaluated in a separate set of cord blood samples further supporting our findings.

This study adds to the growing body of evidence that suggests that PON1 serves as a potential target of toxic 
environmental exposures particularly during fetal development and childhood. Furthermore, DNA methylation 
of PON1 could modulate the association between prenatal mercury exposure, cognitive development and other 
health outcomes in children. Epigenetic modifications leading to functional genomic changes could help explain 
heterogeneous findings observed for prenatal mercury exposure and cognitive development in different popula-
tions. This will also provide tools to design future targeted public health interventions.

Methods
Study Population.  Mothers and children were participants in Project Viva, a prospective pre-birth cohort 
study conducted in Massachusetts, USA56. This cohort was recruited between 1999 and 2002 during their first 
prenatal visit at Atrius Harvard Vanguard Medical Associates, a large multispecialty group practice. Mothers 
provided written informed consent at study recruitment and at every follow-up visit. All study protocols were 
reviewed and carried out in accordance with guidelines approved by the human subjects committee of Harvard 
Pilgrim Health Care. Eligibility criteria included fluency in English, gestational age less than 22 weeks at the first 
prenatal visit, and singleton pregnancy. Additional details of the cohort have been published elsewhere56. Of the 
total 2,128 mother-infants pairs in the cohort, we measured prenatal mercury exposure from 1019. Of these, we 
included 321 with available measurements of cord blood DNA methylation. Persistence of the epigenetic mod-
ifications were evaluated in 75 children with available whole blood DNA methylation measurements from early 
childhood (2.9 to 4.9 years) and 291 children with blood samples from mid-childhood (6.7 to 10.5 years) as well 
as prenatal mercury concentrations. Early and mid-childhood participants were not restricted to participants 
with cord blood samples and therefore are not mutually inclusive. Of the 321 infants eligible for analyses with 
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cord blood samples, 70 were included for early childhood analyses and 160 in the mid-childhood analyses. The 
number of participants sampled in both early and mid-childhood was 43.

Red Blood Cell Mercury (RBC-Hg) and Fish Intake.  Sample collection and exposure assessment for 
prenatal mercury exposure in this cohort has been previously described in detail8. Briefly, at the second tri-
mester visit we obtained a maternal blood sample that was centrifuged to separate plasma from erythrocytes. 
Erythrocyte aliquots were stored at −70 °C and analyzed for total mercury by using the Direct Mercury Analyzer 
80 (Milestone Inc., Monroe, Connecticut). Results are reported as mercury content in the original red blood 
cell sample. The detection limit was 0.5 ng/g of sample, and the percentage recovery for standards ranged from 
90 to 110%. At mid-pregnancy, participants also completed a semi-quantitative food frequency questionnaire 
that we previously calibrated against erythrocyte levels of elongated n-3 fatty acids57. Participants self-reported 
on the consumption of fish with four questions: “canned tuna fish (3–4 oz.)”; “shrimp, lobster, scallops, clams (1 
serving)”; “dark meat fish, e.g. mackerel, salmon, sardines, bluefish, swordfish (3–5 oz.)”; and “other fish, e.g. cod, 
haddock, halibut (3–5 oz.)”, during the preceding 3 months. Six frequency response options ranged from “never/
less than 1 per month” to “1 or more servings per day.” We combined responses to estimate average total fish 
intake in servings per week.

DNA Extraction and Sample Collection.  Trained medical personnel obtained umbilical cord blood 
samples immediately upon delivery storing them in a dedicated refrigerator at 4 °C and transported to a cen-
tral location within 24 hours of sample collection. Similarly, whole blood samples collected during early, and 
mid-childhood were stored at 4 °C and transported to the central storage location for sample processing. 
Subsequently, trained laboratory staff processed the samples on the same day of arrival, and DNA was extracted 
using the Qiagen Puregene Kit (Valencia, CA). Aliquots were then stored at −80 °C until analysis.

DNA methylation Assessment and Quality Control.  Buffy coat DNA was sodium bisulfite converted 
using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA). Samples were allocated to plates using 
a two-stage algorithm by randomizing 12 samples to each chip and then randomly assigning eight chips to each 
of the 15 plates used to ensure balance by sex across chips and plates. Samples were shipped to Illumina Inc., and 
analyzed using the Infinium Human Methylation450 BeadChip (Illumina, San Diego, CA) following standard 
manufacturer’s protocols. The Human Methylation450 BeadChip measures DNA methylation at >485,000 CpG 
sites simultaneously at a single nucleotide resolution, covering 99% of the RefSeq genes.

We processed raw methylation image files using the minfi package in R58. Samples were excluded as poten-
tially miss-labelled if they were mismatches on sex (n = 6), genotype (n = 6) or were deemed to be low in quality 
(n = 12). Technical replicates were also excluded from the analysis (n = 40). Correlation coefficients for indi-
vidual probes among all technical replicates ranged from 0.98 to 1. We excluded individual probes if they had 
non-significant detection P-values (P > 0.05) for more than 1% of the samples. Additionally, non-CpG probes 
(i.e. rs and ch), probes in X and Y chromosomes, SNP-associated probes at either the single base extension or 
within the target region were removed for SNPs that have a minor-allele frequency of >5%. Previously identified 
non-specific and cross-reactive probes within the array along with polymorphic CpG loci were also excluded 
from the analysis59. After quality control on the probes, the total number of autosomal CpGs left for analysis was 
384,349 loci for all the cord blood samples. Background correction and dye-bias equalization was performed 
via the normal-exponential out-of-band (noob) correction method60. Finally, a β-mixture quantile intra sample 
normalization procedure (BMIQ) was applied to the resulting data to reduce the potential bias that can arise from 
type2 probes59. For each CpG site, methylation is reported as average β-value = M/(M + U + ε), where M and U 
represent the average fluorescence intensity from the probe corresponding to the methylated and unmethylated 
target CpG and ε = 100 is a small quantity to protect against division by zero. Thus, the average β-value is an 
interval scaled quantity between zero and one interpreted as the fraction of DNA molecules whose target CpG is 
methylated.

We used ComBat61 to correct for Batch effects from plate and other potential sources of technical variability in 
methylation measurements. We visually inspected the effectiveness of adjustment for batch using the four main 
principal components before and after batch adjustment. Strip plots of control probes were visually examined for 
bisulfite conversion and specificity. Density plots for the β-values were examined across samples at each normali-
zation step. Methylation values on the β-scale were logit transform to M-values as previously described to be more 
appropriate for differential analysis of DNA methylation62. All tables and results are presented on the β-value scale 
to ease interpretability.

Cognitive Outcomes in Early Childhood.  At the early childhood visit, trained research personnel admin-
istered the Peabody Picture Vocabulary Test (PPVT) and the Wide Range Assessment of Visual Motor Abilities 
(WRAVMA) cognitive tests. The PPVT evaluates receptive vocabulary for children age 2 or older based on a 
national reference sample and it is strongly correlated (r > 0.90) with verbal and full-scale intelligence quotient 
of the Wechsler Intelligence Scale for Children-III63. The Wide Range Assessment of Visual Motor Abilities 
(WRAVMA) evaluates domains of visual motor development and is moderately correlated with intelligence quo-
tient (r~0.60)64.

Statistical Analysis
We calculated means and standard deviations (SD) or sample size and percentage for all covariates to describe 
the study population during the three time points: birth, early childhood (2.9 to 4.9 years) and mid-childhood 
(6.7 to 10.5 years). White blood cell composition was estimated from DNA methylation measurements using the 
Houseman projection method65 from isolated cell types. To estimate cell types composition in cord blood we used 
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a reference panel of nucleated cells isolated from cord blood (leukocytes and nucleated red blood cells)66 and an 
adult leukocyte reference panel for blood samples collected in early or mid-childhood as implemented in minfi58, 67.  
We conducted a principal component analysis in the resulting 384,349 CpGs across all cord blood samples and used 
univariate linear regression models to explore associations among each of the top 30-principal components with 
phenotypic and technical covariates using the EnMix Bioconductor package of R68. All analyses were carried out 
using the R statistical package, version 3.2.3 (www.r-project.org/).

Differentially Methylated Regional Analyses.  We examined the association of prenatal mercury expo-
sure with differentially methylated regions (DMRs) in cord blood using the R Bioconductor package DMRcate69. 
This regional analysis method was chosen over other available methods because it has an agnostic approach to 
both genomic annotation and direction of effect estimates. Briefly, this package first fits individual linear regression 
models using limma for each CpG and subsequently applies a Gaussian kernel smoothing function to test statistics 
grouping significant probes based on a maximum distance of λ = 1,000 base pairs. Significance testing among DMRs 
are adjusted for multiple comparisons using an FDR < 0.05. Regional analyses were performed in cord blood for all 
of the samples and also stratified by sex while adjusting for child gestational age at delivery, sex (if not stratified), and 
estimated nucleated cell types in cord blood (CD8+, CD4+, Natural Killer cells, Monocytes, B-cells and nucleated red 
blood cells). As well as maternal age, race/ethnicity, mean weekly fish intake during pregnancy, pre-pregnancy BMI, 
smoking during pregnancy, parity and college education.

Among significant DMRs found relative to log2-transformed mercury exposure we used robust linear models 
to estimate the association of each CpG in the region as well as mean methylation levels of all CpG sites in the 
DMR relative to maternal RBC-Hg concentrations adjusting for potential confounders. Persistence of the epigenetic 
changes was evaluated in early and mid-childhood blood DNA using similar robust linear models. Multivariate 
linear models were adjusted for the same covariates as the cord blood models with the exceptions that child race 
was used instead of maternal race, white blood cell composition was estimated from whole blood DNA methylation 
using an adult reference panel, and models were further adjusted by age of the child in days at the time of the blood 
draw. Associations were considered to be persistent with P < 0.05.

CpG-by-CpG Analyses.  We evaluated methylation differences at individual CpG sites in cord blood relative 
to maternal RBC-Hg concentrations using robust linear regression with heteroskedasticity-consistent estima-
tors to model the methylation levels of each individual CpG on the M-value scale as the dependent variable and 
log2-transformed prenatal mercury exposure as the main predictor while adjusting for the same covariates as in 
the regional analyses. CpG-by-CpG analyses were further stratified by infant sex to evaluate sex-specific epigenetic 
disruption at individual sites. The genomic inflation factor (λ) for the overall analysis was 0.99 indicating of no major 
systemic biases. Statistical significance for the CpG-by-CpG analyses was evaluated using a Bonferroni adjusted level 
of significance (P < 1.3 × 10−7). Although the epigenome-wide analysis was performed on the M-value scale, all 
estimates are reported as percent change in methylation along with the corresponding P-values from robust linear 
regression models performed on the β-value scale, for ease of interpretability.

We carried forward individual loci with a P < 1.3 × 10−7 in cord blood analyses to subsequent analyses 
for blood samples collected during early and mid-childhood to evaluate the persistence of associations using 
multivariate robust linear regression models adjusting for covariates. We considered P < 0.05 as indicating the 
persistence of epigenetic alterations in early or mid-childhood for the CpG-by-CpG analyses.

DNA Methylation and Gene Expression.  To evaluate if the epigenetic alterations observed relative to pre-
natal mercury exposure are related to functional genomic changes in cord blood (i.e. expression), we used two 
publicly available datasets from an independent birth cohort found in the Gene Expression Omnibus (GEO) 
repository. Specifically, we identified DNA methylation data from 38 cord blood samples that used the Illumina 
Human Methylation450 array (GSE62924) and paired them with gene expression profiles from the same subjects 
(GSE48355) measured using the Affymetrix Human Gene 2.0 ST array. The study design, methods, sample collec-
tion and processing for this birth cohort have been previously described22.

We estimated correlation coefficients between gene expression and DNA methylation at CpGs within the DMR 
and at individual sites observed to be differentially methylated in cord blood relative to prenatal mercury exposure 
in our data. For the DMR found to be associated with prenatal mercury exposure, correlation coefficients between 
expression and mean methylation levels of the region as well as at individual CpGs within the region were tested. 
Correlation coefficients along with 95% Confidence Intervals (95% CIs) were used to estimate the association.

Cord Blood DNA Methylation and Cognitive Performance.  Linear regression models were used to esti-
mate the association between differentially methylated DMRs or CpGs found in cord blood and cognitive test scores 
(PPVT and WRAVMA). Models were adjusted for maternal education at study enrollment, maternal PPVT scores, 
self-reported alcohol use during pregnancy, fetal growth (sex-specific z-score of birth weight/gestational age), mean 
weekly fish intake during pregnancy, child age in days at the time of testing, sex (if not stratified), child race, parity 
and maternal smoking during pregnancy. Estimates are reported for every 10% increase in methylation levels along 
with 95% CIs.
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