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Glaucoma
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Purpose: Demonstrate that a novel Bayesian hierarchical spatial longitudinal (HSL)
model improves estimationof localmacular ganglion cell complex (GCC) rates of change
compared to simple linear regression (SLR) and a conditional autoregressive (CAR)
model.

Methods:We analyzed GCC thickness measurements within 49 macular superpixels in
111 eyes (111 patients) with four or more macular optical coherence tomography scans
and two ormore years of follow-up. We compared superpixel-patient-specific estimates
and their posterior variances derived from the latest version of a recently developed
Bayesian HSL model, CAR, and SLR. We performed a simulation study to compare the
accuracy of intercept and slope estimates in individual superpixels.

Results: HSL identified a significantly higher proportion of significant negative slopes
in 13/49 superpixels and a significantly lower proportion of significant positive slopes
in 21/49 superpixels than SLR. In the simulation study, the median (tenth, ninetieth
percentile) ratio of mean squared error of SLR [CAR] over HSL for intercepts and slopes
were 1.91 (1.23, 2.75) [1.51 (1.05, 2.20)] and 3.25 (1.40, 10.14) [2.36 (1.17, 5.56)], respec-
tively.

Conclusions: A novel Bayesian HSL model improves estimation accuracy of patient-
specific local GCC rates of change. The proposedmodel ismore than twice as efficient as
SLR for estimating superpixel-patient slopes and identifies a higher proportion of deteri-
orating superpixels than SLR while minimizing false-positive detection rates.

Translational Relevance: The proposed HSL model can be used to model macular
structural measurements to detect individual glaucoma progression earlier and more
efficiently in clinical and research settings.

Introduction

Detection of change over time is often important for
the proper treatment of chronic diseases and is crucial
to the management of glaucoma. Glaucoma is particu-
larly suited to applying statistical andmachine learning
models to detect disease and to identify its progression,
because most disease-related outcome measures are
quantifiable.1–6 Relevant outcomes include the optic
disc size, neuroretinal rim, retinal nerve fiber layer,

or macular thickness measures along with a host of
quantitative variables related to visual fields.

Global, regional, or local structural and functional
measures have frequently been used as metrics to
detect differences of a specified amount from baseline,
commonly called event analyses, or to estimate rates
of change, also known as trend analyses.7–9 Longitudi-
nal analyses of local structural or functional measures
frequently rely on repeated simple linear regression
(SLR) of such measures from single eyes against time
to estimate eye-specific rates of change at macular
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superpixels, optic disc or retinal nerve fiber layer
sectors, or visual field test locations or clusters.9–13
Although SLR is easy to do and seems intuitive,
there are multiple issues with this approach, which
although occasionally acknowledged, have mostly
been ignored.14–16 Simple linear regression models
ignore the spatial relationships among local struc-
tural (sectors, superpixels) or functional (visual field
clusters or locations) measures. Another shortcoming
of SLR is that valuable population information from
the cohort is not used to refine estimated rates of
change. Similarly, there is no formal way to specify
the correlation of baseline measurements (the inter-
cepts) with slopes (rates of change). This is an impor-
tant issue because baseline measurements influence the
magnitude of rates of change in an optical coherence
tomography (OCT) sector or superpixel.9 Account-
ing for baseline structural measurements can lead to
a reduction of the estimated variability for rates of
change (slopes). A few prior studies have proposed
linear mixed or hierarchical models to address some of
the above shortcomings.14,15,17,18 For example, Monte-
sano et al.14 applied a hierarchical linear mixed model
to 24-2 visual field data to estimate global and local
rates of change in individual eyes. To account for
spatial correlation, Betz-Stablein et al.19 developed a
model using conditional autoregressive (CAR) priors
on intercepts and slopes for individual-level 24-2 visual
field data.However, in either case, no attemptwasmade
to include the cohort’s population data to help estimate
individual eye parameters. The cohort’s data has infor-
mation on the distribution of possible slopes, and using
this information as a prior results in more accurate
slope estimates. Such models are challenging to specify
correctly and run and can require a significant invest-
ment of time and computer CPU power.

Our team has developed several versions of a
novel Bayesian hierarchical spatial longitudinal (HSL)
model to improve estimation of local macular thick-
ness rates of change in a prospective cohort of
glaucoma patients.4,20 This ongoing project aims to
provide a longitudinal framework to estimate global
and most importantly local rates of change more
precisely across the macula within individual eyes while
at the same time overcoming the inadequacies of the
SLR approach. Each successive model improves on
the previous version with additional modeling features.
The current model adds spatially correlated patient-
specific random effects and spatially correlated visit
effects. The goal of the current work is to compare
the performance of the latest HSL model to that of
SLR and a CARmodel.We hypothesized that the HSL
model would provide more accurate estimates of local
macular rates of change thanks to reduced variance

for those rates of change compared to SLR and more
appropriate shrinkage toward the population averages
by location than CAR.

Methods

One hundred eleven eyes (111 patients) from the
Advanced Glaucoma Progression Study (AGPS) were
included in this study. TheAGPS is an ongoing longitu-
dinal study at the University of California Los Angeles.
The university’s Institutional Review Board approval
was obtained for this study. The study adhered to the
tenets of the Declaration of Helsinki and conformed
to Health Insurance Portability and Accountability
Act policies. All patients provided written informed
consent at the time of enrollment in the study. Inclu-
sion criteria for enrolled eyes were as follow: (a) clinical
diagnosis of primary open-angle glaucoma, pseudoex-
foliative glaucoma, pigmentary glaucoma, or primary
angle-closure glaucoma and (b) evidence of either
central damage on 24-2 visual field (VF), defined as two
or more points within the central 10° with P < 0.05
on the pattern deviation plot or VF mean deviation
(MD) worse than −6 dB. Exclusion criteria consisted
of baseline age less than 40 years or greater than 80
years, best-corrected visual acuity <20/50, refractive
error exceeding 8 diopters of sphere or 3 diopters of
cylinder, or significant retinal or neurological disease
affecting OCT measurements. Eyes with four or more
OCT scans and two or more years of follow-up were
included. We analyzed observations up to 4.25 years
after baseline. Data from visits less than 0.2 years after
a previous visit were omitted.20

Macular OCT Imaging

Macular volume scans were obtained with a
Spectralis spectral-domain OCT (Heidelberg Engineer-
ing, Heidelberg, Germany). The Posterior Pole
Algorithm of the Spectralis OCT acquires 30° ×
25° volume scans of the macula (61 B-scans spaced
approximately 120 μm apart) centered on the fovea
and repeated nine to 11 times to reduce speckle noise.
Proprietary software of Spectralis OCT, the Glaucoma
Module Premium Edition, was used to automatically
segment individual retinal layers before data export.
Images were reviewed for segmentation errors and
image artifacts. Segmentation errors were manually
rectified with the OCT device’s built-in software.
After segmentation, the individual layer thickness
measurements are provided as 8 × 8 arrays of 3° × 3°
superpixels for the central 24°× 24° region centered on
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the fovea. Because of substantial measurement noise
in the peripheral macular regions, we only included
the ganglion cell complex (GCC) thickness within 7 ×
7 arrays of superpixels from Spectralis OCT macular
volume scans after excluding the most inferior row
and nasal column of superpixels. The GCC thickness
was calculated by adding the thickness measurements
of the retinal nerve fiber layer, ganglion cell layer, and
inner plexiform layer.

Data Management and Statistical Modeling

Our methods have been described previously.20
We identified potential outliers as observations with
very large increases or decreases between consecu-
tive measurements and removed observations that
produced the greatest reduction in the sum of absolute
consecutive differences resulting in removing approxi-
mately 0.5% of observations as outliers. We removed
all observations for a single person in a single super-
pixel if we identified two or more outliers in that super-
pixel.20 We then fit a Bayesian normal hierarchical
random effects model using the JAGS package in R
(R2jags).21,22 The current version of our BayesianHSL
model includes (a) a macula-wide global intercept and
slope, (b) superpixel-specific intercept and slope devia-
tions from the global intercept and slope (superpixel-
level random effects), (c) macula-wide patient-specific
intercept and slope effects (global patient random
effects), (d) patient-superpixel specific intercept and
slope random effects, and (e) macula-wide visit effects.
Letting yijk denote a single observation of GCC thick-
ness (μm) for patient i at time tij in superpixel k, the
model is

yi jk = μ0 + μ1ti j + α0k + α1kti j + β0ik + β1ikti j
+ φ0kPC0i + φ1kPC1iti j + φ2kVEi j + εi jk

εi jk ∼ N
(
0, σ 2

k exp (PC2i)
)
,

where μ0 is the global macula-wide intercept; μ1 is
the global macula-wide slope; α0k is the population
average intercept in superpixel k; α1k is the popula-
tion average slope in superpixel k; β0ik is the patient-
superpixel intercept for the ith patient; β1ik is the
patient-superpixel interaction slope for the ith patient;
φ0k is the spatial effects eigenvector component for
the patient-specific intercepts; φ1k is the spatial effects
eigenvector component for the patient-specific slopes;
φ2k is the spatial visit effects eigenvector compo-
nent; PC0i is the macula-wide patient-specific inter-
cept random effect; PC1i is the macula-wide patient-
specific slope random effect; PC2i is the macula-wide

patient-specific log residual variance random effect;
VEij is themacula-wide visit random effect; the popula-
tion component of the patient-superpixel log resid-
ual variance is log σ 2

k . Our model uses novel, semi-
parametric spatial effects for the intercept φ0kPC0i,
slope φ1kPC1i, residual variance σ 2

k exp(PC2i), and visit
effects φ2kVEij. In each component, terms with a k
subscript φ0k, φ1k, σ 2

k , and φ2k define the spatial pattern
of variation across the macula whereas the random
effects PC0i, PC1i, exp(PC2i), and VEij are random
patient effects, or visit effects, that indicate how much
patient i’s observations deviate from the population
averages. Each of these four terms are factor analytic
models with one factor each where the φ0k, φ1k, σ 2

k ,
and φ2k are called loadings and the random effects
are also called factors.23 Superpixel-specific popula-
tion intercepts and slopes are the sum of the macula-
wide global intercept and slope plus the superpixel-
specific intercept and slope deviations. Similarly, a
superpixel-patient slope (intercept) is the sum of (a),
(b), (c), and (d): the sum of the macula-wide global
slope (intercept), superpixel-specific slope (intercept),
the macula-wide patient-specific intercept slope (inter-
cept), and the patient-superpixel specific slope (inter-
cept) random effect. Patient-superpixel log residual
variances are modeled as the sum of a superpixel
component and a patient-specific component. The
outlier removal algorithm and full model and priors are
given in the Supplemental material.

In Bayesian models, inference is made by summa-
rizing the posterior distributions of the parameters
of interest. The posterior distribution is obtained by
combining the likelihood (information in the data) with
the prior (prior knowledge about the unknown param-
eters) and quantifies the uncertainty in the param-
eters after observing the data. The posterior mean
(i.e., mean of the posterior distribution of a param-
eter of interest) is often taken as the Bayesian point
estimate; similarly, the posterior standard deviation
(SD), that is, the SD of the posterior distribution,
summarizes the uncertainty in the posterior. Posterior
means and SDs of superpixel-patient-specific inter-
cepts and slopes were calculated from the HSL model
and compared to superpixel-patient-specific intercepts
and slopes obtained from a Bayesian SLR model
with a flat prior analyzing longitudinal data from
each superpixel-patient separately and aBayesianCAR
model with intrinsic CAR priors analyzing data from
each patient separately.

The Bayesian SLRmodel produces posterior means
and posterior Credible Intervals (CrI) that are identical
to the classical point estimate and confidence intervals
(CI) from classical least squares regression on the same
data. The Bayesian SLR posterior SDs are slightly
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larger than classical SLR standard errors (SEs) by a
factor of ( ni−4

ni−2 )
{1/2}, where ni is the number of observa-

tions for patient i because SEs are not standard devia-
tions and SEs do not account for the classical estimates
being t distributed with ni − 2 degrees of freedom.
Using the posterior SD from this Bayesian SLR model
puts SLR, CAR, and HSL on an equal footing.

For the CAR model inspired by Betz-Stablein et
al.,19 we assumed GCC thicknesses in neighboring
superpixels would be more similar than in more distant
superpixels. We defined the neighborhood structure, or
adjacencymatrix, such that superpixels sharing an edge
are weighted as 1. For each patient i, we model spatial
dependence in intercepts and slopes

y jk = α0 + α1t j + β0k + β1kt j + ε jk

ε jk ∼ N
(
0, σ 2) ,

where α0 is the overall eye intercept; α1 is the overall
eye slope; β0k is the superpixel-specific spatial devia-
tion from the overall eye intercept; β1k is the superpixel-
specific spatial deviation from the overall eye slope; and
σ 2 is the residual variance specific to patient i.We fit the
CARmodels using the R package NIMBLE v0.13.24,25
The full CARmodel and priors are given in the Supple-
mental material.

We identified superpixel-patient-specific rates of
change as worsening or improving (significantly
negative or positive) when the upper or lower limit
of the symmetric 95% CrI was less than or greater
than zero, respectively. We compared the proportion
of significant negative or significant positive slopes at
each superpixel from the HSL and SLR models using
an α = 0.05 level classical McNemar’s test with the null
hypothesis being that the two proportions were equal.

We summarize differences (SLR − HSL and CAR
− HSL) of posterior means and of SDs for individual
patient-superpixel intercepts and slopes. We compared
differences of posterior means averaged within each
of 49 superpixels and also averaged across all 5419
patient-superpixel profiles. We similarly compared the
SLR/HSL and CAR/HSL ratios of posterior SDs for
superpixel averaged intercepts and slopes, and patient-
superpixel intercepts and slopes. Ratios of posterior
variances (i.e., ratios of squared SDs) are measures of
the improved estimation efficiency of the better model.
Individual patient-superpixel intercept and slope poste-
rior means, posterior SDs, and 95% CrI lengths from
HSL, CAR, and SLR were plotted against each other
to compare the inferences from the three approaches.
A patient-superpixel profile is the set of measurements
over time for a single patient in a single superpixel.

We omitted 18 patient-superpixel profiles in the data
cleaning step because there were two or more outliers
in a single patient-superpixel profile and omitted two
more patient-superpixel profiles with constant GCC at
all time points, as SLR, unlike the HSLmodel or CAR,
is unable to provide an appropriate inference. Thus
5419 is slightly smaller than 111 × 49 = 5439 patient-
superpixel profiles.

Simulation Study

We ran a simulation study to provide compar-
isons between the accuracy of HSL, CAR, and SLR
estimates for rates of change (slopes); this compari-
son is only possible in a simulation study where true
individual eye slopes are known. In the initial step,
a true slope and intercept for each superpixel-patient
combination (49 superpixels in each of 111 patient-
eyes) was set by sampling each from a normal distri-
bution with mean equal to the sum of the superpixel-
specific population and macula-wide patient-specific
parameters and variance equal to the superpixel inter-
cept and slope random effects variance. All superpixel-
specific and patient-specific parameters were set as the
posterior means from our model fit to the actual data;
log residual variance was set as the posterior mean of
the patient plus superpixel log components; visit times
were copied from the data set and visit effect param-
eters were set to the posterior mean of those parame-
ters. In the next step, we generated 100 data sets with
random residual errors and visit effects.

We recorded bias, estimator variance, and rootmean
squared error (RMSE) from the simulation for all
patient-superpixel intercepts and slopes. We took the
posterior means from the HSL and CARmodels as the
estimates, and the least squares estimate was the SLR
estimate. Bias was calculated as the average estimate
over simulated datasets minus truth, which is a measure
of whether the model estimates the true value on
average. Estimator variance is the variance over simula-
tions of the estimate around its average estimate over
simulated data sets, a measure of precision. Estimator
variance is estimator SD squared. RMSE is the square
root of the sum of squared bias and estimator variance

RMSE =
√∑100

m=1 (estimatem − truthm)2

100

=
√
bias2 + estimator variance ,

where m indexes data sets. The RMSE is the gold
standard for assessing the accuracy of a model for
estimating the true parameter value. We calculated
average over simulations of 95% Credible Interval
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Length (CrIL), which is the length of the interval with
2.5% posterior probability to the left and to the right
of the interval for HSL and CAR and the usual 95%
CI for SLR. Finally, 95% CrI Coverage is the propor-
tion of the time where the 95% CrI contains the truth.
For bias, estimator SD, RMSE, and 95% CrIL, smaller
is better. For 95% CrI Coverage, values close to 95%
are preferred. For the estimator SD, RMSE, and 95%
CrIL, we report the SLR/HSL and CAR/HSL ratios;
ratios greater than one represent better performance
of HSL. We report superpixel summaries by averag-
ing reported measures over all patients at each super-
pixel location and global summaries by averaging each
component over all patients and superpixel locations.

Results

A total of 39,625 GCC superpixel measurements
in 49 superpixels from 815 visits were included in the
analysis. Supplementary Table S1 presents clinical and
demographic characteristics of the study sample.Mean
(SD) baseline 10-2 visual field mean deviation was−8.9
(5.9) dB. Mean (SD) follow-up time was 3.6 (0.4) years
with an average (SD) of 7.3 (1.1) OCT scans per eye.

Simulation Results

Table 1 presents the average RMSE, 95% CrIL, and
95%CrI coverage probability for SLR, CAR, andHSL

Table 1. Averages Over all Patient-Superpixel Inter-
cepts and Slopes of RMSE, CrIL, CrI Coverage Probability

Model RMSE 95% CrIL
95% Crl Coverage

Probability

Intercept
HSL 1.07 4.21 0.949
CAR 1.31 4.24 0.882
SLR 1.44 7.17 0.951
Ratio (CAR/HSL) 1.25 1.03
Ratio (SLR/HSL) 1.38 1.70

Slope
HSL 0.38 1.55 0.947
CAR 0.58 1.59 0.810
SLR 0.69 3.44 0.951
Ratio (CAR/HSL) 1.65 1.08
Ratio (SLR/HSL) 2.05 2.25

Lower RMSE and 95% CrIL indicates better model perfor-
mance and ratios greater than one favor HSL over CAR or SLR.
The HSL model outperforms SLR for RMSE and 95% CrIL for
both intercepts and slopes. CAR does substantially worse on
95% CrI coverage probability compared to HSL and SLR.

averaged over all 5439 patient-superpixel for intercepts
and for slopes. Compared to SLR, the HSL model
had substantially better RMSE (intercept SLR/HSL
mean ratio: 1.38; slope SLR/HSL mean ratio: 2.05)
and 95% CrIL (intercept SLR/HSL mean ratio: 1.70;
slope SLR/HSL mean ratio: 2.25), and similar 95%
CrI coverage probability. Compared to CAR, the HSL
model had better RMSE (intercept CAR/HSL mean
ratio: 1.25; slope CAR/HSL mean ratio: 1.65), similar
95%CrIL, andmuch better 95%CrI coverage probabil-
ity (HSL vs. CAR coverage probability for intercepts:
0.949 vs. 0.882; for slopes: 0.947 vs. 0.810).

Patient-Superpixel Intercepts and Slopes
Supplementary Table S2 presents summaries of the

grand mean and tenth to ninetieth percentile range of
posterior means, posterior SDs, estimator SDs, 95%
CrILs, RMSEs, and 95% CrI coverage probabilities for
intercepts and slopes across all 5439 patient-superpixel
combinations for HSL, CAR, SLR, and the differ-
ences between the means (SLR − HSL and CAR −
HSL) and ratios (SLR/HSL and CAR/HSL) of the
SDs, CrILs, and RMSEs.

Intercepts . For the 5439 individual patient-superpixel
intercepts, SLR, CAR, and HSL models demonstrated
similar average, tenth-, and ninetieth-percentile poste-
rior means. The SLR model had larger (worse) estima-
tor SDs (ratio range 1.12–2.31) and larger (worse) 95%
CrILs (ratio range 1.23–3.09) than HSL for all patient-
superpixels. Although CAR had similar posterior SDs
and 95% CrILs to HSL, HSL had higher (better) 95%
CrI coverage probabilities for 80.2% (4364 out of 5439)
of patient-superpixel intercepts. Compared to SLR
and CAR, the HSL model had lower (better) RMSE
values for 95.1% (5174/5439) and 92.7% (5028/5439) of
patient-superpixel intercepts, respectively.

Slopes. Averaged across all 5439 estimated patient-
superpixel slopes, SLR, CAR, and HSL had similar
average slope estimates. However, the tenth to nineti-
eth percentile range of SLR slope posterior means
(−1.36, 0.48 μm/year) was much wider than HSL
(−1.17, 0.19 μm/year) and CAR (−1.01, 0.14 μm/year).
The SLR model had larger (worse) estimator SDs
than HSL (SLR/HSL ratio range 1.17–11.84) and 95%
CrILs (SLR/HSL ratio range 1.32–6.44) for all patient-
superpixel slopes. The CAR model had larger estima-
tor SDs than HSL (CAR/HSL ratio range 0.71–7.57)
with comparable 95% CrILs (CAR/HSL ratio range
0.55–2.75); however, HSL had better 95% CrI coverage
probabilities for 4965/5439 (92.1%) patient-superpixel
slopes. The average 95% CrI coverage probabilities for
patient-superpixel slopes were 0.951, 0.810, and 0.949
for SLR, CAR, and HSL, respectively. Compared to
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Figure 1. Histograms of MSE (upper left), squared bias (upper right), and estimator variance (lower left) for patient-superpixel slopes
comparing SLR, CAR, and HSL models pooled across all superpixels from the simulation study. Mean squared error is squared bias plus
estimator variance; the x-axis values are directly comparable in all three plots. Lower MSE indicates better model performance. Counts of
large values omitted due to truncating the x-axis at 1: MSE (HSL = 43; CAR = 241; SLR = 500), squared bias (HSL = 31; CAR = 120; SLR = 0),
and estimator variance (HSL = 0; CAR = 8; SLR = 492).

SLR and CAR, the HSL model had lower RMSE
values for 5211/5439 (95.8%) and 5097/5439 (93.7%)
patient-superpixel slopes, respectively. Figure 1 plots
histograms of mean squared error (MSE), squared
bias, and estimator variance for patient-superpixel
slopes for all patients and superpixels for the SLR
(blue), CAR (green), and HSL (red) models. The
HSL model had noticeably smallest MSE because of
having much smaller estimator variance compared to
CAR and SLR. Equivalent histograms are plotted for
the intercepts in Supplementary Figure S1, where the
HSL model also demonstrates noticeably smaller MSE
compared to CAR and SLR.

Superpixel-Averages of Intercepts and of Slopes
For the intercepts, there was significant bias

averaged across patients for HSL (range −0.054 to
0.082 μm) and CAR (range −0.486 to 0.290 μm) for
28/49 and 45/49 superpixels, respectively, while SLR

had no bias in any superpixels. While the magnitude of
the observed bias for HSL was not clinically relevant
both in comparison to the size of the intercepts (poste-
rior mean range 52.9–101.6 μm) and compared to the
posterior SDs, the magnitude of bias for CAR was
more comparable to the posterior SDs. In contrast,
SLR had substantially larger (worse) estimator SD
(ratio range 1.29–1.74), RMSE (ratio range 1.19–1.58),
and 95% CrILs (ratio range 1.47–1.94) than HSL for
all 49 superpixels. The CAR model had larger estima-
tor SD (ratio range 0.97–1.40) and RMSE (ratio range
1.15–1.36) than HSL across superpixels, but similar
95% CrILs (ratio range 0.76–1.33). There were no
important differences (fraction coverage − 0.95) in
95% CrI coverage probability for HSL and SLR, but
noticeable differences in parafoveal and nasal superpix-
els for CAR (HSL range −0.014 to 0.008; CAR range
−0.169 to 0.012; SLR range −0.004 to 0.006). Super-
pixel averages of estimator SD, RMSE, 95% CrIL, and
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Figure 2. Heat map of the average RMSE ratio for SLR over HSL or
CAR over HSL for intercepts (top) and slopes (bottom) by superpixel
location from the simulation study. HSL outperforms SLR and CAR in
all superpixels as ratios greater than one favor HSL over the alterna-
tive model.

95% CrI coverage probability for intercepts and slopes
are shown in Supplementary Figures S2, S3, S4 and S5,
respectively.

For the slopes, there was significant bias for HSL
(range −0.040 to 0.038 μm/year) and CAR (range
−0.155 to 0.252 μm/year) for 27/49 and 45/49 superpix-
els, respectively. Themagnitude of the bias forHSLwas
generally modest in comparison to the slopes (range
−0.982 to 0.025μm/year) and was small in comparison
to posterior SDs; however, the magnitude of the bias
for CAR was on par with the slope estimates. For the
49 superpixel slopes, SLR had larger (worse) estima-
tor SD (ratio range 1.55–4.56), RMSE (ratio range
1.33–3.08), and 95%CrILs (ratio range 1.63–3.14) than
HSL across superpixels. CAR had larger estimator SD
(ratio range 0.94–3.05) and RMSE (ratio range 1.27–
2.28) than HSL across superpixels, but similar 95%
CrILs (ratio range 0.73–1.69). There were no substan-
tive differences (coverage − 0.95) in 95% CrI coverage
probability for HSL and SLR, but noticeable differ-
ences in parafoveal and nasal superpixels for CAR
(HSL range −0.033 to 0.024; CAR range −0.273 to
−0.006; SLR range −0.004 to 0.005). Figure 2 displays
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Figure 3. Heat map of the percentage of significant negative
slopes (top) and significantpositive slopes (bottom)detectedbySLR,
CAR, and HSL models when the true slope is negative in the simula-
tion study.

heat maps of the intercept and slope average RMSE
ratios (CAR/HSL and SLR/HSL) across superpixels.
In all superpixels, HSL outperforms CAR and SLR
with all ratios >1. Figure 3 gives the proportion of
significant negative and positive slopes detected by
HSL, CAR, and SLR when the true slope is negative.
The HSLmodel detected a higher proportion of signif-
icant negative slopes than SLR in 38/49 superpixels,
with notably larger differences in the central super-
pixels. It also detected a lower proportion of signif-
icant positive slopes than SLR in all superpixels. In
contrast, CAR detected a higher proportion of signif-
icant negative slopes in 36/49 superpixels, but also a
higher proportion of significant positive slopes in all
49 superpixels than HSL when the true slopes were
negative. The proportions of significant negative and
positive slopes detected by HSL, CAR, and SLR when
the true slope is positive are shown in Supplementary
Figure S6. TheHSLmodel detected a lower proportion
of significant negative slopes in 42/49 superpixels than
SLR when the true slopes were positive and a lower
proportion of significant positive slopes in 43/49 super-
pixels than SLR. In addition, HSL detected a lower
proportion of significant negative slopes in all 49 super-
pixels and a lower proportion of significant positive in
39/49 superpixels than CAR. A detailed breakdown of
the proportion of significant slopes detected by super-
pixel is shown in Supplementary Table S3.
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Table 2. Summary of the Grand Mean of Posterior Means and Posterior SD for Intercepts and Slopes for all 5419
Patient-Superpixel Combinations for SLR, CAR, and HSL Models for the Data From the Patient Cohort

Mean Tenth Percentile Ninetieth Percentile

Intercept posterior mean
HSL 72.95 52.73 102.97
CAR 72.96 52.49 102.92
SLR 72.96 52.29 103.32
Difference (CAR – HSL) 0.01 −1.36 1.39
Difference (SLR – HSL) 0.01 −1.53 1.55

Intercept posterior SD
HSL 1.09 0.82 1.40
CAR 1.03 0.72 1.49
SLR 1.61 0.78 2.76
Ratio (CAR/HSL), median 0.92 0.71 1.28
Ratio (SLR/HSL), median 1.35 0.76 2.43

Slope posterior mean
HSL −0.39 −1.19 0.26
CAR −0.41 −1.40 0.60
SLR −0.41 −1.80 0.87
Difference (CAR – HSL) −0.02 −0.76 0.71
Difference (SLR – HSL) −0.02 −0.85 0.82

Slope posterior SD
HSL 0.40 0.27 0.56
CAR 0.41 0.23 0.59
SLR 0.77 0.35 1.33
Ratio (CAR/HSL), median 0.96 0.63 1.55
Ratio (SLR/HSL), median 1.69 0.93 3.28

Thedifference in posteriormeans for intercepts and slopes is defined as SLRminusHSL or CARminusHSL. The ratio in poste-
rior SDs is defined as SLR over HSL or CAR over HSL and we report the median (tenth, ninetieth percentile) ratio of posterior
SDs.

Analysis of the AGPS Data

Table 2 presents summaries of the grand mean
and tenth to ninetieth percentile range of posterior
means and SDs for intercepts and slopes across all 5419
patient-superpixel combinations for HSL, CAR, and
SLR and the differences between the means (CAR −
HSL and SLR−HSL) and ratios of the SDs. Globally,
HSL, CAR, and SLR posterior means were similar on
average for both the intercepts (CAR − HSL mean
difference [tenth, ninetieth percentile]: 0.01 [−1.36,
1.39 μm]; SLR − HSL difference: 0.01 [−1.53, 1.55
μm]) and slopes (CAR − HSL mean difference [tenth,
ninetieth percentile]: −0.02 [−0.76, 0.71 μm/year];
SLR − HSL difference: −0.02 [−0.85, 0.82 μm/year]);
however, substantial differences existed across patients
and superpixels. The striking difference between HSL
and SLR was the systematically higher posterior SDs
for SLR compared to HSL particularly for the slopes
(median 1.69, tenth, ninetieth percentile = 0.93, 3.28).

The mean and tenth and ninetieth percentiles of poste-
rior means and SDs of slopes by superpixel for HSL,
CAR, and SLR are shown in Supplementary Table
S4. Although the posterior means of the slopes are
similar, the ranges are noticeably smaller and the poste-
rior SDs are also uniformly smaller across all superpix-
els for HSL and CAR. Across 5419 patient-superpixel
curves, the HSL posterior SDs were smaller than those
of SLR for 75.2% of intercepts and 87.1% of slopes
but larger than those of CAR for 63.4% of intercepts
and 54.6% of slopes. Figure 4 displays the median and
tenth and ninetieth percentile of posterior SD ratios
of CAR/HSL and SLR/HSL. Across all 49 superpix-
els, HSL has smaller posterior SDs than SLR; HSL has
smaller posterior SDs than CAR in temporal super-
pixels and larger posterior SDs in nasal superpixels.
Figure 5 shows scatter plots of the posterior means
from SLR against HSL. There is noticeable shrinkage
towards the population mean in the HSL estimates in
the peripheral superior and temporal superpixels. The
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Figure 4. Heat map of the median (tenth, ninetieth percentile)
slope SD ratio as a function of superpixel location for the patient
cohort data. The ratiowas defined as either CAR over HSL or SLR over
HSL. Ratios>1 indicate better performance for HSL. On average, HSL
outperforms SLR at all superpixel locations.

scatter plots of the posterior means from CAR against
HSL are shown in Supplementary Figure S7, where
there is noticeable shrinkage in theHSL estimates in the
temporal regions as well. We provide the scatter plots
of posterior means from SLR against HSL and from
CAR against HSL on the same axes for all 49 superpix-
els in Supplementary Figures S8 and S9, respectively.

The HSL model identified a higher proportion of
significant negative slopes compared to SLR and a
lower proportion compared to CAR (HSL = 17.6%;
CAR = 26.6%; SLR = 15.6%); it detected a lower
proportion of significant positive slopes compared to
both CAR and SLR (HSL = 1.2%; CAR = 6.9%;
SLR = 4.6%). Supplementary Figure S10 presents the
McNemar’s test results comparing the proportion of
significant negative slopes between HSL and SLR or
HSL and CAR, where a higher proportion of signif-

icant negative slopes was identified in 13/49 super-
pixels for HSL compared to SLR, 4/49 superpixels
for SLR compared to HSL, and 31/49 superpixels for
CAR compared to HSL. Supplementary Figure S11
shows the McNemar’s test results for comparing the
proportion of significant positive slopes, where a lower
proportion of significant positive slopes was identified
in 21/49 superpixels for HSL compared to SLR and
36/49 for HSL compared to CAR.

Discussion

We examined the ability of SLR, CAR, and HSL
to accurately estimate rates of GCC thinning within
macular superpixels in a cohort of eyes with central or
moderate to advanced glaucoma damage at baseline.
Our novel HSL model resulted in lower posterior SD
for both intercepts (SLR/HSL median ratio: 1.35) and
slopes (SLR/HSL median ratio: 1.69, Table 1) indicat-
ing amarked improvement in the certainty in estimated
intercepts and rates of change for HSL over SLR. The
simulation study showed a significantly higher perfor-
mance by HSL compared to SLR in terms of detecting
actual change; on simulatedmodels, HSL detected 21%
of slopes as significantly negative while SLR detected
only 13% when the true slopes were negative. A smaller
and still significantly better performance was observed
with the cohort data. Although CAR also reduced
the posterior SD, CAR estimates were more biased by
superpixel location and offered substantially reduced
95% CrI coverage probability (mean intercept proba-
bility = 0.882; slope probability = 0.810). Based on the
simulation study findings, CAR under-reported poste-
rior SDs or overestimated coverage, implying that in
the AGPS data analysis, themore frequent declarations
of significance are overly optimistic. Therefore, with
the advantage of the reduction in noise and appropri-
ate coverage, HSL could detect changes in GCC more
efficiently and earlier with relevant clinical and research
implications for earlier detection of glaucoma progres-
sion.

Simple linear regression is still frequently used to
estimate global or local rates of change of structural or
functional measures in the field of glaucoma. We show
that SLR has numerous weaknesses in this context.
Data from the patient cohort are not used to help draw
inferences about individual eyes, sectors or superpix-
els. Spatial correlations are ignored, and correlation of
baseline thickness and slopes are not accounted for.
Visit effects cannot be accommodated in SLR. These
limitations in SLR lead to substantially larger uncer-
tainty in estimating individual patient-superpixel rates
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Figure 5. Scatter plots of slope posteriormeans from simple linear regressionmodel (SLR, y-axis) against those from the hierarchical spatial
longitudinal model (HSL, x-axis) in each superpixel for the patient cohort data (right eye format). The SLR posterior means are much more
variable than the HSL means. There is noticeable shrinkage towards the population mean in the HSL estimates in the peripheral superior
and temporal regions. Each plot is square with its own axes with the x- and y- axes having the same range. The red dashed line represents
the x = y diagonal.

of change. In contrast, our HSL model accommodates
all these features of the data and thus reduces uncer-
tainty in estimating rates of change.

Our Bayesian hierarchical spatial longitudinal
model addresses these shortcomings in SLR by model-
ing the structure of the data with patients nested in
a cohort, spatial correlations across the macula, and

visit effects. The HSL model provides intercept and
slope estimates with substantially higher accuracy by
incorporating information from the cohort and other
superpixels from the same person and reduces the
posterior variances for both intercepts and slopes. We
implemented this updated version of the HSL model
developed in our research laboratory in this study. The
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current version allows random variation across super-
pixels of individual intercepts and slopes from a global
patient estimate. Similarly, intercepts and slopes within
individual superpixels are allowed to randomly vary
from the population intercept and slope. Population
level intercepts and slopes vary across the macula and
log residual variances are modeled with superpixel and
individual patient components. We recently identified
spatial distributions of patient-intercepts, patient-
slopes, patient-residual variances, and residuals across
superpixels through residual analysis of a prior model
that did not include spatial effects except for superpixel
level parameters.26 The current model in this study
improves on the model in Mohammadzadeh et al.26
by including such spatial effects for patient-superpixel
intercepts, slopes, and residual variances. Moreover,
we now include visit effects, which model correlations
in residuals across superpixels for a single patient-visit.
These spatial effects are modeled as factors in a factor
analysis with one factor per dimension.

Visit effects can be estimated with our HSL model
but are impossible to implement in SLR. Visit effects
model the correlation in regression residuals across
superpixels in a single visit. Presence of visit effects
means that all GCC thickness measurements from a
single patient-visit tend to be randomly above or below
the patient’s actual GCC thickness. Estimating visit
effects requires multivariate modeling of all superpixel
thickness measures in one model. We believe this is
the first study to identify visit effects in structural
OCT data. Visit effects in visual field data are well
known,27–29 thoughmodeling of visual field visit effects
has been rarely done.30

Our findings indicate amore than twofold reduction
in the variance of slope estimates with the HSL model
compared to SLR. This significant reduction in poste-
rior variance shows that the HSL model is much more
efficient than SLR in using the available data and it
allows HSL to detect significant rates of change earlier
as compared to SLR. For example, HSL identified a
higher proportion of significant negative slopes (17.6%
vs. 15.6%) and lower proportion of significant positive
slopes (1.2% vs. 4.6%) as compared to SLR. Although
these numbers may not seem clinically impressive, the
overall superior performance of the HSL is clinically
relevant as it not only increases negative hit rates, an
indication of higher sensitivity for identifying actual
decreasing thicknesses, but it also results in marked
reduction of significant positive slopes, an indication
of potentially higher specificity as GCC thickness is
not expected to increase over time. These findings were
confirmed in the simulation study.

There are previous studies that used hierarchical
linear models for detection of longitudinal change

in visual fields; our study is unique as it addresses
detection of longitudinal changes in macular structural
measurements.14,16,19,30,31 Montesano et al.14 devel-
oped a Bayesian model for visual field data accounting
for the within-eye hierarchical structure, data censor-
ing, and the heteroskedastic variance as a function of
the mean threshold sensitivity; they found that time
to detect progression was shorter for Bayesian models
compared to SLR with permutation analysis of point-
wise linear regression.14

In the article by Betz-Stablein et al.,19 a condi-
tional autoregressive prior was used to model spatial
correlation across the visual field intercepts and slopes
within a single person but data from multiple patients
were not included in a single model. Intercepts and
slopes were not modeled as correlated, and conditional
on neighboring superpixels, distant superpixels were
considered independent. Our CAR model, although
inspired by Betz-Stablein et al.,19 is novel; like in Betz-
Stablein et al., our CAR model was fit to data from
each patient separately. Although the variances in slope
estimates were on par with HSL, there was substan-
tially more bias and reduced 95% CrI coverage proba-
bility, translating to a higher proportion of significant
slopes identified even when the true slopes were of the
opposite sign; thus the CAR model had higher error
rates. In contrast, our model also has random patient-
superpixel intercepts and slopes, but then allows for
finding global patterns of associations in both inter-
cepts and slopes, as we demonstrated in our previ-
ous work.26 It also accommodates residual variance
varying by both superpixel and patient and allows for
visit effects as well.

Based on the simulation study, HSL has substan-
tially lower RMSE than SLR and CAR for both
individual patient intercepts and slopes and for super-
pixel aggregated effects compared to SLR. The SLR
model does not have population or superpixel parame-
ters that summarize the population of patients globally
or in a superpixel, so any superpixel level inference from
SLR is ad hoc; by taking a Bayesian approach with our
SLR models, we were able to create an appropriate, if
simplistic, inference for SLR results aggregated across
patients within a superpixel. For patient-superpixel
intercepts and slopes, HSL had lower RMSE in an
overwhelming proportion of intercepts (95%) and
slopes (96%). Estimates fromHSLhad thus lower noise
as compared to SLR.

Our simulation results demonstrated a small bias
in some estimated HSL intercepts and slopes. This
phenomenon of shrinkage toward the prior mean is a
well-known feature of Bayesian estimators. By borrow-
ing information from the population of patients, the
Bayesian models shrink all estimates toward popula-
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tion averages. Shrinkage depends on the play between
uncertainty in the estimate without population infor-
mation and the variability in the population. Unusu-
ally high or low estimates without shrinkage are
typically due to noise in addition to possibly higher
or lower underlying true values; these values are
shrunken by greater absolute amounts in hierarchical
Bayesian models than estimates nearer to the center
of the distribution. Posterior means from a hierarchi-
cal model are more stable than classical non-Bayesian
estimates such as from SLR. This shrinkage mitigates
against erroneous high/low slope estimates and, hence,
helps prevent making aggressive therapeutic decisions
when relying on uncertain and possibly erroneous
estimates, pending additional data. The magnitude of
the superpixel-averaged slope bias was at most 10%
of the average slope across all patients and super-
pixels (−0.040 μm/year vs. −0.39 μm/year). Despite
this bias, the HSL model was still able to identify a
higher proportion of worsening slopes while at the
same time minimizing the significant positive slopes,
which is desirable within both clinical and research
frameworks.

Our model, as with any model, assumes data gener-
ated by the model. Because we have normality of
residuals built into the model, it does not necessarily
model well a distribution with long tails. The obvious
outliers are quite extreme, and we tried to remove
all the obvious outliers. We believe these are due to
measure error. Undoubtedly there are still outliers in
the data set. A future extension of our methods may
allow for diagnosing outliers via the model itself, or
we may develop a novel and improved outlier removal
algorithm.

Optical coherence tomography data are somewhat
noisy. If clinicians use raw data with outliers, they will
not be using the best data possible, and the conclu-
sions could be flawed.UndoubtedlyOCT image quality
will improve with time and outliers will lessen or disap-
pear. In the meantime, our outlier removal algorithm
does not require model fitting; clinicians could use it in
clinical practice before trying to fit anymodel including
SLR.

In clinical practice, the HSL model can be fit to
longitudinal data from the entire cohort. The estimated
rates of change for the cohort of patients provide infor-
mation on progression rates at the patient-superpixel
level in the same cohort. Once posterior samples are
obtained, observations at future time points for any
patient can be predicted using the posterior predictive
distribution. For a new patient from the same popula-
tion, intercepts and slopes can be predicted using the
posterior samples without refitting the model. Period-
ically, as more data is collected over time, the HSL

model can be refitted to update model parameters and
better guide predictions. For clinicians at a new insti-
tution, it would be best to refit the model to data from
the new institution and then continue along the same
path.

The implications of our findings go beyondmacular
structural measures. The proposed framework can be
applied to other structural measures such as retinal
nerve fiber layer or neuroretinal rim measurements
with modifications for differing geometry and scale of
measurements given the fact that all the limitations of
SLR apply to those structural measures as well. We
are also developing a similar hierarchical model for
visual field measurements. The proposed framework
is a useful starting point for analysis of visual fields;
however, modifications will be required given proper-
ties of visual fields such as increased variability with
worsening thresholds (heteroscedasticity), censoring,
and possible loss of information once threshold sensi-
tivity at individual test locations drops to 15 to 19 dB
or below.14,32

In conclusion, we present a novel Bayesian HSL
model that improves estimation accuracy of local GCC
rates of change. In a simulation study, SLR and CAR
have median MSE ratios over the proposed model
of 3.3 and 2.4, respectively, for estimating superpixel-
patient slopes; in both the simulation study and in the
patient cohort data, HSL identifies a higher propor-
tion of deteriorating superpixels when compared to
SLR while minimizing positive detection rates. This
efficiency is found by more fully utilizing already
available information from measurements on a cohort
of glaucoma patients and jointly analyzing measure-
ments on all superpixels. Our findings have impor-
tant implications for improved detection of glaucoma
deterioration both clinically and in the research
setting.
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