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ABSTRACT 

Recognizing that the quality of images obtained 
by application of the Maximum Likelihood Estimator 
(MLE) to Positron Emission Tomography (PET) and Sin­
gle Photon Emission Tomography {SPECT) appears to be 
substantially better than those obtained by conven­
tional methods, we have started to develop methods 
that will facilitate the necessary research for a 
good evaluation of the algorithm and may lead to its 
practical application for research and routine 
tomography. We have found that the non-linear MLE 
algorithm can be used with pixel sizes which are 
smaller than the sampling distance, without interpo­
lation, obtaining excellent resolution and no notice­
able increase in noise. We have studied the role of 
symmetry in reducing the amount of matrix element 
storage requirements for full size applications of 
the algorithm and have used that concept to carry 
out two reconstructions of the Derenzo phantom with 
data from the ECAT-III instrument. The results show 
excellent signal-to-noise (S/N) ratio, particularly 
for data with low total counts, excellent sharpness, 
but low contrast at high frequencies when using the 
Shepp-Vardi model for probability matrices. 

INTRODUCTIOf'! 

The MLE algorithm described by Shepp and Vardil 
for use in PET has recently received substantial 
attention due to its apparent ability to improve on 
the signal-to-noise (S/N) ratio of reconstructed 
images, in comparison with filtered backprojection 
methods.2,3 The MLE algorithm has also been shown to 
provide improved images in the presence of scatter 
and attenuation effects in SPECT4 and it has been 
demonstrated by Lange and Carson5 that the MLE algo­
rithm is also applicable to transmission tomography. 

The main difficulty in attempting to implement 
the algorithm, even for the purpose of gaining some 
understanding of the characteristics of the recon­
structed images, lies in the heavy demand that it 
places on computation resources. It is, therefore, 
not easy to study the benefits that could be derived 
from a routine use of that algorithm. 

Since the quality of images and parameters de­
rived from PET and SPECT measurements is generally 
limited by the number of photons that can be acquired 
in a given time interval, it is reasonable to expect 
that the MLE algorithm, based on the Poisson statis­
tical nature of the photon emission process, would be 
the method of choice for image reconstruction and 
parameter estimation for those modalities. In order 
to ascertain whether that choice would be correct, 

·we have considered it important to develop methods 
that facilitate an investigation of the capabilities 
and possible shortcomings of the MLE algorithm. We 
have started by implementing the algorithm for a 
small imaging system and continued with a progressive 
development of strategies for implementation with 
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full size PET instruments. We will present here some 
results from point and line source reconstructions 
with a 96-crystal PET geometry and initial results of 
a 256 x 256 pixel reconstruction of the Derenzo 
phantom,6 imaged by the ECAT-III device.? Strate­
gies under development for large scale reconstruction 
will be described. 

MATRIX FORM OF THE MLE ALGORITHM 

The process of image reconstruction by the MLE 
algorithm has been described in a convenient matrix 
form recently by one of the present authors and 
co-worker.8 That description will be repeated 
here with some improvements and it will provide the 
basis for the implementation strategies to be 
described below. 

We consider each element of the image space to 
be an element of a vector X, whose value we want to 
estimate. Vector X will be of length Np (the number 
of pixels, for example). For the iterative MLE pro­
cedure, we will define X as the current estimate of 
the image vector and x' the new value after one 
more iteration. 

As a result of a measurement, an imaging instru­
ment will yield a vector of results K, of length Nc 
(the number of coincidences in a PET instrument, for 
example). The probability ~atrix A for the imaging 
instrument will have elements a(i,j) corresponding 
to the probability that a unit of activity at the 
jth pixel will give a response in the ith element of 
the results vector K. Matrix A will have Nc rows 
and Np columns and will be very sparse, in general. 

We begin an iteration by defining a vector H of 
length Nc given by 

H = A X ( 1) 

which corresponds to the results vector that the 
imaging instrument would yield if the true activity 
in the imaging space were X. H is, therefore, the 
projection of the current image estimate X, follow­
ing the prescription given by matrix A, which de­
fines the instrument. 

We next define an error vector E with elements 
e(i) given by 

( k (i) I h(i) for h(i) i 0 
e (i) = ( (2) 

( 0 forh(i)=O 

where k(i) and h(i) are the ith elements of vectors 
K and H, respectively. 

The backprojection B of this error vector is obtained 
next as 

B = AT E (3) 



where AT is the transpose of A. Then, the new image 
estimate is calculated as 

X o (j) = x(j) b(j). (4) 

It is then of advantage to repeat the operation of Eq. 
(1) and obtain a new value for H as 

H' = A x' (5) 

The change in likelihood for the iteration just com­
pleted can be calculated by the formula 

Nc 

dl= L [ h(i)-h'(i)+k(i) log(h'(i)/h(i))] (6) 

i=l 

In principle, the iterative loop would be continued 
until dl has attained a desired low value. 

The probability elements a(i,j) can be calculated 
in a number of ways. Shepp and Vardi have used a 
model in which a(i,j) is proportional to the width 
of the intersection of a circle inscribed in a pixel 
j and the ith strip joining two particular detectors.l 
For time-of-flight PET, Snyder and Politte have used 
asymmetrical, two-dimensional normal distributions, 
with appropriate variances along the line of flight 
and transverse to that line.9 One of the present 
authors and coworkers, have used a program MATRIXlO 
that calculates the probability elements for a two­
plane multi-element positron emission camera by 
taking into account the characteristics of the detec­
tor material, dimensions and cross-talk between 
detector elements. Although Shepp and Vardil mention 
that the results of their simulations are rather in­
sensitive to the choice between two models that they 
have investigated, we feel that the calculation of 
probability matrix elements taking into consideration 
physical detector characteristics should become 
important with the advent of high resolution PET sys­
tems. At this time, however, we can only report 
results using the Shepp-Vardi model for probability 
calculations. 

EXPERIMENTS WITH A 96-CRYSTAL RING 

The geometry of the 96-crystal PET ring was 
described in a previous paper.8 The measurements 
were carried out by rotations of two sets of 3 BGeO 
detectors (1.25 x 1.25 x 3 em each) simulating the 
entire ring. A Na-22 line source of undetermined 
uniformity and approximately 0.078 ~Ci per em and 
two Na-22 point sources of 1.1 and. 0.185 ~Ci were 
imaged, collecting a total of 123,000 counts. In 
the previous paper we presented a comparison of the 
reconstructed images using the MLE algorithm and the 
fan-beam filtered backprojection technique. The 
images for the MLE algorithm were obtained by gen­
erating four 25 x 25 images and interleaving them 
for a total 50 x 50 pixel reconstruction. This 
interleaving was carried out in order to keep the 
distance b'etween the centers of the pixels recon­
structed in one single calculation larger than the 
sampling distance at the center of the ring (1.0 and 
0.75 em, respectively). The final 50 x 50 reconstruc­
tion had pixels of 0.5 x 0.5 em. and the data were 
presented in a 128 x 128 interpolation. Figure la 
reproduces the results of that reconstruction, and 
Fig. lb shows the filtered backprojection results. 
It was our experience with linear algebraic recon­
struction methods that the·condition number of the 
probability matrix A increases drastically as the 
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pixel center-to-center distance approaches the samp­
ling distance. This results in a strong increase in 
the RMS noise of a·reconstructionll,l2 and should 
be avoided. We have found, however, that this cau­
tion appears unnecessary with the MLE algorithm, at 
least for point sources. Pixel size can be made 
much smaller than the sampling distance with appar­
ent impunity. Using still the Shepp-Vardi model for 
probability functions, we have reconstructed the 
data for the line and point sources indicated above 
with one single matrix of 48 x 48 pixels, without 
interleaving and, further, with one single matrix of 
96 x 96 pixels. In the latter case pixel size is 
0.25 x 0.25 em, still with a sampling distance of 
0.75 em. Figures lc and Fig. ld show the resulting 
images. Table I shows the width of the point 
response functions obtained. 

TABLE I 

Pixel size Point res~onse, 
em em, FWHM 

0.5 x 0.5 (interleaved) Approx. 1.1 

.5 x 0.5 (single matrix) " 0.8 

0.25 x 0.25 (single matrix) " 0.6 

No visible increase in the noise in background areas 
was observed. 

RECONSTRUCTIONS FROM THE ECAT-III TOMOGRAPH 

The ECAT-III tomograph? is an instrument with 
512 crystals in each of two rings with a detector 
diameter of 100 em, and a patient opening of 65 em. 
Resolution is 4-5 mm with wobbling and 5-6 mm with­
out. For non-wobbling operations and a single ring, 
the number of allowed coincidences Nc for the data 
being analyzed is 49152 (512 angles with 96 bins 
each). An image plane with Np=65536 (256 x 256 
pixels) has been used for the MLE reconstructions. 
Considering that each pixel is of dimensions 0.1016 
x 0.1016 em and that each of the projection bins is 
as wide (at the center region) as the detector cen­
ter-to-center distance (0.61 em), it is clear that 
each column of the probability matrix.A will have, 
at most, two non-zero elements per angle, or a maxi­
mum of 1024 non-zero elements. For 65536 columns, 
the number of non-zero elements that we need to 
store is 67 million, each consisting of one integer 
address and one floating point value, or 6 bytes. 
Total required storage space is then 402 Mbytes, a 
number which is prohibitive for an initial research 
effort with general purpose medium size computers. 

Fortunately, for a tomograph with a number of 
detectors which is a multiple of 8 and a square 
image region, eight-fold symmetry exists in the 
detector-pixel assembly. The matrix elements for a 
particular pixel are repeated in 3 or 7 other sec­
tors of the A matrix (depending on whether the pixel 
is on a diagonal or off-diagonal) and can be re­
trieved by proper symmetry operations. By implemen­
ting routines to carry out the products of Eqs. (1) 
and (3) using the smaller matrices, we have reduced 
storage to approximately 51 Mbytes, a figure that is 
more reasonable than the initial 402 Mbytes. 

The MLE reconstructions shown in this paper have 
been carried out by the 8-fold symmetry procedure, 
using probability matrix elements calculated from 
the Shepp-Vardi model, as discussed above. 

' ,. 



A) C) 

B) D) 

XBL 8510-4353 

Figure 1. Results of image reconstruction using rotating BiGeO crystals in a 96-crystal 
configuration, with point and line sources. Shepp-Vardi model for probability matrix ele­
ments. a) Four interleaved sets of pixels, for a total 50 x 50 image. b) Image obtained 
using the fan beam filtered backprojection technique, with 50 x 50 pixels. c) MLE recon­
struction with 48 x 48 pixels, without interleaving. Pixel size is 0.5 x 0.5 em, sampling 
distance is 0.75 em. d) MLE reconstruction with 96 x 96 pixels, no interleaving. Pixel 
size is 0.25 x 0.25 em, sampling distance 0.75 em. 

We have reconstructed images of the Derenzo 
phantom6 filled with F-18. The phantom contains 
cylinders of activity with diameters ranging from 
2.5 to 6.25 mm in a circle of 20 em. Two images 
have been reconstructed, one with 40 million net 
true events and one with 0.6 million events. Acci­
dentals rate was kept below 15% during data collec­
tion and they have been subtracted. Data were cor­
rected for attenuation losses by a simple multipli­
cative method. A total of 45.iterations has been 
obtained for each of the two reconstructions and the 
results can be compared to filtered backprojection 
images obtained with ramp and Hanning filters. 
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Figure 2 shows the values of the change in like­
lihood function dl of Eq. 6 as a function of itera­
tion number for the two reconstructions. The func­
tion dl is the derivative of the likelihood function, 
which normally exhibits a saturation behavior. The 
likelihood function L is the logarithm of the func­
tion that expresses true likelihood1 and, therefore, 
the saturation behavior of L is expected. Plotting 
dl in a semilog scale allows us to observe the behav­
ior of convergence, or non-convergence, better than 
by observation of L. For both reconstructions we 
observe that up to iteration No. 10, approximately, 
likelihood has increased quite rapidly, but after 
that it increases at a slower rate. At the end of 



109 r------------------------------------, 

0 

0106 r---
0 • 
~ 5r o 

::::; 
~ 2r 
::::; 105 r­
z 
LLJ 51-
CJ 

~ 21-

i3 104 r-
51-

5r 

0 

0 

ECAT -Ill DERENZO PHANTOM 
256 x 256 IMAGE 

. . . /0.6 M COUNTS .. .. .... .... .... . . ... 
10 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 
ITERATION NO. 

XBL 8510-4360 

Figure 2. Change in likelihood functions 
(dL, Eq. 6) for the two reconstructions of 
the Derenzo phantom as a function of itera­
tion number. Points missing correspond to 
interations in which the function was not 

. calculated. 

the 45 iterations that we have carried out we are 
still increasing in likelihood, although the in­
creases are in a region of negative exponential form. 
We plan to continue the present iterative process 
with the two images after we develop more efficient 
programs, as discussed below, in order to see whether 
dL keeps following the negative exponential behavior 
of Fig. 2 or, at some point it drops more rapidly 
again, indicating no further increase in likelihood. 

Figure 3 shows the image obtained from the 40 
million count data by the ramp and Hanning filters, 
and at iteration No. 45 by the MLE algorithm. Simi­
larly Fig. 4 shows the results for the 0.6 million 
count data. The figures also indicate the standard 
deviation of the noise (in ct numbers) in the circu­
lar regions shown in Fig. 5 at the center of the 
phantom and at the periphery. Notice that the dis­
play scale for the MLE results has been expanded by 
a factor of two with respect to the ramp and Hanning 
filter images, so that any existing noise would 
appear more prominently. 
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Figure 6 shows cuts along the 3 lines shown in 
Fig. 5 for the ramp, Hanning and MLE images for the 
40 Mcount data. Results for iterations 15, 27 and 
45 are shown for the MLE case. Figure 7 shows cuts 
for the 0.6 Mcount data. 

DISCUSSION OF RESULTS 

The results of Figs. 3 to 7 can be summarized by 
separating some of the more important elements that 
contribute to image quality: Signal-to-noise ratio 
(S/N), contrast, frequency response, accuracy of 
shape and signal magnitude, distortions and arti­
facts. Since the MLE is a non-linear algorithm, some 
of the image characteristics that would be related 
in linear methods may be independent here. For the 
present preliminary reconstructions we will examine 
only the more salient features of the images in terms 
of some of the image characteristics indicated. 

With the images normalized so that the highest 
signal fills 1024 ct numbers, we find the ratios for 
S/N of the MLE vs the filtered backprojection tech­
niques shown in Table II. 

TABLE II 

Com~arative S/N ratios with 
She~~-Vardi ~robabilitl matrices 

40 Mcounts 0.6 Mcounts 

Center Outer Center Outer -- --- --
SINMLEIS/Nramp 3.84 6.66 7.69 25.0 

S/NMLEIS/NHanning 2.56 4.54 15.38 50.0 

The above figures are obtained by dividing the recip­
rocals of the two noise standard deviations in the 
corresponding circular regions indicated in Fig. 5. 
Evidently, the figures are only meaningful in compar­
ing methods with identical frequency response and we 
do not have that case here. For that reason we shall 
examine contrast next, as some indication of fre­
quency response, and relate the above results to the 
new findings. 

Contrast 

We can define contrast for the four regions of 
the Derenzo phantom described by lines PL1 and PL2 
of Fig. 5 as the normalized average distance between 
peak and valley along those lines for the 40 Mcount 
data. Table III shows the results obtained. 

TABLE II I 

Com~arative contrast values using 
the s-e~~-Vara, ~ro6a61l1tl runct1ons 

Region Source Source CONTRAST 
diameter se~aration Ram~ Hanning MLE 

1 6.25 mm 25 mm Defined as 1.00 

3 4.00 16 0.41 0.39 0.21 
4 3.50 14 0.31 0.31 0.18 
6 2.50 10 0.16 0.05 0.04 
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Finally, we show the region dependent comparative 
SIN ratios assuming that contrast remains fixed at 
the 40 Mcount values when the total number of counts 
in the image changes and noise is uniform within the 
activity region of the Derenzo phantom and equal to 
the center circular region (Fig. 5). The values 
obtained are shown in Table IV and result from modi­
fying those of Table II by the ratios of contrasts 
in Table I I I. 

We emphasize that the results in Tables II 
through IV are for the. Shepp-Vardi model f6r pr6ba­
bility values. We feel that the choice of a model 
that represents realistically the physics of detec­
tion may improve the S/N figures substantially, 
particularly at.higher frequencies. 

TABLE IV 

Com~arative region 

Region: 1 --
S/NMLEIS/Nramp 3.84 

S/NMLE/5/NHanning 2.56 

de~endent S/N ratios with She~~-Vardi ~robabilitt matrices 

40 Mcounts 

3 4 -- --
1. 96 2.22 

1. 37 1.48 

0.6 Mcounts 

6 1 3 4 6 -- -- - -- --

0.96 7.69 3.93 4.46 1. 96 

2.05 15.4 8.3 8.9 12.3 

Comparison of Derenzo Phantom Images, ECAT·III Data, Non-Wobbling. 

Ramp ffl ter 

Hannfng filter 

MLE, 45 iters. 

40 :-.ill ion Counts 

Center Region Nofse Outer Region Noise Range Displayed 

Std. dev. = 10.7 ct nos. Std. dev. " 4.8 ct nos. 0-1024 ct nos. 

7.2 

1.8 

2.7 

0.6 

0-1024 

0-512 

Figure 3. Comparison of images obtained with 40 Mcounts with Ramp and Hanning filtered 
backprojection techniques and at iteration 45 of the MLE algorithm. (Shepp-Vardi probability 
matrices). 
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Comparf son of Derenzo Phantom Images, ECAT- II I Data, ~on-Wobb 1i ng. 

0,6 Mfll fon Counts 

Method Center Region Noise Outer Region Noise Range Di sp 1 ayed 

Ramp filter Std. dev. " 20.3 ct nos. Std. dev. 10,0 ct nos. 0-1024 ct nos. 

Hanning filter 40,0 2D.B 0-1024 

MLE, 45 iters. 2.6 0.4 0-512 

Figure 4. Similar comparison as in Fig. 3, for 0.6 Mcounts. 

Frequency response 

The concept of frequency response should be 
related in some manner to the contrast figures shown 
in Table III but that relationship is not clear from 
the present initial reconstructions. Although we 
found the MLE algorithm to show lower constrast for 
the regions with sources of smaller diameter than 
with the ramp filter reconstruction, the sharpness 
of the 6.25 mm diameter sources (Region 1) is better 
reproduced by the MLE algorithm: the ramp filter 
shows approximately 7 mm FWHM and 12.2 mm FW1/10M 
while the MLE results show 4.5 mm FWHM and 7.7 mm 
FW1/10M. We should point out that the MLE recon­
struction has been carried out with 1.016 x 1.016 mm 
pixels, in clear violation of the sampling theorem. 
The filter used for the ramp reconstructions was for 
the 3.05 mm sampling distance, with interpolation to 
a 256 x 256 image plane during backprojection. 

FURTHER DEVELOPMENT OF STRATEGY 

The continuation of the research described above 
with data from practical devices like the ECAT-III 
will depend on the availability of substantial comp­
utation resources which should be used in a most 
efficient manner. The reduction of matrix elements 
by using 8-fold symmetry is a step in the right 
direction, although it results in longer computation 
times because of the transformations required for 
the matrix products. This added computation time 
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Figure 5. Lines for the cuts of Figs. 6 and 7 and 
circles for noise data in Table II. 
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Figure 6. Cuts along lines PLl, PL2 and PL3 indicated in Fig. 5, for the 40 Mcount reconstructions. 
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can be shortened considerably by making some impor­
tant changes to the computation procedure, which, at 
this time, is still rather unsophisticated. The 
changes that are contemplated for the immediate 
future are: 

1) In carrying out the matrix products of Eqs. 
(1) and (3). a number of dot products (4 or 8) can 
be carried out for each column of the A matrix read 
from disk, corresponding to all equivalent pixels. 

2) The body of the main iteration can be modi­
fied to avoid repeated operations. We can consider 
iterating a 1 oop represented by Eqs. ( 2) to ( 5), 
with Eq. (1) being a preamble. In that manner, Eqs. 
(3),{4) and (5) can be calculated by reading each 
column of the truncated A matrix only once and 
carrying out the transformations only once also. 
This becomes clear by the following considerations:· 

a) Let's assume we read column j·of matrix A 
corresponding to a particular pixel. With vector E 
available, we·carry out the dot product 

b (j) L a(i,j) e(i) (7) 

The new ;·mage element x'(j) can then immediately 
be calculated from Eq. (4) with the value b(j) just 
obtained. We proceed by incrementing each value 
h'(i) with the contribution of x'(j) and the 
same matrix column values a(i,j) still available in 
the main computer memory, i.e., 

for all i, increment h'(i) by 
(8) 

a(i,j) x'(j). 

After completing the above operations for column 
j, corresponding to one pixel, we carry out the 
needed transformations to define another pixel that 
has the same values a(i,j) already available in main 
memory (except for reflection operations) and pro­
ceed with the partial matrix products indicated. 
This is followed by the operations for another equi­
valent pixel, etc. 

In this manner the number of read operations 
from disk is kept to a miminum and the transformation 
calculations (which half the time involve reversing 
the order of the matrix elements corresponding to 
specific projections) are also not duplicated. 

3) Using very compact code in the matrix product 
and transformation operations. It will be necessary 
to investigate the most favorable language for 
writing the program sections that are most often 
repeated. It may necessary to code some loops in 
assembly language for maximum efficiency. 

4) Investigate methods of double buffering, by 
which the main computer cpu is carrying out calcula­
tions with one set of matrix elements while matrix 
read operations are carried out with another set of 
elements. 

5) Investigate possible cpu time savings by 
using fixed point instead of floating point arithme­
tic for the main repeated loops. 
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Essentially, it appears necessary to approach the 
coding of the MLE algorithm.with substantial care 
and sophistication, avoiding simple straight forward 
code which, in this case, results in prohibitive 
computation times for anything but a first look at 
the algorithm. With the improvements outlined above, 
we expect cpu times of approximately 45 minutes per 
iteration for a VAX-780 computer for the ECAT-III 
problem, without wobbling. That level of performance 
can make research on the characteristics of the 
algorithm feasible, although a full scale implemen­
tation for routine image reconstruction would need a 
dedicated multiprocessor system, as we have outlined 
in a previous paper.8 

CONCLUSIONS 

We have examined the results of some preliminary 
MLE reconstructions with a small detector system. 
The outcome of those reconstructions was found to be 
encouraging and has led us to develop a strategy 
that would allow us to carry out full scale recon­
structions. While we are developing that strategy, 
we have been able to carry out two reconstructions 
with up to 45 iterations each that continue showing 
excellent S/N ratios, particularly for images with 
limited number of counts, good sharpness for the 
larger diameter sources of the Derenzo phantom, 
although lower contrast ratios than the ramp recon­
struction. A large amount of work remains to be 
done in order to fully evaluate the technique. That 
work should include the generation of probability 
matrices that reflect more closely the detection 
process, the development of sophisticated programs 
that use computer operating systems and machine 
instructions efficiently and the reconstruction of 
data from a variety of source shapes and contrats 
ratios, including normal and abnormal clinical 
images. 
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