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This paper presents a multiscale data integration method to estimate the spatial distribution of air dose
rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types
of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different
scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent
spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-
type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the
estimates, and to provide the confidence intervals that are critical for robust decision-making. Although
this approach is primarily data-driven, it has great flexibility to include mechanistic models for repre-
senting radiation transport or other complex correlations. We demonstrate our approach using three
types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne
surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple
neighborhoods. Results show that the method can successfully integrate three types of datasets and
create an integrated map (including the confidence intervals) of air dose rates over the domain in high
resolution. Moreover, this study provides us with various insights into the characteristics of each dataset,
as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the
contaminant distribution due to human activities as well as large discrepancy among different surveys
due to such heterogeneity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

dose equivalent rates) in the region around the Fukushima Daiichi
NPP have been performed continuously since the accident (e.g.,

The accident at the Fukushima Daiichi Nuclear Power Plant
(NPP) after the Great East Japan Earthquake resulted in the release
of radioactive contaminants to the atmosphere and environment in
March 2011. The radioactive contaminants were subsequently
deposited on soil and plants via wet and dry precipitation (Tanaka,
2012). The soils in Fukushima and neighboring prefectures are
contaminated with deposition of multiple radionuclides, such as
131 129mpe 110mpg 134c5 and 137Cs. The radiocaesium contamina-
tion is currently considered to be the most serious long-term health
hazard due to its activity released and half-life.

Measurements and monitoring of air dose rates (i.e., ambient
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0265-931X/© 2016 Elsevier Ltd. All rights reserved.

Saito and Onda, 2015; Mikami et al., 2015). The measurements have
been conducted using various techniques such as walk surveys
using portable monitoring systems, car surveys, and airborne sur-
veys. Soil samples also have been collected to assess the extent of
contamination in the terrestrial environment (Saito et al., 2015).
Such mapping efforts are essential to protect the public, to guide
decontamination efforts, and to plan the return of evacuated
residents.

In addition to traditional fixed-location monitoring posts or
handheld monitors, advanced measurement techniques have been
developed, and are currently used routinely in the area. Among
them, airborne monitoring or surveys have been extensively used
to map the air dose rates in the regional scale (e.g., 100 km radius)
with resolution of several hundred meters. In the airborne surveys,
a radiation detector is mounted on helicopters, which then fly over
the target area (Torii et al., 2012). Calibration methods have been
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developed to compute air dose rates at 1 m above the ground
surface by considering attenuation in the air and various factors.
Airborne data have provided vital information to identify the extent
of large-scale contaminant distribution as well as to make policy
decisions for radiation protection purposes. In addition, a GPS-
aided mobile radiation monitoring system mounted on a car or
motorcycle—the Kyoto University RAdiation MApping system
(KURAMA, Tanigaki et al., 2015) —has been used extensively to
characterize the distribution of air dose rates along roads in real
time (Andoh et al., 2015). The KURAMA system has a significant
advantage for real-time monitoring, with the help of online data
streaming and cloud storage system (Tsuda et al., 2015). The KUR-
AMA system has been rigorously tested and verified to be accept-
able for mass monitoring of air dose rates (Tsuda et al., 2015).

With many data survey types available, it has become clear that
there are discrepancies among them in terms of measured air dose
rates, even collected at around the same time and same locations.
This is mainly because each type of data has a different level of
accuracy and a different support scale (i.e., support volume, reso-
lution). For example, airborne surveys measure average air dose
rates over a much larger area (typically a radius of several hundred
meters) than ground-based measurements (~several tens of me-
ters). Such averaging becomes particularly problematic, because
soil contamination and air dose rates are both highly heteroge-
neous, having many hotspots (JAEA, 2012). Physics-based radiation
transport modeling by Malins et al. (2016) also showed that un-
certainty in the above-ground air dose rates is associated with the
horizontal heterogeneity of radio-caesium distribution in soil
rather than the vertical distribution.

In addition to the resolution and support volumes, the different
data types also have different spatial sampling density and different
spatial coverage. Car survey data are, for example, limited to the
locations along roads, even though their data provide relatively
high-density data points along the roads (Tsuda et al., 2015). Walk
surveys are further limited in spatial coverage and often clustered
in several neighborhoods, since it takes time and physical labor for
a person to walk around with a device. The airborne survey has the
large spatial coverage at the regional scale, although the resolution
is low due to the averaging, missing many hotspots and detailed
heterogeneity.

To reconcile such discrepancies, there is a need to develop an
approach to integrate different types of measurements, and to
provide an integrated map of air dose rates by taking into account
the characteristics and uncertainty of each type of measurement. In
environmental science, monitoring and spatiotemporal mapping of
various properties—such as CO, concentration, wind velocity or
reactive transport properties in subsurface—have been the focus of
extensive research in the past decades. Although many traditional
datasets are point-scale and sparse in time and space, recent
advanced datasets can cover large areas, such as remote sensing in
atmospheric/terrestrial sciences and geophysical techniques in
subsurface sciences. Such datasets, however, are known to have
some discrepancy with traditional point measurements, because
they tend to have a larger support volume (or lower resolution),
such that each pixel represents the average of heterogeneous
properties in the vicinity. Various approaches have been proposed
to integrate remote sensing or geophysical datasets with traditional
point measurements (e.g., Wikle et al., 2001; Zhou and Michalak,
2009; Wainwright et al., 2014, 2015).

Particularly, the Bayesian hierarchical approach has been pro-
posed as a flexible and expandable framework to integrate multi-
scale datasets (Wikle et al., 2001; Wainwright et al., 2014, 2015). A
Bayesian hierarchical model typically consists of a series of statis-
tical sub-models mainly in two categories: data models and process
models. The process models—in this context—describe the spatial

pattern (or map) of air dose rates within the domain, representing
the spatial trend and heterogeneity of contamination. The data
models connect this pattern with actual data, given measurement
errors. These data models can represent, for example, a direct
ground-based measurement or a function of the pattern such as
spatial averaging over a certain area for a low-resolution airborne
dataset. The overall model— a series of statistical sub-models—is
flexible and expandable so that it can include complex correlations
or various types of observations. Once all the sub-models are
developed, we can estimate the map of air dose rates and its con-
fidence interval, using sampling-based or optimization-based
methods. One of the main advantages is that this method can
quantify the possible estimation errors and provide confidence
intervals of the estimated air dose rates at any given location.

In addition, geostatistics have been developed to characterize
the spatial heterogeneity of environmental properties and to
interpolate those properties based on sparse measurements
(Deutsch and Journel, 1998; Diggle and Ribeiro, 2007). Geostatistics
are based on the spatial autocorrelation that determines the het-
erogeneity structure based on available datasets; i.e., how the
property value changes over space. Diggle et al. (1998) has applied a
model-based geostatistical approach to characterize the radionu-
clide concentrations ('3’Cs) and to estimate the environmental
decay rate on the Rongelap Island. In addition, geostatistical models
are often used as process models within Bayesian approaches or
Bayesian hierarchical models to integrate multiscale multi-type
datasets (e.g., geophysics and core data, or remote sensing and
ground-based measurements), and to estimate spatially heteroge-
neous properties (e.g., Chen et al.,, 2001, 2006; Sassen et al., 2012;
Wainwright et al., 2014, 2015).

In this study, we develop a Bayesian geostatistical approach to
integrate multiscale datasets (i.e., car, walk and airborne surveys)
and to estimate the spatial distribution of air dose rates at 1 m
above the ground surface in high resolution across the regional
scale. Since we consider that the walk surveys represent the
exposure dose of average individuals walking on the streets, we
estimate the distribution of air dose rates equivalent to the walk
survey data. In addition, we aim to gain a significant insight into the
characteristics of each survey, as well as the spatial heterogeneity
and trend of air dose rates. We demonstrate our approach using the
datasets collected in Fukushima Prefecture, Japan, in November
2013 by Japan Atomic Energy Agency (JAEA).

2. Data description

In this paper, we integrated three types of datasets of air dose
rates collected in Fukushima prefecture of Japan, including walk,
car and airborne surveys. Although JAEA accumulated a vast
amount of datasets of air dose rates since the accident, we used a
subset of datasets to demonstrate our approach. Fig. 1 shows the
domain of interest in this study, which is the northwestern region
of the Fukushima Daiichi NPP approximately within the 80-km
radius. We used the datasets collected around the same time in
November 2013. We assumed that the effect of radiocaesium decay
was negligible among these three surveys. All the datasets were
publically available and downloaded from the data management
system developed by JAEA (Seki et al., 2016).

We used the processed and converted airborne data equivalent
to air dose rates at 1 m above the ground surface. The detailed
procedures of data acquisition and calibration can be found in Torii
et al. (2012). The actual flight altitude was approximately 300 m
above the ground. The publicly available airborne data are inter-
polated on the 250 m-resolution grid. As shown in Fig. 1a, the
airborne data capture the variability of air dose rates at the regional
scale, and show the highly contaminated area extending in the
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northwest direction from the NPP location, which was the pre-
vailing wind direction at the time of the accident. The airborne data
are weighted average over the area around each data point, since
they represent the total gamma radiation emitted from a large area
on the ground. Torii et al. (2012) estimated that the zone of influ-
ence would be within a circle in the same radius as the flight lati-
tude. Alternatively, the radiation transport simulation described by
Malins et al. (2015, 2016) can be used to estimate the relative
contribution of gamma ray emitted from the ground to the air dose
rate measured by a detector at any given height as a function of
source radius. In the simulation, it was assumed that Cs-137 in the
ground distributes exponentially with a relaxation mass depth of
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Fig. 1. (a) Air dose rate map from an airborne survey (in log10, uSv/h), (b) car and walk
survey locations used in this study, and (c) the land use map based on the AVNIR-2
satellite. The black rectangles are the vicinity of Fukushima City used for the estima-
tion. In (b), the walk survey locations were categorized into different land use types.

1 g/cm?. The modeling results (Fig. 2) show, for example, that, at
5 m above the ground, the 190-m radius represents 95% of total
gamma ray counts (assuming Cs-137). At 300 m above the ground,
the 95-percent radius increases to 547 m.

The car survey data were collected using the KURAMA system
mounted on a car. Tsuda et al. (2015) described this system,
including GPS and data streaming to a cloud data storage in detail.
Air dose rates (i.e., ambient dose equivalent rates) and coordinates
were measured every several seconds, while the car was moving.
As shown in Fig. 1b, the data points are distributed along major
roads with high sampling density. Since the car survey detects
gamma ray emitted along roads on a moving platform, the
measured air dose rate is considered to be an average of an
extended area. JAEA's data management system stores the data
averaged in each 100-m mesh grid (Seki et al., 2016), mainly to
obtain sufficient statistical accuracy in the results.

The walk survey data were collected also using the KURAMA
system. In the walk survey, a person carries the system and walks
around each neighborhood so that the walk survey data tend to be
distributed in clusters (Fig. 1b). The walk survey data were collected
from mostly publicly accessible areas, such as pedestrian paths
along roads. The walk survey data were processed and averaged in
each 20-m mesh grid in the database (Seki et al., 2016).

In addition, we used the high-resolution land-use and land-
cover map of Japan (version 14.02) created by Japan Aerospace
Exploration Agency (downloaded from http://www.eorc.jaxa.jp/
ALOS/lulc/lulc_jindex.htm; in Japanese). The map is based on the
50-m resolution multispectral data from the Advanced Visible and
Near Infrared Radiometer type 2 (AVNIR-2) on the Advanced Land
Observation Satellite (Takahashi et al., 2013). The land is classified
into nine types: water, urban, paddy, crop, grass, deciduous forest,
evergreen forest, bare land, and snow and ice. In this study, due to
the data availability, we re-grouped these nine types into three
groups: urban, crop (paddy, crop, grass) and forest (deciduous
forest, evergreen forest, bare land). To reduce the noise, we
smoothed the landscape type by selecting the dominant land cover
type within 300 m of each pixel.
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Fig. 2. Cumulative contribution of gamma radiation from deposited radiocaesium
sources to the air dose rate as a function of source radius at the different altitude of a
detector: 5, 50, 150 and 300 m above the ground.
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3. Methodology
3.1. Exploratory data analysis

Before building a statistical model for the Bayesian estimation,
we performed an exploratory data analysis (EDA) to understand the
characteristics of these datasets and to quantify the spatial het-
erogeneity of air dose rates. We first identified the correlations
among the walk, car and airborne survey data within or near
Fukushima City. We investigated the dependency of such correla-
tions on land-cover types (i.e., urban, crop, forest), since several
studies have reported the effect of land-cover types on the air dose
rates in the environment (Kinase et al., 2014; Mikami et al., 2015).In
addition, we added the datasets from the high-dose and evacuated
area (Futaba Machi). The main focus was to establish the correla-
tions between the low-resolution and high-uncertainty datasets
(i.e., car and airborne survey) and the high-resolution walk survey
data. The Pearson product-moment correlation coefficient was
computed for each pair of datasets.

Such a correlation analysis is typically done by extracting the
data points of two or more types that are located very close to each
other (i.e., co-located data points). To represent different surveys in
our study, however, we need to consider a different zone of influ-
ence (or spatial averaging) depending on the survey type. We tested
several averaging methods to represent the low-resolution car and
airborne survey data: (1) simple averaging within the zone of in-
fluence, (2) inverse-distance weighted (IDW) averaging within the
zone of influence, and (3) weighted averaging with the weights
computed from radiation transport modeling (Malins et al., 2015,
2016). The zone of influence for simple and IDW averaging is the
circle with the radius of 100 m for the car survey data, and the one
of the 300 m for the airborne survey data, respectively.

In addition, we performed a geostatistical analysis to investigate
the spatial variability and spatial correlation structure of air dose
rates in each land-cover type. The underlying assumption in geo-
statistics is that the values at two points are more likely to be
similar when they are closer (e.g., Deutsch and Journel, 1998; Diggle
and Ribeiro, 2007; Dwivedi et al., 2016). The measure of similarity is
defined by the Pearson's correlation coefficient as a function of
distance; the spatial correlation decays to zero as the distance in-
creases. Alternatively, we may define the measure of difference,
referred to as variogram, since the two locations are more likely to
have different values when they are farther apart. In addition, even
when the two points are at the same location, the values may be
uncertain due to measurement errors or small-scale variability.
This spatially uncorrelated portion of variability is called nugget.
The geostatistical (or variogram) analysis intends to estimate (1)
magnitude of variability (or spatial heterogeneity) as variance, (2)
fraction of spatially uncorrelated variability within the total vari-
ability as nugget ratio (i.e., the ratio between the total variance and
nugget variance), (3) spatial correlation range (i.e., the range at
which the spatial correlation becomes zero or approximately zero),
and (4) variogram model (i.e., the function to describe the decay of
spatial correlations) such as exponential and spherical models. We
used the standard variogram approach in the GeoR package of the
statistical software R (Ribeiro and Diggle, 2001). The more detailed
descriptions and mathematical formulation in geostatistics can be
found in Diggle and Ribeiro (2007).

3.2. Data integration and estimation

To develop an integrated map, we denote the air dose rate at i-th
pixel by y;, where i = 1, ..., n. Similarly, we denote the three datasets
by three vectors, representing the airborne survey data z, (each
data point is represented by za j, where j =1, ..., ma), car survey data

zc (each data point is represented by zcj, where j =1, ..., mc), and
walk survey data (each data point is represented by zwj, where
j =1, ..., my). The goal is to estimate the posterior probability
distribution of the air dose rate map y (i.e., the vector representing
the air dose rates at all the pixels) conditioned on the three datasets
(za, zc and zw), written as p(y |za, zc, zw). By applying Bayes’ rule,
we can rewrite this posterior distribution as:

p(Y|za,zc,z2w) <p(Zply)P(Zcly)P(YIZwW), (1

“

where “«” denotes “is proportional to”. We assume that the
datasets are conditionally independent of each other, given the
distribution of air dose rates. The first two conditional distributions
p(za | ¥) and p(zc | y) represent the data models to connect the
distribution of the air dose rates (y) with the low-resolution data
(i.e., airborne or car survey data). The last distribution p(y |zw)
represents the process model to describe the spatial pattern given
the measured air dose rates in the walk surveys. We also assume
that the parameters in the data and process models are estimated
and well constrained through EDA (Section 3.1), and hence they are
considered as known parameters during this Bayesian estimation.
Each sub-model (i.e., conditional distribution) in Equation (1) is
described in the following.

The first conditional distribution p(za | y) in Equation (1) is the
data model representing the airborne data as a function of the air
dose rate map y. We assume a spatial weighted averaging function:

Zp :fA<ZWA,i.jYi) + €aj, (2)

where w, j; is the weight determined by the distance between i-th
pixel and j-th airborne data point, ¢ is the error associated with
each airborne data point, and fa(e) is a function representing the
correlation between the airborne data and air dose rate distribution
(such as a linear function from the linear correlation analysis). We
computed the weight using the Monte Carlo radiation transport
code developed by Malins et al. (2015, 2016) according to the flight
altitude of 300 m. In this study, we assume a linear model such that
zp = Ay + ep, where the ma-by-n matrix A includes the parameters
and also the averaging weights, and ¢4 is the error vector for the
airborne data; ea = {eaj j = 1, ..., ma}. We assume that each
component e follows an independent normal distribution with
zero-mean, and that the error variance g4 can be determined from
the correlation analysis between two datasets (Section 3.1).
Consequently, we can define the ma-by-ma data-error covariance
matrix Dp; each of the diagonal components is ca. The airborne
data vector follows a multivariate Gaussian distribution with the
mean Ay and the covariance matrix Dp, represented by
Zp ~ MVN(Ay, DA).

Similarly, we can define the car survey data as an averaged
function of the air dose rate map y as:

zcj=fc < > WC,iJYi) +ecy- (3)

where wc,;; is the weight determined by the distance between i-th
pixel and j-th data point, ec; is an error associated with each data
point, and fc(e) is a function representing the correlation between
the car survey data and air dose rate distribution. Again, we assume
a linear model z¢c = Cy + ec, where the mc-by-n matrix C includes
the correlation parameters and weights. We also define the mc-by-
mc data-error covariance matrix D¢, with the diagonal components
of error variance oc. The car survey data vector thus follows a
multivariate Gaussian distribution z¢ ~ MVN(Cy, Dc¢).

As a process model, we assume that y is a multivariate Gaussian
field described by geostatistical parameters. Since the walk survey
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data represent the target air dose rates to be estimated, we use the
walk survey data as conditional points to constrain the distribution
of y as p(y |zw). If a walk survey data value is available at a pixel, we
assume that the air dose rate at the location is known. We deter-
mine the geostatistical parameters from EDA described in Section
3.1. The conditional distribution is the multivariate distribution
with the mean p. and covariance =. based on the geostatistical
parameters and conditioning points zy: y ~ MVN(p, =) (Diggle and
Ribeiro, 2007).

Since three conditional distributions in Equation (1) are multi-
variate Gaussian, we can derive an analytical form of this posterior
distribution as a multivariate normal distribution with mean Qg
and covariance Q’l, where

Q==c'+ATDx'A + C'DE'C (4)
g = e + ATDx'zp + C'Dglzc. (5)

Each term in Equations (4) and (5) is already defined above. We
may directly sample y fromy ~ MVN(Q~'g, Q1) for the Monte Carlo
simulations, or estimate the mean (or expected) air dose rate map
by Q 'g. The estimation variance at each pixel is the diagonal
component of Q~!, which represents the uncertainty in the esti-
mation results. We implemented the algorithm in a FORTRAN code,
which is released with an open-source license.

4. Results and discussion
4.1. Exploratory data analysis

Fig. 3 shows the comparison between the walk and car survey
data. Finding co-located points using the minimum distance (blue
circles) causes large scatter, especially in the urban area (Fig. 3a).
Taking a simple average (red circles) reduces the scatter and im-
proves the correlation, particularly in the urban area. In all the land-
cover types, the correlation was statistically significant with p-
values less than 1073, In Table 1, the correlation coefficients are
computed based on the different averaging methods. The simple
average provides the best correlation coefficient. The effect of
averaging is most significant in the urban area, possibly because
human activities and complex terrain created large heterogeneity
in air dose rates (equivalent to the walk survey data). In addition,
the walk survey data included data from small side streets, which
resulted in the discrepancy to the car survey data collected on main
streets. On the other hand, there was little improvement by aver-
aging in the forest, possibly because the heterogeneity is smaller
and the walk and car survey points tended to be along the same
roads.

The car survey data tend to underestimate the walk survey data
at many data points in Fig. 3. This is possibly because radiocaesium
tends to be removed and re-distributed by human and car activities
in the middle of the roads (Andersson et al., 2002). This is also true
in the cropland (Fig. 3b) and forest (Fig. 3c) near Fukushima City. In
the evacuated area (Fig. 3d), however, this is not the case, and the
correlation coefficient is significantly higher (0.99). This is probably
because there is no human activity to re-distribute dirt on the
streets in the evacuated area.

Similarly, the airborne and walk survey data are compared in
Fig. 4 and Table 2. Since there are no airborne data available from
the evacuated area (due to the immediate vicinity of the power
plant), we compared the data only in the three land-cover types.
The correlation is statistically significant in all the land-cover types
(p-values are less than 103). Fig. 4 also shows that the airborne
survey data tend to overestimate the air dose rates, possibly
because the calibration was done only at several locations with an
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Fig. 3. Comparison between the car and walk survey data: (a) urban, (b) cropland, (c)
forest and (d) evacuated areas. The blue circles are the co-located points identified by
the minimum distance. The red circles are the average of the walk survey points using
the simple average. In each plot, the correlation coefficients are shown.

Table 1

Correlation coefficients between the car and walk survey data. In addition to finding
co-located points by the minimum distance (Minimum), we compared several
averaging methods: (1) simple averaging within the zone of influence (Simple), (2)
inverse-distance weighted (IDW) averaging within the zone of influence, and (3)
weighted averaging with the weights computed from radiation transport modeling
(Malins).

Urban Cropland Forest Evacuated
Minimum 0.42 0.81 0.89 0.97
Simple 0.63 0.93 0.93 0.98
IDW 0.62 0.91 0.93 0.99
Malins 0.56 0.88 0.92 0.98

undisturbed flat surface having relatively higher air dose rates.

Similar to Fig. 3, selecting the co-located data points by the
minimum distance (blue circles) shows larger variability, suggest-
ing that small-scale variability is averaged out in the airborne data.
When we take into account the weighted spatial average for the
airborne data (red circles), the correlation improves significantly in
all land-cover types, particularly in the urban area (Fig. 4a). Such a
large improvement (similar to the car/walk comparison in Fig. 3) in
the urban area suggests that the air dose rate distribution in the
urban area is much more variable and heterogeneous within
several hundred meters than the cropland or forest.

Fig. 5 shows the variogram analysis result in each land-cover
type near Fukushima City. Among the three land-cover types, the
urban area has higher variability than other land cover types, which
is consistent with the observations in Figs. 3 and 4. The urban area
also has the highest nugget variance (i.e., the variance at distance
0), suggesting the large variability within a small scale, and the
presence of hot or cold spots. This is consistent with the fact that
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Fig. 4. Comparison between the air and walk survey data in: (a) urban, (b) cropland,
and (c) forest. The blue circles are the co-located points identified by the minimum
distance. The magenta circles are the average of the walk survey points using the
weights computed by the radiation transport simulation.

Table 2

Correlation coefficients between the airborne and walk survey data. In addition to
finding co-located points by the minimum distance (Minimum), we compared
several averaging methods: (1) simple averaging within the zone of influence
(Simple), (2) inverse-distance weighted (IDW) averaging within the zone of influ-
ence, and (3) weighted averaging with the weights computed from radiation
transport modeling (Malins).

Urban Cropland Forest
Minimum 0.53 0.80 0.84
Simple 0.84 0.99 0.95
IDW 0.81 0.98 0.93
Malins 0.85 0.99 0.95

the urban area has more complex microtopography (trenches,
buildings, sidewalks) as well as more human activities that drive
radionuclide re-distribution. The forest, on the other hand, has the
small variability and long range, suggesting that the air dose rates
are less variable, and also change more smoothly over space.

4.2. Data integration and estimation

In this study, we demonstrated the data integration and esti-
mation in the vicinity of Fukushima city (Fig. 6a) to create the in-
tegrated map of air dose rates in high resolution (50 m by 50 m)
over the domain of 25 km by 20 km (i.e., 500 by 400 pixels). The
domain includes the major land cover types, such as urban, crop-
land and forest (Fig. 6b). In the airborne survey data (Fig. 6a), the
south-eastern portion of the domain has higher air dose rates,
possibly because the area lies along the initial plume direction and
is also a forested area where the temporal reduction of air dose
rates is slow. By overlaying the car, walk and air survey data
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Fig. 5. Empirical variograms for three land-use types.

(Fig. 6a), we see that the car and walk survey data show smaller-
scale variability than the airborne data, and that the airborne
data overestimates the air dose rates.

The estimated map (mean field) from the data integration in
Fig. 7a shows more detailed and finer-resolution heterogeneity
than the original airborne data (Fig. 6a), although the general trend
is very similar due to the large spatial coverage of the airborne data.
The systematic bias (or shift) in the airborne data was also cor-
rected. There is a slight shift at the boundaries of the different land-
cover types, since the correlation between the walk and airborne
survey data is different in each land-cover type. As shown in Fig. 6b,
the standard deviation is smaller in the vicinity the car and walk
survey data points, where the estimation is constrained by those
data and the spatial correlation. The standard deviation is larger in
the urban area in Fukushima City, representing the larger uncer-
tainty and variability of air dose rates in the urban area, which is
consistent with the data analysis results.

Fig. 8 shows the validation result to evaluate the performance of
the data integration and the estimation. One hundred points of the
walk survey data (randomly selected) are excluded from the esti-
mation, and used for the validation purposes. Without the data
integration, the airborne data at co-located points (blue dots)
exhibit larger scatters and a systematic bias compared to the walk
survey data. After the data integration, the predicted values (based
on our approach and the three datasets) are tightly distributed
around the one-to-one lines and are mostly included in the 95%
confidence interval. Particularly, the significant bias in the airborne
data is corrected in the forested area (Fig. 8c). Based on these re-
sults, we may argue that this method has successfully created the
fine-resolution integrated map of air dose rates based on the
spatially sparse walk and car survey data, and spatially extensive
airborne survey data.

5. Conclusion

In this paper, we developed a Bayesian geostatistical method for
integrating multiscale, multi-type measurements of air dose rates,
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forest). In (a), the walk survey and car survey locations can be seen as the lines of blue
to orange, since the values are lower than the airborne data.

and demonstrated how this method could be used to integrate low-
resolution and high-uncertainty airborne and car survey data with
high-resolution (but sparse) walk survey data in a consistent
manner. This method was also able to provide the confidence in-
tervals of the estimated map, representing the uncertainty associ-
ated with the data and spatial heterogeneity. Although the current
demonstration results were limited in a particular area and time,
the results shown here suggested that the effective combination of
ground-based data and airborne data could provide detailed and
integrated maps of air dose rates in the regional scale around the
Fukushima Daiichi NPP. In addition, the statistical analyses pro-
vided various insights into both the characteristics of each dataset
and the spatial heterogeneity of contamination.

The exploratory data analysis showed that the car and airborne
survey data could be represented by the spatial average of more
detailed air dose rate distribution from the walk survey data. The
spatial average had the highest impact in the urban area, where the
co-located air dose rate had the biggest discrepancy between the
walk and air surveys as well as between the walk and car surveys.
This would be because the urban area had a large heterogeneity in
air dose rates and radiocaesium distribution induced by human
activities and complex terrains. In the forest and cropland area, on
the other hand, the car and airborne survey data were more
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Fig. 7. (a) Integrated dose-rate map (or mean field) based on the developed data
integration method, and (b) the estimated standard deviation. In all the plots, the data
values are log-transformed.

consistent with the walk survey data.

The geostatistical analysis also revealed that the spatial het-
erogeneity of air dose rates depended on different land-cover types.
The air dose rates were more variable in the urban area than in the
cropland and forest areas. More detailed surveys would be required
in the urban area to accurately characterize the contamination,
while sparse measurements would be sufficient for interpolation in
the cropland and forested areas.

The developed estimation method was very powerful to take
into account such data correlations and spatial characteristics
found in the data analysis for integrating multiscale data and for
estimating the distribution of air dose rates over a large area. In
addition, we used the weighted averaging factors derived from
physics-based radiation transport models to accurately represent
the airborne data. The estimated map not only captured more
detailed spatial heterogeneity than the original airborne survey
data, but also reflected the physical understanding of the radio-
caesium distribution found in the datasets; for example, the urban
area had higher uncertainty and larger confidence intervals,
particularly in the areas without walk survey datasets. Having the
confidence intervals would help estimate the range of exposure
dose or plan the return to the evacuation zones in a more robust
manner.
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In future work, we plan to improve the estimation approach, for
example, by including other information such as topography, and
by including the correlation between the air dose rate and actual
caesium concentrations in soil. In addition, we will carry out
spatiotemporal integration—by integrating spatially sparse but
continuous-time monitoring data, and temporally sparse but
spatially extensive data, such as airborne data—to provide a
detailed map of air dose rates and radionuclide contamination at
regional scale at any given location and time, including the asso-
ciated confidence intervals.
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