Lawrence Berkeley National Laboratory
Recent Work

Title
Nested dissection orderings for LU factorization with static pivoting

Permalink
https://escholarship.org/uc/item/5981t1n0Q

Authors

Pinar, Ali
Singh, Manmeet
Ng, Esmond

Publication Date
2003-10-31

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5q81t1n0
https://escholarship.org
http://www.cdlib.org/

Nested Dissection Orderings for LU Factorization with Static
Pivoting™

Ali Pinar’  Manmeet Singh*  Esmond Ng®

Introduction

We consider the LU factorization of a general sparse matrix A. We assume that the matrix has
been preprocessed so that pivoting for numerical stability is not needed during the factorization
phase. This is the case, for example, when the matrix has been permuted so that elements with
large magnitude appear on the diagonal.

The sparsity of the LU factors depends on how the rows and columns are permuted. A popular
approach is to compute a symmetric ordering P, such as nested dissection or minimum degree,
using the symmetrized matrix A + AT, and then apply the resulting permutation P to the rows
and columns of A symmetrically. However, when A is highly unsymmetric, the quality of P, in
terms of the sparsity of the LU factors, may be poor.

When P is computed using nested dissection, it is possible to improve the quality of P by
refining the separators in nested dissection, as we will show below.

Structure Prediction for LU Factorization with Static Pivoting

During factorization some zeros of the matrix change to nonzeros, which we call fill. Repre-
senting the nonzero structure of a sparse matrix as a graph enables us to explain the fill during
factorization through paths in graphs. Let A = (a;;) be an N x N matrix with nonzeros on its
diagonal. The nonzero structure of A is represented by the directed graph G(A) = (V, F), where
V =A{vi,vg,...,on}, and £ = {(v;,v;) 1t # 7 and a;; # 0}. The effect of LU factorization on
the structure of the matrix A and/or its graph G(A) = (V, E) can be described by the fill graph
GT(A) = (V,ET), where

E* = {(vi,v;) : i # j and v; is reachable from v; through vertices numbered lower than min(i, j)}.

As can be seen from the definition of GT(A), the fill is determined by the reachabilities through
lowered numbered vertices, which calls for a clever way to number vertices. Minimum degree
algorithms greedily order vertices with small degrees first as an attempt to limit reachabilities.
Nested dissection algorithms on the other hand find a subset of the vertices, a separator, removal
of which disconnects the graph into two or more parts. Ordering this separator after all other
vertices guarantees that no vertex from one part reaches a vertex from another part, thus there is
no fill between these parts. The same procedure is applied recursively on the disconnected parts
to limit the fill within the part.

When the matrix is symmetric, the graph is undirected since every edge becomes bidirectional.
In this case, a separator S is a subset of the vertices that partitions the remaining vertices of the
graph into two parts V; and V5 so that there are no edges between Vi and V5. We refer to such
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Figure 1: (a) Strong separator (b) Directed separator

separators on undirected graphs as undirected separators. Keeping the size of the separator small
is critical; vertices in the separator are reached by practically all other vertices of the graph. The
problem of finding a good separator is well-studied under the are of graph partitioning. In this
work, we focus on the definition of a separator for nested dissection orderings of unsymmetric
matrices to preserve sparsity during LU factorization with static pivoting.

Separators for Unsymmetric Matrices

A strong separator S in a directed graph is a subset of vertices that partitions the remaining
vertices into two parts V4 and V3 so that there are no edges between Vi and V5, as illustrated in
Fig. 1. A strong separator permutes the matrix into the following form

Al A13
Ay Ags (1)
A31 A32 AS

where vertices in Vi, V3, and S correspond to rows/columns of submatrices Ay, Ay, and Ag,
respectively. When we apply LU factorization to this matrix, there will be no fill in the (1,2)- and
(2,1)-blocks of the matrix, and thus the internal reorderings of rows/columns in A; and Ay will
not affect each other. Such a separator can be obtained by finding an undirected separator on
G(A+ AT). This has been long used as a heuristic for nested dissection orderings for unsymmetric
matrices. We show that the two problems are equivalent.

Theorem 1 An undirected separator in G(A + AT) is equivalent to a strong separator in G(A).

We omit the proof due to space limitations.

Although a strong separator limits the fill to only nonzero blocks in (1), it is possible to reduce
the fill further with alternative definitions of a separator. A directed separator 5S4 in a directed
graph is a subset of vertices that partitions the remaining vertices into two parts V; and V3 so
that there are no edges from V5 to Vi. Note that V7 and V; are not decoupled completely as in
the case of a strong separator, since there may be edges from V; to V5.

When we use a directed separator to permute the matrix, we will obtain the following block

matrix.
Ay Ay Agg
Ay Ay
Az Az Ag

The LU factorization of Ay does not cause any fill in the (2,1)-block and in A;. However, there
may be fill in Aj5. Although this may look like a disadvantage, it is important to note that a
directed separator reduces the size of Ag, and the extra fill on Ay, is no more than the fill that
will be incurred if a strong separator is used. The following theorem formalizes how we can reduce
the fill by using a directed separator instead of a strong separator.



Figure 2: Translating a strong separator to a directed separator

Theorem 2 Let S be a strong separator for G(A) and let Vi and Vy be the resulting disconnected
parts, and let a(V') denote an optimal ordering for vertex set V' that minimizes the fill of factor-
ization. Let S, C 5 be the set of vertices that have no edges directed from them to Vi, as illustrated
in Fig. 2 5. = S\ S, is a directed separator for G(A) with V1 and V2 U S, as disconnected parts,
and the fill induced by using the ordering a(Vy),a(Va U Sg), S, is less than or equal to the fill

-
/

induced by using the ordering a(V1), a(Vy), Sg, S..

Proof:  The fill on V5 and 5. will not change, and the fill for a(V2 U Sg) is less than or equal
to the fill for a(V3), a(S,), by definition of a. The only point we have to prove is there is no
extra fill from V; to V3, due to moving 5, vertices up in the ordering. This is only possible if
there exists a path between two vertices in V5 U Sg go through vertices in V;. This is not possible
however because there are no edges from V3 or 5, to V. |

It is possible to relax the separator definition even further, but we are not including these
discussions due to space restrictions. We are currently implementing the proposed techniques.





