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ABSTRACT OF THE DISSERTATION 

 
 

Impact Generated Pulses in Strongly Nonlinear Dissipative Metamaterials 

 

by 

 

Yichao Xu 
 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 
 

University of California, San Diego, 2016 
 

Professor Vitali F. Nesterenko, Chair 
 

 

This research is conducted to study the propagation of stress pulses with wave 

length comparable to the size of a unit cell in an one-dimensional chain composed of 

steel cylinders alternating with toroidal Nitrile rubber O-rings under different levels of 

precompression or without precompression force by using experiments, numerical 

simulations and theoretical analysis. Nitrile O-rings are making the system more tunable 

than the traditional metamaterials composed of steel spherical particles and this 



 xxi 

metamaterial has better dissipative properties especially for high energy repeatable 

impact loading. This strongly nonlinear discrete metamaterial can be potentially useful 

for acoustic and shock/impact mitigating applications.   

Investigated metamaterial is strongly nonlinear system with unique properties, 

where the strong nonlinearity arises from the Hertzian contact interaction or from more 

general double power interaction law under large compression. If the initial 

precompression is zero, such a system cannot support a classical sound waves and for 

this reason it is called a “sonic vacuum”.  

The static force-displacement relationship for toroidal O-ring is described by a 

combination of two power-law terms being in satisfactory agreement with experimental 

observations. This suggests unique tunability and it was demonstrated that the pulse 

speed indeed is strongly tunable with applied static stress. A strong attenuation of stress 

pulse was observed at a relatively short distances from the entrance. It is attributed to 

the viscous dissipation during dynamic deformation of strongly nonlinear viscoelastic 

O-rings, its dependence on the initial precompression was studied. Several models for 

this nonlinear metamaterial were numerically investigated to clarify the mechanism of 

the observed strongly nonlinear dissipation by representing O-rings in the frame of 

Kelvin-Voigt model: strongly nonlinear massless spring with parallel dashpot with 

nonlinear damping coefficient being function of initial precompression. Single bell 

shape waves of different durations and amplitudes were generated in the system without 

precompression by an impact of strikers with different masses. The viscous dissipation 

prevents the incoming pulse from splitting into trains of solitary waves typical for non-

dissipative strongly nonlinear discrete systems. Very unusual behavior of strikers with 
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relatively large masses in comparison with mass of steel cylinders in the metamaterial 

was observed in experiments – strikers did not recoil after impact with investigated 

metamaterial. Results of numerical modeling were in agreement with speed of stress 

pulses, their attenuation and strikers behavior observed in experiments.



1 

CHAPTER 1 

INTRODUCTION 

 
 
1.1   A New Type of Strongly Nonlinear Metamaterial 
 

There is always a continued need and interest in investigating the complex 

dynamic behavior of heterogeneous metamaterials, and in such a broad and developing 

area, the experimental, theoretical and numerical investigations reveal new and 

interesting properties and phenomenon that may be useful to practical application. Their 

strongly nonlinear dynamic response is affected by the geometry and topology of 

metamaterial, geometry of the contacting elements which determine the strongly 

nonlinear contact forces between adjacent elements (e.g., the contact interaction 

between linear elastic spherical grains described by the Hertz law [1]). Extensive 

research has been done to investigate the transmission of waves in granular based low-

dimensional metamaterials. One of the exciting discoveries was observation of the 

strongly nonlinear solitary waves which are qualitatively different from weakly 

nonlinear waves [2-13]. The nature of waves in these materials is also of general interest 

because they represent the dynamic response strongly affected by the mesostructure [14].   

The term metamaterial is used to describe the types of materials which are not 

found in nature. They usually assembled from multiple elements with dramatically 

different properties. Metamaterials investigated in this research provide an example of 

media where linear and even weakly nonlinear descriptions of force-displacement 

relation fail. They are highly nonlinear materials with a qualitatively new behavior 
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according to some physically inner properties, such as nonlinearity of the force 

interaction law between neighboring particles, structural rearrangements under an 

applied load, and inevitable dissipation between particles. It is well known that 

metamaterials can reduce damage caused by impact or explosion due to their ability to 

absorb significant energy and transform high amplitude short pulse into a longer ramped 

pulse with significantly smaller amplitude [8,15]. For example, heterogeneous 

metamaterials could be good buffers for shock loads, and the thorough understanding 

of pulse propagation in these materials can lead to development of barriers for 

attenuation of high amplitude pulse valuable for example in medical applications, like 

disintegration of kidney stones [16]. The study of mechanics of strongly nonlinear 

metamaterials provide a natural step from linear, weakly nonlinear to strongly nonlinear 

wave dynamics which is of substantial interest for science and engineering.   

The idealized one-dimensional metamaterial has a simple structure, and thus 

provide direct comparison between theoretical description and experimental 

observations. This idealized structure is able to provide an unexpected result which 

enlighten our understanding of the materials in real life. Although the practical 

applications of granular based metamaterials involve wave propagation in higher 

dimensional granular assemblies, the study of a one dimensional granular chain is a 

logical step forward to lay the groundwork for our understanding of strongly nonlinear 

wave dynamics in metamaterials with more complex mesostructure. 

Most of the earlier studies about granular materials were focused on rather 

elastically rigid systems composed from steel beads. Sound waves can propagate in 

these systems only if they are precompressed and the sound speed increases relatively 



 

 

3 

fast with increase in applied precompression [8]. Tunability of these strongly nonlinear 

systems represents their important difference from the perfectly linear elastic materials, 

giving the possibility for qualitatively new phenomena, e,g., ‘acoustic diode’ effect [17]. 

It should be mentioned that elastic modulus of the system composed from spherical 

particles in case of zero precompression is zero – “sonic vacuum” [8]. Later linear 

chains composed of other metal [7] and polymer beads such as Teflon [10,11] or steel 

beads coated with soft polymer layer [11,12] were also investigated. It was 

demonstrated that strongly nonlinear solitary waves exist in these metamaterials even 

in case of polymer (or polymer coated) beads. The one dimensional chains composed 

of spherical particles made from stainless steel, brass, glass, Nylon, Teflon [2,6,7,9-12], 

steel particles coated by Parylene-C [11,12], and Homalite-100 circular cylinders [4], 

were shown to support solitary waves in experiments in agreement with numerical 

calculations and analytical analysis. 

The Hertz type of contact interaction at the contact point is an acceptable 

approximation though with significantly larger elastic moduli than their static values for 

Teflon and Parylene-C [10-12]. New type of strongly nonlinear chains composed from 

toroidal elements, e.g., Teflon O-rings was proposed and investigated in [18-21]. The 

advantage of this system is based on its stronger nonlinearity than the Hertzian type 

nonlinearity of interaction force and potential for high energy absorption which is a 

basis for the current extensive applications of O-rings in heavy machinery [22].  

This work focuses on the nonlinear behavior of the strongly nonlinear dissipative 

metamaterial composed of alternating stainless steel cylinders and toroidal Nitrile O-

ring, which are much softer than Teflon O-rings. This results in a smaller speed of signal 
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propagation and with a better potential for higher energy absorption [23-25]. Nitrile is 

the most popular O-ring elastomer, with a wide application in the seal industry. It has 

high resistance to oil. But the circular shape of O-ring and the viscoelasticity of Nitrile 

O-ring strongly affect the dynamic behavior of these metamaterials and make the 

analysis of wave propagation more difficult. Compared with traditional metamaterials 

composed from elastic spherical particles, this system with toroidal Nitrile O-rings can 

be more tunable, because they exhibit highly nonlinear, double power law dependence 

of force on deformation in static loading [26-28]. Compressive solitary waves in the 

lattices with O-rings as strongly nonlinear elements placed between steel cylinders were 

investigated in [18-21].  

It was demonstrated that the introduction of Nitrile O-rings in drop weight 

machine allowed to conduct “soft” drop weight test effectively reducing the high 

amplitude parasitic oscillations typical for standard drop weight tests which is especially 

important for the dynamic testing of low strength samples [29-31]. The behavior of O-

rings under static deformation is well known [26-28] and the corresponding properties 

are used in the design of heavy machinery. But the dynamic behavior of these most 

common and important elements of machine design is not well investigated and 

understood. Only few papers were published where the complex dynamic behavior of 

Nitrile O-rings under low velocity impact (expected in some heavy machinery) were 

investigated [32-33].  

Each part of this dissertation deals with the dynamic behavior of metamaterials 

composed of steel cylinders and Nitrile O-rings which could support the propagation 

of energy in the form of different types of waves. Wave propagation in these one-
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dimensional nonlinear metamaterials presents dramatic dependence on the application 

of compressive forces, practically without the changes to the geometry of the system. 

Different types of waves in metamaterial may be classified by the degree of 

nonlinearity in the system.  

The first part of this work (chapters 2-3) is focused on the weakly nonlinear 

dynamic behavior of the precompressed metamaterial composed of alternating steel 

cylinders and Nitrile O-rings. Chapter 2 presents results related to the properties of the 

metamaterial composed of Nitrile O-rings and steel cylinders, specifically the effect of 

the static compression force on the speed of the short-duration stress waves. The 

mechanism of strongly nonlinear dissipation in this metamaterial is discussed in chapter 

3, and its corresponding detailed numerical analysis and simulations are described in 

Appendix A.  

The second part of this work (chapters 4-5) presents results related to the 

strongly nonlinear dynamic behavior of this metamaterial under zero precompression 

force. This investigation is directed toward clarification of the effects of viscous 

dissipation accompanying dynamic deformation of Nitrile O-ring and its effects on the 

stress wave attenuation.  

 
1.2 Weakly Nonlinear Behavior of Metamaterials 
 

Unique properties of strongly nonlinear metamaterials are attributed to the 

completely nonlinear interaction forces between adjacent particles. For example, the 

force-displacement between neighboring steel cylinders in a chain composed of altering 

steel cylinders and Nitrile O-rings is described by a double power-law without linear 
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part [26-28].  

Depending on the specific static loading and impact conditions the nature of a 

wave propagating in metamaterials varies. A low velocity impact may result in short 

duration small amplitude weakly nonlinear waves or even sound waves in a 

precompressed system. An impact on sonic vacuum may generate solitary wave (or their 

train) or a single bell shape pulse depending on the striker mass and dissipative 

properties of the system. 

In this section of the dissertation, the weakly nonlinear dynamic response of the 

metamaterial composed of steel cylinders and O-rings is discussed. Consider a periodic 

chain of N steel cylinders separated by O-rings and statically compressed by static force 

F0. Its unit cell contains a stainless steel cylinder and one O-ring having the initial size 

a (a=h+d, where h is the height of steel cylinders, and d is the cross section diameter of 

O-ring), as showed in Fig. 1.1. The initial static forces between neighboring cylinders 

are due to the nonlinear elastic deformation of O-rings caused by decreasing their height 

by x0. The quasi-static elastic forces between cylinders (𝐹"#) are represented by double 

power-law equation and depend on their geometric parameters, elastic properties and 

ratio (x0/d) [26-28], 

𝐹"# = 𝜋𝐷'𝑑𝐸*[1.25	
  
12
3

4 5
+ 50 12

3

8
],                                 (1.1) 

where Dm is a mean diameter, and E0 is quasi-static Young’s modulus of the Nitrile 

rubber. Thus, O-rings represent a strongly nonlinear elastic element with nonlinearity 

stronger than Hertzian law at relatively large x0, when the second term in Eq. (1.1) 

dominates. 
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The deformation of soft O-ring in contact with rigid steel cylinder is confined to 

a very small region near the contact point. As a first approximation, one can consider 

that deformation of an O-ring during a dynamic process obeys a static Eq. (1.1), because 

its strong nonlinearity is due mainly to geometrical effects, with possible change in the 

elastic modulus E0 accounting for strain-rate effects. The steel cylinders are practically 

not deformed, and it is assumed that the duration of the pulse is much longer than the 

characteristic time for wave propagation inside steel cylinders, which allows 

simplifying them as point masses. The mass of steel cylinder (m=3.065g) was about 50 

times larger than O-rings (mass 0.0625g). Thus, to a first approximation, the O-rings 

can be considered as massless viscoelastic springs. 

 

 
 

Figure 1.1: A schematic representation of a one–dimensional chain composed of steel 
cylinders and Nitrile O-rings with a large static compression force F0 causing an initial 
displacement x0 between neighboring centers of cylinders. And xd,i is the displacement 
of the i-th cylinder from its equilibrium position in the statically compressed chain and 
a is a distance between centers of neighboring cylinders without precompression. The 
right end of the chain is fixed and the external excitation is applied to the left end. The 
crosses show the initial equilibrium position of cylinder centers in a statically 
compressed chain. The black circles correspond to the position of the cylinder centers 
in the wave. 

 

When the external excitation applied to the chain, the equations of cylinder 
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motion without considering dissipation is described as  

𝑢; = 𝐴*[ 𝑥* − 𝑥3,; + 𝑥3,;@A
B
C − 𝑥* − 𝑥3,;DA + 𝑥3,;

B
C] + 𝐵* 𝑥* − 𝑥3,; + 𝑥3,;@A

8 −

𝑥* − 𝑥3,;DA + 𝑥3,;
8

,                                                                                   (1.2) 

where xd,i (2 ≤ 𝑖 ≤ 𝑁 − 1) denote the displacement of the i-th cylinder from its static 

equilibrium positions in the initially compressed chain and the O-rings remain 

compressed during the wave propagation. N is the number of steel cylinder and m is a 

mass of steel cylinders. If the behavior of O-ring obeys static dependence of force on 

their height reduction then 𝐴* = 1.25π𝐷J	
  𝐸*/𝑚𝑑A/5, 𝐵* = 50π𝐷J	
  𝐸*/𝑚𝑑M [26-28]. 

The dot denotes a derivative with respect to t. 

Since the system is “strongly compressed” by static precompression force, the 

discrete anharmonic approximation (i.e. considering 𝑥3,;@A − 𝑥3,; ≪ 𝑥*) of Eq. (1.2) 

in a long wave limit (𝐿 ≫ 𝑎A = 𝑎 − 𝑥*, where 𝐿 is a characteristic spatial size of the 

wave perturbation) can be derived using the continuum variable replacement resulting 

in the Boussinesq’s wave equation [8] 

𝑢RR = 𝑐*5𝑢11 + 2𝛾𝑐*𝑢1111 − 𝜎𝑢1𝑢11,                                       (1.3) 

where the subscripts t or x denote the partial derivatives with respect to t or x. 

For short pulses, the regularized Boussinesq wave equation is more suitable [8] 

𝑢RR = 𝑐*5𝑢11 +
5V
W2
𝑢RR11 − 𝜎𝑢1𝑢11,                                            (1.4) 

where the corresponding parameters are: 

𝑐*5 = 3𝐴*𝑥*
Y
C/2 + 6𝐵*𝑥*M 𝑎A5, 𝛾 = 𝑐*𝑎A5 24, 

and                          𝜎 = 3𝐴*𝑥*
@YC/4 + 30𝐵*𝑥*\ 𝑎A4. 
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All the higher-order terms are omitted, and the convective derivative in acceleration is 

ignored assuming that speed of the pulse is much larger than the particle velocity. 

The long-wave sound speed 𝑐*  in this precompressed metamaterial can be 

expressed as  

𝑐*5 = 𝑎A5
4
5
𝐴*(𝑎A𝜉*)A/5 + 6𝐵*(𝑎A𝜉*)M ,                                        (1.5) 

where	
  𝜉* is the static initial global strain in the metamaterial, defined as	
  𝑥*/𝑎A. It is 

assumed that the dynamic behavior of the O-ring is similar to its static response. 

It should be mentioned that sound speed 𝑐* in Eq. (1.5) is not the sound speed 

in the steel cylinder or Nitrile O-ring. It is a long-wave sound speed in the whole 

metamaterial. It can be significantly smaller than the bulk sound speed in the materials 

of the steel cylinder or O-ring and can be tuned by precompression. Apparently, the 

sound speed 𝑐* not only depends on the initial strain, but also can be affected by the 

elastic modulus of O-rings, their geometric parameters and the mass of steel cylinders.  

The dispersion relations for linearized Eqs. (1.3) and (1.4) are, correspondingly, 

𝜔5 = 𝑐*5𝑘5 − 2𝑐*𝛾𝑘\                                                     (1.6) 

and                                     𝜔5 = 𝑐*5𝑘5 1 + 5V
W2
𝑘5

@A
.                                               (1.7) 

Here 𝑘  is the wave vector (2𝜋 𝜆) , and 𝜆  is the wave length. Based on the above 

dispersion relations, the group velocity 𝑐c of a pulse propagating through the chain is 

given by the following equation for the Boussinesq’s and regularized Boussinesq’s 

wave equations, correspondingly: 

𝑐c ≡
3e
3f
= 𝑐* 1 − gYCfC

8
	
  	
  	
   1 − gYCfC

A5

@A/5
,                        (1.8) 
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𝑐c ≡
3e
3f
= 𝑐* 	
  	
   1 +

gCfC

A5

@4/5
.                                           (1.9) 

Equation (1.3) could be transformed into Korteweg-de Vries (KdV) equation 

under the same assumptions [8, 34]: 

𝜉R + 𝑐*𝜉1 + 𝛾𝜉111 +
h
5W2
𝜉𝜉1 = 0,  𝜉 = −𝑢1.                            (1.10) 

According to KdV equation [Eq. (1.10)], a stationary solitary wave and shock wave (if 

dissipation is included) can propagate in an initially compressed weakly nonlinear 

system [8, 35]. This Eq. (1.10) could be used to analyze the behavior of the investigated 

metamaterial for the weakly nonlinear case, when the force amplitude of the localized 

pulse is significantly smaller than the initial precompression force. A solitary wave 

speed Vs for the solitary wave stationary solution to Eq. (1.10) is given by  

𝑉j = 𝑐* +
h(kl@k2)

8W2
,                                                         (1.11) 

where ξm is the maximum strain in the solitary wave. 

It is evident that the speed of this wave has a linear dependence on the maximum 

strain and in weakly nonlinear case (𝜉' − 𝜉* ≪ 𝜉*), 𝑉j is close to the sound speed 𝑐*. 

This equation can be used to estimate the role of nonlinearity on the value of the pulse 

speed for the short compression pulses observed in the experiments. It should be 

mentioned that only compression solitary waves are supported by nonlinear systems 

with elastic stiffening under compression.   

 
1.3   Strongly Nonlinear Behavior of Metamaterial 
 

One very interesting feature of the investigated metamaterial is that it behaves 

quite differently in the presence or absence of precompression. For a system composed 
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of elastic spherical particles, the zero precompression will lead to a complete absence 

of linear wave dynamic and zero velocity of sound in these media (characterized as 

“sonic vacuum” by Nesterenko [8]), and the corresponding wave equation supports a 

qualitatively new strongly nonlinear Nesterenko solitary wave [2,3]. 

This section is devoted to the analysis of the strongly nonlinear dynamic 

response of the metamaterial. Consider a one-dimensional metamaterial composed of N 

steel cylinders alternated by Nitrile O-rings in the state of sonic vacuum (zero 

precompression force) (Fig. 1.2). The Nitrile O-rings are considered as massless 

nonlinear springs based on the large ratio of mass of steel cylinder (with mass m = 3.065 

g) to the mass of Nitrile O-ring (0.0625 g) and steel cylinders as point masses.  

 

 

Figure 1.2: A schematic representation of wave propagation in one-dimensional 
metamaterial composed of N steel cylinders alternated by Nitrile O-rings without initial 
compression force. The value of a is the distance between centers of neighboring steel 
cylinders in the uncompressed chain in front of propagating wave and xi is the 
displacement of the i-th steel cylinder from its position in the uncompressed chain 
caused by wave propagation. The crosses show the initial positions of cylinder centers 
in the uncompressed chain. The solid dots correspond to the position of the cylinder 
centers in the wave. At the bottom the arrow shows the direction of impulse propagation, 
the left part of the chain is unloaded but first and second cylinders are still in contact 
(depending on the impact conditions they can be separated) and the right part is not 
loaded yet.  
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The non-dissipative equations of steel cylinder motion in this strongly 

nonlinear system, using double power law similar to the quasi-static force between the 

contact particles (quasi-static law), is presented below:  

𝑢; = 𝐴[ 𝑥;@A − 𝑥;
B
C − 𝑥;−𝑥;DA

B
C] + 𝐵 𝑥;@A − 𝑥; 8 − 𝑥; − 𝑥;DA 8 ,       (1.12) 

where xi denotes the displacement of the i-th cylinder from its equilibrium positions in 

the system without precompression, and  𝐴 = 1.25π𝐷J	
  𝐸imp/𝑚𝑑A/5 , 𝐵 =

50π𝐷J	
  𝐸imp/𝑚𝑑M. The equivalent elastic modulus of Nitrile rubber O-ring in the 

propagating wave generated by impact (Eimp) on the uncompressed system may be 

different than its static value E0 due to a possible frequency dependence of properties of 

the dynamically deformed O-ring. It also can be different than the effective elastic 

modulus Eeff  used for the precompressed chain [23,24] and related to the elastic 

behavior of O-ring in the vicinity of statically precompressed state.  

According to Ref. [23], the dependence of force on the deformed height of 

Nitrile O-ring obeys Hertzian behavior [first term on right in Eq. (1.12) with exponent 

3/2] at relatively small strains (less than 0.3). The dynamic response of metamaterial in 

sonic vacuum under investigated impact conditions is within the “Hertzian zone”. Then 

the speed of the solitary wave Vs in a non-dissipative metamaterial without 

precompression (“sonic vacuum”) in the long wave approximation is determined by the 

amplitude of the dynamic force (Fm) [8]: 

𝑉s =
5
M
𝑎𝐴A/4𝑚@A/8𝐹m

A 8,                                              (1.13) 

where a (=h+d, and h is the height of steel cylinder) is the distance between the centers 

of neighboring cylinders.  
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The above analysis neglects the dissipation effect, but due to the nature of Nitrile 

rubber O-ring, the inevitable presence of dissipation strongly influences the behavior of 

the metamaterial composed of steel cylinders and Nitrile O-rings. To include the 

dissipation, the viscous term should be added to Eq. (1.12). The presence of dissipation 

allows the propagation of another shock-like stress wave with speed different than the 

speed of the solitary wave. The speed of the stationary shock like stress wave with force 

Fsh in the equilibrium state has the following expression (independent on the type of 

dissipation): 

𝑉sh = 𝑎𝐴A/4𝑚@A/8𝐹sh
A 8.                                                 (1.14) 

The above Eqs. (1.13) and (1.14) describe speeds of different type of strongly 

nonlinear waves in a non-compressed metamaterial (“sonic vacuum”). It is interesting 

that in case of Fm = Fsh, Vs<Vsh, so the metamaterial behavior in solitary wave is “softer” 

than in a shock wave with the same amplitude. Equations (1.13) and (1.14) are based on 

the assumption that the elastic properties of the O-ring and the Hertzian nonlinearity are 

the same during the whole cycle of O-rings dynamic deformation including loading and 

unloading. 

If this metamaterial is statically precompressed then its static deformation is 

determined by the elastic modulus E0, which can be significantly different from its 

values characterized for dynamic deformation Ed [23,24] and Eimp. Moreover, the last 

two elastic moduli even at the same level of overall global strains can be different due 

to the difference in the corresponding loading paths [33]: elastic modulus Ed is related 
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to small dynamic strains about statically precompressed state and Eimp is describing the 

elastic behavior of an initially uncompressed O-ring.   

 
1.4   Viscous Dissipation in Metamaterial 
 

Most of the previous publications related to the wave propagation in 

metamaterials neglect the dissipation effect, since the discrete nature of metamaterials 

and strong nonlinearity play the major role and the dissipation may be neglected when 

waves travel relatively short distances. The first example of strongly nonlinear 

metamaterials [2,3] was based on the Hertz law, a well-known non-dissipative quasi-

static interaction law [1], acting between adjacent linear elastic spherical particles.  

However, the presence of dissipation will strongly influence the dynamic 

response of the metamaterial. According to [8, 36-39], it is known that the presence of 

dissipation strongly influences the behavior of media within the shock front and 

determines the shape of shock profile and even qualitative outcome of the impact. For 

example, in a weakly nonlinear system described by Korteweg-de Vries (KdV) equation 

or in a strongly nonlinear system, two different shock profiles exist depending on the 

value of viscosity, i.e. oscillatory if viscosity is below the critical value and monotonic 

if it is above the critical value [35]. 

It is well known that rubber O-rings have dissipative properties which are also 

presumably nonlinear with respect to the strain and strain rate and exhibit hysteresis 

due to the viscoelastic nature of elastomers. Thus it is would be no surprise to see that 

the metamaterials composed of steel cylinders alternating with toroidal Nitrile O-rings 

show significant attenuation of compression pulses due to dissipation in the 



 

 

15 

experimental setting of this work (see also [18,19]) for both strongly nonlinear and 

weakly nonlinear regimes. Thus the viscous dissipation must be included to model a 

real system to account for pulse attenuation in this metamaterial. 

Due to the complexity of the geometry of O-rings and the viscoelastic properties 

of Nitrile rubber, there is no clear and well established physical model to describe the 

energy dissipation during wave propagation through this discrete metamaterial 

composed of alternating steel cylinders and Nitrile O-rings. In this work, the commonly 

used Kelvin-Voigh model (KV) (Fig. 1.3) is applied to model the viscoelastic interaction 

force between neighboring particles in the system with precompression or in sonic 

vacuum condition.  

 

 

Figure 1.3: Viscoealstic Kelvin-Voigt mechanical model.  

 

For a K-V model the additional dissipative term is represented by a dashpot 

connected in parallel to the spring. The viscous force is based on the relative velocity 

between particles. The total stress is given by: 

𝜎 𝑡 = 𝐸𝜀 𝑡 + 𝜂 3u(R)
3R

,                                                  (1.15) 

where E is elasticity modulus of spring and η is the viscosity of dashpot.  
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Chapter 1 contains part of the material that has been published in the paper 

Philosophical Transactions of the Royal Society A, 372, art. 20130186, pp 1-14 by 

Yichao Xu and Vitali F. Nesterenko and in Journal of Applied Physics, 117, art. 11430, 

pp. 1-12 by Yichao Xu and Vitali F. Nesterenko. The dissertation author was the 

primary investigator and author of above papers. 
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CHAPTER 2  

TUNABILITY OF SHORT STRESS PULSES IN THE STRONGLY 
NONLINEAR METAMATERIAL 

 
 
 This chapter is devoted to study the propagation of short stress pulses with 

wavelength comparable to the size of a unit cell in a one-dimensional discrete 

metamaterial composed of steel discs alternating with toroidal Nitrile O-rings under 

different levels of precompression using experiments, numerical simulations and 

theoretical analysis. This strongly nonlinear metamaterial is more tunable than granular 

chains composed of linear elastic spherical particles and has better potential for 

attenuation of dynamic loads. Based on the experimental data the elastic modulus of 

Nitrile O-rings in quasi-static and dynamic loading are found. Numerical results will be 

provided and compared with experimental data to help identifying the mechanism of 

strong tunability and attenuation. It is demonstrated that the double power-law system 

allows a dramatic change of pulse speed with a moderate force.  

 In this chapter, I will focus on the following aspects of behavior of the periodic 

discrete metamaterial composed of steel cylinders and O-rings: (a) their ability to 

support propagation of short pulses with wavelength comparable to the cell size of the 

metamaterial, (b) relevance of strongly nonlinear static force–displacement relations to 

the dynamic behavior of O-rings, and (c) tunability of metamaterial pulse speed caused 

by compressive force. 

2.1   Experimental Procedure and Results 
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One-dimensional metamaterial was assembled filling a polymethyl methacrylate 

(PMMA) hollow cylinder with chains composed of 18 Nitrile O-rings (N70-008, 

supplied by O-ring West) and 19 stainless steel cylinders (AISI 314). O-rings in 

experiments had initial cross section diameter d=1.78 mm, mean diameter Dm=6.22 mm 

and the mass m0=0.0625 g. They were placed between steel cylinders with a height 

h=5.0 mm, diameter 10.0 mm and mass m=3.065 g, respectively.  

The behavior of the O-rings under static deformation was investigated by 

loading the one-dimensional chain using a weight attached to the top (Fig. 2.1). For 

measurements of displacements caused by smaller forces (3.13 N and 8.16 N), four 

cylinders and three O-rings were used to minimize the influence of gravitational force 

due to weight of steel cylinders and O-rings.  

Two slight slots were made in the PMMA tube to provide air escape from the 

spaces between cylinders during deformation. Measurements of displacements of top 

cylinder was performed 4 min later after load application when their final displacements 

were reached. The level of force induced by the top mass was significantly larger than 

mass of the steel cylinders thus we neglected the difference of forces between various 

cylinders cause by their weights.  

Figure 2.2 presents the results of measurements of relative displacements x0 at 

different static compression forces compared with the theoretical value obtained using 

Eq. (1.1). Owing to the viscoelastic behavior, the saturation of the deformation of O-

rings after about 4 min following the application of load is observed. The measurements 

were repeated four times for each static load in the range 3.1–193.0  N, and the average 

values of the multiple measurements are shown in Fig. 2.2 with standard deviation in 
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the range of 2–4% for loads 70.3–193.0  N and 5–9% for smaller static loads 3.1–52.2  N. 

 

 
 

Figure 2.1: Experimental setup with O-rings placed between 19 stainless steel cylinders 
to test static force-displacement relation under applied static load.  

 

A very good fit between experimental and calculated data using a double power 

law with corresponding exponents 3/2 and 6 [Eq. (1.1)] and elastic modulus  

E0=7.6  MPa (which is close to the value 9  MPa reported for Nitrile [1]) was obtained 

for the investigated range of forces. This is in agreement with experimental and 

theoretical data for O-rings made from different materials up to x0/d=0.5 [2]. It is 

important that the functional dependence of the force on x0/d is significantly different 

from the Hertzian behavior at x0/d>0.3 (Fig. 2.2). Thus we may expect significant 

deviations in sound speed in this system calculated based on Hertzian law starting at 

strains about 0.25 where derivatives to two corresponding curves starts to deviate 

significantly.  
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Figure 2.2: Experimental and theoretical values of global strain in O-ring as function of 
static forces. The dashed line represents the theoretical curve corresponding to Eq. (1.1) 
with E0=7.6  MPa, and the solid line denotes the corresponding Hertzian part (n=3/2) of 
the force at E0= 7.6  MPa. The experimental values are shown by blue circles. 

 

Stress wave propagation in this metamaterial was investigated using a set-up 

similar to that shown in Fig. 2.1. Two piezo-sensors (supplied by Piezo Systems, Inc.; 

6  mm side plates with 0.267  mm thickness, RC of the electrical circuit approx. 5.24  ms) 

were embedded in the fifth and the ninth cylinders (from the top) similar to the study of 

Daraio et al. [3]. Sensors were calibrated using conservation of linear momentum in 

separate impact experiments. Signals from these gauges were detected using a digital 

Tektronix oscilloscope (TDS 2014). Small-amplitude pulses (with positive and negative 

amplitudes being less than 10% of the precompression force), whose speed can be 

identified with the sound speed under various precompression forces, were generated 

by impacts of a steel sphere (0.455  g) dropped from the same height (350 mm) moving 

inside a hollow steel rod under various precompression conditions.  

!
!

Figure 3 
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The shapes of these pulses (with the amplitude of the positive pulse in the range 

of 0.48 – 1.82 N) and their corresponding Fourier frequency spectra are presented in 

Fig. 2.3. The zero time in Fig. 2.3 is arbitral. 

In experiments, the pulse speeds for positive and negative pulses were obtained 

by dividing the distance between the sensors 4(a-x0) by the measured peak-to-peak time 

interval. The accuracy of speed measurement was within 10% or better (depending on 

the precompression force) and within this limit the speeds of positive and negative 

pulses were close, demonstrating weak dispersion. The speed data, duration of positive 

and negative pulses and their normalized widths were calculated (Table 2.1 and 2.2). 

Accuracy of the measurements of amplitude of waves was in the range of 7% 

for large value of small preloading force (F0 = 50 – 193 N) and 12% for small preload 

F0 = 10 – 30 N. The measurement of speed has an accuracy within 12% mainly due to 

the uncertainty of the impact condition (the steel sphere striker impact velocity and 

impact location) and the measurement error of x0.  

The recorded pulses change their shape [e.g. ramping of leading fronts, total 

length of pulse increased from 500 to 700  µs in Fig. 2.3(a)], and this was mainly caused 

by dissipation. The spatial widths of positive and negative phases of pulses (Lexp,+, Table 

2.1 and Lexp,–, Table 2.2 ) were calculated based on their speeds and durations as detected 

by the gauge in the fifth cylinder. It is evident that these pulses have width comparable 

to the cell size thus we may expect considerable dispersion effects on the pulse shape 

and speed especially at larger precompression.  

The velocity of negative pulse is also increasing with precompression having 

values lower than values for positive pulse. This comparison indicates that system 
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experiences a “softer” behavior in negative pulse than for positive pulse despite that 

negative pulse runs not only on statically compressed system, but also on the in situ 

compressed material in the preceding positive pulse. It indicates that curvature in force-

displacement curve has significant changes in the vicinity of static force. It is obvious 

that there is a large difference between the experimental data and predicted speed of 

sound based on Eq. (1.5) with static value of elastic modulus E0=7.6 MPa.  

One of the distinguishing features of the investigated highly nonlinear 

metamaterial is the strong tunability of pulse speed using initial precompression. 

Because the amplitude of the pulses was much smaller than the initial precompression, 

the speed of pulses was close to the sound speed in the continuum limit based on Eq. 

(1.11). Thus, we may use the equation for sound speed to estimate the theoretical speed 

of these pulses. The comparison of experimental results and theoretical values for the 

sound speed using Eq. (1.5), assuming that the dynamic behavior of the O-rings obeys 

the static dependence of force on x0/d with E0=7.6  MPa, is shown in Fig. 2.4. 

From Fig. 2.4 we can see that the values of pulse speed are significantly larger 

than the predicted values based on the static elastic modulus E0=7.6  MPa. It should be 

mentioned that the theoretical calculations do take into account the strong nonlinearity, 

resulting in the increase of sound speed, as is evident from the behavior of curve 1, but 

the calculated numerical values are too low. It is also evident that the behavior of the 

experimental data does not reflect even qualitatively the sound speed behavior based on 

Hertz's law (Fig. 2.4, curve 2). Rather, it demonstrates a more pronounced dependence 

of signal speed on initial precompression, characteristic of the behavior of sound speed 

for a double power-law interaction. It should be mentioned that the dynamic rigidity of 
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Figure 2.3: Shape of stress pulses and their Fourier spectra propagating in a chain of 
nitrile O-rings and stainless steel cylinders with various precompression forces 
generated by a steel striker (0.455  g) with an initial velocity of 2.62  m/s. Left column: 
average dynamic force in experiments recorded in sensors placed in the fifth and ninth 
cylinder, respectively. Right column: corresponding Fourier spectra. The static load of 
each case is (a), (b) F0 = 10 N; (c), (d) F0 = 30 N; (e), (f) F0 = 50 N; (g), (h) F0 = 74 N; 
(i), (j) F0 = 106 N; (k), (l) F0 = 193 N.   
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Figure 2.3: Shape of stress pulses and their Fourier spectra propagating in a chain of 
nitrile O-rings and stainless steel cylinders with various precompression forces 
generated by a steel striker (0.455  g) with an initial velocity of 2.62  m/s, continued. 
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Table 2.1: Speeds of positive pulses (V+) and widths of positive pulses (Lexp,+) for 
different precompression forces detected in experiments corresponding to the signal 
recorded by gauges embedded in the fifth and the ninth cylinders. Normalized width of 
positive pulse using initial cell size a1=a-x0.  

 
F0 (N) duration (𝝁𝒔) V+ (m/s) Lexp,+/(a-x0) 

10 260 128±13 4.9 
30 162 165±12 4.0 
50 115 210±9 3.6 
74 87 270±9 3.5 
106 74 310±9 3.4 
193 48 468±28 3.3 

 

Table 2.2: Speeds of negative pulses (V–)) and widths of negative pulses (Lexp,–) for 
different precompression forces detected in experiments corresponding to the signal 
recorded by gauges embedded in the fifth and the ninth cylinders. Normalized width of 
negative pulse using initial cell size a1=a-x0.  
 

F0 (N) duration (𝝁𝒔) V- (m/s) Lexp,–/(a-x0) 
10 270 101 4.0 
30 144 135 2.7 
50 113 172 2.7 
74 74 230 2.5 
106 65 254 2.4 
193 49 444 3.2 

 

this system may be significantly influenced by viscoelastic behavior, as is evident from 

the pulse attenuation especially in the case of a large precompression force [Fig. 2.3 (k)]. 

We can also see that a Hertzian-type interaction is responsible for the tuning of 

sound speed only for a low range of initial strain. The part of the interaction law with 

exponent equal to 6 makes metamaterials more tunable at larger strains (this transition 

of qualitative behavior of sound speed with precompression happens for values of 

𝜉*>0.06; Fig. 2.4). 
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Figure 2.4: Experimental and theoretical dependence of sound speed on initial strain for 
double power-law system. The experimental values of pulse speed are shown by red 
circular dots. Curve 1 represents the long-wave sound speed [Eq. (1.5)] 
with E0=7.6  MPa. Curve 2 (dashed) represents sound speeds corresponding to the 
Hertzian part of the interaction law with single exponents 3/2 at E0=7.6  MPa.  

 

Thus, we apparently need to take into account that O-rings behave differently 

under dynamic deformation by waves in comparison with static deformation. 

To clarify the dynamic behavior of the metamaterial investigated, we proceed 

with the analysis using numerical calculations of the discrete system. Equations of 

particle motion for numerical model with different modulus of elasticity of O-ring under 

dynamic deformation will be introduced in section 2.2.  

 
2.2 Numerical Calculations 
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 Numerical calculations representing the experimental set-up shown in Fig. 2.1 

were performed using MATLAB. The steel cylinders were treated as rigid bodies 

connected by massless nonlinear springs representing the O-rings, with deformation 

behavior following a strongly nonlinear double power law (dissipation was not 

included). To model the static precompression force, we introduced gravitational forces 

applied to the large top mass (hollow steel rod plus additional weight). It is assumed 

that there is a Hertzian-type interaction at the contact of the hollow steel rod (connected 

to the precompression mass) and the top cylinder in the chain. Gravitational force was 

also applied to all particles, simulating conditions in the experiment, though results of 

numerical modelling demonstrated that gravitational forces acting on particles did not 

affect the speed of the signals in the investigated range of precompression forces and 

pulse amplitudes. The pulses were excited by a steel striker and we assume Hertzian-

type elastic interaction between the striker and the top steel cylinder in the chain. 

In the numerical calculations, it is considered that the displacement x between 

neighboring cylinders relative to their positions in the undeformed chain is equal to the 

initial value x0 plus an additional small change during dynamic deformation xd. In the 

experimental conditions, the system is initially strongly compressed and the dynamic 

part xd of the decrease in the height of the O-rings is much smaller than x0. Thus, we can 

approximate the dynamic contribution to the force by a linear function of xd, so that total 

force due to the deformation of an O-ring becomes 

𝐹"# = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾𝑥3,                                       (2.1) 

where 𝐴* = 1.25π𝐷J	
  𝐸*/𝑚𝑑A/5 , 𝐵* = 50π𝐷J	
  𝐸*/𝑚𝑑M , which are related to the 

initial deformation or initial static force. It is observed in experiments that speed of the 
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signals is increasing with precompression (Fig. 2.3 and Tables 2.1 and 2.2). Thus the 

coefficient K should have a nonlinear dependence on the initial precompression. It 

should be mentioned that effective elastic moduli have been successfully used for the 

dynamic contact behavior of viscoelastic beads (PTFE [3], nylon [4]), or beads coated 

with a polymer layer [5]. It is assumed that this coefficient also can be found based on 

double power-law relationship (which is of geometrical origin), with effective elastic 

modulus Eeff reflecting dynamic deformation of viscoelastic O-rings. Thus I introduce 

the following dependence of this coefficient on static precompression, which is 

linearized version of double power law [Eq. (1.1)] in the vicinity of x0, but with effective 

dynamic value of elastic modulus 𝐸eff, 

𝐾 = 1.5(1.25π𝐷J	
  𝐸eff𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸eff𝑑@M)𝑥*M.               (2.2) 

The coefficient K depends on both the dynamic modulus (Ed) of Nitrile O-rings 

and on the system’s initial deformation	
  𝑥*. As illustrated in Fig. 2.5, the dynamic force 

at a given xd may deviate significantly from the static curve depending on the selected 

value of Ed. The value of dynamic modulus of O-rings Ed is a fitting parameter, which 

includes increased stiffness due to elastic and viscous behavior to match the speed of 

signals detected in experiments with the results of numerical calculations. To 

accomplish this match in numerical calculation we choose Ed=105 MPa. 

A chain of 40 elements is used in numerical calculations. The second-order 

differential equations without considering dissipation for particles inside the chain were 

reduced to first order equations [6]:  

𝑥; = 𝐹; 𝑥 , 𝑥 = 𝑥A, 𝑥5, … , 𝑥5|	
   ,	
  	
  	
  	
  𝑖 = 1,… , 2𝑁;                                                   (2.3) 

𝐹; 𝑥 = 𝑥|D;,	
  	
  	
  	
  𝑖 = 1,… ,𝑁 − 1;                                                                              (2.4a)  
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Figure 2.5: The difference in dynamic behavior of O-ring in comparison with static 
conditions. Curve 1 (blue) represents a relationship according to a double power law 
at E=7.6  MPa. The initial relative displacement of neighboring steel cylinders is x0, and 
its small change during dynamic deformation is xd. Curve 2 (dashed blue) corresponds 
to linear dynamic part in Eq. (2.1) with coefficient K represented by Eq. (2.2), which 
includes dependence on x0.  
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𝐹; 𝑥 = 𝜑; 𝑥 − 𝜓; 𝑥 + 𝑔, 𝑖 = 𝑁 + 1,… ,2𝑁 − 1;                                               (2.4b) 

𝜑; 𝑥 = 0, 𝑖 = 𝑁 + 1,𝑁 + 2;                                                                                  (2.5a) 

𝜑; 𝑥 = �
'
𝛿;@5@|,;@|
B
C 𝐻(𝛿;@5@|,;@|) +

�
'
𝛿;@A@|,;@|
B
C 𝐻(𝛿;@A@|,;@|), 𝑖 = 𝑁 + 3;   (2.5b) 

𝜑; 𝑥 = [𝐴* 𝑥*,;@A@|
B
C + 𝐵* 𝑥*,;@A@|

8 + ���Y��
'

𝛿;@A@|,;@| −

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑥*,;@A@| ]𝐻(𝛿;@A@|,;@|),   𝑖 = 𝑁 + 4,… ,2𝑁 − 1;                                     (2.5c) 

𝜓; 𝑥 = �
�
𝛿;@|,;D5@|
B
C 𝐻 𝛿;@|,;D5@| ,	
  	
  	
  	
  𝑖 = 𝑁 + 1;                                                  (2.6a) 

𝜓; 𝑥 = �
'�l�

𝛿;@|,;DA@|
B
C 𝐻 𝛿;@|,;DA@| , 𝑖 = 𝑁 + 2;                                              (2.6b) 

𝜓; 𝑥 = [𝐴* 𝑥*,;@|
B
C + 𝐵* 𝑥*,;@|

8 	
  + ����
'

𝛿;@|,;DA@| − 𝑥*,;@| ]𝐻 𝛿;@|,;DA@| , 

𝑖 = 𝑁 + 3,… ,2𝑁 − 1;                                                                                 (2.6c) 

and 𝛿;@5@|,;@| = 𝑥;@5@| − 𝑥;@|.                                                                               (2.7) 

Boundary conditions are: 

𝐹; 𝑥 = 0, 𝑖 = 𝑁, 2𝑁 (Specify the ‘wall’).                                                                (2.8) 

Initial conditions corresponding to gravitationally loaded chain are: 

𝑥|(𝑡 = 0) = 0,	
  𝑥|@; 𝑡 = 0 = 𝑥|@;DA(𝑡 = 0) + 𝑥*,|@;,	
  	
  	
  𝑖 = 1,… ,𝑁 − 2,	
  

𝑥A 𝑡 = 0 = 𝑥4 + 𝑥*,A;                                                                                               (2.9a)	
  

𝑥|DA 𝑡 = 0 = 0,	
  	
  𝑥|D5 𝑡 = 0 = 2.62,	
  	
  𝑥|D; 𝑡 = 0 = 0,	
  2 < 𝑖 ≤ 𝑁,                 (2.9b) 

where	
  	
  

𝑥*,A = (�c
�
)5/4, 𝑥*,5 = 0, 𝑥*,| = 0,	
  	
                                                                       (2.10a) 

𝑀𝑔 + 𝑖 − 3 𝑚𝑔 = 𝐴*(𝑥*,;)4/5 + 𝐵*(𝑥*,;)8, 𝑖 = 3,… ,𝑁 − 1.                            (2.10b) 

And 
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𝐾;@A@| = 1.5(1.25𝜋𝐷'	
  𝐸eff𝑑
@YC)𝑥*,;@A@|

Y
C + 6(50𝜋𝐷'𝐸eff𝑑@M)𝑥*,;@A@|M , 𝑖 = 𝑁 +

4,… , 2𝑁. 	
  

The value of 𝑥; for i=1,…,N is a displacment of the i-th particle from equlibrium 

position (corresponding to the chain before it was deformed by gravitational forces, 

g=9.81 m/s2 is the gravitational acceleration) assumed due to static loading and 

dynamically, while 𝑥;  for i=N+1, …,2N is the the velocity of the i-th particle. The 

Heaviside function H(δ) ensure that interactions exis only when the grains are in contact 

(δ>0). The coefficients C = 5�steel
4(A@�C)

𝑅rod
A/5  and D= 5�steel

4(A@�C)
𝑅striker
A/5   represent nonlinear 

Hertzian type interaction between the precompressing mass (particle 1) and the top steel 

cylinder (particle 3) and between the striker (particle 2) and the top cylinder, where v, 

Esteel and Rstriker are the poison ratio, elastic modulus and radius of the steel sphere striker, 

respectively, and Rrod is the radius of the hollow steel rod.  The precompressing weight 

and striker have  mass M and 𝑚;'�, respectively.  

It should be noticed that	
  	
  𝑥*,A is the initial displacement of precompressing mass 

with respect to the first cylinder assuming gravitational loading, while 	
  	
  𝑥*,5 = 0 and 

𝑥*,; (i=3,…,N-1) are the change of the initial height of the O-ring between the i-th and 

(i+1)-th cylinder inroduced by graviation. The values of initial displacements produced 

by  gravitational loading are calculated by using Eq. (1.1) with the static modulus of O-

ring E0=7.6 MPa.  

Results of numerical calculation modeling dynamic experiments are presented 

in Tables 2.3 and 2.4.  

The corresponding pulses are shown in Fig. 2.6 for elastic modulus Eeff=105 
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MPa providing the best fit of the experimental data and the results of numerical 

calculations (Fig. 2.7). The zero time in numerical calculations corresponds to the 

moment of impact.   

 

Table 2.3: Speeds of positive pulses (V+) and normalized widths of positive pulses 
(Lnum,+) for different precompression forces detected in numerical calculations 
corresponding to the dynamic forces on the fifth and the ninth cylinders. The initial cell 
size in the precompressed chain is a1=a-x0. 

 
F0 (N) V+ (m/s) Lnum,+/(a-x0) 

10 127 4.2 

30 156 3.9 

50 189 3.8 

74 237 3.7 

106 286 3.7 

193 390 3.5 

 

Table 2.4: Speeds of negative pulses (V–) and normalized widths of negative pulses 
(Lnum,–) for different precompression forces detected in numerical calculations 
corresponding to the dynamic forces on the fifth and the ninth cylinders. The initial cell 
size in the precompressed chain is a1=a-x0. 

 
F0 (N) V– (m/s) Lnum,–/(a-x0) 

10 120 2.7 

30 133 1.9 

50 169 1.9 

74 203 2.0 

106 253 2.2 

193 330 2.3 
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Figure 2.6: Stress pulses obtained in numerical calculations (using non-dissipative 
model and with Eeff = 105 MPa) and their corresponding Fourier spectra in a double 
power-law system under various preload conditions: (a), (b) F0 = 10 N; (c), (d) F0 = 30 
N; (e), (f) F0 = 50 N; (g), (h) F0 = 74 N; (i), (j) F0 = 106 N; (k), (l) F0 = 193 N. The 
curve represents average dynamic force in the 5th (top curve) and 9th cylinder from the 
top. Left column: dynamic force in numerical calculation. Right column: corresponding 
Fourier spectra.  
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Figure 2.6: Stress pulses obtained in numerical calculations (using non-dissipative 
model and with Eeff=105MPa) and their corresponding Fourier spectra in a double 
power-law system under various preload conditions, continued. 
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Figure 2.7: Experimental (circles) and numerical (diamonds) dependence of pulse speed 
on initial strain for investigated metamaterial. Curve 1 represents the long-wave sound 
speed [Eq. (1.5)] at Eeff = 105 MPa. Curve 2 represents sound speeds corresponding to 
the Hertzian part of the interaction law with single exponent 3/2 at Ed = 105 MPa.   

 

The speeds of positive and negative pulses in the numerical calculations were 

close (the speeds of negative pulses were smaller by about 6–17% for small and large 

values of compression forces) demonstrating a weak dispersion. The dispersion effects 

are evident in Fig. 2.6, but they did not dramatically change amplitude and shape of 

pulses at the investigated distances, and this is consistent with the expected weak 

dispersion based on Eqs. (1.8) and (1.9). Fourier spectra of propagated pulses, detected 

in corresponding locations, were similar. 

The cause of the negative phase of the pulses (similar to observed [7, 8]) is the 
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reduction of the initial static precompression force due to the motion of the first cylinder 

with respect to the hollow steel rod attached to the precompressing mass. 

It is interesting to compare the theoretical value of the sound speed [Eq. (1.5)] 

based on the assumed effective modulus of the O-ring Eeff=105 MPa with the results of 

numerical calculations, as well as with experimental data. The corresponding data are 

shown in Fig. 2.7.  

 
2.3 Discussion 
 

 Experimental data for static deformation of Nitrile O-rings confirmed their 

strongly nonlinear behavior, with elastic modulus E0=7.6 MPa being consistent with 

reported results for these elements [9-11]. 

Experiments have shown that this metamaterial is highly tunable – the static 

force increases from 10 N to 193 N resulted in the increase of signal speed by more than 

a factor of 4 with a decrease in pulse duration and spatial length under the same method 

of pulse excitation (Fig. 2.3, Table 2.1).  

There is a large difference between experimental data and predicted speed of 

sound based on Eq. (1.5), if we use a static value of elastic modulus E0=7.6 MPa (figure 

2.4). The spatial length of our signals is comparable to the cell size. Thus, we can expect 

the influence of linear dispersion on phase speed. But according to Eq. (1.9) linear 

dispersion can only insignificantly reduce (not increase) signal speed to 0.91c0 at 

smallest wave length in the experiments close to 6.5a1 (combined width of the pulse at 

F0=193 N). Thus, we cannot attribute the difference between the predicted values of c0 

and measurements as being due to dispersion. 
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From another point of view, we measure the velocity of signals with finite 

amplitude, thus nonlinearity may increase the speed of propagation in comparison with 

the sound speed. The role of nonlinearity can be estimated based on the speed of solitary 

wave at a given amplitude (a solitary wave represents a balance of dispersion and 

nonlinearity). Based on this estimate, nonlinearity can increase the speed of propagation 

to at most 1.03c0 (at an initial precompression force F0=10N) assuming that the positive 

phase of the pulse is approximated by a solitary wave [Eq. (1.11)]. Clearly, effect of the 

weak nonlinearity is not able to explain the large discrepancy between experimental data 

and the theoretical value of co based on the extension of the quasi-static behavior of O-

rings (E0 = 7.6 MPa) into the dynamic regime. 

From the numerical data, it is clear that, despite the short length of pulses, the 

dispersion effects did not dramatically change the amplitude, shape and spectrum of 

propagating pulses at the investigated distances in agreement with estimates based on 

the continuum approximation [Eqs. (1.8) and (1.9)]. Changes of shape and amplitudes 

of pulses in experiments are mostly due to dissipation, which will be considered in 

chapter 3. The speeds of pulses in numerical calculations for Eeff=105 MPa are close to 

the corresponding experimental values (Fig. 2.7). A continuum equation for long-wave 

sound speed [Eq. (1.5)] with elastic modulus Eeff=105  MPa satisfactorily describes the 

speed of pulses in experiments and in numerical calculations (Fig. 2.7). The slight 

difference in Fig. 2.7 between numerical data and theoretical values based on Eq. (1.5) 

might be due to the dispersion effects.  

The value of this effective dynamic modulus Eeff=105 MPa is considerably 

higher than the value obtained from static loading experiment (approx. 7.6 MPa), which 
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is qualitatively similar to the dynamic behavior of Teflon and Parylene-C [3-5,7]. I did 

not separate inputs of elastic and viscous components in this increased stiffness, though 

the role of dissipation is significant in experiments. The increased value of the effective 

elastic modulus may be due to the material strain-rate sensitivity of Nitrile rubber, and 

the selected value of Eeff is characteristic only for the conditions of experiments in 

section 2.1. In this study, the local static strains in the O-rings in the experiments were 

up to 0.44, the global dynamic strains in our numerical calculations lay in the interval 

1.9×10−3 to 4.1×10−4and the corresponding strain rates were approximately 51–45  s−1. 

The deformation behavior of polymer toroidal O-rings is path-sensitive and, in 

high strain, strain-rate dynamic deformation (without initial precompression) can be 

successfully described by a strongly nonlinear viscoelastic model [12], also 

demonstrating increase of stiffness in dynamic conditions. 

The detailed explanation of dramatic increase of dynamic stiffness of O-rings 

requires investigation of their dynamic contact deformation concentrated in a very small 

area with large local strains and their gradients.  

 
2.4 Conclusions 
 

The speed of small amplitude stress pulses (considered as sound waves) in 

metamaterial was used to measure the dynamic properties of strongly nonlinear 

elements (O-rings). Such measurements can be difficult to conduct for very small 

elements, like very small O-rings or thin layers of nanofoams. At the same time, the 

measurements of the sound speed related to the dynamic stiffness of deformed elements 

in the system (in this dissertation O-rings) can be accomplished irrespective of their size, 
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because it is based on the measurements of wave speed on macroscopic distances. 

Propagation of small amplitude short duration pulses in this one-dimensional 

strongly nonlinear metamaterial was investigated for different conditions of static 

preloading in experiments and numerical calculations. Experimental results 

demonstrated that the static deformation of O-rings obeys double power law with elastic 

modulus 7.6 MPa being in the reported range for this material. The short duration signals 

with positive and negative phases having spatial length about 6 – 9 cells size have a 

speeds which significantly exceeds the speed of sound estimated based on the quasi-

static behavior of O-rings with elastic modulus 7.6 MPa. Effects of dispersion and weak 

nonlinearity can’t explain this difference. This large discrepancy is explained by a 

dramatic increase of effective stiffness of precompressed O-rings under dynamic 

deformation in the wave. This demonstrates that the design of O-rings, which are very 

important elements with widespread use in machinery, should take into account their 

dramatic increase of rigidity under dynamic conditions even at low velocity of impact.    

It was shown that signal speed in this double power-law metamaterial is a few 

times more tunable at higher preload than sound speed in granular chains of linear elastic 

spherical particles obeying the Hertz interaction law. These results provide a 

background for designing strongly nonlinear tunable metamaterials with the ability to 

increase the sound speed and acoustic impedance by a factor of 3–4 times at very 

moderate static precompression (10-193N). This is unattainable for existing solid 

materials. 

Part of Chapter 2 has been published in Philosophical Transactions of the Royal 

Society A, 372, art. 20130186, pp 1-14 by Yichao Xu and Vitali F. Nesterenko. The 
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dissertation author was the primary investigator and author of this paper.  
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CHAPTER 3 

ATTENUATION OF SHORT STRESS PULSES IN STRONGLY 
NONLINEAR DISSIPATIVE METAMATERIAL 

 
 

 This chapter deals with the attenuation of short stress pulses in strongly 

nonlinear dissipative metamaterial assembled using alternating steel cylinders and 

toroidal Nitrile O-rings under static precompression. The modeling of the observed 

strongly nonlinear attenuation in experiments was performed with the help of numerical 

simulation. The dispersion behavior caused by the periodic arrangement of elements is 

contributing to the attenuation of stress pulses, but could not explain the experimental 

observations. It was explained by taking into account the nonlinear viscous behavior of 

O-rings. The numerical simulations were able to predict the dependence of the signal 

speed on the precompression force, a significant decrease of the pulse width with the 

precompression and the attenuation of the leading positive pulse, the latter of major 

significance in the protection against impact. 

 
3.1 Introduction 
 

Most of the previous publications related to the wave transmission in 

metamaterials neglect the dissipation effect, since the discrete nature of metamaterials 

and strong nonlinearity play the major role when waves travel relatively short distances. 

However, the dissipation plays a significant role on wave shape and attenuation in 

experiments when “soft” toroidal elements are introduced [1-5], like Nitrile rubber O-
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ring [5]. These Nitrile toroidal elements (O-rings) are widely used in the automotive and 

aeronautical industry and their quasi-static elastic properties are well known [6-9]. 

In contrast to the commonly used Hertz contact law between spherical grains 

[10], toroidal O-rings obey a more complicated force-displacement interaction law – 

double power law [F ∝ (δ3/2+δ6)] under compression [6-8]. At relatively large 

deformation (when the second term with exponent n=6 dominates) this relationship 

ensures significantly stronger nonlinearity than the Hertz law. Additionally, due to the 

strain rate sensitivity the dynamic behavior of the toroidal Nitrile O-rings is significantly 

different from the static response [5,11,12].  

In this chapter, the experimental results related to the attenuation of traveling 

short stress pulses in a chain composed of alternating steel cylinders and Nitrile O-rings 

are reported. Numerical simulations were used to explore the role of dispersion and 

viscous dissipation and explain the experimental data. The dissipative model was 

introduced with strongly nonlinear dependence of viscous force on the precompression 

and linear dependence on the relative velocity following the approach proposed by 

Kuwabara and Kono [13], Brilliantov et al.[14,15], and Morgado and Oppenheim [16]. 

It is observed that this approach allowed description of the attenuation of the amplitude 

of leading short compression pulse depending on the system precompression as well as 

the strong tenability of pulse speed.   

 
3.2 Theoretical Analysis 
 

The one-dimensional metamaterial composed form steel cylinders and Nitrile 

O-rings under static precompression (F0) as shown schematically in Fig. 1.2. Each cell 
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of the system includes a stainless steel cylinder and O-ring. It has an initial size a (a=h+d, 

where h is the height of the steel cylinder, and d is the cross sectional diameter of an 

undeformed O-ring). For statically loaded chain the cell size is equal to the height of the 

steel cylinder plus a height of deformed O-ring. For the theoretical treatment, we 

consider O-rings as massless viscoelastic springs intermittent by the rigid steel cylinders, 

since the mass of O-rings (0.0625g) is much smaller than that of steel cylinders (m = 

3.065 g), and the steel cylinders are practically not deformed at investigated amplitudes 

of stress pulses. In the initial conditions the forces between neighboring cylinders are 

due to nonlinear elastic deformation of O-rings having a value of x, the empirical form 

of the quasi-static force-displacement relationship is a strongly nonlinear double power 

law [6-8], 

𝐹"# = 𝐴*𝑚 𝑥 4 5 + 𝐵*𝑚 𝑥 8,                                         (3.1) 

where 𝐴* = 1.25π𝐷J	
  𝐸*/𝑚𝑑A/5, 𝐵* = 50π𝐷J	
  𝐸*/𝑚𝑑M, and Dm is the mean diameter 

of O-ring (defined as the inside diameter plus cross sectional diameter of the O-ring). A 

quasi-static Young’s modulus of Nitrile rubber is equal to E0 = 7.6 MPa [5]. The quasi-

static force-displacement relationship described by Eq. (3.1) is in a good agreement with 

experimental data for O-rings made from different materials up to x/d equal 0.5 [6-8]. 

Its strongly nonlinear nature is caused by the geometry of the contact deformation. 

During the dynamic process we may assume that this geometric origin of strong 

nonlinearity will be also present. At the same time due to the viscoelastic behavior of 

Nitrile rubber we may expect that the value of elastic modulus can be different than its 

static value.  

In our experiments, the system is initially strongly compressed, which means 



 

 

46 

that the wave amplitude is much smaller than the forces caused by initial 

precompression, so we assume that the relative displacement between neighboring 

cylinders relative to their positions in the undeformed chain x is equal to the initial value 

𝑥* plus additional much smaller change during dynamic deformation xd (Fig. 1.2). Thus 

we approximate the linearized response of O-rings by the following equation:  

𝐹"# = 𝐹j + 𝐹3 = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾𝑥3,                     (3.2) 

where 𝐹j  is a static compression force and 𝐹3  is dynamic force acting between the 

particles, and 𝐾 = 1.5(1.25π𝐷J	
  𝐸���𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸���𝑑@M)𝑥*M . The 

coefficient K in the dynamic component of the force was introduced based on the 

linearization of nonlinear expression for the force [Eq. (3.1)], but assuming that the 

dynamic deformation may change the elastic properties of O-rings without changing the 

nonlinear dependence of displacement coming from the geometry of deformed contact. 

As a result of this approach a coefficient K is nonlinearly dependent on the initial 

precompression providing the dependence of sound speed on initial strain in agreement 

with the experimental data [5]. The coefficient Eeff can be different than the elastic 

moduli of Nitrile O-rings and reflects viscoelastic property of the dynamically deformed 

O-ring in a wave, akin to the effective values of elastic modulus successfully used for 

the dynamic contact behavior of viscoelastic beads (Polytetrafluoroethylene [17,18]) or 

beads coated with polymer layer [19]. 

The coefficient K was selected to match observed experimental data on the speed 

of stress pulse, in Ref. [5] Eeff is chosen to be 105 MPa. It allowed us to associate the 

speed of this pulse with sound speed based on the analysis of contribution of dispersion 

and weak nonlinearity [5]. Thus this coefficient was effectively representing the total 
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input of elastic and viscoelastic mechanisms.  

The equations of motion in a vertical chain composed of N steel particles and N-

1 O-rings without considering dissipation is:  

𝑥; =
�
'
(𝑥3,;@A − 2𝑥3,;@A + 𝑥3,;DA),                                 (3.3) 

where 𝑥3,;−𝑥3,;DA (i=1,…,N-1) is the change of the height of O-ring between the i-th 

and (i+1)-th cylinder during the propagation of stress pulse in the precompressed system. 

The gravitational forces acting on the particles is neglected, which negligibly affect the 

experimental results at a given value of precompression  

Compared to the commonly used elastically stiff steel beads, soft toroidal 

elements – Nitrile O-rings exhibit a dramatic dissipation effect resulting in the shape 

and amplitude change of signal in the experiments. To account for the dissipative 

properties of O-rings, it is necessary to separate the elastic part in the force from 

viscoelastic part, which was combined in the paper [5] in one coefficient K in the Eqs. 

(3.2) and (3.3).  

In this chapter, I attempt to separate the elastic and viscous contributions to the 

forces acting between metal cylinders due to the dynamic deformation of O-rings. 

Motivated by the results reported in Ref. [5], where the level of attenuation was 

increasing with the initial static compression force, it is anticipated that the dissipation 

term should has a dependence on the precompression strain. A possible approach to the 

viscoelastic deformation of the Hertzian contact was proposed by Kuwabara and K. 

Kono [13], Brilliantov et al.,[14,15], and Morgado and Oppenheim [16]. I modified this 

approach by introducing the dissipative force (Fdis) on the static precompression of O-

rings following the approach proposed by Brilliantov et al. [14,15],   
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𝐹3;j = 𝛼𝑥 �
�1
𝐹"# 𝑥 .                                                         (3.4) 

Here α is the dissipative constant. In the current paper the nonlinear elastic force Fel is 

taken following Eq. (3.1) with dynamic elastic modulus Ed, replacing constant E0, to 

consider a possible frequency dependence of the elastic properties of O-rings. It should 

be emphasized that Eq. (3.4) is based on a quasi-static approach requiring that 

characteristic time of dynamic deformation being much larger than the relaxation time 

for the dissipative processes in the material [14,15]. 

Thus following the approach of Refs. [13-16], which was successfully applied 

to the behavior of O-rings under heavy impact [11], Fdis is equal to 

𝐹3;j = 𝛼𝑥𝐾A,                                                                    (3.5) 

𝐾A = 1.5(1.25π𝐷J	
  𝐸3𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸3𝑑@M)𝑥*M.               (3.6) 

The total force due to the elastic and viscoelastic deformation of O-rings at the contact 

with a separation of elastic and viscous terms is 

𝐹 = 𝐹"# + 𝐹3;j = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾A𝑥3 + 𝛼𝑥𝐾A.                (3.7) 

So besides the geometric properties of steel cylinders and O-rings, adjustable 

parameters (K1 and 𝜇) were also used to calculate the dynamic component of the force 

between neighboring particles in the numerical analysis. The dissipative constant α is 

related to the viscoelastic, dissipative properties of O-rings in the condition of contact 

deformation with high strain rate and gradient of strain in the contact area. It is not a 

property of bulk of the Nitrile rubber and used as adjustable parameters to match the 

results of calculations and experimental data with respect to the speed of the pulse and 

attenuation of its amplitude. The viscous term has a nonlinear dependence on the initial 
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deformation (x0) following the approach proposed in Refs. [14,15], which is necessary 

to explain the dependence of attenuation on the initil precompression in experiments as 

we will see later. 

If K1 will be close to K then the speed of the pulses is determined mainly by the 

elastic behavior and the viscous term does not contribute significantly to the rigidity 

(and the speed of stress pulse) only causing dissiaption. In other case, it may be seen 

that K1 is a relatively small and the viscosity significantly contribute to the system 

rigidity and the speed of the signal. 

The equations of motion for the chain of alternating steel cylinders and O-rings 

considering dissipation term is given by, 

𝑥; =
�Y
'
(𝑥3,;@A − 2𝑥3,;@A + 𝑥3,;DA) +

�Y�
'

𝑥;@A − 2𝑥;@A + 𝑥;DA .    (3.8) 

It should be mentioned that the dissipative term in this simplified approach does 

not depend on the amplitude of pulses and depends linearly on the strain rate. It is a 

nonlinear function of precompression strain in an attempt to explain the dependence of 

dissipation on the precompression force observed in the experiments. 

 
3.3 Experimental Procedure, Results and Discussion 
 

 To study the viscous dissipation effect, the experiments were carried out in a 

vertical PMMA tube filled with 19 steel cylinders (with a height h = 5 mm, diameter 10 

mm) alternated by 18 Nitrile O-rings (with a cross sectional diameter d = 1.78 mm, and 

a mean diameter Dm = 6.22 mm) shown in Fig. 3.1. Three Piezo gauges (6 mm side 

plates with 0.267 mm thickness, RC of the electrical circuit ~5.24 ms) were placed 
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inside the fifth, ninth, and thirteenth steel particles to measure the averaged compression 

forces between the corresponding two contacts. The static precompression force due to 

additional weight placed on the top of the chain ranges from 10 to 193 N.   

 

 
 

Figure 3.1: Experimental setup composed of alternating stainless steel cylinders and 
Nitrile O-rings for testing of the stress pulse propagation in a strongly nonlinear 1D 
chain. Three piezo gauges are placed in the fifth, ninth and thirteenth steel cylinders 
from the top. The frame with a hole inside its upper part keeps hollow steel rod aligned 
in the vertical direction. There are two thin slots near the end of hollow steel rod, which 
were used to measure the velocity of spherical striker by high-speed camera.  

 
The pulses with different durations and amplitudes were generated by the impact 

of a steel sphere (mass 0.455 g, with a diameter of 4.76 mm) onto the top steel cylinder 

dropped from a height of 350 mm. We used a high-speed camera (Phantom V12) in 

order to get the accurate velocity of the steel striker just before the collision, witch was 

measured to be 2.24 ± 0.01 m/s slightly lower than the theoretical calculated velocity 

!
!

Figure 2 
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2.62 m/s, mostly due to the friction between the striker and the inner wall of hollow rod.   

 A Tektronix TDS2014 oscilloscope was used to record signals from the piezo 

gauges caused by these stress pulses. Some of the experimental results of pulse 

propagating under various compression forces (10 N, 30N, 50 N, 74N, 106 N and 193 

N) are presented in Fig. 3.2. The zero time in the figures is arbitrary.  

The corresponding force amplitude in the stress pulses was found based on the 

measurements of the electric signals from gauges embedded inside the particles using a 

calibration factor. The amplitude of pulses was measured with the accuracy of 9%.  

From Fig. 3.2 we see that in a relative short distances (from the fifth steel 

cylinder to the ninth), the fronts of the positive and negative signals are ramped and 

their amplitudes decreased. For example, in Fig. 3.2(a) the total length of pulse (positive 

and negative phases combined) increased from 550 microseconds to 1000 microseconds 

after it propagated through only four cells. With increased precompression the pulse 

dispersion is smaller [compare Figs. 3.2(a) and 3.2(e)]. The Fourier spectra of these 

stress waves demonstrate that higher frequencies of the signal decayed faster.  

The speed of propagation of the positive and negative stress pulses in the chain 

was calculated dividing the distance 4(a-x0) between the sensors embedded in the fifth 

and ninth steel cylinders by the peak-to-peak time interval of corresponding signals (x0 

denotes the initial reduction of O-rings height due to the static precompression). The 

spatial widths of positive and negative phases (Lexp,+ and Lexp,−) of stress pulses were 

calculated based on their speeds and durations detected by the gauges in the fifth 

cylinder. All the data are shown in Tables 3.1 and 3.2.  
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Figure 3.2: Stress pulses (left column) generated in a chain of stainless steel cylinders 
and Nitrile O-rings by a steel striker (0.455 g) dropped from a height of 350 mm 
(measured velocity just before the impact was 2.24± 0.01 m/s) and their corresponding 
Fourier spectra (right column), under various static precompression forces: (a), (b) 10 
N; (c), (d) 30 N; (e), (f) 50 N; (g), (h) 74 N; (i), (j) 106N and (k), (l) 193 N. All the 
forces are recorded by three sensors embedded in the fifth (leading signal), ninth (middle 
signal), and thirteenth (last signal) steel cylinders.  
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Figure 3.2: Stress pulses (left column) generated in a chain of stainless steel cylinders 
and Nitrile O-rings by a steel striker (0.455 g) dropped from a height of 350 mm 
(measured velocity just before the impact was 2.24± 0.01 m/s) and their corresponding 
Fourier spectra (right column), under various static precompression forces, continued.  
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Table 3.1: Speeds (V+) and widths [Lexp,+/(a-x0)] of positive pulses for different 
precompression forces detected in experiments. 
 

F0 (N) 10 30 50 74 106 193 
V+ (m/s) 128±12 165±9 209±8 268±8 310±8 482±15 

Lexp,+/(a-x0) 4.6 4.5 3.9 3.8 3.7 4.8 

 

Table 3.2: Speeds (V-) and widths [Lexp,-/(a-x0)] of negative pulses for different 
precompression forces detected in experiments.  
 

F0 (N) 10 30 50 74 106 193 
V- (m/s) 96±9 126±7 156±8 225±7 288±10 457±15 

Lexp,−/(a-x0) 4.3 3.7 3.1 2.4 3.0 3.4 

 

 From Table 3.1, we can see that the speed of positive pulses dramatically 

increases with precompression. The accuracy of the speed measurement was within 10% 

and within this limit the speeds of positive and negative pulses were close demonstrating 

a weak dispersion of the whole signal. Still a speed of negative pulse is lower than the 

speed of positive pulse. This may be due to more dispersive behavior of weakly 

nonlinear negative pulses in comparison with the positive pulses, e.g., the system 

supports weakly nonlinear compression solitary wave, but it does not support stationary 

rarefaction solitary wave. Thus we can expect more pronounced change of the shape of 

weakly nonlinear negative pulses in comparison with positive pulses. In this chapter, I 

will mainly focus on the positive phase of the stress pulses. 

The durations of positive pulses significantly decreased with the increase of 

precompression (Table 3.1). Despite the increase of the speed with precompression, 

their space scale of positive pulse also decreases until the largest force 193 N was 

applied.  
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In experiments the stress pulse amplitude is less than 10% of the initial 

precompression force. Thus, the values of the pulse speed in experiments could be used 

to estimate the long wave sound speed in a continuum limit in a agreement with the 

theoretical approach with an appropriately selected dynamic elastic properties of O-

rings [5]. Applying a moderate force (10 – 193 N), the sound speed of the system 

(associated with the speed of relatively small amplitude pulses in comparison with 

precompression forces) was increased up to 4 times (Table 3.1). This is very unusual in 

common solids.   

Another general conclusion that can by drawn from experimental data is that the 

attenuation of signal positive amplitude shows a strong dependence on the 

precompression force, the larger the force the faster the amplitude attenuation (Fig. 3.2). 

The dependence of the attenuation of signal amplitude with the depth of a chain under 

different initial compression conditions is presented in Fig. 3.3. The vertical axis 

represents the ratios of the amplitudes of signal in gauges embedded in the 6th, 9th, 12th, 

15th and 18th cylinders to the amplitudes in gauge embedded in the 3rd cylinder with 

different precompression forces (10 N, 59 N, 106 N and 193 N).  

It is interesting to mention that negative pulse attenuates faster than positive, 

except the largest compression case. Meanwhile, the amplitude of the leading negative 

pulse is found to be smaller than the amplitude of corresponding positive pulse. This 

probably can be connected to the difference in contact stiffness between first cylinder 

and following O-ring (“soft” contact) and between first steel cylinder, striker and hollow 

steel rod (“rigid” contacts) used to apply a precompression static force 
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Figure 3.3:The attenuation of the (a) positive and (b) negative stress pulse amplitudes 
on the depth of a chain under different precompression forces in experiments. The 
vertical axis corresponds to the ratio of signal amplitude detected in the i-th cylinder, Ai 
(i=3, 6, 9, 12, 15, and 18) to signal amplitude detected in the 3rd cylinder under different 
precompression forces F0: (∆) 10 N, (O) 59 N, (◊) 106, and (☐) 193 N. The chain is 
impacted by a 4.76 mm diameter steel sphere (with mass 0.455 g) dropped from the 
height of 350 mm, velocity before impact is equal to 2.24 ± 0.01m/s. 
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From the experimental results shown in Fig. 3.2, it is also noticed that increasing 

the system initial precompression above 50 N qualitatively change the shape of the pulse 

– an oscillating tail appears instead of smooth tail similar to the critically damped 

behavior of oscillator. This could be explained by the increase rigidity of the system 

with increasing initial static compression resulting in the increase of critical value of 

viscosity corresponding to the transition from oscillatory motion to critically damped 

motion of steel cylinders.  

Further, besides the dispersion of the nonlinear system and the viscoelastic 

behavior of O-rings, the solid friction between the locally deformed O-ring and the 

surface of steel plates could also be a reason for the strong attenuation in signal 

amplitude with the increasing precompression force. To investigate the role of friction 

on the signal attenuation in this metamaterial we lubricated the Nitrile O-rings and 

surfaces of the cylinders with 5w30 motor oil to reduce the contact solid friction. The 

experimental results related to the chain with lubricated interfaces between O-rings and 

cylinders at the least and most precompressed case (F0 = 10 N and 193 N) are presented 

in Fig. 3.4. The chain was impacted in similar way as the chain without lubrication. 

The comparison between these two results (with/without lubricants) represented 

in Table 3.3 demonstrates that at both precompression forces the signal speeds are the 

same within corresponding accuracy of their measurements [compare Fig. 3.2(a) with 

Fig. 3.4(a), and Fig. 3.2(k) with Fig. 3.4(b)].  

The shapes of corresponding signals at F0=10N were similar, but at 

precompression 193 N the signal detected by the gauge in the fifth cylinder 

demonstrated a smaller attenuation of the oscillating pulse. The lubrication resulted in 
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Figure 3.4: Attenuation of the stress pulse in the lubricated chain (5w30 motor oil). The 
chain is impacted by a 4.76 mm diameter steel sphere (mass 0.455 g) dropped from the 
height of 350 mm (velocity before impact is equal to 2.24 ± 0.01 m/s). The 
precompression force is: (a) 10 N and (b) 193 N.   
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Table 3.3: Speeds (V+), widths [Lexp,+/(a-x0)] and the attenuation of positive pulses 
(A9/A5 and A13/A5) for different precompression forces with lubricants (5w30 motor oil) 
and without lubrication detected in experiments.  
 

 F0 (N) V+ (m/s) Lexp,+/(a-x0) A9/A5  A13/A5  

Without 
lubrication 

10 128 4.6 0.62 0.36 
193 482 4.8 0.27 0.14 

With 
lubrication 

10 128 4.4 0.51 0.27 
193 498 4.6 0.25 0.17 

 

a slightly increased attenuation of the leading positive pulse in the initial stage of signal 

propagation for both precompression forces (data for A9/A5). A reduced attenuation of 

the leading pulse was observed on later stage of pulse propagation (data for A13/A5) only 

at precompression force 193 N (Table 3.3). Since the differences related to the 

experimental results with/without lubricants is insignificant, we may conclude that the 

dry contact friction between Nitrile O-rings and metal cylinders does not play a major 

role in the signal attenuation, and the viscoelastic deformation of O-rings is the major 

source of dissipation in the investigated metamaterial. 

 
3.4 Numerical Calculation and Comparison with Experiments 
 

The numerical simulation for a chain of steel cylinders and Nitrile O-rings 

shown in Fig. 3.1 as a 1D lattice with a double power-law interaction between 

neighboring rigid cylinders with/without considering viscous dissipation is carried out 

by using MATLAB.  

The gravitational force was applied to all particles of the chain in the numerical 

calculations, and the first particle in our numerical model represents the precompressing 



 

 

60 

mass, including the hollow steel rod and the additional weight attached to it as shown 

in Fig. 3.1. It was assumed that there was a Hertzian type interaction force between the 

precompression mass and the top cylinder (third particle of our model) in the chain. The 

second particle represents the steel striker, given an initial speed as 2.24 m/s measured 

in experiments by using a high-speed camera as mentioned in section 3.3. 

Two numerical models were considered: one is based on the linear elastic 

interaction between particles (referred as Model I), where no dissipation was included 

in all contact interactions. But the coefficient K, when selected to match experimental 

results on the wave speed, may represent effective rigidity influenced by the viscoelastic 

behavior. This approach was used in Ref. [5] to find the effective stiffness of the system 

by determining the characteristic propagation speed of small amplitude pulses 

associated with the sound speed, which is not significantly affected by the dissipation. 

The other approach uses a double power-law interaction force between particles 

including a viscous dissipation term (referred as Model II). Unlike Model I, this 

approach introduces an elastic and viscous components of the force. This separation 

allows a calculation of attenuation depending on the applied precompression, which was 

not possible in the frame of Model I. 

 
3.4.1 Equation of motion in numerical modeling 
 

 The first order differential equations of motion of N cylinders inside a periodic 

chain and the boundary conditions are presented below (similar to the method used in 

Ref. [5]): 
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  𝜑; 𝑥 − 𝜓; 𝑥 + g,	
  	
  	
  	
  	
  	
  𝑖 = 𝑁 + 1,… ,2𝑁 − 1;                                          (3.9) 

and	
  𝑥 = 𝑥A, … , 𝑥|,𝑥|DA, … , 𝑥5|	
   ;                                                                            (3.10) 

where g = 9.81 m/s2 is the gravitational acceleration. 

For the non-dissipative Model I: 
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For the dissipative Model II: 
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(3.12b) 

where 𝛿A,4 = 𝑥A − 𝑥4, and 𝛿;@A@|,;@| = 𝑥;@A@| − 𝑥;@|, for i=N+3,…,2N.            (3.13) 

And 𝐾;@A@| = 1.5(1.25𝜋𝐷'	
  𝐸3𝑑
@YC)𝑥*,;@A@|

Y
C + 6(50𝜋𝐷'𝐸3𝑑@M)𝑥*,;@A@|M , 𝑖 = 𝑁 +

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4, … , 2𝑁.                                                                                       (3.14) 

The boundary conditions are defined as: 

𝑥; 𝑥 = 0, 𝑖 = 𝑁, 2𝑁.                                                                                              (3.15) 

And the initial conditions corresponding to the gravitationally loaded chain are: 

𝑥|(𝑡 = 0) = 0; 	
  	
  𝑥|@; 𝑡 = 0 = 𝑥|@;DA(𝑡 = 0) + 𝑥*,|@;,  	
  	
  𝑖 = 1,… ,𝑁 − 3; 

𝑥5 𝑡 = 0 = 𝑥4 𝑡 = 0 ; 	
  	
  	
  𝑥A 𝑡 = 0 = 𝑥4(𝑡 = 0) + 𝑥*,A; 

𝑥|DA 𝑡 = 0 = 0; 	
  	
  𝑥|D5 𝑡 = 0 = 2.24	
  𝑚/𝑠; 	
  	
  𝑥|D; 𝑡 = 0 = 0,	
  	
  	
  	
  3 ≤ 𝑖 ≤ 𝑁.   (3.16) 

The variable 𝑥;  (i=1,…,N) is the displacement of the i-th particle from its 

equilibrium position in a undeformed chain assumed due to the gravitational force, static 

loading and dynamically perturbation, while for i=N+1, …, 2N they are the velocity of 

the (i-N)-th particle. The value of x0,1 is the intial displacement of the precompression 

mass refer to the top cylinder under gravitational force, x0,2 =0. Variables x0,i (i = 3,…, 

N-1) correspond to the initial change of heights of the O-ring between the i-th and (i+1)-

th cylinders due to the gravitational force.  



 

 

63 

The Heaviside function H(δ) is used to account for the seperation between the 

neighboring elements in the chain. The prefactors C= 5�steel
4(A@�C)

𝑅rod
A/5 and D = 5�steel

4(A@�C)
𝑅striker
A/5  

represent the nonlinear Hertzian type interactions between the precompressing mass 

(particle 1) and the top steel cylinder (particle 3) and between the striker (particle 2) and 

the top cylinder, where v and Esteel are the Poison ratio and elastic modulus. Rrod and 

Rstriker are the radius of the hollow steel rod and steel striker. The precompressing mass 

and striker have mass M and mimp, respectively. Parameters 𝜇�  and 𝜇� are the viscosity 

coefficient between the precompression mass and the top cylinder, and between the 

striker and top cylinder, which were used only in numerical calculations with Model II. 

 
3.4.2 Non-dissipative model I 
 

The results of modification of pulse shapes while they propagate in the system at 

different precompression forces in the non-dissipative numerical calculations in the 

frame of Model I are shown in Fig. 3.5 using effective elastic modulus Eeff = 105 MPa. 

This value provided a good description of the pulse speeds and correctly describes its 

behavior as well as increased frequency of pulses with precompression similar to the 

experimental data [5]. 

The speeds and widths of the positive and negative pulses calculated in the frame 

of Model I are presented in Tables 3.4 and 3.5. 

From the comparison between the data from numerical calculations (Table 3.4) 

and from experiments (Table 3.1), it can be seen that the selected modulus 105 MPa fits 

experimental data better at low precompression than at larger precompression. The  
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Figure 3.5: Stress pulses obtained in numerical calculations using Model I (without 
dissipation term between all elements in the system, and using effective elastic modulus 
Eeff = 105 MPa) and their corresponding Fourier spectra in a double power-law system 
under various preload conditions: (a),(b) F0= 10 N; (c),(d) 30 N; (e),(f) 50 N; (g),(h) 74 
N; (i),(j) 106 N; and (k),(l) 193 N. Curves represent the average dynamic force in the 
fifth (leading curve), ninth (middle curve), and thirteenth (bottom curve) steel partial.  
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Figure 3.5: Stress pulses obtained in numerical calculations using Model I (without 
dissipation term between all elements in the system, and using effective elastic modulus 
Eeff = 105 MPa) and their corresponding Fourier spectra in a double power-law system 
under various preload conditions, continued. 
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significant decrease of the pulse width with the increasing precompression 

demonstrated in numerical calculations [e.g., compare Figs. 3.5(a) and 3.5(k)], is due to 

the nonlinear behavior of this metamaterial reflecting the similar tendency observed in 

experiments [e.g., compare Figs. 3.2(a) and 3.2(k)]. 

 

Table 3.4: Results of the numerical calculation using Model I for speeds (V+) and their 
normalized width [Lnum,+/(a-x0)] of positive pulses under different static precompression 
forces.  
 

F0 (N) 10 30 50 74 106 193 

V+ (m/s) 127 154 182 222 272 386 

Lnum,+/(a-x0) 4.1 3.9 3.8 3.5 3.5 3.5 

 

Table 3.5: Results of the numerical calculation using Model I for speeds (V-) and their 
normalized widths [Lnum,−/(a-x0)] of negative pulses under different static 
precompression forces. 
 

F0 (N) 10 30 50 74 106 193 

V- (m/s) 119 140 166 204 248 342 

Lnum,−/(a-x0) 2.6 2.0 2.0 2.0 2.1 2.2 
  

Due to the dispersion caused by periodic structure of the system, it is observed that 

a slow decrease of the positive signal amplitude and ramping of their fronts even in the 

absence of dissipation (Figs. 3.5). In experiments the negative pulses attenuated faster 

than positive (except at the largest precompression). This behavior is opposite to the 

tendency in pulse amplitude change in numerical calculations with Model I where their 

change is solely due to the dispersion. The dependence of attenuation of positive signal 

amplitude on the depth for Model I is presented in Fig. 3.6 (compare with the 
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experimental results in Fig. 3.3). From Fig. 3.6, it is found that the rate of attenuation 

with depth decreases faster at larger precompression forces, this tendency is similar to 

that observed in experiments. 

But the amplitudes of signal in this numerical calculation (Model I) were always 

larger than the experimental data due to the non-dissipative approach used in the 

calculations (compare corresponding Figs. 3.2 and 3.5). The significant attenuation 

observed in experiments (Figs. 3.2 and 3.3) did not match with the attenuation in 

numerical calculations using Model I (Figs. 3.5 and 3.6). This indicated that the 

dispersion effects cannot be mostly responsible for the observed  attenuation in 

experiments. Thus the strong attenuation introduced by dynamically deformed Nitrile 

O-rings cannot be explained in the frame of Model I.  

The increase of precompression also results in a shift of frequencies in the FFT 

spectra toward significantly higher frequencies (under the same impacting condition). 

For example, at precompression 10 N all frequencies are below 10 kHz [Fig. 3.5(b)] and 

at precompression 193 N there is a peak at frequency spectrum at 22 kHz, and the 

propagating pulse has frequency below 20 kHz [Fig. 3.5(l)]. This shift in frequency 

spectra is similar to that observed in experiments [compare Fig. 3.2(b) and 3.2(l)], 

though the shape of spectrum is different and in numerical calculations we did not 

observe the decrease of frequency components in propagating signal, except of 

frequency peak at larger precompression [Fig. 3.5(l)]. The latter is related to the 

dispersion effect.  

From the presented analysis of the non-dissipative Model I, it can be concluded 

that it qualitatively describes some features observed in experiments outlined above. 
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Figure 3.6: Results of the numerical calculations of the attenuation of (a) positive and 
(b) negative signals with the depth in Model I under different precompression condition 
(compare with experimental data in Fig. 3.5). Ai is the amplitude of the signal in the i-
th (i=3, 6, 9, 12, 15, and 18) cylinder under different precompression forces: (∆) 10 N, 
(O) 59 N, (◊) 106, and (☐) 193 N. 
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But it is clear that this model significantly overestimates the amplitude of the signals, 

underestimates their attenuation and speed (at higher precompression forces) and it does 

not explain details of a frequency spectrum especially at the larger precompression. On 

the other side, a nonlinear dependence of amplitude attenuation on the precompression 

is observed that in experiments. Thus it is necessary to consider introduction of the 

nonlinear viscosity into the modeling, which is accomplished in the frame of Model II 

presented below. 

 
3.4.3 Dissipative model II 
 

In the numerical calculations for the strongly nonlinear viscoelastic model 

(Model II) we attempted to find out the appropriate combination of two fitting 

parameters Ed and µ to get a closer agreement with the experimental data related to the 

rate of leading pulse attenuation, its speed and frequency spectrum. It should be 

mentioned that the ability to model amplitude and duration of the leading compression 

pulse is the most important goal for design of protection devices. To simulate 

experimental conditions at the impacted side of the chain, I introduced slightly different 

values of µC and µD, corresponding to various precompression forces, to match the recoil 

velocity of the striker in numerical calculations with the experimental data. This ensured 

that a linear momentum introduced into the system in numerical calculations at the 

impacted end was similar to the experiment.  

We explore a combination of constant elastic modulus Ed = 87 MPa with various 

viscosity coefficient α range from 5 µs to 45 µs, and a combination of a constant 

viscosity coefficient α = 30 µs with varying elastic modules Ed range from 70 MPa to 



 

 

70 

105 MPa. The couple Ed=87 MPa and α = 30 µs provided the most satisfactory fit to 

the experimental data related to the pulse amplitude, speed, width, and rate of 

attenuation of the signal amplitude. The results of numerical calculations are presented 

in Fig. 3.7.  

The reason why Ed for viscous dissipative Model II is smaller than the effective 

modulus Eeff for purely elastic Model I is that the viscosity term contributes to increase 

the system effective rigidity and the increases of pulse speed of this metamaterial 

additionally to the linear elastic term determined by the coefficient K1 [Eq. (3.6)].  

The speeds and widths of the positive and negative pulses calculated in the frame 

of Model II are presented in Tables 3.6 and 3.7. Compared with experimental results 

(Tables 3.1 and 3.2), the calculated speed of positive and negative pulses using Model 

II are in a good agreement at all the precompression forces. The effective negative pulse 

speed in numerical calculation (Model II) is always lower than the positive pulse speed 

(Tables 3.6 and 3.7), which is consistent with the observation in experiments. The signal 

widths calculated in Model II also reproduce the same tendency as in experiments – 

decreasing with the precompression until the larger static load was applied (> 74 N). 

The dependence of attenuation of positive and negative signal amplitude on the 

depth at different preload conditions for Model II is presented in Fig. 3.8 (compare with 

the experimental results in Fig. 3.3). Since Model II takes into account a dissipative 

property and thus more pronounced attenuation of signals amplitude (compare Figs. 3.5 

and 3.7) was achieved.  

In a separate calculation we found that a classical dashpot model (viscous force 

does not depend on precompression and linearly dependent on strain rate) cannot 
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explain the tendency observed in experiments: the faster attenuation of signal amplitude 

at higher precompression. Such behavior can be explained by the dependence of 

effective viscosity on precompression as in Model II. More details of the classical linear 

dashpot model are presented in Appendix A section 2. 

It has been seen that numerical calculations using Model II correctly explain a 

tendency to higher attenuation at higher precompression force being consistent with the 

experimental results. It should be mentioned that Model I also shows a faster attenuation 

for larger precompression even without dissipation due to more active dispersion 

mechanism [Fig. 3.6(a)], although the rate of attenuation was lower than experimental 

data.  

From the comparison of the numerical results obtained using two models and 

experimental results, it is concluded that the numerical calculations with strongly 

nonlinear dissipative term (Model II) were able to predict the pulse speed dependence 

on precompression and attenuation of the leading positive pulse amplitude depending 

on the precompression. The dissipation term is essential to simulate the strong 

attenuation. The mechanism of this dissipation most probably is caused by viscoelastic 

behavior of the rubber O-ring and not by the effects of friction. The dispersion effects 

only, as shown in Fig. 3.5, did not significantly change the amplitude and shape of the 

stress. On the contrary to what is observed in experiments, the attenuation of negative 

pulse is slightly lower than the attenuation of positive part in both numerical models. 

This may indicate that the dissipation on the loading path is higher than dissipation on 

the unloading path and on subsequent cycles.  

The increase of precompression also results in a shift of frequency in FFT  
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Figure 3.7: Stress pulses obtained in numerical calculations using Mode II (with 
dissipation term α = 30 µs, and using dynamic elastic modulus Ed = 87 MPa) and their 
corresponding Fourier spectra in a double power-law system under various preload 
conditions: (a),(b) F0= 10 N; (c),(d) 30 N; (e),(f) 50 N; (g),(h) 74 N; (i),(j) 106 N and 
(k),(l) 193 N. Curves represent the average dynamic force in the fifth (leading curve), 
ninth (middle curve), and thirteenth (bottom curve) steel partial.  
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Figure 3.7: Stress pulses obtained in numerical calculations using Mode II (with 
dissipation term α = 30 µs, and using dynamic elastic modulus Ed = 87 MPa) and their 
corresponding Fourier spectra in a double power-law system under various preload 
conditions, continued. 
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Table 3.6: Results of the numerical calculation using Model II (Ed = 87 MPa, α = 30 µs) 
for speeds (V+) and normalized width [Lnum,+/(a-x0)] of positive pulses under different 
static precompression forces. 
 

F0 (N) 10 30 50 74 106 193 
V+ (m/s) 136 170 214 260 320 480 

Lnum,+/(a-x0) 4.6 4.2 4.0 4.5 4.6 5.0 

 

Table 3.7: Results of the numerical calculation using Model II (Ed = 87 MPa, α = 30 µs) 
for speeds (V-) and normalized widths [Lnum,−/(a-x0)] of negative pulses under different 
static precompression forces. 
 

F0 (N) 10 30 50 74 106 193 
V- (m/s) 109 132 157 179 218 292 

Lnum,−/(a-x0) 4.4 5.1 5.1 7.0 7.5 9.9 
 

spectra to significantly higher frequencies under the same impact condition as in 

experiments and in Model I. This shift in frequency spectra is accompanied by the 

decrease of frequency components amplitude in propagating signal, similar to that 

observed in experiments. The maximum in frequency spectra in Model II was shifted to 

lower frequency with signal propagation, unlike it in Model I where it stayed at the same 

frequency. This tendency picked up by Model II is similar to the observed in 

experiments though the shape of spectra in experiments and in Model II are different. 

However, the numerical results based on Model II have a distinct discrepancy 

with the experimental data – the dissipation term, which correctly explains the 

attenuation of leading pulse amplitude completely eliminates the oscillating tail of the 

pulse at higher precompression forces. This difference is demonstrated by the oscillating 

character of the signals in experiments after first negative pulse at larger precompression  
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Figure 3.8: The attenuation of positive (a) and negative (b) signals with the depth in 
Model II under different  precompression in numerical calculations. Ai is the amplitude 
of the signal in the i-th (i=3, 6, 9, 12, 15, and 18) cylinder under different 
precompression forces: (∆) 10 N, (O) 59 N, (◊) 106, and (☐) 193 N.  
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forces starting at 50 N [Figs. 3.2(e), 3.2(g), 3.2(i) and 3.2(k)]. It is also very clear from 

comparison of frequency spectra at larger precompression forces in experiments and in 

Model II [compare Figs. 3.2(h), 3.2(j) and 3.2(l) with Figs. 3.7(h), 3.7(j) and 3.7(l)]. 

Thus, Model II predicts an “over damped” behavior of the pulse at higher 

precompression. It should be emphasized that Eq. (3.4) related to the Model II is based 

on a quasi-static approach. It requires that the characteristic time of dynamic 

deformation is much longer than the relaxation time for the dissipative viscoelastic 

processes in the O-ring [14,15]. In our experiments with largest precompression the rise 

time of the signal [about 42 µs, Fig. 3.2(k)] is comparable to the relaxation time of O-

ring (µ = 30 µs) which provided the most satisfactory fit to the experimental data related 

to the pulse amplitude, speed, width, and rate of attenuation of the leading signal 

amplitude. Thus, at largest precompression a quasi-static approach may significantly 

overestimate dissipative properties resulting in “over damped” behavior in numerical 

calculations when using Model II.  

The oscillating pulse observed in experiments at higher precompression could 

be qualitatively explained by the increased rigidity of strongly nonlinear O-rings with 

precompression, which results in an increase of the critical value of damping coefficient 

describing the transition from under damped to over damped behavior. But the increase 

of elastic modulus in Model II with precompression (sufficient to explain increase of 

the signal speed) is not enough to insure the under damped behavior of this metamaterial. 

This may suggest that Nitrile O-rings have a more complicated viscoelastic behavior 

than assumed in quasi-static Model II. The probable qualitative explanation may be a 

path dependent behavior of the O-ring under the cyclic loading (decrease of dissipative 
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properties of O-ring on the unloading path after the first compression cycle), which is 

not captured by our quasi-static models.  

 
3.5 Conclusions 
 

The strongly nonlinear dispersive and dissipative properties of the metamaterial 

composed of the toroidal O-rings and steel cylinders were experimentally and 

numerically explored based on the measurements of signal speed of the compression 

pulse, the shape of the pulse and the attenuation of its amplitude. This metamaterial is 

suitable for impact mitigation because strongly nonlinear elements made from rubber 

O-rings completely recover even after high-energy impact [11,12]. Thus its dissipative 

properties can be used for multiple impacts, unlike metamaterials composed from metal 

spherical particles, where the plastic deformation of contacts is not recoverable. 

The signal speed in this metamaterial increases with the precompression force 

faster than in the chain of elastic spherical particles making it more tunable. The sound 

speed of this system (and acoustic impedance) could be tuned by a relative small static 

compression force to the extent which is unattainable at common solids.  

The presented experimental approach allowed measurements of the dynamic 

stiffness of O-rings at very small level of dynamic deformation imposed on the initial 

static precompression. This is possible because directly measured long wave signal 

speed in metamaterials is dependent on the derivative of the global stress versus 

dynamic strain. A similar approach can be used for the evaluation of dynamic modulus 

of other small-scale elements.  

A dramatic increase of dynamic modulus of Nitrile O-rings was observed and 
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successfully modeled using the strongly nonlinear double power law model. Our results 

demonstrated that the design of O-rings, which are very important elements with 

widespread use in machinery, should take into account their dramatic increase of rigidity 

under dynamic conditions even at low impact velocities. 

It was demonstrated that short stress pulse with length around four cell size of 

the system could be dramatically attenuated and ramped within a very short distance 

(comparable to the pulse width) due to strongly dissipative behavior of O-rings. This 

property is very attractive for the design of protective barriers mitigating impact loading. 

A nonlinear, viscous dissipative quasi-static model explained the nonlinear dependence 

of amplitude attenuation on the static precompression observed in experiments but at 

largest precompression a quasi-static approach may significantly overestimate 

dissipative properties resulting in “over damped” behavior in numerical calculations.  

Part of the Chapter 3 has been published in the Journal of Applied Physics, 117, 

art. 11430, pp. 1-12 by Yichao Xu and Vitali F. Nesterenko. The dissertation author was 

the primary investigator and author of this paper. 
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CHAPTER 4 

STRONGLY NONLINEAR WAVES IN STRONGLY DISSIPATIVE 
SONIC VACUUM 

 
 

 The discrete metamaterial assembled from alternating steel cylinders and Nitrile 

O-rings, where the strongly nonlinear interacting forces between adjacent particles obey 

a double power-law, can be described as sonic vacuum when the system is under zero 

precompression. Impact on this metamaterial will result in unique wave dynamics. This 

chapter presents the results of numerical and experimental research on the nature of 

pulses generated by impact in strongly dissipative metamaterial in the state of sonic 

vacuum.  

 
4.1 Introduction  
 

A one-dimensional discrete metamaterial composed of alternating steel 

cylinders and polymer toroidal rings represents a new class of metamaterials with strong 

nonlinearity [1-8]. Recent research shows that this metamaterial has a better potential 

for shock/impact mitigation combining dispersive properties of periodic discrete system 

and dissipation from viscoelastic Nitrile O-ring. It can also be used in applications 

requiring dramatic tuning of acoustic impedances. 

Unlike in the well-studied metamaterials composed of rigid elastic steel spheres 

with the Hertz type of contact interaction [9], the introduction of “soft” element – 

polymer O-ring, obeying a double power-law F ∝	
  (δ3/2+δ6) [10-12], results in a higher 
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sensitivity of pulse speed to the static precompression. Thus this metamaterial has a 

stronger nonlinearity and greater tunability than the Herzian-type system, where 

relatively small external forces can significantly tune its behavior. For example, the 

sound wave speed in this metamaterial increases with the precompression force faster 

than in the chain of elastic spherical particles making it more tunable [6]. The long-

wavelength approximation [13-15] and binary collision approximation [3] were used to 

predict the pulse propagation behavior in this metamaterial, providing analytic results 

in both precompression and no precompression cases.  

It has been shown that strongly nonlinear solitary and shock waves were 

supported by the one-dimensional metamaterial composed of steel plates and Teflon O-

rings [1]. In both experiments and numerical calculations (without consideration of the 

dissipation), there is a tendency for an initial pulse to split into a train of solitary waves 

in this metamaterial. The shape of the solitary wave propagating through this system is 

observed to be amplitude dependent and highly tunable. Though the dissipation of 

Teflon O-rings caused some dissipation in experiments, the numerical calculations 

ignoring the dissipation reasonably estimated the major properties of the oscillatory 

shock waves and the tendency of the splitting of pulse into trains of solitary waves. 

Researchers showed that, in elastically rigid metamaterials composed of metal 

spheres, the adjustment of geometric and material properties results in a unique 

phenomenon – tunable band gaps, where signals decay exponentially within certain 

frequencies. This characteristic was experimentally verified in the metamaterials 

composed of alternating steel cylinders and linear elastic O-rings made of 

polytetrafluoroethylene (PTFE) [3]. Besides, this metamaterial permits load-bearing 
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capabilities, its acoustic response can be controlled and tailored by the external static 

precompression.  

More recently, the metamaterial composed of steel cylinders and Nitrile rubber 

O-rings was proposed and investigated [4-8]. Nitrile O-rings are much softer than Teflon 

O-rings and have a better potential for the high-energy absorption and smaller speed of 

signal propagation. Compared with the traditional metamaterials composed of elastic 

spherical particles, this system with toroidal Nitrile O-rings is more tunable and exhibits 

more dissipative behavior. However, the dynamic behavior of Nitrile O-rings is not 

thoroughly studied, only few papers were published where the complex dynamic 

behavior of Nitrile O-rings under impact was investigated [4-8]. It was found that during 

a single impact test the dynamic stiffness of uncompressed Nitrile O-rings increased 

about three times in comparison with the value from quasi-static compression loading 

[5]. The numerical modeling used to analyze and explain the dynamic behavior of the 

uncompressed O-rings under impact also confirmed the influence of strain-rates on the 

dynamic response. 

It should be mentioned that previous investigation of the metamaterial composed 

of steel cylinders and polymer toroidal rings neglect the dissipation of polymer, though 

there were some discrepancies in the experiments and numerical estimation. In the 

metamaterial composed of steel cylinders and Nitrile rubber O-rings, the dissipation due 

to the dynamic deformation of viscoelastic Nitrile rubber O-rings plays a significant role 

in the propagation of stress pulses [6,7]. It was found that the attenuation of signal 

positive amplitude due to the viscos dissipation of Nitrile O-ring shows a strong 

dependence on the compression force, the larger the static precompression the faster the 
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attenuation of pulse amplitude [7]. The comparison of experimental data with numerical 

calculations using different models (non-dissipative, linear dashpot and nonlinear 

dissipative model following Brilliantov et al. approach [16,17]) also demonstrated the 

importance of the nonlinear viscous dissipation to describe the major properties of 

propagating pulses [6,7]. 

This chapter studies the effects of dissipation on the wave profile of the 

metamaterial composed of alternating steel cylinders and Nitrile O-rings without 

precompression. In case of zero precompression this system is characterized as “sonic 

vacuum”. The following aspects of the behavior of stress pulses excited by the striker 

impact in sonic vacuum will be focused on: (a) the stress pulse speed dependence on its 

amplitude; (b) the relevance of dissipation and dispersion for the transformation of wave 

profile; (c) the unusual transfer of linear momentum and energy from the striker to the 

“soft” metamaterial. The experimental observation and different numerical models have 

been used to investigate the dynamic behavior of this strongly nonlinear metamaterial 

with no precompression. 

 
4.2 Theoretical Analysis 
 

Consider a one-dimensional metamaterial composed of N steel cylinders 

alternated by Nitrile O-rings with no precompression (Fig. 4.1). The small Nitrile O-

rings are considered as massless nonlinear springs based on the large ratio of mass of 

steel cylinder to the mass of Nitrile O-ring. 

The quasi-static force between the contact particles is described by a double power-

law [10-12]. A non-dissipative equation of cylinders motion in this strongly nonlinear 
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system is presented below:  

𝑥; = 𝐴[ 𝑥;@A − 𝑥;
B
C − 𝑥;−𝑥;DA

B
C] + 𝐵 𝑥;@A − 𝑥; 8 − 𝑥; − 𝑥;DA 8 ,     (4.1) 

where xi denotes the displacement of the i-th cylinder from its equilibrium positions in 

the system without precompression, and 𝐴 = 1.25π𝐷J	
  𝐸imp/𝑚𝑑A/5 , 𝐵 =

50π𝐷J	
  𝐸imp/𝑚𝑑M, d and Dm are the initial cross section and mean diameter of the O-

rings. The equivalent elastic modulus of Nitrile rubber O-ring in the propagating wave 

generated by impact (Eimp) on the uncompressed system is different from its static value 

E0 due to a possible frequency dependence of the dynamically deformed O-ring. It also 

can be different than the elastic modulus Eeff  introduced in chapters 2 and 3 and related 

to the elastic behavior of O-ring in the vicinity of statically precompressed state.  

 At relative small strains investigated in this chapter (less than 0.3), the system 

still obeys Hertzian type interaction law, i.e., the dependence of force on the height of 

deformed O-ring obeys Hertzian behavior [first term on the right in Eq. (4.1) with 

exponent 3/2]. Without considering the dissipation of O-rings, this metamaterial in sonic 

vacuum state supports the Nesterenko solitary wave. Its speed Vs in long wave 

approximation is determined by the amplitude of the dynamic force (Fm) [15]: 

𝑉s =
5
M
𝑎𝐴A/4𝑚@A/8𝐹m

A 8,                                              (4.2) 

where a (=h+d, and h is the height of steel cylinder) is the distance between the centers 

of neighboring cylinders.  

To include the dissipation, the viscous term should be added to Eq. (4.1) [7]. 

The presence of dissipation allows propagation of another, shock-like stress wave with 

speed different than the speed of the solitary wave. The speed of the stationary shock 
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like stress wave with force Fsh in the equilibrium state has the following expression 

(independent on the type of dissipation): 

𝑉sh = 𝑎𝐴A/4𝑚@A/8𝐹sh
A 8.                                            (4.3) 

 

 
 
Figure 4.1: A schematic representation of wave propagation in one-dimensional 
metamaterial composed of N steel cylinders alternated by Nitrile O-rings without initial 
compression force. The value of a is the distance between centers of neighboring steel 
cylinders in the uncompressed chain in front of propagating wave and xi is the 
displacement of the i-th steel cylinder from its position in the uncompressed chain 
caused by wave propagation. The crosses show the initial positions of cylinder centers 
in the uncompressed chain. The solid dots correspond to the position of the cylinder 
centers in the wave. At the bottom the arrow shows the direction of impulse propagation, 
the left part of the chain is unloaded but first and second cylinders are still in contact 
(depending on the impact conditions they can be separated) and the right part is not 
loaded yet.  

 

The above Eqs. (4.2) and (4.3) describe speeds of different type of waves in a 

non-compressed metamaterial (“sonic vacuum”). It is interesting that in case of Fm = Fsh, 

Vs is smaller than Vsh, so the material behavior in solitary wave is “softer” than in a 

shock wave with the same amplitude. Equations (4.2) and (4.3) are based on the 

assumption that the elastic properties of the O-ring and the Hertzian nonlinearity are the 

same during the whole cycles of O-rings dynamic deformation including loading and 

unloading. 
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If this metamaterial is statically precompressed then its static deformation is 

determined by the elastic modulus E0, which can be significantly different from its 

values characterized for dynamic deformation Ed and Eimp. Moreover, the last two elastic 

moduli even at the same level of overall global strains can be different due to the 

difference in the corresponding loading paths [5]: elastic modulus Ed is related to small 

dynamic strains about statically precompressed state and Eimp is describing the elastic 

behavior of an initially uncompressed O-ring.   

To describe the small dynamic deformation of O-rings at the vicinity of initially 

precompressed state, a linear elastic dynamic response, depending on the initial 

precompression, was introduced in Ref. [6]: 

𝐹el = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾𝑥d,                                   (4.4a) 

𝐾 = 1.5(1.25π𝐷J	
  𝐸eff𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸eff𝑑@M)𝑥*M,           (4.4b) 

where x0 is the initial change of height of O-ring due to the static precompression force, 

and xd is the dynamic deformation of O-ring during the wave propagation in the 

precompressed system. 

These equations result in the following equation for the sound speed in the 

precompressed chain [6]: 

𝑐*5 = 	
  𝐾𝑎A5/𝑚 = 𝑎A5 1.5𝐴eff(𝑥*)A/5 + 6𝐵eff(𝑥*)M ,                    (4.5) 
 

where 𝐴eff = 1.25π𝐷J	
  𝐸���/𝑚𝑑A/5, 𝐵eff = 50π𝐷J	
  𝐸���/𝑚𝑑M. And a1 (=h+d-x0) is the 

cell size in the precompressed system. The values of sound speed at different 

precompression were much larger than the values predicted using the static elastic 

modulus of O-rings E0, because Eeff is much larger than E0 [6]. 

It is interesting to compare the speeds of shock wave [Eq. (4.3)] and Nesterenko 
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solitary waves [Eq. (4.2)] in the uncompressed metamaterial with the sound speed (or 

speed of stress wave with relatively small amplitude) in the compressed chain at the 

similar overall forces (including static precompression). This helps to compare the 

effective elastic properties of O-rings characteristic for different loading paths. Due to 

the domination of the Hertzian type behavior at relatively small deformation of O-rings 

the second term in Eq. (4.5) is about 0.09% and 7.15% of the first term at static forces 

F0 equal 10 N and 30 N correspondingly. If O-rings obey the Hertzian behavior and the 

amplitude of force in the wave is much smaller than the static precompression force, 

then the sound speed (or the speed of stress wave with relatively small amplitude) 

measured in Ref. [6] is equal to: 

𝑐* =
4
5
𝑎A(

£¤
Y/C

£2
Y/¥)𝑚@A/8𝐹*

A 8.                                               (4.6) 

The coefficient 𝐴* = 1.25π𝐷J𝐸*/𝑚𝑑A/5 relates the change of height of the O-ring (𝑥*) 

to the static force F0 using static elastic modulus E0 of Nitrile O-ring (according to Ref. 

[6], E0 = 7.6 MPa). It should be mentioned that the sound speed 𝑐* in Eq. (4.6) is not 

the sound speed in the steel cylinder or speed in the material of O-rings. It is a long 

wave sound speed in metamaterial where steel cylinders are considered as rigid bodies 

and O-rings obey the Hertzian behavior. 

The speed of the sound at statically precompressed system [Eq. (4.6)] can be 

larger than the speed of shock like stress wave in the uncompressed system [Eq. (4.3)] 

with dynamic force amplitude equals the static precompression force in the former 

system. The difference can be caused by the possible significant difference between Eimp 

and Ed due to different loading paths (the difference between a and a1 in the Hertzian 
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system is small). But even if elastic moduli are the same there is still a significant 

difference between c0 and Vsh. If amplitude of shock in uncompressed system is equal 

to the static precompression force in compressed system (Fsh=F0=30 N), the ratio of 

corresponding speeds of waves propagation in these systems is equal to c0/Vsh =1.9 

(assume Eimp=Ed=105 MPa). 

In the numerical calculations we investigated the role of two different 

mechanisms (geometrical dispersion and dissipation) on the pulse shape and amplitude 

in sonic vacuum. In the non-dissipative chain represented by Eq. (4.1), waves with 

relatively short wavelengths may be transformed only due to the dispersion mechanism. 

In a dissipative chain with a linear dashpot a dissipative term depends on the relative 

velocity between neighboring particles with an effective viscosity coefficient µ. This 

coefficient is a fitting parameter found by comparison with experimental results. The 

corresponding equation of cylinder motion in this initially non-compressed system is: 

𝑥; = 𝐴 𝑥;@A − 𝑥;
4
5 − 𝑥; − 𝑥;DA

4
5 + 𝐵 𝑥;@A − 𝑥; 8 − 𝑥; − 𝑥;DA 8  

+ ¦
'
(𝑥;@A − 2𝑥; + 𝑥;DA).                                                                             (4.7) 

In this paper we explore if this approach can be applied for the dynamic behavior 

of the dynamic deformation in a large amplitude stress waves propagating in sonic 

vacuum. 

 
4.3 Experimental Procedure, Results and Discussion 
 

4.3.1 Experimental setup 
 

The experimental setup is shown in Fig. 4.2. It has a frame holding the hollow  
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Figure 4.2: Experimental setup showing one-dimensional metamaterial composed of 
alternating stainless steel cylinders and Nitrile O-rings. The hollow steel rod was used 
to guide the striker. It has two slots near the end to measure the impact velocity of the 
striker by using the high-speed camera. Three piezo sensors are placed in the ninth, 
thirteenth and seventeenth cylinders.  
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steel rod (aligned with the chain) to guide the striker with two slots at the end. These 

slots were used to measure the impact velocity of the striker just before its impact with 

the top end of the chain using high-speed camera (Phantom V12). The vertical PMMA 

tube is used as a holder to assemble the one-dimensional metamaterials consisting from 

33 stainless steel cylinders (height h = 5mm, diameter 10 mm, and mass 3.065 g) and 

32 Nitrile O-rings (with a cross-section diameter d = 1.78 mm, mean diameter Dm = 

6.22 mm, and mass 0.0625 g). The system was only under gravitational precompression, 

which played a negligible role in stress wave propagation at investigated amplitudes. 

Three piezo gauges were placed inside the ninth, thirteenth and seventeenth steel 

cylinders to measure the dynamic forces. 

The stress pulses were generated by the impact of four different strikers (2.38 

mm radius steel tip) with varying masses (Striker 1-0.455 g, Striker 2-3.236 g, Striker 

3-9.308 g and Striker 4-30.718 g) on the top steel cylinder of the chain. The initial 

velocities of the strikes were measured (using images from high-speed camera) to be 

2.24 m/s, 2.43 m/s, 2.53 m/s and 2.59 m/s for Striker 1, Striker 2, Striker 3 and Striker 

4, respectively. Images from high-speed camera were also used to capture the details of 

the interaction between striker and top steel cylinder (displacements and separation of 

the striker from the top cylinder).  

The forces inside cylinders in transmitted stress waves were measured using 

three calibrated piezo gauges (RC of the electrical circuit ~ 5.24 ms) connected to an 

oscilloscope (Tektronix TDS2014).  

 

4.3.2 Properties of attenuating stress waves and comparison of experimental 
data and theoretical predictions 
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The experimentally detected stress wave profiles (Fig. 4.3) were generated by 

strikers with different masses and similar velocities (with the intention to generate the 

incoming pulses of different durations and amplitudes).  

 

 

 
 

Figure 4.3: Attenuation of waves with different amplitudes in uncompressed chain 
composed of alternating stainless steel cylinders and Nitrile O-rings. The system was 
impacted by four different strikers: (a) 0.455 g Striker with a 2.38 mm radius having a 
velocity of 2.24 m/s; (b) 3.236 g Striker with a 2.38 mm radius steel tip having a velocity 
of 2.43 m/s; (c) 9.308 g Striker with a 2.38 mm radius steel tip having a velocity of 2.53 
m/s; (d) 30.718 g Striker with a 2.38 mm radius steel tip having a velocity of 2.59 m/s. 
Three piezo gauges were embedded in the ninth (leading signal), thirteenth (middle 
signal), and seventeenth (last signal) steel cylinders to record dynamic forces.   

 

The properties of the detected stress waves are presented in the Table 4.1 below. 

In this table parameters Vexp(m/s) 9-13 or Vexp (m/s) 13-17 correspond to the signal speed 
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measured by propagation time and distance between 9 and 13 cylinders with embedded 

gauges. Parameters An, Tn, Ln, TFWHA,n, LFWHA,n, Tf,n, and Lf,n are corresponding to the 

signal amplitudes, total positive phase of pulse duration, the space span of the positive 

pulse, the full time width at half of the maximum amplitude, full space width at half 

amplitude, the duration of the front and corresponding front width based on 

measurements by gauges embedded into n-th cylinder. The full time or space width at 

half maximum amplitude is introduced to minimize the role of the negative signal at the 

end part of the pulse which is not of mechanical origin though it is often present in other 

research using similar type of sensors [18].  

It is interesting that the increase of the striker mass by 67 times (compare the 

mass of Strike 1 and Striker 4) resulted in the increase of pulse duration only two times. 

The duration of positive phase of pulses demonstrates a tendency to increase with their 

propagation more noticeable for lower amplitude incoming pulses generated by small 

mass strikers.  

The range of dynamic amplitudes of compression pulses (2-27 N) in sonic 

vacuum, presented in Fig. 4.3, is significantly larger than the dynamic amplitudes of 

pulses in strongly precompressed system (0.28–0.68 N, signal in the 9th cylinder [7]) 

corresponding to the static precompression forces 10-193 N. In the former case pulses 

had durations in the interval 1000 µs to 2000 µs and ramp times 400-500 µs unlike in 

the latter case where the compression pulses had much smaller durations 340-80 µs and 

the corresponding ramp times 220–50 µs [7]. Thus the deformation paths of O-rings 

investigated in this paper are very different than the small amplitude waves in the same 

metamaterial but strongly precompressed [6,7]. 
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Table 4.1: Experimental data for speed (Vexp), amplitude (An), duration (Tn) of the 
positive phase of the pulse, full time width at half maximum amplitude TFWHA, 
normalized full space width at half maximum amplitude (LFWHA,n/a), and normalized 
width of positive phase of pulse (Ln/a) of the compression stress waves detected in the 
ninth, thirteenth, and seventeenth cylinder of the metamaterial excited by different 
strikers. 
 

Striker mass (g) 0.455g 3.236g 9.308g 30.718g 
Vexp(m/s) 55±3 66±4 70±5 75±5 

T9 (µs) 1152 1132 1452 2080 
L9/a 9.3 11.0 15.0 23.0 

TFWHA,9 (µs) 452 424 648 816 
LFWHA,9/a 3.7 4.1 6.7 9.0 

Tf,9 (µs) 392 368 412 501 
Lf,9/a 3.2 3.6 4.3 5.5 

T13 (µs) 1472 1416 1764 2696 
L13/a 11.9 13.8 18.2 29.8 

TFWHA,13 (µs) 628 564 788 1136 
LFWHA,13/a 5.1 5.5 8.1 12.6 

Tf,13 (µs) 552 424 548 688 
Lf,13/a 4.5 4.1 5.7 7.6 

T17 (µs) 1458 1800 1828 2456 
L17/a 11.8 17.5 18.9 27.2 

TFWHA,17 (µs) 642 676 786 1180 
LFWHA,17/a 5.2 6.6 8.1 13.1 

Tf,17 (µs) 616 556 626 812 
Lf,17/a 5.0 5.4 6.5 9.0 

A13/A9 0.56 0.60 0.69 0.73 
A17/A9 0.41 0.46 0.56 0.63 

 

It is interesting that the sonic vacuum (uncompressed system) is less dissipative 

than the statically precompressed chain based on the rate of amplitude attenuation. This 

is evident from the comparison of pulse amplitudes decay at the comparable overall 

forces (dynamic amplitude of the wave investigated in this paper versus static 

precompression plus dynamic force in the latter). For example, in Fig. 4.3(c), the 

dynamic amplitude of leading wave in the uncompressed chain is 13.84 N, which can 
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be compared with the overall force 10.7 N (sum of static precompression force 10 N 

and amplitude of wave about 0.7 N) in chapter 3. In the sonic vacuum the leading pulse 

is attenuated by 30% after the propagation of waves through four cell sizes (from the 

ninth cylinder to thirteenth cylinder). While in the precompressed system, it is reduced 

by 44% travelling through the same distance (four cells, from the ninth cylinder to the 

thirteenth cylinder). Similar behavior is observed when the experimental results 

presented in Fig. 4.3(d) are compared with the wave amplitude propagating in the 

precompressed chain by static force 30 N. The amplitude of leading pulse in the ninth 

cylinder (27.98 N) in former cases attenuated by 27% in four cell size comparing to the 

attenuation rate 55% in the precompressed system (the stress wave propagated from the 

ninth to the thirteenth cylinder).  

Despite the increased amplitude of leading pulse in experiments in sonic vacuum 

the attenuation rate of the stress wave amplitude decreased from 44% [Fig. 4.3(a)] to 

27% [Fig. 4.3(d)]. This behavior is in drastic contrast with the increase attenuation of 

pulse with the increase of static precompression force [7] demonstrating a qualitatively 

different behavior of O-rings in different loading paths. 

Behavior of O-rings starts to deviate from the Hertzian law (with exponent 3/2  

for the force dependence on displacement) at force above 50 N [6]. In experiments 

presented in this paper the stress wave amplitudes are in the interval 2-28 N (Fig. 4.3). 

Thus the interaction law caused by the compression of O-rings can be considered as 

Hertzian type if they follow the static behavior.  

The characteristic size of single Nesterenko solitary wave in a non-dissipative 

Hertzian chain, which supposed to be generated by the striker with mass less or equal 
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the mass of the cell in the system (e.g., striker mass 0.455 g and 3.236 g), is supposed 

to be equal to 5 particles (or cells) and the solitary wave front is composed from 2.5 

particles (or cells) [15]. The obtained normalized width of the stress wave front in 

experiments (Lf,9/a, Table 4.1) is close to 3.2-3.6 cell sizes, which is larger than the 

expected for the solitary wave front in a Hertzian chain. The length of the positive phase 

of the stress wave is about two times larger than the expected solitary wavelength 

corresponding to the chain with Hertzian type force between masses. Thus the detected 

compression pulse is not a Nesterenko solitary wave expected in the chain with a 

Hertzian interaction law between masses under the short duration of impact. This 

deviation from the behavior of non-dissipative chain with masses interacting by the 

Hertz law is probably due to the dissipation, thus this propagating pulse is more like 

shock like stress waves. 

It may be also explained if the dynamic behavior of O-rings is less nonlinear 

than the Hertzian interaction and characterized by the dependence of the force on 

displacement with exponent less than 3/2. The solitary wave has increased length (Ln) 

for smaller values of exponents n [15], as clear from the following equation:  

𝐿§ =
¨g
§@A

§(§DA)
8

.                                                       (4.8) 

When the exponent n<3/2, the value of the solitary wave length Ln is larger than 

the solitary wave length M
5
𝜋𝑎≈5a corresponding to exponent 3/2. The values of 

solitary wave lengths equal 9.3a and 11a correspond to exponent values equal 1.23 and 

1.19. 

The Nesterenko solitary wave in a sonic vacuum [at any values of exponent n, 
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see Eq. (4.8)] has a length which is independent on its amplitude [15]. But in our 

experiments we observed the increase of the length of the pulses with the amplitude 

increase [compare Figs. 4.3(a) and 4.3(b) and the corresponding data in Table 4.1 related 

to the striker masses 0.455 g and 3.236g, which supposed to generate a single solitary 

waves]. Thus properties of these stress pulses do not correspond to the Nesterenko 

solitary wave expected from a power law type deformation of O-rings even at lower 

values of exponent n. Thus the observed behavior in general cannot be explained by the 

decreased nonlinearity of dynamically deformed O-rings.   

The impact of striker with mass significantly larger than the mass of cell in the 

non-dissipative strongly nonlinear Hertzian chain generates a train of multiple 

Nesterenko solitary waves at relatively short distances from the entrance (10-20 cells 

[15]). But this behavior is not observed in the experiments with striker masses 9.308 g 

and 30.718 g. This demonstrates that the dissipation dominates the response of strongly 

nonlinear discrete system suppressing the role of dispersion.  

The type of nonlinear interaction law between masses in strongly nonlinear 

system determines not only the size of the solitary wave being independent on the 

amplitude, but also the dependence of solitary wave and shock wave speeds on their 

amplitudes.  

The dependence of the small amplitude stress pulse speed on the static 

precompression force is following the expected from Hertzian interaction [15], but we 

may expect a different behavior of uncompressed O-rings under the different path of 

dynamic deformation.  

The shock wave speed for power law interaction Vsh,n from Ref. [15] can be 
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transformed to the following equation representing the speed dependence on the 

maximum force Fm: 

𝑉j©,§ = 𝑎𝐴§
A 5§𝑚@(§@A) 5§𝐹'

(§@A) 5§.                       (4.9) 

The coefficient An is similar to the coefficient A in Eq. (4.1) only for the case when 

exponent 3/2 is replaced with exponent n. 

The strongly nonlinear stress pulses in experiments exhibited an increase of the 

propagation speed with the increase of their amplitude – from 55±3 m/s [averaged on 

the distance between 9th and 13th cylinders, where pulse amplitude was in the interval 

2.03-1.15 N, Fig. 4.3(a) generated by the lightest striker with mass 0.455 g] to 75±5 m/s 

[averaged on the same distance at pulse amplitude in the interval 26.97-19.56 N, Fig. 

4.3(d) generated by the impact of heaviest striker with mass 30.718 g]. We can estimate 

the value of exponent n in Eq. (4.9), which will provide the observed weak dependence 

of the speed of the pulses with their amplitude Fm, assuming that the deformation of O-

ring results in a power law interaction between cylinders. The corresponding values of 

exponent n is 1.323±0.1633, based on the ratio of average amplitudes Fm of the stress 

waves [using Eq. (4.9)] in the 9th and 13th cylinders generated by Strikers 1 (1.59 N) 

and 4 (23.27 N) and pulse speeds (55±3 m/s and 75±5 m/s, correspondingly).  

The estimated value of the exponent in the dependence of the wave speed on its 

pulse amplitude is consistent with the theoretical expectation of the dependence of 

strongly nonlinear shock wave speeds on its maximum amplitude in a Hertzian-type 

system with the elastic modulus not depending on the amplitude of pulse [15]. The 

comparison between the measured nonlinear stress pulse speed and the theoretical shock 

wave speeds [corresponding to Eq. (4.3)] are presented in Table 4.2 for different values 
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of elastic modulus.  

 
Table 4.2: Comparison of the experimental measurements of pulse speed (Vexp) 
measured between the 9th and 13th cylinders and the calculated theoretical value of 
shock wave speeds [Vsh, using Eq. (4.3)] in an elastic Hertzian chain with various elastic 
modulus Eimp.   
 

Striker 
number/mass 

(g) 

Amplitude 
(A9+A13)/2 

(N) 

Vexp 
(m/s) 

Eimp=7.6
MPa 

Eimp=87
MPa 

Eimp=105
MPa 

Vsh Vsh Vsh 
1/0.455 1.59 55±3 21.7 48.9 52.0 
2/3.236 5.41 66±4 26.6 59.9 63.8 
3/9.308 11.68 70±5 30.2 68.1 72.5 
4/30.718 23.27 75±5 33.9 76.4 81.4 

 

Data in the Table 4.2 demonstrate that we have very large difference in the 

predicted speeds of the strongly nonlinear pulses in sonic vacuum and experimental data 

if we use the static elastic modulus for O-ring (7.6 MPa). We can see that the pulse 

speed in the sonic vacuum can be satisfactory described by the elastically nonlinear 

interaction caused by deformation of O-rings with effective elastic modulus 105 MPa. 

The situation is similar to what was observed in the estimation of long-wave sound 

speed in the similar, but precompressed system [6]. In statically compressed chain we 

have initial strain ξ0, which we reached through the static deformation with elastic 

modulus 7.6 MPa. If we have a small dynamic deformation added to this value we must 

use much stiffer response, still based on the elastic Hertzian law, with larger effective 

elastic modulus 105 MPa [6]. But this approach is not able to explain the attenuation of 

the pulse amplitude. 

Dynamic modulus Ed=87 MPa in combination with viscous dissipation 

(providing additional input into the “rigidity”) used in Brilliantov approach [7] provided 



 

 

99 

a reasonable estimation for the value of sound speed and the amplitude attenuation in 

the precompressed chain. 

In uncompressed chain we drive system in single pulse from zero strain to the 

similar maximum strain ξm=ξ0. If we include viscous dissipation producing additional 

contribution to the stiffness we need smaller effective elastic modulus 87 MPa 

(Brilliantov et al. approach [7]) to explain the dependence of the pulse speed on the 

precompression and its attenuation.  

It is interesting to compare the speed of these shock like stress pulses in sonic 

vacuum with the long-wave sound speed in the same metamaterial being strongly 

precompressed assuming nonlinear elastic behavior with the same modulus. We can see 

that the sound speed in statically precompressed chain at precompression force 30 N is 

equal to 165±9 m/s and the speed of the stress wave in the uncompressed chain with 

similar amplitude of dynamic force is equal to 75±5 m/s. Their ratio is equal to 

2.22±0.27 which is close to the expected ratio of 1.89 [based on the comparison of 

Eqs.(4.3) and (4.6) applicable for the nonlinear elastic chain with constant elastic 

modulus of O-rings].  

 
4.4 Numerical Calculations  
 

Numerical calculations modeling experimental set up shown in Fig. 4.2 were 

conducted using MATLAB.  

In the first numerical approach we consider the non-dissipative interactions 

between elements in the chain and between the striker and the top cylinder (referred as 

Model I). The steel cylinders were treated as rigid bodies connected by the nonlinear 
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spring according to a double power-law [Eq. (4.1)]. The striker in numerical calculations 

was given initial velocity (2.24 m/s, 2.43 m/s, 2.53 m/s and 2.59 m/s for Strikers 1, 2, 3 

and 4, respectively). A strongly nonlinear elastic Hertzian type interaction was assumed 

between the striker and the top steel cylinder similar to Ref. [7]. The gravitational force 

was not included in the numerical simulation, since in separate numerical calculations 

we demonstrated that the gravitational forces acting on the particles did not affect the 

speed, amplitude and shape of the signals in the investigated range of numbers of 

particles and time of experiments. 

The second approach is a linear dashpot dissipative Kelvin-Vogt model (referred 

as Model II). A dissipation term with linear dependence on the particle relative velocity 

was introduced to the whole system, while a dissipative term was added or excluded 

between the striker and the top cylinder of the chain.  

 
4.4.1 Numerical modeling results using non-dissipative model 
 

Figure 4.4 and Table 4.3 show the numerical results corresponding to Model I 

with the elastic modulus of O-ring Eimp being equal to 105 MPa.  

It is clear that a single Nesterenko solitary wave was generated when the mass 

of striker was smaller than the mass of steel cylinder in the system [Figs. 4.4(a) and 

4.4(b)], which is also expected for this system [15]. The spatial width of the ramp of 

these waves for all strikers’ mass shown is equal to 2.3a (Fig. 4.4). This size is consistent 

with the expected size of half of Nesterenko solitary wave in a Hertzian chain [15]. But 

in experiments the spatial size of ramp was equal to 3.2a for small amplitude pulse [Fig. 

4.3(a)] and 5.5a for largest amplitude [Fig. 4.3(d)]. 
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Figure 4.4: Stress profiles in the propagating waves in numerical simulation using non-
dissipative model I (Eimp = 105 MPa) in the ninth (leading signal), thirteenth (middle 
signal), and seventeenth (last signal) cylinders. The system was impacted by four 
different strikers: (a) Striker 1 (0.455 g, with velocity 2.24 m/s); (b) Striker 2 (3.236 g, 
with velocity 2.43 m/s); (c) Striker 1 (9.308 g, with velocity 2.53 m/s); (d) Striker 1 
(30.718 g, with velocity of 2.59 m/s). 

 

Impact by the striker with larger mass resulted in the stress pulse disintegrated 

into trains of Nesterenko solitary waves (Striker 3 and 4) in the numerical calculations 

[Figs. 4.4(c) and 4.4(d)]. The change of wave profile in Fig. 4.4, illustrates that the 

number of Nesterenko solitary waves in the train is determined by the ratio of the striker 

mass to the mass of the cylinder in the system. But in experiments there was no splitting 

of pules intro trains of solitary waves. Instead an asymmetrical bell shape pulse is 

detected in the apparent disagreement with the results of non-dissipative model 
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calculations (Fig. 4.4).  

 

Table 4. 3: Comparison of numerical results (using non-dissipative model at Eimp = 105 
MPa) and experimental data on speed, normalized width, and amplitude of transmitted 
pulses when the system was impacted by four different strikers: Striker 1 – 4.  
 

 Model I (Eimp = 105 MPa) Experimental data 
Strike
r mass 

(g) 
0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 

V 
(m/s) 67 90 98 105 55±3 66±4 70±5 75±5 

Lf,9/a 2.3 2.3 2.3 2.3 3.2 3.6 4.3 5.5 

A9 (N) 9.5 54.7 90.9 133.5 2.03±
0.04 

6.75±
0.15 

13.85
±0.05 

26.97
±0.49 

 

The amplitudes of waves in non-dissipative numerical calculations were much 

higher than in the experiments.  

Moreover, the amplitude of the stress waves in the numerical modeling did not 

attenuate during propagation within four cell size, which is in contradiction to the 

attenuation observation observed in experiments (Fig. 4.3).  

The wave speed in numerical calculations was significantly larger than the value 

in experiments (Table 4.3). It should be mentioned that using Eimp =105 MPa results in 

a good prediction of the shock wave speed in an elastic Hertzian chain if the amplitudes 

from the experiments were used in Eq. (4.3).  

In the attempt to reduce amplitudes of the signals and their speed we also used 

lower elastic modulus Eimp=87 MPa in numerical calculation. The corresponding stress 

profiles in propagating waves are shown in Fig. 4.5 and the numerical values are 

presented in Table 4.4. 
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Figure 4.5: Stress profiles in the propagating waves in numerical simulation using non-
dissipative Model I (Eimp = 87 MPa) in the ninth (leading signal), thirteenth (middle 
signal), and seventeenth (last signal) cylinders. The system was impacted by four 
different strikers: (a) Striker 1 (0.455 g, with velocity 2.24 m/s); (b) Striker 2 (3.236 g, 
with velocity 2.43 m/s); (c) Striker 1 (9.308 g, with velocity 2.53 m/s); (d) Striker 1 
(30.718 g, with velocity of 2.59 m/s). 

 

Table 4.4: Comparison of numerical results (using non-dissipative model at Eimp = 87 
MPa) and experimental data on the speed, normalized width, and amplitude of 
transmitted pulses when the system was impacted by four different strikers: Striker 1—
4.  
 

 Model I (Eimp = 87 MPa) Experimental data 
Striker 
mass (g) 0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 

V (m/s) 62 85 91 98 55±3 66±4 70±5 75±5 
Lf,9/a 2.4 2.4 2.4 2.4 3.2 3.6 4.3 5.5 

A9 (N) 8.8 50.7 84.3 123.7 2.03 6.75 13.85 26.97 
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We can see that reduction of elastic modulus indeed resulted in the reduction of 

the pulse speeds and amplitudes. But still significant differences with experimental data 

are evident, specifically with the spatial size of the ramp of waves, dramatically different 

shapes of pulses and their amplitudes, absence of attenuation in numerical calculations 

versus decay in experiments.  

 It is clear that it is necessary to introduce a dissipation to address the outlined 

differences between numerical simulations and experiments.  

 
4.4.2 Numerical modeling results using linear dissipative model 
 

From the comparison of numerical results and experimental data above, it is 

clear that we must introduce the dissipation mechanism in numerical calculations. It 

should be mentioned that the nonlinear behavior in the investigated metamaterial is due 

to the dynamic deformation of rubber O-rings which is a complex process due to the 

rubber itself and due to the contact interaction between O-ring and steel plates with large 

gradients of strain and stresses in the rubber.  It is not reasonable to expect exact match 

of numerical results and experiments.  

 It is interesting that it is in a dramatic contrast to the behavior of discrete systems 

composed from steel spherical particles or spherical particles and cylinders where role 

of dissipation was rather weak [18-21]. 

 The numerical results of stress wave profiles for a linear dashpot model (µ = 22 

Ns/m) for the cylinder interaction in the chain caused by dynamic compression of O-

rings are presented in Fig. 4.6 (no dissipation term was added between the striker and 

the top cylinder). 
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Figure 4.6: Profiles of the stress waves versus time obtained in numerical simulation 
using dissipative Model II (Eimp = 105 MPa, µ = 22 Ns/m and µs =0) in the ninth (leading 
signal), thirteenth (middle signal), and seventeenth (last signal) cylinders. The system 
was impacted by four different strikers: (a) Striker 1 (0.455 g, with velocity 2.24 m/s); 
(b) Striker 2 (3.236 g, with velocity 2.43 m/s); (c) Striker 1 (9.308 g, with velocity 2.53 
m/s); (d) Striker 1 (30.718 g, with velocity of 2.59 m/s).  

 

It is evident that the viscous dissipation resulted in the asymmetric stress wave 

profiles similar to what observed in experiments (compare Fig. 4.3 and 4.6). This 

dissipation mechanism eliminated the splitting of incoming stress pulses into trains of 

Nesterenko solitary waves and reduced the amplitudes of stress pulses. In a separate 

calculation, it is proved that the selected value of effective coefficient of viscosity (µ) 

will not affect the recoil velocity of striker if no viscous dissipation was introduced for 

contact between the striker and the op cylinder. The recoil motion of the striker can be 
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changed by adding a viscous term (with viscosity coefficient µs ) for the corresponding 

contact between the striker and the top cylinder. 

Comparison of the results of numerical calculations for dissipative chain with 

experimental data is presented in Table 4.5. 

 

Table 4.5: Comparison of numerical results (using dissipative model at Eimp = 105 MPa, 
µ=22 Ns/m and µs =0 Ns/m) and experimental data for speed, normalized width of ramp 
(0.1-0.9), full width at half maximum LFWHA and amplitudes of transmitted pulses for 
the system impacted by four different strikers: Striker 1—4. 
 

 Linear dashpot Model Experimental data 
Mimp (g) 0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 
V (m/s) 55 76 86 97 55±3 67± 70± 75±5 

Lf,9/a 4.9 4.2 4.6 5.0 3.2 3.6 4.3 5.5 
LFWHA,9/a 5.1 4.3 6.5 10.6 3.7 4.1 6.7 9.0 

A9 (N) 1.96 14.54 33.71 72.68 2.03 6.75 13.85 26.97 
A13/A9 0.75 0.76 0.87 0.94 0.56 0.60 0.69 0.73 
A17/A9 0.61 0.61 0.77 0.88 0.41 0.46 0.56 0.63 

 

From Fig. 4.6 and Table 4.5 we can see that the profiles of stress waves and their 

spatial sizes in numerical calculations are closer to the experimental data. But still the 

amplitudes and speeds of pulses generated by Strikers 2-4 are higher than in experiments. 

Additionally, the attenuation of signal amplitude in numerical calculations is lower than 

in experiments. Ramp times in numerical calculations are less dependent on the pulse 

amplitude than in experiments. 

In the attempt to achieve a better fit to experimental results, the numerical 

calculations with linear dashpot model using different elastic modulus (Eimp = 87 MPa, 

µ=22Ns/m and µs =0) was conducted. No dissipation term introduced between the 

striker and the top cylinder because the steel/steel contact is less dissipative than  
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rubber/steel contacts. The results are presented in Fig.4.7 and Table 4.6. 

 

 

 
 
Figure 4.7: Profiles of the stress waves versus time obtained in numerical simulation 
using dissipative model II (Eimp = 87 MPa, µ = 22 Ns/m, and µs =0 Ns/m) in the ninth 
(leading signal), thirteenth (middle signal), and seventeenth (last signal) cylinders. The 
system was impacted by four different strikers: (a) Striker 1 (0.455 g, with velocity 2.24 
m/s); (b) Striker 2 (3.236 g, with velocity 2.43 m/s); (c) Striker 1 (9.308 g, with velocity 
2.53 m/s); (d) Striker 1 (30.718 g, with velocity of 2.59 m/s). 

 

From Fig. 4.7 and Table 4.6 we can see that profiles of stress waves and their 

spatial sizes in numerical calculations are in better agreement with the experimental data 

than in the previous dissipative case presented in Fig.10 and Table V. But the amplitudes 

and the speeds of pulses are higher than in experiments and the attenuation in numerical  
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Table 4. 6: Comparison of numerical results (using dissipative model at Eimp = 87 MPa, 
µ=22 Ns/m and µs =0) and experimental data for speed, normalized width of ramp, full 
width at half maximum LFWHA and amplitudes of transmitted pulses for the system 
impacted by four different strikers: Striker 1—4.   
 

 Linear dashpot Model Experimental data 
Mimp (g) 0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 
V (m/s) 52 71 79 90 55 67 70 75 

Lf,9/a 4.9 4.2 4.5 5.6 3.2 3.6 4.3 5.5 
LFWHA,9/a 5.3 4.5 6.9 11.0 3.7 4.1 6.7 9.0 

A9 (N) 1.97 13.63 30.16 66.16 2.03 6.75 13.85 26.97 
A13/A9 0.76 0.75 0.87 0.94 0.56 0.60 0.69 0.73 
A17/A9 0.61 0.61 0.77 0.88 0.41 0.46 0.56 0.63 

 

calculations is lower than in experiments. Ramp times in numerical calculations are 

closer to what observed in experiments. 

The viscous dissipation at the striker top cylinder contact can also influence the 

generated pulses in the addition to increased viscous dissipation due to the dynamic 

deformation of O-rings. The role of these dissipative mechanism is investigated in 

numerical calculations and the corresponding results are presented in Fig. 4.7 and Table 

4.6. In these calculations the following parameters in dashpot model were used 

correspondingly for O-rings and contact between striker and top cylinder: Eimp = 87 

MPa, µ=125 Ns/m and µs=9.5 Ns/m). 

From Fig. 4.8 and Table 4.7 we can see that the profiles of stress waves and their 

spatial sizes in numerical calculations are in satisfactory agreement with the 

experimental data as well as the speeds of pulses. But there are differences in amplitudes 

and rate of attenuation. The ramp times and values for LFWHA,9/a are also higher than the 

experimental values. 



 

 

109 

 

 
 
Figure 4.8: Profiles of the stress waves versus time obtained in numerical simulation 
using dissipative Model II (Eimp = 87 MPa, µ = 125 Ns/m, and µs =9.5 Ns/m) in the ninth 
(leading signal), thirteenth (middle signal), and seventeenth (last signal) cylinders. The 
system was impacted by four different strikers: (a) Striker 1 (0.455 g, with velocity 2.24 
m/s); (b) Striker 2 (3.236 g, with velocity 2.43 m/s); (c) Striker 1 (9.308 g, with velocity 
2.53 m/s); (d) Striker 1 (30.718 g, with velocity of 2.59 m/s).  

 

Table 4.7: Comparison of numerical results (Eimp = 87 MPa, µ = 125 Ns/m, and µs =9.5 
Ns/m) and experimental data for speed, normalized width of ramp, full width at half 
maximum LFWHA and amplitudes of transmitted pulses for the system impacted by four 
different strikers: Striker 1—4.   
 

 Linear dashpot Model Experimental data 
Mimp (g) 0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 
V (m/s) 52 63 73 79 55 67 70 75 

Lf,9/a 2.5 3.6 5.9 7.9 3.2 3.6 4.3 5.5 
LFWHA,9/a 9.1 8.4 11.8 15.4 3.7 4.1 6.7 9.0 

A9 (N) 1.09 6.89 17.13 45.32 2.03 6.75 13.85 26.97 
A13/A9 0.60 0.67 0.80 0.88 0.56 0.60 0.69 0.73 
A17/A9 0.44 0.52 0.67 0.80 0.41 0.46 0.56 0.63 
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Thus we can conclude that linear dashpot model provided only partial agreement 

with the experimental results which is most probably due to the more complex, path 

dependent dissipative behavior of O-rings. The complexity of their behavior even in a 

single loading cycle is illustrated by results of [4,5]. 

 
4.5   Conclusions 
 

Strongly nonlinear behavior of dissipative discrete metamaterial composed of 

steel cylinders and Nitrile O-rings was investigated in experiments and numerical 

calculations. The speed of the strongly nonlinear stress wave in uncompressed chain can 

be described by the equation for the speed of shock like stress wave with relatively high 

elastic modulus (105 MPa) in comparison with its static value (7.6 MPa) similar to the 

behavior of the sound wave in precompressed chain [6]. Thus O-rings are much stiffer 

under these conditions of dynamic deformation, their dramatically different behavior 

must be taken into account in the design of heavy machinery under similar impact 

conditions. 

The speed of the stress wave with given amplitude in initially uncompressed 

chain was lower than the sound speed in the compressed chain with precompression 

force similar to the amplitude of the stress wave in uncompressed chain. This is in 

agreement with the expected theoretical behavior of stress wave speeds in 

uncompressed and strongly compressed chain. Moreover, the weakly nonlinear 

amplitude dependence of the speed of these stress waves is in agreement with the 

expectation for the shock wave in the Hertzian chain. 
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The viscous dissipation related to the dynamic deformation of O-rings 

dramatically changes the nature of propagating stress waves from the trains of 

Nesterenko solitary waves (characteristic for non-dissipative discrete chains) to the 

asymmetrical bell shape waves.  

The introduction of viscoelastic interaction between cylinders in numerical 

calculations completely eliminates train of Nesterenko solitary waves replacing them 

with a triangular profile stress wave. The linear viscous Kelvin-Voigt model was able to 

explain only part of experimental observations. It is probably due to more complex, path 

dependent behavior of O-rings which can be subject for the future research.  

Chapter 4 contains material currently being prepared for publication with the 

tentative title “Waves generated by impacts on dissipative sonic vacuum” by Yichao Xu 

and Vitali F. Nesterenko. The dissertation author was the primary investigator and 

author of this paper. 
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CHAPTER 5 

TRANSFER OF ENERGY AND MOMENTUM FROM STRIKER 
TO THE STRONGLY NONLINEAR DISSIPATIVE 

METAMAERIAL 

 
 

The pulses in the metamaterial without precompression (chapter 4) were excited 

by the striker impact on the top cylinder with relatively rigid contact interaction in 

comparison with the contact interaction between steel cylinders separated by O-rings. 

We will see that this results in a few distinctive time scales determining striker 

interaction with metamaterial and interaction between steel cylinders separated by soft 

O-rings. To understand how the striker interacts with this metamaterial, the high-speed 

camera is used to record the collision between the striker and the metamaterial. The 

optical images of moment of collision were presented in this chapter for different 

strikers. In experiments, a single or multiple impacts between the striker and the top 

steel cylinder transferring the linear momentum and energy from the striker to the 

metamaterial were observed. 

The unusual transfer of linear momentum and kinetic energy from striker to the 

investigated “soft” metamaterial in state of sonic vacuum was observed in both 

experiments and numerical simulation.  

 
5.1 Striker Behavior in Experiments 
 

Four different strikers with various masses were used to impact the one-

dimensional chain composed of alternating steel cylinders and Nitrile rubber O-rings 
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without precompression force. It will be seen that there are multiple impacts between 

the striker and the top steel cylinder transferring the linear momentum and energy from 

striker to the metamaterial in case of relatively large striker mass. This rattling behavior 

of the striker happened during dozens microseconds. A high-speed camera (Phantom 

V12) was used to capture this phenomenon. The optical images of striker collisions with 

the top cylinder are presented in Figs. 5.1-5.4. 

In experiments with striker mass being smaller than the mass of cylinders (3.065 

g) in the chain (striker is a steel sphere with mass 0.455 g, impact velocity 2.24 m/s) the 

single impact event was observed and the striker rebounds moving away from the chain 

with a velocity 1.39 m/s (Fig. 5.1). This impact corresponds to the force profiles shown 

in the Fig. 4.3(a). 

 

 
 
Figure 5.1: High-speed images of the interaction between the lightest Striker 1 (0.455 
g) and the top steel cylinder: (a) the first impact moment; (b) recoil motion of striker at 
t=30.28µs. 

 

The clear separation of striker from the top cylinder can be seen in a second 

frame after the moment of contact between striker and the top cylinder around 30.28 µs 
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[Fig. 5.1(b)]. Thus the duration of the impact was less than 30.28 µs. The top cylinder 

did not rebound in the optical images until arrival of the reflected wave from the bottom 

of the chain being in contact with granite plate. The generated pulse has approximately 

symmetric shape because unloading phase is controlled by the reverse motion of the top 

cylinder which did not produce significant disturbance after the colliding with the striker 

on the recoil motion. 

The high speed images of the impact by heavier Striker 2 (Mimp = 3.236 g, 

velocity of impact 2.43 m/s), corresponding to the force history presented in Fig. 4.3(b), 

are shown in Fig. 5.2. 

 

 

 

Figure 5.2: High-speed images of multiple impacts and separations of Striker 2 (3.236 
g) and the top steel cylinder: (a) the first impact; (b) opening of maximum gap due to 
separation of striker from the top cylinder after the first impact; (c) the second impact; 
(d) the striker and top cylinder move back together without separation.  
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The increase of striker mass results in a qualitatively new dynamic of its 

interaction with the metamaterial. The image of the first impact event is shown in Fig. 

5.2(a). In the third high speed image (not shown in Fig. 5.2) taken after 37.04 µs after 

the first image the striker practically stopped moving, while the top cylinder was moving 

forward. This behavior is expected for the collision of bodies with similar masses. 

Based on the high speed images the duration of impact is less than 37.04 µs. 

 Due to the difference in velocities the top cylinder separated from the striker 

[Fig. 5.2(b)]. The former starts to compress the O-ring in front of it losing its velocity, 

pushing the second cylinder forward and later recoiling. Due to the much less rigid 

contact of O-ring with the steel cylinder than the contact between the striker and the top 

steel cylinder, the process of O-ring deformation resulting in recoil motion of the top 

cylinder takes much longer time than the impact duration between the striker and the 

top cylinder. The former process determines the ramp time in the force history of 

generated wave in metamaterial, which is significantly larger than the duration of impact 

(about 20 times).  

The second impact happened at t = 185.28 µs [Fig. 5.2(b)] mostly due to the 

recoil motion of the top cylinder and remaining positive velocity of the striker after the 

first impact, both are weakly affected by gravitation. Though this secondary impact is 

qualitatively new feature in comparison with the striker interaction with the top cylinder 

in the previous case, this second impact does not produce significant input into the 

propagating pulse due to the relatively low impact velocities in comparison with the 

first impact. After the second impact, the striker and the top cylinder practically stopped 

being at rest until 6298.8 µs when the reflected wave from the bottom arrived pushing 
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them upward. 

Like in the previous case, corresponding to Figs. 4.3(a), the generated pulse has 

approximately symmetric shape [Figs. 4.3(b)] because unloading phase is controlled by 

the reverse motion of the top cylinder.  

The impact by the Striker 3 (Mimp = 9.308 g, velocity of impact 2.53 m/s) with 

mass about 3 times larger than the mass of cylinder demonstrates increased role of 

multiple impacts between striker and top cylinder. The few optical images of the 

collision between Striker 3 and the top cylinder corresponding to the force history 

presented in Fig. 4.3(c) are shown in Fig. 5.3. We could distinguish a few impacts 

between Striker 3 and the top cylinder in the optical images. 

 

 

 

Figure 5.3: High-speed images of interaction between Striker 3 (9.308 g) and the top 
cylinder: (a) The first impact; (b) opening of maximum gap due to separation of striker 
from the top cylinder after the first impact; (c) second impact; (d) striker and top cylinder 
move back together without separation due to arrival of reflected wave from the bottom.  
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At 129.64 µs [Fig. 5.3(b)] we can observe a first maximum separation of striker 

from the first cylinder due to the larger velocity of the latter. The gap is also recognized 

by the larger displacement of the top cylinder (relative to the top of the PMMA holder) 

in comparison with the displacement of the striker relative to the end of the hollow steel 

rod. The second impact happened at 240.76 µs [Fig. 5.3(c)] mostly due to the remaining 

forward velocity of the striker being larger than velocity of the top cylinder (visible in 

Fig. 5.3 by different length of the visible part of striker moving from the hollow steel 

rod). At 370.4 µs (not shown in Fig. 5.3) the second separation between the striker and 

the top cylinder is distinguishable, the top cylinder and striker are still moving forward, 

but slowing down. Third impact can be detected in optical images at t = 500.04 µs. At 

6426.44 µs we can see the maximum displacements of the striker and top cylinder [Fig. 

5.3(d)] the striker and the top cylinder moved in reverse direction due to the arriving 

reflected waves. Apparently striker would not recoil without arrival of the reflected 

wave from the bottom. This is very unusual behavior allowing preventing of the striker 

recoil which was stopped by this metamaterial.  

 In the last two cases we see more clearly emergence of the third time scale (about 

~3900µs) related to the multiple impacts of the striker with the top cylinder reducing 

striker’s velocity to zero. The first and fastest time scale is related to the interaction of 

steel striker and the top steel cylinder with rigid contact (the duration of striker impact 

is less than 38 µs). The second, longer time scale is related to the interaction between 

cylinders due to the deformation of soft rubber O-ring (~222 µs). The difference 

between the second and third time scales results in the distortion of the shape of the 

propagating stress profile which becomes more asymmetric with the increase of striker 
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mass [compare Figs. 4.3(a), 4.3(b) and 4.3(c)]. The second and third times scales 

determining the interaction of the striker with the top cylinder are reflected in the ramp 

and unloading times of the propagating stress profiles (Fig. 4.3). The multiple impacts 

of the Striker 3 and the top cylinder results in a slow unloading path in the stress pulse 

[Fig. 4.3(c)].  

The heaviest Striker 4 had a mass 30.718 g. Stages of its collision (initial impact 

velocity 2.59 m/s) with the metamaterial are presented in the high speed images in Fig. 

5.4. The duration of the first impact for the heaviest striker in experiments was found to 

be less than 55.56 µs (separation of the striker and top cylinder is detectable in the third 

frame, time step between frames is 18.52 µs). 

Considering that the first impact happened at t = 0 [Fig. 5.4(a)], the maximum 

gap between the striker and the first cylinder was detected at the frame corresponding 

to 92.6 µs from the frame where the first contact between the striker and the top cylinder 

was detected [Fig. 5.4(b)]. The second impact happened at t = 166.68 µs due to the 

higher remaining velocity of striker comparing to the top cylinder interacting with the 

second cylinder (the process is seen in the Fig.5.4 by different length of the visible part 

of striker from the hollow steel rod). No rebound motion of top cylinder was visible yet, 

it kept moving forward but slowing down. At t = 259.28 µs, the second largest gap was 

detected between the tip of striker and the top cylinder, both moved forward slowing 

down.  

 The striker and the top cylinder came to rest at t=6185.68 µs, displacement of 

the striker starting from the first contact with top cylinder is 3.48 mm. This displacement 

is caused by the dynamic deformation of multiple O-rings and can be used as one of the 
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Figure 5.4: High-speed images of multiple impacts and separations between Striker 4 
(mass 30.718 g, impact velocity 2.59 m/s) and the top cylinder: (a) The first impact; (b) 
first opening of maximum gap due to separation of striker from the top cylinder; (c) the 
second impact; (d) second maximum gap due to separation of striker from the top 
cylinder; (e) the third impact; (f) third maximum gap due to separation of striker from 
the top cylinder; (g) the striker and top cylinder came to rest at t=6185.68 µs; (h) striker 
and top cylinder move back together without separation.  
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parameters to compare with the results of numerical simulations. 

It is clear that the time of interaction between the striker and the top cylinder is 

much smaller than the time scale related to the interaction between the top cylinder and 

the O-ring in front of it when it was moving forward. The latter time scale determined 

the ramp time of the leading signal. This is probably a reason why the sequence of pulses 

in Fig. 4.3(d) did not exist despite the multiple impacts.  

It is clear that the increased mass of the striker results in larger number of its 

multiple impacts with the top cylinder. Due to larger difference in their relative 

velocities more clear separation of the striker from the top cylinder after each impact is 

observed. The heaviest Striker 3 did not recoil and kept moving forward, but slowed 

down by multiple impact between the striker and the top cylinder. The striker and top 

cylinder completely stopped at t = 6185. 85 µs. They started to move back together only 

after the arrival of reflected stress wave from the granite plate supporting the chain at 

the bottom. This unusual impact behavior is reflected in the stress wave profile in Fig. 

4.3(d), where the unloading path of the stress wave was slower compared with the 

previous case (impacted by lighter strikers) resulting in a more asymmetrical shape of 

the signal.  

In high speed optical images (some of them are presented in Fig. 5.4) nine 

impacts after the first interaction of striker and the top cylinder were detected. But this 

did not result in trains of solitary waves propagating in the metamaterial [Fig. 4.3(d)]. 

 
5.2 Striker Behavior in Numerical Calculation 
 

Experimental data based on the high speed imaging provided very unusual 
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picture of interaction between strikers and the top cylinders (Figs. 5.1-5.4). Especially 

interesting are the multiple collisions of the striker (rattling) with the system determined 

by three time scales in case when striker mass is larger than the mass of cylinders. This 

behavior was modeled by the non-dissipative and linear dissipative models, the results 

and the data related to the feature the impact process are presented in Figs. 5.5, 5.6 and 

Table 5.1, correspondingly. The longer chains were selected in calculations to avoid the 

effects of the reflected wave on the the striker behavior. 

 

 

 

Figure 5.5: Rattling behavior of the top cylinder in the chain under impact in numerical 
calculation (non-dissipative model, Ed = 105 MPa) by multiple strikers: (a) 0.455 g steel 
sphere striker with a 2.38 mm radius having a velocity of 2.24 m/s, (b) 3.236 g striker 
with a 2.38 mm radius steel tip having a velocity of 2.43 m/s, (c) 9.308 g striker with a 
2.38 mm radius steel tip having a velocity of 2.53 m/s; (d) 30.718 g striker with a 2.38 
mm radius steel tip having a velocity of 2.59 m/s.  
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Table 5.1: Comparison of numerical calculation results of Model I (non-dissipative 
model, Eimp=105MPa) and II (linear dissipation model, Eimp = 87 MPa and µ= 22 Ns/m): 
the duration of first impact (Timp), the velocity of striker (Vstriker) and the top cylinder 
(Vcylinde) after the first impact, the interaction time of striker and the O-ring in front it 
when the former moving forward after the first impact (Toring), and the time second 
impact happened (Timp,2). 
 

 Non-dissipative Model Linear dissipation model  
Mimp (g) 0.455 3.236 9.308 30.718 0.455 3.236 9.308 30.718 

Timp 13.8 22.8 26.4 28.2 13.2 22.2 27.0 29.4 
Vstriker  -1.62 0.065 1.275 2.119 -1.672 0 1.235 2.10 
Vcylindel 0.58 2.48 3.77 4.656 0.55 2.351 3.583 4.44 
Toring 226 164 148 118 ~480 ~1370 ~206 ~131 
Timp,2 N/A 792.6 187 147 N/A N/A 234 159.6 

 

From Fig. 5.5 we can see that the behavior of the striker is dramatically changes 

with the increase of its mass. If the striker mass is less than the cylinder mass, it recoils 

after the single collision with the top cylinder [Fig. 5.5(a)]. Increase of its mass results 

in multiple collisions generating a third time scale determined mostly by the striker 

movement in the gaps between the strike and the top cylinder. For example, for Striker 

3 the maximum first 4 consecutive separations between the striker and the top cylinder 

corresponds to the moments when the striker’s velocity becomes equal to the velocity 

of the top cylinder, at about 97, 316, 650 and 1170 µs.  

The difference between the first deformation cycle of the O-rings and 

subsequent deformation caused by the multiple collisions of striker is most probable 

reason for asymmetry shape of the stress pulses observed in experiments (Fig. 4.3). 

It was discussed that the dissipative properties of the system are able to 

dramatically change the nature of propagating stress pulse. Thus it is important to 

investigate how dissipation mechanisms on the contacts between the striker and the top 
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cylinder and also due to the dynamic deformation of O-rings change the striker’s 

dynamics. The corresponding results of numerical calculations are presented in Fig. 5.6.  

 

 

 
 
Figure 5.6: Rattling behavior of the top cylinder in the chain under impact in numerical 
calculation (linear dashpot model, Ed = 87 MPa, µ = 22 Ns/m and µs = 22 Ns/m) by 
multiple strikers: (a) 0.455 g steel sphere striker with a 2.38 mm radius having a velocity 
of 2.24 m/s, (b) 3.236 g striker with a 2.38 mm radius steel tip having a velocity of 2.43 
m/s, (c) 9.308 g striker with a 2.38 mm radius steel tip having a velocity of 2.53 m/s; (d) 
30.718 g striker with a 2.38 mm radius steel tip having a velocity of 2.59 m/s.  

 

It is clear that dissipation changes rattling behavior of the striker but not 

eliminates it for larger striker masses. Thus we can conclude that the difference between 

first deformation cycle of the O-rings and subsequent deformation caused by multiple 

collisions of striker are most probable reasons for the asymmetry of the stress pulses 
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observed in experiments (Fig. 4.3). 

 
5.3 Conclusions 
 

The impact of the striker on this “soft” discrete metamaterial with a “rigid” 

interaction between the striker and the top steel cylinder demonstrate an unusual 

mechanism of the energy and linear momentum transfer into the metamaterial 

accompanied by a rattling of top cylinder between the striker and the rest of the chain. 

The heavier strikers’ linear momentum was completely transferred to this strongly 

nonlinear “soft” metamaterial and its rebound was observed only after the arrival of the 

reflected weave from the wall supporting the chain at the bottom.  

The large difference in rigidity between striker with steel rounded end part and 

cylinders in the chain (these multiple impacts were detected in experiments) results in 

multiple impacts on the top cylinder creating a single triangular propagating pulse in 

experiments. The numerical calculations using non-dissipative and linear dissipative 

models both demonstrated the multiple impacts behavior of the striker to the top 

cylinder when the striker mass is larger than the mass of cylinder in the chain. Thus 

multiple impacts observed in experiments did not result in the train of propagating train 

of solitary waves.  I attributed this behavior to a viscoelastic behavior of O-rings. 

Chapter 5 contains material currently being prepared for publication with the 

tentative title “Waves generated by impacts on dissipative sonic vacuum” by Yichao Xu 

and Vitali F. Nesterenko. Section 2 in Chapter 5, is been in press in the AIP Conference 

Proceedings, with the title “Strongly nonlinear stress waves in dissipative metamaterials” 
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authored by Yichao Xu and Vitali F. Nesterenko. The dissertation author was the 

primary investigator and author of this paper. 
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APPENDIX A 

NUMERICAL INVESTIGATION OF THE STRONGLY 
NONLINEAR DISSIPATIVE SYSTEM WITH 

PRECOMPRESSION 

 
 

 A chain of 40 elements is used in numerical calculations to simulate the vertical 

chain composed of steel cylinders and Nitrile O-rings with a double power-law 

interaction between neighboring rigid cylinders as shown in Fig. A.1. The numerical 

calculation is carried out by using MATLAB. Several numerical models were 

considered to simulate the experimental results in an attempts to pick up the most 

distinguished features of the stress pulses observed in experiments.  

 

 
 

Figure A.1: System configuration used in numerical calculation for one-dimensional 
metamaterial with precompression. 
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 Particle 1 in the numerical calculation represent the precompressing weight with 

mass M, providing the static precompression. Particle 2 in the numerical model defines 

the steel striker, and particle 3 is the top steel cylinder in the chain. It is assumed that 

the precompressing mass is in direct contact with the top cylinder (particle 3), and a 

Hertzian type contact interaction is assumed between them. Before the impact a steel 

striker (particle 2) is assumed at rest and next to the top cylinder, no static force applied 

to striker. Particle 1 and 2 have no interaction. 

 
1.   Non-dissipative Model 
 

The first model is based on the linear elastic interaction (referred as Model-I), 

where no dissipation was included, but may include effective rigidity influenced by 

viscoelastic behavior.  

The first order differential equations of motion of N cylinders inside a periodic 

chain in the frame of Model-I and the boundary conditions are presented in chapter 2 

section 2.2.  

The results of non-dissipative numerical calculations in the frame of the Model-

I with different effective modulus Eeff (7.6 MPa and 105 MPa) are shown in Figs. A.2 

and A.3. The corresponding data are presented in Tables A.1 and A.2.  

From Table A.1, it is obvious that the pulse speed is significantly lower than the 

experimental data in the frame of Model I with Eeff=7.6MPa. It is clear that elastic 

modulus E0=7.6MPa obtained from quasi-static process (chapter 2, section 2.1) can not 

be used to describe dynamic response of this system, the system behaves more rigid 

during the wave propagation. Thus it is necessary to introduce the effective elastic 
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modulus Eeff = 105 MPa, which provided the best fit of the pulse speed to the 

experimental data [refer to chapter 2 section 2.1]. Due to the dispersion caused by 

periodic structure of the system, a slow decrease of positive and negative signals 

amplitude and ramping of their fronts was observed.   

 

 

 
 

Figure A.2: Stress pulses obtained in numerical calculations using Mode-I (without 
dissipation term between all elements in the system, and using effective elastic modulus 
Eeff = 7.6 MPa) in a double power-law system under various preload conditions: (a) F0= 
10 N, (b) 50 N, (c) 106 N, (d) 193 N. Curves represent the average dynamic force in the 
fifth (leading curve), ninth (middle curve), and thirteenth (bottom curve) steel partial.  

 

Compared Fig. A.3 with the experimental results, the amplitudes of signal in 

numerical calculation with Eeff=105MPa (Model-I) were always larger due to the non-
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dissipative approach used in this calculations. And the significant attenuation observed 

in experiments and the lack of comparable attenuation in numerical calculations using 

Mode-I indicated the strong viscous dissipation introduced by the dynamically 

deformed Nitrile O-rings, which cannot be explained in the frame of Model-I. 

 

 

 
 

Figure A.3: Stress pulses obtained in numerical calculations using Mode-I (without 
dissipation term between all elements in the system, and using effective elastic modulus 
Eeff = 105 MPa) in a double power-law system under various preload conditions: (a) F0= 
10 N, (b) 50 N, (c) 106 N, (d) 193 N. Curves represent the average dynamic force in the 
fifth (leading curve), ninth (middle curve), and thirteenth (bottom curve) steel partial.  

 

In numerical calculations without dissipation (Figs. A.2 and A.3) we observed 

that an effective speed of negative pulse is lower than speed of positive pulse. This 
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tendency was also observed in experiments and it can be explained by more dispersive 

behavior of weakly nonlinear negative pulses causing change of their shape and as result 

their effective velocity in comparison with positive pulses. 

 

Table A.1: Non-dissipative numerical calculation results (Model-I, Ed=7.6MPa) for 
speeds (V+) and width [L+,num/(a-x0)] of positive pulses under different static 
precompression forces.  
 

 Model-I (without dissipation, Eeff = 7.6 MPa) 

F0 (N) 10 50 106 193 

V+ (m/s) 33 49 70 91 

Lnum,+/(a-x0) 4.5 4.4 4.1 3.7 

A9/A5 0.90 0.90 0.87 0.82 

A13/A5 0.83 0.83 0.80 0.70 
 

Table A.2: Non-dissipative numerical calculation results (Model-I, Ed=105MPa) for 
speeds (V+) and width [L+,num/(a-x0)] of positive pulses under different static 
precompression forces.  
 

 Model-I (without dissipation, Eeff = 105 MPa) 

F0 (N) 10 50 106 193 

V+ (m/s) 126 182 272 386 

Lnum,+/(a-x0) 4.1 3.8 3.5 3.5 

A9/A5 0.81 0.77 0.71 0.69 

A13/A5 0.70 0.67 0.59 0.56 
 

Based on the large difference between the numerical calculations and 

experimental data, we can conclude that the dissipation term must be added to the 

numerical model to correctly simulate this strongly nonlinear dissipative system. 
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2.   Linear Dissipative Model 
 

The comparison with experimental results make it clear that the non-dissipative 

model significantly overestimates the amplitude of the signals, underestimate their 

attenuation, their speed. It also results in the oscillatory profiles of the pulses unlike in 

the experiments at lower precompression. The natural approach to provide the better 

description of experimental results would be the introduction of classical dissipation 

using a liner dashpot model between elements in the system (between the striker, 

precompression mass and the top cylinder as well as between cylinders in the 

metamaterial). 

The simplest way to include dissipation is an introduction of a linear viscous 

model (referred as Model-II), where the dissipation term linearly depends on the strain 

rate. Follow the configuration of the Kelvin-Voigt model. Then the system of linearized 

equations (valid for small dynamic strains in comparison with a strains caused by a static 

precompression) using a double power law potential plus a linear viscous dissipation 

term becomes: 

𝑥; =
�Y
'
(𝑥3,;@A − 2𝑥3,;@A + 𝑥3,;DA) +

¦
'
𝑥;@A − 2𝑥;@A + 𝑥;DA ,          (A.1) 

where          𝐾A = 1.5(1.25π𝐷J	
  𝐸3𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸3𝑑@M)𝑥*M.                  (A.2) 

The quantity of 𝜇 is the viscosity coefficient used in a dashpot model. It has no 

explicit dependence on the precompression and its value is selected to fit experimental 

data (though it can have different values for different precompression). It is related to 

the damping properties of O-rings in the condition of contact deformation with high 

strain rate and gradient of strains in the contact area. In this Model-I attempt to separate 
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the elastic and viscous contributions to the forces acting between metal cylinders due to 

the dynamic deformation of O-rings. The elastic modulus Ed is introduced to account 

for a possible difference in the elastic properties of O-rings in addition to their viscous 

behavior under the dynamic deformation.  

The first order differential equations of motion of N cylinders inside a periodic 

chain and the boundary conditions are presented below: 

𝑥; 𝑥 =
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(A.4b) 

where g = 9.81 m/s2 is the gravitational acceleration; 

𝛿A,4 = 𝑥A − 𝑥4,                                                                                                          (A.5a) 
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𝛿;@A@|,;@| = 𝑥;@A@| − 𝑥;@|, for i=N+3,…,2N.                                                     (A.5b) 

And 𝐾;@A@| = 1.5(1.25𝜋𝐷'	
  𝐸3𝑑
@YC)𝑥*,;@A@|

Y
C + 6(50𝜋𝐷'𝐸3𝑑@M)𝑥*,;@A@|M , 

	
  𝑖 = 𝑁 + 4,… , 2𝑁. (A.6) 

The boundary conditions is: 

𝑥; 𝑥 = 0, 𝑖 = 𝑁, 2𝑁.                                                                                                (A.7) 

And the initial conditions corresponding to gravitationally loaded chain: 
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𝑥|DA 𝑡 = 0 = 0;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
𝑥|D5 𝑡 = 0 = 2.24	
  𝑚/𝑠;	
  	
  	
  	
  	
  	
  	
  
𝑥|D; 𝑡 = 0 = 0, 3 ≤ 𝑖 ≤ 𝑁.

                                                                              (A.8b) 

Here 𝜇�  and 𝜇� are the viscosity coefficients between the precompression mass and top 

cylinder, and between the striker and the top cylinder. 

The large discrepancy between experimental data and numerical calculations 

based on the Model-I in signal amplitude, demonstrates not only the need of introduction 

of dissipative property of O-ring in this model, but also the potential importance of the 

dissipative properties of the contacts between striker and the top cylinder, as well as 

between precompression mass and the top cylinder. 

The viscosity coefficient between the precompression mass and top cylinder 

(µC), and the striker and top cylinder (µD) are selected to set the recoil velocity of striker 

in numerical calculation the same as measured in experiments by using high-speed 

camera (1.39 ± 0.01 m/s).  
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Table A.3 presents the influence of the value of µC and µD on the recoil velocity 

of striker. Obviously, the recoil velocity of striker and the impact duration were mainly 

affected by µD the viscosity between the striker and the top cylinder. The theoretical 

duration of impact is calculated using the following equations: 

𝑡 = 2.94( M
\§§Y

)5/M𝑣@A/M	
  ,                                                (A.9) 

in which 𝑛 = A8
­¨C

®Y®C
fYDfC C(®YD®C)

	
   , 𝑛A =
'YD'C
'Y'C

	
   , 𝑘A =
A@¯YC

¨�Y
 and 𝑘5 =

A@¯CC

¨�C
, where R1, 

m1, 𝜈1 and E1 represent the radius, mass, poison ratio and elastic modulus of the striker. 

Similarly, R2, m2, 𝜈2 and E2 represent the radius, mass, poison ratio and elastic modulus 

of the the top particle of the chain. And 𝑣  is the impact velocity of the striker, in 

experiments is was measured to be 2.24 m/s by using high-speed camera. These 

parameters used in numerical calculations to represent the materials properties are listed 

in Table A.4.  

 

Table A.3: The influence of µC (the viscosity coefficient between the precompression 
mass and top cylinder) and µD (the viscosity coefficient between the striker and top 
cylinder) on the recoil velocity Vrecoil of striker and the impact duration Timp in the 
numerical calculation using Model-II. All the data were calculated with the 
precompression force F0 = 193 N, and the viscosity coefficient of O-ring µ is selected 
to be 70 Ns/m.  
 

µD = 10 Ns/m 
µC (Ns/m) 2 6 10 14 18 

Vrecoil (m/s) 1.387 1.388 1.389 1.39 1.392 
Timp (µs) 12.6 12.6 12.6 12.6 12.6 

µC = 14 Ns/m 
µD (Ns/m) 2 6 10 14 18 
Vimp (m/s) 1.638 1.494 1.389 1.283 1.184 
Timp (µs) 13.07 12.6 12.6 12.6 12.13 
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Table A.4: Parameters used in numerical calculations to represent the properties of the 
materials composing the strongly nonlinear media tested experimentally. 
 

 Radius (mm) Mass (g) Poison ratio Elastic modulus (GPa) 
Striker 2.38 0.455 0.29 200 

Top cylinder +∞ +∞ 0.29 200 
 

It is interesting to know whether the viscosity coefficient µ of the O-ring will 

affect the impact duration and the recoil velocity of striker. From Table A.5, we can see 

that µ has no influence on the impact time and the recoil velocity of striker in numerical 

calculation in the frame of Model-II. The calculated impact duration in numerical 

calculation was in good agreement with the experimental measurement using high-

speed camera.  

 

Table A.5: The influence of µ (the viscosity coefficient between system particles due to 
O-ring) on the recoil velocity Vrecoil of striker and the impact time Timp in numerical 
calculation using Model-II. All the data were calculated with the precompression force 
F0 = 193 N, and the viscosity coefficient between the precompression mass and top 
cylinder, and between the striker and top cylinder were selected to be µC = 14 Ns/m and 
µD = 10 Ns/m.  

 
µC = 14 Ns/m , µD = 10 Ns/m 

µ (Ns/m) 10 20 30 40 50 
Vrecoil (m/s) 1.39 1.39 1.39 1.39 1.39 

Timp (µs) 12.6 12.6 12.6 12.6 12.6 
 

The values of µC = 14 Ns/m and µD = 10 Ns/m are selected to describe the 

following parameters related to the impact: (1) the recoil velocity of striker measured 

by high-speed camera in experiments (1.39 ± 0.01 m/s) and thus a value of linear 

momentum transferred into the system, and (2) the impact duration being less than 18 

µs in experiments and close to the 12.6 microseconds for interaction of striker with mass 
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0.455 g and tip radius 2.38 mm and the flat surface of the top cylinder estimated based 

on the Hertzian interaction law between them.  

Figure A.4 shows the numerical calculation results in the frame of Model-II 

corresponding to two fitting constants describing viscoelastic response of O-rings in the 

metamaterial (Ed = 105 MPa and µ = 70 Ns/m). These constants in the frame of the 

Model-II provide the satisfactory results with respect to predicting the following major 

parameters of the system dynamic response: the pulse speed, leading pulse amplitude, 

its duration and attenuation. It will be seen that predictions of dynamic response based 

on Model-II still significantly different from experiments. 

Table A.6 represents a summary of the characteristic of the positive phase of the 

stress pulse obtained in numerical calculation in the frame of Model-II with Ed = 105 

MPa and µ = 70 Ns/m. Similarly, and Table A.7 records the negative phase of the 

calculated stress wave in numerical calculation.  

Based on the presented results of numerical calculations it is clear that the model 

better predicts the values of signal speed than the Model-I at higher precompression. 

This is also the reason to select Ed = 105 MPa, and the signal speed in numerical 

calculation of Model-II was mainly effected by the selected value of Ed. But it is obvious 

that even optimized coefficients (Ed = 105 MPa and µ = 70 Ns/m) in the Model-II do 

not result in a reasonable explanation of experimental data in the pulse amplitude 

attenuation. The following features should be specifically mentioned: 

1.   The amplitude of signal in the fifth particles in the numerical calculation using 

model II was too high compared with the experimental data.  

2.   The attenuation of signal amplitude was slower than the experimental results at   
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Figure A.4: Stress pulses obtained in numerical calculations using Mode-II (with linear 
dissipation term, and using dynamic elastic modulus Ed = 105 MPa and µ = 70 Ns/m) 
and their corresponding Fourier spectra in a double power-law system under various 
preload conditions: (a) F0= 10 N, (c) 30 N, (e) 50 N, (g) 74 N, (i) 106 N, and (k) 193 N. 
Curves represent the average dynamic force in the fifth (leading curve), ninth (middle 
curve), and thirteenth (bottom curve) steel partial.  

 

0 200 400 600 800 1000 1200−4

−2

0

2

4

Time (µs)

Fo
rc

e 
(N

)

(a)

0 5 10 15 200

0.2

0.4

0.6

0.8

f (kHz)

|C
(k

)| 
(N

)

(b)

0 200 400 600 800 1000 1200−2

−1

0

1

2

3

Time (µs)

Fo
rc

e 
(N

)

(c)

0 5 10 15 200

0.05

0.1

0.15

0.2

0.25

f (kHz)

|C
(k

)| 
(N

)

(d)

0 200 400 600 800 1000 1200−2

−1

0

1

2

3

Time (µs)

Fo
rc

e 
(N

)

(e)

0 5 10 15 200

0.05

0.1

0.15

0.2

f (kHz)

|C
(k

)| 
(N

)

(f)



 

 

139 

 

 

 
 
Figure A.4: Stress pulses obtained in numerical calculations using Mode-II (with linear 
dissipation term, and using dynamic elastic modulus Ed = 105 MPa and µ = 70 Ns/m) 
and their corresponding Fourier spectra in a double power-law system under various 
preload conditions, continued.  
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Table A.6: Linear dissipative numerical calculation results (Model-II) for the speeds 
(V+) and width [Lnum,+/(a-x0)] of positive pulses under different static precompression 
forces.  

 
 Model-II (Ed = 105 MPa, µ = 70 Ns/m) 

F0 (N) 10 30 50 74 106 193 

V+ (m/s) 172 216 237 275 348 443 

Lnum,+/(a-x0) 5.6 4.6 4.1 4.0 4.2 4.3 

A9/A5 0.48 0.37 0.38 0.41 0.43 0.49 

A13/A5 0.29 0.22 0.24 0.26 0.28 0.33 
 

Table A.7: Linear dissipative numerical calculation results (Model-II) for the speeds (V-) 
and width [Lnum,−/(a-x0)] of negative pulses under different static precompression forces.  

 
 Model-II (linear dissipation, Ed = 105 MPa, µ = 70 Ns/m) 

F0 (N) 10 30 50 74 106 193 

V- (m/s) 105 132 159 207 233 337 

Lnum,−/(a-x0) 7.0 6.4 6.6 6.7 5.7 5.0 

A9/A5 0.48 0.47 0.50 0.54 0.58 0.50 

A13/A5 0.31 0.31 0.33 0.37 0.40 0.34 
 

higher precompression force (> 74N), and had almost no dependence on the 

system precompression, which was opposite to the phenomenon observed in the 

experiments.  

3.   The added dissipation term with the selected value of µ necessary to provide a 

correct pulse speed and relative attenuation completely eliminate the oscillating 

part of the signals at higher precompression force. There were no oscillating tails 

in Figs. A.4(g), A.4(i) and A.4(k), but we observed oscillating pulses in 
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experiments, especially at larger precompression indicating underdamped 

behavior of the system at these conditions. 

Based on these observations, one would intuitively think that the selected fitting 

parameter µ is too small because it results in a less attenuation of signal amplitude at 

higher precompression than in the experiments and also in higher value of the leading 

pulse amplitude. This was carefully verified in the numerical calculations using multiple 

values of µ, keeping the same values of µC = 14 Ns/m and µD = 10 Ns/m to keep correct 

recoil velocity and the impact duration. But a broad variations of the coefficient µ, did 

not eliminate the significant discrepancy in the values of leading pulse amplitude and 

the attenuation of signal amplitude between numerical calculations and the experimental 

data. No single coefficient µ can provide reasonable agreement of the results of this 

linear dissipation Model-II with experimental data. Therefore, pure linear dissipation 

model cannot accurately model the strongly nonlinear dissipative system composed of 

alternating steel cylinders and rubber O-rings, and a nonlinear dissipative model with a 

nonlinear dependence on precompression force should be considered. 

 
3.   Nonlinear Dissipative Model Based on Brilliantov et al. 

Approach 
 

Experimental data demonstrate increasing attenuation of leading pulse 

amplitude in the fifth particle – decay of amplitude is increasing with the increasing 

precompression force (see section 3.3). It is clear that to describe this phenomenon the 

viscous term must have a dependence on strain/precompression force. 

A possible approach to the nonlinear viscoelastic deformation of the Hertzian 
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contact between spherical particles was proposed by Brilliantov et al.. I modified this 

approach by introducing the similar equation for the dissipative force (Fdis) related to 

the dynamic deformation of O-rings [14], then the total force due to the elastic and 

viscoelastic deformation of O-rings at the contact with a separated elastic (static and 

dynamic contributions) and viscous term is: 

𝐹 = 𝐹"# + 𝐹3;j = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾A𝑥3 + 𝛼𝑥 �
�1

𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 +

𝐾A𝑥3 ,                                                                                    (A.10) 

where 𝐾A = 1.5(1.25π𝐷J	
  𝐸d𝑑@A/5)𝑥*
A/5 + 6(50π𝐷J𝐸d𝑑@M)𝑥*M, and 𝛼 is the viscosity 

coefficient. The elastic force Fel is taken from Eq. (1.1) with elastic modulus Ed, 

replacing constant E0, to consider a possible difference in the elastic properties of O-

rings in addition to their viscous behavior under the dynamic deformation.  

If the linear elastic term is significantly larger than the viscous term then the 

pulse speed will be mostly determined by coefficient K1 and adding a relatively small 

viscous term only causes dissiption. If the viscous term is comparable or larger than the 

linear elastic term, then the speed of attenuating signal may be significantly different 

than in previous case. The effective elastic modulus which combined both effects was 

introduced to explain speed of the small amplitude signals, the seperation of these terms 

will result in smaller elastic modulus K1 than K in (chapter 3).  

The first order differential equations of motion of N cylinders inside a periodic 

chain in the frame of the above nonlinear dissipative model (referred as Model-III) and 

the boundary conditions are presented in chapter 3 section 3.4.3.  

For the verification of the proper initial condition used in this numerical 
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calculation in the frame of Model-III, the impact duration and recoil velocity of the 

striker with the applying of varying values of α are calculated. The results are presented 

in Table A.8 

 

Table A.8: The influence of α (the viscosity coefficient between neighboring particles 
in the system coming from O-rings in Model-III) on the recoil velocity Vrecoil of the 
striker and the duration of the impact Timp in numerical calculation using Model-III. All 
the data were calculated with the precompression force F0 = 193 N, and the viscosity 
coefficient between the precompressing mass and the top cylinder, and between the 
striker and the top cylinder were selected to be µC = 38 µs and µD = 1.1 µs  
 

Model-III (µC = 38 µs, µD = 1.1 µs) 
α (µs) 10 20 30 40 50 

Vrecoil (m/s) 1.379 1.381 1.385 1.39 1.392 
Timp (µs) 13.07 13.07 13.07 13.07 13.07 

 

It is apparent that the increasing value of α only slightly increases the recoil 

velocity of striker, but has no influence on the duration of the impact.  

Numerical calculations for the strongly nonlinear viscoelastic Model-III were 

conducted at the following parameters Ed = 87 MPa and  α = 30 µs allowing satisfactory 

comparison with experimental data and results are presented in chapter 3 section 3.4.3 

(Tables 3.6 and 3.7, and Fig. 3.7). The reason why Ed for viscous dissipative Model-III 

is smaller than the effective modulus Eeff for purely elastic Model-I is that the viscosity 

term effectively contributed to the increasing rigidity of this metamaterial described by 

the coefficient K1. Compared to Model-II, the dissipation term in Model-III was similar 

to the Model-II at low precompression forces, but significantly larger at higher 

precompression force. For example, at F0 = 193 N, the net viscosity coefficient 𝛼𝐾A≈ 

312 Ns/m in Model-III was 4.4 times larger than µ = 70 Ns/m in Model-II. This resulted 
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in stronger attenuation of signal amplitude at higher precompression in the Model-III in 

comparison with the Model-II. The net coefficients in dissipation term of Model-III are 

shown in Table. A.9. 

 

Table A.9: The coefficients in dissipation term of Model-III 
 

 Model-III (Ed = 87 MPa, α = 30 µs) 
F0 (N) 10 30 50 74 106 193 

𝛂𝑲𝟏 (Ns/m) 30.07 47.03 69.27 105.48 160.28 316.99 
 

From the comparison of numerical results obtained using the presented three 

models (Model-I, Model-II and Model-III) and experimental results, we can see that 

Model-III fits experimental data on the pulse speed, pulse width, its amplitude and the 

increasing attenuation with increasing precompression. The nonlinear dissipation term 

is essential to simulate the strong attenuation. The viscosity with nonlinear dependence 

on initial precompression introduced by Model-III was able to correctly explain a 

tendency toward higher attenuation nonlinearly dependent on the precompression force 

being consistent with the experimental results. Such behavior is a consequence of the 

dependence of effective viscosity on the precompression.  

To the contrary to what is observed in experiments, the attenuation of negative 

pulse is slightly lower than the attenuation of positive part in both numerical models. 

At higher precompression force, the strongly nonlinear dissipative Model-III predicted 

“over damped” behavior of the pulse (similar to Model-II) completely eliminating the 

oscillating tail. Despite these differences, the qualitative behavior of the results of the 

numerical calculations based on the Model-III matches well with the experimental data. 
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4. Nonlinear Dissipative Models Based on Brilliantov Approach with 
Power-Law Strain Rate Dependence 

 

 The power-law strain rate dependence of the nonlinear dissipation term is also 

investigated. The Brilliantov approach is used to get strongly nonlinear dependence on 

the system precompression force. This approach was intended to solve a puzzle 

represented by the increased attenuation of stress pulse amplitude at larger 

precompression while the system is transformed to the underdamped behavior with 

increased precompression, which is evident by the oscillation tail in Fig. 3.2. This model 

is referred as Model-IV. The total force due to the elastic and viscoelastic deformation 

of O-rings at the contact is: 

𝐹 = 𝐹"# + 𝐹3;j = 𝐴*𝑚𝑥*4 5 + 𝐵*𝑚𝑥*8 + 𝐾A𝑥3 + 𝛼𝐾A𝑥§.            (A.11) 

The first order differential equations of Model-IV with power-law strain rate 

dependence for particles of the system is similar to equations listed in chapter 3 section 

3.4.1 [Eq. (3.9)—Eq. (3.16)], but with some adjustments. The expression of 𝜑; 𝑥  and 

𝜓; 𝑥  were adjusted using the equations presented below: 
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146 

𝜓; 𝑥 =

𝐶
𝑀 (𝛿;@|,;D5@|

4
5 +

3
2 𝛿;@|,;D5@|

A
5 𝜇�𝛿;,;D5)𝐻 𝛿;@|,;D5@| ,	
  	
    	
  	
  𝑖 = 𝑁 + 1;

𝐷
𝑚imp

(𝛿;@|,;DA@|
4
5 +

3
2 𝛿;@|,;DA@|

A
5 𝜇�𝛿;,;DA)𝐻 𝛿;@|,;DA@| ,	
      𝑖 = 𝑁 + 2;

[𝐴* 𝑥*,;@|
4
5 + 𝐵* 𝑥*,;@|

8 	
  +
𝐾;@|
𝑚 𝛿;@|,;DA@| − 𝑥*,;@| 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

,

+
𝛼
𝑚𝛿;,;DA§ ]𝐻 𝛿;@|,;DA@| , 𝑖 = 𝑁 + 3,… ,2𝑁 − 1;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  

 

(A.13) 

The calculation results for Model-IV with varying value of exponent n with 

precompression force 193 N are presented in Fig. A.5. All the other parameters are set 

as the same as Model-III, i.e. Ed = 87 MPa, α = 30 µs, µC = 38 µs, and µD = 1.1 µs.  

Apparently, this model cannot correctly predicate the behavior of strongly 

nonlinear dissipative system because of the lower rate of attenuation [when n>1.0, Figs. 

A.5(d), A.5(e), and A.5(f)] and the significant larger amplitude and pulse speed [when 

n<1.0, Figs. A.5(a) and A.5(b)] compared with the experimental data.   

From the presented analysis of above four models, we found that none of them 

can completely describe experimental results. The phenomenon of strong oscillations of 

signals under higher precompression force significantly deviate from the predictions 

based on the above four models. However, Model-III successfully predicted the 

following features of the strongly nonlinear dissipative metamaterial: 

1.   Provide correct relative values of amplitudes of the leading positive pulse. 

2.   Fit the values of the pulse speed. 

3.   Fit the increasing positive pulse width. 

4.   Qualitatively explain the increases of attenuation of leading pulse amplitude 

with precompression; 
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Figure A.5. Stress pulses obtained in numerical calculations using Model-IV (with 
dissipation term nonlinear depended on strain-rate, and using dynamic elastic modulus 
Ed = 87 MPa and α = 30 µs) with power-law strain-rate dependence. In (a) n = 0.6, (b) 
n = 0.8, (c) n = 1.0, (d) n =1.2, (e) n = 1.4 and (f) n=1.6. Curves represent the average 
dynamic force in the fifth (leading curve), ninth (middle curve), and thirteenth (bottom 
curve) steel partial. The precompression force is 193 N  
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