
UCLA
UCLA Electronic Theses and Dissertations

Title
Fundamental Results on Asynchronous Parallel Optimization Algorithms

Permalink
https://escholarship.org/uc/item/5qf644g6

Author
Hannah, Robert Rafaeil

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5qf644g6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Fundamental Results

on Asynchronous Parallel

Optimization Algorithms

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Robert Rafaeil Hannah

2019

c© Copyright by

Robert Rafaeil Hannah

2019

ABSTRACT OF THE DISSERTATION

Fundamental Results

on Asynchronous Parallel

Optimization Algorithms

by

Robert Rafaeil Hannah

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Wotao Yin, Chair

In this thesis, we present a body of work on the performance and convergence properties of

asynchronous-parallel algorithms completed over the course of my doctorate degree (Hannah,

Feng, and Wotao Yin 2018; Hannah and Wotao Yin 2017b; T. Sun, Hannah, and Wotao

Yin 2017; Hannah and Wotao Yin 2017a). Asynchronous algorithms eliminate the costly

synchronization penalty of traditional synchronous-parallel algorithms. They do this by

having computing nodes utilize the most recently available information to compute updates.

However, it’s not immediately clear whether the trade-off of eliminating synchronization

penalty at the cost of using outdated information is favorable.

We first give a comprehensive theoretical justification of the performance advantages of

asynchronous algorithms, which we summarize as "Faster Iterations, Same Quality" (Hannah

and Wotao Yin 2017a). Under a well-justified model, we show that asynchronous algorithms

complete "Faster Iterations". Using renewal theory, we demonstrate how network delays,

heterogeneous sub-problem difficulty and computing power greatly hinder synchronous

algorithms, but have no impact on their asynchronous counterparts. We next prove the first

exact convergence rate results for a variety of synchronous algorithms including synchronous

ARock and synchronous randomized block coordinate descent (sync-RBCD). This allows us

to make a fair comparison between these algorithms and their asynchronous counterparts.

ii

Finally we show that a variety of asynchronous algorithms have a convergence rate that

essentially matches the previously derived exact rates for synchronous counterparts so long

as the delays are not too large. Hence asynchronous algorithms complete faster iteration that

are of the "Same Quality" as synchronous algorithms. Therefore we conclude that a wide

variety of asynchronous algorithms will always outcompete their synchronous counterparts if

the delays are not too large, and especially at scale.

Next we present the first asynchonous Nesterov-accelerated algorithm that attains a

speedup: A2BCD (Hannah, Feng, and Wotao Yin 2018). We first prove that A2BCD attains

NU_ACDM’s complexity to highest order. NU_ACDM is a state-of-the-art accelerated coordinate

descent algorithm (Allen-Zhu, Qu, et al. 2016). Then we show that both A2BCD and NU_ACDM

both have optimal complexity. Hence because A2BCD has faster iterations, and optimal

complexity, it should be the fastest coordinate descent algorithm. We verify this with

numerical experiments comparing A2BCD with NU_ACDM. We find that A2BCD is up to 4-5x

faster than NU_ACDM, and hence conclude that our algorithm is the current fastest coordinate

descent algorithm that exists. Finally we derive a second-order ODE, which is the continuous-

time limit of A2BCD. The ODE analysis motivates and clarifies our proof strategy.

Lastly, we present earlier foundational work that comprises the basis of the technical

innovations that made the previous results possible (Hannah and Wotao Yin 2017b). We show

that ARock and its many special cases may converge even under unbounded delays (both

stochastic and deterministic). These results sidestep longstanding impossibility results derived

in the 1980s by making slightly stronger assumptions. They were also an early demonstration

of the power of meticulous Lyapunov-function construction techniques pioneered in this body

of work.

iii

The dissertation of Robert Rafaeil Hannah is approved.

Lieven Vandenberghe

Deanna Needell

Stanley J. Osher

Wotao Yin, Committee Chair

University of California, Los Angeles

2019

iv

To my parents, William and Mary Hannah, who over decades supported me and made this

possible.

v

TABLE OF CONTENTS

I Introduction 1

1 Introduction . 2

1.1 Motivation . 4

1.2 Advantages of asynchronous algorithms . 5

1.3 Overview . 6

2 Literature Review . 9

2.1 Earlier work . 9

2.2 More recent work . 10

2.3 Asynchronous acceleration and coordinate descent 12

2.4 Unbounded delay . 14

3 Preliminaries and Background . 15

3.1 Convex and smooth functions . 15

3.2 Operators . 17

3.3 KM iterations . 18

3.4 Special cases of KM . 19

3.5 Duality and finite sums . 21

4 Asynchronicity . 23

4.1 The ARock algorithm . 23

4.2 Setup and assumptions . 24

4.3 Faster Iterations + Same Quality = Faster Algorithms 25

4.4 Asynchronicity error . 26

vi

4.5 General strategy for constructing Lyapunov Functions 26

II Faster Iterations, Same Quality 28

5 Faster Iterations . 30

5.1 Implementation setup . 30

5.2 Iteration time model . 31

5.3 The effect of random delays . 31

5.4 Heterogeneous update difficulty . 33

5.5 Heterogeneous computing node power . 34

5.6 Summary . 35

6 Sharp Iteration Complexity for Synchronous Algorithms 36

6.1 Synchronous ARock . 37

6.2 Sharp Complexity Results for RBCD . 39

7 Same Quality: Stochastic unbounded delays 43

7.1 Main result . 43

7.2 Preliminaries . 46

7.3 The cross term . 46

7.4 The Lyapunov function . 49

7.5 Linear convergence . 50

7.6 Proof of Theorem 2 . 52

III Asynchronous Acceleration 54

8 Asynchronous Acceleration . 56

vii

8.1 Summary of Results . 56

8.2 Main Theoretical Results . 58

8.3 Optimality . 62

9 Proofs for Asynchronous Acceleration . 63

9.1 Starting point . 63

9.2 The Cross Term . 64

9.3 Function-value term . 65

9.4 Asynchronicity error . 66

9.5 Master inequality . 68

9.6 Proof of main theorem . 70

10 Optimality proof . 75

11 ODE Analysis of Acceleration . 79

11.1 Derivation of ODE for synchronous A2BCD 80

11.2 Convergence proof for synchronous ODE . 83

11.3 Asynchronicity error lemma . 83

11.4 Convergence analysis for the asynchronous ODE 84

12 Numerical Results on Acceleration . 86

12.1 Efficient implementation . 88

12.2 Parameter selection and tuning . 89

12.3 Sparse update formulation . 89

IV Weak Convergence Under Unbounded Delay 92

viii

13 Proof of Convergence for Stochastic Unbounded Delays 94

13.1 Main Result . 94

13.2 Preliminaries . 96

13.3 Proof outline . 97

13.4 Preliminary results . 98

13.4.1 A fundamental inequality . 98

13.5 Constructing Lyapunov function . 100

13.5.1 Analysis of the Lyapunov function 100

13.6 Convergence proof . 103

13.6.1 Norm convergence . 104

13.6.2 Fixed-point-residual strong convergence 106

13.6.3 Proof of Theorem 7 . 106

13.7 Parameter choice . 107

13.8 Bounded delay . 107

14 Proof of Convergence for Unbounded Deterministic Delays 108

14.1 Building a Lyapunov function . 110

14.1.1 Analysis of the Lyapunov function 111

14.2 Convergence proof . 111

14.2.1 Norm convergence . 112

14.2.2 Fixed-point-residual strong convergence on subsequences of bounded

delay . 113

14.2.3 Proof of Theorem 10 . 114

14.3 Parameter choice . 114

15 Bibliography . 115

ix

LIST OF FIGURES

x

LIST OF TABLES

3.1 Selection of common algorithms that are special cases of KM iteration, and their

corresponding fixed-point operator. 20

12.1 Sub-optimality f(yk) − f(x∗) (y-axis) vs time in seconds (x-axis) for A2BCD,

synchronous NU_ACDM, and asynchronous RBCD for data sets w1a, wxa and aloi

for various values of λ. 88

13.1 Example delay distributions and step sizes . 96

xi

ACKNOWLEDGMENTS

I wanted take this opportunity to thank my family, friends, collaborators and my committee.

I am particularly indebted to my adviser, Professor Wotao Yin, who despite a multitude

of responsibilities has been the best mentor and collaborator that I could have asked for. I

was extremely fortunate that I met Prof. Yin years ago when he came to UCLA. Over the

years his advice, wisdom, and understanding have guided me to great success in my research,

and life in general.

I also wanted to thank the other members of my committee, Prof. Stanley Osher,

Prof. Deanna Needell, and Prof. Vandenberghe for their advice, time and feedback. Your

perspective has greatly improved my work.

I also wanted to thank my collaborators: Dr. Lin Xiao, and Dr. Zeyuan Allen-Zhu for

giving me the opportunity to collaborate with them at Microsoft Research; Prof. Ernest Ryu

for his frequent advice, and for greatly improving my Scaled Relative Graph framework; Fei

Feng, Prof. Daniel O’Connor, Tao Sun, and Yanli Liu for their hard work and insights on

our shared projects.

Further, I wanted to thank many others who I’ve interacted with over the years and have

helped steer my research in a positive direction, including Dr. Zhimin Peng, Prof. Damek

Davis, Dr. Yat Tin Show, Dr. Tianyu Wu, Dr. Kun Yuan, Prof. Yangyang Xu, and many

others.

Finally, I wanted to thank my parents William and Mary Hannah who made this possible

through tremendous personal sacrifice over many years – staying up late helping me with

homework, quizzing me for mathematics tests on the train, sending me to Sydney Grammar

School, and generally providing a loving environment that allowed me to reach my potential.

xii

VITA

2007-2012 Bachelor of Advanced Science (Mathematics, and Physics),

University of Sydney, Australia.

2013-2019 Teaching and Research Assistant, Department of Mathematics

University of California, Los Angeles, Los Angeles, CA.

Teaching assistant graduate-level ODEs and PDEs.

2017 Software Engineering Internship (Bing Ads, Core AI)

Microsoft Corporation, Washington.

2018 Research Intern (Machine Learning and Optimization Group)

Microsoft Corporation, Washington.

PUBLICATIONS

Ernest K. Ryu, Robert Hannah, and Wotao Yin. “Scaled Relative Graph: Nonexpansive

Operators via 2D Euclidean Geometry.” In: (Feb. 26, 2019). arXiv: 1902.09788 [math]

Robert Hannah, Fei Feng, and Wotao Yin. “A2BCD: Asynchronous Acceleration with

Optimal Complexity.” In: International Conference on Learning Representations. Sept. 27,

2018

Robert Hannah, Yanli Liu, et al. “Breaking the Span Assumption Yields Fast Finite-Sum

Minimization.” In: Advances in Neural Information Processing Systems 31. Curran Associates,

Inc., 2018, pp. 2312–2321

xiii

http://arxiv.org/abs/1902.09788
http://arxiv.org/abs/1902.09788
https://arxiv.org/abs/1902.09788
https://openreview.net/forum?id=rylIAsCqYm
https://openreview.net/forum?id=rylIAsCqYm
http://papers.nips.cc/paper/7499-breaking-the-span-assumption-yields-fast-finite-sum-minimization.pdf
http://papers.nips.cc/paper/7499-breaking-the-span-assumption-yields-fast-finite-sum-minimization.pdf

Robert Hannah and Wotao Yin. “More Iterations per Second, Same Quality – Why Asyn-

chronous Algorithms May Drastically Outperform Traditional Ones.” In: (Aug. 17, 2017).

arXiv: 1708.05136

Tao Sun, Robert Hannah, and Wotao Yin. “Asynchronous Coordinate Descent under More

Realistic Assumptions.” In: Advances in Neural Information Processing Systems 30. 2017,

pp. 6183–6191

Robert Hannah and Wotao Yin. “On Unbounded Delays in Asynchronous Parallel Fixed-Point

Algorithms.” In: Journal of Scientific Computing (Dec. 12, 2017), pp. 1–28

xiv

http://arxiv.org/abs/1708.05136
http://arxiv.org/abs/1708.05136
https://arxiv.org/abs/1708.05136
http://papers.nips.cc/paper/7198-asynchronous-coordinate-descent-under-more-realistic-assumptions.pdf
http://papers.nips.cc/paper/7198-asynchronous-coordinate-descent-under-more-realistic-assumptions.pdf
https://link.springer.com/article/10.1007/s10915-017-0628-z
https://link.springer.com/article/10.1007/s10915-017-0628-z

Part I

Introduction

1

CHAPTER 1

Introduction

The confluence of a combination of factors has lead to the increasing importance and interest

in parallelization. Broadly, we have an enormous growth in demand for computation, while

at the same time we are running into fundamental barriers to increasing the power of serial

and serial-like computing systems.

On the demand side, the most obvious of these factors is the explosion in the availability

and size of data sets. Larger data sets allow us to fit more complex models to this data, which

requires ever larger amounts of computation, memory and communication. Another related

factor is clearly the increasing scale and sophistication of the operations of human endeavor.

The larger a system, the larger and more complicated the space of possible decisions is, and

the more there is to gain from fractional improvements. For, say, a small bookstore, beyond

several obvious decisions to increase revenue, there comes a point at which optimizing further

is not worth the additional effort. However, even a one percent increase in revenue for, say,

Amazon would have a multi-billion dollar impact. Nothing is too small to not be worth

optimizing.

On the supply side, we have both technological and theoretical factors. The power of

an individual core, after 30 years’ exponential growth, has stopped increasing significantly

since 2005. Before this point, running the same serial algorithm on the same problem would

become faster year-over-year because of the increasing power of individual cores, however this

is no longer the case. Moving forward, CPUs will only become faster through the addition of

more cores rather than more powerful cores (Sutter 2005; Sutter 2011). Moreover, even if

Moore’s law had continued to hold on a single chip, the growth rate of the size of data sets

has vastly outstripped the growth rate of computational power for quite some time.

2

We are also at the point at which serial or parallel-agnostic algorithms are reaching their

limits in many settings. There are now many serial algorithms that are essentially optimal

in many contexts – for instance Nesterov’s accelerated gradient method in the full-gradient

setting (Yurii Nesterov 1983), NU_ACDM in the coordinate setting (Allen-Zhu, Qu, et al. 2016),

and Katyusha in the finite-sum setting (Allen-Zhu 2017). Thankfully parallel optimization is

far less well understood, and we have many less-explored avenues for increasing algorithmic

efficiency.

Parallel optimization is fundamentally more complex than serial optimization. This is

because many factors that are insignificant or even non-existent for serial algorithms can

become the dominant cost at scale in parallel systems. And clearly, all limiting factors to the

efficiency of serial systems are necessarily potentially limiting factors in parallel systems as well.

These parallel factors include communication bandwidth, latency, iteration efficiency, network

topology, heterogeneity, and many others – some surely undiscovered. The computational

complexity of a serial optimization algorithm has always been a reasonable proxy for the

algorithm’s speed (with many exceptions however). In contrast, for large parallel systems

this is not even approximately the case.

Parallel systems exhibit fundamental trade offs, whereby the fastest algorithm will

strongly depend on the specific computing system that we are using. So for instance, there

is a fundamental trade-off between memory and communication in efficient matrix-matrix

multiplication. It is well-known that modern computing systems are vastly over-indexed

on floating point operation speed relative to inter-computing-node bandwidth, and hence

it can become a dominant cost that should be minimized. In (Solomonik and Demmel

2011) it is shown that having redundant local memory allows computing nodes to “avoid

communication”, allowing them to complete the multiplication much faster while actually

not reducing the total number of floating point operations.

There are a multitude of unresolved questions related to building high-performance solvers.

One extremely important factor is delayed communication between computing nodes. This

frequently becomes a bottleneck and dominant cost at scale. In this work we present a body

of work that helps clarify and resolve this thorny problem in the context of optimization
3

solvers.

1.1 Motivation

The vast majority of parallel algorithms are synchronous algorithms. For instance the

synchronous-parallel Gauss-Jacobi algorithm divides the problem space RN into p coordinate

blocks. At every iteration, these blocks are updated by a corresponding set of p processors, and

each processor’s update is communicated to every other processor. Synchronous algorithms

are simpler to analyze and implement. They are often mathematically equivalent to a serial

algorithm, and hence retain the same convergence guarantees. However, they have major

drawbacks, such as synchronization penalty. At each iteration, all processors must wait for

the results of the slowest processor to be received in order to begin the next iteration.

Synchronous algorithms may become impractical at scale, or on a busy network. Network

latency is a major problem and bottleneck for parallel algorithms. Over a 20-25 year period

on a wide range of systems, latency has improved by a factor of 20− 40 whereas CPU speeds

have improved by a factor of 1000 (Rumble et al. 2011). This means that synchronizing at

every step can be extremely expensive, and the divergence between processing speeds and

latency will make this problem worse over time.

Moreover, these relatively modest improvements in latency refer to the hardware’s max-

imum performance. Latency and bandwidth are much worse in large data centers, which

are typically very congested: Spikes in traffic can cause latency to increase temporarily by a

factor of 20 (Rumble et al. 2011). Congestion also causes packet loss: Some data may fail to

reach all parties, and must be sent again. If any computing node in a synchronous-parallel

system experiences congestion issues or packet-loss, the entire system must wait for that

one node. In addition, dedicated access to computing nodes often cannot be guaranteed.

Nodes may have unexpected or unpredictable demands placed on them by others user, may

temporarily go offline, etc. causing further unpredictable delays. The more processors in the

system, the more likely that at least of the computing nodes will experience these kinds of

problems in each iteration, leading the entire system to frequently grind to a halt.

4

In addition, sometimes the structure of the problem makes synchronous-parallel solvers

inefficient. For instance, it may not be feasible to break a problem into subproblems of

equal difficulty. If the computing nodes have roughly equal computational power, nodes

that are assigned easier subproblems will frequently be waiting on nodes assigned harder

subproblems. The more heterogeneous the difficulty of subproblems, the more problematic

this issue becomes.

What is needed is a more flexible framework for parallel optimization: One that is resilient

to latency, unpredictable and congested networks, packet loss, heterogeneous subproblem

difficulty, and other practical issues.

1.2 Advantages of asynchronous algorithms

A node in an asynchronous algorithm, instead of waiting to receive results from all other

nodes, simply computes its next update using the most recent information it has received.

Using outdated information will often still result in convergence if the asynchronous algorithm

is properly designed.

Latency, congestion, and random delays will no longer cripple the system, because proces-

sors can make progress without waiting on the results of the slowest processor. Asynchronous

algorithms are resilient to packet-loss, unexpected drains on computing power, the loss of

a node, and many other common problems on large congested networks. The speed of

asynchronous algorithms is more related to the aggregate computing power and bandwidth

of the system, rather than the speed of the slowest processor. In addition, the algorithms

discussed in this work dynamically balances load with random coordinate block assignment:

Processors take on as much work as they are currently able to, and no workload tuning is

required.

There is, however, a trade-off: Using outdated information means the error decreases

less per iteration. However more iterations can occur per second because of vastly reduced

synchronization penalty. Promising empirical obtained in (Z. Peng et al. 2016) suggest that

this trade-off is a favorable one.

5

1.3 Overview

In this work, we present a series of results on the performance and convergence of asynchronous

parallel algorithms developed in a number of recent papers (Hannah, Feng, and Wotao Yin

2018; Hannah and Wotao Yin 2017b; T. Sun, Hannah, and Wotao Yin 2017; Hannah and

Wotao Yin 2017a). Part I is introductory. In Chapter 2, we review relevant literature on

asynchronous algorithms, coordinate methods, and Nesterov acceleration. In Chapter 3, we

review relevant theoretical background and notation for our results. In Chapter 4, we define

ARock and our model of asynchronicity more precisely. We also outline the main thesis of

this body of work: That asynchronous algorithms complete faster iterations, and suffer no

complexity penalty for using outdated information. We also outline the general convergence

proof strategy. The remaining parts of this work – Part II, Part III, and Part IV – present

the main results of (Hannah and Wotao Yin 2017a; Hannah, Feng, and Wotao Yin 2018;

Hannah and Wotao Yin 2017b) respectively.

Part II presents the results of (Hannah and Wotao Yin 2017a), which relate to linear

convergence of various (non-accelerated) asynchronous algorithms. Chapter 5 develops a

model of the iteration time in synchronous and asynchronous systems, and investigates factors

that lead asynchronous algorithms to complete much faster iterations. Chapter 6 proves

exact/ sharp convergence rates for various synchronous algorithms, such as synchronous

RBCD, so that we are able to make a fair comparison to their asynchronous counterparts.

Finally, in Chapter 7 we show that ARock, and hence all of its special cases, has essentially

the same complexity as in Chapter 6 so long as the delay is not too large. Hence it suffers

no complexity penalty for using outdated information. This holds true even for potentially

unbounded delays. Taking the results of this part together, we conclude that a wide variety

of asynchronous algorithms will vastly outperform their synchronous counterparts.

Part III presents the results of (Hannah, Feng, and Wotao Yin 2018), which echo those of

Part II. We propose and prove the convergence of the Asynchronous Accelerated Nonuniform

Randomized Block Coordinate Descent algorithm (A2BCD), the first asynchronous Nesterov-

accelerated algorithm that achieves optimal complexity. A2BCD is based on NU_ACDM, which

6

was previously the fastest existing coordinate descent algorithm. Chapter 8 defines A2BCD,

and states the main results of this part. In Chapter 9, we prove that A2BCD attains NU_ACDM’s

state-of-the-art iteration complexity to highest order, so long as delays are not too large.

This is significant because it was an open question whether it was possible to make an

asynchronous accelerated algorithm that had good complexity. The proof is very different

from that of (Allen-Zhu, Qu, et al. 2016), and involves significant technical innovations and

complexity related to the analysis of asynchronicity. In Chapter 10, we prove that A2BCD (and

hence NU_ACDM) has optimal complexity to within a constant factor over a fairly general class

of randomized block coordinate descent algorithms. In Chapter 11, we derive a second-order

ordinary differential equation (ODE), which is the continuous-time limit of A2BCD. This

extends the ODE found in (Su, Boyd, and Candes 2014) to an asynchronous accelerated

algorithm minimizing a strongly convex function. We prove this ODE linearly converges to a

solution with the same rate as A2BCD’s. The ODE analysis motivates and clarifies the our

proof strategy of the main result. In Chapter 12, we confirm with numerical experiments

on a small-scale shared-memory architecture that A2BCD is the current fastest coordinate

descent algorithm. We find that A2BCD can approximately solve the (dual) ridge regression

problem up to 4− 5× faster than NU_ACDM for various data sets from LIBSVM (Chang and

C.-J. Lin 2011). We also discuss critical elements of an efficient implementation, including

the sparse-update reformulation of A2BCD and parameter tuning.

Lastly, in Part IV, we present earlier foundational work that comprises the basis of the

technical innovations that made the previous results possible (Hannah and Wotao Yin 2017b).

We consider ARock on a merely nonexpansive operator. In contrast to the previous parts, in

this regime it is well-known that only weak convergence is possible in general. We extend

the results of (Z. Peng et al. 2016) to show that ARock converges weakly to a solution, even

under unbounded delays. We consider stochastic delays in Chapter 13, and deterministic

unbounded delays in Chapter 14. These results were the first general convergence results

for asynchronous unbounded delay. They sidestepped earlier impossibility results (D. P.

Bertsekas and J. N. Tsitsiklis 1997) by making slightly stronger assumptions. They were also

an early demonstration of the power of meticulous Lyapunov-function construction techniques

7

pioneered in this body of work.

8

CHAPTER 2

Literature Review

In this chapter we review previous work related to our results.

2.1 Earlier work

Asynchronous algorithms were first proposed in (Chazan and Miranker 1969) to solve linear

systems. Since then, asynchronous algorithms have been applied to many fields including

nonlinear systems, differential equations, consensus problems, and optimization. General

convergence results and theory were developed later in (D. P. Bertsekas 1983; D. P. Bertsekas

and J. N. Tsitsiklis 1997; P. Tseng, D. Bertsekas, and J. Tsitsiklis 1990; Z. Q. Luo and

P. Tseng 1992; Z.-Q. Luo and Paul Tseng 1993; P. Tseng 1991) for partially and totally

asynchronous systems.

Coordinate algorithms update individual coordinates of a solution vector (x1, . . . , xm) one

at a time: first coordinate i(0), then i(1), etc. Until relatively recently, authors assumed that

this sequence of coordinates (x1, . . . , xm) is a deterministic sequence with very little restriction.

However, this imposes stronger restrictions on the problem. In asynchronous algorithms,

the update to the solution vector xk is computed using information from an old/outdated

point that is j(k) iterates in the past. These delays j(k) are usually also assumed to be

deterministic, but this appears to be relatively less restrictive. In (D. P. Bertsekas and

J. N. Tsitsiklis 1997), the authors describe two basic classes of deterministic asynchronous

scenarios that appeared in the literature.

Definition 1. Totally asynchronous iteration. Every block, xi, is updated infinitely

many times. Information from iteration k (i.e. the components of xk) is only used a finite

9

number of times.

Total asynchronicity is a very weak condition that leads to convergence results with

limited applicability, though there do exist applications to linear problems and strictly convex

network flow problems (D. P. Bertsekas and J. N. Tsitsiklis 1997; P. Tseng, D. Bertsekas,

and J. Tsitsiklis 1990). For instance, the asynchronous linear iteration x 7→ Ax+ b will only

converge in general if the largest eigenvalue of |A| (the matrix obtained by taking an absolute

value of every entry) is strictly less than 1 (Chazan and Miranker 1969; D. P. Bertsekas and

J. N. Tsitsiklis 1997).

Definition 2. Partially asynchronous iteration. There exists an integer B such that

every component, xi, is updated at least once every B steps; and the information used by

the processors cannot be older than B steps (bounded delay).

Partially asynchronous algorithms have better convergence properties. For instance, from

(P. Tseng 1991):

Theorem 1. For strongly convex f with ∇f Lipschitz, there is a step size γ1 such that for

any step size 0 < γ < γ1, asynchronous gradient descent with partial asynchronicity converges

at least linearly to a minimum, with rate O
(
(1− cγ)k

)
for some constant c.

However, the formulas for c or γ1 are complicated, and the authors did not include them.

These constants are also tiny, because one needs to assume the worst-case scenario. The

maximum delay B needs to be known in advance to determine the step size.

2.2 More recent work

Stochastic asynchronous algorithms began to appear recently, a popular example being

“Hogwild!” (Recht et al. 2011). These algorithms always assume a bounded delay (j(k) ≤ τ

for all k and i), and that the sequence of blocks i(k) is chosen independently and identically

with P[i(k) = j] = pj for fixed nonzero probabilities pj.

10

Many works on asynchronous algorithms consider conditions for a linear speedup. However

in Part II we show that the complexity of many algorithms is asymptotically equal to that

of their synchronous counterparts, which is a much stronger result than linear speedup. All

work except (Z. Peng et al. 2016; Hannah and Wotao Yin 2017b; Johnstone and Eckstein

2018; Davis 2016) pertain exclusively to the function-value setting. We work in the operator

setting mostly, which means that our results apply to a wider variety of algorithms.

In (Avron, Druinsky, and Gupta 2014), the authors prove linear convergence for an

asynchronous stochastic linear solver. In (Ji Liu et al. 2015), the authors prove function-value

convergence for asynchronous randomized block coordinate descent (RBCD). In each step,

one of the m coordinates is randomly chosen and updated with a gradient descent step. They

prove O(1/k) convergence for f convex with ∇f Lipschitz, and linear convergence when f is

also strongly convex. This was extended in (J. Liu and Wright 2015) to composite objective

functions. For condition number κ, they report a per-iteration linear convergence rate of

r = 1 − 1
2mκ . This implies an iteration complexity approximately 8 times higher than our

result in Part II. For linear speedup, they require a bounded delay of τ <∞ that satisfies

τ = O(m1/2), and τ = O(m1/4) for composite objectives. Our corresponding condition for

bounded delay is τ = O(mq) for 0 ≤ q < 1
2 for both composite and non-composite objectives.

However, as mentioned, our results hold also for unbounded delays.

In (Z. Peng et al. 2016), the authors propose the ARock algorithm, and prove its

convergence under bounded delays. They prove linear speedup for τ = O
(
m1/4

)
. In (Zhimin

Peng, Xu, et al. 2017) authors prove function-value linear convergence of an asynchronous

block proximal gradient algorithm under unbounded delays. However in both cases, it is

unclear how the iteration complexity they obtain compares to the corresponding synchronous

algorithm. Work has also been done on asynchronous algorithms for finite sums in the

operator setting (Davis 2016; Johnstone and Eckstein 2018). In (Hannah and Wotao Yin

2017b; T. Sun, Hannah, and Wotao Yin 2017; Zhimin Peng, Xu, et al. 2017; Cannelli et al.

2017) showed that many of the assumptions used in prior work (such as bounded delay

τ <∞) were unrealistic and unnecessary in general.

11

In (Mania et al. 2017), authors achieve a linear speedup for τ = O
(
m1/6

)
, but with

complexity O(κ2 ln(1/ε)) that is Ω(κ) times larger than ours. In (Lian, H. Zhang, et al.

2016), the authors review a number of asynchronous algorithm analyses and collect conditions

necessary for linear speedup on a fixed problem. But as mentioned, we prove a much stronger

result than linear speedup. Several months after (Hannah and Wotao Yin 2017a) appeared

online, (Dutta et al. 2018) made similar arguments about the theoretical advantages of

asynchronous algorithms for stochastic gradient descent.

There is also a rich body of work on asynchronous SGD. In the distributed setting, (Z.

Zhou et al. 2018) showed global convergence for stochastic variationally coherent problems

even when the delays grow at a polynomial rate. In (Lian, W. Zhang, et al. 2018), an

asynchronous decentralized SGD was proposed with the same optimal sublinear convergence

rate as SGD and linear speedup with respect to the number of workers. In (T. Liu et al.

2018), authors obtained an asymptotic rate of convergence for asynchronous momentum

SGD on streaming PCA, which provides insight into the trade-off between asynchrony and

momentum.

2.3 Asynchronous acceleration and coordinate descent

Coordinate descent methods, in which a chosen coordinate block i(k) is updated at every

iteration, are a popular way to solve minimization problems. Randomized block coordinate

descent (RBCD, (Y. Nesterov 2012)) updates a uniformly randomly chosen coordinate block i(k)

with a gradient-descent-like step: xk+1 = xk − (1/Li(k))∇i(k)f(xk) (for coordinate Lipschitz

constants L1, . . . , Lm). The complexity K(ε) of an algorithm is defined as the number of

iterations required to decrease the error E(f(xk) − f(x∗)) to less than ε(f(x0)− f(x∗)).

Randomized coordinate descent on σ-strongly convex, coordinate smooth f has a complexity

of K(ε) = O(m(L̄/σ) ln(1/ε)) (for L̄ = n−1∑m
i=1 Li).

Using a series of averaging and extrapolation steps, accelerated RBCD (Y. Nesterov 2012)

improves RBCD’s iteration complexity K(ε) to O(m
√
L̄/σ ln(1/ε)), which leads to much faster

convergence when L̄
σ
is large. This rate is optimal when all Li are equal (Lan and Y. Zhou

12

2017). Finally, using a special probability distribution for the random block index i(k), the

non-uniform accelerated coordinate descent method (Allen-Zhu, Qu, et al. 2016) (NU_ACDM)

can further decrease the complexity to O(∑m
i=1

√
Li/σ ln(1/ε)), which can be up to

√
m

times faster than accelerated RBCD, by Cauchy-Schwarz. NU_ACDM was the state-of-the-art

coordinate descent algorithm for solving minimization problems until (Hannah, Feng, and

Wotao Yin 2018).

We are only aware of one previous and one contemporaneous attempt at proving conver-

gence results for asynchronous Nesterov-accelerated algorithms. However, the first is not

accelerated and relies on extreme assumptions, and the second obtains no speedup. Therefore,

we claim that our results are the first-ever analysis of asynchronous Nesterov-accelerated

algorithms that attains a speedup. Moreover, our speedup is optimal for delays not too large.

The work of (Meng et al. 2016) claims to obtain square-root speedup for an asynchronous

accelerated SVRG in the case of finite sum minimization f(x) = n−1∑n
i=1 fi(x). In the case

where all n component functions have the same Lipschitz constant L, the complexity they

obtain reduces to (n+ κ) ln(1/ε) for κ = O(τn2) (Corollary 4.4). Hence authors do not even

obtain accelerated rates. Their convergence condition is τ < 1
4∆1/8 for sparsity parameter ∆.

Since the dimension d satisfies d ≥ 1
∆ , they require d ≥ 216τ 8. So τ = 20 requires dimension

d > 1015.

In a contemporaneous preprint, authors in (Fang, Huang, and Z. Lin 2018) skillfully

devised accelerated schemes for asynchronous coordinate descent and SVRG using momen-

tum compensation techniques. Although their complexity results have the improved
√
κ

dependence on the condition number, they do not prove any speedup. Their complexity is τ

times larger than the serial complexity. Since τ is necessarily greater than p, their results

imply that adding more computing nodes will increase running time. The authors claim that

they can extend their results to linear speedup for asynchronous, accelerated SVRG under

sparsity assumptions. And while we think this is quite likely, they have not yet provided

proof.

13

2.4 Unbounded delay

There were some unbounded delay results before (Hannah and Wotao Yin 2017b) in the

stochastic unconstrained convex optimization setting (John C. Duchi, Chaturapruek, and Ré

2015; Sra et al. 2016; Agarwal and John C Duchi 2011) . It is hard to compare results from

a different optimization setting to our results. However we note the following: We obtain

point convergence (xk ⇀ x∗) rather than function-value convergence (f
(
xk
)
→ f(x∗)) for

convex f that is not necessarily strongly convex. The deterministic unbounded delay criterion

in Theorem 9 is weaker than all other delay assumptions. The step size in these papers

converges to 0 as k → ∞, which is an inevitable part of the problem setting. This makes

asynchronicity error less of a problem. Nonetheless, in (Hannah and Wotao Yin 2017b), we

are able to prove convergence in our setting with a step size rule that is only a function of

the delay distribution despite unbounded delays (Theorem 6). The step size rule is invariant

in k, and does not converge to 0. Theorem 9 features a step size that adapts to current delay

conditions, once again invariant in k, which is cited as a key advantage of (Sra et al. 2016).

Our result in Theorem 9 can be seen as a halfway point between partial and total

asynchrony. Using a slightly stronger assumption than total asynchronicity, we are able to

prove a much stronger convergence result.

14

CHAPTER 3

Preliminaries and Background

In this work, H will always denote a Hilbert space, with norm ‖�‖ and inner product 〈�, �〉.

Frequently we will consider coordinate algorithms. Given H, we may split the space into m

orthogonal blocks of coordinates, and hence write any x ∈ H as:

x = (x1, . . . , xm)

Here xi denotes the ith block of x. In general, subscripts will denote blocks, and superscripts

will denote iterations. So for instance xki will denote the ith block of the kth iterate of some

algorithm. In the same way, we can write a gradient as ∇f(x) = (∇1f(x), . . . ,∇mf(x)),

where ∇if(x) is the ith block of the gradient. Pi will denote the projection onto the ith

block: Pi(x1, . . . , xm) = (0, . . . , 0, xi, 0, . . . , 0).

3.1 Convex and smooth functions

For a more thorough discussion of convex and smooth functions, see (Yurii Nesterov 2013;

Y. Nesterov 2012). Most the the inequalities that follow are derived in these sources. A

function f : H→ R ∪ {∞} is convex if:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y),∀x, y ∈ H, θ ∈ (0, 1)

We say f if proper if f(x) <∞ at some point x. The domain of f denoted dom(f) is the

set of points x for which f(x) <∞. For any differentiable convex function f , we have:

f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y

15

We say that f is µ-strongly convex for µ > 0 if f(x) − 1
2µ‖x‖

2 is convex. For any

differentiable µ-strongly convex f , we have (see (Yurii Nesterov 2013)):

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2µ‖x− y‖

2,∀x, y (3.1.1)

In many cases, a convex function f may not be differentiable. However, we may define the

subdifferential ∂f at a point f via:

∂f(x) = {u|f(y) ≥ f(x) + 〈y − x, u〉,∀x, y}

The subdifferential is a generalization of the gradient for functions that are not differentiable.

We say that f is L-smooth if it is differentiable with L-Lipschitz gradient ∇f . That is:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖,∀x, y

For such functions, we have (see (Yurii Nesterov 2013)):

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1
2L‖y − x‖

2,∀x, y (3.1.2)

〈∇f(y)−∇f(x), y − x〉 ≤ L‖y − x‖2,∀x, y (3.1.3)

For constant L1, . . . , Lm, we say that f is Li-coordinate smooth if we have:

‖∇if(y)−∇if(x)‖ ≤ Li‖y − x‖, ∀x, y, i

For such functions, we have (see (Y. Nesterov 2012)):

f(x+ Piu) ≤ f(x) + 〈∇f(x), Piu〉+ 1
2Li‖Piu‖

2,∀x, u, i

If f is Li-coordinate smooth, then clearly it is also smooth with parameter ∑m
i=1 Li (in the

worst case).

If a function f is both µ-strongly convex and L-smooth, we have (see (Yurii Nesterov

2013)):

〈∇f(y)−∇f(x), y − x〉 ≥ µL

µ+ L
‖y − x‖2 + 1

µ+ L
‖∇f(y)−∇f(x)‖2

Given a proper function f : H→ R ∪ {∞}, the conjugate f ∗ : H→ R ∪ {∞} is defined

via (see (Bauschke and P. L. Combettes 2011) for an in-depth introduction to the conjugate):

f ∗(u) = sup〈x, u〉 − f(x)
16

3.2 Operators

For a primer on operators, we suggest (Bauschke and P. L. Combettes 2011; Ryu and Boyd

2015). We write A : H ⇒ H to denote at operator. An operator maps points x ∈ H to

subsets A(x) ⊂ H. We will omit the brackets and simply write Ax from now. dom(A) denotes

the set of points x ∈ H that do not map to the empty set. We say that an operator is

single-valued if for each x, Ax is either a singleton or the empty set. Otherwise we say A is

multi-valued. If A is single-valued, we can identify it with the function Ã : dom(A)→ H.

An operator A : H⇒ H can be identified with its graph gra(A) ⊂ H2, which is defined as:

gra(A) = {(x, y)|y ∈ Ax}

Using this identification, we can define the inverse of A denotes A−1 via its graph:

gra
(
A−1

)
= {(y, x)|y ∈ Ax}

For operator A and γ > 0, we define the resolvent JγA and the reflected resolvent RγA

via:

JγA = (I + γA)−1

RγA = 2JγA − I

Hence I is the identity function Ix = x. The resolvent and reflected resolvent are used in

operator splitting methods, which will be discussed later.

An operator is L-Lischitz for L > 0 if it is single-valued, and

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖,∀x, y ∈ dom(f)

It is called nonexpansive if it is 1-Lipschitz, and an L−contraction if it is L Lipschitz for

L < 1. We say an operator A is β-cocoercive if it is single-valued and

β‖Ay − Ax‖2 ≤ 〈Ay − Ax, y − x〉,∀x, y

We say an operator A is α-averaged if it can be written as A = (1− θ)I + θR for θ ∈ [0, 1]

and R nonexpansive. We say an operator A is µ-strongly monotone if:

µ‖x− y‖2 ≤ 〈v − u, y − x〉, ∀u ∈ Ax, v ∈ Ay

17

and we say A is merely monotone if it is 0-strongly monotone.

Lemma 3. Let S = I − T , where T is an r-Lipschitz operator. Then for all x, y ∈ Rd we

have:

〈Sy − Sx, y − x〉 ≥ 1
2‖Sy − Sx‖

2 + 1
2
(
1− r2

)
‖y − x‖2 (3.2.1)

Proof.

(T is r-Lipschitz) r2‖y − x‖2 ≥ ‖Ty − Tx‖2

= ‖(I − S)y − (I − S)x‖2

= ‖Sy − Sx‖2 − 2〈Sy − Sx, y − x〉+ ‖y − x‖2

(rearrange) 〈Sy − Sx, y − x〉 ≥ 1
2‖Sy − Sx‖

2 + 1
2
(
1− r2

)
‖y − x‖2

3.3 KM iterations

Take a nonexpansive operator T : H → H. Frequently we wish to find a fixed point of

such operators. That is, a point x∗ such that Tx∗ = x∗. Frequently, finding such a fixed

point may be equivalent to some original problem that we wish to solve. For instance, given

convex and L-smooth f , the minimizers x∗ of this function are exactly the fixed points of the

nonexpansive operator I − 2
L
∇f .

Starting at x0 ∈ H, the simple Picard iteration

xk+1 = Txk

will converge linearly to a fixed point x∗ with rate O
(
Lk
)
if T is an L-contraction. However

if T is merely nonexpansive, this sequence may never converge. For instance T = −I leads

to the non-convergent sequence: x0,−x0, x0,−x0, However, for λ ∈ (0, 1), consider the

Krasnosel’skĭı–Mann iteration (KM):

xk+1 = ((1− λ)I + λT)xk.

18

By averaging T with the identity, the sequence xk weakly converges to a fixed point of T (see

(Bauschke and P. L. Combettes 2011)). Though KM may look unfamiliar, gradient descent is

equivalent to KM with operator T = I − 2
L
∇f .

An epoch of an algorithm is essentially a number of iterations that corresponds to one

evaluation of Sx. So for instance, m iterations of ARock corresponds to 1 epoch, since each

iteration involves computing Si(k), which is 1/m of the computational effort of computing the

a full evaluation Sx.

3.4 Special cases of KM

The KM iteration takes many popular algorithms as special cases. In the following table,

we demonstrate how common optimization algorithms are simply special cases of KM using

the appropriate fixed-point operator. In this table, the gradients ∇f , ∇g, ∇h are Lipschitz

with constants Lf , Lg, Lh respectively. We assume f, g, h are all convex. ProjC(x) denotes

to projections of x ∈ H onto a convex set C. 1 denotes the vector 1s. 1 denotes 1 ⊗ I,

where ⊗ is the tensor product. [v1; v2; . . . ; vn] denotes a column vector composed of v1, v2, . . .

respectively. A and B are linear operators, d ∈ N\{0} is a dimension, C is a convex set, and

b is a vector.

Columns 1 and 2 contain the optimization problem and a common algorithm used to solve

it. Column 3 gives the nonexpansive fixed-point operator T corresponding to the algorithm.

A fixed point of T corresponds to a solution to the original optimization problem. When

you apply the KM iteration to T , you obtain the algorithm in column 2. Column 4 contains

assumptions necessary for convergence. The derivations of the algorithms and operators,

as well as the proof of nonexpansiveness, are out of the scope of this paper. We refer the

interested reader to (Bauschke and P. L. Combettes 2011; Davis and Wotao Yin 2017; Hannah

and Wotao Yin 2017b).

19

Table 3.1: Selection of common algorithms that are special cases of KM iteration, and their

corresponding fixed-point operator.

Optimization

problem

Algorithm Nonexpansive

fixed-point

operator T

Assumption

min f(x) Gradient descent I − γ∇f γ ∈ (0, 2
Lf

]

min f(x) Proximal point Jγ∂f γ > 0

min f(x) + g(x) Forward backward Jγ∂f ◦ (I − γ∇g) γ ∈ (0, 2
Lg

]

min{g(x) : x ∈

C}

Projected gradient ProjC ◦ (I − γ∇g) γ ∈ (0, 2
Lg

]

min f(x) + g(x) Peaceman-Rachford Rγ∂f ◦Rγ∂g γ > 0

min∑d
i=1 fi(x) Parallel Peaceman-Rachford (2

d
11T − I) ◦Rγ∂f

where f = [f1; . . . ; fd] :

Hd → Rd

γ > 0

min f(x) + g(x) Douglas-Rachford 1
2I + 1

2Rγ∂f ◦Rγ∂g γ > 0

min f(x) +

g(x) + h(x)

Davis-Yin I − Jγ∂g + Jγ∂f ◦

(2Jγ∂g−I−γ∇h◦Jγ∂g)

γ ∈ (0, 2
Lh

]

min{f(x)+g(z) :

Ax+Bz = b}

ADMM 1
2I + 1

2Rγ∂F ◦Rγ∂G,

where

F (y) := f ∗(ATy),

G(y) := g∗(BTy)−bTy

γ > 0

20

3.5 Duality and finite sums

In this paper, we only consider coordinate algorithms. This may seem like a limitation.

However it is not very restrictive for the following reasons. We aim to study parallel

optimization algorithms. For parallelism to be possible, there has to be some kind of way to

split an algorithm into sub-problems. The most common ways are to split an algorithms over

its coordinate, and to split over functions for finite sum problems:

f(x) = n−1
n∑
i=1

fi(x)

While we are only considering the former splitting, by duality, we can apply coordinate

methods to finite-sum problems.

Consider the finite sum problem for convex fi:

P (x) = n−1
n∑
i=1

fi(Ai · x) + 1
2σ‖x‖

2

Ai can be viewed as data vectors of some sort. We create n auxillary variables wi, each

corresponding to a function f . Under the constraint wi = Ai · x, we can write this as:

P (x,w) = n−1
n∑
i=1

fi(wi) + 1
2σ‖x‖

2

Defining the data matrix A via AT = [A1, . . . , An], we can form the Lagrangian:

L(x,w, α) = n−1
n∑
i=1

fi(wi) + 1
2σ‖x‖

2 + 〈Ax− w, α〉

and hence the dual function. We first minimize with respect to x:

∇xL = σx+ ATα = 0

x = −σ−1ATα

min
x
L = n−1

n∑
i=1

fi(wi) + 1
2σ
−1
∥∥∥ATα∥∥∥2

+
〈
−σ−1AATα− w, α

〉
= n−1

n∑
i=1

fi(wi)−
1
2σ
−1
∥∥∥ATα∥∥∥2

+ 〈−w, α〉

Then we minimize with respect to w.

min
w

min
x
L = n−1 min

wi

n∑
i=1

(fi(wi) + 〈−wi, nαi〉)−
1
2σ
−1
∥∥∥ATα∥∥∥2

21

D(α) = −n−1
n∑
i=1

f ∗i (nαi)−
1
2σ
−1
∥∥∥ATα∥∥∥2

Clearly each coordinate i of the dual function D(α) corresponds to function i of the primal

problem. Hence coordinate methods on the dual correspond to finite-sum methods on the

primal. So given a finite-sum problem, we may apply the coordinate methods of this paper

to the corresponding dual problem. So our results are quite general.

22

CHAPTER 4

Asynchronicity

In this section we discuss definitions related to asynchronicity. Most of the analysis in this

paper is done on ARock, since it is such a general algorithm.

4.1 The ARock algorithm

ARock is essentially an asynchronous-parallel block-coordinate version of KM iteration. A

shared solution vector x = (x1, . . . , xm) ∈ Rd is updated by a collection of p computing nodes.

We let subscripts i ∈ {1, . . . ,m} denote blocks of a vector, and superscripts k ∈ {0, 1, . . .}

denote iteration number. At iteration k, a block i(k) of the solution vector xk is randomly

chosen. This block is then updated with a KM style iteration, and the other blocks are left

unchanged. Let S = I − T and Sx = (S1x, . . . , Smx) where Sjx denotes the j’th block of Sx.

Definition 4. The ARock Algorithm. Let ηk ∈ R be a series of step lengths and

i(k) ∈ {1, . . . ,m} be a series of block indices. Let T be a nonexpansive operator with at

least one fixed point x∗, and S = I − T . Then the ARock algorithm (Z. Peng et al. 2016) is

defined via the iteration:

for i = 1, . . . ,m, xk+1
i ←

xki − ηkSi(x̂k), i = i(k),

xki , i 6= i(k),
(4.1.1)

Here x̂k is the delayed iterate, which represents a possibly outdated version of the iteration

vector xk used to make an update. This will be defined shortly.

Much like in Section 3.4, different choices of T lead to different asynchronous algorithms.

Since ARock is an asynchronous randomized block-coordinate algorithm, TGD leads to
23

asynchronous RBCD, TFB leads to asynchronous proximal RBCD/ forward backward, etc. If

the fixed-point framework is unfamiliar, it may be helpful to mentally replace S with γ∇f ,

and view ARock as asynchronous RBCD.

4.2 Setup and assumptions

In this section, we describe the delayed iterates, and the block index more precisely. We define

a series of delay vectors~j(0),~j(1),~j(2), . . . in Nm, corresponding to x0, x1, x2, . . . respectively.

The components of the delay vector~j(k) = (j(k, 1), j(k, 2), . . . , j(k,m)) represent the staleness

of the components of the solution vector xk. Hence we define the delayed iterate as:

x̂k =
(
x̂k1, x̂

k
2, . . . , x̂

k
m

)
=
(
x
k−j(k,1)
1 , x

k−j(k,2)
2 , . . . , xk−j(k,m)

m

)
. (4.2.1)

We define the current delay j(k) as j(k) = maxi{j(k, i)}. So bounded delay corresponds to

assuming j(k) ≤ τ for some τ < ∞. The delay vectors depend on the model of asyn-

chronicity chosen. To simplify notation, for ~j ∈ Nm it becomes convenient to define:

xk−
~j =

(
xk−j1 , xk−j2 , . . . , xk−jm

)
. And hence we have: xk−~j(k) = x̂k.

We find it convenient to define Xk =
(
x0, . . . , xk

)
and Jk =

(
~j(0),~j(1), . . . ,~j(k)

)
.

σ(a, b, c, . . .) represents the sigma algebra generated by a, b, c, Throughout this pa-

per unless stated otherwise, we make the following assumption about the block sequence

i(k).

Assumption 1. IID block sequence. i(k), is a series of uniform1 IID random variables

that takes values 1, 2, . . . ,m each with probability 1/m. i(k) is independent of σ
(
Xk, Jk

)
.

That is, i(k) is independent of previous delays and iterates jointly.

Only a few papers that we are aware of make progress in eliminating this assumption

that i(k) is independent of the delays (T. Sun, Hannah, and Wotao Yin 2017; Leblond,

Pedregosa, and Lacoste-Julien 2017; Cannelli et al. 2017). The assumption may be necessary

for good convergence rates. Also removing the assumption of an IID random block sequence

1Nonuniform probabilities are a simple extension. However for simplicity we assume a uniform distribution.

24

is problematic. A cyclic choice as in (R. Sun and Ye 2016; Chow, T. Wu, and W. Yin

2017) leads to at least an m-times slowdown of the algorithm in the worst case for smooth

minimization (R. Sun and Ye 2016). The block sequence will be IID if we allow computing

nodes to randomly update any block chosen in a uniform IID fashion, and updating each

block is of equal computational difficulty. Future work may involve finding an intermediate

scenarios between IID and cyclic block choices that still results in adequate rates.

4.3 Faster Iterations + Same Quality = Faster Algorithms

This article will prove several results that comprise evidence that asynchronous algorithms

will drastically outperform synchronous ones at scale. Our argument involves a series of steps,

each backed up with several theoretical results. This argument and corresponding results

was first presented in (Hannah and Wotao Yin 2017a).

1. Faster iterations: We show that asynchronous algorithms complete much faster

iterations. In particular, modeling the iteration time as a renewal process with random

delays, we show that asynchronous algorithms complete iterations effectively Θ(ln(p))

times faster than their synchronous counterparts.

2. Same quality: We show that a wide variety of asynchronous algorithms have essentially

the same iteration complexity as their synchronous counterparts. Surprisingly, this is

true even in the presence of potentially unbounded delays in information, so long as

the delays are not too large on average.

Taking these two facts together, we can conclude that a large variety of asynchronous

algorithms will drastically outperform their synchronous counterparts on large-scale applica-

tions.

25

4.4 Asynchronicity error

The error
∥∥∥xk − x∗∥∥∥2

for ARock is not monotonic because of the asynchronicity. As in

(Hannah and Wotao Yin 2017b), following on from (Z. Peng et al. 2016), the authors propose

an asynchronicity error term to add to the classical error:

ξk︸︷︷︸
Total error

=
∥∥∥xk − x∗∥∥∥2

︸ ︷︷ ︸
Classical error

+ 1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2

︸ ︷︷ ︸
Asynchronicity error

(4.4.1)

Here (c1, c2, . . .) is a decreasing sequence of positive coefficients. This Lyapunov function is

actually monotonic in expectation for carefully chosen coefficients and step size for ARock. See

(Hannah and Wotao Yin 2017b) for discussion of why ξk is the most natural error to consider

when proving convergence. Choosing the coefficients that yields strong convergence results is

highly nontrivial, and is part of the technical innovation of this paper. The coefficients will

depends on the problem parameters, such a condition number, the number of coordinates;

and also the characteristics of the delays.

4.5 General strategy for constructing Lyapunov Functions

The general strategy for building Lyapunov functions is as follows. This has wide applicability

in optimization, and not just asynchronous algorithms.

Remark 1. General Strategy. 1. Let ξk initially be the classical error
∥∥∥xk+1 − x∗

∥∥∥2
(or

f(xk)−f(x∗), or similar). We will adaptively change ξ, until we have a useful Lyapunov

function. Calculate the expectation of the classical error E
[∥∥∥xk+1

∥∥∥2∣∣∣σ(Xk, Jk
)]

and

take inequalities.

2. If this produces residual terms (for instance
∥∥∥xk+1−i − xk−i

∥∥∥2
) that we cannot elim-

inate, add a general linear combination of these terms to ξk. In this case, we add
1
m

∑∞
i=1 ci

∥∥∥xk+1−i − xk−i
∥∥∥2

to obtain the the asynchronicity error shown above.

3. Repeat steps 1 and 2 until we gain “closure”. I.e. The positive terms in the inequality

for E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

are the same as the terms found in ξk.
26

4. Negative terms are not problematic because they serve to decrease the expectation of

ξk+1. They should not be eliminated because they can give useful information.

5. Vary the coefficients of the Lyapunov function to enable a useful comparison between

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

and ξk.

Which inequalities to take and which residual terms to create is a matter of trial and

error. Some choices lead to dead ends, whereas others lead to a viable proof.

27

Part II

Faster Iterations, Same Quality

28

In this part, we present the results of (Hannah and Wotao Yin 2017a).

29

CHAPTER 5

Faster Iterations

In this section, we model how asynchronous algorithms complete faster iterations using

renewal processes. Though the theoretical arguments are rather simple, we choose to include

this because it is an important justification for asynchronous algorithms’ utility.

5.1 Implementation setup

We consider a system of p computing nodes that update a shared solution vector x which

is stored at a central server. The computing nodes are first sent the solution vector which

is then stored in their local memory as x̂. Then they randomly chose a block i to update,

calculate an update Six̂, and send this update to the server. The server receives and applies

these updates as they arrive via: x← x− ηSix̂.

We now compare and contrast the synchronous and asynchronous version of ARock. In

the synchronous implementation, at every iteration, the server sends each computing node

the same vector x. Only when the updates from every node are computed, received and

applied by the server can the next iteration begin. Hence the lateness of even one computing

node will prevent the server from sending the latest solution vector to the computing nodes

so they can compute the next update.

In the asynchronous implementation, computing nodes will be sent the latest solution

vector as soon as they are done computing their latest update. They may also compute

multiple updates with the same solution vector to reduce bandwidth. Hence computing

nodes act independently without any central coordination, and without waiting for other

nodes to complete their updates. The server will simply apply updates as they are received.

30

Many updates may occur between the time a node is sent the solution vector and the time

the computed update is applied. Therefore effectively, the solution vector is updated with

outdated information.

5.2 Iteration time model

Following (Serpedin and Chaudhari 2009) (p. 43) and adding modifications, we model the

time taken for node l’s update as follows:

Pl = Rl + C(l, il,m) + Sl.

Here il is the block of the solution vector that node l updates. C(l, i,m) represents the

non-random portion of the update time. This includes computation time, and the time delay

to send and received vectors over the network due to bandwidth limitations. C(l, i,m) is

a function of i because different blocks may have different sizes and update difficulties. Cl
varies with computing node l because different nodes have different characteristics such as

computing power. Rl is the random delay involved in receiving the solution vector from the

central server, and Sl is the random delay involved in sending an update back to the server.

Rl and Sl are assumed IID with exponential distribution of mean λl. This exponential model

for the random portion of the delay has extensive theoretical and empirical justifications (see

(Serpedin and Chaudhari 2009), pp. 44-45 for a discussion of the evidence).

In the following sections, we examine critical factors that result in asynchronous algorithms

completing faster iterations. For simplicity, we consider each factor in isolation.

5.3 The effect of random delays

We first consider the effect of random delays on the synchronization penalty. For simplicity,

assume that C(l, i,m) is constant over i and l, and hence we can write this function as

C(1, 1,m). Also assume we have λl = λ for all l. This situation would occur if all blocks

were of equal difficulty to update, and all nodes had the same computational power and

network delay distribution. This is the ideal scenario, and yet we will observe a growing
31

synchronization penalty with scale.

Because all nodes must finish updating for the next iteration to start, the iteration time

P for the synchronous system is given by:

P = C(1, 1,m) + max
l=1,2,...,p

{Rl + Sl}. (5.3.1)

Hence we have (using (Eisenberg 2008)):

EP − C(1, 1,m) ≥ E
(

max
l=1,...,p

{Rl}
)

= λ
p∑
l=1

1
l
≥ λ ln(p).

Now consider the time TSync(K) required for K epochs, which corresponds to dKm/pe

iterations. This is because each step of synchronous ARock requires p evaluations of Six, which

in total is p/m of the computational effort for a full evaluation of Sx. Let1 P 1, P 2, . . . ∼ P :

ETSync(K) = E
dKm/pe∑
k=1

P k ≥ Km

p
EP ≥ Km

p
(C(1, 1,m) + λ ln(p)).

Hence for small values of p, the expected time to reach K epochs will decrease inverse linearly

with the number of nodes p. However as p becomes larger, there is at least a Θ(ln(p)) penalty

in how long this will take compared to a linear speedup.

Using the same model, we now show that asynchronous algorithms have no such Θ(ln(p))

scaling penalty. The time taken for node l to complete k iterations is given by:

Skl =
k∑
j=1

P j
l (5.3.2)

where P k
l ∼ P . This is actually a renewal process with interarrival time Pl (see (Mitov

and Omey 2014; Kella and Stadje 2006)). However if we consider the total number of

iterations completed by all nodes together, then the time of the k’th iteration Sk is known as

a superposition of renewal processes. From (Kella and Stadje 2006) 1.4, as k →∞ we

have:

ESk

k
→ EP

p
, (5.3.3)

1We write A ∼ B for random variables A and B if these variables have the same distribution.

32

(by convergence in the previous step) ESk = k
(C(1, 1,m) + 2λ)

p
(1 + om,λ,p(1)). (5.3.4)

The subscripts in om,λ,p(1) denote that this term converges to 0 as k → ∞ in a way that

depends on m, p, and λ. Hence the expected time to complete K epochs is given by:

ETAsync(K) = Km

p
(C(1, 1,m) + 2λ)(1 + om,λ,p(1)) (5.3.5)

as K →∞. Hence it can be seen that asynchronous algorithms do not have a ln(p) penalty.

Hence for large enough K, asynchronous algorithms will compute at least Θ(ln(p)) more

epochs per second than synchronous algorithms.

5.4 Heterogeneous update difficulty

Sometimes a parallel problem cannot be split into m blocks in a way that updating each block

is of equal difficulty (as was previously assumed in this subsection). This can cause significant

synchronization penalty in the synchronous case, but has no such effect on asynchronous

algorithms because computing nodes do not have to wait for slower nodes or blocks to

complete.

Let us assume for the moment that there is no random component of the update time for

a single node, and that all nodes have the same computational power. This means that the

update time for node l at iteration k is simply:

P k
l = C(1, il,m) (5.4.1)

where il is the block that node l updates at iteration k. Assume also that at every iteration,

each node l will chose a uniformly random block to update, and hence il is a uniform random

variable on {1, 2, . . . ,m}. For the synchronous algorithm, we have an update time:

P = max
l=1,2,...,p

{C(1, il,m)} (5.4.2)

Clearly then, as p increases, we have:

EP → max
i
C(1, i,m) (5.4.3)

33

That is, the update time is determined by the most difficult block to update. Hence the

expected time for K synchronous epochs is:

ETSync(K) ∼ Km

p

(
max
i
C(i,m) + om(1)

)
(5.4.4)

as p→∞.

Now consider an asynchronous algorithm. The update time of a single node is:

EP = EC(1, il,m) = 1
m

m∑
i=1

C(1, i,m) (5.4.5)

Yet again we have a superposition of renewal processes, and hence from (Kella and Stadje

2006), we have as k →∞:

ESk

k
→ EP

p
(5.4.6)

ESk = k

p

(
1
m

m∑
i=1

C(1, i,m)
)

(1 + om,p(1)) (5.4.7)

Hence the expected time for K epochs is given by:

ETAsync(K) = Km

p

(
1
m

m∑
i=1

C(1, i,m)
)

(1 + om,p(1)) (5.4.8)

as K → ∞. Notice that the time taken for an asynchronous algorithm is determined by

the average difficulty of updating a block. Compare this to synchronous algorithms where

the most difficult block determines the time complexity. If the difficulty of blocks is highly

heterogeneous, asynchronous algorithms may complete far faster iterations, even without

considering network effects.

5.5 Heterogeneous computing node power

If the computing nodes have very different computing powers, the faster nodes in synchronous

systems will always have to wait for slower nodes. Assume for the moment that blocks are of

equal difficulty, and there is no network delay. The update time for node l is then given by:

Pl = C(l, 1,m) (5.5.1)

34

Hence the time for K synchronous epochs (which is Km/p iterations) is given by:

TSync(K) = Km

p

(
max

l=1,2,...,p
C(l, 1,m)

)
(5.5.2)

On the other hand, for asynchronous systems, the time for K epochs (which corresponds

to Km iterations) is again a superposition of renewal processes. We have (by (Kella and

Stadje 2006), 1.3):

TAsync(K) = SKm = Km

p

(
1
p

p∑
l=1

C(l, 1,m)−1
)−1

(1 + om,λ,p(1)) (5.5.3)

Hence we can see that for synchronous algorithms, this time depends on the power of the

weakest computing node. Whereas for asynchronous algorithms, the time depends on the

average computing power of the nodes.

5.6 Summary

Hence for several reasons, asynchronous algorithms will completely significantly more iterations

in the same time period as compared to synchronous algorithms. Most of the rest of this

paper focuses on proving that in several situations these iterations make essentially the same

progress towards a solution.

35

CHAPTER 6

Sharp Iteration Complexity for Synchronous

Algorithms

In this section we prove sharp iteration complexity results for some synchronous algorithms.

We need sharp rates and complexities in order to make a fair comparison between synchronous

and asynchronous ARock. Most authors derive upper bounds on rates instead, which do not

give a true measure of an algorithm’s performance. We prove results only for ARock, RBCD,

and proximal RBCD. Similar sharp complexity results along the same lines are possible for the

other special cases, such as Douglass-Rachford, proximal point, etc. In the interests of space,

we do not prove an exhaustive list. We will show later that synchronous and asynchronous

ARock have the same complexity asymptotically, despite the use of outdated information.

An algorithm is said to linearly converge if the error EE(k) = O
(
Rk
)
for 0 < R < 1.

R is called the linear convergence rate. The epoch complexity I(ε) is the number of

epochs required to decrease the error EE(k) below εE(0), where E(0) is the initial error.

This error could be the distance from the solution
∥∥∥xk − x∗∥∥∥2

, the suboptimality f(xk)− f ∗,

etc.

Consider an algorithm A that solves a problem class P . Define R̄A(f) as the smallest

linear convergence rate that A attains for a specific problem instance f ∈ P . That is,

R̄A(f) , inf
{
R|E(k) = O

(
Rk
)}

. If an algorithm converges with rate R, this may be an

overestimate, whereas R̄A(f) can be viewed as the true speed of convergence. The sharp

convergence rate RA(P) of algorithm A over problem class P is defined as the largest

convergence rate R̄A(f) that A attains for any f ∈ P . That is:

RA(P) , max
f∈P

R̄A(f) (6.0.1)

36

This the worst case convergence rate of an algorithm A over the problem class. In other

words, it is the best convergence rate the can be guaranteed by the algorithm A over this

class. For instance, consider gradient descent on the class of L-smooth, µ-strongly convex

functions f . The sharp convergence rate RA(µ, L) is defined as:

RA(µ, L) = max
f is L-smooth, µ-strongly convex

R̄A(f) (6.0.2)

Clearly the sharp rate is a function of µ and L. The sharp epoch complexity is defined in

a similar way. It is the smallest epoch complexity that can be guaranteed for an algorithm A

over a problem class P .

6.1 Synchronous ARock

First we define synchronous ARock. At every step, each of the p computing nodes are given

a random block to update with a KM-style iteration. Hence we have:

xk+1 = xk − ηkP kSxk (6.1.1)

Here P k is a projection onto a random subset of {1, 2, . . . ,m} of size p (we assume p ≤ m).

We note that each block has a p
m

probability of being updated on a given iteration.

Proposition 5. Convergence rate of synchronous KM iterations. Let T be an r-

Lipschitz operator for 0 < r < 1. Consider the synchronous KM iteration defined in

Equation (6.1.1) for 1 ≤ p ≤ m. The sharp convergence rate is given by:

RKM(η, r) = 1− p

m
+ p

m
(max{|1− η(1− r)|, |1− η(1 + r)|})2 (6.1.2)

ηk = 1 optimizes this rate. This step size yields the following optimal convergence rate (6.1.3),

and optimal iteration complexity (6.1.4) respectively:

R = 1− p

m

(
1− r2

)
(6.1.3)

I(ε) =
(1

1− r2 − θ
p

m

)
ln(1/ε) (6.1.4)

Here θ ∈ [1/2, 1]. Lastly this rate and complexity are sharp, and occur for at least 1 operator.
37

For problems of interest, the first term 1/(1− r2) will usually dominate the second. We

are interested in huge-scale problems, which will usually have m� p or r ≈ 1. Hence if we

have either r → 1 or p/m→ 0, then:

I(ε) = (1 + o(1)) 1
1− r2 ln(1/ε) (6.1.5)

We will eventually prove that ARock has essentially the same iteration complexity. It becomes

convenient later to define

ISync(ε) = 1
1− r2 ln(1/ε) (6.1.6)

which is the sharp complexity of synchronous ARock to highest order.

Proof of Proposition 5. Taking conditional expectation on the following

∥∥∥xk+1
∥∥∥2

=
∥∥∥xk∥∥∥2

− 2ηk
〈
xk, P kSxk

〉
+
(
ηk
)2∥∥∥P kSxk

∥∥∥2

with respect to i(k) yields

E
[∥∥∥xk+1

∥∥∥2∣∣∣xk] =
∥∥∥xk∥∥∥2

− 2ηk p
m

〈
xk, Sxk

〉
+
(
ηk
)2 p

m

∥∥∥Sxk∥∥∥2

(By Lemma 3) ≤
∥∥∥xk∥∥∥2

− ηk p
m

(∥∥∥Sxk∥∥∥2
+
(
1− r2

)∥∥∥xk∥∥∥2
)

+
(
ηk
)2 p

m

∥∥∥Sxk∥∥∥2

=
(

1− ηk p
m

(
1− r2

))∥∥∥xk∥∥∥2
− ηk p

m

(
1− ηk

)∥∥∥Sxk∥∥∥2
, (6.1.7)

When ηk ≤ 1, (6.1.7) yields:

(By (1− r)-strong monotonicity of S) ≤
(

1− ηk p
m

(
1− r2

))∥∥∥xk∥∥∥2
− (1− r)2ηk

p

m

(
1− ηk

)∥∥∥xk∥∥∥2

=
(

1− p

m
+ p

m

(
1− ηk(1− r)

)2
)∥∥∥xk∥∥∥2

. (6.1.8)

Now when ηk ≥ 1, (6.1.7) yields:

E
[∥∥∥xk+1

∥∥∥2∣∣∣xk] (6.1.9)

(S is (1 + r)-Lipschitz) ≤
(

1− ηk p
m

(
1− r2

))∥∥∥xk∥∥∥2
− ηk p

m

(
1− ηk

)
(1 + r)2

∥∥∥xk∥∥∥2

=
(

1− p

m
+ p

m

(
1− ηk(1 + r)

)2
)∥∥∥xk∥∥∥2

. (6.1.10)

38

It can be verified that every single inequality for ηk ≤ 1 is an equality for T = rI, and

every single inequality for ηk ≥ 1 is an equality for T = −rI. Therefore the inequalities

(6.1.8) and (6.1.10) give a sharp rate of convergence for ηk ≤ 1 and ηk > 1 respectively. These

expressions match (6.1.2). This rate is clearly optimized when ηk = 1, and matches the rate

given in Equation (6.1.3).

Let’s now look at the corresponding iteration complexity. m
p
iterations correspond to 1

epoch, hence:

ε =
(

1− p

m

(
1− r2

))I(ε) m
p

I(ε) = p

m

 ln(1/ε)
− ln

(
1− p

m
(1− r2)

)

=
(1

1− r2 − θ
p

m

)
ln(1/ε)

where θ ∈
[

1
2 , 1

]
. The last line follows from the inequality:

1− x ≤ −x
ln(1− x) ≤ 1− 1

2x, for 0 ≤ x ≤ 1

for x = p
m

(1− r2). The derived complexity matches Equation (6.1.4), hence the proof is

complete.

6.2 Sharp Complexity Results for RBCD

Proposition 5 allows us to obtain a sharp convergence rate and epoch complexity for syn-

chronous RBCD. Define the operator TGD = I − 2
µ+L∇f . Clearly the synchronous KM in

(6.1.1) is equivalent to synchronous RBCD with step size size 2η
µ+L .

Corollary 6. Sharp Convergence Rate of Synchronous RBCD. The optimal step

size for synchronous RBCD is 2
µ+L . This step size yields the following optimal convergence

rate (6.2.1), and optimal iteration complexity (6.2.2) respectively:

R = 1− 4 p
m

κ

(κ+ 1)2 = 1− 4 p

mκ
(1 +O(1/κ)) (6.2.1)

I(ε) = 1
4(κ+O(1)) ln(1/ε) (6.2.2)

39

as κ→∞. Lastly, this convergence rate is sharp, and occurs for at least 1 function.

Among other things, we show that asynchronous RBCD has epoch iteration complexity

that is asymptotically equal to 1
4κ ln(1/ε), which is the complexity of synchronous RBCD.

This appears to be a new result that extends recent work in (Taylor, Hendrickx, and Glineur

2018) which proved the special case of m = 1, p = 1. Standard RBCD corresponds to p = 1.

Proof of Corollary 6. We consider the operator TGD = I − γ∇f . The corresponding syn-

chronous KM iteration is synchronous RBCD:

xk+1 = xk − ηγP k∇f
(
xk
)

Let’s let the sharp rate of convergence be denoted by RGD(η, γ). Clearly for any λ > 0,

we have: RGD(η, γ) = RGD(ηλ, γ/λ). Let λ = γ(L+ µ)/2. So we need only calculate

RGD
(
η
(
γ/ 2

L+µ

)
, 2
L+µ

)
to determine RGD(η, γ). Hence we need only consider the operator

TGD = I − 2
L+µ∇f , or equivalently, the case when γ = 2

L+µ . For TGD = I − 2
L+µ∇f , we have

(recalling Thm. 2.1.12 of (Yurii Nesterov 2013)):

‖T (y)− T (x)‖2 = ‖y − x‖2 − 4
µ+ L

〈∇f(y)−∇f(x), y − x〉+
(

2
L+ µ

)2

‖∇f(y)−∇f(x)‖2

≤ ‖y − x‖2 − 4
µ+ L

(
µL

µ+ L
‖x− y‖2 + 1

µ+ L
‖∇f(y)−∇f(x)‖2

)

+
(

2
L+ µ

)2

‖∇f(y)−∇f(x)‖2

= ‖y − x‖2
(

1− 4µL
(µ+ L)2

)
= ‖y − x‖2

(
1− 4κ

(1 + κ)2

)

= ‖y − x‖2
(

1− 2
κ+ 1

)2

Hence TGD is r-Lipschitz for r = 1 − 2
κ+1 . This combined with the fact that synchronous

RBCD is a special case of synchronous KM implies: RGD
(
η, 2

L+µ

)
≤ RKM

(
η, 1− 2

κ+1

)
.

On the other hand, f = 1
2µ‖x‖

2 yields TGD = rI and f = 1
2L‖x‖

2 yields TGD = −rI.

That is, the worst-case examples of Proposition 5 are attainable for any step size η. Hence

RGD
(
η, 2

L+µ

)
= RKM

(
η, 1− 2

κ+1

)
. This allows us to use (6.1.2) to determine the sharp rate

40

of convergence for synchronous gradient descent for step size 2η
L+µ :

RKM

(
η, 1− 2

κ+ 1

)
= 1− p

m
+ p

m

(
max

{∣∣∣∣1− η 2
κ+ 1

∣∣∣∣, ∣∣∣∣1− η 2κ
κ+ 1

∣∣∣∣})2
(6.2.3)

As before, this rate is optimized when η = 1. With this step size, we have the corresponding

optimal convergence rate:

R = 1− p

m

(
1− r2

)
= 1− p

m

4κ
(κ+ 1)2 = 1− 4 p

mκ
(1 +O(1/κ))

which matches Equation (6.2.1).

This allows us to then determine the optimal iteration complexity:

I(ε) =
(1

1− r2 − θ
p

m

)
ln(1/ε) =

(
(κ+ 1)2

4κ − θ p
m

)
ln(1/ε) = 1

4

(
κ+ 2 + 1

κ
− 4θ p

m

)
ln(1/ε)

= 1
4(κ+O(1)) ln(1/ε)

This matches Equation (6.2.2). Hence the results are proven.

Clearly other sharp complexity results easily follow from Proposition 5. Consider the

objective:

F (x) = f(x1, . . . , xm) +
n∑
i=1

g(xi) (6.2.4)

where each gi is convex and subdifferentiable. Consider the synchronous proximal RBCD

algorithm given by:

xk+1 =
(
1− ηk

)
xk + ηkP k(I + γ∂g)−1 ◦ (I − γ∇f)

(
xk
)

(6.2.5)

The optimal parameter choice yields the same complexity as synchronous RBCD.

Corollary 7. Sharp convergence rate for synchronous proximal RBCD. The syn-

chronous proximal RBCD algorithm defined in (6.2.5) has an optimal parameter choice of

γ = 2
L+µ , η

k = 1. This choice yields an optimal convergence rate of (6.1.3), and an optimal

complexity of (6.1.4).

41

Proof of Corollary 7. Consider the operator TFB = (I + γ∂g)−1 ◦ (I − γ∇f). Let the sharp

convergence rate be denoted as RFB(η, γ). When g = 0, TFB reduces to TGD from before.

Hence synchronous RBCD is a special case of synchronous proximal RBCD, and we have

RFB(η, γ) ≥ RGD(η, γ). If we let γ = 2
L+µ and η = 1, then TFB is

(
1− 2

κ+1

)
-Lipschitz since

(I + γ∂g)−1 is nonexpansive. Since synchronous proximal forward backward is a special case of

synchronous KM, we have RKM
(
1, 1− 2

κ+1

)
≥ RFB

(
1, 2

L+µ

)
. However from the previous proof,

we also have RKM
(
1, 1− 2

κ+1

)
= RGD

(
1, 2

L+µ

)
, which is the optimal rate for synchronous

RBCD. Putting these facts together, we conclude that γ = 2
L+µ and η = 1 are also the

optimal parameter choices for synchronous proximal RBCD, and lead to the same optimal

convergence rate and optimal complexity.

42

CHAPTER 7

Same Quality: Stochastic unbounded delays

In this section, we bolster part 2 of the main argument in Section 4.3. We have just derived

the sharp convergence rate and complexity for synchronous ARock. We now prove that

ARock, and hence all of its special cases, has essentially the same complexity as synchronous

ARock – even under unbounded delays.

7.1 Main result

In this section we consider stochastic unbounded delays.

Assumption 2. Stochastic unbounded delays. The sequence of delay vectors~j(0),~j(1),~j(2), . . .

is an independent sequence of random variables, and ~j(k) is independent of
(
x0, x1, x2, . . . , xk

)
.

This assumption is very general. The distribution of delays may change each iteration in

any way that is independent of σ(Xk). This assumption includes deterministic bounded delay.

This corresponds to j(k) being a trivial random variable that takes 1 value with probability

1.

The convergence rate will depend on the distribution of the delays. Distributions with

larger delays in general will lead to worse performance. Let Pl ∈ [0, 1] be constants such that:

Pl ≥ P
[
j(k) ≥ l

∣∣∣σ(Xk
)]
, ∀k (7.1.1)

We let ρ be defined by:

ρ = 1− 1
m

(
1− r2

)
(7.1.2)

43

This is the sharp linear convergence rate for synchronous ARock with p = 1, and optimal

step size. This is the best best rate we can hope to achieve. We also define the probability

moment:

M =
∞∑
l=1

P
1/2
l ρ−l/2 (7.1.3)

This moment quantifies how large the delay is, similar to τ . In the case of deterministic

bounded delay, it is easy to show that τ ≤M ≤ eτ for τ ≤ m.

We also define the asynchronicity parameter:

ψ = 5Mm−1/2

This quantifies how strongly asynchronicity will affect convergence. The larger ψ is, the worse

the complexity will be, and the more conservative a step size we must take. For the special

case of deterministic bounded delay, we have ψ ≤ 5eτm−1/2. Using ψ, we define the step size:

η1 =
(

1 + 3
5ψ
)−1

(7.1.4)

We state our results in terms of the Lyapunov function ξk discussed in Chapter 4:

ξk︸︷︷︸
Total error

=
∥∥∥xk − x∗∥∥∥2

︸ ︷︷ ︸
Classical error

+ 1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2

︸ ︷︷ ︸
Asynchronicity error

Theorem 2. Linear convergence for stochastic delays. Let Assumption 1 and Assump-

tion 2 hold. Let the Lyapunov function coefficients be given by ci = 2m1/2∑∞
l=i P

1/2
l ρi−l/2−1.

Let M be finite, and ηk = η1. Then we have the following linear convergence rate and epoch

complexity respectively:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤
(

1− 1
m

(
1− r2

) 1
1 + ψ

)
ξk, (7.1.5)

IAsync(ε) ≤ (1 + ψ) 1
1− r2 ln(1/ε) (7.1.6)

= (1 + ψ)ISync(ε) (7.1.7)

This theorem is proven in Section 7.6 after a series of results built up in this section. For

ψ � 1, the complexities of asynchronous and synchronous ARock essentially become the
44

same. Hence ARock suffers no significant complexity penalty for using outdated information,

so long as that information is not too old.

We now present some important special cases. This corollary easily follows from Theorem 2,

Corollary 6, and Corollary 7.

Corollary 8. Consider asynchronous RBCD and asynchronous proximal RBCD with step

size h = 2
(1+ 3

5ψ)(µ+L)
. Their linear convergence rate and epoch complexity are given by the

following:

R = 1− 4κ
m(κ+ 1)2(1 + ψ)

(7.1.8)

I(ε) = 1
4(κ+O(1))(1 + ψ) ln(1/ε) (7.1.9)

When there is no asynchronicity, the Lyapunov function will reduce to the classical error

ξk =
∥∥∥xk − x∗∥∥∥2

, and η1 = 1. Also the convergence rates and iteration complexity will reduce

to the sharp values obtained in Proposition 5 for p = 1.

When we have deterministic bounded delay, we have complexity:

I(ε) = 1
4(κ+O(1))

(
1 + 5eτm−1/2

)
ln(1/ε) (7.1.10)

Hence in this setting synchronous and asynchronous RBCD have essentially the same com-

plexity when τ � m1/2.

Our main results remain true for unbounded delay. Almost all work on asynchronous

algorithms except for (Hannah and Wotao Yin 2017b; Zhimin Peng, Xu, et al. 2017) assumed

bounded delays. However in practice, there may be no way to rule out arbitrarily large delays.

So this assumption is impractical. Even when the delay is bounded, our results may imply

a much better complexity, since we may have τ � M . This would occur when very large

delays can occur, but are quite rare.

We now prove Theorem 2 in a way that emphasizes the reasons and intuition behind our

approach – especially the strategic way in which the coefficients are chosen.

45

7.2 Preliminaries

Let x∗ be any solution, and set x∗ = 0 with no loss in generality, to make the notation more

compact1. We let the step size ηk be σ
(
Xk
)
-measurable. The starting point of our analysis

is the following:

E
[∥∥∥xk+1

∥∥∥2
|σ
(
Xk, Jk

)]
= E

[∥∥∥xk − ηkSi(k)x̂
k
∥∥∥2
|σ
(
Xk, Jk

)]
=
∥∥∥xk∥∥∥2

+ E
[
−2ηk

〈
xk, Si(k)x̂

k
〉

+
(
ηk
)2∥∥∥Si(k)x̂

k
∥∥∥2
|σ
(
Xk, Jk

)]

=
∥∥∥xk∥∥∥2

−2η
k

m

〈
xk, Sx̂k

〉
︸ ︷︷ ︸

cross term

+

(
ηk
)2

m

∥∥∥Sx̂k∥∥∥2
. (7.2.1)

Here the expectation is taken over only the block index i(k) (Recall Assumption 1).

7.3 The cross term

We now discuss our general strategy on how to proceed from Equation (7.2.1). To obtain

a linear convergence result, we first need to negate
∥∥∥Sx̂k∥∥∥2

, which can be thought of as a

“waste” term. We also need to generate a −
∥∥∥xk∥∥∥2

term for linear convergence. We can convert

−
〈
Sx̂k, xk

〉
into −

〈
Sx̂k, x̂k

〉
, which produces −

∥∥∥Sx̂k∥∥∥2
and −

∥∥∥x̂k∥∥∥2
terms by Lemma 3. The

first term allows us to eliminate the
∥∥∥Sx̂k∥∥∥2

waste. We then convert −
∥∥∥x̂k∥∥∥2

into −
∥∥∥xk∥∥∥2

,

which is needed for linear convergence. This is the rationale behind Lemma 10 ahead.

However this process of conversion produces other “waste” terms, which can be seen in

the second line of Lemma 10. We use the Lyapunov function to deal with this waste, by

incorporating the waste terms directly into the error that we consider (see Section 7.4). This

is the final piece of the puzzle that leads to linear convergence.

First however, we need Lemma 9 to allow us to quantify the error associated with

converting −
〈
Sx̂k, xk

〉
to −

〈
Sx̂k, x̂k

〉
, and the error associated with converting −

∥∥∥x̂k∥∥∥2
to

−
∥∥∥xk∥∥∥2

mentioned above.

1This can be achieved by translating the origin of the coordinate system to x∗. Hence
∥∥xk

∥∥ is the distance
from the solution.

46

Lemma 9. Let a > 0, j(k) be the current delay, ηk be the current step size, and ε1, ε2, . . . > 0

be a series of parameters. Then we have:

a
∥∥∥xk − x̂k∥∥∥ ≤ 1

2a
2ηk

j(k)∑
i=1

1
εi

+ 1
2

1
ηk

j(k)∑
i=1

(
εi
∥∥∥xk+1−i − xk−i

∥∥∥2
)

(7.3.1)

Proof. See (Hannah and Wotao Yin 2017b; Z. Peng et al. 2016) for a simple proof using

Cauchy-Schwarz.

Lemma 10 generates some positive parameters ε1, ε2, . . . > 0 and δ1, δ2, . . . > 0. It’s not

immediately clear what these parameters should be set to. However we will see in Section 7.5

if they are properly chosen, they can be used to construct a Lyapunov function that will

allow us to prove a fast linear convergence rate.

We will make use of Lemma 9 twice with parameter sets (ε1, ε2, . . .) and (δ1, δ2, . . .)

respectively. To simplify notation, we define:

Ej =
j∑
i=1

1
εi

Dj =
j∑
i=1

1
δi

(7.3.2)

We also define the following convergence rate function:

R(η, γ) = 1− (η/m)
(
1− r2

)
(1− η/γ) (7.3.3)

Note that we have R < 1 when 0 < η < γ. The rate is optimized when η = (1/2)γ. Also

ρ ≤ R for η ≤ 1.

Lemma 10. Let Assumption 1 hold. Let ε1, ε2, . . . > 0 and δ1, δ2, . . . > 0 be a sequence of

parameters. Let ηk be σ
(
Xk
)
-measurable. ARock yields the following inequality:

E
[∥∥∥xk+1

∥∥∥2∣∣∣σ(Xk, Jk
)]
≤ R(ηk, 1/Dj(k))

∥∥∥xk∥∥∥2
− ηk

m

∥∥∥Sx̂k∥∥∥2(
1− ηk

(
1 + Ej(k)

))
+ 1
m

j(k)∑
i=1

(
δi
(
1− r2

)
+ εi

)∥∥∥xk+1−i − xk−i
∥∥∥2

︸ ︷︷ ︸
Conversion errors

Hence we can see that for sufficiently small step size, the
∥∥∥Sx̂k∥∥∥2

waste is eliminated.

47

Proof.

− 2η
k

m

〈
xk, Sx̂k

〉
= −2η

k

m

〈
x̂k, Sx̂k

〉
− 2η

k

m

〈
xk − x̂k, Sx̂k

〉
≤ −η

k

m

(∥∥∥Sx̂k∥∥∥2
+
(
1− r2

)
‖x̂‖2

)
+ 2η

k

m

∥∥∥xk − x̂k∥∥∥ · ∥∥∥Sx̂k∥∥∥, (Lemma 3)

≤ −η
k

m

(∥∥∥Sx̂k∥∥∥2
+
(
1− r2

)∥∥∥x̂k∥∥∥2
)

+ 2η
k

m

1
2
∥∥∥Sx̂k∥∥∥2

ηkEj(k) + 1
2

1
ηk

j(k)∑
i=1

(
εi
∥∥∥xk+1−i − xk−i

∥∥∥2
)

= −η
k

m

(
1− r2

)∥∥∥x̂k∥∥∥2
+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2

︸ ︷︷ ︸
Conversion error

−η
k

m

∥∥∥Sx̂k∥∥∥2(
1− ηkEj(k)

)
(7.3.4)

The final inequality followed from Lemma 9. Now let’s examine −
∥∥∥x̂k∥∥∥2

, which we convert to

a −
∥∥∥xk∥∥∥2

term (and some conversion error) for linear convergence.

−
∥∥∥x̂k∥∥∥2

= −
∥∥∥xk∥∥∥2

− 2
〈
x̂k − xk, xk

〉
−
∥∥∥xk − x̂k∥∥∥2

≤ −
∥∥∥xk∥∥∥2

+ 2
∥∥∥x̂k − xk∥∥∥∥∥∥xk∥∥∥

(Lemma 9) ≤ −
∥∥∥xk∥∥∥2

+
∥∥∥xk∥∥∥2

ηkDj(k) + 1
ηk

j(k)∑
i=1

(
δi
∥∥∥xk+1−i − xk−i

∥∥∥2
)

= −
(
1− ηkDj(k)

)∥∥∥xk∥∥∥2
+ 1
ηk

j(k)∑
i=1

(
δi
∥∥∥xk+1−i − xk−i

∥∥∥2
)

Hence substituting this into (7.3.4), we have

−2η
k

m

〈
xk, Sx̂k

〉
≤ −η

k

m

(
1− r2

)(
1− ηkDj(k)

)∥∥∥xk∥∥∥2
+ ηk

m

(
1− r2

) 1
ηk

j(k)∑
i=1

(
δi
∥∥∥xk+1−i − xk−i

∥∥∥2
)

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
− ηk

m

∥∥∥Sx̂k∥∥∥2(
1− ηkDj(k)

)

= −η
k

m

(
1− r2

)(
1− ηkDj(k)

)∥∥∥xk∥∥∥2
+ 1
m

j(k)∑
i=1

(
δi
(
1− r2

)
+ εi

)∥∥∥xk+1−i − xk−i
∥∥∥2

︸ ︷︷ ︸
Conversion error

− ηk

m

∥∥∥Sx̂k∥∥∥2(
1− ηkDj(k)

)
Using (7.2.1) immediately yields the result.

48

7.4 The Lyapunov function

We now consider how the Lyapunov function defined in Equation (4.4.1) changes in size

from step to step. The reason that a Lyapunov function is needed is to deal with the∥∥∥xk+1−i − xk−i
∥∥∥2

terms. They cannot be easily negated like
∥∥∥Sx̂k∥∥∥2

terms, and so must be

incorporated into the Lyapunov function.

Lemma 11. Let the conditions of Lemma 10 and Assumption 2 hold. Define

η1 =
(

1 + c1

m
+
∥∥∥∥ 1
εi

∥∥∥∥
`1

)−1

(7.4.1)

η2 =
(∞∑
i=1

Pi
δi

)−1

(7.4.2)

Let ηk be σ
(
Xk
)
-measurable, and ηk ≤ η1. Then ARock satisfies:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤
∥∥∥xk∥∥∥2

R
(
ηk, η2

)
+ 1
m

∞∑
i=1

((
εi +

(
1− r2

)
δi
)
Pi + ci+1

)∥∥∥xk+1−i − xk−i
∥∥∥2

Notice that we have defined η1 and η2 in terms of the unspecified parameters (ε1, ε2, . . .)

and (δ1, δ2, . . .). Eventually, we will set εi = m1/2P
−1/2
i ρi/2 and δl = m1/2P

−1/2
l ρl/2(1− r2)−1

for reasons that will be explained in Section 7.6. With this parameter choice, the definition

of η1 will match eq. (7.1.4).

Proof.

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

= E
[∥∥∥xk+1

∥∥∥2∣∣∣σ(Xk, Jk
)]

︸ ︷︷ ︸
A

+ c1

m
E
[∥∥∥xk+1 − xk

∥∥∥2∣∣∣σ(Xk, Jk
)]

︸ ︷︷ ︸
B

(7.4.3)

+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

︸ ︷︷ ︸
C

(7.4.4)

We obtain a bound on A from Lemma 10. B follows by the definition of ARock:

B = c1

m

(
ηk
)2

m

∥∥∥Sx̂k∥∥∥2
.

49

C contains no expectation because it is σ
(
Xk, Jk

)
measurable. Hence we have:

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

≤
∥∥∥xk∥∥∥2

(
1− ηk

m

(
1− r2

)(
1− ηk

(
Dj(k)

)))
− ηk

m

∥∥∥Sx̂k∥∥∥2
(

1− ηk
(

1 + c1

m
+ Ej(k)

))

+ 1
m

j(k)∑
i=1

(
εi +

(
1− r2

)
δi
)∥∥∥xk+1−i − xk−i

∥∥∥2
+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

(7.4.5)

Notice that Ej = ∑j
i=1 1/εi ≤ ‖1/εi‖`1 for all j, and that therefore the step size condition

ηk ≤ η1 eliminates the
∥∥∥Sx̂k∥∥∥2

term.

Now it becomes necessary to take expectations over the delay distribution (by taking the

expectation with respect to σ
(
Xk
)
instead of σ

(
Xk, Jk

)
). Notice that for a positive sequence

(γ1, γ2, . . .), we have: E
[∑j(k)

i=1 γi
∣∣∣σ(Xk

)]
≤ ∑∞i=1 Piγi. This yields:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤
∥∥∥xk∥∥∥2

(
1− ηk

m

(
1− r2

)(
1− ηk

(∞∑
i=1

Pi
δi

)))

+ 1
m

∞∑
i=1

(
εi +

(
1− r2

)
δi
)
Pi
∥∥∥xk+1−i − xk−i

∥∥∥2
+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

which completes the proof.

7.5 Linear convergence

The right-hand side in Lemma 11 closely resembles ξk. Ideally, we have:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤ γξk (7.5.1)

for some 0 < γ < 1 as small as possible, and some choice of parameters (ε1, ε2, . . .), (δ1, δ2, . . .)

and coefficients (c1, c2, . . .). In this section we will derive such a result by carefully chosing

these parameters. However, we need the following lemma in order to derive a coefficient

formula.

Lemma 12. Coefficient formula. Let 0 < ρ < 1 and let (s1, s2, . . .) be a positive sequence.

Consider the coefficient formula:

ci =
∞∑
l=i

slρ
−(l−i+1). (7.5.2)

50

If c1 <∞, then we have ci ↓ 0 and:

ρci = ci+1 + si (7.5.3)

Proof.

ρci =
∞∑
l=i

slρ
−(l−i) =

∞∑
l=i+1

slρ
−(l−(i+1)+1) + si = ci+1 + si

Clearly this implies ci ↓ 0, since ρ < 1 and coefficients are nonnegative.

Recall that ρ is defined in eq. (7.1.2). We now present a general linear convergence result.

Afterwards in Section 7.6, we will make the precise parameter choice that yields optimal

complexity.

Proposition 13. Linear convergence for stochastic delays. Let Assumption 1 hold.

Let ηk ≤ η1, and let ε1, ε2, . . . > 0 and δ1, δ2, . . . > 0 be a sequence of parameters. Let
∞∑
l=i

(
εl +

(
1− r2

)
δl
)
Plρ
−l <∞ (7.5.4)

With the choice of coefficients2:

ci =
∞∑
l=i

(
εl +

(
1− r2

)
δl
)
Plρ
−(l−i+1) (7.5.5)

We have the following linear convergence result:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤ R

(
ηk, η2

)
ξk (7.5.6)

Proof. By applying Lemma 12 with sl = Pl(εl + (1− r2)δl), we obtain:

ρci =
(
εi +

(
1− r2

)
δi
)
Pi + ci+1

Hence from Lemma 11, we have:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤
∥∥∥xk∥∥∥2

R
(
ηk, η2

)
+ 1
m

∞∑
i=1

((
εi +

(
1− r2

)
δi
)
Pi + ci+1

)∥∥∥xk+1−i − xk−i
∥∥∥2

≤
∥∥∥xk∥∥∥2

R
(
ηk, η2

)
+ 1
m

∞∑
i=1

ρci
∥∥∥xk+1−i − xk−i

∥∥∥2
≤ max

(
ρ,R

(
ηk, η2

))
ξk = ρξk

The last line follows, because 0 ≤ ηk ≤ η1 ≤ 1 implies ρ ≤ R(ηk, η2).

2This formula will eventually match the formula ci = 2m1/2∑∞
l=i P

1/2
l ρi−l/2−1 given in Theorem 2 when

the parameters ε1, ε2, . . . > 0 and δ1, δ2, . . . > 0 are chosen later.

51

7.6 Proof of Theorem 2

Recall we have the following step size restriction ηk ≤ (1 + c1/m+ ‖1/εi‖`1)−1 (with η1

defined in eq. (7.4.1)) coupled with the convergence rate:

R
(
ηk, η2

)
= 1− ηk

m

(
1− r2

)(
1− ηkη−1

2

)
for η−1

2 = ∑∞
i=1 Pi/δi. We now prove Theorem 2. However we do so in a way that justifies the

choice of parameters that we use.

For (ε1, ε2, . . .), there is an unambiguous best choice. We maximize η1 over the sequence

εi, by letting εi =
√
mP

−1/2
i ρi/2. All thing being equal, increasing η1 allows for a better

convergence rate by increasing the range of possible step sizes. This leads to:

η−1
1 = 1 +m−1

(
1− r2

) ∞∑
l=1

δlPlρ
−l + 2m−1/2M (7.6.1)

for M defined in (7.1.3). η2 is unchanged.

For δl, we are faced with a trade-off. Larger δl increases η2, which improves the convergence

rate. Smaller δl increases η1, which as discussed is advantageous. To solve this trade-off, we

set δl = m1/2P
−1/2
l ρl/2(1− r2)−1, which leads to:

η−1
1 = 1 + 3m−1/2M

η−1
2 = m−1/2

(
1− r2

) ∞∑
i=1

P
3/2
l ρ−l/2

≤ m−1/2
(
1− r2

)
M

This choice essentially maximizes η2 subject to keeping the asymptotic value of η1 essentially

the same. Let φ = Mm−1/2. Hence the convergence rate is:

R(η1, η2) = 1− (η1/m)
(
1− r2

)(
1− η1η

−1
2

)
= 1− 1

m

(
1− r2

) 1
1 + 3φ

(
1− (1− r2)φ

1 + 3φ

)

≤ 1− 1
m

(
1− r2

) 1 + 2φ
(1 + 3φ)2

≤ 1− 1
m

(
1− r2

) 1
1 + 5φ

52

Now we calculate the corresponding epoch complexity I(ε):

ε =
(

1− 1
m

(
1− r2

) 1
1 + 5φ

)mI(ε)

I(ε) = − 1
m

ln(1/ε)/ ln
(

1− 1
m

(
1− r2

) 1
1 + 5φ

)

Note that −x/ ln(1− x) ≤ 1− x. Applying this with x = 1
m

(1− r2) 1
1+5φ yields:

I(ε) ≤ (1 + 5φ) 1
1− r2 ln(1/ε)

= (1 + 5φ)ISync(ε)

With our parameter choice, the coefficients of the Lyapunov function are given by:

ci =
∞∑
l=i

(
εl +

(
1− r2

)
δl
)
Plρ
−(l−i+1)

=
∞∑
l=i

(
m1/2P

−1/2
i ρi/2 +

(
1− r2

)
m1/2P

−1/2
l ρl/2

(
1− r2

)−1
)
Plρ
−(l−i+1)

= 2m1/2
∞∑
l=i

P
1/2
l ρ−(l/2−i+1)

This completes the proof.

53

Part III

Asynchronous Acceleration

54

In this part, we present the results of (Hannah, Feng, and Wotao Yin 2018).

55

CHAPTER 8

Asynchronous Acceleration

In this section, we propose and prove the convergence of the Asynchronous Accelerated

Nonuniform RandomizedBlockCoordinateDescent algorithm (A2BCD), the first asynchronous

Nesterov-accelerated algorithm that achieves optimal complexity. No previous attempts have

been able to prove a speedup for asynchronous Nesterov acceleration. We aim to find the

minimizer x∗ of the unconstrained minimization problem:

min
x∈Rd

f(x) = f
(
x(1), . . . , x(n)

)
(8.0.1)

where f is σ-strongly convex for σ > 0 with L-Lipschitz gradient ∇f = (∇1f, . . . ,∇nf). f

is assumed to be Li-coordinate smooth in this section. Let L̄ , 1
n

∑n
i=1 Li be the average

block Lipschitz constant. These conditions on f are assumed throughout this whole section.

Our algorithm can also be applied to non-strongly convex objectives (σ = 0) or non-smooth

objectives using the black box reduction techniques proposed in (Allen-Zhu and Hazan 2016).

Hence we consider only the coordinate smooth, strongly-convex case. Our algorithm can also

be applied to the convex regularized ERM problem via the standard dual transformation (see

Section 3.5). Hence A2BCD can be used as an asynchronous Nesterov-accelerated finite-sum

algorithm.

8.1 Summary of Results

We prove that A2BCD attains NU_ACDM’s state-of-the-art iteration complexity to highest order

for solving (8.0.1), so long as delays are not too large. The proof is very different from that

of (Allen-Zhu, Qu, et al. 2016), and involves significant technical innovations and complexity

related to the analysis of asynchronicity.
56

We also prove that A2BCD (and hence NU_ACDM) has optimal complexity to within a

constant factor over a fairly general class of randomized block coordinate descent algorithms

(see Section 8.3). This extends results in (Lan and Y. Zhou 2017) to asynchronous algorithms

with Li not all equal. Since asynchronous algorithms complete faster iterations, and A2BCD

has optimal complexity, we expect A2BCD to be faster than all existing coordinate descent

algorithms. In Chapter 12 we confirm with numerical experiments on a small-scale shared-

memory architecture that A2BCD is the current fastest coordinate descent algorithm. We

find that A2BCD can approximately solve the (dual) ridge regression problem up to 4− 5×

faster than NU_ACDM for various data sets from LIBSVM (Chang and C.-J. Lin 2011). We

also discuss critical elements of an efficient implementation, including the sparse-update

reformulation of A2BCD and parameter tuning.

We are only aware of one previous and one contemporaneous attempt at proving conver-

gence results for asynchronous Nesterov-accelerated algorithms. However, the first is not

accelerated and relies on extreme assumptions, and the second obtains no speedup. Therefore,

we claim that our results are the first-ever analysis of asynchronous Nesterov-accelerated

algorithms that attains a speedup. Moreover, our speedup is optimal for delays not too large.

The work of (Meng et al. 2016) claims to obtain square-root speedup for an asynchronous

accelerated SVRG. In the case where all component functions have the same Lipschitz

constant L, the complexity they obtain reduces to (n+ κ) ln(1/ε) for κ = O(τn2) (Corollary

4.4). Hence authors do not even obtain accelerated rates. Their convergence condition is

τ < 1
4∆1/8 for sparsity parameter ∆. Since the dimension d satisfies d ≥ 1

∆ , they require

d ≥ 216τ 8. So τ = 20 requires dimension d > 1015.

In a contemporaneous preprint, authors in (Fang, Huang, and Z. Lin 2018) skillfully

devised accelerated schemes for asynchronous coordinate descent and SVRG using momen-

tum compensation techniques. Although their complexity results have the improved
√
κ

dependence on the condition number, they do not prove any speedup. Their complexity is τ

times larger than the serial complexity. Since τ is necessarily greater than p, their results

imply that adding more computing nodes will increase running time. The authors claim that

they can extend their results to linear speedup for asynchronous, accelerated SVRG under
57

sparsity assumptions. And while we think this is quite likely, they have not yet provided

proof.

We also derive a second-order ordinary differential equation (ODE), which is the continuous-

time limit of A2BCD (see Chapter 11). This extends the ODE found in (Su, Boyd, and Candes

2014) to an asynchronous accelerated algorithm minimizing a strongly convex function. We

prove this ODE linearly converges to a solution with the same rate as A2BCD’s, without

needing to resort to the restarting techniques. The ODE analysis motivates and clarifies the

our proof strategy of the main result.

8.2 Main Theoretical Results

We should consider functions f where it is efficient to calculate blocks of the gradient, so that

coordinate-wise parallelization is efficient. That is, the function should be “coordinate friendly”

(Zhimin Peng, Tianyu Wu, et al. 2016). This is a very wide class that includes regularized

linear regression, logistic regression, etc. The L2-regularized empirical risk minimization

problem is not coordinate friendly in general, however the equivalent dual problem is, and

hence can be solved efficiently by A2BCD (see (Q. Lin, Lu, and Xiao 2014)).

To calculate the k + 1’th iteration of the algorithm from iteration k, we use only one

block of the gradient ∇i(k)f . We assume that the delays j(k, i) are independent of the block

sequence i(k), but otherwise arbitrary. This is a standard assumption found in the vast

majority of papers, but can be relaxed (T. Sun, Hannah, and Wotao Yin 2017; Leblond,

Pedregosa, and Lacoste-Julien 2017; Cannelli et al. 2017).

Definition 14. Asynchronous Accelerated Randomized Block Coordinate Descent

(A2BCD). Let f be σ-strongly convex, and let its gradient ∇f be L-Lipschitz with block

coordinate Lipschitz parameters Li. We define the condition number κ = L/σ, and let

L = mini Li. Using these parameters, we sample i(k) in an independent and identically

distributed (IID) fashion according to

P[i(k) = j] = L
1/2
j /S, j ∈ {1, . . . , n}, for S =

∑n

i=1 L
1/2
i . (8.2.1)

58

Let τ be the maximum asynchronous delay. We define the dimensionless asynchronicity

parameter ψ, which is proportional to τ , and quantifies how strongly asynchronicity will

affect convergence:
ψ = 9

(
S−1/2L−1/2L3/4κ1/4

)
× τ (8.2.2)

We use the above system parameters and ψ to define the coefficients α, β, and γ via eqs. (8.2.3)

to (8.2.5). Hence A2BCD algorithm is defined via the iterations: eqs. (8.2.6) to (8.2.8).

α ,
(

1 + (1 + ψ)σ−1/2S
)−1

(8.2.3)

β , 1− (1− ψ)σ1/2S−1 (8.2.4)

h , 1− 1
2σ

1/2L−1/2ψ. (8.2.5)

yk = αvk + (1− α)xk, (8.2.6)

xk+1 = yk − hL−1
i(k)∇i(k)f(ŷk), (8.2.7)

vk+1 = βvk + (1− β)yk − σ−1/2L
−1/2
i(k) ∇i(k)f(ŷk). (8.2.8)

See Section 12.1 for a discussion of why it is practical and natural to have the gradient

∇i(k)f(ŷk) to be outdated, while the actual variables xk, yk, vk can be efficiently kept up to

date. Essentially it is because most of the computation lies in computing ∇i(k)f(ŷk). After

this is computed, xk, yk, vk can be updated more-or-less atomically with minimal overhead,

meaning that they will always be up to date. However our main results still hold for more

general asynchronicity.

We again use this asynchronicity error, as in previous sections. However, the coefficients

in this setting will be quite different.

Definition 15. Asynchronicity error. Using the above parameters, we define:

Ak =
τ∑
j=1

cj‖yk+1−j − yk−j‖2 (8.2.9)
for ci = 6

S
L1/2κ3/2τ

τ∑
j=i

(
1− σ1/2S−1

)i−j−1
ψ−1.

(8.2.10)

Here we define yk = y0 for all k < 0. The determination of the coefficients ci is in general

a very involved process of trial and error, intuition, and balancing competing requirements.

The algorithm doesn’t depend on the coefficients, however; they are only an analytical tool.

We define Ek[X] as the expectation ofX conditioned on (x0, . . . , xk), (y0, . . . , yk), (v0, . . . , vk),

and (i0, . . . , ik−1). To simplify notation1, we assume that the minimizer x∗ = 0, and that

1We can assume x∗ = 0 with no loss in generality since we may translate the coordinate system so that x∗ is
at the origin. We can assume f(x∗) = 0 with no loss in generality, since we can replace f(x) with f(x)−f(x∗).
Without this assumption, the Lyapunov function simply becomes: ‖vk − x∗‖2 +Ak + c(f(xk)− f(x∗)).

59

f(x∗) = 0 with no loss in generality. We define the Lyapunov function:

ρk = ‖vk‖2 +Ak + cf(xk) (8.2.11) for c = 2σ−1/2S−1(βα−1(1− α) + 1
)
. (8.2.12)

This combines Nesterov’s Lyapunov function for acceleration (Y. Nesterov 2012) and the

asynchronicity error.

We now present this part’s first main contribution.

Theorem 3. Let f be σ-strongly convex with a gradient ∇f that is L-Lipschitz with

block Lipschitz constants {Li}ni=1. Let ψ defined in (8.2.2) satisfy ψ ≤ 3
7 (i.e. τ ≤

1
21S

1/2L1/2L−3/4κ−1/4). Then for A2BCD we have:

Ek[ρk+1] ≤
(
1− (1− ψ)σ1/2S−1

)
ρk.

To obtain E[ρk] ≤ ερ0, it takes KA2BCD(ε) iterations for:

KA2BCD(ε) =
(
σ−1/2S +O(1)

) ln(1/ε)
1− ψ , (8.2.13)

where O(·) is asymptotic with respect to σ−1/2S →∞, and uniformly bounded.

This result is proven in Chapter 9. A stronger result for Li ≡ L can be proven, but

this adds to the complexity of the proof. In practice, asynchronous algorithms are far more

resilient to delays than the theory predicts. τ can be much larger without negatively affecting

the convergence rate and complexity. This is perhaps because we are limited to a worst-case

analysis, which is not representative of the average-case performance.

(Allen-Zhu, Qu, et al. 2016) (Theorem 5.1) shows a linear convergence rate of 1 −

2/
(
1 + 2σ−1/2S

)
for NU_ACDM, which leads to the corresponding iteration complexity of

KNU_ACDM(ε) =
(
σ−1/2S +O(1)

)
ln(1/ε). Hence, we have:

KA2BCD(ε) = 1
1− ψ (1 + o(1))KNU_ACDM(ε)

When 0 ≤ ψ � 1, or equivalently, when τ � S1/2L1/2L−3/4κ−1/4, the complexity of A2BCD

asymptotically matches that of NU_ACDM. Hence A2BCD combines state-of-the-art complexity

with the faster iterations and superior scaling that asynchronous iterations allow. We now

present some special cases of the conditions on the maximum delay τ required for good

complexity.
60

Corollary 16. Let the conditions of Theorem 3 hold. If all coordinate-wise Lipschitz

constants Li are equal (i.e. Li = L1, ∀i), then we have KA2BCD(ε) ∼ KNU_ACDM(ε) when τ �

n1/2κ−1/4(L1/L)3/4. If we further assume all coordinate-wise Lipschitz constants Li equal L.

Then KA2BCD(ε) ∼ KNU_ACDM(ε) = KACDM(ε), when τ � n1/2κ−1/4.

Remark 2. Reduction to synchronous case. Notice that when τ = 0, we have ψ = 0,

ci ≡ 0 and hence Ak ≡ 0. Thus A2BCD becomes equivalent to NU_ACDM, the Lyapunov

function2 ρk becomes equivalent to one found in (Allen-Zhu, Qu, et al. 2016)(pg. 9), and

Theorem 3 yields the same complexity.

The maximum delay τ will be a function τ(p) of p, number of computing nodes. Clearly

τ ≥ p, and experimentally it has been observed that τ = O(p) (Leblond, Pedregosa, and

Lacoste-Julien 2017). Let gradient complexity K(ε, τ) be the number of gradients required for

an asynchronous algorithm with maximum delay τ to attain suboptimality ε. τ(1) = 0, since

with only 1 computing node there can be no delay. This corresponds to the serial complexity.

We say that an asynchronous algorithm attains a complexity speedup if pK(ε,τ(0))
K(ε,τ(p) is increasing

in p. We say it attains linear complexity speedup if pK(ε,τ(0))
K(ε,τ(p) = Ω(p). In Theorem 3, we obtain

a linear complexity speedup (for p not too large), whereas no other prior attempt can attain

even a complexity speedup with Nesterov acceleration.

In the ideal scenario where the rate at which gradients are calculated increases linearly

with p, algorithms that have linear complexity speedup will have a linear decrease in wall-clock

time. However in practice, when the number of computing nodes is sufficiently large, the

rate at which gradients are calculated will no longer be linear. This is due to many parallel

overhead factors including too many nodes sharing the same memory read/write bandwidth,

and network bandwidth. However we note that even with these issues, we obtain much faster

convergence than the synchronous counterpart experimentally.

2Their Lyapunov function is in fact a generalization of the one found in (Y. Nesterov 2012).

61

8.3 Optimality

NU_ACDM and hence A2BCD are in fact optimal in some sense. That is, among a fairly wide

class of coordinate descent algorithms A, they have the best-possible worst-case complexity

to highest order. We extend the work in (Lan and Y. Zhou 2017) to encompass algorithms

are asynchronous and have unequal Li. For a subset S ∈ Rd, we let IC(S) (inconsistent read)

denote the set of vectors v whose components are a combination of components of vectors

in the set S. That is, v = (v1,1, v2,2, . . . , vd,d) for some vectors v1, v2, . . . , vd ∈ S. Here vi,j
denotes the jth component of vector vi.

Definition 17. Asynchronous Randomized Incremental Algorithms. Consider the

unconstrained minimization problem (8.0.1) for function f satisfying the conditions stated

previously in this section. We define the class A as algorithms G on this problem such that:

1. For each parameter set (σ, L1, . . . , Ln, n), G has an associated IID random variable

i(k) with some fixed distribution P[i(k)] = pi for
∑n
i=1 pi = 1.

2. The iterates ofA satisfy: xk+1 ∈ span{IC(Xk),∇i0f(IC(X0)),∇i1f(IC(X1)), . . . ,∇i(k)f(IC(Xk))}

This is a rather general class: xk+1 can be constructed from any inconsistent reading of

past iterates IC(Xk), and any past gradient of an inconsistent read ∇ijf(IC(Xj)).

Theorem 4. For any algorithm G ∈ A that solves eq. (8.0.1), and parameter set

(σ, L1, . . . , Ln, n), there is a dimension d, a corresponding function f on Rd, and a starting

point x0, such that

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥ 1
2
(
1− 4/

(∑n

j=1

√
Li/σ + 2n

))k
Hence A has a complexity lower bound: K(ε) ≥ 1

4(1 + o(1))
(∑n

j=1

√
Li/σ + 2n

)
ln(1/2ε)

Our proof in Chapter 10 follows very similar lines to (Lan and Y. Zhou 2017; Yurii

Nesterov 2013).

62

CHAPTER 9

Proofs for Asynchronous Acceleration

In this section, we prove Theorem 3. We find it convenient to define the norm:

‖s‖∗ =
√√√√ n∑
i=1

L
−1/2
i ‖si‖2 (9.0.1)

9.1 Starting point

First notice that using the definition (8.2.8) of vk+1 we have:

‖vk+1‖2 = ‖βvk + (1− β)yk‖2 − 2σ−1/2L
−1/2
i(k)

〈
βvk + (1− β)yk,∇i(k)f(ŷk)

〉
+ σ−1L−1

i(k)

∥∥∥∇i(k)f(ŷk)
∥∥∥2

Ek‖vk+1‖2 = ‖βvk + (1− β)yk‖2︸ ︷︷ ︸
A

−2σ−1/2S−1 〈βvk + (1− β)yk,∇f(ŷk)〉︸ ︷︷ ︸
B

(9.1.1)

+ S−1σ−1
n∑
i=1

L
−1/2
i ‖∇if(ŷk)‖2

︸ ︷︷ ︸
C

We have the following general identity:

‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2, ∀x, y (9.1.2)

It can also easily be verified from (8.2.6) that we have:

vk = yk + α−1(1− α)(yk − xk) (9.1.3)

Using (9.1.2) on term A, (9.1.3) on term B, and recalling the definition (9.0.1) on term C,

we have from (9.1.1):

Ek‖vk+1‖2 = β‖vk‖2 + (1− β)‖yk‖2 − β(1− β)‖vk − yk‖2 + S−1σ−1/2‖∇f(ŷk)‖2
∗ (9.1.4)

− 2σ−1/2S−1βα−1(1− α)〈yk − xk,∇f(ŷk)〉 − 2σ−1/2S−1〈yk,∇f(ŷk)〉
63

This inequality is our starting point. We analyze the terms on the second line in the next

section.

9.2 The Cross Term

To analyze these terms, we need a small lemma. This lemma is fundamental in allowing us

to deal with asynchronicity.

Lemma 18. Let χ,A > 0. Let the delay be bounded by τ . Then:

A‖ŷk − yk‖ ≤
1
2χ
−1A2 + 1

2χτ
τ∑
j=1
‖yk+1−j − yk−j‖2

Proof. See (Hannah and Wotao Yin 2017a).

Lemma 19. We have:

−〈∇f(ŷk), yk〉 ≤ −f(yk)−
1
2σ(1− ψ)‖yk‖2 +

1
2
Lκψ−1τ

τ∑
j=1
‖yk+1−j − yk−j‖2 (9.2.1)

〈∇f(ŷk), xk − yk〉 ≤ f(xk)− f(yk) (9.2.2)

+
1
2
Lα(1− α)−1

κ−1ψβ‖vk − yk‖2 + κψ−1β−1τ
τ∑
j=1
‖yk+1−j − yk−j‖2

The terms in bold in (9.2.1) and (9.2.2) are a result of the asynchronicity, and are

identically 0 in its absence.

Proof. Our strategy is to separately analyze terms that appear in the traditional analysis of

(Y. Nesterov 2012), and the terms that result from asynchronicity. We first prove (9.2.1):

−〈∇f(ŷk), yk〉 = −〈∇f(yk), yk〉 − 〈∇f(ŷk)−∇f(yk), yk〉

≤ −f(yk)−
1
2σ‖yk‖

2 + L‖ŷk − yk‖‖yk‖ (9.2.3)

(9.2.3) follows from strong convexity ((3.1.1) with x = yk and y = x∗), and the fact that ∇f

is L-Lipschitz. The term due to asynchronicity becomes:

L‖ŷk − yk‖‖yk‖ ≤
1
2Lκ

−1ψ‖yk‖2 + 1
2Lκψ

−1τ
τ∑
j=1
‖yk+1−j − yk−j‖2

64

using Lemma 18 with χ = κψ−1, A = ‖yk‖. Combining this with (9.2.3) completes the proof

of (9.2.1).

We now prove (9.2.2):

〈∇f(ŷk), xk − yk〉 = 〈∇f(yk), xk − yk〉+ 〈∇f(ŷk)−∇f(yk), xk − yk〉

≤ f(xk)− f(yk) + L‖ŷk − yk‖‖xk − yk‖

≤ f(xk)− f(yk)

+ 1
2L
κ−1ψβα−1(1− α)‖xk − yk‖2 + κψ−1β−1α(1− α)−1τ

τ∑
j=1
‖yk+1−j − yk−j‖2

Here the last line follows from Lemma 18 with χ = κψ−1β−1α(1− α)−1, A = nxk − yk. We

can complete the proof using the following identity that can be easily obtained from (8.2.6):

yk − xk = α(1− α)−1(vk − yk)

9.3 Function-value term

Much like (Y. Nesterov 2012), we need a f(xk) term in the Lyapunov function (see the middle

of page 357). However we additionally need to consider asynchronicity when analyzing the

growth of this term. Again terms due to asynchronicity are emboldened.

Lemma 20. We have:

Ekf(xk+1) ≤ f(yk)−
1
2h
(

2− h
(

1 +
1
2
σ1/2L−1/2ψ

))
S−1‖∇f(ŷk)‖2

∗

+ S−1Lσ1/2κψ−1τ
τ∑
j=1
‖yk+1−j − yk−j‖2

Proof. From the definition (8.2.7) of xk+1, we can see that xk+1 − yk is supported on block

i(k). Since each gradient block ∇if is Li Lipschitz with respect to changes to block i, we can

use (3.1.2) to obtain:

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+ 1
2Li(k)‖xk+1 − yk‖2

(from (8.2.7)) = f(yk)− hL−1
i(k)

〈
∇i(k)f(yk),∇i(k)f(ŷk)

〉
+ 1

2h
2L−1

i(k)

∥∥∥∇i(k)f(ŷk)
∥∥∥2

65

= f(yk)− hL−1
i(k)

〈
∇i(k)f(yk)−∇i(k)f(ŷk),∇i(k)f(ŷk)

〉
− 1

2h(2− h)L−1
i(k)

∥∥∥∇i(k)f(ŷk)
∥∥∥2

Ekf(xk+1) ≤ f(yk)− hS−1
n∑
i=1

L
−1/2
i 〈∇if(yk)−∇if(ŷk),∇if(ŷk)〉 −

1
2h(2− h)S−1‖∇f(ŷk)‖2

∗

(9.3.1)

Here the last line followed from the definition (9.0.1) of the norm ‖·‖∗1/2. We now analyze

the middle term:

−
n∑
i=1

L
−1/2
i 〈∇if(yk)−∇if(ŷk),∇if(ŷk)〉

= −
〈

n∑
i=1

L
−1/4
i (∇if(yk)−∇if(ŷk)),

n∑
i=1

L
−1/4
i ∇if(ŷk)

〉

(Cauchy Schwarz) ≤
∥∥∥∥∥
n∑
i=1

L
−1/4
i (∇if(yk)−∇if(ŷk))

∥∥∥∥∥
∥∥∥∥∥
n∑
i=1

L
−1/4
i ∇if(ŷk)

∥∥∥∥∥
=
(

n∑
i=1

L
−1/2
i ‖∇if(yk)−∇if(ŷk)‖2

)1/2(n∑
i=1

L
−1/2
i ‖∇if(ŷk)‖2

)1/2

(L ≤ Li,∀i and (9.0.1)) ≤ L−1/4‖∇f(yk)−∇f(ŷk)‖‖∇f(ŷk)‖∗

(∇f is L-Lipschitz) ≤ L−1/4L‖yk − ŷk‖‖∇f(ŷk)‖∗

We then apply Lemma 18 to this with χ = 2h−1σ1/2L1/4κψ−1, A = ‖∇f(ŷk)‖∗ to yield:

−
n∑
i=1

L
−1/2
i 〈∇if(yk)−∇if(ŷk),∇if(ŷk)〉 ≤ h−1Lσ1/2κψ−1τ

τ∑
j=1
‖yk+1−j − yk−j‖2 (9.3.2)

+ 1
4hσ

1/2L−1/2ψ‖∇f(ŷk)‖2
∗

Finally to complete the proof, we combine (9.3.1), with (9.3.2).

9.4 Asynchronicity error

The previous inequalities produced difference terms of the form ‖yk+1−j − yk−j‖2. The

following lemma shows how these errors can be incorporated into a Lyapunov function.

Lemma 21. Let 0 < r < 1 and consider the asynchronicity error and corresponding

coefficients:

Ak =
∞∑
j=1
cj‖yk+1−j − yk−j‖2

66

ci =
∞∑
j=i

ri−j−1sj

This sum satisfies:

Ek[Ak+1 − rAk] = c1Ek‖yk+1 − yk‖2 −
∞∑
j=1

sj‖yk+1−j − yk−j‖2

Remark 3. Interpretation. This result means that an asynchronicity error term Ak can

negate a series of difference terms −∑∞j=1 sj‖yk+1−j − yk−j‖2 at the cost of producing an

additional error c1Ek‖yk+1 − yk‖2, while maintaining a convergence rate of r. This essentially

converts difference terms, which are hard to deal with, into a ‖yk+1 − yk‖2 term which can

be negated by other terms in the Lyapunov function. The proof is straightforward.

Proof.

Ek[Ak+1 − rAk] = Ek
∞∑
j=0

cj+1‖yk+1−j − yk−j‖2 − rEk
∞∑
j=1
cj‖yk+1−j − yk−j‖2

= c1Ek‖yk+1 − yk‖2 + Ek
∞∑
j=1

(cj+1 − rcj)‖yk+1−j − yk−j‖2

Noting the following completes the proof:

ci+1 − rci =
∞∑

j=i+1
ri+1−j−1sj − r

∞∑
j=i

ri−j−1sj = −si

Given thatAk allows us to negate difference terms, we now analyze the cost c1Ek‖yk+1 − yk‖2

of this negation.

Lemma 22. We have:

Ek‖yk+1 − yk‖2 ≤ 2α2β2‖vk − yk‖2 + 2S−1L−1‖∇f(ŷk)‖2

Proof.

yk+1 − yk = (αvk+1 + (1− α)xk+1)− yk

= α
(
βvk + (1− β)yk − σ−1/2L

−1/2
i(k) ∇i(k)f(ŷk)

)
+ (1− α)

(
yk − hL−1

i(k)∇i(k)f(ŷk)
)
− yk

(9.4.1)

= αβvk + α(1− β)yk − ασ−1/2L
−1/2
i(k) ∇i(k)f(ŷk)− αyk − (1− α)hL−1

i(k)∇i(k)f(ŷk)
67

= αβ(vk − yk)−
(
ασ−1/2L

−1/2
i(k) + h(1− α)L−1

i(k)

)
∇i(k)f(ŷk)

‖yk+1 − yk‖2 ≤ 2α2β2‖vk − yk‖2 + 2
(
ασ−1/2L

−1/2
i(k) + h(1− α)L−1

i(k)

)2∥∥∥∇i(k)f(ŷk)
∥∥∥2

(9.4.2)

Here (9.4.1) following from (8.2.8), the definition of vk+1. (9.4.2) follows from the inequality

‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2. The rest is simple algebraic manipulation.

‖yk+1 − yk‖2 ≤ 2α2β2‖vk − yk‖2 + 2L−1
i(k)

(
ασ−1/2 + h(1− α)L−1/2

i(k)

)2∥∥∥∇i(k)f(ŷk)
∥∥∥2

(L ≤ Li,∀i) ≤ 2α2β2‖vk − yk‖2 + 2L−1
i(k)

(
ασ−1/2 + h(1− α)L−1/2

)2∥∥∥∇i(k)f(ŷk)
∥∥∥2

= 2α2β2‖vk − yk‖2 + 2L−1
i(k)L

−1
(
L1/2σ−1/2α + h(1− α)

)2∥∥∥∇i(k)f(ŷk)
∥∥∥2

E‖yk+1 − yk‖2 ≤ 2α2β2‖vk − yk‖2 + 2S−1L−1
(
L1/2σ−1/2α + h(1− α)

)2
‖∇f(ŷk)‖2

∗

Finally, to complete the proof, we prove L1/2σ−1/2α + h(1− α) ≤ 1.

L1/2σ−1/2α + h(1− α) = h+ α
(
L1/2σ−1/2 − h

)
(definitions of h and α: (8.2.3), and (8.2.5)) = 1− 1

2σ
1/2L−1/2ψ + σ1/2S−1

(
L1/2σ−1/2

)
≤ 1− σ1/2L−1/2

(1
2ψ − σ

−1/2S−1L1
)

(9.4.3)

Rearranging the definition of ψ, we have:

S−1 = 1
92ψ

2L1L−3/2κ−1/2τ−2

(τ ≥1 and ψ ≤ 1
2) ≤

1
182L

1L−3/2κ−1/2

Using this on (9.4.3), we have:

L1/2ασ−1/2 + h(1− α) ≤ 1− σ1/2L−1/2
(1

2ψ −
1

182L
1L−3/2κ−1/2σ−1/2L1

)
= 1− σ1/2L−1/2

(1
2ψ −

1
182 (L/L)2

)
(ψ ≤ 1

2) = 1− σ1/2L−1/2
(1

24 −
1

182

)
≤ 1.

This completes the proof.

9.5 Master inequality

We are finally in a position to bring together all the previous results together into a master

inequality for the Lyapunov function ρk (defined in eq. (8.2.11)). After this lemma is proven,
68

we will prove that the right hand size is negative, which will imply that ρk linearly converges

to 0 with rate β.

Lemma 23. Master inequality. We have:

Ek[ρk+1 − βρk]

≤+ ‖yk‖2 ×
(
1− β − σ−1/2S−1σ(1− ψ)

)
(9.5.1)

+ ‖vk − yk‖2 ×β
(
2α2βc1 + S−1βL1/2κ−1/2ψ − (1− β)

)
+ f(yk) ×

(
c− 2σ−1/2S−1

(
βα−1(1− α) + 1

))
+ f(xk) ×β

(
2σ−1/2S−1α−1(1− α)− c

)
+

τ∑
j=1
‖yk+1−j − yk−j‖2 ×S−1Lκψ−1τσ1/2

(
2σ−1 + c

)
− s

+ ‖∇f(ŷk)‖2
∗ ×S−1

(
σ−1 + 2L−1c1 −

1
2ch

(
2− h

(
1 + 1

2σ
1/2L−1/2ψ

)))

Proof.

Ek‖vk+1‖2 − β‖vk‖2

(9.1.4) = (1− β)‖yk‖2 − β(1− β)‖vk − yk‖2 + S−1σ−1‖∇f(ŷk)‖2
∗

− 2σ−1/2S−1〈yk,∇f(ŷk)〉

− 2σ−1/2S−1βα−1(1− α)〈yk − xk,∇f(ŷk)〉

≤ (1− β)‖yk‖2 − β(1− β)‖vk − yk‖2 + S−1σ−1‖∇f(ŷk)‖2
∗ (9.5.2)

(9.2.1) + 2σ−1/2S−1

−f(yk)−
1
2σ(1− ψ)‖yk‖2 + 1

2Lκψ
−1τ

τ∑
j=1
‖yk+1−j − yk−j‖2

(9.2.2)− 2σ−1/2S−1βα−1(1− α)(f(xk)− f(yk))

+ σ−1/2S−1βL

κ−1ψβ‖vk − yk‖2 + κψ−1β−1τ
τ∑
j=1
‖yk+1−j − yk−j‖2

We now collect and organize the similar terms of this inequality.

≤+ ‖yk‖2 ×
(
1− β − σ−1/2S−1σ(1− ψ)

)
+ ‖vk − yk‖2 ×β

(
σ−1/2S−1βLκ−1ψ − (1− β)

)
− f(yk) ×2σ−1/2S−1

(
βα−1(1− α) + 1

)
69

+ f(xk) ×2σ−1/2S−1βα−1(1− α)

+
τ∑
j=1
‖yk+1−j − yk−j‖2 ×2σ−1/2S−1Lκψ−1τ

+ ‖∇f(ŷk)‖2
∗ ×σ−1S−1

Now finally, we add the function-value and asynchronicity terms to our analysis. We use

Lemma 21 is with r = 1− σ1/2S−1, and

si =

s = 6S−1L1/2κ3/2ψ−1τ, 1 ≤ i ≤ τ

0, i > τ

(9.5.3)

Notice that this choice of si will recover the coefficient formula given in (8.2.9). Hence we

have:

Ek[cf(xk+1) + Ak+1 − β(cf(xk) + Ak)]

(Lemma 20) ≤ cf(yk)−
1
2ch

(
2− h

(
1 + 1

2σ
1/2L−1/2ψ

))
S−1‖∇f(ŷk)‖2

∗ − βcf(xk)

(9.5.4)

+ S−1Lσ1/2κψ−1τ
τ∑
j=1
‖yk+1−j − yk−j‖2

(Lemmas 21 and 22) + c1
(
2α2β2‖vk − yk‖2 + 2S−1L−1‖∇f(ŷk)‖2

)
(9.5.5)

−
∞∑
j=1

sj‖yk+1−j − yk−j‖2 + Ak(r − β)

Notice Ak(r − β) ≤ 0. Finally, combining (9.5.2) and (9.5.4) completes the proof.

In the next section, we will prove that every coefficient on the right hand side of (9.5.1)

is 0 or less, which will complete the proof of Theorem 3.

9.6 Proof of main theorem

Lemma 24. The coefficients of ‖yk‖2, f(yk), and
∑τ
j=1‖yk+1−j − yk−j‖2 in Lemma 23 are

non-positive.

70

Proof. The coefficient 1 − (1− ψ)σ1/2S−1 − β of ‖yk‖2 is identically 0 via the definition

(8.2.4) of β. The coefficient c− 2σ−1/2S−1(βα−1(1− α) + 1) of f(yk) is identically 0 via the

definition (8.2.12) of c.

First notice from the definition (8.2.12) of c:

c = 2σ−1/2S−1
(
βα−1(1− α) + 1

)
(definitions of α, β) = 2σ−1/2S−1

((
1− σ1/2S−1(1− ψ)

)
(1 + ψ)σ−1/2S + 1

)
= 2σ−1/2S−1

(
(1 + ψ)σ−1/2S + ψ2

)
= 2σ−1

(
(1 + ψ) + ψ2σ1/2S−1

)
(9.6.1)

c ≤ 4σ−1 (9.6.2)

Here the last line followed since ψ ≤ 1
2 and σ1/2S−1 ≤ 1. We now analyze the coefficient

of ∑τ
j=1‖yk+1−j − yk−j‖2.

S−1Lκψ−1τσ1/2
(
2σ−1 + c

)
− s

(9.6.2) ≤ 6L1/2κ3/2ψ−1τ − s

(definition (9.5.3) of s) ≤ 0

Lemma 25. The coefficient β
(
2σ−1/2S−1α−1(1− α)− c

)
of f(xk) in Lemma 23 is non-

positive.

Proof.

2σ−1/2S−1α−1(1− α)− c

(9.6.1) = 2σ−1/2S−1(1 + ψ)σ−1/2S − 2σ−1
(
(1 + ψ) + ψ2σ1/2S−1

)
= 2σ−1

(
(1 + ψ)−

(
(1 + ψ) + ψ2σ1/2S−1

))
= −2ψ2σ−1/2S−1 ≤ 0

Lemma 26. The coefficient S−1
(
σ−1 + 2L−1c1 − 1

2ch
(
2− h

(
1 + 1

2σ
1/2L−1/2ψ

)))
of ‖∇f(ŷk)‖2

∗

in Lemma 23 is non-positive.

71

Proof. We first need to bound c1.

((9.5.3) and (8.2.9)) c1 = s
τ∑
j=1

(
1− σ1/2S−1

)−j
(9.5.3) ≤ 6S−1L1/2κ3/2ψ−1τ

τ∑
j=1

(
1− σ1/2S−1

)−j
≤ 6S−1L1/2κ3/2ψ−1τ 2

(
1− σ1/2S−1

)−τ
It can be easily verified that if x ≤ 1

2 and y ≥ 0, then (1− x)−y ≤ exp(2xy). Using this fact

with x = σ1/2S−1 and y = τ , we have:

≤ 6S−1L1/2κ3/2ψ−1τ 2 exp
(
τσ1/2S−1

)
(since ψ ≤ 3/7 and hence τσ1/2S−1 ≤ 1

7) ≤ S−1L1/2κ3/2ψ−1τ 2 × 6 exp
(1

7

)
c1 ≤ 7S−1L1/2κ3/2ψ−1τ 2 (9.6.3)

We now analyze the coefficient of ‖∇f(ŷk)‖2
∗

σ−1 + 2L−1c1 −
1
2ch

(
2− h

(
1 + 1

2σ
1/2L−1/2ψ

))
(9.6.3 and 8.2.5) ≤ σ−1 + 14S−1L−1L1/2κ3/2ψ−1τ 2 − 1

2ch
(

1 + 1
4σ

1L−1ψ2
)

≤ σ−1 + 14S−1L−1L1/2κ3/2ψ−1τ 2 − 1
2ch

(Equation (8.2.2) of ψ) = σ−1 + 14
81σ

−1ψ − 1
2ch

(9.6.1, Equation (8.2.5) of h) = σ−1
(

1 + 14
81ψ −

(
(1 + ψ) + ψ2σ1/2S−1

)(
1− 1

2σ
1/2L−1/2ψ

))
(σ1/2L−1/2 ≤ 0 and σ1/2S−1 ≤ 1) ≤ σ−1

(
1 + 14

81ψ − (1 + ψ)
(

1− 1
2ψ
))

= σ−1ψ
(14

81 + 1
2ψ −

1
2

)
(ψ ≤ 1

2) ≤ 0

Lemma 27. The coefficient β
(
2α2βc1 + S−1βL1/2κ−1/2ψ − (1− β)

)
of ‖vk − yk‖2 in 23 is

non-positive.

Proof.

2α2βc1 + σ1/2S−1βψ − (1− ψ)σ1/2S−1

72

(9.6.3) ≤ 14α2βS−1L1/2κ3/2ψ−1τ 2 + σ1/2S−1βψ − (1− ψ)σ1/2S−1

≤ 14σS−3L1/2κ3/2ψ−1τ 2 + σ1/2S−1ψ − (1− ψ)σ1/2S−1

= σ1/2S−1
(
14S−2Lκτ 2ψ−1 + 2ψ − 1

)
Here the last inequality follows since β ≤ 1 and α ≤ σ1/2S−1. We now rearrange the definition

of ψ to yield the identity:

S−2κ = 1
94L

2L−3τ−4ψ4

Using this, we have:

14S−2Lκτ 2ψ−1 + 2ψ − 1

= 14
94 L

2L−2ψ3τ−2 + 2ψ − 1

≤ 14
94

(3
7

)3
1−2 + 6

7 − 1 ≤ 0

Here the last line followed since L ≤ L, ψ ≤ 3
7 , and τ ≥ 1. Hence the proof is complete.

Proof of Theorem 3. Using the master inequality 23 in combination with the previous Lemmas

24, 25, 26, and 27, we have:

Ek[ρk+1] ≤ βρk =
(
1− (1− ψ)σ1/2S−1

)
ρk

When we have:
(
1− (1− ψ)σ1/2S−1

)k
≤ ε

then the Lyapunov function ρk has decreased below ερ0 in expectation. Hence the complexity

K(ε) satisfies:

K(ε) ln
(
1− (1− ψ)σ1/2S−1

)
= ln(ε)

K(ε) = −1
ln(1− (1− ψ)σ1/2S−1) ln(1/ε)

Now it can be shown that for 0 < x ≤ 1
2 , we have:

1
x
− 1 ≤ −1

ln(1− x) ≤
1
x
− 1

2
73

−1
ln(1− x) = 1

x
+O(1)

Since n ≥ 2, we have σ1/2S−1 ≤ 1
2 . Hence:

K(ε) = 1
1− ψ

(
σ−1/2S +O(1)

)
ln(1/ε)

An expression for KNU_ACDM(ε), the complexity of NU_ACDM follows by similar reasoning.

KNU_ACDM(ε) =
(
σ−1/2S +O(1)

)
ln(1/ε) (9.6.4)

Finally we have:

K(ε) = 1
1− ψ

(
σ−1/2S +O(1)
σ−1/2S +O(1)

)
KNU_ACDM(ε)

= 1
1− ψ (1 + o(1))KNU_ACDM(ε)

which completes the proof.

74

CHAPTER 10

Optimality proof

In this section, we prove Theorem 4. For parameter set σ, L1, . . . , Ln, n, we construct a

block-separable function f on the space Rbn (separated into n blocks of size b), which will

imply this lower bound. Define κi = Li/σ. We define the matrix Ai ∈ Rb×b via:

Ai ,

2 −1 0

−1 2

0 −1 0
. . . −1 2 −1

0 −1 θi

, for θi = κ

1/2
i + 3
κ

1/2
i + 1

.

Hence we define fi on Rb via:

fi = Li − σ
4

(1
2〈x,Aix〉 − 〈e1, x〉

)
+ σ

2 ‖x‖
2

which is clearly σ-strongly convex and Li-Lipschitz on Rb. From Lemma 8 of (Lan and

Y. Zhou 2017), we know that this function has unique minimizer

x∗,(i) ,
(
qi, q

2
i , . . . , q

b
i

)
, for q = κ

1/2
i − 1
κ

1/2
i + 1

.

Finally, we define f via:

f(x) ,
n∑
i=1

fi
(
x(i)

)
.

Now let e(i, j) be the jth unit vector of the ith block of size b in Rbn. For I1, . . . , In ∈ N,

we define the subspaces

Vi(I) = span{e(i, 1), . . . , e(i, I)},
75

V (I1, . . . , In) = V1(I1)⊕ . . .⊕ Vn(In).

V (I1, . . . , In) is the subspace with the first I1 components of block 1 nonzero, the first I2

components of block 2 nonzero, etc. First notice that IC(V (I1, . . . , In)) = V (I1, . . . , In). Also,

clearly, we have:

∇if(V (I1, . . . , In)) ⊂ V (0, . . . , 0,min{Ii + 1, b}, 0, . . . , 0). (10.0.1)

∇if is supported on the ith block, hence why all the other indices are 0. The pattern of

non-zeroes in A means that the gradient will have at most 1 more nonzero on the ith block

(see (Yurii Nesterov 2013)).

Let the initial point x0 belong to V
(
Ī1, . . . , Īn

)
. Let IK,i be the number of times we have

had i(k) = i for k = 0, . . . , K− 1. By induction on condition 2 of Definition 17 using (10.0.1),

we have:

xk ∈ V
(
min

{
Ī1 + Ik,1, b

}
, . . . ,min

{
Īn + Ik,m, b

})
Hence if x0,(i) ∈ Vi(0) and k ≤ b, then

∥∥∥xk,(i) − x∗,(i)∥∥∥2
≥ min

x∈Vi(Ik,i)

∥∥∥x− x∗,(i)∥∥∥2
=

b∑
j=Ik,i+1

q2j
i =

(
q

2Ik,i+2
i − q2b+2

i

)
/
(
1− q2

i

)

Therefore for all i, we have:

E‖xk − x∗‖2 ≥ E
∥∥∥xk,(i) − x∗,(i)∥∥∥2

≥ E
[(
q

2Ik,i+2
i − q2b+2

i

)
/
(
1− q2

i

)]
To evaluate this expectation, we note:

Eq2Ik,i

i =
k∑
j=0

 k

j

pji (1− pi)k−jq2j
i

= (1− pi)k
k∑
j=0

 k

j

(q2
i pi(1− pi)

−1
)j

= (1− pi)k
(
1 + q2

i pi(1− pi)
−1
)k

=
(
1−

(
1− q2

i

)
pi
)k

76

Hence

E‖xk − x∗‖2 ≥
((

1−
(
1− q2

i

)
pi
)k
− q2b

i

)
q2
i /
(
1− q2

i

)
.

For any i, we may select the starting iterate x0 by defining its block j = 1, . . . , n via:

x0,(j) = (1− δij)x∗,(j)

For such a choice of x0, we have

‖x0 − x∗‖2 =
∥∥∥x∗,(i)∥∥∥2

= q2
i + . . .+ q2b

i = q2
i

1− q2b
i

1− q2
i

Hence for this choice of x0:

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥
((

1−
(
1− q2

i

)
pi
)k
− q2b

i

)
/
(
1− q2b

i

)

Now notice:
(
1−

(
1− q2

i

)
pi
)k

=
(
q−2
i −

(
q−2
i − 1

)
pi
)k
q2k
i ≥ q2k

i

Hence

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥
(
1−

(
1− q2

i

)
pi
)k(

1− q2b−2k
i

)
/
(
1− q2b

i

)
Now if we let b = 2k, then we have:

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥
(
1−

(
1− q2

i

)
pi
)k(

1− q2k
i

)
/
(
1− q4k

i

)
=
(
1−

(
1− q2

i

)
pi
)k
/
(
1 + q2k

i

)
E‖xk − x∗‖2/‖x0 − x∗‖2 ≥ 1

2 max
i

(
1−

(
1− q2

i

)
pi
)k

Now let us take the minimum of the right-hand side over the parameters pi, subject to∑n
i=1 pi = 1. The solution to this minimization is clearly:

pi =
(
1− q2

i

)−1
/

 n∑
j=1

(
1− q2

j

)−1

Hence

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥ 1
2

1−
 n∑
j=1

(
1− q2

j

)−1
−1

k

77

n∑
j=1

(
1− q2

j

)−1
= 1

4

n∑
j=1

(
κ

1/2
i + 2 + κ

−1/2
i

)

≥ 1
4

 n∑
j=1

κ
1/2
i + 2n

E‖xk − x∗‖2/‖x0 − x∗‖2 ≥ 1

2

1− 4∑n
j=1 κ

1/2
i + 2n

k

Hence the complexity I(ε) satisfies:

ε ≥ 1
2

1− 4∑n
j=1 κ

1/2
i + 2n

I(ε)

I(ε) ≥ −
ln

1− 4∑n
j=1 κ

1/2
i + 2n

−1

ln(1/2ε)

= 1
4(1 + o(1))

n+
n∑
j=1

κ
1/2
i

 ln(1/2ε)

78

CHAPTER 11

ODE Analysis of Acceleration

In this section we present and analyze an ODE which is the continuous-time limit of A2BCD.

This ODE is a strongly convex, and asynchronous version of the ODE found in (Su, Boyd,

and Candes 2014). For simplicity, assume Li = L, ∀i. We rescale (I.e. we replace f(x) with
1
σ
f .) f so that σ = 1, and hence κ = L/σ = L. Taking the discrete limit of synchronous

A2BCD (i.e. accelerated RBCD), we can derive the following ODE1 (see Section (11.1)):

Ÿ + 2n−1κ−1/2Ẏ + 2n−2κ−1∇f(Y) = 0 (11.0.1)

We define the parameter η , nκ1/2, and the energy: E(t) = en
−1κ−1/2t(f(Y) + 1

4

∥∥∥Y + ηẎ
∥∥∥2

).

This is very similar to the Lyapunov function discussed in (8.2.11), with 1
4

∥∥∥Y (t) + ηẎ (t)
∥∥∥2

fulfilling the role of ‖vk‖2, and Ak = 0 (since there is no delay yet). Much like the traditional

analysis in the proof of Theorem 3, we can derive a linear convergence result with a similar

rate. See Section 11.2.

Lemma 28. If Y satisfies (11.0.1), the energy satisfies E ′(t) ≤ 0, E(t) ≤ E(0), and hence:

f(Y (t)) + 1
4
∥∥∥Y (t) + nκ1/2Ẏ (t)

∥∥∥2
≤
(
f(Y (0)) + 1

4
∥∥∥Y (0) + ηẎ (0)

∥∥∥2
)
e−n

−1κ−1/2t

We may also analyze an asynchronous version of (11.0.1) to motivate the proof of our

main theorem. Here Ŷ (t) is a delayed version of Y (t) with the delay bounded by τ .

Ÿ + 2n−1κ−1/2Ẏ + 2n−2κ−1∇f
(
Ŷ
)

= 0, (11.0.2)

Unfortunately, this energy satisfies (see Section (11.4), (11.4.1)):

e−η
−1tE ′(t) ≤ −1

8η
∥∥∥Ẏ ∥∥∥2

+ 3κ2η−1τD(t), for D(t) ,
∫ t

t−τ

∥∥∥Ẏ (s)
∥∥∥2
ds.

1For compactness, we have omitted the (t) from time-varying functions Y (t), Ẏ (t), ∇Y (t), etc.

79

Hence this energy E(t) may not be decreasing in general. But, we may add a continuous-

time asynchronicity error (see (T. Sun, Hannah, and Wotao Yin 2017)), much like in

Definition 15, to create a decreasing energy. Let c0 ≥ 0 and r > 0 be arbitrary constants that

will be set later. Define:

A(t) =
∫ t

t−τ
c(t− s)

∥∥∥Ẏ (s)
∥∥∥2
ds, for c(t) , c0

(
e−rt + e−rτ

1− e−rτ
(
e−rt − 1

))
.

Lemma 29. When rτ ≤ 1
2 , the asynchronicity error A(t) satisfies:

e−rt
d

dt

(
ertA(t)

)
≤ c0

∥∥∥Ẏ (t)
∥∥∥2
− 1

2τ
−1c0D(t).

See Section 11.3 for the proof. Adding this error to the Lyapunov function serves a similar

purpose in the continuous-time case as in the proof of Theorem 3 (see Lemma 21). It allows

us to negate 1
2τ
−1c0 units of D(t) for the cost of creating c0 units of

∥∥∥Ẏ (t)
∥∥∥2
. This restores

monotonicity.

Theorem 5. Let c0 = 6κ2η−1τ 2, and r = η−1. If τ ≤ 1√
48nκ

−1/2 then we have:

e−η
−1t d

dt

(
E(t) + eη

−1tA(t)
)
≤ 0. (11.0.3)

Hence f(Y (t)) convergence linearly to f(x∗) with rate O
(
exp

(
−t/(nκ1/2)

))
Notice how this convergence condition is similar to Corollary 16, but a little looser. The

convergence condition in Theorem 3 can actually be improved to approximately match this.

Proof. e−η
−1t d

dt

(
E(t) + eη

−1tA(t)
)
≤
(
c0 −

1
8η
)∥∥∥Ẏ ∥∥∥2

+
(

3κ2η−1τ − 1
2τ
−1c0

)
D(t)

= 6η−1κ2
(
τ 2 − 1

48n
2κ−1

)∥∥∥Ẏ ∥∥∥2
≤ 0

The preceding should hopefully elucidate the logic and general strategy of the proof of

Theorem 3.

11.1 Derivation of ODE for synchronous A2BCD

If we take expectations with respect to Ek, then synchronous (no delay) A2BCD becomes:

yk = αvk + (1− α)xk
80

Ekxk+1 = yk − n−1κ−1∇f(yk)

Ekvk+1 = βvk + (1− β)yk − n−1κ−1/2∇f(yk)

We find it convenient to define η = nκ1/2. Inspired by this, we consider the following iteration:

yk = αvk + (1− α)xk (11.1.1)

xk+1 = yk − s1/2κ−1/2η−1∇f(yk) (11.1.2)

vk+1 = βvk + (1− β)yk − s1/2η−1∇f(yk) (11.1.3)

for coefficients:

α =
(
1 + s−1/2η

)−1

β = 1− s1/2η−1

s is a discretization scale parameter that will be sent to 0 to obtain an ODE analogue of

synchronous A2BCD. We first use (9.1.3) to eliminate vk from from (11.1.3).

0 = −vk+1 + βvk + (1− β)yk − s1/2η−1∇f(yk)

0 = −α−1yk+1 + α−1(1− α)xk+1

+ β
(
α−1yk − α−1(1− α)xk

)
+ (1− β)yk − s1/2η−1∇f(yk)

(times by α) 0 = −yk+1 + (1− α)xk+1

+ β(yk − (1− α)xk) + α(1− β)yk − αs1/2η−1∇f(yk)

= −yk+1 + yk(β + α(1− β))

+ (1− α)xk+1 − xkβ(1− α)− αs1/2η−1∇f(yk)

We now eliminate xk using (11.1.1):

0 = −yk+1 + yk(β + α(1− β))

+ (1− α)
(
yk − s1/2η−1κ−1/2∇f(yk)

)
−
(
yk−1 − s1/2η−1κ−1/2∇f(yk−1)

)
β(1− α)

− αs1/2η−1∇f(yk)

81

= −yk+1 + yk(β + α(1− β) + (1− α))− β(1− α)yk−1

+ s1/2η−1∇f(yk−1)(β − 1)(1− α)

− αs1/2η−1∇f(yk)

= (yk − yk+1) + β(1− α)(yk − yk−1)

+ s1/2η−1(∇f(yk−1)(β − 1)(1− α)− α∇f(yk))

Now to derive an ODE, we let yk = Y
(
ks1/2

)
. Then ∇f(yk−1) = ∇f(yk) +O

(
s1/2

)
. Hence

the above becomes:

0 = (yk − yk+1) + β(1− α)(yk − yk−1)

+ s1/2η−1((β − 1)(1− α)− α)∇f(yk) +O
(
s3/2

)
0 =

(
−s1/2Ẏ − 1

2sŸ
)

+ β(1− α)
(
s1/2Ẏ − 1

2sŸ
)

(11.1.4)

+ s1/2η−1((β − 1)(1− α)− α)∇f(yk) +O
(
s3/2

)
We now look at some of the terms in this equation to find the highest-order dependence on s.

β(1− α) =
(
1− s1/2η−1

)(
1− 1

1 + s−1/2η

)

=
(
1− s1/2η−1

) s−1/2η

1 + s−1/2η

= s−1/2η − 1
s−1/2η + 1

= 1− s1/2η−1

1 + s1/2η−1

= 1− 2s1/2η−1 +O(s)

We also have:

(β − 1)(1− α)− α = β(1− α)− 1

= −2s1/2η−1 +O(s)

Hence using these facts on (11.1.4), we have:

0 =
(
−s1/2Ẏ − 1

2sŸ
)

+
(
1− 2s1/2η−1 +O(s)

)(
s1/2Ẏ − 1

2sŸ
)

82

+ s1/2η−1
(
−2s1/2η−1 +O(s)

)
∇f(yk) +O

(
s3/2

)
0 = −s1/2Ẏ − 1

2sŸ +
(
s1/2Ẏ − 1

2sŸ − 2s1η−1Ẏ +O
(
s3/2

))
(
−2s1η−2 +O

(
s3/2

))
∇f(yk) +O

(
s3/2

)
0 = −sŸ − 2sη−1Ẏ − 2sη−2∇f(yk) +O

(
s3/2

)
0 = −Ÿ − 2η−1Ẏ − 2η−2∇f(yk) +O

(
s1/2

)
Taking the limit as s→ 0, we obtain the ODE:

Ÿ (t) + 2η−1Ẏ + 2η−2∇f(Y) = 0

11.2 Convergence proof for synchronous ODE

e−η
−1tE ′(t) =

〈
∇f(Y (t)), Ẏ (t)

〉
+ η−1f(Y (t))

+ 1
2
〈
Y (t) + ηẎ (t), Ẏ (t) + ηŸ (t)

〉
+ η−1 1

4
∥∥∥Y (t) + ηẎ (t)

∥∥∥2

(strong convexity (3.1.1)) ≤
〈
∇f(Y), Ẏ

〉
+ η−1〈∇f(Y), Y 〉 − 1

2η
−1‖Y ‖2

+ 1
2
〈
Y + ηẎ ,−Ẏ − 2η−1∇f(Y)

〉
+ η−1 1

4
∥∥∥Y (t) + ηẎ (t)

∥∥∥2

= −1
4η
−1‖Y ‖2 − 1

4η
∥∥∥Ẏ ∥∥∥2

≤ 0

Hence we have E ′(t) ≤ 0. Therefore E(t) ≤ E(0). That is:

E(t) = en
−1κ−1/2t

(
f(Y) + 1

4
∥∥∥Y + ηẎ

∥∥∥2
)
≤ E(0) = f(Y (0)) + 1

4
∥∥∥Y (0) + ηẎ (0)

∥∥∥2
(11.2.1)

which implies:

f(Y (t)) + 1
4
∥∥∥Y (t) + ηẎ (t)

∥∥∥2
≤ e−n

−1κ−1/2t
(
f(Y (0)) + 1

4
∥∥∥Y (0) + ηẎ (0)

∥∥∥2
)

(11.2.2)

11.3 Asynchronicity error lemma

This result is the continuous-time analogue of Lemma 21. First notice that c(0) = c0 and

c(τ) = 0. We also have:

c′(t)/c0 = −re−rt − re−rt e−rτ

1− e−rτ
83

= −r
(
e−rt + e−rt

e−rτ

1− e−rτ

)

= −r
(
e−rt +

(
e−rt − 1

) e−rτ

1− e−rτ + e−rτ

1− e−rτ

)

c′(t) = −rc(t)− rc0
e−rτ

1− e−rτ

Hence using c(τ) = 0:

A′(t) = c0

∥∥∥Ẏ (t)
∥∥∥2

+
∫ t

t−τ
c′(t− s)

∥∥∥Ẏ (s)
∥∥∥2
ds

= c0

∥∥∥Ẏ (t)
∥∥∥2
− rA(t)− rc0

e−rτ

1− e−rτD(t)

Now when x ≤ 1
2 , we have e−x

1−e−x ≥ 1
2x
−1. Hence when rτ ≤ 1

2 , we have:

A′(t) ≤ c0

∥∥∥Ẏ (t)
∥∥∥2
− rA(t)− 1

2τ
−1c0D(t)

and the result easily follows.

11.4 Convergence analysis for the asynchronous ODE

We consider the same energy as in the synchronous case (that is, the ODE in (11.0.1)).

Similar to before, we have:

e−η
−1tE ′(t) ≤

〈
∇f(Y), Ẏ

〉
+ η−1〈∇f(Y), Y 〉 − 1

2η
−1‖Y ‖2

+ 1
2
〈
Y + ηẎ ,−Ẏ − 2η−1∇f

(
Ŷ
)〉

+ η−1 1
4
∥∥∥Y (t) + ηẎ (t)

∥∥∥2

=
〈
∇f(Y), Ẏ

〉
+ η−1〈∇f(Y), Y 〉 − 1

2η
−1‖Y ‖2

+ 1
2
〈
Y + ηẎ ,−Ẏ − 2η−1∇f(Y)

〉
+ η−1 1

4
∥∥∥Y (t) + ηẎ (t)

∥∥∥2

− η−1
〈
Y + ηẎ ,∇f

(
Ŷ
)
−∇f(Y)

〉
= −1

4η
−1‖Y ‖2 − 1

4η
∥∥∥Ẏ ∥∥∥2

− η−1
〈
Y + ηẎ ,∇f

(
Ŷ
)
−∇f(Y)

〉
where the final equality follows from the proof in Section 11.2. Hence

e−η
−1tE ′(t) ≤ −1

4η
−1‖Y ‖2 − 1

4η
∥∥∥Ẏ ∥∥∥2

+ Lη−1‖Y ‖
∥∥∥Ŷ − Y ∥∥∥+ L

∥∥∥Ẏ ∥∥∥∥∥∥Ŷ − Y ∥∥∥ (11.4.1)

Now we present an inequality that is similar to Lemma 18.
84

Lemma 30. Let A,χ > 0. Then:

∥∥∥Y (t)− Ŷ (t)
∥∥∥A ≤ 1

2χτD(t) + 1
2χ
−1A2

Proof. Since Ŷ (t) is a delayed version of Y (t), we have: Ŷ (t) = Y (t− j(t)) for some function

j(t) ≥ 0 (though this can be easily generalized to an inconsistent read). Recall that for χ > 0,

we have ab ≤ 1
2(χa2 + χ−1b2). Hence

X(t)− X̂(t) =
∫ t

s=t−j(t)
X ′(s)ds

∥∥∥X(t)− X̂(t)
∥∥∥A =

∥∥∥∥∥
∫ t

s=t−j(t)
X ′(s)ds

∥∥∥∥∥A
≤ 1

2χ
∥∥∥∥∥
∫ t

s=t−j(t)
X ′(s)ds

∥∥∥∥∥
2

+ 1
2χ
−1A2

(Holder’s inequality) ≤ 1
2χ
(∫ t

s=t−j(t)
‖X ′(s)‖2

ds

)(∫ t

s=t−j(t)
1ds

)
+ 1

2χ
−1A2

≤ 1
2χτ

(∫ t

s=t−j(t)
‖X ′(s)‖2

ds

)
+ 1

2χ
−1A2

We use this lemma twice on ‖Y ‖
∥∥∥Ŷ − Y ∥∥∥ and

∥∥∥Ẏ ∥∥∥∥∥∥Ŷ − Y ∥∥∥ in (11.4.1) with χ = 2L,A =

‖Y ‖ and χ = 4Lη−1, A =
∥∥∥Ẏ ∥∥∥ respectively, to yield:

e−η
−1tE ′(t) ≤ −1

4η
−1‖Y ‖2 − 1

4η
∥∥∥Ẏ ∥∥∥2

+ Lη−1
(
LτD(t) + 1

4L
−1‖Y ‖2

)
+ L

(
2Lη−1τD(t) + 1

8L
−1η

∥∥∥Ẏ ∥∥∥2
)

= −1
8η
∥∥∥Ẏ ∥∥∥2

+ 3L2η−1τD(t)

The proof of convergence is completed in Chapter 11.

85

CHAPTER 12

Numerical Results on Acceleration

To investigate the performance of A2BCD, we solve the ridge regression problem. Consider the

following primal and corresponding dual objective (see for instance (Q. Lin, Lu, and Xiao

2014)):

min
w∈Rd

P (w) = 1
2n
∥∥∥ATw − l∥∥∥2

+ λ

2‖w‖
2, min
α∈Rn

D(α) = 1
2d2λ

‖Aα‖2 + 1
2d‖α + l‖2 (12.0.1)

where A ∈ Rd×n is a matrix of n samples and d features, and l is a label vector. We

let A = [A1, . . . , Am] where Ai are the column blocks of A. We compare A2BCD (which is

asynchronous accelerated), synchronous NU_ACDM (which is synchronous accelerated), and

asynchronous RBCD (which is asynchronous non-accelerated). Nodes randomly select a

coordinate block according to (8.2.1), calculate the corresponding block gradient, and use

it to apply an update to the shared solution vectors. Synchronous NU_ACDM is implemented

in a batch fashion, with batch size p (1 block per computing node). Nodes in synchronous

NU_ACDM implementation must wait until all nodes apply their computed gradients before

they can start the next iteration, but the asynchronous algorithms simply compute with the

most up-to-date information available.

We use the data sets w1a (47272 samples, 300 features), wxa which combines the data from

from w1a to w8a (293201 samples, 300 features), and aloi (108000 samples, 128 features)

from LIBSVM (Chang and C.-J. Lin 2011). The algorithm is implemented in a multi-threaded

fashion using C++11 and GNU Scientific Library with a shared memory architecture. We

use 40 threads on two 2.5GHz 10-core Intel Xeon E5-2670v2 processors. See Section 12.2

for a discussion of parameter tuning and estimation. The parameters for each algorithm are

tuned to give the fastest performance, so that a fair comparison is possible.

86

A critical ingredient in the efficient implementation of A2BCD and NU_ACDM for this problem

is the efficient update scheme discussed in (Lee and Sidford 2013). In linear regression

applications such as this, it is essential to be able to efficiently maintain or recover Ay. This

is because calculating block gradients requires the vector ATi Ay, and without an efficient way

to recover Ay, block gradient evaluations are essentially 50% as expensive as full-gradient

calculations. Unfortunately, every accelerated iteration results in dense updates to yk because

of the averaging step in (8.2.6). Hence Ay must be recalculated from scratch.

However (Lee and Sidford 2013) introduces a linear transformation that allows for an

equivalent iteration that results in sparse updates to new iteration variables p and q. The

original purpose of this transformation was to ensure that the averaging steps (e.g. (8.2.6)) do

not dominate the computational cost for sparse problems. However we find a more important

secondary use which applies to both sparse and dense problems. Since the updates to p and

q are sparse coordinate-block updates, the vectors Ap, and Aq can be efficiently maintained,

and therefore block gradients can be efficiently calculated. The specifics of this efficient

implementation are discussed in Section 12.3.

In Table 12.1, we plot the sub-optimality vs. time for decreasing values of λ, which

corresponds to increasingly large condition numbers κ. When κ is small, acceleration

doesn’t result in a significantly better convergence rate, and hence A2BCD and async-RBCD

both outperform sync-NU_ACDM since they complete faster iterations at similar complexity.

Acceleration for low κ has unnecessary overhead, which means async-RBCD can be quite

competitive. When κ becomes large, async-RBCD is no longer competitive, since it has a

poor convergence rate. We observe that A2BCD and sync-NU_ACDM have essentially the same

convergence rate, but A2BCD is up to 4− 5× faster than sync-NU_ACDM because it completes

much faster iterations. We observe this advantage despite the fact that we are in an ideal

environment for synchronous computation: A small, homogeneous, high-bandwidth, low-

latency cluster. In large-scale heterogeneous systems with greater synchronization overhead,

bandwidth constraints, and latency, we expect A2BCD’s advantage to be much larger.

87

Table 12.1: Sub-optimality f(yk) − f(x∗) (y-axis) vs time in seconds (x-axis) for A2BCD,

synchronous NU_ACDM, and asynchronous RBCD for data sets w1a, wxa and aloi for various

values of λ.

12.1 Efficient implementation

An efficient implementation will have coordinate blocks of size greater than 1. This to

ensure the efficiency of linear algebra subroutines. Especially because of this, the bulk of the

computation for each iteration is computing ∇i(k)f(ŷk), and not the averaging steps. Hence

the computing nodes only need a local copy of yk in order to do the bulk of an iteration’s

computation. Given this gradient ∇i(k)f(ŷk), updating yk and vk is extremely fast (xk can

simply be eliminated). Hence it is natural to simply store yk and vk centrally, and update

them when the delayed gradients ∇i(k)f(ŷk). Given the above, a write mutex over (y, v) has

minuscule overhead (which we confirm with experiments), and makes the labeling of iterates

unambiguous. This also ensures that vk and yk are always up to date when (y, v) are being

updated. Whereas the gradient ∇i(k)f(ŷk) may at the same time be out of date, since it has

been calculated with an outdated version of yk. However a write mutex is not necessary in

practice, and does not appear to affect convergence rates or computation time. Also it is

88

possible to prove convergence under more general asynchronicity.

12.2 Parameter selection and tuning

When defining the coefficients, σ may be underestimated, and L,L1, . . . , Ln may be overes-

timated if exact values are unavailable. Notice that xk can be eliminated from the above

iteration, and the block gradient ∇i(k)f(ŷk) only needs to be calculated once per iteration. A

larger (or overestimated) maximum delay τ will cause a larger asynchronicity parameter ψ,

which leads to more conservative step sizes to compensate.

To estimate ψ, one can first performed a dry run with all coefficient set to 0 to estimate

τ . All function parameters can be calculated exactly for this problem in terms of the data

matrix and λ. We can then use these parameters and this tau to calculate ψ. ψ and τ merely

change the parameters, and do not change execution patterns of the processors. Hence their

parameter specification doesn’t affect the observed delay. Through simple tuning though, we

found that ψ = 0.25 resulted in good performance.

In tuning for general problems, there are theoretical reasons why it is difficult to attain

acceleration without some prior knowledge of σ, the strong convexity modulus (Arjevani 2017).

Ideally σ is pre-specified for instance in a regularization term. If the Lipschitz constants

Li cannot be calculated directly (which is rarely the case for the classic dual problem of

empirical risk minimization objectives), the line-search method discussed in (Roux, Schmidt,

and Bach 2012) Section 4 can be used.

12.3 Sparse update formulation

As mentioned in previously, authors in (Lee and Sidford 2013) proposed a linear transformation

of an accelerated RBCD scheme that results in sparse coordinate updates. Our proposed

algorithm can be given a similar efficient implementation. We may eliminate xk from A2BCD,

89

and derive the equivalent iteration below: yk+1

vk+1

 =

 1− αβ, αβ

1− β, β

 yk

vk

−

(
ασ−1/2L

−1/2
ik

+ h(1− α)L−1
ik

)
∇i(k)f

(
ŷk
)

(
σ−1/2L

−1/2
i(k)

)
∇i(k)f

(
ŷk
)

, C

 yk

vk

−Qk

where C and Qk are defined in the obvious way. Hence we define auxiliary variables pk, qk
defined via: yk

vk

 = Ck

 pk

qk

 (12.3.1)

These clearly follow the iteration: pk+1

qk+1

 =

 pk

qk

− C−(k+1)Qk (12.3.2)

Since the vector Qk is sparse, we can evolve variables pk, and qk in a sparse manner, and

recover the original iteration variables at the end of the algorithm via 12.3.1.

The gradient of the dual function is given by:

∇D(y) = 1
λd

(1
d
ATAy + λ(y + l)

)
As mentioned before, it is necessary to maintain or recover Ayk to calculate block gradients.

Since Ayk can be recovered via the linear relation in (12.3.1), and the gradient is an affine

function, we maintain the auxiliary vectors Apk and Aqk instead.

Hence we propose the following efficient implementation in Algorithm 1. We used this

to generate the results in Table 12.1. We also note also that it can improve performance to

periodically recover vk and yk, reset the values of pk, qk, and C to vk, yk, and I respectively,

and restarting the scheme (which can be done cheaply in time O(d)).

We let B ∈ R2×2 represent Ck, and b represent B−1. ⊗ is the Kronecker product. Each

computing node has local outdated versions of p, q, Ap,Aq which we denote p̂, q̂, Âp, Âq

respectively. We also find it convenient to define:Dk
1

Dk
2

 =

ασ−1/2L
−1/2
i(k) + h(1− α)L−1

i(k)

σ−1/2L
−1/2
i(k)

 (12.3.3)

90

Algorithm 1 Shared-memory implementation of A2BCD
1: Inputs: Function parameters A, λ, L, {Li}ni=1, n, d. Delay τ (obtained in dry run).

Starting vectors y, v.

2: Shared data: Solution vectors p, q; auxiliary vectors Ap, Aq; sparsifying matrix B

3: Node local data: Solution vectors p̂, q̂, auxiliary vectors Âp, Âq, sparsifying matrix B̂.

4: Calculate parameters ψ, α, β, h via 14. Set k = 0.

5: Initializations: p← y, q ← v, Ap← Ay, Aq ← Av, B ← I.

6: while not converged, each computing node asynchronous do

7: Randomly select block i via (8.2.1).

8: Read shared data into local memory: p̂← p, q̂ ← q, Âp← Ap, Âq ← Aq, B̂ ← B.

9: Compute block gradient: ∇if(ŷ) = 1
nλ

(
1
n
ATi
(
B̂1,1Âp+ B̂1,2Âq

)
+ λ

(
B̂1,1p̂+ B̂1,2q̂

))
10: Compute quantity gi = ATi ∇if(ŷ)

Shared memory updates:

11: Update B ←

1− αβ αβ

1− β β

×B, calculate inverse b← B−1.

12:

p
q

 −= b

Dk
1

Dk
2

⊗∇if(ŷ) ,

Ap
Aq

 −= b

Dk
1

Dk
2

⊗ gi
13: Increase iteration count: k ← k + 1

14: end while

15: Recover original iteration variables:

y
v

← B

p
q

. Output y.

91

Part IV

Weak Convergence Under Unbounded

Delay

92

In this part we present weak convergence results for ARock under unbounded delays from

(Hannah and Wotao Yin 2017b).

93

CHAPTER 13

Proof of Convergence for Stochastic Unbounded Delays

13.1 Main Result

The first result in this part is the convergence of ARock under stochastic, potentially

unbounded delays. First we precisely define the assumptions on the delay:

Definition 31. Evenly old delays. We say that delays are “evenly old” if there exists

some constant B such that, with probability 1, we have |j(k, i)− j(k, l)| ≤ B for all k ∈ N,

1 ≤ i ≤ m, and 1 ≤ l ≤ m.

Delays can be arbitrarily large, but the ages of the various block are similar if they are

evenly old. Clearly, if we have bounded delay (that is, with probability 1 we have j(k) ≤ τ

for some τ), this implies the evenly old property with constant B = τ .

Assumption 3. Stochastic unbounded delays. The sequence of delay vectors~j(0),~j(1), . . .

are IID, and independent of the block sequence i(0), i(1), In addition, they are evenly

old.

Hence there exists a function p : Nm → [0, 1] such that, for all k ∈ N, the probability that
~j(k) equals some vector ~v is given by

P
[
~j(k) = ~v

]
= p(~v). (13.1.1)

Define

Pl = P[j(k) ≥ l]. (13.1.2)

94

Theorem 6. Convergence under stochastic unbounded delays. Assume that the block

sequence i(k) is a uniform IID block sequence (Assumption 1) and that the delays vectors ~j(k)

are an evenly old, IID sequence that is independent of the block sequence (Assumption 3). Let

the step size be ηk = ch for an arbitrary fixed1 c ∈ (0, 1), and h given below. Then the iterates

of ARock converge weakly to a solution with probability 1 if either of the following holds:

1. ∑∞l=1(lPl)1/2 <∞, and setting h =
(
1 + 1√

m

∑∞
l=1 P

1/2
l

(
l1/2 + l−1/2

))−1
.

2. ∑∞l=1 P
1/2
l l <∞, and setting h =

(
1 + 2√

m

∑∞
l=1 P

1/2
l

)−1
.

Convergence under unbounded delays in this setting has only been proven under very

strong assumptions (See Chapter 2 for a discussion of existing results). Additionally, this

result improves on the step size criterion of ARock and other similar algorithms if we are

willing to assume stochastic delays (e.g. (Z. Peng et al. 2016; J. Liu and Wright 2015; Ji Liu

et al. 2015)). So for instance, there may be a scenario where the maximum delay τ is very

high, but delays near that size rarely occur. Theorem 6 implies that asynchronous algorithms

will convergence under a much larger step size than prior work.

Table 13.1 gives some example distributions, and corresponding values Pl and step size

h (we only used the step size h in Theorem 6 since it is easier to calculate). We give an

upper bound for Pl and lower bound for h to simplify expressions. Let I[A](x) denote the

characteristic function (i.e. a function that equal 1 for x ∈ D and 0 otherwise).

In addition to example distributions, we consider the step size in the following scenario.

Let Y be a random variable representing the time between when a node starts reading the

solution vector x, and when its update is applied. Say that we have a ≤ Y ≤ b, and that there

are p computing nodes. In the worst-case scenario, a node takes b seconds, and p ·
(
b
a

+ 1
)

updates have occurred during this time. Hence ignoring the specifics of the distribution, we

have a delay bound τ = p ·
(
b
a

+ 1
)
. It can be seen from Table 3.1, that in this scenario, if

b/a doesn’t grow, then
√
m� p implies a step size of c ∈ (0, 1) will result in convergence.

Remark 4. Step size heuristic. Even if the assumption of independent IID delays does

1By “arbitrary fixed” we mean that the constant c can be any number in (0, 1), so long as that number
does not change. However it is possible to relax this.

95

Table 13.1: Example delay distributions and step sizes

Distribution of j(k) Pl Upper bound h Step size lower bound

j(k) arbitrary, with ≤ τ 1 · I[0 ≤ l ≤ τ](l)
(
1 + 2τ√

m

)−1

j(k) uniform on {0, 1, 2, . . . , τ}
(
1− l

τ+1

)
I[0 ≤ l ≤ τ]

(
1 + 4τ

3
√
m

)−1

j(k) exponentially decaying.

I.e. P[j(k) = l] ≤ Crl for 1 > r > 0.
∝ rl/2

1−r

(
1 + 2

√
C
m

r1/2

(1−r1/2)3/2

)−1

Each of p agents has update time Y ∈ [a, b] *
(

1 + 2p·(b
a

+1)√
m

)−1

not hold in practice, the preceding step size gives a useful heuristic to use given an empirical

distribution of delays measured in a system. For example, when the number of blocks m

satisfies
√
m � ∑∞

l=1 P
1/2
l , the step size sequence should be ηk ≈ c, where c ∈ (0, 1) is an

arbitrary fixed constant.

13.2 Preliminaries

This section proves Theorem 7 below, which is a more general version of Theorem 6 from the

introduction. Theorem 7 involves a sequence of arbitrary parameters ε1, ε2, . . . that appear

naturally in our analysis. The values of these parameters can be chosen situationally to obtain

different result. In Section 13.7, we select (i) the values that give the weakest conditions on

delays, and (ii) the values that give the largest allowable step size to obtain the two parts of

Theorem 6 from the introduction.

Definition 32. Summable sequence. Let a = (a1, a2, . . .) (ai ∈ R,∀i) be a sequence. a is

said to be summable or “in `1” if its `1 norm is finite, that is,

‖a‖`1 =
∞∑
i=1
|ai| <∞.

Theorem 7. Convergence under stochastic delays. Consider ARock under the following

conditions:

1. The block sequence i(k) is a uniform IID block sequence (Assumption 1).

96

2. The sequence of delay vectors ~j(k) is an evenly old, IID sequence that is independent

of the sequence i(k) (Assumption 3).

3. Let ε1, ε2, . . . ∈ (0,∞) be an arbitrary sequence of parameters such that ∑∞i=1
1
εi
<∞

and ∑∞l=1 εlPll <∞ for Pl = P[j(k) ≥ l] (Assumption 4).

4. The step size is chosen as ηk = ch for an arbitrary fixed c ∈ (0, 1) and h =(
1 + 1

m

∑∞
l=1 εlPl +

∥∥∥ 1
εi

∥∥∥
`1

)−1
.

Then with probability 1, the sequence of ARock iterates converges weakly to a solution.

This theorem is proven in Section 13.6.3 after we build up a series of results throughout

this section. This section is written in a way that attempts to explain the logic and intuition

behind the approach taken. A general strategy for constructing Lyapunov functions is

presented in Section 4.5. In Section 13.8, we discuss how to modify the proof for the simpler

case of bounded delay.

13.3 Proof outline

Both convergence proofs rely on the following convergence criterion for fixed-point algorithms

(see (Bauschke and P. L. Combettes 2011)):

Proposition 33. Convergence of nonexpansive fixed-point iterations. Let T be a

nonexpansive operator with at least one fixed point. If we have the following:

(1) Norm convergence:2
∥∥∥xk − x∗∥∥∥ converges for every x∗ ∈ Fix(T), and

(2) Fixed-point-residual (FPR) strong convergence:3 ‖Txk − xk‖ → 0,

then xk weakly converges to some x∗ ∈ Fix(T) 4.

Proposition 33 is the basis of our convergence proofs in this part, as well the proof

2We call this property norm convergence. The distance of xk to each fixed-point x∗ is what is converging
(in general to a nonzero value) and not xk itself. This property does not appear to have been given a name in
the literature, although it is an important property in convergence proofs.

3The fixed-point residual (FPR) at x is defined as (T − I)(x)
4Weak convergence is the same as regular convergence in RN , but differs in a general Hilbert space.

97

of convergence of KM iteration. Toward applying Proposition 33, we need martingale

convergence theory. This allows us to prove norm convergence and FPR strong convergence

using results on the above Lyapunov function, which will complete the proof. Martingale

theory is what allowed the authors in (Z. Peng et al. 2016) to prove that xk converges to a

solution for minimization of a convex function with Lipschitz gradient, and not just that the

function value converged to the optimal value.

13.4 Preliminary results

Recall that stochastic unbounded delays are analyzed under Assumptions 1 and 3. Recall

from Chapter 7 that we defined Xk =
{
x0, . . . , xk

}
and Jk =

{
~j(0), . . . ,~j(k)

}
. Again let

x∗ = 0, and f(x∗) = 0. If ηk is σ
(
Xk, Jk

)
-measurable, then again, we have:

E
[∥∥∥xk+1

∥∥∥2
|σ
(
Xk, Jk

)]
=
∥∥∥xk∥∥∥2

−2η
k

m

〈
xk, Sx̂k

〉
︸ ︷︷ ︸

cross term

+

(
ηk
)2

m

∥∥∥Sx̂k∥∥∥2
. (13.4.1)

13.4.1 A fundamental inequality

We start with a fundamental inequality, which is the starting point for analyzing convergence.

Proposition 34. Fundamental inequality. Under Assumptions 1 and 3, for j(k) the

current delay, and an arbitrary sequence ε1, ε2, . . . ∈ (0,∞), the ARock iterates obey the

following inequality:

E
[∥∥∥xk+1 − x∗

∥∥∥2∣∣∣σ(Xk, Jk
)]
≤
∥∥∥xk − x∗∥∥∥2

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2

− ηk

m

∥∥∥Sx̂k∥∥∥2
1− ηk

1 +
j(k)∑
i=1

1
εi

.
(13.4.2)

The εi sequence is an arbitrary subject to εi > 0,∀i. In (Z. Peng et al. 2016), they are

set to a constant value. However we eventually set them so that 1/εi is summable, which is

fundamental to the convergence proof for unbounded delays.

Proof. Let us start with the cross term in (13.4.1). Since T is nonexpansive, 1
2S is firmly

98

nonexpansive (FNE)5. Hence,

−2ηk
m

〈
Sx̂k, xk

〉
= −2ηk

m

(〈
Sx̂k, x̂k

〉
+
〈
Sx̂k, xk − x̂k

〉)
= −2ηk

m

(
2
〈1

2Sx̂
k, x̂k

〉
+
〈
Sx̂k, xk − x̂k

〉)
(1

2S is FNE
)
≤ −2ηk

m

(
2
∥∥∥∥1

2Sx̂
k

∥∥∥∥2
+
〈
Sx̂k, xk − x̂k

〉)

= −η
k

m

∥∥∥Sx̂k∥∥∥2
− 2ηk

m

〈
Sx̂k, xk − x̂k

〉
(break into coordinate blocks) =

m∑
l=1

(
−η

k

m

∥∥∥Slx̂k∥∥∥2
− 2ηk

m

〈
Slx̂

k, xkl − x
k−j(k,l)
l

〉)
.

Take block l. We turn the inner product into a telescoping sum:

− ηk

m

∥∥∥Slx̂k∥∥∥2
− 2ηk

m

〈
Slx̂

k, xkl − x
k−j(k,l)
l

〉
= −η

k

m

∥∥∥Slx̂k∥∥∥2
− 2ηk

m

j(k,l)∑
i=1

〈
Slx̂

k, xk+1−i
l − xk−il

〉
(Cauchy-Schwarz) ≤ −η

k

m

∥∥∥Slx̂k∥∥∥2
+ 2ηk

m

j(k,l)∑
i=1

1
2

(∥∥∥Slx̂k∥∥∥2ηk

εi
+ εi
ηk

∥∥∥xk+1−i
l − xk−il

∥∥∥2
)

≤ −η
k

m

∥∥∥Slx̂k∥∥∥2
+ ηk

m

j(k)∑
i=1

(∥∥∥Slx̂k∥∥∥2ηk

εi
+ εi
ηk

∥∥∥xk+1−i
l − xk−il

∥∥∥2
)

= ηk

m

∥∥∥Slx̂k∥∥∥2
ηk

j(k)∑
i=1

1
εi

− 1
+ 1

m

j(k)∑
i=1

εi
∥∥∥xk+1−i

l − xk−il

∥∥∥2
.

Adding all the components back together, we have:

−2η
k

m

〈
xk, Sx̂k

〉
+

(
ηk
)2

m

∥∥∥Sx̂k∥∥∥2
≤ ηk

m

∥∥∥Sx̂k∥∥∥2
ηk

1 +
j(k)∑
i=1

1
εi

− 1
+ 1

m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
.

Hence the proposition follows by adding
∥∥∥xk∥∥∥2

to each side, and using (13.4.1).

5A firmly nonexpansive (FNE) operator Q : H→ H is an operator that can be written as Q = 1
2I + 1

2R,
where R is nonexpansive. Equivalently, FNE operators satisfy 〈Qy −Qx, y − x〉 ≥ ‖Qy −Qx‖2

, ∀x, y ∈ H.

99

13.5 Constructing Lyapunov function

Similar to Part II, in this section we demonstrate how to construct a Lyapunov function from

(13.4.2) to prove convergence:

ξk︸︷︷︸
Total error

=
∥∥∥xk − x∗∥∥∥2

︸ ︷︷ ︸
Classical error

+ 1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2

︸ ︷︷ ︸
Asynchronicity error

13.5.1 Analysis of the Lyapunov function

We now analyze the conditional expectation of the Lyapunov function defined in (4.4.1).

Recall the definition of xk−~j and xk−~j(k) from Chapter 4.

Lemma 35. Branch point lemma. Take arbitrary ε1, ε2, . . . ∈ (0,∞). Under Assump-

tions 1 and 3, the ARock iterates and ξk defined in (4.4.1) satisfy the following inequality:

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]
≤
∥∥∥xk∥∥∥2

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

− ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2
1− ηk

1 + c1

m
+

j(k)∑
i=1

1
εi

.
(13.5.1)

Proof. Calculate the expectation:

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

= E
[∥∥∥xk+1

∥∥∥2∣∣∣σ(Xk, Jk
)]

+ c1

m
E
[∥∥∥xk+1 − xk

∥∥∥2∣∣∣σ(Xk, Jk
)]

(13.5.2)

+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2
. (13.5.3)

The second term yields (by the definition of ARock iteration (4.1.1), and taking expectation

over i(k))

E
[∥∥∥xk+1 − xk

∥∥∥2∣∣∣σ(Xk, Jk
)]

=

(
ηk
)2

m

∥∥∥S(xk−j(k))
∥∥∥2
. (13.5.4)

Then,

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]

= E
[∥∥∥xk+1

∥∥∥2∣∣∣σ(Xk, Jk
)]

︸ ︷︷ ︸
A

+ c1

m
E
[∥∥∥xk+1 − xk

∥∥∥2∣∣∣σ(Xk, Jk
)]

︸ ︷︷ ︸
B

100

+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

︸ ︷︷ ︸
C

≤
∥∥∥xk∥∥∥2

+ ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2
ηk

1 +
j(k)∑
i=1

1
εi

− 1
+ 1

m

j∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2

︸ ︷︷ ︸
A

(by (13.4.2))

+ c1

m

(
ηk
)2

m

∥∥∥Sxk−~j(k)
∥∥∥2

︸ ︷︷ ︸

B

(by (13.5.4))

+ 1
m

∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

︸ ︷︷ ︸
C

=
∥∥∥xk∥∥∥2

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

− ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2
1− ηk

1 + c1

m
+

j(k)∑
i=1

1
εi

.

In the proposition below, we derive the natural choice of parameters of the Lyapunov

function that allow a meaningful comparison between E
[
ξk+1

∣∣∣ σ(Xk
)]

and ξk. With this

choice, we obtain

E
[
ξk+1

∣∣∣σ(Xk
)]
≤ ξk − (descent terms),

which strongly resembles norm convergence: one of the convergence conditions in Proposi-

tion 33.

We first make some assumptions on the parameters. The necessity of these assumptions

will become clear in the proof of Lemma 36.

Assumption 4. Coefficient summability conditions. Let ε1, ε2, . . . ∈ (0,∞) and let

ci = ∑∞
l=i εlPl. These sequences also satisfy the summability conditions:

∞∑
i=1

1
εi
<∞, (13.5.5)

∞∑
i=1

ci <∞. (13.5.6)

101

Lemma 36. Descent lemma for stochastic delays. Consider the Lyapunov function

ξk defined in (4.4.1). Let Assumptions 1, 3 and 4 hold. Let h =
(
1 + c1

m
+
∥∥∥ 1
εi

∥∥∥
`1

)−1
. Then,

ARock yields the following inequality for step size ηk:

E
[
ξk+1

∣∣∣σ(Xk
)]
≤ ξk −

(
1− ηk/h

)ηk
m

∑
~j∈Nm

p
(
~j
)∥∥∥Sxk−~j∥∥∥2

.

Proof. From Lemma 35 and (13.5.5), we have:

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]
≤
∥∥∥xk∥∥∥2

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

− ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2

1− ηk
(

1 + c1

m
+
∥∥∥∥ 1
εi

∥∥∥∥
`1

)
︸ ︷︷ ︸

1/h

.

(13.5.7)

Let pj = P[j(k) = j]. Now take expectations over delays (via taking expectation with respect

to σ
(
Xk
)
instead of σ

(
Xk, Jk

)
).

E
[
ξk+1

∣∣∣σ(Xk
)]
≤
∥∥∥xk∥∥∥2

+ 1
m

 ∞∑
j=1

pj

j∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

−
(
1− ηk/h

)ηk
m

∑
~j∈Nm

p
(
~j
)∥∥∥Sxk−~j∥∥∥2

=
∥∥∥xk∥∥∥2

+ 1
m

 ∞∑
i=1

 ∞∑
j=i

pj

εi∥∥∥xk+1−i − xk−i
∥∥∥2

+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

−
(
1− ηk/h

)ηk
m

∑
~j∈Nm

p
(
~j
)∥∥∥Sxk−~j∥∥∥2

=
∥∥∥xk∥∥∥2

+ 1
m

(∞∑
i=1

(εiPi + ci+1)
∥∥∥xk+1−i − xk−i

∥∥∥2
)
−
(
1− ηk/h

)ηk
m

∑
~j∈Nm

p
(
~j
)∥∥∥Sxk−~j∥∥∥2

.

Let ηk ≤ h to eliminate the last term. Ideally E
[
ξk+1

∣∣∣σ(Xk
)]
≤ ξk, which can be achieved

with:
∥∥∥xk∥∥∥2

+ 1
m

(∞∑
i=1

(εiPi + ci+1)
∥∥∥xk+1−i − xk−i

∥∥∥2
)
≤
∥∥∥xk∥∥∥2

+ 1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2
.

The obvious choice of coefficients is then given by ci+1 + Piεi = ci. However this doesn’t

uniquely determine the coefficients. We assume that ci → 0 as i goes to ∞ to ensure that
102

any bounded sequence has a corresponding Lyapunov function that is finite. Hence:

ci =
∞∑
l=i

εiPi.

This recovers the coefficient formula from Assumption 4. With this choice of coefficients, we

have our result.

13.6 Convergence proof

Now that we have built a Lyapunov function and obtained Lemma 36, we can prove conver-

gence.

Lemma 37. Let Assumptions 1, 3 and 4 hold. Use step size ηk = ch for some arbitrary

fixed c ∈ (0, 1), and h given in Lemma 36. Then with probability 1, ξk converges, and in

addition,

∞∑
k=0

∑
~j∈Nm

p
(
~j
)∥∥∥Sxk−~j∥∥∥2

<∞. (13.6.1)

The proof of this lemma relies on the following:

Theorem 8. Supermartingale convergence theorem (P. Combettes and Pesquet

2015). Let αk, θk and γk be positive sequences adapted to sigma algebra Hk, and let γk be

summable with probably 1. If

E
[
αk+1|Hk

]
+ θk ≤ αk + γk,

then with probability 1, αk converges to a [0,∞)-valued random variable, and ∑∞k=1 θ
k <∞.

We now prove Lemma 37.

Proof. Apply Theorem 8 with αk = ξk, γk = 0, and θk =
(
1− ηk/h

)
ηk

m

∑
~j∈Nm p

(
~j
)∥∥∥Sxk−~j∥∥∥2

.

We immediately obtain our result by noting that
(
1− ηk/h

)
ηk

m
is a constant.

103

13.6.1 Norm convergence

Now is the point where the “evenly old” assumption about the delays made in Assumption 3

becomes important, and it is hard to see a way to weaken it. First a lemma on convolutions

is necessary.

Lemma 38. Convolution lemma ((Arendt et al. 2011), Proposition 1.3.2). Define

the convolution of sequences a = (. . . , a−2, a−1, a0, a1, a2, . . .) and b = (. . . , b−2, b−1, b0, b1, b2, . . .)

as the sequence defined by the formula6:

(a ∗ b)(k) =
∞∑

i=−∞
aibk−i. (13.6.2)

Let ai be in `1, and let b be bounded with bi → 0 as i→∞. Then the convolution (a∗b)(k)→ 0

as k →∞.

Proposition 39. Norm convergence. Let Assumptions 1, 3 and 4 hold. Then with

probability 1,
∥∥∥xk − x∗∥∥∥ converges for all x∗ ∈ Fix(T).

Proof. We first prove that with probability 1, 1
m

∑∞
i=1 ci

∥∥∥xk+1−i − xk−i
∥∥∥2
→ 0.

1. Pl is summable. Since the sequence 1
εi

is summable, εi →∞, and thus infi∈N εi > 0.

Hence
∞∑
l=1

Pl ≤
1

infi∈N εi

∞∑
l=1

εlPl = 1
infi∈N εi

c1 <∞

2. k − j(k)→∞. (That is, the components of iterate xk are used only a finite number of

times).

P[k − j(k) ≤ k0] = Pk−k0

∞∑
k=k0

P[k − j(k) ≤ k0] =
∞∑

k=k0

Pk−k0 <∞

Therefore by the Borel-Cantelli lemma, k − j(k) ≤ k0 happens only a finite number of times

with probability 1. Hence with probability 1, this is true for all k0 ∈ N, which implies that

k − j(k)→∞.

6The convolution is not always well-defined, because the sum may not be convergent for all k. However in
this lemma, it is well-defined.

104

3. Sxk+~t → 0 for all delay feasible “patterns” ~t. We assume without loss in generality

that none of the delay vectors attained (~j(0),~j(1), . . .) has probability 0 (since this occurs

with probability 1). Let ~t(k) , j(k)(1, . . . , 1)−~j(k). j(k) is the age of the oldest block in

xk−
~j(k), whereas ~t(k) ∈ {0, 1, . . . , B}m represent the “pattern” of the rest of the delay. We

call a vector ~t ∈ {0, 1, . . . , B}m feasible if it occurs with nonzero probability. Take (13.6.1),

and group the sum into feasible patterns and we obtain:
∞∑
k=0

∥∥∥Sxk+~t
∥∥∥2
<∞,

=⇒
∥∥∥Sxk+~t

∥∥∥→0, (13.6.3)

for each feasible ~t.

4. Delayed fixed-point residual
∥∥∥Sxk−~j(k)

∥∥∥→ 0. Observe that∥∥∥Sxk−~j(k)
∥∥∥ =

∥∥∥Sx(k−j(k))+~t(k)
∥∥∥.

Let A
(
k,~t

)
=
∥∥∥Sx(k−j(k))+~t

∥∥∥ (this is a family of sequences indexed by ~t). By equation

(13.6.3), and the fact that k − j(k) → ∞, we have A(k,~t) → 0 for any fixed ~t. Notice

that
∥∥∥Sxk−~j(k)

∥∥∥ = A(k,~t(k)). At every step, A(k,~t(k)) selects one from a finite family of

sequences, all of which converge to 0. Since there are only a finite number of these sequences,

A(k,~t(k))→ 0 and hence
∥∥∥Sxk−~j(k)

∥∥∥→ 07.

5. Difference sum converges to 0.

1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2

≤ c2h2

m

∞∑
i=1

ci
∥∥∥Sx(k−i)−~j(k−i)

∥∥∥2

= c2h2

m

(
(0, . . . , 0, c1, c2, . . .) ∗

(
. . . ,

∥∥∥Sx(i−1)−~j(i−1)
∥∥∥2
,
∥∥∥Sx(i)−~j(i)

∥∥∥2
,
∥∥∥Sx(i+1)−~j(i+1)

∥∥∥2
, . . .

))
(k)

This expression is the convolution of an `1 sequence (Assumption 4), and a bounded sequence

that converges to 0 as i→∞ (by part 4 of this proof) respectively. Therefore by Lemma 38,
1
m

∑∞
i=1 ci

∥∥∥xk+1−i − xk−i
∥∥∥2
→ 0.

7If you select from an infinite number of sequences converging to 0, this may not be true. E.g. consider
B(k, i) = δk−i, where δ0 = 1 and δl = 0 for all l 6= 0. For fixed i, B(k, i)→ 0. However B(k, k) = 1 for all k,
and hence never converges to 0.

105

6. Norm convergence. Because ξk converges a.s. and 1
m

∑∞
i=1 ci

∥∥∥xk+1−i − xk−i
∥∥∥2
→ 0

a.s., we have that for any particular x∗,
∥∥∥xk − x∗∥∥∥ converges with probability 1. Because the

space is separable, this implies that with probability 1,
∥∥∥xk − x∗∥∥∥ converges for all x∗ ∈ Fix(T),

which is subtly different (See (P. Combettes and Pesquet 2015), Proposition 2.3 (iii) for a

proof of this fact.).

13.6.2 Fixed-point-residual strong convergence

Proposition 40. FPR strong convergence. Under the conditions of Proposition 39,∥∥∥Sxk∥∥∥→ 0 with probability 1.

Proof. From equation (13.6.1), we have that
∥∥∥Sxk+~t

∥∥∥→ 0 for some feasible ~t (clearly there

must be at least one feasible ~t). Recall that m is the number of blocks, and B is the maximum

difference in age between blocks. We have

∥∥∥Sxk∥∥∥ ≤ ∥∥∥Sxk+~t − Sxk
∥∥∥+

∥∥∥Sxk+~t
∥∥∥

≤ 2
∥∥∥xk+~t − xk

∥∥∥+
∥∥∥Sxk+~t

∥∥∥
(triangle inequality) ≤ 2

m∑
i=1

∥∥∥xk+ti
i − xki

∥∥∥+
∥∥∥Sxk+~t

∥∥∥
≤ 2

m∑
i=1

ti∑
l=1

∥∥∥xk+l
i − xk−1+l

i

∥∥∥+
∥∥∥Sxk+~t

∥∥∥
(since ~t ∈ {0, 1, . . . , B}m) ≤ 2m

B∑
l=1

∥∥∥xk+l
i − xk−1+l

i

∥∥∥+
∥∥∥Sxk+~t

∥∥∥→ 0,

since
∥∥∥xk+1 − xk

∥∥∥→ 0 and
∥∥∥Sxk+~t

∥∥∥→ 0 (from parts 5 and 3 of the proof of Proposition 39

respectively).

13.6.3 Proof of Theorem 7

Proof. Norm convergence is proven in Proposition 39. The FPR strong convergence criterion

is proven in Proposition 40. Having satisfied the conditions of Proposition 33, we conclude

that the sequence of ARock iterates converges to a solution with probability 1. Hence we

have proven Theorem 7.
106

13.7 Parameter choice

Choosing different parameters ε1, ε2, . . . lead to different convergence results. We featured

two possibilities in Theorem 6 (though there are obviously others). We need both 1
εi
∈ `1 and∑∞

l=1 cl = ∑∞
l=1 εlPll <∞ for convergence under step size ηk = ch = c

(
1 + 1

m

∑∞
l=1 εlPl +

∥∥∥ 1
εi

∥∥∥
`1

)−1
.

1. If we wish to have the weakest restriction on our distribution of delays, let εl =

m−1/2P
−1/2
l l−1/2. This leads to the convergence condition ∑∞l=1 P

1/2
l l1/2 <∞ for step

size ηk = c
(
1 + 1√

m

∑∞
l=1 P

1/2
l

(
l1/2 + l−1/2

))−1
.

2. If we wish to have the largest allowable step size (at the expense of a strong condition

on the delay distribution), let εl = m−1/2P
−1/2
l . This leads to the convergence condition∑∞

l=1 P
1/2
l l1 <∞ for step size ηk = c

(
1 + 2√

m

∑∞
l=1 P

1/2
l

)−1
.

13.8 Bounded delay

Our main focus is on unbounded delay, because convergence under unbounded delay is a

new result. It is easy, though, to modify this section’s proof for the case of bounded delay,

which results in a much simpler proof. Let ε1, . . . , ετ ,∈ (0,∞) be a series of parameters, let

c ∈ (0, 1), let the step size be ηk = c
(
1 +∑τ

l=1

(
1
m
εlPl + 1

εl

))−1
. Then we have convergence

with probability 1. The proof uses the following Lyapunov function instead of an infinite

sum version:

ξk =
∥∥∥xk − x∗∥∥∥2

+ 1
m

τ∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2
, for ci =

τ∑
l=i

εlPl.

107

CHAPTER 14

Proof of Convergence for Unbounded Deterministic

Delays

The second result of this part proves convergence of ARock and related algorithms under

deterministic unbounded delays. Analysis of deterministic unbounded delay allows our result

to apply more generally, but the result itself is weaker. In order to achieve convergence, it is

necessary to use a step size ηk that is a decreasing function of the current delay j(k) (whereas

in Theorem 6, a constant step size was sufficient). Also convergence is only on a family of

subsequences.

Assumption 5. Deterministic unbounded delays. The sequence of delay vectors
~j(0),~j(1),~j(2), . . . is an arbitrary sequence in Nm, independent of i(k), with j(k) <∞.

Definition 41. Convergence on subsequences of bounded delay. Let x0, x1, x2, . . .

be a sequence of iterates and ~j(0),~j(1),~j(2), . . . a corresponding sequence of delay vectors,

with lim inf j(k) <∞. Let QJ be the subsequence of x0, x1, x2, . . . where the iterates xk with

current delay j(k) > J are removed1. We say that xk converges to x∗ on subsequences of

bounded delay if xk converges to x∗ on every subsequence QJ for J ≥ lim inf j(k)2.

Theorem 9. Convergence under deterministic unbounded delays. Assume that the

block sequence i(k) is a sequence of uniform IID random variables (Assumption 1) and that

the sequence of delay vectors ~j(0),~j(1),~j(2), . . . is an arbitrary sequence in Nm, independent

of i(k), with lim inf j(k) <∞ (Assumption 5). Pick arbitrary, fixed c ∈ (0, 1) and γ > 0. Let

1QJ represent subsequences of bounded delay.
2J ≥ lim inf j(k) ensures that QJ is an infinite subsequence.

108

the step size be

ηk = c

(
1 + 1√

m

(
1 + 1

γ
+ 1

2 + γ
(j(k) + 1)2+γ

))−1

. (14.0.1)

Then with probability 1, the iterates of ARock weakly converge to a solution x∗ on all

subsequences of bounded delay QJ for J ≥ lim inf j(k) (Definition 41), where x∗ does not

depend on the bound J .

This step size rule assumes a worst case scenario. In practice it can be used if it was

necessary to be certain that the algorithm converges. Even if network conditions are very

unfavorable, making delays large, the algorithm with the step size (14.0.1) makes some

progress at every step. This result could also be used in the bounded delay regime when the

bound τ is not known in advance. In previous results, τ is needed in advance to calculate the

correct step size.

Theorem 9 also provides a rule adaptive to the current delay. If the step size were set

according to τ (which is the case for the vast majority of recent papers), the step size may be

exceedingly pessimistic if a delay of τ is very rare. However our result implies a much larger

allowable step size when delays are smaller (even if they may becomes large at some point

in the future). When the delays are bounded (but the bound is possibly unknown to us),

Theorem 9 implies weak convergence of the full sequence with probability 1, not merely on

subsequences of bounded delay.

The step size rule also gives the following useful heuristic: When the number of blocks m

satisfies
√
m� (j(k) + 1)2+γ, the step size should be ηk ≈ c ∈ (0, 1).

Proving convergence for deterministic delays leads to a slightly weaker convergence result.

This is likely because deterministic unbounded delay is a very general condition. Below is

our most general result:

Theorem 10. Convergence under deterministic delays. Consider ARock under the

following conditions:

1. The block sequence i(k) is a sequence of uniform IID random variables (Assumption 1).

109

2. The sequence of delay vectors ~j(0),~j(1),~j(2), . . . is an arbitrary sequence in Nm,

independent of i(k), with lim inf j(k) <∞ (Assumption 5).

3. Let ε1, ε2, . . . ∈ (0,∞) be an arbitrary sequence of parameters such that ∑∞l=1 εl <∞.

4. The step size is set to ηk = chj(k) for some arbitrary fixed c ∈ (0, 1) and hj =(
1 + 1

m
‖εi‖`1 +∑j

i=1
1
εi

)−1
.

Then with probability 1, the sequence of ARock iterates converges weakly to a solution on

subsequences of bounded delay (Definition 41).

This theorem is proven in Section 14.2.3. Similar to Theorem 7, there is a sequence of

parameters ε1, ε2, However in the case of deterministic delays, there is no “best” way to

chose εi’s unless stronger assumptions are made on the delays. It is impossible to optimize

the parameters to uniformly ensure the maximum allowable step size, since optimizing for a

current delay of j = n can only come at the expense of decreasing the allowable step size for

other values m 6= n. We set these parameters to a convenient, simple choice in Section 14.3

to obtain Theorem 9 presented in the introduction.

Remark 5. Bounded delay. We can obtain a bounded-delay version of Theorem 10 by

truncating the metric to the first τ terms as in Section 13.8 and setting ετ+1, ετ+2, . . . = 0.

Using the step size ηk = c
(
1 +∑j

i=1

(
1
m
εl + 1

εi

))−1
results in convergence with probability 1.

14.1 Building a Lyapunov function

We build a Lyapunov function in a similar way to before. Our starting point is the Branch

Point Lemma 35. Recall that σ
(
Xk, Jk

)
= σ

(
x0, x1, . . . , xk,~j(0),~j(1), . . . ,~j(k)

)
, and let the

Lyapunov function ξk be defined as before in equation (4.4.1). First though, it is necessary

to make an assumption on the coefficients of the Lyapunov function. The necessity of this

assumption will become clear in the proof of Lemma 42.

Assumption 6. Coefficient formula. Let ε1, ε2, . . . ∈ (0,∞) be an arbitrary sequence of

parameters such that ∑∞l=1 εl < ∞. The coefficients of the Lyapunov function in equation

(4.4.1) are given by ci = ∑∞
l=i εl.

110

14.1.1 Analysis of the Lyapunov function

Lemma 42. Descent lemma for deterministic delays. Consider the Lyapunov function

ξk defined in (4.4.1). Let Assumptions 1, 5 and 6 hold. Define

Hj =
1 + c1

m
+

j∑
i=1

1
εi

−1

. (14.1.1)

Then ARock yields the following inequality for step size ηk:

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]
≤ ξk − ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2(

1−
(
ηk/hj(k)

))
. (14.1.2)

Proof. Start from the Branch Point Lemma (35):

E
[
ξk+1

∣∣∣σ(Xk, Jk
)]
≤
∥∥∥xk∥∥∥2

+ 1
m

j(k)∑
i=1

εi
∥∥∥xk+1−i − xk−i

∥∥∥2
+
∞∑
i=1

ci+1

∥∥∥xk+1−i − xk−i
∥∥∥2

− ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2
1− ηk

1 + c1

m
+

j(k)∑
i=1

1
εi

≤
∥∥∥xk∥∥∥2

+ 1
m

(∞∑
i=1

(εi + ci+1)
∥∥∥xk+1−i − xk−i

∥∥∥2
)
− ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2(

1−
(
ηk/hj(k)

))
.

First assume ηk/hj(k) ≤ 1, to eliminate the last term. Ideally we have E
[
ξk+1

∣∣∣σ(Xk, Jk
)]
≤ ξk,

which can be achieved with:

∥∥∥xk∥∥∥2
+ 1
m

(∞∑
i=1

(ci+1 + εi)
∥∥∥xk+1−i − xk−i

∥∥∥2
)
≤
∥∥∥xk∥∥∥2

+ 1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2
.

Using a similar argument to the one used in the proof of Lemma 36, we obtain the coefficient

formula:

ci =
∞∑
l=i

εl.

With this choice of coefficients, Lemma 42 is proven.

14.2 Convergence proof

Now that we have built the Lyapunov function, and obtained Lemma 42, it is possible to

prove convergence.
111

Lemma 43. Consider the Lyapunov function ξk defined in (4.4.1). Let Assumptions 1, 5

and 6 hold. Define hj via equation (14.1.1). Let the step size ηk = chj(k) for an arbitrary

fixed c ∈ (0, 1). Then with probability 1, ξk converges, and we have:

∞∑
k=1

hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
<∞, (14.2.1)

∞∑
k=1

∥∥∥xk+1 − xk
∥∥∥2
<∞. (14.2.2)

Hence hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
→ 0 and

∥∥∥xk+1 − xk
∥∥∥→ 0.

Proof. Now
∥∥∥xk+1 − xk

∥∥∥ ≤ chj(k)

∥∥∥Sxk−~j(k)
∥∥∥ (see Definition 4), and hj(k) ≤ 1. Hence:

∞∑
k=1

∥∥∥xk+1 − xk
∥∥∥2
≤
∞∑
k=1

c2h2
j(k)

∥∥∥Sxk−~j(k)
∥∥∥2
≤
∞∑
k=1

hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
.

Clearly then, equation (14.2.1) will imply all parts of this lemma (since any summable

sequence converges to 0).

Use the Supermartingale Convergence Theorem (Theorem 8) on Lemma 42 with αk = ξk,

γk = 0, and θk = ηk

m

∥∥∥Sxk−~j(k)
∥∥∥2(

1−
(
ηk/hj(k)

))
. This implies that ξk converges with

probability 1, and we have:

∞∑
k=1

chj(k)

m

∥∥∥Sxk−~j(k)
∥∥∥2

(1− c) <∞,

=⇒
∞∑
k=1

hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
<∞.

This proves the lemma.

14.2.1 Norm convergence

Lemma 44. Assume the conditions of Lemma 43. Then with probability 1,
∥∥∥xk − x∗∥∥∥

converges for all x∗ ∈ Fix(T).

Proof. 1) Difference sum converges to 0:

1
m

∞∑
i=1

ci
∥∥∥xk+1−i − xk−i

∥∥∥2

112

=
(

(0, . . . , 0, c1, c2, . . .) ∗
(
. . . ,

∥∥∥x(i−1)+1 − xi−1
∥∥∥2
,
∥∥∥xi+1 − xi

∥∥∥2
,
∥∥∥x(i+1)+1 − x(i+1)

∥∥∥2
, . . .

))
(k)

Hence the difference sum is the convolution of a bounded sequence that converges to 0 as

i → ∞ (by Assumption 6), and an `1 sequence (by Lemma 43), respectively. Notice the

reversal of roles from Proposition 39. Therefore, by Lemma 38, the difference sum converges

to 0 with probability 1.

2) Norm Convergence: Therefore for any particular x∗ ∈ Fix(T), with probability 1,∥∥∥xk − x∗∥∥∥ converges. As argued before in the proof of Proposition 39, because the space is

separable, this implies that with probability 1,
∥∥∥xk − x∗∥∥∥ converges for all x∗ ∈ Fix(T).

14.2.2 Fixed-point-residual strong convergence on subsequences of bounded de-

lay

Lemma 45. FPR strong convergence. Let the conditions of Lemma 43 hold. Let

J ≥ lim inf j(k). Let QJ ⊂ N be the subsequence of indices, k, on which the current delay,

j(k), is less than or equal to J (see Definition 41). On this subsequence, we have
∥∥∥Sxk∥∥∥→ 0.

Proof. 1) Delayed fixed-point residual
∥∥∥Sxk−~j(k)

∥∥∥ → 0 on QJ . The starting point is

(14.2.1) from Lemma 43:
∞∑
k=1

hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
<∞,

Consider the subsequence QJ ⊂ N. On this subsequence, the above becomes:

∞ >
∑
k∈QJ

hj(k)

∥∥∥Sxk−~j(k)
∥∥∥2
≥

∑
k∈QJ

hT
∥∥∥Sxk−~j(k)

∥∥∥2
(since hj is decreasing in j).

Hence ∞ >
∑
k∈QJ

∥∥∥Sxk−~j(k)
∥∥∥2
. So

∥∥∥Sxk−~j(k)
∥∥∥→ 0 on QJ .

2) Fixed-point residual strong convergence.

∥∥∥Sxk∥∥∥ ≤ ∥∥∥Sxk − Sxk−~j(k)
∥∥∥+

∥∥∥Sxk−~j(k)
∥∥∥

≤ 2
∥∥∥xk − xk−~j(k)

∥∥∥+
∥∥∥Sxk−~j(k)

∥∥∥
≤ 2

m∑
l=1

∥∥∥xkl − xk−j(k,l)l

∥∥∥+
∥∥∥Sxk−~j(k)

∥∥∥
113

≤ 2
m∑
l=1

j(k,l)∑
i=1

∥∥∥xk+1−i
l − xk−il

∥∥∥+
∥∥∥Sxk−~j(k)

∥∥∥
≤ 2m

(∥∥∥xk − xk−1
∥∥∥+ . . .+

∥∥∥xk−(T+1) − xk−T
∥∥∥)+

∥∥∥Sxk−j(k)
∥∥∥→ 0.

The last line converges to 0 because
∥∥∥xk − xk−1

∥∥∥→ 0 and
∥∥∥Sxk−j(k)

∥∥∥→ 0. Hence
∥∥∥Sxk∥∥∥→ 0

on QJ .

14.2.3 Proof of Theorem 10

Proof. Norm convergence was proven in Lemma 44. FPR strong convergence on subsequences

of bounded delay was proven in Lemma 45. Having satisfied the conditions of Proposition 33,

we conclude that the sequence of ARock iterates converges to a solution with probability 1

on subsequence of bounded delay.

14.3 Parameter choice

The parameters ε1, ε2, . . . are arbitrary. However, for the purposes of simplicity and demon-

stration, εl was set to l1+γ√m for γ > 0 to obtain Theorem 9 in the introduction, from

the more general Theorem 10. Integration is used to simplify the summations involved in

obtaining the step size formula.

114

CHAPTER 15

Bibliography

115

Bibliography

Agarwal, Alekh and John C Duchi. “Distributed Delayed Stochastic Optimization.” In:

Advances in Neural Information Processing Systems 24. 2011, pp. 873–881.

Allen-Zhu, Zeyuan. “Katyusha: The First Direct Acceleration of Stochastic Gradient Methods.”

In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing.

STOC 2017. New York, NY, USA: ACM, 2017, pp. 1200–1205.

Allen-Zhu, Zeyuan and Elad Hazan. “Optimal Black-Box Reductions Between Optimization

Objectives.” In: Proceedings of the 30th International Conference on Neural Information

Processing Systems. NIPS’16. USA: Curran Associates Inc., 2016, pp. 1614–1622.

Allen-Zhu, Zeyuan, Zheng Qu, et al. “Even Faster Accelerated Coordinate Descent Using

Non-Uniform Sampling.” In: International Conference on Machine Learning. International

Conference on Machine Learning. June 11, 2016, pp. 1110–1119.

Arendt, Wolfgang et al. Vector-Valued Laplace Transforms and Cauchy Problems: Second

Edition. Springer Science & Business Media, Apr. 5, 2011. 540 pp.

Arjevani, Yossi. “Limitations on Variance-Reduction and Acceleration Schemes for Finite

Sums Optimization.” In: Advances in Neural Information Processing Systems 30. Curran

Associates, Inc., 2017, pp. 3540–3549.

Avron, H., A. Druinsky, and A. Gupta. “Revisiting Asynchronous Linear Solvers: Provable

Convergence Rate through Randomization.” In: Parallel and Distributed Processing Sym-

posium, 2014 IEEE 28th International. Parallel and Distributed Processing Symposium,

2014 IEEE 28th International. May 2014, pp. 198–207.

Bauschke, Heinz H. and Patrick L. Combettes. Convex Analysis and Monotone Operator

Theory in Hilbert Spaces. Springer Science & Business Media, Apr. 19, 2011. 470 pp.

Bertsekas, Dimitri P. “Distributed Asynchronous Computation of Fixed Points.” In: Mathe-

matical Programming 27.1 (1983), pp. 107–120.

Bertsekas, Dimitri P. and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical

Methods. Athena Scientific, 1997.

116

http://papers.nips.cc/paper/4247-distributed-delayed-stochastic-optimization.pdf
http://doi.acm.org/10.1145/3055399.3055448
http://dl.acm.org/citation.cfm?id=3157096.3157277
http://dl.acm.org/citation.cfm?id=3157096.3157277
http://proceedings.mlr.press/v48/allen-zhuc16.html
http://proceedings.mlr.press/v48/allen-zhuc16.html
http://papers.nips.cc/paper/6945-limitations-on-variance-reduction-and-acceleration-schemes-for-finite-sums-optimization.pdf
http://papers.nips.cc/paper/6945-limitations-on-variance-reduction-and-acceleration-schemes-for-finite-sums-optimization.pdf
https://dl.acm.org/citation.cfm?id=2814566
https://dl.acm.org/citation.cfm?id=2814566
http://link.springer.com/article/10.1007/BF02591967
https://dl.acm.org/citation.cfm?id=548930
https://dl.acm.org/citation.cfm?id=548930

Cannelli, Loris et al. “Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization.

Part II: Complexity and Numerical Results.” In: (Jan. 17, 2017). arXiv: 1701.04900.

Chang, Chih-Chung and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines.”

In: ACM Trans. Intell. Syst. Technol. 2.3 (May 2011), 27:1–27:27.

Chazan, D. and W. Miranker. “Chaotic Relaxation.” In: Linear Algebra and its Applications

2.2 (Apr. 1, 1969), pp. 199–222.

Chow, Y., T. Wu, and W. Yin. “Cyclic Coordinate-Update Algorithms for Fixed-Point

Problems: Analysis and Applications.” In: SIAM Journal on Scientific Computing 39.4

(Jan. 1, 2017), A1280–A1300.

Combettes, P. and J. Pesquet. “Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations

with Random Sweeping.” In: SIAM Journal on Optimization 25.2 (Jan. 1, 2015), pp. 1221–

1248.

Davis, Damek. “SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm.” In:

(Jan. 4, 2016). arXiv: 1601.00698.

Davis, Damek and Wotao Yin. “A Three-Operator Splitting Scheme and Its Optimization

Applications.” In: Set-Valued and Variational Analysis 25.4 (Dec. 1, 2017), pp. 829–858.

Duchi, John C., Sorathan Chaturapruek, and Christopher Ré. “Asynchronous Stochastic

Convex Optimization.” In: (Aug. 4, 2015). arXiv: 1508.00882.

Dutta, Sanghamitra et al. “Slow and Stale Gradients Can Win the Race: Error-Runtime

Trade-Offs in Distributed SGD.” In: (Mar. 3, 2018). arXiv: 1803.01113.

Eisenberg, Bennett. “On the Expectation of the Maximum of IID Geometric Random

Variables.” In: Statistics & Probability Letters 78.2 (Feb. 1, 2008), pp. 135–143.

Fang, Cong, Yameng Huang, and Zhouchen Lin. “Accelerating Asynchronous Algorithms

for Convex Optimization by Momentum Compensation.” In: (Feb. 27, 2018). arXiv:

1802.09747.

Hannah, Robert, Fei Feng, and Wotao Yin. “A2BCD: Asynchronous Acceleration with

Optimal Complexity.” In: International Conference on Learning Representations. Sept. 27,

2018.

117

http://arxiv.org/abs/1701.04900
http://arxiv.org/abs/1701.04900
https://arxiv.org/abs/1701.04900
http://doi.acm.org/10.1145/1961189.1961199
http://www.sciencedirect.com/science/article/pii/0024379569900287
http://epubs.siam.org/doi/abs/10.1137/16M1102653
http://epubs.siam.org/doi/abs/10.1137/16M1102653
http://epubs.siam.org/doi/abs/10.1137/140971233
http://epubs.siam.org/doi/abs/10.1137/140971233
http://arxiv.org/abs/1601.00698
https://arxiv.org/abs/1601.00698
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1007/s11228-017-0421-z
http://arxiv.org/abs/1508.00882
http://arxiv.org/abs/1508.00882
https://arxiv.org/abs/1508.00882
http://arxiv.org/abs/1803.01113
http://arxiv.org/abs/1803.01113
https://arxiv.org/abs/1803.01113
http://www.sciencedirect.com/science/article/pii/S0167715207002040
http://www.sciencedirect.com/science/article/pii/S0167715207002040
http://arxiv.org/abs/1802.09747
http://arxiv.org/abs/1802.09747
https://arxiv.org/abs/1802.09747
https://openreview.net/forum?id=rylIAsCqYm
https://openreview.net/forum?id=rylIAsCqYm

Hannah, Robert, Yanli Liu, et al. “Breaking the Span Assumption Yields Fast Finite-

Sum Minimization.” In: Advances in Neural Information Processing Systems 31. Curran

Associates, Inc., 2018, pp. 2312–2321.

Hannah, Robert and Wotao Yin. “More Iterations per Second, Same Quality – Why Asyn-

chronous Algorithms May Drastically Outperform Traditional Ones.” In: (Aug. 17, 2017).

arXiv: 1708.05136.

— “On Unbounded Delays in Asynchronous Parallel Fixed-Point Algorithms.” In: Journal of

Scientific Computing (Dec. 12, 2017), pp. 1–28.

Johnstone, Patrick R. and Jonathan Eckstein. “Projective Splitting with Forward Steps:

Asynchronous and Block-Iterative Operator Splitting.” In: (Mar. 19, 2018). arXiv: 1803.

07043.

Kella, Offer and Wolfgang Stadje. “Superposition of Renewal Processes and an Application to

Multi-Server Queues.” In: Statistics & Probability Letters 76.17 (Nov. 2006), pp. 1914–1924.

Lan, Guanghui and Yi Zhou. “An Optimal Randomized Incremental Gradient Method.” In:

Mathematical Programming (June 28, 2017), pp. 1–49.

Leblond, Rémi, Fabian Pedregosa, and Simon Lacoste-Julien. “ASAGA: Asynchronous Parallel

SAGA.” In: Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics. Apr. 10, 2017, pp. 46–54.

Lee, Y. T. and A. Sidford. “Efficient Accelerated Coordinate Descent Methods and Faster

Algorithms for Solving Linear Systems.” In: 2013 IEEE 54th Annual Symposium on

Foundations of Computer Science. 2013 IEEE 54th Annual Symposium on Foundations

of Computer Science. Oct. 2013, pp. 147–156.

Lian, Xiangru, Huan Zhang, et al. “A Comprehensive Linear Speedup Analysis for Asyn-

chronous Stochastic Parallel Optimization from Zeroth-Order to First-Order.” In: Advances

in Neural Information Processing Systems 29. Curran Associates, Inc., 2016, pp. 3054–

3062.

Lian, Xiangru, Wei Zhang, et al. “Asynchronous Decentralized Parallel Stochastic Gradient

Descent.” In: International Conference on Machine Learning. International Conference on

Machine Learning. July 3, 2018, pp. 3043–3052.

118

http://papers.nips.cc/paper/7499-breaking-the-span-assumption-yields-fast-finite-sum-minimization.pdf
http://papers.nips.cc/paper/7499-breaking-the-span-assumption-yields-fast-finite-sum-minimization.pdf
http://arxiv.org/abs/1708.05136
http://arxiv.org/abs/1708.05136
https://arxiv.org/abs/1708.05136
https://link.springer.com/article/10.1007/s10915-017-0628-z
http://arxiv.org/abs/1803.07043
http://arxiv.org/abs/1803.07043
https://arxiv.org/abs/1803.07043
https://arxiv.org/abs/1803.07043
http://linkinghub.elsevier.com/retrieve/pii/S0167715206001581
http://linkinghub.elsevier.com/retrieve/pii/S0167715206001581
https://link.springer.com/article/10.1007/s10107-017-1173-0
http://proceedings.mlr.press/v54/leblond17a.html
http://proceedings.mlr.press/v54/leblond17a.html
http://papers.nips.cc/paper/6551-a-comprehensive-linear-speedup-analysis-for-asynchronous-stochastic-parallel-optimization-from-zeroth-order-to-first-order.pdf
http://papers.nips.cc/paper/6551-a-comprehensive-linear-speedup-analysis-for-asynchronous-stochastic-parallel-optimization-from-zeroth-order-to-first-order.pdf
http://proceedings.mlr.press/v80/lian18a.html
http://proceedings.mlr.press/v80/lian18a.html

Lin, Qihang, Zhaosong Lu, and Lin Xiao. “An Accelerated Proximal Coordinate Gradient

Method.” In: Advances in Neural Information Processing Systems 27. Curran Associates,

Inc., 2014, pp. 3059–3067.

Liu, J. and S. Wright. “Asynchronous Stochastic Coordinate Descent: Parallelism and Con-

vergence Properties.” In: SIAM Journal on Optimization 25.1 (Jan. 1, 2015), pp. 351–

376.

Liu, Ji et al. “An Asynchronous Parallel Stochastic Coordinate Descent Algorithm.” In: J.

Mach. Learn. Res. 16.1 (Jan. 2015), pp. 285–322.

Liu, Tianyi et al. “Towards Understanding Acceleration Tradeoff between Momentum and

Asynchrony in Nonconvex Stochastic Optimization.” In: Advances in Neural Information

Processing Systems 32. Curran Associates, Inc., 2018.

Luo, Z. Q. and P. Tseng. “On the Convergence of the Coordinate Descent Method for Convex

Differentiable Minimization.” In: Journal of Optimization Theory and Applications 72.1

(Jan. 1992), pp. 7–35.

Luo, Zhi-Quan and Paul Tseng. “On the Convergence Rate of Dual Ascent Methods for

Linearly Constrained Convex Minimization.” In: Mathematics of Operations Research 18.4

(Nov. 1, 1993), pp. 846–867.

Mania, H. et al. “Perturbed Iterate Analysis for Asynchronous Stochastic Optimization.” In:

SIAM Journal on Optimization 27.4 (Jan. 1, 2017), pp. 2202–2229.

Meng, Qi et al. “Asynchronous Accelerated Stochastic Gradient Descent.” In: Proceedings

of the Twenty-Fifth International Joint Conference on Artificial Intelligence (New York,

New York, USA). IJCAI’16. AAAI Press, 2016, pp. 1853–1859.

Mitov, Kosto V. and Edward Omey. “Renewal Processes.” In: Renewal Processes. Springer-

Briefs in Statistics. Springer International Publishing, 2014, pp. 1–51.

Nesterov, Y. “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Prob-

lems.” In: SIAM Journal on Optimization 22.2 (Jan. 1, 2012), pp. 341–362.

Nesterov, Yurii. “A Method of Solving a Convex Programming Problem with Convergence

Rate O (1/K2).” In: Soviet Mathematics Doklady. Vol. 27. 1983, pp. 372–376.

119

http://papers.nips.cc/paper/5356-an-accelerated-proximal-coordinate-gradient-method.pdf
http://papers.nips.cc/paper/5356-an-accelerated-proximal-coordinate-gradient-method.pdf
http://epubs.siam.org/doi/abs/10.1137/140961134
http://epubs.siam.org/doi/abs/10.1137/140961134
http://dl.acm.org/citation.cfm?id=2789272.2789282
https://arxiv.org/abs/1806.01660
https://arxiv.org/abs/1806.01660
http://link.springer.com/article/10.1007/BF00939948
http://link.springer.com/article/10.1007/BF00939948
http://pubsonline.informs.org/doi/abs/10.1287/moor.18.4.846
http://pubsonline.informs.org/doi/abs/10.1287/moor.18.4.846
https://epubs.siam.org/doi/abs/10.1137/16M1057000
http://dl.acm.org/citation.cfm?id=3060832.3060880
http://link.springer.com/chapter/10.1007/978-3-319-05855-9_1
http://epubs.siam.org/doi/abs/10.1137/100802001
http://epubs.siam.org/doi/abs/10.1137/100802001
https://dl.acm.org/citation.cfm?id=2670022
https://dl.acm.org/citation.cfm?id=2670022

Nesterov, Yurii. Introductory Lectures on Convex Optimization: A Basic Course. Springer

Science & Business Media, Dec. 1, 2013. 253 pp.

Peng, Z. et al. “ARock: An Algorithmic Framework for Asynchronous Parallel Coordinate

Updates.” In: SIAM Journal on Scientific Computing 38.5 (Jan. 1, 2016), A2851–A2879.

Peng, Zhimin, Tianyu Wu, et al. “Coordinate Friendly Structures, Algorithms and Appli-

cations.” In: Annals of Mathematical Sciences and Applications 1.1 (2016), pp. 57–119.

arXiv: 1601.00863.

Peng, Zhimin, Yangyang Xu, et al. “On the Convergence of Asynchronous Parallel Iteration

with Unbounded Delays.” In: Journal of the Operations Research Society of China (Dec. 9,

2017), pp. 1–38.

Recht, Benjamin et al. “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient

Descent.” In: Advances in Neural Information Processing Systems 24. 2011, pp. 693–701.

Roux, Nicolas L., Mark Schmidt, and Francis R. Bach. “A Stochastic Gradient Method with

an Exponential Convergence _Rate for Finite Training Sets.” In: Advances in Neural

Information Processing Systems 25. Curran Associates, Inc., 2012, pp. 2663–2671.

Rumble, Stephen M. et al. “It’s Time for Low Latency.” In: Proceedings of the 13th USENIX

Workshop on Hot Topics in Operating Systems. 2011, pp. 11–15.

Ryu, Ernest K. and Stephen Boyd. “Primer on Monotone Operator Methods.” In: Preprint,

available at http://web. stanford.edu/∼eryu/papers/monotone_notes. pdf (2015).

Ryu, Ernest K., Robert Hannah, and Wotao Yin. “Scaled Relative Graph: Nonexpansive

Operators via 2D Euclidean Geometry.” In: (Feb. 26, 2019). arXiv: 1902.09788 [math].

Serpedin, Erchin and Qasim M. Chaudhari. Synchronization in Wireless Sensor Networks:

Parameter Estimation, Peformance Benchmarks, and Protocols. 1st. New York, NY, USA:

Cambridge University Press, 2009.

Solomonik, Edgar and James Demmel. “Communication-Optimal Parallel 2.5D Matrix

Multiplication and LU Factorization Algorithms.” In: Euro-Par 2011 Parallel Processing.

Lecture Notes in Computer Science 6853. Springer Berlin Heidelberg, Aug. 29, 2011,

pp. 90–109.

120

https://dl.acm.org/citation.cfm?id=2670022
http://epubs.siam.org/doi/abs/10.1137/15M1024950
http://epubs.siam.org/doi/abs/10.1137/15M1024950
http://arxiv.org/abs/1601.00863
http://arxiv.org/abs/1601.00863
https://arxiv.org/abs/1601.00863
https://link.springer.com/article/10.1007/s40305-017-0183-1
https://link.springer.com/article/10.1007/s40305-017-0183-1
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4633-a-stochastic-gradient-method-with-an-exponential-convergence-_rate-for-finite-training-sets.pdf
http://papers.nips.cc/paper/4633-a-stochastic-gradient-method-with-an-exponential-convergence-_rate-for-finite-training-sets.pdf
http://static.usenix.org/event/hotos11/tech/final_files/Rumble.pdf
http://web.stanford.edu/~boyd/papers/pdf/monotone_primer.pdf
http://arxiv.org/abs/1902.09788
http://arxiv.org/abs/1902.09788
https://arxiv.org/abs/1902.09788
http://link.springer.com/chapter/10.1007/978-3-642-23397-5_10
http://link.springer.com/chapter/10.1007/978-3-642-23397-5_10

Sra, Suvrit et al. “AdaDelay: Delay Adaptive Distributed Stochastic Optimization.” In:

Artificial Intelligence and Statistics. Artificial Intelligence and Statistics. May 2, 2016,

pp. 957–965.

Su, Weijie, Stephen Boyd, and Emmanuel Candes. “A Differential Equation for Modeling

Nesterov’s Accelerated Gradient Method: Theory and Insights.” In: Advances in Neural

Information Processing Systems 27. 2014, pp. 2510–2518.

Sun, Ruoyu and Yinyu Ye. “Worst-Case Complexity of Cyclic Coordinate Descent: N2 Gap

with Randomized Version.” In: (Apr. 25, 2016). arXiv: 1604.07130.

Sun, Tao, Robert Hannah, and Wotao Yin. “Asynchronous Coordinate Descent under More

Realistic Assumptions.” In: Advances in Neural Information Processing Systems 30. 2017,

pp. 6183–6191.

Sutter, Herb. “The Free Lunch Is over: A Fundamental Turn toward Concurrency in Software.”

In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

— Welcome to the Jungle. Nov. 8, 2011. url: https://herbsutter.com/welcome-to-the-

jungle/.

Taylor, Adrien B., Julien M. Hendrickx, and François Glineur. “Exact Worst-Case Convergence

Rates of the Proximal Gradient Method for Composite Convex Minimization.” In: Journal

of Optimization Theory and Applications 178.2 (Aug. 1, 2018), pp. 455–476.

Tseng, P. “On the Rate of Convergence of a Partially Asynchronous Gradient Projection

Algorithm.” In: SIAM Journal on Optimization 1.4 (Nov. 1, 1991), pp. 603–619.

Tseng, P., D. Bertsekas, and J. Tsitsiklis. “Partially Asynchronous, Parallel Algorithms for

Network Flow and Other Problems.” In: SIAM Journal on Control and Optimization 28.3

(Mar. 1, 1990), pp. 678–710.

Zhou, Zhengyuan et al. “Distributed Asynchronous Optimization with Unbounded Delays:

How Slow Can You Go?” In: International Conference on Machine Learning. International

Conference on Machine Learning. July 3, 2018, pp. 5970–5979.

121

http://proceedings.mlr.press/v51/sra16.html
http://papers.nips.cc/paper/5322-a-differential-equation-for-modeling-nesterovs-accelerated-gradient-method-theory-and-insights.pdf
http://papers.nips.cc/paper/5322-a-differential-equation-for-modeling-nesterovs-accelerated-gradient-method-theory-and-insights.pdf
http://arxiv.org/abs/1604.07130
http://arxiv.org/abs/1604.07130
https://arxiv.org/abs/1604.07130
http://papers.nips.cc/paper/7198-asynchronous-coordinate-descent-under-more-realistic-assumptions.pdf
http://papers.nips.cc/paper/7198-asynchronous-coordinate-descent-under-more-realistic-assumptions.pdf
http://mondrian.die.udec.cl/~mmedina/Clases/ProgPar/Sutter%20-%20The%20Free%20Lunch%20is%20Over.pdf
https://herbsutter.com/welcome-to-the-jungle/
https://herbsutter.com/welcome-to-the-jungle/
https://herbsutter.com/welcome-to-the-jungle/
https://doi.org/10.1007/s10957-018-1298-1
https://doi.org/10.1007/s10957-018-1298-1
http://epubs.siam.org/doi/abs/10.1137/0801036
http://epubs.siam.org/doi/abs/10.1137/0801036
http://epubs.siam.org/doi/abs/10.1137/0328040
http://epubs.siam.org/doi/abs/10.1137/0328040
http://proceedings.mlr.press/v80/zhou18b.html
http://proceedings.mlr.press/v80/zhou18b.html

	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Advantages of asynchronous algorithms
	1.3 Overview

	2 Literature Review
	2.1 Earlier work
	2.2 More recent work
	2.3 Asynchronous acceleration and coordinate descent
	2.4 Unbounded delay

	3 Preliminaries and Background
	3.1 Convex and smooth functions
	3.2 Operators
	3.3 KM iterations
	3.4 Special cases of KM
	3.5 Duality and finite sums

	4 Asynchronicity
	4.1 The ARock algorithm
	4.2 Setup and assumptions
	4.3 Faster Iterations + Same Quality = Faster Algorithms
	4.4 Asynchronicity error
	4.5 General strategy for constructing Lyapunov Functions

	II Faster Iterations, Same Quality
	5 Faster Iterations
	5.1 Implementation setup
	5.2 Iteration time model
	5.3 The effect of random delays
	5.4 Heterogeneous update difficulty
	5.5 Heterogeneous computing node power
	5.6 Summary

	6 Sharp Iteration Complexity for Synchronous Algorithms
	6.1 Synchronous ARock
	6.2 Sharp Complexity Results for RBCD

	7 Same Quality: Stochastic unbounded delays
	7.1 Main result
	7.2 Preliminaries
	7.3 The cross term
	7.4 The Lyapunov function
	7.5 Linear convergence
	7.6 Proof of thm:Linear-convergence-stochastic-delays

	III Asynchronous Acceleration
	8 Asynchronous Acceleration
	8.1 Summary of Results
	8.2 Main Theoretical Results
	8.3 Optimality

	9 Proofs for Asynchronous Acceleration
	9.1 Starting point
	9.2 The Cross Term
	9.3 Function-value term
	9.4 Asynchronicity error
	9.5 Master inequality
	9.6 Proof of main theorem

	10 Optimality proof
	11 ODE Analysis of Acceleration
	11.1 Derivation of ODE for synchronous A2BCD
	11.2 Convergence proof for synchronous ODE
	11.3 Asynchronicity error lemma
	11.4 Convergence analysis for the asynchronous ODE

	12 Numerical Results on Acceleration
	12.1 Efficient implementation
	12.2 Parameter selection and tuning
	12.3 Sparse update formulation

	IV Weak Convergence Under Unbounded Delay
	13 Proof of Convergence for Stochastic Unbounded Delays
	13.1 Main Result
	13.2 Preliminaries
	13.3 Proof outline
	13.4 Preliminary results
	13.4.1 A fundamental inequality

	13.5 Constructing Lyapunov function
	13.5.1 Analysis of the Lyapunov function

	13.6 Convergence proof
	13.6.1 Norm convergence
	13.6.2 Fixed-point-residual strong convergence
	13.6.3 Proof of thm:Convergence-stochastic-delays-full

	13.7 Parameter choice
	13.8 Bounded delay

	14 Proof of Convergence for Unbounded Deterministic Delays
	14.1 Building a Lyapunov function
	14.1.1 Analysis of the Lyapunov function

	14.2 Convergence proof
	14.2.1 Norm convergence
	14.2.2 Fixed-point-residual strong convergence on subsequences of bounded delay
	14.2.3 Proof of thm:Convergence-deterministic-delays-full

	14.3 Parameter choice

	15 Bibliography

