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JOURNAL OF MATHEMATICAL PSYCHOLOGY: 6, 541-575 (1969) 

Probability Learning with Noncontingent Success1 

JOHN I. YELLOTT, JR. 

University of Minnesota 
Minneapolis, Minnesota 55455 

A noncontingent success (NCS) reinforcement schedule for binary prediction 
is one in which the subject has the same probability (6) of being correct regardless 
of which response he makes. These schedules may be contrasted with the more common- 
ly studied noncontingent event (NCE) schedules in which the event probabilities 
are not contingent on the subject’s choice of response, but the probability of his being 
correct is. The NCS schedules are examined here in connection with the problem of 
deciding experimentally between the linear and N element models for probability 
learning. It is shown that for mathematical reasons there is essentially no possibility 
of making such a decision on the basis of experiments with NCE schedules. Predictions 
for NCS schedules are then derived from the two models, and an experiment with 
two such schedules (6 = .8 and 6 = 1.0) is reported. The results unequivocally 
support the N element model over the linear model, but under 6 = 1 contingencies 
subjects generate patterned response sequences-“superstitious solutions”-that 
cannot be explained by any of the current models. 

The present paper is concerned with a class of “noncontingent success” reinforce- 
ment schedules for binary prediction experiments. The original motivation for studying 

this class of schedules was provided by a problem that arises in attempting to evaluate 
the two most widely studied models for probability learning: the N element pattern 
model (Atkinson and Estes, 1963) and the linear model with experimenter controlled 
reinforcing events (Bush and Mosteller, 1955). Briefly stated, that problem is as 
follows. Although the N element and linear models are similar to the extent that both 

are simple path-independent conditioning models, they make very different assump- 
tions about the nature of the learning process. According to the N element model, 
changes in a subject’s response probabilities can occur only on trials when the subject 
makes an incorrect prediction. That is, learning occurs only on errors. According to 
the linear model, on the other hand, response probability can change on any trial, 

i This paper is based on a PhD dissertation submitted to Stanford University (Yellott, 1965). 
I thank William K. Estes, who served as advisor and made many valuable suggestions, and 
also the other members of the dissertation committee: Richard C. Atkinson, James G. Greeno, 
and Patrick Suppes. Support for this research has been provided by the U. S. Public Health 
Service (Predoctoral Fellowship 5-FL-MH-19386-03, Grant MH-6154), the National Science 
Foundation (Grant GB-3878) and the University of Minnesota Center for Research in Human 
Learning. 
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542 YELLOTT 

regardless of whether the subject’s prediction is correct or incorrect. In view of these 
different assumptions one might expect that the two models would make quite different 
predictions about behavior, and that consequently an experimental decision could be 
made between the two without much difficulty. Surprisingly, this is not the case if one 

employs the most commonly studied class of reinforcement schedules-schedules 
with noncontingent events. Under schedules of this sort the two models turn out to be 
very similar, and in fact it can be shown (see Sect. 2) that in these cases the N element 
is for all practical purposes indistinguishable from a simple generalization of the 
linear model. Consequently, to achieve an experimental decision between the two 

models one must look to some other class of reinforcement schedules. Noncontingent 
success schedules turn out to be nicely suited to this purpose. Under these schedules 
the linear and N element models make dramatically different predictions about 

observable behavior, and consequently a straightforward experimental comparison 
can easily be achieved. 

The organization of the paper is as follows. Section 1 describes the various models 
and reinforcement schedules and discusses the background of the comparison problem. 
Section 2 contains a proof that the N element and linear models, and also a third 
model called the N element-linear model, are all “practically” indistinguishable from 

one another under reinforcement schedules with noncontingent events. Section 3 
gives the predictions of the various models for experiments with noncontingent 
success reinforcement, and Sec. 4 describes an experiment in which noncontingent 
success schedules were employed. To anticipate the results of that section, it was 

found that the N element model is clearly superior to the linear model in a simple 
comparison between the two, but that both models fail to account for certain rather 
charming results that one obtains under a noncontingent success schedule in which 

any response the subject makes is reinforced with probability one. 

1. LINEAR AND PATTERN MODELS FOR BINARY PREDICTION 

REINFORCEMENT SCHEDULES 

Throughout the paper we will be concerned with a standard binary prediction 

experiment in which the subject is required on each trial to predict which one of two 
events, e, or es , will occur. Following each prediction the experimenter causes one or 
the other event to occur. (A reference experiment is Friedman, Burke, Cole, Keller, 
Millward, and Estes, 1964.) Let a, and a2 denote the responses associated with the 
prediction of e, and ea , respectively, Ai,n and Ei,% the occurrence of ai and ei on trial 
n, and let A, and En denote indicator random variables corresponding to the events 
A l,n and J%,G A,, = 1 if AIs, occurs, and zero otherwise; En = 1 if El,n occurs, and 
zero otherwise. A reinforcement schedule then is simply a sequence of functions {.rr,}, 
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where rr12 determines the conditional probability of E,,, as a function of the observable 
history of the experiment up through the response on trial n. This paper deals with 
two kinds of schedules. The first is the well-known case of “noncontingent reinforce- 
ment” in which e, occurs with a fixed probability rr on each trial independent of the 
previous history of responses and events: 

P(EI,, 1 A,E,-,A,-, ... EJ,) = r. (1.1) 

We will refer to schedules satisfying (1.1) as noncontingent eerent (NCE) schedules. 
This terminology underlines the fact that in this case it is the events Ei,n which are 
independent of the subject’s predictions, rather than “reinforcements” in the sense of 
rewards for correct responses. The distinction is emphasized because in the second 
class of schedules that concern us here it is the case that correct predictions (and hence 
rewards) are independent of the subject’s choice of response. By a noncontingent 
success (NCS) schedule with parameter 6 we mean a schedule satisfying the following 
condition: 

where Hnel is any history of the form E,-,A,-, ... E,A, . In other words, under an 
NCS schedule the probability that the event on any trial n will agree with the prediction 
on that trial is 8, regardless of which prediction is made, and regardless of the history 
of the experiment up through trial n - 1. Obviously in this case there is no way for 
the subject to increase or decrease his percentage of correct predictions, so the situation 
is quite different than that which obtains under NCE schedules, where the probability 
of a correct response is directly proportional to the probability of predicting the event 
having the higher probability of occurrence. The NCE and NCS schedules are equiva- 
lent only in the special case r = 6 = 5. 

MODELS FOR BINARY PREDICTION 

Within the class of stochastic learning models introduced by Bush and Mosteller 
the model which has had the widest application to binary prediction experiments is 
the linear model with experimenter controlled reinforcing events (Bush and Mosteller, 
1955, Ch. 10; Estes and Suppes, 1959). Letting p, denote pi response probability 
(for a single subject) on trial n, this model can be written 

P n+l = (1 - 0) P, + @L. (1.3) 

Throughout the paper we use the term “linear model” to refer specifically to (1.3). 
Historically the linear model has been by far the most widely studied model for 
probability learning, and in a good number of experiments (e.g., Estes and Straughn, 
1954; Friedman et al., 1964; Suppes and Atkinson, 1960) its predictions for a broad 
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range of statistics were surprisingly accurate. In one respect, however, the linear 
model is consistently deficient: it seriously under-predicts the intersubject variance in 
asymptotic response probabilities. A model which does a great deal better in this 
respect, and which also has certain computational advantages, is the N element pattern 
model (Atkinson and Estes, 1963; Estes, 1959). As applied to binary prediction situa- 

tions, (Atkinson and Estes, 1963) this model assumes that the effective stimulus on 
each prediction trial can be represented by a fixed set of N stimulus elements. Each 
element is conditioned either to a, or ua . On each trial the subject samples exactly one 

of the elements and makes the response conditioned to that element. The probability 
of sampling any element is assumed to be l/N. If  th e response on a trial is correct the 
conditioning state of the element sampled on that trial remains unchanged. If  the 
response is incorrect (i.e., disagrees with the event) the conditioning state of the sam- 
pled element changes, with probability c, to agree with the event that occurred, 
while with probability 1 - c the conditioning state of the element remains unchanged. 

In either case the sampled element is returned to the pool of stimulus elements and 
the same process is repeated on the next trial. Letting K, denote the number of elements 
conditioned to a, on (at the beginning of) trial n, we have 

Wl,, I k, , fL1) = $ 

(where H,-, is any history up through trial n - I), and 

if A,,,JJL G 
if 4, E,,, G , 

otherwise 

(1.4) 

where C, is an “effectiveness of conditioning” event which has probability c of occur- 
ring on trial n independent of the rest of the process. 

Although comparisons of the N element and linear models for NCE schedules 
have found the N element model to be somewhat superior (Friedman et al., 1964, 
p. 271; Suppes and Atkinson, 1960, Ch. lo), the issue between the two models has 
not been resolved by these experiments. To begin with, the N element model has two 
free parameters: c and N, while the linear model has only the learning rate parameter 
0. A natural way to equate the number of parameters in the models is to weaken the 
linear model’s assumption that the occurrence of an event always leads to a change in 
the p value. In place of this assumption we can suppose that the events E,,, and E,,, 
lead to the transformations (1 - 19) p, + 0 and (1 - 0) p, only with some probability 
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c, while with probability 1 - c, P,+~ = pn regardless of the event on trial n. In this 
case we have 

P a+1 = (1 - d)Pn 

I 

(1 - @P?I + e if =L G 
if E,., C, , (1.5) 

P% otherwise 

where C, is defined as in (1.4). In terms of Estes and Suppes’ formulation of the linear 
model (1959) this is equivalent to assuming that with probability 1 - c the outcome 
on any trial leads to an E, reinforcing event. The effects of such an assumption in the 
context of paired associates learning have been studied by Norman (1964), who 
called this extended linear model the random trial increment (RTI) model. In paired 
associates learning the reason for introducing the parameter c is to account for the 
relatively small changes observed in precriterion response probabilities. From the 
standpoint of probability learning, however, it is clear that this extension does not 
change anything important in the structure of the linear model, or reduce the fun- 
damental conceptual differences between that model and the N element model. In 
particular the RTI model retains the assumption that changes in response probability 
can occur on any trial regardless of whether the subject’s prediction is correct or 
incorrect. Intuitively, the only effect of introducing the parameter c is to increase the 
number of possible sample paths in the p, process, and thereby increase the variance 
in the response process. Nevertheless it can be shown that the RTI model and the N 
element model are virtually identical for experiments using NCE reinforcement 
schedules. Specifically, it will be shown in Sec. 2 that in the case of NCE reinforce- 
ment the two models imply exactly the same functional relationships among the 
expectations of a large class of statistics, including all those normally considered in the 
analysis of binary prediction experiments. A consequence of this result is that if any 
pair of statistics in this class is used (via the method of moments)to estimate the param- 
eters of both models, the two models will predict exactly the same values for every 
other statistic in the class. From a practical point of view this result all but eliminates 
the possibility of differentiating between the two models on the basis of results from 
experiments using NCE schedules. 

The fact that it is so difficult in principle to compare the N element and RTI models 
under NCE reinforcement is not altogether surprising, since a schedule of this sort 
does not exploit the fundamental difference between the two models. The situation 
under NCS reinforcement is quite different. Consider the case 6 = 1. Since the 
subject is always “correct” in this condition the N element model predicts that no 
change will occur over trials in individual subject response probabilities. If a subject 
begins a sequence of 8 = 1 trials with k of the N elements conditioned to a, his sub- 
sequent responses will form a sequence of Bernoulli trials with parameter k/N. Under 
the assumptions of the RTI model, on the other hand, a sequence of such trials will 
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cause an individual subject’s sequence of pn values to converge to zero or one as 
n - co. This convergence follows from the fact that when 6 = 1, (1.5) implies that 

{&} is a martingale, i.e., 

ECPl7 11 I Pn ? Pn-1 Y.‘., PI) = P,, . (1.6) 

It is well known that every bounded martingale converges with probability one to a 
limiting random variable-which we call p, here. (An accessible proof is provided in 
Khinchin, 1957.) In the case of the RTI model the distribution of p, is concentrated 

at zero and one, with 

P(Pm = 1 I Pl = PI = P. (1.7) 

To prove (1.7) it is sufficient to note first that (1.6) implies E(p,) = E(p,), and second 

that if c0 > 0, the probability of a p, sequence converging to a point in the open 
interval (0,l) is zero. Since every sequence converges to some point in [O,l], every 
sequence must converge to zero or one. 

The convergence of individual p, sequences in the case 6 = 1 is reflected at the 
level of responses by a decrease over trials in the probability of an alternation-i.e., of 
a response which differs from the preceding response. It will be shown in Sec. 3 that 
this probability decreases geometrically as (1 - c@)~-~. The N element model, of 
course, predicts that the probability of an alternation remains constant over any 

number of 6 = 1 trials. Thus the NCS schedule 6 = 1 provides a situation in which 
the N element and RTI models make sharply different predictions. 

The case S = 1 is not the only NCS schedule which permits a clear comparison of 
the N element and RTI models. For any 8 the RTI model predicts that the probability 

of an alternation following m consecutive “success” trials (that is, trials on which the 
schedule generates events agreeing with whatever response the subject happens to 
make) decreases geometrically with m, whereas the N element model implies that this 
probability does not depend on m. I f  6 is relatively large, so that the event "m con- 
secutive success trials” occurs a substantial number of times for several values of m, 
the observed conditional proportions for m = 1,2,... can be used to compare the two 
models. 

Previous experimental studies of NCS schedules for binary prediction appear to be 
confined to the cases 6 = .5 and 6 = I. A good number of experiments have employed 
sequences of 6 = .5 trials, but this has always been regarded as the 7~ = .5 case of 
NCE reinforcement, and no one seems to have reported sequential data that would 
permit a comparison of the sort mentioned in the previous paragraph. The only 
experiment in which the reinforcement schedule was NCS : 6 = 1 appears to be one 
reported by Arima (1965). In th’ 1s experiment 40 subjects were run through 30 con- 
secutive 8 = 1 trials as part of a larger study dealing with the effects of free versus 
forced choice trials in probability learning. Before beginning the 6 = 1 phase all 
subjects had f i f ty r = .5 trials as a warm-up. The nature of the results in the 6 = 1 
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phase is suggested by Arima’s comment: “Closer inspection of the performance of the 
40 free-choice control [6 = l] subjects revealed that 10 subjects perseverated positi 

on responses [i.e., made the same response on all 30 trials] and 10 subjects 
perseverated patterns of single, double, and triple alternations over the 30 trials.” 
Arima’s results appear to be quite consistent with those obtained in the present study, 

as will be seen in Sec. 4. 

2. NCE SCHEDULES: PROBLEMS IN COMPARING MODELS* 

Roughly speaking, the object of this section is to show that in practice it is virtually 

impossible to distinguish between the N element and RTI models on the basis of 
experiments with NCE schedules of reinforcement. “Virtually” is a necessary qualifier 
here because strictly speaking it is not the case that the two models are identical 

(i.e., “equivalent” in Green0 and Steiner’s, 1964, terminology) under NCE rein- 
forcement. What can be shown instead is that the two are strictly identical so long as 

one confines his attention to a certain class of statistics Z, and in addition that the 
differences between their predictions for statistics outside the set Z are so small as to 
be essentially undetectable in any feasible experiment. From a practical standpoint 

these results effectively rule out the possibility of making any unambiguous decision 
between the two models based on NCE reinforcement, even though the two are not 
actually identical under such schedules. 

The results of binary prediction experiments are usually analyzed in terms of a 
number of summary statistics. These generally include the mean learning curve and 
various “asymptotic sequential statistics.” The latter are the averages (across subjects) 
of the averages (over trials) of such random variables as (A,E,A,+,). Normally these 
are evaluted for n 2 it*, where n* is relatively large, say 100, in order that they may 
be assumed to be estimates of corresponding asymptotic probabilities, e.g., 

lb+, P(A,E,A,+,) (see, for example, Friedman et al., 1964). Typically a model 
specifies the expectations of these statistics as functions of its parameters. The param- 
eters are estimated by equating a sufficient number of observed statistics to their 
theoretical expectations and solving these equations for the parameters. The estimates 
obtained in this way are then used to predict the remaining statistics by substituting 

into the expressions for their expectations. In this sense evaluation involves using the 
model to predict relationships between observed statistics; the model fits the data to 
the extent that the observed statistics satisfy the predicted relationships between their 
expectations. Other estimation methods can be used, e.g., least squares minimization 
and pseudo maximum likelihood techniques (Suppes and Atkinson, 1960), but these 
achieve essentially the same result. A comparison between two models involves 
exactly the same procedure; predictions are computed for both models and compared 

2 I thank J. L. Myers for suggesting a very helpful simplification of the results of this section. 
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to the data; one model is judged superior to another if its predictions are substantially 
closer to the data. 

Clearly the results of the sort of comparison procedure just described depend on the 
class of statistics considered. To take an extreme example, if only the mean learning 

curve is examined in an NCE experiment, the one element case of the Nelement model 
cannot be distinguished from the RTI model, since in both cases the appropriate 
theoretical expression is 

q&J = 7-r + (1 - LX)“-1 (P(il,,,) - ‘ir), 

where 01 equals c for the one element and co for the RTI model. However, the 
two models are easily distinguished on the basis of the sequential statistic 

W l,n+l I 4, 7 El,,). This suggests that the more statistics considered the better. 
In practice, however, the number of statistics employed in evaluation is limited by 

the amount of computation involved in obtaining theoretical expressions, and, more 
significantly, by the requirement that statistics used for this purpose be based on a 
substantial number of cases. Consequently, in practice, the evaluation of models for 

the NCE case of binary prediction has almost always been confined to a fairly restricted 
class of statistics-in particular, statistics corresponding to the quantities: 

P(A&; n = 1, 2 ,..., (2.1.1) 

i-5 P(A1.n I Ei,n-lAj,n-d, i = 1,2;j = 1,2, (2.1.2) 

lim WLn+nl I AA j = 1, 2; m = 1, 2 ,...) n+m (2.1.3) 

kz %%,,+m I -&A j = 1, 2; m = 1, 2 ,..., (2.1.4) 

m = 1, 2,..., (2.1.5) 

lim P(A,,,+, j EC,, ... Ei,n+m-l), i = 1, 2; m = 1, 2 ,.... 
nk+m (2.1.6) 

We are aware of only one study which has considered statistics other than those 
corresponding to (2.1) (Suppes and Atkinson, 1960, Ch. 10). Now let Z denote the 
class of statistics having as their expectations the quantities (2.1.1)-(2.1.6), and let s 
denote an arbitrary member of L’. The following result shows that the N element and 
RTI models are indistinguishable over Z: 

Let n,(c, N) denote the value of s predicted by the N element model as a function of its 
parameters c and N, and Y,(c, 8) the value predicted by the RTI model as a function of its 
parameters c and 0. Then for every s in Z there exists a function pS( U, V) such that 

n,(c, N) = pS(U, V) = rS(c, e), (2.2.1) 
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where 

Cl=+, v=!+‘, (2.2.2) 

in the N element model, and 

u = ce, p7 = 61 - 4 
2-e 9 

(2.2.3) 

in the RTI model. 

In other words, the predictions of the N element and RTI models within 2 depend 
on their respective parameters c, N and c, 0 only through U and V, and they are the 
same functions of U and V in all cases. This implies, first of all, that the two models 
will make identical predictions throughout Z whenever 

C _ w - 4 1 PC -= 
N 

de, 
N 2-e * 

(The parameter c of the RTI model is denoted here by c’.) In addition, (2.2) implies 
that if the same pair of L’ statistics is used in estimating the parameters of both models 
(via the method of moments), then their predictions based on these estimates will 
agree for every other Z statistic. This follows from the fact that a pair of statistics 
which generates separate estimates of c and N, and c’ and 0, must generate separate 
estimates of U and V, and since these estimates (by 2.2.1) will be the same for both 
models, (2.3) will hold and their remaining predictions will be identical. 

The proof of (2.2) involves simply showing that the theoretical expressions for 
(2.1.1)-(2.1.6) satisfy (2.2.1)-(2.2.3) under both models. In order to do this it is con- 
venient to consider a very general and rather cumbersome model for binary prediction 
which we call the c-0-N model This model contains as special cases the linear model, 
the N element model, the RTI model, and a third two-parameter model: the 
N element-linear model, which is equivalent to the other two over the class .Z. The 
c-0-N model was originally suggested by Estes as a device for comparing these special 
cases. By estimating all the parameters of the general model from the results of an 
experiment one could, hopefully, determine which of the special cases came closest to 
the data without having to perform a separate analysis for each case. The difficulties 
which arose in attempting to carry out this program led to the result which is the 
subject of this section. 

In the N element model we assume that each of the stimulus elements is conditioned 
in an all-or-none fashion to a, or a2 . The c-8-N model generalizes this notion by 
assuming that corresponding to every element W,(i = 1,2,..., N) there is a number 
0 < wi < 1 which represents the probability of making response al when Wi is 
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sampled. Let wi,(i == 1, 2 ,..., N) d enote the a, response probability attached to 
element lZ7? at the beginning of trial N. We assume that: 

Al. On every trial the subject samples exactly one element; the probability of 
sampling any element is I /N. 

A2. If  HI< is sampled on trial n, the probability of -9,,, is wi.,? . 

A3. If  Wj is sampled on trial n, then regardless of the response on trial PZ, 

Wi,+1 =I (1 - 0) *ui,n + @En with probability c, 

and 

wi,n+1 = wi,n with probability 1 -c, 

where c is a constant for all n and i. 

A4. If  Wi is not sampled on trial 71, then with probability one 

Wi,n+1 = wi,n 

Relevant special cases of the c-0-N model arise when c = N = 1 (the linear model); 
N = 1 (the RTI model); 0 = 1 (the N element model); and c = 1 (the N element- 

linear model). Occasionally, below, we refer to the three two-parameter cases in terms 
of their free parameters: 

The c-6’ model N RTI model, 

c-N model - N element model, 

8-N model - N element-linear model. 

The following expressions can be derived from the c-0-N model for a binary predic- 
tion experiment with NCE reinforcement and e, probability n (Yellott, 1965, App. B): 

q&J = (1 - U)+lP(A,*,) + n[l - (1 - U)+i], (2.4.1) 

lim JY4,,+1 n-m I El,, 4,) = (1 - 4(U + v> + TTT, (2.4.2) 

(2.4.3) 

cd; WL,, I Em A,,,) = 41 - U - v> + U, (2.4.4) 

lim &L+, n-m I -%,n A,,,) = 41 - U - 0 (2.4.5) 

lim Wl,,+, n+m 
I Al,,) = (1 - 5-r) V( 1 - U)rn--l + 7r, (2.4.6) 

h-i WLn+n 11’50 / A,,,) = ?T - TV(l - U)+l, 
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lim Wlpn+m n-cc 1 El,,) = 77 + (1 - 77) U(1 - U)m--l, (2.4.8) 

lim Wl,,+, 1 E,,,) = 7r - TrU(1 - U)+-l, (2.4.9) 
n+m 

k=l 
~(1 -,)+27r(l +T);[m-;(l -(l - U)$ (2.4.10) 

lim W%,,+, I -fL p-ej JL+~-I ) = (1 - u)?T + [l - (1 - UP], (2.4.11) n-m 

lim J’(A,,,+, I E2,, ,.-, E2,n+m-d = 41 - UP, (2.4.12) 
n-m 

,Jv -4 
N(2 - e) * 

A comparison of (2.1.1)-(2.1.6) and Eqs. 2.4 will show that this list contains theoretical 
expressions for all of the statistics in Z. Since all of the expressions in (2.4) are func- 
tions of U and I’ alone, specialization to the appropriate two-parameter cases of the 
c-8-N model completes the proof of (2.2). I n addition it follows immediately from 
Eqs. 2.4 that within Z the B-N model is identical to the N element and RTI models in 
the sense of (2.2). 

It remains now to show that the N element and RTI models are not strictly identical 
under NCE reinforcement. Earlier we mentioned that there is one type of asymptotic 
sequential statistic that has been used to evaluate models for NCE experiments 
(Suppes and Atkinson, 1960, Ch. lo), but is not in Z. This is the set of second order 
sequential statistics corresponding to 

These quantities were excluded from Z because (2.2) does not, in fact, hold for them. 
A moment’s thought will indicate the reason for this. It will be recalled from Sec. 1 
that the conditional probability of an alternation following m success trials under NCS 
reinforcement is a constant for all m in the N element model, but declines geometrically 
with m in the RTI model whenever c0 > 0. In particular consider the quantities 

ti P(A, # A,-, I An-, = En-l), (2.5) 

ki P(A, # A,-, I A,-, = En-, , An-, = En-z). (2.6) 

Under NCS reinforcement with 0 < 6 < 1 the RTI model implies that (2.6) is 
strictly less than (2.5) if c6’ > 0: th e ratio (2.6) over (2.5) is (1 - ~8~). The N element 

4801613-15 
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model, on the other hand, implies (2.6) = (2.5) f  or all values of c and 137, if c > 0 (see 
Sec. 3). Since the NCS schedule 6 = .5 is equivalent to the NCE schedule n =: .5 
it is clear that the N element and RTI models are not strictly identical for all NCE 
schedules. In particular, (2.2) cannot hold if 2 includes statistics whose expectations 

are equal to (2.5) and (2.6). Since (2.6) is a compound of the second order sequential 
probabilities P(All / En--lAn--lEn--BAn-J, t i is clear that these quantities must be 
excluded from Z if (2.2) is to hold. However it should be noted that, for the range of 
parameters normally encountered in practice, the ratio of (2.6) to (2.5) implied by the 

RTI model will be very close to 1, i.e., (1 - cP) will be on the order of .95 (using 
parameter estimates based on asymptotic sequential statistics, cf. Sec. 4). Consequently, 
we would not expect the second order sequential statistics of a r = .5 experiment to 
support a clear choice of one model over the other. One could, of course, consider 
longer runs of successes, calculate the corresponding probabilities analogous to (2.6), 
and compare these to (2.5). But the number of observations contributing to these 

estimates would decrease by one-half for each additional success, while the relevant 
comparison ratio would decrease each time by a factor of only .95. This seems at best 

an inefficient procedure; certainly it would require a fairly massive experiment. The 
next section deals with NCS reinforcement and shows that for these schedules the N 
element and RTI models make nonparametrically different predictions which can 
easily be compared in an experiment of reasonable dimensions. 

3. PREDICTIONS FOR NONCONTINGENT SUCCESS SCHEDULES 

This section describes the predictions of the N element, RTI, and N element-linear 

models for noncontingent success schedules. For the most part the results presented 
here have been obtained by methods commonly employed with these models (Atkinson 
and Estes, 1963; Estes and Suppes, 1959; Sternberg, 1963), and consequently most of 
the derivations have been omitted. They can be found in Yellott (1965, pp. 32-59). The 
predictions of primary relevance to the purposes of this paper are those describing the 

effects of consecutive 6 = 1 trials on response alternation probability, since as indicated 
in Sec. 1, these differentiate between the models in a nonparametric fashion. To deal 
with these predictions some additional notation is required. The NCS schedules can be 
thought of as generating Bernoulli sequences of “successes” and “failures” in the same 
way that NCE schedules generate Bernoulli sequences of e,‘s and e,‘s. We will use 
A, to denote the event corresponding to a noncontingent success on trial n, and a, to 
denote the occurrence of a noncontingent failure on trial n. We define indicator 
random variables {S,},“=, by 

s, = A,(1 - A,-1) + A,-,(1 - A,). 

Clearly S, = 1 if a response alternation occurs on trial n (i.e., if A, f  A,& and 
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S, = 0 otherwise. We will be concerned with the conditional probability of an alter- 
nation given m consecutive success trials: P(S, = 1 1 A,-, *a* A,-,). Occasionally the 
intersection d,J,-, ... A,-, will be denoted by AreI ; in this case we write 
P(S, = 1 / A:-& 

Since NCS schedules are a special case of simple contingent schedules, and the latter 
have been widely studied, we can make use of a number of previous results. In partic- 
ular, whenever 0 < 6 < 1 and the learning rate parameter is greater than zero 
(i.e., c0 > 0, c/N > 0, e/N > 0 in the c-0, c-N, 0-N models, respectively) the response 
probability random variables p, , k,/N, and w(n) have asymptotic distributions that 
depend only on 6 and the learning parameters. In the case of the N element model 
this is shown in Atkinson and Estes (1963). For the RTI model it follows from a 
theorem of Lamperti and Suppes (1959, Theorem 4.1) if we let the events C,E,,, and 
C,E,,, correspond to the events “E,, = 1” and “E, = 2” in their formulation, and 
interpret the event z(, (C, complement) to be their “En = 0” event. A proof for the 
N element-linear model follows from the ergodicity of the RTI model. Consider the 
process {~~,~}~~i corresponding to stimulus element Wi . If Wi is sampled (with 
probability l/N), then wisn+r = (1 - 0) w~,~ + BE, , otherwise w,,~+~ = w~,~. Since En 
depends only on A,, , the change in {w~,~} when Wi is sampled depends only on the 
current value of that subprocess. It is clear then that {w~,~} is an RTI process, with 
c = 1 /N. And it is clear that as n --f co, the random variables w,,~ , i = 1,2 ,..., N, 
become independent and identically distributed, so that 

N 

lim P(wr,, < w1 ,..., WN,n < UN) = n lim p(wi,, < %). 
n-r* .+I n*m 

The case 6 = 1 leads to a non-ergodic process in all of the models considered. 
Consequently we deal with it as a special case, beginning with the N element model. 

Before considering the various models separately, however, we note that the mean 
learning curve under 6 = 1 contingencies is a nonparametric prediction of the c-0-N 
model, and hence is common to all three of its two-parameter specializations. Let 
& denote the mean of the N A, response probabilities wi,% _ Then P(AI,,) = E(t&J. 
When 6 = 1, an easy calculation shows that 

E(wi,n) = E(E(wi,n I Wi,n-1)) = E(wi,n-1) 

(where the inner expectation is over the possible events on trial n - 1 and the outer 
one is over possible values of ~~,~-r). Consequently, under 6 = 1 contingencies the 
c-0-N model predicts 

w%JJ = wl,l)~ (3.1) 

for all n. This common prediction of the c-0-N models has been referred to as marginal 
constancy. Some implications of requiring that a model predict marginal constancy 
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under 6 = 1 reinforcement have been explored by Rose (1965), and Norman and 
Yellott (1966). 

6 = 1: The N Element Model 

As before, k, denotes the number of elements conditioned to a, at the beginning of 
trial n. Clearly in the case 6 = 1, k, = k, , since no element can change its conditioning 

state on a success trial. Consequently, for a fixed value of k, the sequence 

iAn ; 71 = I, 2,...) is a Bernoulli sequence, with P(A, = 1) = k,/N. The probability 
of an alternation in such a sequence is 

P(S, = 1 1 k,) = 2 + k,(l - ; kl) n = 2, 3,.... (3.2) 

In general we regard k, as a random variable, with V, = (I/N) E(k,), 
Vs = (1/N2) E(k12). In this case P(A& = V, , and 

P(S, = I) = 2(Vl - V,). (3.3) 

Suppose, in particular, that a group of subjects is run for a large number of trials on an 

NCE schedule with e, probability ~a , and then shifted to an NCS : 6 = 1 schedule. 
The asymptotic distribution of the number of conditioned elements in the NCE phase 
will be binomial with parameters n,, and N (Atkinson and Estes, 1963), so this will 
also be the distribution of k, in the 6 = 1 phase. If  .& and s, denote the proportions 
of A, responses and alternations over the group on trial n, then E(&) = no , and 

E(S,) = 27r,(l - n,) ?A$. 

6 = 1: The RTIModel 

Rose (1965) provides a very thorough treatment of the case c = I (the linear model). 
We will confine our discussion to a few predictions on which the RTI and N element 
models disagree. Let V, = E(p,) = P(A,,,), Va,, = E(pn2), and V, = V,,, . Then 

it is easily shown that 

V 2,n = v, + (V, - V,)(l - ces)n-1. (3.5) 

The convergence of the p, random variables can be measured by E(p, - p,J2. 
Using (3.5), 

E(pn - p,J” = (V, - V,) cB(1 - cO~)~-~, (3.6) 

i.e., the convergence is geometric in (1 - ~8~). At the level of responses this geometric 
convergence is reflected in a geometric decrease in alternation probability: 

P(S, = 1) = 2(1 - ce)( VI - V2)(1 - cea)n-a. (3.7) 
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Note that in (3.7) the quantities Vi and V, can be regarded either as moments of a 
nondegenerate p, distribution, or as p and p2 in the case of a particular sequence with 
initial a, probability p, = p. 

A comparison of (3.7) and (3.3) indicates a clear difference between the RTI and N 
element models. According to (3.7) th e expected proportion of alternations per trial 
should decrease geometrically to zero whenever the learning rate CO is positive, whereas 
according to (3.3) there should be no trend at all over a sequence of success trials of 
any length. 

6 = 1 : The N Element-Linear Model 

The asymptotic behavior of the 0-N model under double reward is determined 
by the fact that each of the response probability processes {wi,,}, i = 1,2,..., N, is in 
effect an RTI process, consequently a martingale, and hence converges to one or zero, 
with 

p<l& wi,n = 1 1 Wi,J = wi.1 . 

In the limit then, each of the wi will be zero or one, and the behavior of the subject 
will be determined by random sampling from a collection of what amount to con- 
ditioned elements, just as it is in the N element model. The difference between the two 
models is that in the 8-N model the probability of an alternation decreases to the asymp- 
totic value, whereas the N element model implies that this probability is a constant over 
the entire sequence of success trials. 

In computing P(S, = 1) it is convenient to assume that {wi,,}L, are identically 
distributed and pairwise uncorrelated. This will be true if the distribution of 

w%,i) is the asymptotic distribution corresponding to any NCE schedule 
y&y, 

e subjects are run to asymptote on an NCE schedule before starting the 
6 = 1 series), so the assumption is not unduly restrictive. Its motivation is the fact 
that when the (wi,,} are initially uncorrelated they remain uncorrelated over a 6 = 1 
series, which simplifies things considerably. The assumption also allows us to write 
V, = E(wfJ for i = 1,2 ,..., N. To compute P(S,) one can show first that regardless 
of the initial distribution 

E&4,-,) = E[(c&)~] + ; E(w,-I) - $ E (T &-I), 

and from (3.8) and the assumption just mentioned it follows that 

(3.8) 

E&A,-,) = 3 + y v,z + (1 - e) (v2 ; vl) (1 - ;,“-2, (3.9) 
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where V, = P(A,,,). Using (3.91, (3.1), and the definition of S, , it follows that 

P(& = 1) = 2J7,( 1 ~ VI) “$ + 2 I’,vH) ( v1 -- V,) (1 - $)“-~‘. (3.10) 

The second term in (3.10) vanishes geometrically as n + co, so that in the limit the 
probability of an alternation is simply 21/,(1 - V,)[(N - 1)/N]. Assuming prior 
training to asymptote on an NCE schedule with 7~ = T,, , this limit becomes 
277,[(1 - rra)(N -- 1)/N], which is exactly P(S, = 1) for the N element model under 
the same assumption. 

This completes the discussion of the case 6 = 1. We next consider NCS schedules 
with 8 < I, starting with the RTT model. 

6 < I: The RTI Model 

For any c-8-N model with 0 < (co/N) < 1, the mean learning curve in the case 
NCS: 6 < 1 is 

P(4.n) = 3 + (1 - 4-l (Vl.1 - a>, 

where h = [2cB(l - 6)/N], and Vr,r = or = P(A,,,). 

Equation 3.11 follows from the fact that, for any c, 8, N: 

(3.11) 

%%,,+1) = 1 - 
2c(l - S)# 

N WJ~,,) + 
cefl - S) 

N * 

When 0 < co/N < 1 this has the solution 

and, since P(A1,,) = E(tin), (3.11) follows. If c = 0 = N = 1, (3.11) holds provided 
0 < S < 1. If 6 = 0 and co/N is 1, the predicted response-outcome process is an 
alternating sequence of the form (a, , es), (a,, er), (al , es),..., and A, is determined by 
A, . In experimental applications the learning rate is never close to one, and it is 
convenient to have (3.11) hold for all 6 < 1, so in the remainder of the section we wil1 
assume 0 < co/N < 1. In this case for every 6 < 1 (3.11) implies 

;i P(A& = &. (3.12) 

The learning curve for the RTI model is given by (3.11) with h = ~0, and 
Vr,, = E(p,) = P(A,,,). Generalizing the Y notation, let Vi,n = E(p,j) and 
V,,, = lirnn+- V,,, . 

To compute the conditional probability of an alternation given m consecutive 
success trials, note that P(S, = 1 1 A,-, ... A,-,p,-, = p) is simply the probability 
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of an alternation on trial m + 1 of a 6 = 1 sequence, with VI = p. Using (3.7), it 
follows that 

P(S, = 1 ( A,-, *** A,,) = 2(1 - c0)(1 - cP)“-1 (Vi*,-, - V,,,,), 

so that asymptotically 

jii P(S, = 1 ) A,, .a* A,,) = 2(1 - &)(l - cP)+i(Q - V,,,). 

where V,,, can be obtained from the following difference equation: 

V 2,n+l = v2,,{i - c0[4 - 38 - 46(1 - syj) 

+ Vl,,{8(26 - 1) + 2( 1 - 6)(1 - e)> + c(1 - 6) ea. 

This has the asymptotic solution: 

V 
2(1 - e)(i - 6) + 8 

2*m = 2[4 - 36’ - 46(1 - e)] * 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The conditional probability of an alternation given m successive failure trials can be 
shown to be 

;+2 P(S, = 1 1 o”,-, *.. &-J 

= i - 2(1 - ce)((i - x)7=l(v2,Z,m - y) + yj, (3.17) 

where 

x = ce(4 - 381, (2 - 0) 
’ = 2(4 - 38) ’ 

Let s(G) denote the right side of (3.17) as a function of m. Then for any 

6 > 0, (V2p - y) > 0, and s(e) is increasing in m. In other words, the conditional 
probability of an alternation, given m consecutive failure trials, increases with m. It 
will be shown below that this is not the case in the N element model; there the prob- 
ability is independent of m. 

The last results we will present for the RTI model are the asymptotic first order 
sequential probabilities. These are useful in parameter estimation. 

lim W1,n+l I E,,,A,,,) = 2~1 - ce)v,,, + co, n-cc 

lim W1.n+l I E2,Jd = 2(1 - 4v2.m , 

lim P&,+1 I ~~,,-4~.~) = (1 - 4(1 - 2v2,d 

h-0 W1,n+l I E,,,A,,,) = 1 - 2~1 - dv,,, . 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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6 < 1 : The N Element Model 

The learning curve is given by (3.1 I), with X = c/N and l;,i = (l/N) E(k,). 
The asymptotic distribution of k, can be shown to be binomial and independent of 6 : 

li&P(kl, = k) = (f;,(;]“. 

Let I’,,, = (l/N) E(k,j), and I’?,= = lirnVzm9, V,,, . Equation 3.22 implies 

y  - 1 1.m - 2 ; v,,, = *; v3,+ = J&JY 

Then using (3.2) it is easily shown that 

P(S, = 1 / A,-, .*. 4wrJ = WI,,-WI - v,,n-A 

so that asymptotically 

lim P(S, = 1 1 d+i ... A,-,) = 1 - 2V,,, = v. 
7x-m 

(3.22) 

(3.23) 

(3.24) 

Note that for the N element model, in contrast to the RTI model, the asymptotic 
conditional probability of an alternation given m consecutive success trials is indepen- 
dent of m. (cf. Eq. 3.14.) This also holds for the conditional probability of an alterna- 
tion given m consecutive failure trials; for any m 

(3.25) 

For our purposes (3.24) and (3.25), and the corresponding Eq. (3.14) and (3.17), 
provide the major points of comparison between the N element and RTI models for 
the case 6 < 1. The remaining results to be presented in this section are the asymptotic 
first and second order sequential probabilities of the N element model for 6 < 1, and 
the asymptotic variance of the total number of a, responses in blocks of M trials. These 
are primarily useful in evaluating the goodness of fit of the N element model, apart 
from its comparative merits vis-a-vis the RTI model. Following standard practice the 
trial indices are omitted, and the sequence of events in the conditionalization is given 
in decreasing time order from left to right. Thus: 

V, and V, are used to denote V,,, and V,,, as given by (3.23). 

W, I ~34) = 2V2 > (3.26) 
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P(A, 1 E,A,)= 2vz -g, (3.27) 

Jvl I Gwl4) = 9, (3.28) 
2 

P(A, 1 E,A,E,A,) = “,“-,,“’ ) 

P(A, 1 E,A,E,A,) = cv3 -,)v~ 
2 

Wl I WlE24) = v3 - (2c/N)l72 + (4zq 

v, - (c/2N) ' 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Wl I &%w,) = 205 - v3) + (4~bw2 - v,) + w3, 
1 - PV2 - WWI 

(3 33) 

P(A, 1 E2A1E2A1) = v3 + (4N2)(1 + 24(1/2 - 2VJ 
v2 - (c/2N) ' (3.34) 

P(A 
1 

, E A E A ) = v2 - v3 + wwcv2 - U/2N2)4 - 4 ) 
122 1 l/2 + ww - v, 

(3 35) 

(3.36) 

where 

Note that this list contains only 10 of the 20 possible first- and second-order sequential 
probabilities. The remaining 10 can be obtained from those given by substituting A, for 
A, , A, for A,, E2 for El , and El for E, , in each of the Eqs. 3.26-3.35. Thus, for 
example, 

W, I El4 = 4% I -%A,) (Eq. 3.27), W, I W&A,) = W, I W,-&d,) 

(Eq. 3.31), etc. 
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6 < 1: The N Element-Linear Model 

The learning curve is given by (3.11) with c = I and r-r,, = E(w,) = P(=l,.,). 
The asymptotic probability of an alternation given nz consecutive success trials is 

lim P(S, = 1 1 A,-, ... A,-,,,) = v  + 2 KiA [k - P.,,,,i(l - $,)“‘+‘, 
n-tee 

(3.37) 

where 

Equation (3.37) indicates that the asymptotic conditional probability of an alter- 
nation decreases geometrically to the N element model value of [(N - 1)/2N]. It is 

clear that V,,, for the B-N model will be the same function of 0 and S as V,,, in the 
RTI model (Eq. 3.16), since the latter is independent of c and we have already seen 
that (~,,~}n”_r can be regarded as an RTI process with c = l/N. 

The following results are useful in parameter estimation: 

& %%n I 4.n--1-G-d = 2 (1 - &) z, + + , (3.38) 

where 

4. AN EXPERIMENT WITH NONCONTINGENT SUCCESS SCHEDULES 

The last section contained a number of predictions for NCS experiments based on 
the N element, RTI, and N element-linear models-the three two-parameter speciali- 
zations of the c-8-N model. It was shown that each of these models predicts marginal 
constancy in the case S = 1, and, in the case 6 < 1, each of them predicts 
that P(A& --f 4 as n -+ 00, regardless of the initial distribution of response probabili- 
ty. In addition, it was shown that the models disagree in certain of their first-order 
predictions; most importantly, in their predictions concerning the effects of a sequence 
of success trials on the probability of a response alternation. We now report an experi- 
ment designed, first of all, to test the common implications of the c-B-N family, and 
secondly, assuming that the common predictions do well, to determine whether any 
one of the two-parameter members of that family is differentially supported. 
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EXPERIMENTAL DESIGN 

Two NCS schedules were studied: 6 = .8 and S = 1. Each of these schedules was 
employed in a single block of trials, with the two NCS blocks forming two phases of a 
standard binary prediction experiment. The subject’s task was to predict which of two 
letters, “X” or “Y”, would appear in a display window. Each trial began with the 
occurrence of a “ready” signal; as soon as this signal appeared the subject made his 
prediction by pressing one of two keys, and following his response either “x” or “Y” 
appeared briefly in the display window. The experiment consisted of 450 such trials 
and took about 45 min. Subjects were paid a fixed amount for participation, but there 
were no payoffs for correct responses, or penalties for errors. 

From the experimenter’s point of view the 450 prediction trials were divided into 
six phases, each phase corresponding to a particular reinforcement schedule. The 
schedule and number of trials in each phase are indicated in Table 1. 

TABLE 1 

REINFORCEMENT SCHEDULE IN PHASFS I THROUGH VI 

Phase Schedules Trials 

I NCE: n = .5 l-20 
II NCE: n = .8 21-70 
III NCE: = = .2 71-150 
IV NC3 6 = .8 151-350 
V NCE: n = .8 351-400 

VI NC3 8 = 1.0 401-450 

The Y event was arbitrarily designated e, , so that in the NCE phases, Z- refers to the 
probability of a Y event. The randomizations in each schedule were constrained by 
phase length; in each NCE phase the proportion of Y events was exactly r, and in each 
NCS phase the proportion of successes was exactly 6. For each phase, every subject’s 
outcome sequence was an independent random permutation of a fixed sequence of 
events; either X’s and Y’s, or successes and failures. 

The subjects were given no indication of the existence of distinct phases in the 
experiment, except what could be learned from the response-event sequence itself. 
The trial format was exactly the same on NCE and NCS trials, and the transitions 
between phases were not marked in any way. In running himself as a subject, the 
experimenter could not determine with any certainty where one phase had ended and 
another begun. It was expected that the fact that all trials were ostensibly the same 
would lead subjects to employ the same strategies in both the NCE and NCS phases 
of the experiment. 
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ilpparatus. The experiment made use of an automated verbal associative learning 
apparatus at the Institute for Mathematical Studies in the Social Sciences, Stanford 
University. The subject sat alone in a soundproofed, air-conditioned room which 
contained stimulus display and response recording equipment. An adjoining room 
contained an IBM 526 Summary Punch and additional storage and timing equipment. 

On a table directly in front of the subject was a response panel containing two -g x l-in. 
response keys, 3 in. apart. These keys could be illuminated to remind the subject 
which response he had made. The left hand key was labeled X, the right hand key, Y. 

On a second table 5.5 ft away were two stimulus display boxes, one on top of the other. 
The front of each box was a 2 x 12 in. display window in which alphanumeric 
characters (Sylvania Electroluminescent displays) could be made to appear to serve as 
the ready signal and event stimulus. The ready signal on each trial was a minus sign 
“ Y, . - m the center of the upper display window; the event stimulus was an “X” or 
“Y” . appearing in the left-most position of the lower display window. 

Procedure. The sequence of events on every trial was as follows: At the beginning 

of each trial both response keys and both display windows were dark. The trial began 
with the ready signal appearing in the upper display window. The apparatus then 
waited for the subject’s response. As soon as the subject pressed a response key this 
key was illuminated, and the apparatus processed the response to determine which 

event (X or Y) to present. The event stimulus was then displayed. The delay between 
the response and the appearance of the X or Y event was 1.5 sec. The event stimulus 
remained on for 1 sec. At the end of this time both it and the illuminated response key 
went off, and after a 1.25-set interval the ready signal appeared to begin the next trial. 
Assuming a 2-set latency, the time between one ready signal onset and the next was 

5.75 sec. 
On arrival at the experimental room a subject was seated in front of the response 

panel and asked to read the following instructions: 

“This experiment consists of a series of trials. On each trial exactly one of two 
possible events, “X” or “Y”, will occur. Every trial will begin with the appearance 
of two small illuminated lines in the upper display window in front of you, as shown 

in Fig. 1 below. [Note: Figs. 1 and 2 were schematic drawings of the stimulus displays.] 
This is the signal for you to indicate your prediction by pressing either the X or the 
Y button on your response panel. After you make your prediction it will be auto- 
matically recorded by the IBM equipment, and the actual trial event-either an X or 
a Y-will appear in the lower display window as shown in Fig. 2. I f  the trial event 
agrees with your prediction you have made a correct response. The upper and lower 
display windows will extinguish after a brief period, and the next trial will begin 
shortly thereafter. It is important that you indicate your prediction as rapidly as 
possible after the signal light appears at the start of the trial, otherwise the experiment 
may run overtime. 
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We will not give you any information on how best to make correct predictions, 

except to urge you to pay close attention to the event on each trial. I f  you have any 

questions about the procedure, please ask the experimenter. There will be two short 
breaks during the session.” 

After the subject finished reading, he was asked if he had any questions. If  he did, 
these were answered by paraphrasing the appropriate section of the instructions. The 

experimenter then ran through several practice trials (NCE: r = .5 trials; not part of 
Phase I) to make sure that the task was completely clear to the subject. As soon as this 
was certain the experimenter reminded the subject to respond “as quickly as possible,” 
and then returned to the control room. The sequence of experimental trials began im- 
mediately and continued without interrruption for at least 250 trials. At a variable 
point between trials 250 and 280 the sequence was stopped to allow a 2-min rest period. 
The trial sequence then began again and continued without further interruptions 
through trial 450. As soon as the last trial had ended the subject was questioned to 

determine whether he had become suspicious of the task as a result of the final S = 1 
phase. This interview was quite informal, but it always began with, “I’d like you to tell 
me on what basis you were making your predictions.” This question appeared to be 

sufficient to partition the subjects into two distinctly different groups: those who had 
recognized that their responses (in Phase VI) were actually determining the outcomes 
(5 out of 55), and those who either had not noticed anything especially different at the 
end of the experiment, or who thought that they had finally solved the problem 
(50 out of 55). Subjects in the first group were questioned further to try to determine 
what had caused them to become suspicious; subjects in the second group were asked 
if they had managed to find any “pattern” in the outcome sequence “especially 
towards the end of the experiment.” (Some volunteered this information before being 

asked.) If  a subject answered that he had, he was asked to describe the pattern and the 
information was recorded. Finally, the experimenter explained the actual nature of the 
task, paid the subject, and dismissed him. 

Subjects. Fifty-five subjects were obtained from the student employment offices 
of Stanford University and a nearby junior college. Each subject was paid $1.75 for 
his participation. The subjects were students; they ranged from first quarter freshmen 
to graduate students (none in psychology). Five subjects’ data were not included in the 
analysis because they indicated in the postexperimental interview that they had re- 
cognized the 8 = 1 contingencies in Phase VI. 

RESULTS 

Data bearing on the predictions common to all c-8-N models are examined first. 

Figure 1 shows the mean learning curve for the entire experiment. Each point re- 
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presents the proportion of a, responses made by all 50 subjects in a given IO-trial 
block. To a first approximation the data are consistent with the predictions of the 
c-0-N model: The learning curve begins in the neighborhood of .5 in Phase I, rises 
toward the probability matching value of .8 in Phase II, decreases towards the matching 

value of .2 in Phase III, and then moves back to 5 as predicted in Phase IV. In Phase V 
the curve rises again towards .8, this time somewhat more smoothly, and then remains 
quite constant during Phase VI. The data for Phases IV and VI are of particular 

I / 

PHASE PHASE PHASE PHASE PHASE 

1 t-J 
I 

I II’ lII m  IPI lx 

TRIALS 

FIG. 1. Proportion of a, responses in lo-trial blocks: broken vertical lines separate phases; 
horizontal lines indicate the predicted asymptote in each phase. 

interest. Over the five IO-trial blocks of Phase VI the a, proportions were (starting 
with the first block) .73, .70, .72, .73, and .72. These values clearly support the predic- 
tion of marginal constancy under 6 = 1 contingencies (Eq. 3.1); there is no trend in 
response probability over trials and all the values are satisfactorily close to the mean 
of .72 (the predicted line in Fig. 1 is at .72). The prediction limn-ta, P(Ar,,) = .5 for 
6 = .8 was also confirmed to a good approximation; the overall proportion of a, 
responses in the last 100 trials of Phase IV was .486, and in the last 50 trials, .494. 
Individual subject response probabilities were distributed fairly symmetrically 
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around .5: Over the last 100 trials 21 subjects had a, probabilities in the interval 
.41-.50, 15 in the interval .51-.60, and the remaining 14 subjects were scattered 
fairly evenly over the other eight intervals. To anticipate a bit, the variance of this 
distribution was quite accurately predicted by the N element model. 

Turning now to results which ought to differentiate between the c-0, c-N, and 8-N 
models, it is first necessary to estimate the learning rate parameter [i.e., the appropriate 
specialization of (cc/N)] for each model. On the basis of Eqs. 3.18 and 3.19, 3.26 and 
3.27, and 3.38 and 3.39, this parameter can be estimated for all the models by taking 
the difference between the asymptotic sequential statistics p(A, 1 &A,) and p(A, / &A,) in 
Phase IV. The last 100 trials of Phase IV were assumed (both for this purpose and in 
subsequent analyses) to be asymptotic, and the estimate obtained on this basis was 

(a) = .175. This value is comfortably close to estimates obtained in other 
experiment: Suppes and Atkinson (1960) estimated a learning rate of .174 from data 
generated by an NCE: n = .6 schedule, and Friedman et al. (1964) reported an 
estimate of .172 based on an NCE: rr = .80 sequence. (These estimates were also 
based on asymptotic sequential statistics.) 

Now, since co2 > c2e2, according to the RTI model (Eq. 3.7) the probability of an 
alternation on the nth trial of Phase VI should decrease at least as fast as (.97)“-2, i.e., 

A 
at least as fast as [l - (c@~]+~. Consequently, according to the RTI model the pro- 
portion of alternations on Trial 50 of Phase VI should be no more than 23% of the 

TABLE 2 

PROPORTION OF ALTERNATION RESPONSES 
IN 7 TRIAL BLOCKS: PHASE VI 

Trials 
Proportion 

of alternations 

402-408 .257 
409-415 .271 
416-422 .226 
423-429 .283 
430-436 .242 
437-443 .223 
444-450 .242 

corresponding proportion on the second trial. According to the N element model, of 
course, there should be no tendency for alternations to decrease over these trials. 
Table 2 shows the proportion of alternations in Phase VI averaged in seven-trial 
blocks. The data are clearly inconsistent with the RTI model: The maximum deviation 
of any proportion from the mean of .250 is .03, and the last entry is .242, whereas 
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according to the RTI model it should be around .06. Moreover there is no evidence 
of any consistent decrease over trials; the rank order correlation between block number 

and ordinal position in a ranking based on proportion of alternations is .43, which is 
not significant (p > .lO). Consequently there is no evidence to support the 8-N model’s 
prediction of a monotonic decrease in alternation probability (Eq. 3.10). 

Examination of the effects of consecutive success trials in the 6 = .8 Phase IV leads 
to the same conclusion. The RTI model prediction here is given by Eq. 3.14. On the 

basis of this equation and the parameter estimate ~6’ = .175 the RTI model implies 
that P(S, = 1 1 dFmk,) < (.97)“-l P(S, 1 A:_,). For m = 10 this implies that the 

estimated asymptotic conditional probability of an alternation given 10 success trials 
ought to be no more than about 75 o/o of the corresponding estimate for 1 success trial. 
Table 3 gives the asymptotic proportions of alternations following m consecutive 
success trials for m = 1, 2,..., 10. On the basis of the entry .313 for m = 1, the RTI 

TABLE 3 

OBSERVED CONDITIONAL ALTERNATION PROBABILITIES: PHASE IV, 
LAST 100 TRIALS 

??I fY& I AT-:_,) Observations 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.313 

.322 
.326 
.335 
.330 
.326 
.329 
.317 
.312 
.311 

Av .322 

4021 
3200 
2555 
2039 
1637 
1317 
1062 

871 
711 
578 

model predicts that the entry for m = 10 should be on the order of .23; the observed 
value is .311. The rank order correlation between m and p(S, 1 OT-1) is m .3, which 

is not significant, and none of the entries differs from the mean of .322 by more than 
.013. These results are entirely consistent with the N element model prediction of a 
constant alternation probability (Eq. 3.24), and quite inconsistent with the RTI 
model prediction of a geometric decrease with m. 

It appears then that the RTI model can be rejected as incompatible with the results 
of Phases IV and VI. The case against the N element-linear model is naturally not as 
strong, since the issue between that model and the N element model is less sharp. 
However, there is no evidence in Tables 2 and 3 for the decreases in alternation 
probability predicted by the 8-N model, and these would be the only justification for 
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accepting it in preference to the N element model. Consequently we reject it also, and 
proceed to a more detailed evaluation of the N element model. For this purpose the 
parameters c and N have been re-estimated in a manner that uses somewhat more of 
the data than our earlier estimation. To estimate N we make use of the fact that each 
of the entries in Table 3 is an estimate of (N - 1)/2N, (cf. Eq. 3.24); taking the 
average of these values leads to the estimate fi = 2.78. This is to be interpreted as an 
estimate of the average value of (the integer) N across subjects. (We note by way of 
comparison that the estimates of N obtained in the previously cited experiments by 
Suppes and Atkinson, and Friedman et al., were 3.48 and 1.84, respectively.) To 
estimate c, we use the fact that for 6 < 1, the difference between P(S, = 1 1 d”,-i) and 
P(S, = 1 1 d,-,) is equal to c/N (Eqs. 3.24 and 3.25). The observed asymptotic value 
of P(Ls, = 1 1 J+,) was .494 (based on 979 observations). From this we obtain a c/N 
estimate of .173, which is virtually identical to the previous estimate of .175. Combining 
these c/N and N estimates we have c  ̂= .48. These estimates will be used in sub- 
sequent computations of predicted values. 

Table 4 shows the predicted and observed values of a number of asymptotic sequen- 
tial statistics from Phase IV. All first and second order sequential probabilities are 
included, except those for which the observed proportions in the last 100 trials of 
Phase IV were based on fewer than 125 observations. 

TABLE 4 

N ELEMENT MODEL PREDICTIONS AND OBSERVED SEQUENTIAL DATA: 

PHASE IV, LAST 100 TRIALS ($7 = .173, I? = 2.78) 

Pred. Obs. 
No. of 

observations 

w% I EIAI) .680 .674 1918 
P(Al I &%) .507 .499 493 
P(Al I -WA .493 .488 486 
pm I &s) .320 .301 2103 
PM, I -%&wJ .760 .730 1012 
P(A, I -w,E,A*) .240 .254 1165 
P(A, 1 E 1 A 1 E 2 A e ) .500 .538 507 
P(A, I J%%E,AI) .500 .438 516 
P(A,IEAEA) 2 1 1 1 .580 .500 264 
P(A1jEAEA) 1 2 2 2 .420 .473 294 
P(AIIEAEA) 1 1 2 1 .681 .677 198 
P@lEAEA) 2 2 1 2 .319 .282 195 
WI I WI-W,) .675 .740 181 
P(A, I WLE,A,) .325 .257 206 

350 
Var c A, 206. 233. 50 

n=251 

480/6/3-I6 
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By and large the fit between predicted and observed values in Table 4 is quite good; 
the largest deviation is .08, and as the number of observations increases the deviations 
tend to become smaller. The fact that the model predicts a variance of the proper order 
of magnitude is particularly impressive; this prediction is very sensitive to small 
changes in the parameter values. (If the variance prediction were computed in terms 
of the proportion of a, responses over the 100 trial block it would be ,021, as compared 
to an observed value of .023.) In evaluating the goodness of fit of the model to the 

Phase IV data, it should be recalled that Table 3 also contains relevant asymptotic 
sequential statistics: P(S, = 1 1 A,“_,) for 10 values of m. The model predicts all 10 of 
these values with a maximum deviation of .02. 

A persistent problem in fitting c-0-N models to binary prediction data has been 

that the learning rate parameter estimated from asymptotic statistics normally does 
not permit a good prediction of the acquisition portion of the learning curve (see, e.g., 
Friedman et al., 1964). Typically (although not always) it has been found that the 
learning rate parameter needed to fit the learning curve is about one-third the value of 

the same parameter as estimated from asymptotic sequential statistics. In this respect 
the present experiment is something of an exception; the asymptotic estimate 
c/N = .173 fit the learning curve for Phase IV relatively well: Except for two points 
which could not be fit by any choice of parameters the discrepancies between pre- 
dicted and observed values in the first 11 blocks of Phase IV were all < .02. Inter- 
estingly, however, and more in line with previous research, c/N = .173 would not fit 

the learning curves in the NCE phases (II, III, and V). There the required value was, 
in fact, about one-third of .173: an adequate fit of the first four points of the Phase V 
curve was obtained with c/N = .058. This is the value that was estimated from the 
acquisition phase of the r = .8series of the Friedman et al. experiment-the same series 

which yielded an asymptotic c/N estimate of .174. 
We turn next to an evaluation of the N element model predictions for Phase VI-the 

6 = 1 phase. We saw earlier that the trial by trial proportions of a, response and alterna- 
tions computed over all subjects (Fig. 1 and Table 2) were consistent with the N element 
model. At the individual subject level the model makes the very strong prediction 
that each subject’s response sequence is a Bernoulli process. To evaluate this prediction 
chi-square tests were performed on the Phase VI data to test for stationarity over trials 
in the individual subject response probabilities, and to determine whether the indivi- 
dual response sequences exhibited the predicted trial by trial independence. In the 
test for stationarity (Q!! = 1) six subjects had x2 values significant at the .05 level. 
The total x2 for all subjects was 58.52, which is not quite significant at the .05 level 
for df = 40. (Ten subjects made all x’s or all Y’s in Phase VI and hence did not 
figure into this test.) The test for response independence led to somewhat sharper 
results. The total x2 for all subjects (df = 80) was 208, and six subjects had ~2 ‘s 
significant at the .Ol level. The total x2 for these six alone (d? = 12) was 122. These 
results suggest a more serious deviation from the model on the part of some subjects. 
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As it turns out, these deviations can be observed quite directly in the response protocols 
themselves, and in the relationship between these protocols and the subjects’ 
descriptions of their own behavior. 

In the interview at the end of Phase VI, several subjects volunteered the information 
that they had solved the prediction problem “near the end of the experiment” by 
discovering a “pattern” in the event sequence. By this they meant either that the 
sequence appeared to be formed by repeating a fixed cycle of events-e.g., 

-- 
... ele,e2 elele2 .*., 

or that the events came in runs which were of increasing, but predictable length, e.g., 

2eZe eee e ‘... 21221 222 1 

We will refer to reported patterns of the first type as periodic patterns, and to the 
others as aperiodic patterns. (The cycle of a periodic pattern may contain more than 
two runs, e.g., 

-.- 
e,e2e2e,e2 e,e,e,e,e, *. . . 1 

Of course the patterns discovered by these subjects were entirely their own creations, 
since the event sequence in Phase VI was simply a reflection of their responses. For 
just this reason they are of particular interest; we would expect the subject to create a 
pattern of some sort if his behavior in the prediction situation were determined by an 
effort to find such a pattern, i.e., if he were trying out plausible patterns in an attempt 
to find one that fit the event sequence. 

Figure 2 shows each subject’s Phase VI response protocol as a sequence of l’s and 
0’s. The l’s denote Y predictions, the O’s X predictions. Subject 10 reported that 
towards the end of the experiment he discovered the periodic pattern (5Y, 2X) . . . 
(i.e., the periodic pattern consisting of a repeating cycle of five consecutive Y’s followed 
by two X’s.) Figure 2 shows that his responses followed this pattern throughout 
trials 7-50 of Phase VI. Using a bit more ingenuity, subject 12 discovered the periodic 
pattern (lOY, X, 9Y, X ,..., 2Y, X, Y, X), and his responses correspond to this 
pattern beginning with trial 17 of Phase VI. (He starts at 5Y). Altogether 26 subjects 
claimed to have discovered some pattern in the event sequence “near the end of the 
experiment.” (This does not include subjects who reported “all X” or “all Y.“) These 
reports were made with varying degrees of conviction and precision; some were 
volunteered and others came only after the experimenter specifically mentioned the 
possibility of patterns. The protocols of these 26 subjects were examined to determine 
whether they had actually responded according to the patterns they claimed to have 
discovered. A subject’s pattern was classified as confirmed if the last two complete runs 
of responses in his protocol, together with the final run (i.e., the run terminated by the 
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I‘K1Al.S 
Sub I 25 ii, 

I LOL11”1,“1010011~~,“L”00001001,,,r~”0lCO”OOou”OL”“OOOOn 
2 10010001000010000010000u0100000011100000u0010000000 
i 1111llllIl”loolllllllIlI”loolllllllllioloolllllill 

4 110111111111011111111101111111110ll111111110111111~ 
5 11111111111o11nfl1111lllillnlllltllllollllllolillol 
h 1001010111111111111111111111111111111111l111111111 
7 llllllllllllllllllolllllllllllllllllllIlolllllll~ll 
n 1111110110010000000000101001101111111110100110~000 
9 1O11111111111111111OlllllllllnlllllllllOllll~lll~l 

10 11111011111001111100111110011111001111100111110011 
11 1110111111101111101111l11ol1111111111101111111~1111 
12 i1010111111111101111101111011101101011111111110111 
13 1111111101011111111110111lll111101111011110110100 
14 01111111111111111111111111111111111111111111111111 
15 oi~oio~iniioiin~~oioiioiio~~o~~o~~o~~o~~~~~o~~o~~o 
16 11111111111111111111111111111111111111111111111111 
17 00110000111l00000000ol11111111100000000001111111111 
18 0000000000100001010101010100111000011111110000001~ 
19 001100110011001100110011oollo0110011001100110011001100 
20 11111111111111111111llllllllllllllllllllllllllllll 
21 1001111010101L111111101010101010101010101010101010 
22 11111111111111111111111111111111111111111111111111 
23 00001111111111000111111111000000011111111110000000 
24 11010100000000010101l11111111010100000000000010101 
25 11111111111111111111111111111111111111111111111111 
26 11010100100001000000000010000000000100000100000000 
27 00010001110000000001011110000l01011111100011000111 
28 0011110011101110011101110ul1l101l10011101110~111011 
29 0000000000111100011111110011111100111l110011111001 
30 10010111111100101111110010111110010111111001011111 
31 10111011111111111100000000011111111000001111011111 
32 11111111111111111111111111111111111111111111111111 
33 11111111111011001001110111111111111111110100101111 
34 10011111111111111101110011111111111111011100111111 
35 11111111111111111111111111111111111111111111111111 
36 11101010010110110100001001010110100000011011010111 
37 11111111111111111101011011111111111111010111111111 
38 11111111111111111111111111111111111111111111111111 
39 11111011111100111110011111110011111110011111100111 
40 01111011111011111101111111011111111011111111110111 
41 11111111101011011101111011111011111101111111011111 
42 11111111010101111111111110101011111111111101010111 
43 10101111100010111111001011111110101000111101000001 
44 11111111111111111111111111111111111111111111111111 
45 10111111111111111111111101011111010111111110101111 
46 11111111111111111111111111111111111111111111111111 
47 00001111010000101111010110101111100101111110111101 
48 10000010110010000011001001100010010001100110001111 
49 10001111111111111111100001111111111111111111111111 
50 00000000000000000000000000000000000000000000000000 

FIG. 2. Phase VI response protocols: 1 = Y, 0 = X. 

end of the experiment) formed a sequence consistent with any portion of the reported 
pattern. Thus, for example, subject 39 claimed to have discovered the periodic 
solution (6Y, 2X), and this was confirmed; subject 34 reported the periodic pattern 
<2Y, 3X), and this was not confirmed. On this basis 18 of the 26 reported patterns 
were confirmed. The patterns themselves covered a wide range of complexity and 
sophistication. Subject 21, for example, reported solving the problem with a simple 
alternation YXYX.. . , while subject 1 reported a periodic pattern based on the first 
six prime numbers: (X, Y, 2X, Y, 3X, Y, 5X, Y, 7X, Y, 11X, Y). (In the protocol 
it appears he either miscounted at 11X or mistook 9 for a prime.) An example of an 
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aperiodic pattern is provided by subject 2: he reported X, Y, 2X, Y, 3X, Y... and this 
describes his protocol. 

It would be difficult to give any summary characterization of the various patterns 
that subjects reported. Some idea of the range of complexity is provided by examples 
already cited. In the case of the periodic patterns the proportion of Y’s in the repeating 
cycle could be calculated; the mean of these proportions across all reported patterns 
(including confirmed and nonconfirmed) was .68. With “all X” and “all Y” included 
as patterns; the proportion of Y’s across all reported patterns was .76. It will be recalled 
that the schedule in Phase V was NCE: r = .8; consequently there is a suggestion 
that the patterns discovered by the subjects, or at least the patterns that seemed 
plausible to the subjects, tended to probability match in the mean. This would be 
expected if the effect of an NCE schedule were to restrict subjects “working hypo- 
theses” to those that are consistent with the observed sequence of (noncontingent) 
events; either in a general sense (e.g., matching the observed proportions of e, and e2 
events), or specifically in the sense of being compatible with the actual sequence of 
previous events over the last few trials. However, it should be noted that there was a 
good deal of variability in the proportions; they ranged from zero to 1.00. 

DISCUSSION 

The results of the experiment can be summarized as follows. First, the mean learning 
curve predictions common to all c-8-N models were confirmed for the NCS schedules 
6 = .8 and 6 = 1.0. Second, under NCS reinforcement consecutive success trials did 
not produce any decrease in the probability of a response alternation. In this respect 
the predictions of the N element model proved to be correct and those of the RTI 
model incorrect. Third, the N element model predicted the asymptotic sequential 
statistics of the NCS: 6 = .8 phase with considerable accuracy using an estimate of 
the learning rate parameter cjlv (. 173) which was virtually identical to estimates 
obtained in previous experiments by Friedman et al. (1964; c/N = .172) and Suppes 
and Atkinson (1960; c/N = .174). Fourth, under NCS : 6 = 1 contingencies a 
number of subjects fixated on deterministic response patterns consisting of runs of 
a,‘~ and a,‘s. In some cases these patterns formed periodic sequences (e.g., (5a, , 2a, , 
5a, , 2a, . ..)). in other cases aperiodic sequences (e.g., (al , a2 ,2a, , a2 ,..., na, , a2 ,... )). 
For convenience in the balance of the discussion we refer to these structured response 
patterns which emerged under 6 = 1 contingencies as “superstitious solutions.” The 
analogy to superstitious behavior in operant conditioning does not seem too far- 
fetched: In both cases reinforcement is not contingent on any particular configuration 
of responses, but subjects nevertheless fixate on more or less complex, idiosyncratic, 
response patterns (Skinner, 1948). 

As far as the original problem of deciding between the N element and linear (i.e., 
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RTI) models is concerned, these results are unequivocal: the N element model is 
clearly superior. The data of Phase IV (6 = .8) are particularly relevant to the con- 
clusion, since the experimental conditions in that phase were similar to those in an 
ordinary prediction task with noncontingent events and the N element model was able 
to provide a good account of all aspects of the data. The fact that the parameter 

estimates from Phase IV were equal to those obtained under NCE reinforcement in 
other experiments suggests that the behavior observed in this experiment was gener- 
ated by learning mechanisms common to all prediction experiments with simple 
contingent schedules. On these grounds it seems reasonable to expect that the N 
element model will in general be superior to the RTI model in any direct comparison. 
One basis for comparison which was not exploited in this study is provided by Eqs. 

3.17 and 3.25. These give the respective predictions of the RTI and N element models 
for the probability of a response alternation following m consecutive noncontingent 
failures. A comparison similar to that provided by Phase IV of this experiment could 
easily be achieved using, e.g., an NCS : 8 = .2 schedule. 

The results of Phase VI (6 = l), h owever, raise some doubts as to the usefulness 
of further comparisons between models of the c-0-N family, except perhaps in the 
context of psychophysical experiments. The highly structured response sequences 
produced by a number of subjects in that phase clearly cannot be explained by any of 
the E-B-Nmodels (cf. in particular subjects 2,3,4, 10, 15, 19,21,28, 34, and 41). They 
suggest instead that the underlying learning processes in even this very simple predic- 
tion task are fairly complex, and that the good fit of the N element model under certain 
schedules is not so much the solution to a problem as a problem in itself. It has, of 

course, always been recognized that path independent models of the c-8-N variety 
cannot provide a general theory of probability learning because they do not permit 
the subject to learn deterministic event sequences involving alternations. But one 
might have hoped that these models, or something similar, would be at least 

asymptotically adequate for experiments with simple contingent schedules in which 
there is no reinforcement pressure to support more complex strategies. The results of 
Phase VI suggest instead that the mechanisms which enable subjects to learn deter- 
ministic sequences remain active throughout any prediction experiment, even when 
the reinforcement schedule does not allow them to be of any use to the subject. Of 

course, it is not clear whether this is true for all subjects, since not every subject 
fixated on a superstitious solution during the 50 6 = 1 trials of Phase VI. Further 
investigation will be required to determine whether this is due to individual differences, 
or simply to a random selection caused by the relatively small number of S = 1 trials. 

The occurrence of superstitious solutions under 6 = 1 contingencies is not entirely 
surprising. Arima’s experiment (1965) apparently led to the same result, although his 

description (cf. Sec. 1) suggests that the solutions generated after 50 rr = .5 trials were 
somewhat simpler than those which appeared here after 400 trials on a variety of 
schedules. It has often been reported that subjects in binary prediction tasks claim 
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to be searching for patterns in the event sequence (e.g., Jarvik, 1951; Nies, 1962), and 
Feldman (1963) h as attempted to account for binary prediction behavior with a 
simulation model based solely on hypothesis testing mechanisms. Feldman’s experi- 
mental situation is somewhat different than the standard prediction task, since his 
subjects were required to provide a rationale for each response. The results of Phase VI 
make it unlikely that hypothesis testing alone can account for ordinary probability 
learning, since not all subjects fixated on superstitious solutions, and even those who 
eventually fixated did not always do so as soon as 6 = 1 contingencies were intro- 
duced (e.g., subject 21). It may be that sporadic hypothesis testing can account for 
this variability, but in that case some supplementary mechanism would be required to 
account for responses that occur between hypotheses. 

As an alternative to hypothesis testing, one might suppose that superstitious solu- 
tions arise simply as the result of straightforward conditioning processes such as 
those suggested by Burke and Estes (1957) and, more recently, Gambino and Myers 
(1967). In these models probability learning involves simply the conditioning of a, and 
us responses to event sequences of a fixed length (the “K-span” model in Rose and 
Vitz’s, 1966, terminology), or to runs of homogeneous events (in Gambino and Myers’ 
extension of a model proposed originally by Restle, 1961, Ch. 6). Neither of these 
models can account for the entire range of periodic solutions observed in Phase VI, and 
they are also known to be inadequate for experiments with deterministic (Restle, 
1967) and quasi-deterministic (Rose and Vitz, 1966) event sequences. But it is not 
difficult to imagine that a model similar to that of Gambino and Myers could be 
devised which would account for periodic solutions and also predict the standard 
statistical results of experiments with simple contingent schedules (i.e., probability 
matching, positive recency, and so on). In fact, it can be shown that if the model 
proposed by Gambino and Myers is altered to allow generalization only after incorrect 
responses, simulated subjects fixate on periodic superstitious solutions of the form 
(maI, na2, ma,, @a2 ,...> in a way that closely resembles the behavior of human 
subjects. (Generalization can be permitted to occur only on errors because generaliza- 
tion on successes precludes fixation on patterns other than “all a, ,” “all a2 ,” and 
“ala2ala2....“) H owever it is difficult to see how any such model could account for 
fixation on aperiodic solutions, even if we allow sequences of runs to operate as the 
effective stimuli, as Restle (1967) has suggested. For if we suppose that, for example, 
subject 41 would have continued with the aperiodic sequence (a1 , a2 ,2a, , a2 ,..., 
na, , az,..) for an indefinite number of trials, then it is necessary to assume that the 
appropriate responses must somehow have become conditioned to run sequences 
which the subject had never previously experienced. Considerations of this sort 
suggest that a complete theory may need to include mechanisms by which the subject 
can make long range predictions, perhaps in the form of hypothesized algorithms 
capable of generating infinite sequences of events. 

One other point seems worth mentioning. Restle (1966) reported experiments in 
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which the event sequences contained both random and deterministic features. In one 
version the sequence consisted entirely of runs of length 2 and length 5. After a run 
of 2e, events the run either continued (with probability S) or broke off. In this experi- 
ment then subjects could learn to always predict an e2 following 5e,‘s, to always predict 
an e, following a run of 4e,‘s, and so on. They could not learn anything useful about 
what to do after a run of 2e,‘s. Rather surprisingly, subjects did not learn to perform 
perfectly on runs of length 5; even after 600 trials the probability of incorrectly 

predicting another e, after 5e,‘s remained greater than .3 and the learning curve 
appeared asymptotic. One way to explain this failure is to suppose that subjects were 
not able to discriminate perfectly between runs of length 5 and shorter runs. But in 

this case subjects could not maintain stable periodic superstitious solutions of the 
form (5a, , 2a,), and the results of Phase VI suggest that in fact they can (e.g., subject 
10). This discrepancy may simply be due to individual differences in memory span. 
Another possibility is that prediction errors, which were unavoidable in Restle’s 
experiment because of the random choice point at runs of length 2, have a particularly 
disruptive effect on memory. According to this interpretation a subject could have 

essentially perfect recall for the current run if he had predicted all of its events correct- 
ly, but incorrect predictions could cause him to lose track of the actual current run 
length. 

REFERENCES 

ARIMA, J. K. Human probability learning with forced training trials and certain and uncertain 
outcome choice trials. Journal of Experimental Psychology, 1965, 70, 43-51. 

ATKINSON, R. C., AND ESTES, W. K. Stimulus sampling theory. In R. D. Lute, R. R. Bush, 
and E. Galanter (Eds.), Handbook of mathematical psychology. Vol. 2. New York: Wiley, 
1963. Pp. 121-268. 

BURKE, C. J., AND ESTES, W. K. A component model for stimulus variables in discrimination 
learning. Psychometrika, 1957, 22, 133-145. 

BUSH, R. R., AND MOSTELLER, F. Stochastic models for learning. New York: Wiley, 1955. 
ESTES, W. K. Probability learning. In A. W. Melton (Ed.), Categories of human learning. New 

York: Academic Press, 1964. 
ESTES, W. K., AND STRAUGHAN, J. H. Analysis of a verbal conditioning situation in terms of 

statistical learning theory. Journal of Experimental Psychology, 1954, 47, 225-234. 
ESTES, W. K., AND SUPPFS, P. Foundations of linear models. Irz R. R. Bush and W. K. Estes 

(Eds.), Studies in mathematical learning theory. Stanford: Stanford Univer. Press, 1959. 
Pp. 137-179. 

FELDMAN, J. Simulation of behavior in the binary choice experiment. In E. A. Feigenbaum and 
J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill, 1963. Pp. 329-346. 

FRIEDMAN, M. P., BURKE, C. J., COLE, M., KELLER, L., MILWARD, R. B., AND ESTES, W. K. 
Two-choice behavior under extended training with shifting probabilities of reinforcement. 
In R. C. Atkinson (Ed.), Studies in mathematicalpsychology. Stanford: Stanford Univer. Press, 
1964. Pp. 250-316. 

GAMBINO, B., AND MYERS, J. L. Role of event runs in probability learning. Psychological Review, 
1967, 74,410-419. 



PROBABILITY LEARNING 575 

GREENO, J. G., AND STEINER, T. E. Markovian processes with identifiable states: general 
considerations and application to all-or-none learning. Psychometrika, 1964, 29, 309-333. 

JARVIK, M. E. Probability learning and a negative recency effect in the serial anticipation of 
alternating symbols. Journal of Experimental Psychology, 1951, 41, 291-297. 

KHINCHIN, A. I. Mathematical foundations of information theory. New York: Dover, 1957. 
LAMPERTI, J., AND SUPPES, P. Chains of infinite order and their applications to learning theory. 

Pacific Journal of Mathematics, 1959, 9, 739-754. 
NIES, R. C. Prediction of sequential two-choice decisions from run events. Journal of Experi- 

mental Psychology, 1962, 64, 430-433. 
NORMAN, M. F. Incremental learning on random trials. Journal of Mathematical Psychology, 

1964, 1, 336350. 
NORMAN, M. F., AND YELLOTT, J. I. Probability matching. Psychometrika, 1966, 31, 43-69. 
RESTLE, F. Psychology of judgment and choice. New York: Wiley, 1961. 
RESTLE, F. Run structure and probability learning: Disproof of Restle’s model. Journal of 

Experimental Psychology, 1966, 72, 382-389. 
RESTLE, F. Grammatical analysis of the prediction of binary events. Journal of Verbal Learning 

and Verbal Behavior, 1967, 6, 17-25. 
ROSE, R. M. Models for experiments with two complementary reinforcing events. Unpublished 

doctoral dissertation, University of Pennsylvania, 1965. 
ROSE, R. M., AND VITZ, P. C. The role of event runs in probability learning. fournal of Experi- 

mental Psychology, 1966, 12, 751-760. 
SKINNER, B. F. “Superstition” in the pidgeon. Journal of Experimental Psychology, 1948, 3, 

168-172. 
STERNBERG, S. H. Stochastic learning theory. In R. D. Lute, R. R. Bush, and E. Galanter (Eds.), 

Handbook of mathematical psychology. Vol. 2. New York: Wiley, 1963. Pp. l-120. 
SUPPES, P., AND ATKINSON, R. C. Markov learning models for multi-person interactions. Stanford: 

Stanford Univer. Press, 1960. 
YELLOTT, J. I., JR. Some effects of noncontingent success in human probability learning. Un- 

published doctoral dissertation, Stanford University, 1965. (Available also as Technical 
Report No. 89 of the Institute for Mathematical Studies in the Social Sciences, Stanford 
University.) 

RECEIVED: May 26, 1968 




