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ARTICLE

Fungal spores as a source of sodium salt particles
in the Amazon basin
Swarup China 1, Susannah M. Burrows 2, Bingbing Wang3, Tristan H. Harder 4,5,11, Johannes Weis4,5,11,

Meryem Tanarhte6, Luciana V. Rizzo7, Joel Brito 8,12, Glauber G. Cirino 9, Po-Lun Ma 2, John Cliff1,

Paulo Artaxo 8, Mary K. Gilles4 & Alexander Laskin 10

In the Amazon basin, particles containing mixed sodium salts are routinely observed and are

attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging

analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere

contribute at least 30% (by number) to sodium salt particles in the central Amazon basin.

Hydration experiments indicate that sodium content in fungal spores governs their growth

factors. Modeling results suggest that fungal spores account for ~69% (31–95%) of the total

sodium mass during the wet season and that their fractional contribution increases during

nighttime. Contrary to common assumptions that sodium-containing aerosols originate pri-

marily from marine sources, our results suggest that locally-emitted fungal spores contribute

substantially to the number and mass of coarse particles containing sodium. Hence, their role

in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the

Amazon basin warrant further consideration.
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Atmospheric conditions in the Amazon rainforest are
relatively pristine and in terms of the low particle count
and cloud characteristics resemble conditions in remote

marine regions1–3. Specifically, the size distribution and con-
centration of coarse mode particles in Amazonia are similar to
concentrations of coarse mode particles in marine air above the
ocean under calm wind conditions of 1–10 m s−1 (Supplementary
Fig. 1). During the wet season in the Amazon basin, marine
aerosol from the Atlantic Ocean is considered the dominant
source of coarse mode particles1,4. Previous studies assumed the
chemical composition of coarse mode aerosols was strongly
impacted by long-range transport of soil dust and marine aerosol
advected into the central Amazon by large-scale tropospheric
circulation5. However, local sources of sodium salt-containing
coarse particles such as primary biological aerosol particles
(PBAPs) and their potential impact have not been considered.
This study shows that locally emitted fungal spores of coarse
super-micrometer size contribute considerably to sodium salt
particles in the Amazon basin during the wet season. While
previous studies reported non-marine sources of sodium salts in
fine particles, sodium-containing coarse particles have been
attributed to sea salt. Specifically, Ooki et al.6 observed anthro-
pogenic sodium in fine mode (<1.1 µm) aerosol particles in urban
air. Ooki et al6 suggested using potassium as a tracer for
anthropogenic sodium in submicron size (0.43 µm) particles.
Mamane7 detected the presence of sodium and potassium in <1
µm particles from waste incinerator emissions. A study in the
metropolitan area of São Paulo found K/Na ratios of 1.4 and 0.9
for coarse (>2.5 µm) and fine (<2.5 µm) particles, respectively,
which were attributed to waste incineration and vehicles8.

PBAPs, i.e., particles emitted directly from the biosphere,
include fungal spores, pollen, bacteria, algae, protozoa, and
fragments of plants and living or dead organisms. Fungal species
actively discharge their spores via liquid jets into the air9,10, a
process occurring preferentially under humid atmospheric con-
ditions10. Total global emissions of fungal spores are highly
uncertain11–13; estimates vary from 8 Tg yr−1 to 186 Tg yr−1, to
as large as 1000 Tg yr−1. Fungal spores and fragments are the
most abundant classes of biological particles in the Amazon
basin. They contribute up to 25% during daytime (and 45%
during nighttime) to the total number of coarse mode particles (1
to 10 µm diameter)1.

Biological particles, as well as fluorescent particles (inferred to
be biological), have been detected in the free troposphere14,15. In
Amazonia, concentrations of fluorescent biological particles
during the wet season of ~7.3 × 10−4 m−3 are reported, with the
highest concentrations occurring during nighttime16. Chemical
compositions of biological particles are highly variable and, due to
the inherent challenges involved in analytically distinguishing
between biological and other carbonaceous particles, their exact
origins remain insufficiently characterized1,13.

Once in the troposphere, biological particles can act as cloud
condensation nuclei and ice nuclei, thus impacting warm and
cold cloud formation and evolution13,17. During their airborne
lifetime, Amazonian particles typically experience several cycles
of cloud processing1 which alters their physio-chemical properties
and further thwarts their identification. In particular, biological
spores rupture at high humidity due to osmotic pressure and
subsequently release submicron-sized fragments18,19. These
fragments contain inorganic salts with the same elements (e.g.,
Na, Mg, K, Cl) as sea salt. While fragmentation reduces the
fraction of original supermicron-sized biological particles, it
increases their contribution to the number concentration of
submicron particles. Hence, fragmentation due to atmospheric
processing further complicates estimation of their number and
size distributions in the accumulation mode18.

This study highlights the role of fungal spores emitted by the
forest biosphere in the Amazon basin and their potential impacts
on the terrestrial ecosystem. Samples of airborne biological par-
ticles were collected during the beginning of the wet season
(January and February, 2015) at the ZF2 tower, a pristine rain-
forest site in Central Amazonia located 40 km North of Manaus4.
We applied multimodal chemical imaging techniques, such as
scanning electron microscopy (SEM) coupled with energy dis-
persive X-ray (EDX) microanalysis, scanning transmission X-ray
microscopy with near-edge X-ray absorption fine structure ana-
lysis (STXM/NEXAFS), and nano secondary ion mass spectro-
metry (NanoSIMS) to analyze size and composition of the
biological particles. Results show that locally emitted fungal
spores (primary biogenic aerosol particles) in the forest biosphere
contribute considerably to total sodium salt particles observed in
the central Amazon basin during the wet season. In situ water
vapor experiments using environmental microreactors com-
plemented with micro-spectroscopy analysis show that sodium-
containing fungal spores have higher hygroscopic growth than
sodium-free spores. Finally, model simulations examining the
potential contributions of fungal spores in the Amazon basin
atmosphere suggest that they substantially contribute to the total
sodium budget during the wet season.

Results
Chemical imaging and micro-spectroscopy of fungal spores.
SEM images of representative coarse mode particles collected in
the Amazon basin are illustrated in Fig. 1a. X-ray microanalysis
using computer-controlled (CC) SEM/EDX reveals that nearly
half (~48%) of the coarse mode particles (1.0–3.2 µm aero-
dynamic diameter) are Na rich (Fig. 1b). Dust (containing Al, Si,
Fe) or internally mixed biological-dust particles (C, N, P, Na, K,
Al, Si, and Fe) are the second most abundant type of particles.
Coarse mode sulfate and purely carbonaceous particles contribute
5 and 3%, respectively. Overall, no considerable differences in the
size distributions of different particle classes were observed dur-
ing night or day or within, above, or below the canopy (Fig. 1c–f).
X-ray microanalysis indicates that the spores are comprised pri-
marily of C, N, and O (carbonaceous in nature) with substantial
amounts of other elements, e.g., Na, Mg, P, S, Cl, and K
(Fig. 2a–c), consistent with previous reports18,20,21.

The fraction of fungal spores was quantified based on their
unique characteristic morphologies (spherical, rod-like, or
spheroidal in shape), size (1–6 µm), and chemical composition
(mostly carbonaceous and containing phosphorous) by electron
microscopy imaging and X-ray microanalysis of over 3500
individual particles. Details of the fungal spore identification
method are provided elsewhere18. The particle-type classification
scheme is summarized in Supplementary Fig. 2. During sampling,
the number fraction of biological particles was higher below the
canopy (60% ± 2%) than above the canopy (38% ± 2%) and
higher during night (52% ± 2%) than day (37% ± 2%). The coarse
mode mass fractions of phosphorous and potassium, primarily
derived from biological particles10,22, were larger below than
above the canopy and larger during night than day23. The higher
fraction of biological particles below the canopy is consistent with
a local source, and with observations from other tropical
rainforests such as Borneo, Malaysia24. The increased nighttime
number fraction of spores could result from enhanced nighttime
active wet discharge of ascospores and basidiospores associated
with elevated humidity10. Our observation of higher fractions of
biological particles during nighttime below the canopy is
consistent with previous studies in the Amazon rainforest16,23,25.

Chemical imaging of the biological particles using X-ray
absorption micro-spectroscopy confirms the presence of sodium.
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Figure 2d–f shows representative STXM images of a biological
particle at the Na pre edge (1070 eV) and peak (1079 eV) as well
as an optical density map. The sodium atomic weight fraction is
size dependent; smaller particles contain a higher fraction of
sodium than larger particles (Supplementary Fig. 3). The frequent
occurrence of substantial sodium and chlorine masses in
biological spores is remarkable. Since biological spores have
never been considered as sources of sodium and chlorine,
common analytical methods could mistakenly assign them as
transported sea salt.

NanoSIMS analysis of fungal spores confirms the presence of
sodium-containing particles (Fig. 2g–i) and provides spatial
distributions of sodium and other elements within individual
particles26. For example, the particle in Fig. 2g shows a stronger
sodium signal around the particle boundary, and that in Fig. 2h
displays complex morphology and heterogeneity in its sodium
spatial distribution, while the distribution of sodium ions in the
elongated fungal spore in Fig. 2i appears homogeneous. These
images suggest that sodium distributions within individual fungal
spores are diverse, presumably depend upon spore type, and may
be influenced by the particle’s origin and aging history.

X-ray microanalysis indicates that the average percentage of
total spores containing sodium (minimum detection of 3 wt%) is
higher above the canopy (daytime: 60% ± 6%; nighttime: 39% ±
3%) than below the canopy (daytime: 46% ± 4%; nighttime: 22%
± 2%). These differences may partially be influenced by changes
in physio-chemical properties of spores that transform during
atmospheric processing. For example, when exposed to high
humidity conditions, spores rupture and release submicrometer-

to-micrometer size fragments. A major fraction (~40–60%) of
these fragments contains Na and Cl, and appears morphologically
similar to dry sea salt particles (Supplementary Fig. 4). Subse-
quently, when exposed to high humidity, these hygroscopic
fragments grow and become supermicron18.

Hygroscopicity of fungal spores. We investigated the hygro-
scopicity of spores using microreactors in environmental SEM18

and in situ STXM27. At 94% relative humidity (RH), sodium-
containing fungal spores had area growth factors of 2.4 versus 1.1
for sodium-free spores (Supplementary Figs. 5, 6). Similarly, mass
growth factors of 3.6 and 1.5 were determined for sodium-
containing and sodium-free fungal spores, respectively, at 96%
RH. Remarkably, under high humidity conditions (RH~94%) the
growth factors of sodium-containing biological particles and
NaCl particles are strikingly similar. Using standard analytical
methods or inspecting their morphology18, these processed par-
ticles would not readily be recognized as spores. Due to the wide
range of sources relevant to biological particle emissions, which is
further complicated by fragmentation during atmospheric pro-
cessing, detecting and apportioning aged spores is a daunting
task. Hence, microscopy methods underestimate the contribution
of biological particles to the total atmospheric aerosol. As a result,
the fractions of sodium-containing spores reported here represent
lower limits for sodium-bearing fungal spores.

Presence of sodium in fungal spores. Previous studies high-
lighted the presence of biogenic potassium-rich particles in the
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Amazonia in the accumulation mode (0.1–1 µm diameter)22.
However, biological particles have never been indicated as a
significant source of sodium-containing particles in the Amazo-
nia. This is despite the fact that sodium in biological particles has
been reported previously.20,28 For example, laser-induced break-
down spectroscopy measurements showed the presence of
sodium in fungal spores28 and an X-ray microanalysis study
observed sodium in particles of biogenic origin29. The presence of
sodium is common in halophilic fungi which cannot grow
without NaCl30. Active discharge, uptake, and efflux processes are
likely responsible for the sodium content in the spores and
sodium content may vary with different classes and genera of
fungi. During active discharge, fungi forcibly eject spores into the
atmosphere, together with osmotic fluid containing hexoses,
mannitol, phosphate, sodium, and potassium22,31. Fungi require
K+ for electrical and osmotic equilibria of the cells and in several
fungal spores the role of K+ is well understood32. Previous studies
suggested that K+ can be partially replaced by Na+ and Na+ can

enhance the growth of fungi33 and plants34 under K+-deficient
conditions. The growth of fungi and uptake of Na+ varies with
their physiological conditions and uptake rates depend on the
species and their genes35. For example, specific genes (e.g., acu1
and acu2) are responsible for high-affinity Na+ uptake of Ustilago
maydis. When fungi contain excess Na+, they activate Na+-efflux
ATPase (adenosine triphosphatase) which acts as a key enzyme
for the biological evolution of fungi36. We suggest that uptake and
efflux of Na+ varies with different classes and genera of the fungal
community. For example, previous studies in Amazonia shows
several genera (e.g., Agaricus; Amanita; Aspergillus; Boletus;
Cladonia; Mortierella; Puccinia; Lepsita; and Rhizopus) within
one class of fungi (Lecanonomycetes)37,38. Furthermore, the
transpiration of plants39 and nutrient uptake40 can also influence
the sodium content of spores. Further studies are needed to better
comprehend the sodium content in fungal spores by linking
chemical composition, molecular biology, and diversity of fungal
spores.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8
0.01

0.03

0.05

0.07

0.09

0.11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

100

200

300

400

500

600 Si*

N

SP
K

Mg
Cl

Na

O

Cu*

C

In
te

ns
ity

 [a
rb

.u
ni

ts
]

Energy [keV]

0

2

4

6

8 0

0.1

0.2

0.3

Peak (1079 eV)

X [μm]
0 2 4 6

X [μm]

X [μm]

0 2 4 6

Y
 [μ

m
]

Y
 [μ

m
]

Y
 [μ

m
]

0

2

4

6

8 0

0.1

0.2

0.3

Pre edge (1070 eV)

Na map

a d g

b e h

c f i

270 23Na+

23Na+

23Na+

202

135

68

0

0

1200

900

60

300

0

25

50

75

100

Fig. 2 Chemical imaging of Na-containing biological particles. a SEM image b elemental Na map and c EDX spectra of the biological particle. The Cu and Si
in the EDX spectra are background peaks originating from the substrate and various instrument parts inside the SEM chamber. STXM images of the same
biological particle: d pre edge (1070 eV), e Na peak (1079 eV) and f Na optical density map. Color bars indicate optical density. g–i Representative
NanoSIMS images of 23Na+ of selected biological particles showing various distributions of sodium within particles contours. Scale bars are 2 µm

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07066-4

4 NATURE COMMUNICATIONS |          (2018) 9:4793 | DOI: 10.1038/s41467-018-07066-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


In contrast to previous reports1,5, our analyses suggest that
locally emitted biological particles contribute substantially to
the total concentration of sodium salt particles in the Amazon
basin during the wet season. Backward trajectories calculated
with NOAA HYSPLIT (National Oceanic and Atmospheric
Administration Hybrid Single Particle Lagrangian Integrated
Trajectory) model suggest that marine air masses would have
traveled ~1500 km over 2.5–3 days to reach central Amazonia
(Supplementary Fig. 7). The rain records along backward
trajectories also indicate that multiple precipitation events
occurred during transport which would likely wash out most of
the sea salt particles before they could arrive at the sampling
site. Hence, these findings support the dominance of locally
emitted spores in the Amazon basin during this study.
Furthermore, the presence of a substantial amount (48% ± 3%)
of coarse mode sodium-rich particles below the ~20 m high forest
canopy suggests that local biological emissions contribute
significantly to the concentration of sodium-salt particles in the
Amazonia.

Model estimate of fungal spores to sodium budget. To evaluate
the geographic distribution and frequency of high fungal spores
contributions to airborne sodium mass over the Amazon basin, we
conducted model simulations in the Community Earth System
Model (CESM1.2.2, see Methods). Briefly, atmospheric emissions
and transport simulations were performed using nudging41 to
recreate the observed meteorology of 2014–2015. To calculate the
particulate sodium content from the simulated aerosol mass con-
centrations, we estimated the sodium dry mass content to be 13%
for sodium-rich fungal spores and 30% for sea salt42 (see Methods).
As an upper bound, we assumed that 70% of fungal spores are
sodium rich. We explored the sensitivity of the analysis to this
assumption by recalculating key results under the assumption that
either 30% or 50% of fungal spores are sodium rich.

Model-estimated and observed fungal spore concentrations in
various ecosystems and geographic locations11 (Supplementary
Fig. 8) are compared in Fig. 3a. Although estimated concentra-
tions were typically higher than observed values, at the
measurement site model-estimated fungal spore concentrations
were similar to the observed concentrations. Model-estimated
and measured sodium mass concentrations at coastal and island
sites (Supplementary Fig. 9) are compared in Supplementary
Fig. 10. The measurements used in this analysis were all collected
at coastal and island locations in the Southern Hemisphere,
between 20 and 70 S. Model estimates of sodium mass
concentrations are approximately a factor of two higher than
observations at many of the measurement sites; measurements at
certain remote sites (e.g., Antarctica) are in good agreement with
the estimated mass. Both simulated fungal spore and sea salt
concentrations exhibited strong temporal variability (Supplemen-
tary Fig. 11). Simulated sea salt concentrations, controlled by
long-range transport of marine aerosol, are higher during the dry
season compared to the wet season. This may be due to stronger
wet removal processes hindering long-range transport, and
changes in wind patterns during the wet season.

In the model, during periods of low sea salt aerosol
concentration, fungal spores typically contribute the majority of
the estimated sodium mass. These conditions occur more
frequently during the wet season (Fig. 3b) than during the dry
season (Supplementary Fig. 12). On average, fungal spores are
estimated to contribute 69% of sodium during the wet season. We
calculate approximate upper and lower bounds for the fungal
spore contribution to the total sodium mass by varying fungal
spore mass concentrations by a factor of 10 and sea salt mass
concentrations by a factor of 2. On average, fungal spores are

estimated to contribute 69% (31–95%) of sodium during the wet
season. However, the level of confidence in fungal spore estimates
is arguably higher for the Amazon, since the emission
parameterization was originally developed based on measure-
ments from the Amazon and other tropical rainforests. Assuming
a factor of two uncertainty in the simulated fungal spore
concentration, the estimated contribution of fungal spores to
simulated sodium mass at the measurement site would range
from 51 to 84%. If the assumed percentage of fungal spores that
are sodium rich were reduced to 30% or 50%, fungal spores would
account for 58% (21–90%) or 65% (27–93%), respectively, of the
total simulated sodium mass during the wet season (Supplemen-
tary Fig. 13). The model suggests that the fractional contribution
of fungal spores to sodium will increase during nighttime and
decrease during daytime (Fig. 3b). This may be the combined
result of diurnal cycles in emissions, boundary-layer dynamics,
and removal processes (e.g., precipitation). Figure 3c presents a
regional map of the percentage of days when fungal spores
contribute at least 50% of estimated total sodium during the wet
season.

Overall, fungal spores dominated the number fraction of coarse
mode aerosols in the Amazonia during nighttime and in below-
canopy samples. Half of the coarse mode particles were sodium
rich. Previously, sodium-rich particles have been solely attributed
to marine aerosol from the Atlantic Ocean. Previous studies in
different atmospheric environments show the presence of sodium
in the fine mode and suggest potassium as a tracer for
anthropogenic sodium6–8,43,44. Observations from our study are
fundamentally different. First, our study focuses on coarse mode
particles. Second, the potassium observed in our study mostly
originates from biological particles,22 which is confirmed by their
unique and distinguishable morphology. These particles were
especially abundant during the wet season when biomass burning
is not a dominant particle source in the basin. Remarkably, our
experimental and modeling results demonstrate that fungal
spores emitted from the rainforest biosphere contribute a major
fraction to the sodium budget during the wet season, when most
marine aerosol particles are removed by wet deposition during
transport. Figure 4 illustrates the sources and atmospheric
processing of fungal spores. Hygroscopicity experiments indicate
that during cloud processing or high humidity spores rupture and
release submicrometer-to-micrometer size salt fragments18,
further contributing to the sodium budget in accumulation mode
particles. This work highlights the potential importance of
biological particles as a source of sodium-salt particles in
widespread tropical forests, and motivates the necessity of studies
investigating the chemistry of biological particles in other forested
regions of the globe.

Methods
Sampling site and sample collection. Samples were collected during the wet
season (January and February, 2015) at the ZF2 Tower (02° 35.3517′ S, 60°
06.8333′ W), a pristine rainforest site in Central Amazonia located 40 km North of
Manaus margins. Samples were collected through a sampling inlet located at a
height of 2 m (below canopy) and 39 m above ground (above canopy), during day
and night with 30 L min−1 sampling rate. Particles were collected onto 400 mesh
transmission electron microscopy (TEM) grids coated with Carbon Type-B films
(Ted Pella, Inc.) and silicon nitride membrane substrates (0.5 × 0.5 mm2 Si3N4

window size, 100 nm membrane thickness, 5 × 5 mm2 Si frame size; Silson, Inc.).
The 10-stage Micro-Orifice Uniform Deposition Impactors™ (MOUDI™; model
110-R, MSP, Inc.) were used for sampling. This study focuses on samples from
stages 4 and 5 (size range: 1.0–3.2 µm) where the relative abundance of biological
particles is high. Samples were handled with caution. For example, tweezers were
cleaned with solvents prior to handling the samples; new gloves were used for
handling of samples after each experiment. Examination of blank substrate showed
negligible contamination on the sample substrate (Supplementary Fig. 14). Inves-
tigation of particles from stages 6 and 7 (size range: 0.32–1.0 µm) showed Na-
containing particles in stages 6 and 7 are significantly lower (Na-containing particle
<15%) than particles on stages 4 and (Supplementary Fig. 15). This result suggests
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that a high fraction of sodium-salt particles are indeed from spores that were
deposited on stages 4 and 5. Furthermore, sodium content in spores was observed
irrespective of different sample preparation and techniques (e.g., SEM/EDX,
STXM, and NanoSIMS).

Chemical imaging of particles. An environmental scanning electron microscope
(Quanta 3D model, FEI, Inc.) with an EDAXTM EDX spectrometer and a Si(Li)
detector with a 10 mm2 active area and an ATW2 window was used under vacuum
conditions for imaging and X-ray microanalysis. Particles were imaged using
secondary electron (SE) and forward scattered transmitted electron (STE) signals.
STE imaging mode was used for particle identification and CC SEM/EDX analysis.
X-ray spectrum for each identified particle was acquired at an acceleration voltage
of 20 kV and at a beam current of 430 pA for 10 s. The CC SEM/EDX analysis
automatically investigates the specified scanning area and detects particles in the
specified fields of view. In this way, we can detect ~90% of the particles deposited
on the grid. Particles collected on the edges (~5–10%) of the Cu mesh were
excluded from the results based on their high Cu background signal. We analyzed
~80% of the particles that were collected onto TEM B-film grids placed on stages 4
and 5 of the impactor. Area equivalent diameters were calculated from the two-
dimensional projected area recorded for each individual particle. Particle elemental

composition was quantified and is reported in units of atomic fractions. The
percentage of sodium content in fungal spores was estimated using the known mass
fraction of spores10 and carbon/sodium wt% from X-ray microanalysis. Carbon
content in spores ranges from 42 to 66%, with an average of 51%45. The average
carbon/sodium wt% in fungal spores is 4:1. The mass of the spores is estimated
from the size distribution of microscopy analysis and assuming a density of 1 gm
cm−3 10,16.

STXM utilizes a focused soft X-ray beam generated from the synchrotron light
source to probe chemical bonding of specific elements of interest within individual
particles. STXM images are obtained by raster scanning the sample at fixed photon
energy and recording intensities of the transmitted X-rays at each pixel. The optical
density (–ln(I(d)/I0) is calculated based on the measured intensity (Id) using
Beer–Lambert’s law46. Transmission intensity through a particle free region of the
substrate is used to obtain I0.

The hygroscopicity of biological particles was investigated using a temperature-
controlled cooling stage in the environmental SEM to estimate the area growth
factor (ratio of wet-to-dry diameters) and a microreactor for in situ STXM
hydration experiments27 to estimate the mass growth factor (ratio of wet-to-dry
oxygen mass).

NanoSIMS (CAMECA 50L, Gennevilliers Cedex, France) was used to perform
imaging of Na+ ions. NanoSIMS provides high lateral resolution. Samples were
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Fig. 3 Simulation of sodium contribution from biological particles to total sodium budget in the Amazon area. a Comparison of annual-mean model-
simulated fungal spore concentrations with previously published observed concentrations at various locations. All model-simulated values are annual
means of fungal concentrations simulated using nudged meteorology. Observations are averages over the measurement period for each campaign (mostly
between 2 months and 3 years), as previously reported in the literature (a full reference list for the observed spore counts is provided in Supplementary
Table 2, together with a map of their geographic locations Supplementary Fig. 8). Dotted lines represent an over- or underestimate of a factor of 10 (10:1
and 1:10, respectively). The pink hexagonal point represents the measured fungal spore concentration in this study, compared with the mean simulated
spore concentration from the same time period (26 Jan to 8 Feb 2015). The stars indicate points from literature measurements from tropical rainforests.
b Distribution of the simulated daily mean sodium fraction contributed by fungal spores during the wet season (Jan–Jun, 2015). Simulated values are
obtained from the model grid point nearest to the ZF2 tower (2.84° S 60.0° W), in the model’s lowest (near-surface) layer. The violin plot displays
the kernel density estimation of the underlying distribution, along with the median (white dots), 25th–75th percentile (thick vertical bar), and range (thin
vertical line). The shaded regions of the plot represent nighttime (blue shading; 1800–0600) and daytime (yellow shading, 0600–1800). c Percentage of
days when fungal spores contributed at least 50% of estimated total sodium during the wet season, assuming that 70% of fungal spores are sodium rich,
containing 13% sodium by mass, and sea salt aerosol is composed of 30% Na by mass. Results for the dry season are shown in Supplementary Fig. 12
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coated with a thin layer of Au to minimize charging and non-equilibrium
sputtering effects during analysis. A 16 keVO− primary ion beam was used for
analysis. Prior to data collection, samples were pre-sputtered with about 1016 O−

ions cm−2. Analyses of 15 μm× 15 μm and 256 px × 256 px were performed with a
dwell time of 13.5 ms px−1. Beam diameter was estimated to be about 250 nm.

Community atmosphere model description. Fungal spore emissions were cal-
culated according to the global model parameterization of Heald and Spracklen47.
While this parameterization has substantial uncertainties, it was developed on the
basis of observed mannitol concentrations from various continental locations and
seasons; about half of these observations were from PM2.5 aerosol collected in the
tropical Brazilian rainforest during the wet season, where concentrations were 2–3
times higher than those reported at extratropical locations10. Therefore, we believe
the parameterization can be used with greater confidence in the Amazonian
rainforest, particularly during the wet season, than at other times and locations.

A simulation for present-day conditions was performed using the Community
Atmosphere Model (CAM5)48, which is the atmosphere component of the CESM
(version 1.2.1)49. The model was configured at a horizontal resolution of 1.9°
latitude by 2.5° longitude, with 30 vertical layers ranging from the surface to 2.26
hPa. The simulation was performed from March 2014 to March 2015 with
constrained meteorology50,where model winds are nudged toward the MERRA
reanalysis51 with a relaxation time of 6 h41.

The model tracks the emissions and concentrations of six chemical species of
aerosol: sea salt, dust, sulfate, secondary organic aerosol, black carbon, and
continental primary organic aerosol. Aerosol transport and microphysics,
including nucleation, condensation, and coagulation, is calculated within a modal
aerosol module with three size classes (MAM3)52, including the Aitken mode
(dry diameter size range of 0.02–0.08 μm), accumulation mode (0.08–1.0 μm),
and coarse mode (1.0–10.0 μm). Sea salt aerosol emission follows Mårtensson
et al.53 for small particles (diameter <2.8 μm), while emissions of larger particles
(diameter >2.8 μm) follow Monahan54. The simulated sea salt budget was evaluated
in Liu et al.52 and falls within the AeroCom values55; the modeled global sea salt
emission flux is within the range of 2200~118,000 Tg yr−1 using different sea salt
source functions. A detailed description of the model’s aerosol removal processes
can be found elsewhere48.

Fungal spores were emitted into the model’s coarse mode, and are removed by
wet and dry deposition in the same manner as other aerosol species. Upon
emission both fungal spore mass and coarse mode number are increased, with the
mass-to-number ratio for emissions determined by assuming that fungal spores
have 4 μm diameter upon emission. The model’s coarse mode particle number

concentration also includes number contributions from other aerosol species which
are treated as internally mixed within the coarse mode, and the particle diameter is
calculated dynamically by the aerosol microphysics routines from the total coarse
mode aerosol mass and number, and a fixed geometric width. Fungal spores were
assigned the same optical properties as the model’s organic carbon tracer which is
close to the observed refractive indices of fungal spores (1.4-0i)20. Fungal spores
were assigned a material density of 1 g cm−3, which is commonly used in
literature10,16. Fungal spores were assigned a hygroscopicity parameter (κ) of 0.1,
similar to that of pollen grains56. The observed overall κ value for ambient below-
canopy aerosol in the Amazon is 0.22 ± 0.05 in the accumulation mode, with an
overall mean value of κ= 0.17 ± 0.0657.

Code availability. The CAM5 model source code and input datasets are available
at http://www.cesm.ucar.edu/. The code modifications to CAM5 to introduce
fungal spore aerosol with emissions following Heald and Spracklen47, and to enable
nudging of meteorological fields, are currently available at http://portal.nersc.gov/
project/acme/sburrows/fungal_emissions/.

Data availability
All relevant data are available from the authors.
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