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Aframework is presented inwhich temporallyperiodic, linear, distributedparameter systems canbe converted to a

time-invariant system. This conversion is key for the control of the secondary instabilities in three-dimensional

channel flow inducedbyanupstream travelingwave of zero-netmass flux ofwall transpiration.Linearizeddynamical

equations derived from Floquet analysis have shown that the instabilities are a direct result of the primary

disturbance of the traveling wave but do not provide an analytical framework upon which to design a feedback

controller. The necessary observation, although simple but subtle, is that the dynamics of the steady-state flow

induced by a traveling wave must be linearized and decomposed in a frame of reference moving with the traveling

wave. The resulting linear time-invariant equations are appropriate for system theoretic feedback control synthesis,

i.e.,H2 andH∞ methods. Although the linearization method produces a time-invariant linear system in the moving

frame, the controller is periodic froma fixed reference frame. This approach for constructing a time-invariant system

with periodic inputs is applicable to any system in which the dynamics are described as a combination of a static base

and a periodic primary disturbance.

I. Introduction

I N THIS introduction, a summary of feedback control of channel
flow and the origins of the periodic feedback control problem is

presented. The ability to control flows has great consequences in
many scientific and engineering applications and, in particular, can
lead to reduced drag and increased lift. An approach to flow control,
based on systems theoretic concepts, uses the governing dynamical
equations to formulate feedback controllers. Studies, such as [1–9],
have successfully applied systems theoretic approaches to design
feedback controllers that substantially reduced drag with wall
blowing/suction along the channel wall.
Although the application of systems theoretic methods affords one

the ability to approach the problem of flow control in a systematic
fashion, the performance of feedback control thus designed appears
to be limited. Research, which focused on viscous drag reduction in a
periodic channel flow, showed drag reduction in the 15 to 18% [5].
These controllers were all derived by applying modern control
synthesis techniques to the spectral decomposition of the Navier–
Stokes equations, linearized for small perturbations around the
Poiseuille mean profile in a channel flow with a variety of feedback
control cost criteria [6]. The apparent performance limit was not
breached until it was discovered that a simple, sinusoidal wave of
wall-normal blowing and suction at the top and bottom walls could
not only drive down but sustain drag reduction in the channel [10].
Under “laminar” conditions,‡ the traveling wave functions as a
pressure pump to reduce viscous drag in a channel. However, under
“turbulent” conditions, the traveling wave also interacts with near-
wall structures; thus, the reduction is more than purely the pumping
effect [10,11]. Direct numerical simulations (DNSs) [12] initialized
with a laminar flowfield show the upstream traveling wave sustained

a flowfield with sublaminar drag characteristics. There are certainly
positive effects of downstream traveling waves, such as increased
dynamic stability of the flow [13,14], but drag is increased. Upstream
traveling waves decrease dynamic stability of the flow but decrease
drag. For example, DNSs initialized with a turbulent flow or with
finite disturbances settled to different equilibria, which were lower
than without the traveling wave but still higher than the “laminar”
equilibria [see Fig. 1 for a sample of this behavior in a three-
dimensional (3-D) DNS [12] of channel flows at Re � 2000 with
traveling wave of amplitude 0.1, upstream speed of 2, and at wave
number (0.5,0); note that amplitude and speed are normalized to the
centerline velocity of the mean flow]. This difference in steady-state
equilibria is suggestive of transition to turbulence, similar to the
original problem [1] inwhich secondary instabilitieswere suppressed
by systems theoretic feedback controllers.
Floquet analysis offers an explanation for the two types of

equilibria by deriving the dynamics of the perturbation velocities
about the periodic base flow [15]. Specifically, the perturbation
velocities are characterized as having the spatial and temporal
periodicity of the traveling wave. Then, the invariant portion of the
periodic dynamics characterizes the stability of the traveling wave
induced flow. Using a two-dimensional (2-D) Fourier decomposition
in the streamwise and spanwise directions, the base flow is thus
represented as a linear superposition of the Poiseuille mean profile as
well as velocities (along the entire channel height not just at the wall)
at thewave number of the travelingwave. This analysis clearly shows
that the traveling wave induces secondary instabilities in the channel
flow. Given finite amplitudes, these instabilities would transition a
traveling wave induced flowfield from “laminar” to “turbulent”.
Although the Floquet analysis provides a linear method by which

to characterize the stability of the traveling induced flowfield, it does
not directly provide system equations appropriate for control
synthesis. The solution turns out to be a rather simple observation:
decompose the traveling wave induced channel flow in a frame of
reference moving with the traveling wave. This approach results in
linear time-invariant (LTI) system equations appropriate for modern
systems theoretic synthesis, discussed in Sec. II. The moving frame
isolates only the temporal periodicity of the flow. The stability of
these linear models matches those of the Floquet analysis and
similarly couple the perturbations at different wave numbers. In
Sec. III, a design and application of linear quadratic regulators
(LQRs) to suppress the induced instabilities are shown to
demonstrate the efficacy of using this moving-frame decomposition
as a basis for feedback control synthesis. In Sec. II, the specific
differences between the Floquet analysis linearized equations and the
moving-frame equations are discussed. The two approaches are
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nearly identical, but the resulting dynamical equations are different in
terms of where the temporal characteristics are captured. The minor
difference has an enormous affect on how easily, or even if, modern
systems theoretic synthesis methods can be applied.
Although the derivation is presented in terms of the periodic

channel flow, it must be stressed that this decomposition may be
applied to other dynamical systems that can be described as a linear
superposition of a primary disturbance and a base set of dynamics.
The parallel channel flow offers such an environment. The drag
reduction objective that originally motivated the discovery is, in
some fashion, an afterthought for the decomposition presented. The
LQR synthesis is offered to demonstrate that the linear model
derived from the moving-frame decomposition is effective in
DNSs. This LQR’s performance in suppressing the growth of
perturbation energies is shown in Sec. IV. A conclusion is presented
in Sec. V.

II. Linear Modeling of Periodic Flow

The Navier–Stokes equations are linearized by considering the
dynamics of only infinitesimally small perturbations around a
statistically steady flow in the streamwise direction, resulting in the
Orr–Sommerfeld (OS) and Squire equations. Figure 2 shows the 3-D
periodic channel dimensions used in the spectral decomposition of
the OS and Squire equations. In previous studies, the mean flow was
assumed to be temporally and spatially static, such as Poiseuille flow.
To consider the traveling wave induced flow, this work modifies this
assumption by the superposition of the traveling wave induced flow
as an additional component of the base flow:

u � U� uc � u 0 �streamwise velocity�;
v � vc � v 0 �wall-normal velocity�; and
w � wc �w 0 �spanwise velocity� (1)

The c subscript is introduced to indicate the velocities induced by
the traveling wave. It should be assumed that in this paper all

velocities are normalized to the centerline velocity of the
statistically steady mean flow U. The Reynolds number for the
flowfield is normalized to the centerline velocity and the channel
half-height. The mean flow can be set to one of several known
solutions or be obtained from DNS without any changes to the
derivation steps. Furthermore, the induced velocities (uc, vc, and
wc) can also be obtained fromDNS, or they can be approximated by
the solution (with a finite amplitude) to the linearizedOS and Squire
equations.

A. Linear Approximation of Traveling Wave Induced Velocities

To approximate the traveling wave induced velocities using
linear equations, the control input is formulated as wall-normal
blowing and suction along the upper and lowerwallswith no netmass
flux:

vupper�x; t� � −a cos�kx�x − ct�� and

vlower�x; t� � a cos�kx�x − ct�� (2)

where a is a scalar representing the amplitude of suction and blowing,
c is the normalized speed at which the wave travels downstream, and
kx is the streamwisewave number representing thewavelength of the
travelingwave. The blowing and suction are applied on the upper and
lower walls in varicose mode, in which suction (flow out of the
channel) on the lower wall coincides with suction on the upper wall,
the same being true for blowing (flow into the channel). Wall-normal
velocity is defined as being positive in the up direction, thus the
minus sign on the amplitude of the wall-normal velocity on the
upper wall.
The traveling wave induced velocities uc, vc, andwc are found by

solving the linearizedOS andSquire equations around the samemean
flow as in Eq. (1). The linearized equation can be represented in state-
space form as

_x � Ax�Bu (3)

where x represents the wall-normal perturbation velocity and
vorticity,A the dynamics,B the input matrix, and u the control input.
Details of this derivation can be found in previous studies, such as [1]
and [2]. These system equations decouple by Fourier decomposition
wave numbers, so only the subsystem corresponding to the wave
number of the control input, in this case the traveling wave or (kx, 0),
needs to be considered.B and u are defined to represent the effect of
wall-bounded, wall-normal suction and blowing in the form of
Eq. (2). One can find thevalue ofx at any time for anyknown function
u by the solution to Eq. (3):

x�t� � eAtx�0� �
Z
t

0

eAτBu�τ� dτ (4)

Since the control input is defined as a cosine function, there is an
analytical solution to Eq. (4), which is a sinusoidal function in time.
The details of the derivation are presented in [16]. For the following
sections, it is sufficient to describe the traveling wave induced
velocity in the form (using the wall-normal velocity as the
representative example)

vc�t; x; y; z� � v̂c�y�eîkx�x−ct� � v̂�c�y�e−îkx�x−ct� (5)

where v̂c is an appropriate amplitude function and v̂�c is its complex
conjugate. It is assumed that velocities are only induced at the spatial
wave number (kx, 0) of the control input wave.

B. Moving-Frame Decomposition

Floquet analysis treats the traveling wave induced velocities as a
primary disturbance [17]. Linearized dynamical equations are
derived by defining the perturbation velocities u 0, v 0, and w 0 in

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800

laminar
laminar + small perturbation

turbulent

Fig. 1 History of initially purely laminar, laminar transition to

turbulent flows, and fully turbulent flows induced by an upstream

traveling wave.

Fig. 2 Periodic channel dimensions.
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the following form (again using the wall-normal velocity as the
representative example):

v 0 � e�îαx�îβz−îωt�
X∞
n�−∞

eînkx�x−ct�v̂n�y� (6)

Here, α and β represent perturbation wave numbers,ω is the temporal
growth (or decay) rate, v̂n�y� is an appropriate amplitude function,
and kx and c are the same as in Eq. (2). This is the same
decomposition approach as described by [18] and [19]. The linear
analysis by [15] also shows that these linearized equations do
demonstrate secondary instabilities induced by the traveling wave.
However, the decomposition does not provide a set of ordinary
differential equations (ODEs) suitable for feedback control design.
Primarily, both the temporal and spatial periodicity of the traveling

wave is represented in the perturbation dynamics. Systems theoretic
synthesis approaches require that the perturbation dynamics be only
of time. Floquet theory does offer a method by which the temporally
periodic dynamics can be extracted [20]. However, this approach is
numerically intractable due to the large number of system equations
that is typical with the decomposition of flowfield dynamics.
Here is presented an alternative decomposition to directly and

simply capture the temporal periodicity induced by the traveling
wave. Instead of directly determining the periodic dynamics by
calculating the transition function over a period, the decomposition is
performed in a frame of reference that moveswith the travelingwave.
This approach results directly in time-invariant system equations.
The coordinate frame is made to move with the traveling wave:

t 0 � t; x 0 � x − ct; y 0 � y; and z 0 � z (7)

Note that the 0 is used here to represent the moving frame in relation
to the fixed or laboratory frame. The traveling wave control input is
defined in the new frame as

vupper�x 0; t� � −a cos�kxx 0� and

vlower�x 0; t� � a cos�kxx 0�
or

vc�t; x; y; z� � v̂c�y�eîkxx
0 � v̂�c�y�e−îkxx

0
(8)

The perturbation velocities are now defined as (again using the wall-
normal velocity as an example):

v 0 �
XN;M
n�−N;
m�−M

v̂�t 0; y 0�eînα0x 0�îmβ0z 0 (9)

where α0 and β0 represent the fundamental wave numbers of the
decomposition and v̂�t 0; y 0� is, again, an appropriate amplitude
function but now also a function of time (6). The temporal dynamical
behaviors are strictly those that are independent of the periodicity of
the traveling wave. Furthermore, α0 will need to be small enough so
that kx can be described as a whole number multiple of it, i.e.,
kx � ncα0. If nc > 1 or α0 < kx, subharmonic frequencies can be
studied. For the reader’s convenience, the linearized velocity
equations induced by the traveling wave are given in Appendix A,
and the decomposition into ordinary differential equations appro-
priate for state-space equations is described in Appendix B.
The coupling between the wave numbers is not as obvious as the

decomposition of the Floquet analysis described previously, in which
the coupling is explicit in the definition of the perturbation velocity
(6). The coupling now arises with the projection made to decompose
the governing equations (see Appendix B), which is a projection
made with known basis functions,

h·;Γl�y�eîhα0x
0�îjβ0z 0 i (10)

where Γl�y� is an appropriate basis function for the decomposition in
the wall-normal direction, the brackets denote the inner product with
these basis functions, and h and j arewhole number indices. Since kx
will be coincident to some values of n in Eq. (9), the previous inner
product will allow, for example, three terms to survive: perturbation
velocities at wave numbers �n;m�, �n − nc;m�, and �n� nc;m�. In
state-space form, this means the linear equations will have, or can be
easily made to have, the following block form:

d

dt

2
6666664

..

.

x−1
x0
x1
..
.

3
7777775
�

2
6666664

. .
.

M−1 A−1 P−1
M0 A0 P0

M1 A1 P1

. .
.

3
7777775

2
6666664

..

.

x−1
x0
x1
..
.

3
7777775

(11)

Simplified notations for brevity and clarity of presentation are used,
in which the−1 subscript represents perturbation at thewave number
�n − nc;m�, the 0 subscript the wave number �n;m�, and the 1
subscript the wave number �n� nc;m�. With the exception of this
coupling between wave numbers, the same linear state-space
equations as Eq. (3) can be constructed,

_�x � �A �x� �B �u (12)

where �x is the collection of x at different wave numbers as in Eq. (11),
�A is the time-invariant dynamical matrix, �u is a similar collection of

the u in Eq. (3), and �B is the time-invariant input matrix that couples
the inputs at different wave numbers. Appendix B presents more
details on how the state-space equations are derived from the

partial differential equations. The coupling shown in �A is similar
to coupling by Floquet analysis of the traveling wave induced
flow dynamics. In fact, picking α0 to equal kx or nc � 1, the same

stability characteristics are found from �A as are found by the
secondary stability analysis. However, the LTI state-space equations
(or systemmatrices) derived by this approach are appropriate for any
systems theoretic approach because they are linear time-invariant
state-space equations.

III. Feedback Transition Control of Periodic Flow

This work designs a LQR to suppress the induced secondary
instabilities using the state-space equations (12) found using the
projection (10) on the decomposition described in Sec. II.B. To derive
the system matrices, one takes a spectral decomposition of the
dynamics in a 4πh × 2h × 4πh∕3 channel (streamwise, wall-normal,
and spanwise directions in a channel as shown in Fig. 2), where h has
been normalized to 1. A 2-D Fourier decomposition is taken in the
streamwise and spanwise directions, for which 64 wave numbers are
assigned in each direction. The decomposition in the wall-normal
direction is taken by a 97-function Galerkin projection. As in many
previous studies [1,21], the control is defined as zero-net mass-flux,
wall-bounded, wall-normal blowing and suction. In the presence of
the traveling wave, the feedback control would be linearly
superpositioned with the traveling wave. The coupled system is
truncated to include five perturbation wave number states, i.e., wave
numbers �n − 2 � nc�, �n − nc�, n, �n� nc�, and �n� 2 � nc�.
Based on the coupled dynamics of Eq. (12) in amoving coordinate

frame, the linear-quadratic problem is to find a feedback control �u
that minimizes the quadratic cost

Jo � min
�u

Z
∞

t
� �x⊤ �Q �x�γ �u⊤ �R �u� dτ (13)

subject to Eq. (12). One can use γ as a tuning parameter, and �Q and �R
are taken as the identity. This is an arbitrary selection and does not
represent a quantity such as perturbation energy or Reynolds shear
stress. The proper selection of cost functionswould be appropriate for
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a larger study into a drag reduction in a parallel channel flow. This
arbitrary selection is made here since the primary objective of this
study is to present the usefulness of themoving-frame decomposition
in providing a framework to apply systems theoretic synthesis
methods to spatially and temporally periodic dynamical systems.
Truncating the state model at five coupled wave numbers is also an
arbitrary decision.
Using these system matrices in Eq. (12), one can obtain an LQR

controller,

�u � − �K �x (14)

which is determined from the usual linear quadratic control
synthesis methods. Since this study assumes that the state is known
and there is no process noise, then the LQR is an appropriate
controller given its inherent gain and phase margins due to the circle
criterion [22]. These feedback control gains found here are
temporally constant in a moving frame of reference but periodic in a
fixed frame of reference. Perturbations and control inputs that are
not periodic in the moving frame of reference become periodic in
the fixed frame. This requires a transformation, block diagonal in
the periodic frequencies of the five coupled wave number states, on
both the control and state from the moving frame to the fixed frame.
So although LTI control synthesis techniques are being used, it is
important to keep in mind that the dynamical system, coefficients,
and control gains are, in fact, periodic in the fixed frame of
reference.
Figure 3 shows the performancewithout and with a LQR designed

for and applied to a flow at Re � 5000 with a traveling wave of
amplitude 0.008 and upstream speed 2 at the first streamwise wave
number. The DNS is performed by a pseudospectral code similar to
the one used by [12]. For the DNS, a 64 × 97 × 64 grid point is taken,
but one should note that the wall-normal decomposition is a
collocation method in the DNS. To apply the feedback control gains
calculated using the Galerkin projection decomposed system
matrices, the DNS perturbation state is converted from the Galerkin
projection state to the collocation state. This is accomplished by a
straightforward linear transformation that is not detailed here. Since
full state feedback, assumed for LQR, is not practically possible for
flow control, these LQR results should be seen as demonstration,
since, in a complete study of a drag reduction, a whole host of other
factors, including cost functional, system size, and estimators, would
need to be considered. These results are, however, quite effective in
demonstrating that linear system models derived using the presented
moving-frame decomposition provide a good basis for synthesizing
feedback control for a highly nonlinear system. Furthermore, it is
possible to use the same mathematical framework to design systems
theoretic estimators, such as Kalman filters [9].

IV. Suppression of Growing Perturbations

Given the success of the simple application described in Sec. III
(see Fig. 3), DNS experimentswere conducted to test the ability of the
moving-frame LQR to suppress the secondary instabilities for a
larger amplitude traveling wave induced flow. As described in the
previous section, the feedback control is designed on a 64 × 97 × 64
spectral decomposition system matrix in which the wall-normal
direction is decomposed by a Galerkin projection, while the DNS is
based on collocation points. The computational domain remains
4πh × 2h × 4πh∕3 with the same grid point of 64 × 97 × 64, with a
collocation method used to decompose the velocities in the wall-
normal direction. The conversion from Galerkin projection to
collocation state is made inline during the simulation.
For the results presented in this section, a higher amplitude

traveling wavewere picked because the expectation is that the higher
amplitude would pose a greater challenge for the moving-frame
LQR. The derivation is dependent on an assumption of small
amplitude perturbations, for both the traveling wave induced
velocities and the perturbation velocities. There is a real concern for
the efficacy of any controller designed on systems derived from such

assumptions. For the flow at Re � 5000 with a traveling wave with
amplitude 0.03 and speed c � −2 at the perturbation wave number
(0.5, 0), one can observe instabilities induced in the linear, coupled-
state system for the first six spanwise wave numbers. Initializing the
DNS with a Poiseuille flow with randomized perturbations of
amplitude 10−4 demonstrates these instabilities quite nicely (see
Fig. 4 for a traveling wave of amplitude 0.03 and with and without
LQR). One can also observe that without a finite disturbance the
uncontrolled flowfield remains “laminar”. At the log scale of Fig. 4,
the undisturbed flow’s total perturbation energy overlaps with those
of the flowfields to which a LQR controller has been applied. The
LQR controllers are synthesized on linear models derived using
the moving-frame decomposition described in Sec. II.B for each of
the spanwisewave number stateswith instabilities. These systems are
truncated to the five wave number models. Two LQRs are
synthesized using different weighting in the cost function (13). The
cost function used in designing the LQRs is still the arbitrary
selection of identity matrices for �Q and �R, roughly representing the
square of the perturbation velocities. The controller is turned on at
t � 500. The results are shown in Figs. 4 and 5.
Even with the simple cost function, the LQR control is quite

effective in suppressing the growth of perturbation velocities.
Figure 4 shows the time history of the total perturbation energy of the
flow. The LQRs applied at the first six spanwise wave numbers
suppresses the induced instabilities so that their perturbation energy
time histories collapse to the energy of the traveling wave control
itself. Figures 5a–5f for channel flow with a traveling wave of
amplitude 0.03 more clearly show the LQR wall-bounded
controller’s ability to damp out the secondary instabilities; these
are perturbation energies at only the first six spanwisewave numbers.
All of these plots are of the log of the perturbation energy vs time.

1×10-6

1×10-5

800 900 1000 1100 1200 1300 1400 1500

w/o LQR
w/LQR

Fig. 3 The perturbation energy at the first spanwise wave number.

Fig. 4 The total perturbation energy for channel flow.
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V. Conclusions

The moving-frame decomposition, in the context of perturbation
growth in parallel channel flows, provides a framework in which
systems theoretic feedback control synthesis can be applied to periodic
dynamical systems. Decomposing the governing equations in a
moving frame of reference results in linear time-invariant (LTI)
system equations that are appropriate for systems theoretic control
synthesis. These system matrix equations predict the same stability

characteristics as Floquet analysis, but the temporal periodicity

induced by the traveling wave is handled by the moving-frame

decomposition. This paper has shown that linear quadratic regulator

(LQR) control, synthesized using the moving-frame decomposition

linearmodel, can suppress the growingperturbation energyof unstable

modes induced by small (and larger) amplitude traveling waves.
The moving-frame decomposition presented in this study does not

address the totality of feedback control needed to suppress transition

1×10-5

0.0001

0.001

0.01

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

a) Spanwise waven umber m = 1

0.0001

0.001

0.01

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

b) Spanwise wave number m = 2

0.001

0.01

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

c) Spanwise wave number m = 3

0.0001

0.001

0.01

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

d) Spanwise wave number m = 4

1×10-6

1×10-5

0.0001

0.001

0.01

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

e) Spanwise wave number m = 5

1×10-7

1×10-6

1×10-5

0.0001

0.001

500 600 700 800 900 1000 1100 1200 1300 1400

uncontrolled
LQR, gamma = 1×10-2

LQR, gamma = 1×10-8

f ) Spanwise wave number m = 6

Fig. 5 The perturbation energy at the first six spanwise wave numbers.
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or viscous drag in a channel flow. Rather, this study presents an
avenue to handle large, complex dynamical systems that can be
described as a linear combination of base and primary disturbance
dynamics. The terminologies become much clearer when described
in the context of parallel flowfields. In this context, the terms “base
flow” and “primary disturbance” have specific meanings that help
clarify the discussion of themoving-frame decomposition.Of course,
the discovery has also beenmadewhile researching the application of
systems theoretic control methods for channel flow control. The
apposite result presented is that, although Floquet analysis provides
an explanation of growth or decay rates, it does not provide the
temporal dynamics needed by systems theoretic synthesismethods to
design feedback controllers.
The decomposition of the dynamics in a moving frame does not

preclude the application of methodologies already developed for LTI
systems, such as Kalman filters to estimate the flow state. The
derivation of such a linear estimator is not presented here specifically
but rather implicitly through the duality with LQR controller design
methodology. However, demonstration of an estimator for channel
flow is quite challenging and will be addressed in future work. The
purpose of this study is to present a mathematical framework to allow
the use of linear systems theoretic approaches to temporally and
spatially periodic systems.

Appendix A: Traveling Wave Induced Flow Equations

Applying the flow velocity definitions (1) (as well as the flow
pressure, which is not explicitly shown) directly in theNavier–Stokes
momentum equations, the parts associated strictly with the base
component (in this caseU aswell asuc, vc, andwc) are subtracted out
so that one is left with only the dynamics of the perturbations. In a
sense, the base flow is being treated as a known quantity that is not
affected by the perturbation values.
Given the Navier–Stokes momentum equations for an incom-

pressible flow, the momentum equations in the streamwise, wall-
normal, and spanwise directions are

∂
∂t
�U� uc � u 0� � �U� uc � u 0�

∂
∂x
�U� uc � u 0�

� �vc � v 0�
∂
∂y
�U� uc � u 0� � �wc �w 0�

∂
∂z
�U� uc � u 0�

� −
∂p
∂x
� 1

Re
∇2�U� uc � u 0� (A1)

∂
∂t
�vc � v 0� � �U� uc � u 0�

∂
∂x
�vc � v 0�

� �vc � v 0�
∂
∂y
�vc � v 0� � �wc �w 0�

∂
∂z
�vc � v 0�

� −
∂p
∂y
� 1

Re
∇2�vc � v 0� (A2)

∂
∂t
�wc �w 0� � �U� uc � u 0�

∂
∂x
�wc �w 0�

� �vc � v 0�
∂
∂y
�wc �w 0� � �wc �w 0�

∂
∂z
�wc �w 0�

� −
∂p
∂z
� 1

Re
∇2�wc �w 0� (A3)

where p is the pressure field in the channel. Now, noting that uc, vc,
and wc are also considered to be part of the base flow, the base flow
momentum equations are as follows (again by streamwise, wall-
normal, and spanwise directions):

∂U
∂t
� ∂uc

∂t
�U ∂U

∂x
�U ∂uc

∂x
� uc

∂U
∂x
� uc

∂uc
∂x

� vc
∂U
∂y
� vc

∂uc
∂y
�wc

∂U
∂z
�wc

∂uc
∂z

� −
∂�P� pc�

∂x
� 1

Re
∇2�U� uc� (A4)

∂vc
∂t
�U ∂vc

∂x
� uc

∂vc
∂x
� vc

∂vc
∂y
�wc

∂vc
∂z

� −
∂�P� pc�

∂y
� 1

Re
∇2�vc� (A5)

∂wc
∂t
�U ∂wc

∂x
� uc

∂wc
∂x
� vc

∂wc
∂y
�wc

∂wc
∂z

� −
∂�P� pc�

∂z
� 1

Re
∇2�wc� (A6)

It should be noted that uc, vc, andwc do not necessarily satisfy the
previous equations since they were all derived (or gathered from
DNS) with the assumption that uc, vc, andwc ≪ U. These particular
dynamical equations are for any flow for which the velocities can be
expressed as in Eq. (1). Subtracting Eqs. (A4–A6) from Eqs. (A1–
A3) and eliminating negligible terms, i.e., the perturbation quadratic
terms, results in the following linear perturbation equations about the
traveling wave induced steady-state flow:

∂u 0

∂t
�U ∂u 0

∂x
� uc

∂u 0

∂x
� u 0 ∂U

∂x
� u 0 ∂uc

∂x
� vc

∂u 0

∂y

� v 0 ∂U
∂y
� v 0 ∂uc

∂y
�wc

∂u 0

∂z
�w 0 ∂U

∂z
�w 0 ∂uc

∂z

� −
∂p 0

∂x
� 1

Re
∇2�u 0� (A7)

∂v 0

∂t
�U ∂v 0

∂x
� uc

∂v 0

∂x
� u 0 ∂vc

∂x
� vc

∂v 0

∂y
� v 0 ∂vc

∂y
�wc

∂v 0

∂z
�w 0 ∂vc

∂z

� −
∂p 0

∂y
� 1

Re
∇2�v 0� (A8)

∂w0

∂t
�U∂w0

∂x
�uc

∂w0

∂x
�u0∂wc

∂x
�vc

∂w0

∂y
�v0∂wc

∂y
�wc

∂w0

∂z
�w0∂wc

∂z

�−
∂p0

∂z
� 1

Re
∇2�w0� (A9)

One can now explicitly assume that u 0 ≪ U and that u 0 ≪ uc. It
should be noted that the derivation of the dynamical equations up to
this point does not necessarily require that uc ≪ U, only that the
velocities can be described as Eq. (1). Furthermore, U of the base
flow has not been defined. Defining U to be the Poiseuille profile,
1 − y2, streamwise momentum equation (A7) further reduces to (or
any statistically steady-state mean with no change in the streamwise,
spanwise, and temporal directions)

∂u 0

∂t
�U ∂u 0

∂x
� uc

∂u 0

∂x
� u 0 ∂uc

∂x
� vc

∂u 0

∂y
� v 0 ∂U

∂y

� v 0 ∂uc
∂y
�wc

∂u 0

∂z
�w 0 ∂uc

∂z

� −
∂p 0

∂x
� 1

Re
∇2�u 0� (A10)

Equations (A10), (A8), and (A9) match exactly that of [19]. These
equations can be further manipulated to approximate the Orr–
Sommerfeld and Squire equations by the following:
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Orr–Sommerfeld equivalent:
∂2�A8�
∂x2

�∂2�A8�
∂z2

−
∂2�A10�
∂x∂y

−
∂2�A9�
∂y∂z

and Squire equivalent:
∂�A10�

∂z
−
∂�A9�
∂x

Further manipulation results in the equations that describe the
perturbation dynamics,

∂
∂t
∇2v 0 �U ∂

∂x
∇2v 0 −

d2U

dy2
∂v 0

∂x
� uc

∂
∂x

∇2v 0 � vc
∂
∂y

∇2v 0

�wc
∂
∂z

∇2v 0 �
�
∂
∂x

∇2vc

�
u 0 �

�
∂
∂y

∇2vc

�
v 0 �

�
∂
∂z

∇2vc

�
w 0

� ∂vc
∂y

∇2v 0 � �∇2vc�
∂v 0

∂y
− 2

∂ωxc
∂x

∂u 0

∂z
− 2

∂uc
∂z

∂ω 0x
∂x
� 2

∂ωzc
∂z

∂w 0

∂x

� 2
∂wc
∂x

∂ω 0z
∂z
� 2

∂ωzc
∂x

∂u 0

∂x
� 2

∂uc
∂x

∂ω 0z
∂x

− 2
∂wc
∂z

∂ω 0x
∂z

− 2
∂ωxc
∂z

∂w 0

∂z

� ∂vc
∂x

�
∂ω 0z
∂y
�

∂ω 0y
∂z

�
�
�
∂ωzc
∂y
�

∂ωyc
∂z

�
∂v 0

∂x

−
∂vc
∂z

�
∂ω 0x
∂y
�

∂ω 0y
∂x

�
−
�
∂ωxc
∂y
�

∂ωyc
∂x

�
∂v 0

∂z

� 1

Re
∇2∇2v 0 (A11)

∂
∂t
ω 0y �U

∂
∂x

ω 0y �
dU

dy

∂v 0

∂z
� uc

∂
∂x

ω 0y � vc
∂
∂y

ω 0y �wc
∂
∂z

ω 0y

�
�
∂
∂x

ωyc

�
u 0 �

�
∂
∂y

ωyc

�
v 0 �

�
∂
∂z

ωyc

�
w 0 −

∂vc
∂y

ω 0y

− ωyc
∂v 0

∂y
� ∂uc

∂y
∂v 0

∂z
� ∂vc

∂z
∂u 0

∂y
−
∂vc
∂x

∂w 0

∂y
−
∂wc
∂y

∂v 0

∂x

� 1

Re
∇2ω 0y (A12)

whereωx,ωy, andωz are the component of vorticity. Equation (A11)
is the equivalent to theOrr–Sommerfeld equation although u 0 andw 0

are still involved as is the case with Eq. (A12). The fact that these
equations are not solely dependent on v 0 and ω 0y is only of marginal
concern; once the velocities are decomposed, one can make the
appropriate substitutions to reformulate them to be so (see
Appendix B).

Appendix B: Spectral Decomposition in Moving Frame

Equations (A11) and (A12) represent the linearized dynamics of
small perturbations about a base flow that is described as a linear
superposition of a primary disturbance (traveling wave in this
particular case) and a mean flow in a channel. Linearity is gained by
assuming that the perturbation is too small to affect both the primary
disturbance and the mean flow. To design control laws, one needs to
derive ODEs from these partial differential equations.
The ODEs are derived by decomposing the velocities with a

Fourier expansion in the streamwise and spanwise directions and a
Galerkin projection expansion in the wall-normal direction (other
projections and expansion can, of course, be used) in a frame of
reference moving with the wave [repeating Eq. (7) here for
convenience]:

t 0 � t; x 0 � x − ct; y 0 � y; and z 0 � z (B1)

Themoving-frame reference changes the partial derivatives for the
partial differential equations (A11) and (A12):

∂
∂t
� ∂

∂t 0
− ct

∂
∂x 0

;
∂
∂x
� ∂

∂x 0
;

∂
∂y
� ∂

∂y 0
; and

∂
∂z
� ∂

∂z 0

(B2)

To limit confusion, the apostrophe is dropped when referring to the
coordinate variables in themoving frame (i.e., x is used instead of x 0, t
is t 0, y is y 0, and z is z 0) in the remaining part of this discussion. The
apostrophe will still be used to refer to the perturbation flow
properties. This distinction will need to be kept in mind when the
partial differential equations are decomposed into ODEs.
The perturbation dynamical equations (A11) and (A12) are

decomposed into ODEs by using the following expansions in the
moving frame:

uc�t; x; y; z� � 1∕2�ûc�y; t�eîkxx � û�c�y; t�e−îkxx� (B3)

vc�t; x; y; z� � 1∕2�v̂c�y; t�eîkxx � v̂�c�y; t�e−îkxx� (B4)

wc�t; x; y; z� � 1∕2�ŵc�y; t�eîkxx � ŵ�c�y; t�e−îkxx� (B5)

ωxc�t; x; y; z� �
∂wc�t; x; y; z�

∂y
−
∂vc�t; x; y; z�

∂z

� 1

2

��
î
∂ŵc�y; t�

∂y
− îkzv̂c�y; t�

�
eîkxx

−
�
î
∂ŵ�c �y; t�

∂y
− îkzv̂�c �y; t�

�
e−îkxx

�
(B6)

ωyc�t; x; y; z� �
∂uc�t; x; y; z�

∂z
−
∂wc�t; x; y; z�

∂x

� 1

2

��
îkzûc�y; t� − îkxŵc�y; t�

�
eîkxx

−
�
îkzû

�
c �y; t� − îkxŵ�c�y; t�

�
e−îkxx

�
(B7)

ωzc�t; x; y; z� �
∂vc�t; x; y; z�

∂x
−
∂uc�t; x; y; z�

∂y

� 1

2

��
îkxv̂c�y; t� − î

∂ûc�y; t�
∂y

�
eîkxx

−
�
îkxv̂

�
c�y; t� − î

∂v̂�c�y; t�
∂y

�
e−îkxx

�
(B8)

u 0�t; x; y; z�

� 1

2

X
nm

−î
γ2

�
mβ0ω̂ynm�y; t� − nα0

∂v̂�y; t�
∂y

�
eî�nα0x�mβ0z� (B9)

v 0�t; x; y; z� � 1

2

X
nm

v̂�y; t�eî�nα0x�mβ0z� (B10)

w 0�t; x; y; z�

� 1

2

X
nm

î

γ2

�
nα0ω̂ynm�y; t� �mβ0

∂v̂�y; t�
∂y

�
eî�nα0x�mβ0z� (B11)

ω 0x�t; x; y; z�

� 1

2

X
nm

�
î

γ2

�
nα0

∂ω̂ynm�y; t�
∂y

�mβ0
∂2v̂�y; t�
∂y2

�
− îmβ0v̂�y; t�

�

× eî�nα0x�mβ0z� (B12)

ω 0y�t; x; y; z� �
1

2

X
nm

ω̂ynm�y; t�eî�nα0x�mβ0� (B13)

KANG, SPEYER, AND KIM 999

D
ow

nl
oa

de
d 

by
 U

C
L

A
 o

n 
M

ay
 1

6,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

04
18

 



ω 0z�t; x; y; z�

� 1

2

X
nm

�
î

γ2

�
mβ0

∂ω̂ynm�y; t�
∂y

− nα0
∂2v̂�y; t�

∂y2

�
� înα0v̂�y; t�

�

× eî�nα0x�mβ0z� (B14)

Note that
P

nm is introduced as a shorthand notation for summa-
tion over n � −N → N and m � −M → M, introduced with the
definition (9). Furthermore, this work used the definition of vorticity
to describe all the quantities in terms of v 0 and ω 0y. Substituting these
definitions into Eqs. (A11) and (A12) results in ODEs for the three-
dimensional channel flow that can be cast into state-space form. Of
course, an appropriate expansion in the vertical direction also needs
to be applied.
Paralleling the control synthesis done in previous studies [1,4,5],

one can define the perturbation wall-normal velocity to include an
inhomogenous part to represent control applied at the upper or lower
(or both) wall(s):

v 0 � vh � χ (B15)

Here, vh represents the homogeneous solution inwhich vh at y � �1
is equal to zero, and χ is such that it equals the control input at
y � �1, y � −1, or y � 1 (depending on one’s choice of control
input). This means that the total wall-normal velocity is now
described as

v�t; x; y; z� � vc � vh � χ

The direct state-space form from the discretization described
previously is

�A1

dy

dt
− �B2

du

dt
� �A2y� �B1u (B16)

By a change of variables [1,4,5], Eq. (B16) is transformed into
Eq. (12).
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