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Red Light Phototherapy Using Light-
Emitting Diodes Inhibits Melanoma
Proliferation and Alters Tumor
Microenvironments
Evan Austin1,2, Alisen Huang1, Jennifer Y. Wang1, Marc Cohen1, Edward Heilman1,
Emanual Maverakis2, Josef Michl3 and Jared Jagdeo1,2*

1 Department of Dermatology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States,
2 Department of Dermatology, University of California (UC) Davis Medical Center, Sacramento, CA, United States,
3 Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, United States

Background: Total annual cancer rates have decreased due to improved treatment and
prevention. However, the incidence of melanoma is rising, and not all patients respond to
immune and targeted approaches. Therefore, we sought to determine the efficacy of red
light (RL) phototherapy in preclinical models of melanoma.

Methods: Melanoma cells (A375, B16F10, MNT-1) were irradiated with RL. Melanoma
proliferation, apoptosis, oxidative stress, and p53 phosphorylation were measured in vitro.
In C57BL/6 mice, phototherapy safety, B16F10 tumor growth, and immunocyte infiltration
were assessed following RL.

Results: In vitro, 640 J/cm2 RL decreased cellular proliferation without increasing
apoptosis, while 1280 J/cm2 increased apoptosis. RL increased intracellular reactive
oxygen species generation and p53 phosphorylation. In animal models, 2560 J/cm2 RL
significantly prevented melanoma growth and increased the expression of CD103+
dendritic cells. 1280 and 1920 J/cm2 RL decreased tumor volume, but not significantly.
RL did not cause skin inflammation or erythema in normal skin.

Conclusion: RL represents a potentially safe and effective melanoma therapeutic. RL
prevented tumor growth and increased the expression of immune markers, such as
CD103, that are associated with favorable melanoma outcomes. Further research is
needed to determine the optimal clinical treatment regimen for melanoma using RL.

Keywords: melanoma, phototherapy, low level light therapy, photobiomodulation therapy, reactive oxygen species,
tumor micro environment
Abbreviations: ABAM, Antibiotic-antimycotic mixture; ANOVA, Analysis of variance; CPD, Cyclobutane pyrimidine dimer;
DHR-123, Dihydrorhodamine-123; FBS, Fetal bovine serum; HDF, Human dermal fibroblasts; IHC, Immunohistochemistry;
LED, Light-emitting diode; MFI, Median fluorescence intensity; NAC, N-acetylcysteine; OD, Optical density; RL, Red light;
ROS, Reactive oxygen species; 7-AAD, 7-Aminoactinomycin D.
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INTRODUCTION

While overall yearly cancer rates have decreased due to improved
identification and prevention, the incidence of melanoma is
increasing (1–3). For primary melanomas (Stage I and II),
surgery is usually recommended with margins up to 2 cm (4, 5).
Treatments for metastatic melanoma include immune
modulators, kinase (i.e., targeted) inhibitors, and radiation
therapy (5). Immune checkpoint inhibitors and kinase inhibitors
may improve overall survival in up to 50% of patients (6). Despite
improvements in outcomes, patients may have or develop
resistance to kinase and immune checkpoint inhibitors (5). To
improve efficacy, immune checkpoint inhibitors have been used in
combination with radiation therapy via abscopal effects (7, 8).

Red light (RL) phototherapy may also be a beneficial adjunctive
melanoma therapy by inhibiting tumor growth and augmenting
anti-tumor immune activity. RL may non-thermally alter cellular
biology via a process termed photobiomodulation (9).
RL absorption by cytochrome c oxidase, a photoreceptive
chromophore, excites electrons, activates the electron transport
chain, and generates second messengers such as reactive oxygen
species (ROS) (9, 10). Cancers, including melanoma, have
dysregulated ROS homeostasis and may be particularly sensitive
to oxidative stress (9, 11). Increasing intracellular ROS in cancer
cells may lead to cell death or inhibition of growth and metastasis
(12–14). Herein, we assessed the efficacy of RL phototherapy as a
treatment for melanoma using translational models. In vitro,
RL decreased melanoma cell proliferation and increased
apoptosis, oxidative stress, and p53 phosphorylation. In mouse
models, RL decreased melanoma tumor growth and increased the
association of immune markers related to beneficial tumor
immune microenvironments.
MATERIALS AND METHODS

Cell Culture
Monolayers of A375 (ATCC), B16F10 (ATCC), and MNT-1
(ATCC) melanoma cells were cultured in DMEM (Thermo
Fisher) with 10% fetal bovine serum (FBS) and 1% Antibiotic-
antimycotic mixture (ABAM). Cell cultures were maintained in a
humidified incubator at 37°C with 5% carbon dioxide and
atmospheric oxygen. For experiments, cells were seeded at low
confluency (4,000 cells per 1.77 cm2 surface area) (15). Twenty-
four hours after plating, melanoma cells were irradiated with RL.
Supplemental Table 1 includes descriptions of the A375, MNT-1,
and B16F10 cell lines.

In Vitro Irradiation
Melanoma cells were irradiated with an RL array (633 ± 15-nm, 87
mW/cm2 at the light-emitting diode (LED) array surface, Omnilux
Revive 2) at 640 and 1280 J/cm2. Cells receiving 640 and 1280 J/cm2

RL were irradiated outside the incubator for 2 and 4 hours (media
temperature 34°C). Each RL-treated group was compared to a
temperature, humidity, and CO2 matched control group on a
heating block (34°C). The time-matched controls for 640 and 1280
J/cm2 are 2H (2 hours) and 4H (4 hours) controls, respectively.
Frontiers in Oncology | www.frontiersin.org 2
Experimental irradiations were performed with DMEM (Thermo
Fisher) supplemented with FBS and ABAM but without phenol red.
Phenol red may alter antioxidant capacity, and thereby confound
experiments (16). Additionally, A375 cells were cultured in CO2-
independent media to assess the effect of media pH on our findings
(Supplemental Methods). Similar findings were observed when
A375 cells were cultured in DMEM or CO2-independent media,
suggesting the results were not due to environmental conditions
during treatment (Supplemental Figure 1).

Crystal Violet Cell Count
Cell counts were assessed using crystal violet (Thermo Fisher)
(17, 18). Following treatment with RL, experimental and control
samples were incubated for 48 hours to allow cell growth.
Collected cells were fixed with 4% formaldehyde (Thermo
Fisher) and stained with 0.1% crystal violet. Crystal violet was
eluted with 10% acetic acid (Sigma), and optical density (OD)
was quantified with a Biotek plate reader at 590-nm. Relative cell
count was determined by comparing the OD of the RL and
control samples.

Trypan Blue Cell Count and Viability
48 hours after RL irradiation, cell counts were assessed with a
hemocytometer, according to previous protocols (19).

Cell Cycle Analysis
Cell cycle distribution was assayed using propidium iodide flow
cytometry according to previously published protocols (20, 21).
24 hours after plating, A375 and MNT-1 cells were serum-
starved (0% FBS) for 24 hours, then irradiated with RL.
Fluorescent intensity was then immediately analyzed with flow
cytometry (BD Fortessa). Cell cycle distribution was determined
with Flowjo software using the Watson pragmatic algorithm
(BD Biosciences).

Apoptosis/Necrosis
Annexin-V and 7-aminoactinomycin D (7-AAD; Sigma
Millipore) were used to assay apoptosis/necrosis 24 hours post-
RL irradiation using flow cytometry according to the
manufacturer’s recommendation (20, 22). Gating was assessed
using a positive control sample heated at 70°C for 10 mins before
annexin-v and 7-AAD staining. Post-hoc gating and analysis
were performed with Flowjo software.

Free Radical Reactive Oxygen Species
(ROS) Generation
Melanoma cells were assayed using DHR-123 at 0 hours post-RL
irradiation (23). Cells were irradiated with RL and then stained
with 1 ml of 1:100 DHR-123 (Thermo Fisher). Non-fluorescent
DHR-123 converts to fluorescent rhodamine-123 in the presence
of ROS. Rhodamine-123 median fluorescent intensity (MFI) was
quantified with flow cytometry. Post-hoc gating and analysis
were performed with Flowjo software.

DNA Damage
DNA from cells was collected (Qiagen FlexiGene DNA isolation
kit) at 0 or 3 hours following RL or 10 J/cm2 of UVB (positive
June 2022 | Volume 12 | Article 928484
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control) irradiation. DNA was then collected according to the
manufacturer’s recommendation. DNA quantity and quality
were measured with a Nanodrop (Thermo Fisher). CPDs were
quantified using ELISA according to the manufacturer’s
protocols (Cellbiolabs) with a plate reader at 405-nm.

Antioxidant Pretreatments
Cells were pretreated with 0.25 to 7.5 mM NAC (Sigma), a free
radical scavenger, in DMEM for 2 hours to assess ROS-mediated
pathways. Following antioxidant treatment, the cells were
washed and fresh culture media was added. The cells were
then irradiated with 640 J/cm2 RL. 48 hours following RL
treatment, changes in cell proliferation were assessed using
crystal violet as described above.

Protein Collection and Western Blot
Protein was collected from RL treated and control cells 24 hours
post-irradiation. Western blot was performed according to the
manufacturer’s protocols (Supplemental Methods).

Mouse Care and Use
C57BL/6 mice were housed and cared for in the animal facility in
the Department of Comparative Medicine at SUNY Downstate
(IACUC ID: 19-10564). Animals were provided a standard chow
diet and always had full access to food and water.

Mouse Irradiations
Female C57BL/6 mice were irradiated daily with RL phototherapy
(633 ± 15-nm, Omnilux Revive 2) at a power density of 87 mW/
cm2. Mice were treated in custom-designed temperature-controlled
treatment cages to prevent supraphysiologic temperatures from the
RL array and light (Supplemental Figure 2). Daily treatment
regimens were 1280, 1920, and 2560 J/cm2 which corresponded
to 4 hours (4H), 6 hours (6H), and 8 hours (8H) of RL treatment,
respectively. The ambient temperature in the cages was maintained
using a temperature probe in the cage and air-conditioning unit.
Mouse core body temperature was maintained between 34.5 and
38.9°C measured using a rectal temperature probe.

Safety Regimen
On day 0, the backs of the female C57BL/6 mice were shaved and
naired while anesthetized with inhaled isoflurane. On day 1,
3 mice were randomly allocated to each control or RL treatment
(daily 1280, 1920, or 2560 J/cm2) group (n=3). On days 1-15, the
mice received daily irradiations of 1280, 1920, or 2560 J/cm2.
During daily RL treatments, the mice were observed for changes
in behavior, and rectal temperatures were recorded. On day 16,
the mice were euthanized. Skin sections were fixed in 10%
formalin and processed for IHC.

Efficacy Regimen
RL efficacy was assessed in female C57BL/6 mice injected with
3 x 105 B16F10 cells. Starting on day 3, the mice received daily
irradiations of 1280 (n=10), 1920 (n=10), or 2560 J/cm2 (n=12).
To prevent overcrowding during the treatment protocol, the
1280, 1920, and 2560 J/cm2 treatment regimens were performed
separately with an equal number of control mice (n=10 for 4H
Frontiers in Oncology | www.frontiersin.org 3
control, n=10 for 6H control, and n=12 for 8H control). To
prevent overcrowding during the treatment protocol the 1280,
1920, and 2560 J/cm2 treatments were performed separately with
an equal number of control mice (n=10 for 4H control, n=10 for
6H control, and n=12 for 8H control). The mice and tumors were
assessed for humane outcomes (e.g., tumor rupturing, bleeding,
immobilization) before, during, and after RL treatments. Daily
irradiations continued until a single mouse required
euthanization for a humane endpoint, at which point, all
control and RL-treated mice were euthanized (day 13 for 1280
and 1920 J/cm2, day 15 for 2560 J/cm2). Mice and melanoma
tumor dimensions were tracked daily and photographed with a
Nikon D3500 following euthanization.

Quantification of Melanoma Growth
Tumors were excised from euthanized mice and measured in
three dimensions to confirm the calculated volume. The
overlying skin was preserved in situ for histologic analysis.
Tumor volume was calculated from the excised tumor using
the following formula that includes a depth parameter (24):

Volume =
p
6
Lenght �Width� Depth

Tissue Histology
Following euthanization, tumors were excised and fixed in 10%
formalin. The fixed skin and tumor samples with in situ skin
were sent to Histowiz (Brooklyn, NY) for processing according
to a standard operating procedure and fully automated workflow
(Supplemental Methods).

Quantification of IHC Staining Intensity
Whole tumor and skin section images were imported into the
HALO software database (Indica Labs). Quantitative biomarkers
were analyzed using Multiplex IHC, area quantification, and
tissue classifier modules. IHC staining was indexed to the viable
tumor or skin area for all analyses. A dermatopathologist (EH)
confirmed the validity of immunohistochemical staining.

Data Analysis
Data analysis was performed for all paired assays (RL to matched
controls) using a two-tailed T-test. Analysis of Variance
(ANOVA) was used to compare experiments with multiple
comparison groups. Statistical significance was determined
with a P-value of less than 0.05. GraphPad software was used
for statistical testing and figure generation.
RESULTS

RL Phototherapy of Melanoma Decreases
Cell Count by Inhibiting Proliferation and
Increasing Cell Apoptosis
We have demonstrated that 320 and 640 J/cm2 RL decreases
human dermal fibroblasts (HDFs) proliferation and modulates the
expression of fibrotic and oxidative stress pathways (19, 25, 26).
June 2022 | Volume 12 | Article 928484
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Other researchers have found that blue light, but not RL at
fluences up to 360 J/cm2, decreased B16F10 melanoma survival
and proliferation (27–29). Low fluence RL has had variable effects
(i.e., no changes, increases, or decreases) on survival in other
cancer models (e.g., lung cancer, squamous cell carcinoma,
glioblastoma, and breast cancer) (29–31). Thus, unpigmented
(A375) and pigmented (MNT-1 and B16F10) melanoma cells
were irradiated with 640 and 1280 J/cm2 RL to determine whether
higher fluences may achieve therapeutic outcomes. At 48 hours
following irradiation, there was a dose-dependent decrease in
A375, MNT-1, and B16F10 cell counts as measured by crystal
violet staining intensity (Figures 1A–C). The results were
confirmed using a hemocytometer at 48 hours in A375 cells
treated with 640 and 1280 J/cm2 (Figures 1D,E). At 48 hours,
1280 J/cm2 significantly increased cell death, while 640 J/cm2 RL
did not (Figure 1F).

To determine whether increases in cell death were due to
apoptosis, A375, MNT-1, and B16F10 cells were irradiated with
RL and analyzed using annexin-V and 7-Aminoactinomycin D
(7-AAD) flow cytometry (Figures 2A–C) (32, 33). At 24 hours
post-irradiation, 1280 J/cm2 (but not 640 J/cm2) resulted in a
significant increase in apoptosis compared to control.
Representative annexin-V and 7-AAD flow plots are shown
in Figure 2D.

We tested whether RL regulates the cell cycle as 640 J/cm2

decreased cell count without increasing cell death. At 24 hours
post-irradiation, 640 and 1280 J/cm2 RL significantly decreased
the percentage of A375 cells in S-phase and increased the
percentage in G0/1 (Figures 2D). In MNT-1 cells, 1280 J/cm2

significantly decreased the percentage of cells in the S-phase and
increased the percentage in the G0/1-phase (Figure 2E). MNT-1
Frontiers in Oncology | www.frontiersin.org 4
cells irradiated with 640 J/cm2 had decreased, but not significant,
alterations in S or G0/1 (Figure 2F). Representative PI flow plots
are shown in Figure 2G.

Regulation of the Cell Cycle and Apoptosis
Was Associated With Increased p53
Phosphorylation
As RL may increase cell apoptosis and regulate the cell cycle, p53
expression and phosphorylation were measured in B16F10
and A375 cells using western blot. Phosphorylation of p53 at
Ser15 promotes the dissociation of p53 from MDM2 (HDM2),
apoptosis activation, and cell cycle regulation (34, 35). B16F10
and A375 were examined as these cell lines are wild-type for
p53 (36). Protein from A375 and B16F10 cells was collected
24 hours following irradiation. In A375 cells, 640 and 1280 J/cm2

increased p53 by 1.2 to 1.6 fold (Figure 3A). In B16F10 cells, 640
and 1280 J/cm2 RL both increased total p53 by 1.3-fold
(Figures 3B). Phosphorylated p53 increased by 1.8-fold and 2.7-
fold in 640 and 1280 J/cm2 treated A375 cells and by 1.5-fold and
2.7-fold in 640 and 1280 J/cm2 treated B16F10 cells (Figures 3C, D).

Next, p21 expression was measured as p53 phosphorylation
increases the transcription of CDKN1, the gene for p21 (an
inhibitor of the cell cycle progression) (34, 37). In A375 cells,
there was a dose-dependent increase in p21 expression following
RL irradiation (Figure 3E). However, in B16F10 cells, p21
expression increased following 640 J/cm2 RL but decreased
after 1280 J/cm2 RL (Figure 3F). Knockdown of p21 with
siRNA transfection did not restore the cell count of 640 J/cm2

RL treated A375 cells (Supplemental Figure 3). As a result, p21
knockdown is unlikely to be solely responsible for RL-mediated
anti-proliferative effects.
A B

D E F

C

FIGURE 1 | RL causes a dose-dependent decrease in melanoma cell counts. (A) 48 hours after RL irradiation, relative cell counts were assessed in A375 (n=4),
(B) B16F10 (n=5), and (C) MNT-1 (n=4) cells using crystal violet. The crystal violet was eluted and quantified using a Biotek plate reader, with an OD reading of 590-
nm. The RL group’s 590-nm OD was indexed to matched-control for graphing of relative cell count. (D) Cell count was measured using a hemocytometer in A375
48 hours after treatment with 640 (n=4) and (E) 1280 J/cm2 (n=4). (F) Cell viability was measured using a hemocytometer 48 hours after treatment with 640 (n=4)
and 1280 J/cm2 (n=4). A two-tailed T-Test (p<0.05) compared OD, cell count, and cell viability of RL treated cells to time-matched control. OD, optical density; RL,
red light; 2H, 2 hours; 4H, 4 hours.*denotes p<0.05, ** denotes p<0.01, *** denotes p<0.01, **** denotes p<0.0001, and ns denotes not significant.
June 2022 | Volume 12 | Article 928484
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RL Phototherapy Increases ROS
Generation but Does Not Induce the
Formation of Cyclobutane Pyrimidine
Dimers (CPDs)
p53 may be activated by cellular stress such as DNA damage or
directly by ROS. Photobiomodulation increases ROS production
via activation of electron transport and mitochondrial
dysfunction (9, 38). We have previously demonstrated that 640
J/cm2 RL increased intracellular ROS in HDFs (19). Immediately
Frontiers in Oncology | www.frontiersin.org 5
after 640 and 1280 J/cm2 RL (0 hours), the cells were treated with
dihydrorhodamine-123 (DHR-123) to measure intracellular
ROS. 640 and 1280 J/cm2 increased intracellular ROS in A375
and MNT-1 (Figures 4A, C). In B16F10 cells, 1280 J/cm2 RL
increases intracellular ROS production (Figure 4B).

To confirm whether increases in ROS were mechanistically
linked to decreases in cell proliferation, we pretreated A375 and
B16F10 cells with an antioxidant, n-acetylcysteine (NAC), and
irradiated cells with 640 J/cm2 RL. NAC sequesters ROS and has
A B

D

E F

G

C

FIGURE 2 | RL increases cell death and alters the cell cycle. (A) Cell death was confirmed in A375 (n=3), (B) B16F10 (n=5), and (C) MNT-1 (n=5) melanoma cells
using annexin-v and 7-AAD flow cytometry. (D) Representative flow plots for annexin-V and 7-AAD. A heat-treated positive control (70°C) was used for gating.
(E) Cell cycle progression was assessed using PI flow cytometry in A375 (n=3) and (F) MNT-1 (n=3) cells. The percentage of cells in each phase was modeled using
the Watson pragmatic model in FlowJo. (G) Representative cell cycle phase histograms from the A375 cell line. Apoptosis and cell cycle distribution compared RL
and time-matched control groups using a two-tailed T-Test (p<0.05). 2H, 2 hours; 4H, 4 hours; PI, propidium iodide; 7-AAD, 7-Aminoactinomycin D; and RL, red
light. *denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001, **** denotes p<0.0001, and ns denotes ns.
June 2022 | Volume 12 | Article 928484
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previously been used in melanoma research to study oxidative
stress (12, 39). In A375, pretreatment with 5 mMNAC prevented
640 J/cm2 RL mediated decreases in cell count (Figure 4D). In
B16F10 cells, 0.25 mM to 7.5 mM NAC prevented decreases in
cell count following RL phototherapy (Figure 4E).

ROS from 60 J/cm2 of UVA has been shown to interact with
melanin and induce CPDs within 3-hours post-irradiation via
chemiexcitation (40). Others have found that 5 J/cm2 RL did not
cause CPDs in MNT-1 and B16F10 cells (41). CPDs in DNA
were measured from RL irradiated MNT-1 and B16F10 cells
(Figures 4F, G). Neither 640 nor 1280 J/cm2 RL induced DNA
damage by 3 hours post-irradiation.

RL at Fluences up to 2560 J/cm2 Is
Safe in Mice
To translate in vitro findings to clinical regimens, the safety of RL
phototherapy was first assessed in normal C57BL/6 mice (i.e.,
without melanoma inoculation). Daily 1280, 1920, and 2560 J/cm2

RL sessions were administered. The mice were awake and
unrestrained during RL irradiations to prevent stress-related
Frontiers in Oncology | www.frontiersin.org 6
immunosuppression (42, 43). Higher fluences were tested in
vivo as mice often require higher therapeutic drug doses than in
vitro cell culture and human patients due to differences in body
physiology and metabolism (44). Interspecies allometric dosing
conversion equations exist for pharmaceuticals but are not
available for phototherapeutic interventions (44). After 15 days
of treatment, the RL-treated mice had no increase in rectal
temperature, and the skin was non-inflamed and non-
erythematous compared to non-treated mice (Figure 5A).

RL Phototherapy Inhibited Melanoma
Tumor Growth In Vivo
As RL was safe in normal mouse skin, C57BL/6 mice were
intradermally injected with 3x105 B16F10 cells to investigate the
efficacy of RL phototherapy for melanoma (45). On day three
following melanoma inoculation, the mice were randomly sorted
into RL treated and control groups (45). There was no difference
in tumor surface area between the RL and control groups before
initiating treatment (Supplemental Figure 4). Mice were then
irradiated with 1280, 1920, and 2560 J/cm2 daily until humane
A

B D

E

F

C

FIGURE 3 | RL increases p53 expression and phosphorylation. Protein was collected from A375 and B16F10 cells at 24 hours following irradiations with 640 and
1280 J/cm2. Relative expression of p53 in (A) A375 and (B) B16F10. Isolated protein from A375 cells treated with 640 and 1280 J/cm2 RL or control was probed
with p53 antibodies twice (n=2) and six times (n=6), respectively. Isolated protein from B16F10 cells treated with 640 and 1280 J/cm2 RL or control was probed
with p53 antibodies three times (n=3) and twice (n=2). (C) p53 phosphorylation was measured in A375 and (D) B16F10 cells. In A375 cells, 640 and 1280 J/cm2

treated samples were run five-times (n=5) and three times (n=3), respectively. In B16F10 cells, 640 and 1280 J/cm2 treated samples were analyzed with
phosphorylated p53 antibodies twice (n=2) and five times (n=5). (E) p21 expression in A375 and (F) B16F10 cells following irradiation with 640 and 1280 J/cm2 RL.
In A375 cells, 640 and 1280 J/cm2 treated samples were run five-times (n=5) and twice (n=2). In B16F10 cells, 640 and 1280 J/cm2 treated samples were run
three-times (n=3) and twice (n=2). 2H, 2 hour control; 4H, 4 hour control; 640, 640 J/cm2; 1280, 1280 J/cm2; ns, not significant; and RL, Red light.
June 2022 | Volume 12 | Article 928484
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endpoints (i.e., the tumor bled or ruptured) (45). RL caused a
dose-dependent decrease in tumor volume (Figures 5B–D). In
the 2560 J/cm2 RL-treated group, tumor volumes were
significantly smaller than the control (p<0.05, Figure 5D).
Figure E shows intact tumors on the backs of 8 control and
2560 J/cm2 RL-treated mice. Immunohistochemistry (IHC)
demonstrated non-significant decreases in Ki-67+(p=0.19, n=8)
and increases in p53+ (p=0.28, n=5) in the 2560 J/cm2 RL group
compared to the control (Figures 5F–H).

RL Increases the Infiltration of CD103+
Dendritic Cells in the Peritumoral Skin
As the C57BL/6 mice used in these experiments were
immunocompetent, we assessed the effects of RL phototherapy
on dermal and tumor immune infiltration. Tumor immune
microenvironment can substantially affect patient prognosis (46–
49). IHC was performed with excised tumors and peritumoral skin
using immune markers for lymphocytes (CD3, CD4, CD8,
FoxP3), dendritic cells (CD103), macrophages (CD68), and
neutrophils (Ly6G).

Control and RL-treated tumors were negligibly stained for all
immune markers, suggesting the exclusion of immune cells from
the tumor (data not shown). The peritumor skin stained positively
Frontiers in Oncology | www.frontiersin.org 7
for CD103, CD68, CD3, and CD4 (Figure 6) but negligibly for
CD8, Foxp3, and Ly6G (data not shown). 2560 J/cm2 RL
significantly increased CD103+ expression in peritumoral skin
(Figure 6A). 2560 J/cm2 RL increased CD68+ dermal staining, but
not significantly (Figure 6B). CD4, but not CD3, expression
increased in response to RL phototherapy (Figures 6C, D). IHC
for CD103, CD68, CD3, and CD4 was also assessed in non-tumor
mice to determine the effects of RL on immune function without
cancer (Supplemental Figure 5). RL caused a significant decrease
in CD103 expression at 1280-1920 J/cm2 and a modest dose-
dependent increase in CD4+ expression in normal mouse skin.
DISCUSSION

Herein, we investigated the anti-tumor effects of RL phototherapy
using in vitro and vivo models of melanoma. The ultimate goal of
our RL preclinical experiments was to demonstrate therapeutic
proof-of-concept and identify underlying mechanisms of action.

In vitro, 640 and 1280 J/cm2 RL phototherapy decreased cell
proliferation,while 1280 J/cm2RLalso increased cell apoptosis. Cell
cycle regulation and apoptosis were associated with p53 activation
and increased ROS generation. Activating p53 may be a beneficial
A B

D E F

G

C

FIGURE 4 | Increases in ROS due to RL decrease cell proliferation. (A) A375 (n=3), (B) B16F10 (n=5), and (C) MNT-1 (n=4) cells were irradiated with 640 and 1280
J/cm2 RL, and rhodamine-123 MFI was assessed at 0 hours post-treatment using flow cytometry. (D) A375 (n=4) and (E) B16F10 (n=5) cells were pretreated with
0.25 to 7.5 mM NAC and irradiated with 640 J/cm2 RL. Cell count was assessed by measuring cell staining intensity with crystal violet 48 hours after irradiation. (G)
B16F10 and (F) MNT-1 cells were irradiated with 640 to 1280 J/cm2 RL or UVB (10 J/cm2). DNA was collected at 0 and 3 hours post-irradiation and analyzed for
CPDs using ELISA. RL and control MFI and CPD concentration for 640 and 1280 J/cm2 RL was compared using a two-tailed T-test (p<0.05). ANOVA was used to
compare RL and NAC treated groups to control. Cell count was assessed by measuring cell staining intensity with crystal violet 48 hours after NAC. Ordinary one-
way ANOVA (p<0.05) compared NAC pretreatments and control. Dunnett’s post-hoc testing compared the mean of every RL group to control. 2H, 2 hour; 4H, 4
hour; UVB, ultraviolet B; NAC, n-acetylcysteine; OD, optical density. *denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001, **** denotes p<0.0001, ns and
denotes not significant.
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mechanism as approximately 80-90% of melanomas are wild-type
for p53 (50, 51). Wild-type p53 can regulate cell cycle checkpoint
progress and induce apoptosis in response to oxidative stress or
DNA damage repair pathways (52, 53). In HDFs, 640 J/cm2

similarly did not increase p21 expression, despite increasing p53
phosphorylation (54). Additionally, suprathreshold oxidative stress
has been shown to inhibit melanoma growth and promote
apoptosis independently (14). Pretreatment of melanoma cells
with NAC inhibited the anti-proliferative effects of RL
phototherapy in melanoma cells. Others have similarly found that
antioxidants, including NAC, increased melanoma metastasis in
mousemodels (12, 39).Therefore, increased oxidative stressmay be
a therapeutically beneficial mechanism of action (55).

We then translated RL phototherapy protocols to animal
models after demonstrating anti-tumor effects in vitro. B16F10
melanoma cells were used for in vivo protocols as the tumors grow
rapidly and with consistent kinetics (45, 56). As such, multiple RL
treatment fluences (i.e., 1280, 1920, and 2560 J/cm2) could be
screened for potential efficacy. Additionally, C57BL/6 mice
injected with B16F10 are immunocompetent, thus allowing for
the assessment of immune function. In mice, irradiation of 2560 J/
cm2 for up to 13 days decreased B16F10 melanoma tumor size
compared to control. These results differ from previous studies in
which three days of 1050 J/cm2 RL from an In-Ga-Al-AsP laser
(660-nm) increased murine melanoma tumor growth (57). As a
result, higher fluences of RL and longitudinal treatment protocols
may be necessary for clinical translation. Future clinical trials are
necessary to convert RL phototherapy dosing regimens from cell
culture and mice to patients and evaluate the efficacy of different
Frontiers in Oncology | www.frontiersin.org 8
phototherapy regimens, including photobiomodulation,
photothermal therapy, and photodynamic therapy (58, 59).

To determine whether RL may be combined with existing
pharmaceutical approaches, including immune checkpoint
inhibitors, we investigated the effects of RL phototherapy on tumor
immuneresponses.RL increased theexpressionofCD103+, amarker
of migratory dendritic cells that enhance antigen presentation to
cytotoxic T-cells in the lymph nodes (60–62). CD103+ expression is
linked to favorable immune microenvironments, improved
prognoses, prevention of metastasis, and responsiveness to PD-1/
PD-1L inhibitor therapy (60–62).CD4expression, classically ahelper
T-cell marker, was similarly increased following RL phototherapy.
However, CD4 is also non-specifically expressed on macrophages
and dendritic cells, and flow cytometry is necessary to fully
characterize the immune cell populations and T-cell infiltration
(63). Other researchers have also examined the role of immune
activity in phototherapy (64, 65). Ottaviani et al. used RL
phototherapy to decrease tumor volume and increase the
expression of type I interferons (65, 66). Type I interferons are
involved with immune surveillance, dendritic cell maturation, and
inflammatory responses (65, 66). Together, previous research and
our results suggest that RLmay activate systemic immune responses
in melanoma mouse models and facilitate a therapeutic immune
niche. Therefore, RL phototherapy may be synergistically combined
with current melanoma therapies for the benefit of patients.

Our research on RL phototherapy has strengths and
weaknesses. One strength is that we utilized multiple in vitro and
in vivo protocols to confirm laboratory findings. Another strength
is that the culture media and mouse core body temperatures were
A B D

E F G H

C

FIGURE 5 | RL safety and efficacy. (A) C57BL/6 mice without tumors were treated with RL at 1280, 1920, and 2560 J/cm2 for 15 days (n=3). Mice had no increase in
rectal temperature, and the skin was non-inflamed and non-erythematous compared to non-RL treated mice. (B) C57BL/6 Mice were injected with 3 x 105 melanoma
cells and irradiated daily with 1280 J/cm2 (n=10), (C) 1920 J/cm2 (n=10), and (D) 2650 J/cm2 RL (n=12). Volume was calculated using the formula Volume = 0.52 x
length x width x depth. (E) Representative mice with tumors (n=8) in the control group and 2560 J/cm2 RL group on day 15. (F) Quantification of p53+ (n=5) and (G) Ki-
67+ (n=5) staining nuclei in from control (8H) and 2560 J/cm2 treated tumors. Quantification of staining was performed using Indica HALO software. (H) Representative
images of p53+ and Ki-67+ staining in tumors. Cephalic (embryonic day 14) and spleen positive control sections are provided for p53 and Ki-67. Excised tumor volumes
and IHC staining intensity for RL-treated mice were compared to matched controls by a two-tailed T-test (p<0.05). *denotes p<0.05. ns denotes not significant.
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carefully maintained at physiological levels during irradiations.
Controlling temperature is essential as increased heat (40°C and
above) may independently lead to decreased cell viability, increased
ROS generation, G1 cell cycle arrest, membrane denaturation, and
coagulative necrosis (15, 67–70). 450 J/cm2 RL (650-nm) has
been shown to cause membrane protein denaturation in red
blood cells (70). Three human studies by our research team
tested the safety of LED RL in patients, and fluences of 320-480
J/cm2 (treatment duration of 1-1.5 hours) caused occasional
erythema and blistering, respectively, in patients without the use
of a cooling device (71, 72). In mice, fluences up to 2560 J/cm2 of
Frontiers in Oncology | www.frontiersin.org 9
RL with air-conditioning did not induce erythema, blistering, or
ulceration in non-tumor mouse skin. Cooling devices are often
incorporated in laser systems, and future clinical trials could test
higher fluences with temperature regulation (73). However,
photothermal reactions and inefficient energy transfer may
increase intracellular temperature despite external cooling (15, 68,
70). A potential weakness of our mouse protocols is that the mice
were awake and unrestrained to prevent immunosuppression.
Therefore, the mice were able to huddle up and turn away from
the light, which resulted in variability in treatment fluence
depending on individual mouse behavior (42, 43). In future
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FIGURE 6 | RL increases the expression of immunocyte markers. (A) Quantification of CD103 (n=8), (B) CD68 (n=5 for 1280 J/cm2, n=4 for 1920 J/cm2, n=8 for
2560 J/cm2), (C) CD3 (n=4), and (D) CD4 (n=8) staining in the peritumoral dermis or skin from 1280, 1920, and 2560 J/cm2 RL-treated and control C57BL/6 mice
injected with B16F10 cells (two-tailed T-Test, p<0.05). (E) Representative IHC for CD103, CD68, CD3, and CD4 positive staining peritumoral dermis and skin. The
staining intensity of each marker was indexed to the total skin or dermal area for each section. Spleen positive control tissue is provided. Staining was quantified
using Indica HALO software and compared to total skin or dermal area. * denotes p<0.05, *** denotes p<0.001, ns denotes not significant.
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experiments, higher power density LEDs or lasers may be tested to
reduce total treatment duration.

RL represents a potentially promising approach for melanoma
therapy, as RL is inexpensive, noninvasive, easily combined with
existing melanoma pharmacologic treatments, and associated with
low morbidity and no known mortality. Additionally, RL can be
madeavailable forhomeuse toaugment existingmelanomatherapies
under theguidanceof aphysician.Clinical studieshavedemonstrated
that patients can safely use LED devices at home (74). Clinical
translation for melanoma therapy could quickly follow safety and
efficacy demonstration in phase I-III clinical trials.We anticipate that
soon, it may be possible for patients to use home RL phototherapy to
augment therapy for cutaneous melanoma metastasis, empowering
patients to participate in their cancer treatment.
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