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Introduction
Convolutional neural networks (CNNs) trained as classifiers
learn by associating visual inputs (e.g., photographs of ob-
jects) with appropriate output labels (e.g., “crow”, “dog”,
“car”). These complex models, which contain millions of
weights, are the state-of-the art in machine vision, rivaling
humans in object recognition tasks (LeCun, Bengio, & Hin-
ton, 2015; Krizhevsky, Sutskever, & Hinton, 2012). What
these networks learn displays some commonalities with hu-
man learning (Kubilius, Bracci, & de Beeck, 2016; Lake,
Zaremba, Fergus, & Gureckis, 2015). Furthermore, the layers
in these networks have been related to neural activity along
the ventral stream (Khaligh-Razavi & Kriegeskorte, 2014;
Yamins & DiCarlo, 2016)

The similarity spaces created by these models at various
network layers allow us to draw parallels with the brain’s neu-
ral coding schemes (Guest & Love, 2017). At earlier layers,
networks display similarity spaces that reflect the high-level
categories found in the input space, e.g., lions and tigers are
more similar to one another than to mopeds. At the more ad-
vanced layers, similarity structure tends to break down such
that representations of different object categories become or-
thogonal.

Can these networks also shed light on how non-human an-
imals categorize? CNNs can be used to determine at what
level of representation (i.e., what network layer) animals are
coding similarities between images. For example, are ani-
mals learning regularities at a very low level, close to the
pixels in the image, or are they seizing upon more abstract
shape features? In this contribution, we address this question
by examining data from pigeons trained to categorize images
of cardiograms as normal or abnormal.

Pigeons are excellent at classifying visual stimuli (Bhatt,
Wasserman, Reynolds, & Knauss, 1988). For example, pi-
geons trained to discriminate between medical images of nor-
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Figure 1: Two examples of the stimuli that the pigeons and
network are asked to classify: a) a normal cardiogram without
any perfusion damage; and b) an abnormal cardiogram with
total perfusion damage 20 (of a maximum of 51).

mal and cancerous breast tissue generalized to novel stim-
uli and attained human-level accuracy (Levenson, Krupin-
ski, Navarro, & Wasserman, 2015). Importantly, knowledge
transfer was only true in certain circumstances. Pigeons only
generalized within image magnification levels — they were
not scale-invariant. Also, generalization was significantly
compromised, although still above chance, when tested on
grayscale images (perhaps to be expected given the loss of
hue and brightness cues). However, the pigeons’ performance
improved with additional training on greyscale images.

Can CNNs explain such patterns of performance? At
the most advanced layers of these networks, representations
should be somewhat invariant to changes in size, luminance,
translation, etc. However, at lower layers the network will
be more sensitive to such changes and will not generalize as
broadly. Which network layer best captures how pigeons cat-
egorize?

Here we consider data from an a yet unpublished study by
Wasserman and colleagues in which pigeons are trained to
classify cardiograms as normal or abnormal, see Figure 1.
Pigeons can correctly determine whether a cardiogram is ab-
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normal or normal in much the same way as a skilled human,
and can correctly classify unseen cardiogram images.

To parallel the pigeons, we also show the same stimuli
to a CNN, namely Inception-v3 GoogLeNet (Krizhevsky et
al., 2012). In line with the pigeons, the network can also
determine whether a stimulus is normal or abnormal. Also
like the pigeons, Inception-v3 GoogLeNet is very sensitive to
changes in color, having serious problems generalizing when
trained on color images and tested on grayscale without addi-
tional training. Importantly, even though the model can dif-
ferentiate between the two classes at the output layer it can
also do so at much lower layers. The output layer is trained to
represent very high-level conceptual categories (1000 mutu-
ally exclusive classes, e.g., sunglasses, moped, jellyfish, etc.).
Although these output classes do not contain options for nor-
mal and abnormal cardiograms, the network provides a dis-
tributed answer across these categories thus solving the clas-
sification task. In other words, the output shows a similarity
structure matching the normal/abnormal distinction in the in-
puts.

As mentioned, at lower layers including the input layer, the
network can also differentiate the two types of stimuli into
normal and abnormal. This means that basic stimulus proper-
ties, which are what the network and the pigeons are extract-
ing and learning, are sufficient to separate the two classes of
cardiograms shown in Figure 1. This is important because
it implies that more complex and abstract features, or even
representations of basic shapes, are not required for the type
of learning problem the pigeons are solving. In addition, this
predicts that generalization will be poor in both the animal
and computational models we have considered. We consider
the broader implications of these results for how humans and
non-human animals categorize.
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