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Efficient Computation of the 2D Green’s Function for 

1D Periodic Layered Structures Using the Ewald Method 

F. Capolino’, D. R. Wilton’, and W. A. JohnsonZ 

’Dept. of Electrical and Computer ’Electromagnetics and Plasma Physics 
Engineering Analysis Dept. 

University of Houston 
Houston, TX 77204-4005 USA 
capolino@uh.edu, wilton@uh.edu wajohns@sandia.gov 

Sandia National Laboratories 
Albuquerque, NM 87123-1152 USA 

I. In t roduct ion  

In applying numerical full wave methods to periodic structures, fast and accurate means 
to evaluate the periodic Green’s function are often needed. The free space Green’s function 
for three dimensional (3D) problems with 2D periodicity has been efficiently accelerated via 
the Ewald method in [l], and has been extended for the evaluation of the Green’s function in 
multilayered media in [2]. In (31 the extension of the Ewald method to 2D problems with 1D 
periodicity was given for the case of coplanar source and observation points. An extension 
of the approach to the non coplanar case was also briefly summarized in [3], in which a 
formula for non coplanar source and observation was obtained by integrating in closed form 
the results in [l]. Here, we present an alternative direct procedure for applying the Ewald 
approach to obtain the Green’s function for an array of line sources with 1D periodicity. ‘The 
approach is the 2D analog of that of 111. Furthermore, we derive an algorithm for choosing the 
Ewald splitting parameter E that extends the efficiency of the method when the Periodicity is 
somewhat larger than a wavelength. The case of periodic 2D niultilayered media is also treated 
analogously as in [2] for the 3D case. In particular, the dyadic Green’s fnnction formalism 
of [4], which yields mixed potential integral equations for layered media, is combined with 
the Ewald method. An analogous formulation, to be reported in the future, has also been 
successfully applied to accelerate the Green’s function for a periodic linear array of point 
sources (1D periodicity). 

11. Green’s Function Transformat ion  

Consider the element-by-element superposition of the fields radiated by an infinite array of 
progressively phased line sources: 

where kSo = ksinBo is the phase gradient along the z direction with equivalent scan angle 00 
and R, = [ ( ~ - r ’ ) ’ + ( z - z ’ - n d ) ~ ] ~ / ~  is the distance between the observation point r = (z, 2 )  

and the nth source point r; = (z’+nd, 2 ’ )  (see Fig.1). For simplicity the homogeneous medium 
is supposed to have small losses; hence k = k, + j k t  = IkleJmr, ki < 0, & < 0. By integrating 
in y’ the fundamental identity for the Ewald transformation for an array of poiut sources [l], 
one obtains 

wit,h convergence assured by the the integration path shown in Fig.2. I f  the contour in (2) is 
split into two parts, J,” = (Jt + SF), then the Green’s fnnction in (1) is decomposed its 
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G(r , r ’ )  = GI (r,r’) +Gz(r,r’)  (3) 
with 

G1 ( r . r ’ )=  2 ‘--l - J k r o ” d  E , - n ~ , S 2 + k ’ / ( 4 9 ’ )  -,k ,,,, I d  = e-17:,“~+=/l‘l%2J 
<Is, Gz (r ,r’)  = 5 +L ds 

,,=-cc n = - c c  

(4) 

One notes that the series GI does not decay expoiientially, while the series G2 has Gaussian 
convergeiice because Re(s) > E on tlie path of integration. 
Transformation of Gl(r,r’). Since the series in (4) does not, decay expoiieiitially, it is 

transformed using the Poisson sumniation formula f (nd )  = d-’ f(27rqld) with 

f ( k , . )  = J-”, f({)exp(-jk,<)d<, and f(n) identified with terriis of (4a). Then, the order of 
integration in E and s is interchanged and the {-iiitegral is evaluated using J-”, e-(’“+’’~d< = 

m e b z / 4 0  to obtain 

m io 

,,=-cc ,/=-cc 

with k.r,, and kZ(/ deiiotiiig the Floquet waveiiumhers along .z and z ,  respectively. The snbsti- 
tution s‘ : l/s maps the domain of integration ( 0 , E )  sliowii i n  Fig2 , oiito (l/E,ca), and 
transforiiis (5) into a “standard”for~ir (see [I]) whicli is ~iiaiiipiilnted as sliowii therein into the 
iiunierically efficient represeiitatioii 

iii wliich erfc(z) = 5 JZm exp(-t2) dt is the comp~errieiitary error furiction. 
Transformation of C2(r,r’). Efficieiit evaluation of Gz is based on the evaliiatio~~ of the 
integral I = J,“ s-’ e ~ p [ - R ~ ~ s ~ + k ~ / ( 4 . ? ) ]  d,T. First perfoririirig the change of variable U = s2, 
leading to I = U-’ exp(-R:,u) exp[k2/(4u)]du, then employing the Taylor expaiision 
exp(k2/(4u)] = C,,_,,(k/2)z”/(p!~’), followed by the change of variahle t = u / E Z ,  leads to 

iii which E , ( z )  is the ptli order expoiieiitial integral, E , ( z )  = J;”exp(-zt)/t”dt [5, p. 2281. 
E I ( z )  may he e valuakd nuinerically using the algorithiii of 15, p. 2311, and tlie higher 

Fig. 1. 
configriratioii arid coordinates. 

Planar pcriodic array of line sources. Physical Fig. 2. Path of integration in (2). Convergence 
IS assured when 3 ~ / 4  + @k 2 “ ( 8 )  2 s/4 + +k, 
for s - 0, and 1114 > arg(s) > -n/4, for s + M. 
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order integrals inay he evaluated by the recurrence relation E,+l(z) = p-’[e-‘ - zE,(z)] , 
p =  1 , 2 , 3  / . . . .  

Asymptotic Convergence of Series G1 and Gz. Since k,, 0 2nq/d,  k,, 0 - j ( h q / d )  for 
large g and R,, = n d  for large n, large argument expansions of the complementary error func- 
tion and exponential integrals lead to asymptotic behaviors of e x p [ - ( ~ q ) ~ / ( d E ) ~ ] / [ ( . q ! 2 / ( d E ) ~ ]  
and exp[-(ndE)*]/(lzdE)’ for terms of G1 and Gz, respectively. Hence the two series both 
exhibit Gaussian convergence. 
Choice of Splitting Parameter E. The optimum value of the splitting parameter Eo is 
obtained by minimizing an estimate of the total time required to compute both series to a 
given number of significant figures. It results in making the two series for G I  and Gz converge 
at the same asymptotic rate and leads to Eo = &/d. However, for rapid convergence of the 
p s u m  in (7), (k/ZE)’” /p! must be negligible for p p P ,  i.e., [k/(2E)lZp / P !  < E ,  with E the 
desired error and P the desired number of p-terms to achieve convergence (typically 10 to 
15). This iiiiplies that E > El k/[2(~P!)’ / ( ’~)] .  A third constraint arises from observing 
that. for propagating FWs, usually including a t  least the q = 0 term, the two erfc functions 
i n  (6) generate terms that asymptotically behave like exp[ki,/(4E2) - ( z  - z’)’EZ] that can 
cause nunierical instahilities when the exponential argument is large. Therefore, we require 
that !&/(4EZ) - (2 - .’)’Ez < MZ, where M 2  is the maximum exponent permitted, which, 
i f  we assuine k , ~ l z  - 1’1 << Ailz, leads to E > E2 kZO/(2M). For large interelement spacings 
d > X (or, equivalently, for high frequencies), the constraints E > El and E > EZ force the 
choice of E not to satisfy the optimum criterion E = Eo. We suggest choosing instead 

111. Field Representation for Multi-Layered Periodic Media 
For siniplicity, we deal here only with electric currents and their radiated magnetic vector 
potential dyads and scalar potentials. We choose the representation of “Formulation C” of [4]. 
There, the scattered electric field E,(r) produced by a periodic current J(r’) is represented as 
E,?(r) = -jwA-V@, with A(r) = s, PA(r,r’).J(r’)dS’, O(r) = jwk-’V.A(r) = s, VgJ(r’), 
K’(r,r’)dS’ + Js i. J(r’)Pz(r, r’)dS’. For numerical convenience, the vector potential dyadic 
Green’s function B A  is expressed as 

where G t  = (xx+ yy)G& + ixG& + zzG&q, in which G& = ( jw)- lK!‘ , (z ,  z ’ ) ,  G&,, = 
~~( jk .~ , / ) - ’ [ I~~ , / ( z ,  z ‘ ) - f f q ( z ,  z ’ ) ] ,  etZ,, = f i ( j ~ e ’ ) - ~ I ~ , , ( z ,  2’). A similar representation applies 
to the scalar potentials K’(r,r‘) and Pz(r,r’). The terms V,?,(Z,I’) and I&(z , z ’ )  are the 
voltage and current, respectively, a t  I due to a unit current source (denoted by the subscript 
i) located a t  2’ 011 the equivalent transmission line representing the qth Floquet wave of 
polarization cy = e or h in the multilayered medium. f & ( z ,  2‘) is similarly defined, but its 
subscript denotes a unit voltage source. We also find that ~ ~ , ( z , z ’ )  = jwpgg~(t,z’) and 
I:,(,(z, 2‘) = jwtog; (z ,  z’) where g l ( z ,  2 ’ )  and g;(z, 2‘) are the scalar longitudinal Green’s 
functions developed in (6, ~p.446~4551. Indeed, using reciprocity and the argument in [ S ,  
pp.194,195], all the voltages and currents for all combinations of polarizations and unit source 
types may he expressed in terms of these two characteristic scalar Green’s functions and 1;heir 
derivatives. 
Extraction of the Asymptotic Form of Series. In (9), for numerical convenience terms 
L?fm(z,z‘), asymptotic for large q to the terms of(z,z‘) of the spectral dyadic Green’s 
function, are subtracted term by term from the original series and their sum is added back 
as a separate series. Removing the asymptotic form of each term from the spectral sum 
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Fig. 3. (a) Array of line sources in a multilayer dielectric environment. The direct array of line sources and 
the "first" two asympt,otic (for large 9 )  array-images are used in the asymptotic acceleration, making the first 
9 slim in ($1) rapidly convergent (b) Test case: two strip gratings in a dielectric layer. (c) Current on top and 
bottom strip grat,ings, solved by the method of moments using the periodic Green's function of Sec.11. 

accelerates its convergence. The reinaiiiiiig sum in (9) may then be accelerated via the Ewald 
nietbod. Eacli of these terms, in turn, is an asymptotic form of the various transmission line 
voltages and curreiits, aiid consists of up to three terms of the form rpamexp[-j(k,,z+k,,lz- 
I' - zpl)]/kz, ,;  e = 1 , 2 , 3 .  For the first term, rYm = 1 and zg = 0, and the term is readily 
recognized as t,he direct contribution from the original array of line sources radiating in a 
homogeneous inedinni. For the remainirig terms, the constant I'rm represents the asymptotic 
layer boundary reflectioii coefficient for large q and with a = e or h. These terms represent 
reflections appearing to arise from (quasi-)images located a t  z'+zg, in layers above or below the 
origiiial source layer as shown in Fig.3a. All three terms result in series having the spectral 
form of liomogeneous medium periodic Green's functions; the Ewald method may thus he 
used to sum them. The potentials K* and P, may be treated the same way. 

Numerical Example: Convergence. The test problem shown in Figure 3b consists of 
two periodic strip gratings (period d = 1.3m) on top (2 = 0) and in the middle ( z  = -1m) 
of a dielectric layer (relative dielectric permeability t = 2.3), which resides in the region 
-2m< z < 0. Each strip is Im wide. The periodic structure is illuminated from above hy a 
plane wave with unitary inagiletic field H directed along y, and frequency equal to 100MHz. 
Tlie current 011 both top and bottom strips, shown in Fig.3c, is evaluated by the method 
of moments defined on a single array cell, using the periodic Green's function developed in 
tlie previous sections. The solution is compared with a reference solution constructed with 
the corresponding three diniensional (3D) problem of an infinite 2D array of metallic patches 
with dinieiisioiis 1 x 1 in, and periodicities d, = 1.3m and d, = lm.  In the 2D problem 
the evaluatioii of tlie Green's function requires only a few terms to achieve accuracy to four 
significant digits: tlie first spectral sum in (9) is over indices -5 < q < +5, while the second 
spectral sum iii (9) transformed according to the Ewald method, as explained in the previous 
sections, is over iudices from -1 to + l .  The bottom strip current is larger than the top one 
since the bottom strip is ,506 wavelengths long. 
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