
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Cross Subspace Alignment and Its Applications to Private Information Retrieval and Coded
Distributed Computation

Permalink
https://escholarship.org/uc/item/5q52w16n

Author
Jia, Zhuqing

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5q52w16n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Cross Subspace Alignment and Its Applications to Private Information Retrieval and
Coded Distributed Computation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Zhuqing Jia

Dissertation Committee:
Chancellor’s Professor Syed Ali Jafar, Chair

Assistant Professor Zhiying Wang
Assistant Professor Yanning Shen

2021

© 2021 Zhuqing Jia

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Background . 1
1.2 Overview of the Dissertation . 2
1.3 Notation . 4

2 X-Secure T -Private Information Retrieval 6
2.1 Introduction . 7
2.2 Problem Statement: XSTPIR . 9
2.3 Capacity of XSTPIR: Results and Observations 11

2.3.1 Results . 12
2.3.2 Observations . 15

2.4 Proof of Theorem 2.1 . 22
2.5 Proof of Theorem 2.2 . 28
2.6 Proof of Theorem 2.3 . 28

2.6.1 Example: (X = 1) Secure, (T = 1) Private Scheme with N = 5 Servers 36
2.6.2 Example: (X = 2) Secure, (T = 1) Private Scheme with N = 4 Servers 37
2.6.3 Example: (X = 1) Secure, (T = 2) Private Scheme with N = 5 Servers 39
2.6.4 Example: (X = 2) Secure, (T = 2) Private Scheme with N = 7 Servers 40

2.7 Proof of Theorem 2.4 . 41
2.8 Discussion . 44

3 X-Secure T -Private Information Retrieval with Graph Based Replicated
Storage 45
3.1 Introduction . 46
3.2 Problem Statement . 48

ii

3.3 Results . 53
3.3.1 Examples . 59
3.3.2 Solution Structure inspired by Dual GRS Codes 61

3.4 Proof of Theorem 3.1 . 67
3.4.1 A Simple Example . 67
3.4.2 A General Scheme . 71
3.4.3 A Private Computation Scheme for X = 0, ρmin =T +1. 75

3.5 Proof of Theorem 3.2 . 77
3.6 Proof of Theorem 3.3 . 79

3.6.1 Proof of Converse for Theorem 3.3 79
3.6.2 Proof of Achievability for Theorem 3.3 81

3.7 Discussion . 83

4 X-secure T -private Information Retrieval from MDS Coded Storage with
Byzantine and Unresponsive Servers 84
4.1 Introduction . 85
4.2 Problem Statement: U-B-MDS-XSTPIR . 87
4.3 Result: An Achievable Rate for U-B-MDS-XSTPIR 89
4.4 Proof of Theorem 4.1 . 90

4.4.1 X = 1,T = 1,Kc = 2,N = 4 . 90
4.4.2 Arbitrary U , B . 105

4.5 Private and Secure Distributed Matrix Multiplication 106
4.5.1 PSDMM: Problem Statement . 106
4.5.2 A New Scheme for PSDMM . 109

4.6 Discussion . 115

5 Secure Distributed Matrix Multiplication 116
5.1 Introduction . 117
5.2 Problem Statement: SDMM . 120
5.3 Results . 123

5.3.1 A Connection between SDMM and MM-XSTPIR 123
5.3.2 An Upperbound on the Capacity of MM-XSTPIR 125
5.3.3 Entropies of Products of Random Matrices 126
5.3.4 Capacity of SDMM(AB,φ) . 127
5.3.5 Capacity of SDMM(B,A) . 129
5.3.6 Capacity of SDMM(B,B) . 130
5.3.7 Capacity of SDMM(B,φ) . 131
5.3.8 Capacity of SDMMAB,B . 132

5.4 Converse . 133
5.4.1 Proof of Converse for Theorem 5.3 133
5.4.2 Converse of Theorem 5.2: (5.24),(5.27) 135

5.5 Achievability . 136
5.5.1 A General Scheme . 137
5.5.2 Cross Subspace Alignment Based Scheme 138
5.5.3 Proofs of Achievability . 140

iii

5.5.4 Achievability Proof of Theorem 5.2: Case (5.24) 145
5.6 Discussion . 150

6 Cross Subspace Alignment Codes for Coded Distributed Batch Computa-
tion 151
6.1 Introduction . 152
6.2 EP Codes, LCC Codes, CSA Codes . 159

6.2.1 Matrix Partitioning: EP Codes . 159
6.2.2 Batch Processing: LCC Codes . 162
6.2.3 Cross Subspace Alignment: CSA Codes 162

6.3 Problem Statement . 165
6.3.1 Coded Distributed Batch Matrix Multiplication (CDBMM) 165
6.3.2 Distributed N -linear Batch Computation 169
6.3.3 Distributed Multivariate Polynomial Batch Evaluation 171

6.4 CSA Codes for CDBMM . 174
6.4.1 CSA Codes: Main Result . 174
6.4.2 Observations . 175
6.4.3 Proof of Theorem 6.1 . 181
6.4.4 Systematic Construction of CSA Codes 190

6.5 Generalized Cross-Subspace Alignment (GCSA) Codes: Combining Batch
Processing and Matrix-Partitioning . 193
6.5.1 GCSA Codes: Main Result . 194
6.5.2 Observations . 194
6.5.3 Proof of Theorem 6.2 . 199

6.6 N -CSA Codes for N -linear Coded Distributed Batch Computation (N -CDBC)208
6.6.1 N -CSA Codes: Main Result . 208
6.6.2 Proof of Theorem 6.3 . 209

6.7 Discussion . 212

7 X-Secure T -Private Federated Submodel Learning with Elastic Dropout
Resilience 214
7.1 Introduction . 215
7.2 Problem Statement: Robust XSTPFSL . 220
7.3 Main Result: The ACSA-RW Scheme for Private Read/Write 227

7.3.1 Observations . 228
7.4 Proof of Theorem 7.1 . 240

7.4.1 Example . 254
7.5 Discussion . 259

8 Conclusion 261

Bibliography 264

Appendix A Appendix of Chapter 2 275

Appendix B Appendix of Chapter 3 283

iv

Appendix C Appendix of Chapter 5 291

Appendix D Appendix of Chapter 6 306

v

LIST OF FIGURES

Page

2.1 Suboptimality of the rate achieved by the X = 1 secure MDS-PIR alternative
that allows the user to decode noise relative to the rate achieved with the
asymptotically optimal XSTPIR scheme where the noise is aligned with other
interference. 15

3.1 The graph G[V,E] for Example 6. 61
3.2 General setting of U ⊂NT+2 which may have neighbors N (U) both in NT+1

and NT+2. Note that N (U) does not include U 82

4.1 The U-B-MDS-XSTPIR setting studied in this chapter generalizes previously
studied settings of PIR [102], TPIR [106], MDS-PIR [11], MDS-TPIR [36,
105], XSTPIR [57], U-TPIR [106], B-TPIR [12], and U-B-MDS-TPIR [109]
as shown, and finds application beyond PIR in the context of Private Secure
Distributed Matrix Multiplication (PSDMM). 86

4.2 Model for private secure distributed matrix multiplication (PSDMM). A ma-
trices are XA secure, while B matrices are XB secure. The uploads to be
optimized are the Ã terms and the downloads to be optimized are the Y θ terms.107

5.1 (Left) General context for SDMM showing various sources that produce large
amounts of data represented as matrices M1,M2,···, and store it at N dis-
tributed servers inX-secure form, coded independently as M̃n

i . Various autho-
rized users access these servers and retrieve products of their desired matrices
based on the downloads that they request from all N servers. Unlike PIR
(private information retrieval) [23] problems there are no privacy constraints
in SDMM, so users can publicly announce which matrix products they wish
to retrieve. (Right) The SDMM problem considered in this chapter, where
the goal is to minimize the average size of the total download for a generic
user whose desired matrices are labeled A,B. 118

vi

6.1 The CDBMM problem. Source (master) nodes generate matrices A =
(A1,A2,··· ,AL) and B = (B1,B2,··· ,BL), and upload them to S distributed
servers in coded form Ã[s], B̃[s], respectively. For all l∈ [L], Al and Bl are
λ×κ and κ×µ matrices, respectively, over a field F. The sth server computes
the answer Ys, which is a function of all information available to it, i.e., Ãs
and B̃s. For effective straggler (e.g., Server i in the figure) mitigation, upon
downloading answers from any R servers, where R<S, the user must be able
to recover the product AB = (A1B1,A2B2,...,ALBL). 154

6.2 Lower convex hulls of achievable (balanced upload cost, download cost) pairs
(U,D) of Entangled Polynomial codes (EP codes) and cross subspace alignment
codes (CSA codes) given (a) (S= 30,R≤ 25), (b) (S= 300,R≤ 250) and (c)
(S= 3000,R≤ 2500). 179

6.3 Balanced upload/download time vs the value of the latency constraint pa-
rameter K for EP codes, CSA/LCC codes and GCSA codes (normalized by
λ3Tc). CSA/LCC codes are not feasible for K> 1. The values for EP codes
are lower bounds while those for GCSA codes are upper bounds, showing
that GCSA codes strictly outperform both batch processing (CSA/LCC) and
matrix-partitioning (EP) codes. 197

6.4 Lower convex hulls of achievable (balanced upload cost, download cost) pairs
(U,D) of GCSA codes for various bounds on pmn, given that S= 300 and
the overall recovery threshold R≤ 250. Note that EP codes and LCC codes
are also special cases of GCSA codes, obtained by setting `=Kc = 1, and
`=m=n= p= 1, respectively. CSA codes are obtained by settingm=n= p= 1.198

7.1 The two phases of robust X-Secure T -Private Federated Submodel Learning
(XSTPFSL) with arbitrary realizations of unavailable servers. 221

7.2 Conceptual partitioning of total server storage space (N dimensions) into data
content (Kc dimensions), storage redundancy that is exploited by private-write
(X dimensions), and storage redundancy that is exploited by private-read
(N−Kc−X dimensions). 228

7.3 Upload, download costs pairs (Ut,Dt) of the ACSA-RW scheme in the asymp-
totic setting L�K� 1, for N = 10,X∆ =T = 1 (the blue curve) and N =
10,X∆ = 1,T = 2 (the red curve), with various choices of X. Both examples
assume that Kc = 1 and there are no dropout servers. 232

vii

LIST OF TABLES

Page

2.1 A summary of the XSTPIR scheme showing storage at each server, the queries,
and a partitioning of signal and interference dimensions contained in the an-
swers from each server. 30

2.2 A summary of the XSTPIR scheme for X = 1,T = 1,N = 5, showing storage
at each server, the queries, and a partitioning of signal and interference di-
mensions contained in the answers from each server. 36

2.3 A summary of the XSTPIR scheme for X = 2,T = 1,N = 4, showing storage
at each server, the queries, and a partitioning of signal and interference di-
mensions contained in the answers from each server. 38

2.4 A summary of the XSTPIR scheme for X = 1,T = 2,N = 5, showing storage
at each server, the queries, and a partitioning of signal and interference di-
mensions contained in the answers from each server. 39

2.5 A summary of the XSTPIR scheme for X = 2,T = 2,N = 7, showing storage
at each server, the queries, and a partitioning of signal and interference di-
mensions contained in the answers from each server. 41

4.1 A summary of the MDS-XSTPIR scheme for X = 1,T = 1,Kc = 2,N = 4,U =
0,B= 0, showing storage at each server, the queries, and a partitioning of
signal and interference dimensions contained in the answers from each server. 93

4.2 A summary of the MDS-XSTPIR scheme for X = 1,T = 1,Kc = 2,N = 5,U =
0,B= 0, showing storage at each server, the queries, and a partitioning of
signal and interference dimensions contained in the answers from each server. 98

4.3 A summary of the general MDS-XSTPIR scheme showing storage at each
server, the queries, and a partitioning of signal and interference dimensions
contained in the answers from each server. 104

6.1 Performance summary of EP [141], LCC [138], CSA and GCSA codes for
CDBMM. Note that choosing `=Kc = 1 reduces GCSA codes to EP codes,
while setting m=n= p= 1 reduces GCSA codes to CSA codes (further re-
stricting `= 1 recovers LCC codes). Shaded rows represent balanced settings
with m=n,λ=µ=κ, fixed positive integers `,`′′, and fixed ratio R/S. The
batch size is L= `Kc for CSA codes, L′=K ′c for LCC codes, and L′′= `K ′′c
for GCSA codes. Note that for arbitrary R, we can choose the batch size to
guarantee the feasibility of LCC/CSA/GCSA solutions. 166

viii

6.2 Performance summary of LCC codes [138] and N -CSA codes for N -linear
distributed batch computation. Setting `= 1 reduces N -CSA codes to LCC
codes as a special case. Shaded rows represent settings with fixed ratio R/S.
ω is the number of arithmetic operations required to compute the N -linear
map Ω(·). dim(Vn) is the dimension of the nth variable of Ω(·), dimW is the
dimension of the output of Ω(·). The batch size is L= `Kc for N -CSA codes,
and L′=K ′c for LCC codes. 166

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Syed Jafar. I have
benefited tremendously from his guidance and countless discussions with him. Without
his insights and immense knowledge, this dissertation would not have been possible. His
motivation and enthusiasm in regard to research and scholarship continually encourage me
to advance on the road of academic.

I would like to thank Professor Zhiying Wang and Professor Yanning Shen for serving on
my dissertation committee, and Professor Ender Ayanoglu, and Professor Zhaoxia Yu for
serving on my qualifying examination committee. I appreciate all these valuable suggestions
from my committee members.

Let me also express my gratitude to Hua Sun, Zhen Chen and Yuxiang Lu for collaborating
and co-authoring papers with me. I am also grateful to have worked with my former and
current colleagues including Arash Gholami Davoodi, Bofeng Yuan, Yao-Chia Chan, Junge
Wang and Nilab İsmailoğlu. It is a great honor to work with all of you.

Last but not the least, let me express my gratefulness to my parents, my family and my
friends. It is my pleasure to dedicate this dissertation to them.

x

VITA

Zhuqing Jia

EDUCATION

Doctor of Philosophy in Electrical Engineering 2021
University of California, Irvine Irvine, California

Master of Science in Electrical Engineering 2019
University of California, Irvine Irvine, California

Bachelor of Science in Electronic Information Engineering 2015
Beijing University of Posts and Telecommunications Beijing, China

RESEARCH EXPERIENCE

Graduate Student Researcher 2016–2021
University of California, Irvine Irvine, California

xi

ABSTRACT OF THE DISSERTATION

Cross Subspace Alignment and Its Applications to Private Information Retrieval and
Coded Distributed Computation

By

Zhuqing Jia

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Chancellor’s Professor Syed Ali Jafar, Chair

Originating from the construction of the asymptotic-capacity achieving scheme for X-secure

T -private information retrieval (XSTPIR), the technique of cross-subspace alignment (CSA)

emerges as the natural solution to secure and private information retrieval, secure dis-

tributed matrix multiplication, and coded distributed batch computation. Characterized by

a Cauchy-Vandermonde structure that facilitates interference alignment along Vandermonde

terms, while the desired signals remain resolvable along the Cauchy terms, the idea of CSA

is shown to be the essential ingredient in the optimal/asymptotically optimal/state-of-art

approaches that minimize the download and/or communication cost of these independently

introduced but closely related problems.

In this dissertation we will first introduce the idea of CSA to the applications of XSTPIR,

XSTPIR with graph-based replicated storage (GXSTPIR) and XSTPIR with MDS coded

storage (MDS-XSTPIR). The CSA solution to XSTPIR exploits the Cauchy-Vandermonde

structured answer strings that align interference symbols guaranteeing T -privacy and X-

security to achieve the asymptotic capacity. The achievability scheme for GXSTPIR re-

veals a non-trivial generalization of CSA that takes the advantage of a special structure

inspired by dual Generalized Reed Solomon (GRS) codes to allow interference alignment for

xii

arbitrary storage patterns. For MDS-XSTPIR, we propose a novel scheme based on con-

fluent Cauchy-Vandermonde storage structure and a strategy of successive decoding with

interference cancellation. Next, by characterizing a connection between a form of XSTPIR

problem known as multi-message XSTPIR and the problem of secure distributed matrix

multiplication (SDMM), we characterize a series of capacity regions of SDMM, as well as

several of its variants. The idea of CSA serves as an essential component of the construction

of several achievability schemes. Given the insights from all these results, next, we con-

struct CSA/GCSA codes based on (confluent) Cauchy-Vandermonde structures for coded

distributed batch computation (CDBC) that unify, generalize and improve upon the state-

of-art codes for distributed computing such as LCC codes for multivariate polynomial eval-

uations and EP codes for matrix multiplication. Finally, we study the problem of X-secure

T -private federated submodel learning (XSTPFSL), which is a non-trivial generalization

of the XSTPIR problem where private writes are needed. The proposed ACSA-RW scheme

achieves the desired private read and write functionality with elastic dropout resilience, takes

the advantage of the synergistic gain from the joint design of private read and write for low

communication costs, and sheds light on a striking symmetry between upload and download

costs. Intuitively, private read and write functionalities, as well as their synergistic gain, rely

on secure distributed matrix multiplication so that the idea of CSA emerges as the core of

the solution.

xiii

Chapter 1

Introduction

1.1 Background

The era of big data, machine learning, cloud computing, and massive parallelization is marked

by the rise of fundamental tradeoffs between competing concerns such as privacy, security,

robustness, and efficiency. These concerns have been extensively studied independently,

for example, the problem of (information-theoretic) private information retrieval (PIR)[102]

seeks for a solution that efficiently retrieves one out of K messages stored in a distributed

storage system with N servers such that any server can learn nothing about the identity of

the desired message. Coded distributed computing (CDC)[68, 138] as another example,

is to design distributed computation approaches that are resilient to stragglers through

coding techniques. Although a large body of literature devotes to the solutions and the

characterization of fundamental limits of these closely related problems (see the exhaustive

list of reference for PIR [102, 106, 103, 120, 117, 12, 109, 119, 111, 116, 36, 105, 54, 143, 130,

57, 7, 128, 4, 127, 112, 71, 126, 22, 104, 134, 9, 97, 123, 115, 107, 81, 21, 53, 75, 52, 50] and

CDC [140, 31, 28, 141, 138, 91, 69, 68, 29, 30, 139, 48, 6, 100, 122, 77, 121, 94, 44, 96, 49,

1

65, 86, 72]), there is a shortage of an unified understanding of the fundamental tradeoffs and

a concentrated methodology that combines all.

The central of this dissertation is an interference alignment technique/a coding design named

cross-subspace alignment (CSA) that tries to characterize the fundamental tradeoffs between

the aforementioned concerns. Originating from the construction of the asymptotic-capacity

achieving scheme of X-secure T -private information retrieval (XSTPIR), CSA is shown to

be the essential component of the optimal/asymptotic optimal/state-of-art approaches that

minimize the download and/or communication cost of independently introduced but closely

related problems including XSTPIR, XSTPIR with graph-based replicated storage (GXST-

PIR), XSTPIR with MDS coded storage (MDS-XSTPIR), secure distributed matrix multi-

plication (SDMM), coded distributed batch computation (CDBC) and X-secure T -private

federated submodel learning (XSTPFSL). In this dissertation, we will introduce the idea

of CSA through the solutions to the aforementioned problems and finally build up a uni-

fied understanding of the fundamental tradeoffs between privacy, security, robustness, and

efficiency through the lens of CSA.

1.2 Overview of the Dissertation

We start with Chapter 2, which devotes to characterizing the asymptotic capacity of XST-

PIR. In particular, the asymptotic capacity (i.e., the capacity in the limit as the number of

messages K approaches infinity) of XSTPIR is characterized and the CSA-based solution

emerges as the asymptotic capacity-achieving scheme. The basic element of CSA, i.e., a

Cauchy-Vandermonde structure that facilitates interference alignment along Vandermonde

terms, while the desired signals remain resolvable along the Cauchy terms, is also intro-

duced. In Chapter 3, we consider the problem of GXSTPIR where instead of fully replicated

storage, i.e., every message is replicated at every server, we assume that each message is

2

replicated only among a subset of servers. A solution based on CSA and specialized storage

and query construction inspired by the structure of dual of GRS codes shows that the PIR

rate of (ρmin−X−T)/N is achievable where N is the number of servers and each message

is replicated at least ρmin times. This is our first non-trivial generalization of CSA tech-

niques. Next in Chapter 4, we study the problem of MDS-XSTPIR where the data is stored

among the N servers according to an X-secured MDS code with the storage overhead N/Kc.

We present a scheme built upon a confluent Cauchy-Vandermonde storage structure and

a successive decoding and interference cancellation strategy that achieves the conjectured

asymptotic capacity.

Given the above results, in Chapter 5 we characterize a connection between a special form of

secure and private information retrieval known as multi-message XSTPIR and the problem

of SDMM which enables us to obtain a series of capacity results of the latter. In Chapter 6,

we further seek the application of the idea of CSA to coded distributed batch computation

and construct CSA/GCSA (“G” stands for “generalized”) codes that unify, generalize and

improve upon the state-of-art codes for distributed computing such as LCC codes for mul-

tivariate polynomial evaluations and EP codes for matrix multiplication. It is worth noting

that Cauchy-Vandermonde structure, as well as confluent Cauchy-Vandermonde structure,

is essential in these codes.

In Chapter 7, we study the problem of XSTPFSL, which is a non-trivial generalization of the

XSTPIR problem where private writes are needed. The proposed ACSA-RW scheme achieves

the desired private read and write functionality with elastic dropout resilience, improves sig-

nificantly upon available baselines for private-write, and reveals a striking symmetry between

upload and download costs. Finally, we conclude this dissertation.

3

1.3 Notation

Bold symbols are used to denote vectors and matrices, while calligraphic symbols denote sets.

By convention, let the empty product be the multiplicative identity, and the empty sum be

the additive identity. For two positive integers M,N such that M ≤N , [M :N] denotes the

set {M,M+1,··· ,N}. We use the shorthand notation [N] for [1 :N]. N denotes the set of

positive integers {1,2,3,···}, and Z∗ denotes the set N∪{0}. For sake of simplicity, let X[m:n]

denote the set of random variables {Xm,Xm+1,...,Xn}. For an index set I = {i1,i2,...,in}, let

XI denote the set {Xi1 ,Xi2 ,...,Xin}. For variables an,n∈ [1 :N] and an arbitrary function

f(·), we denote the N×1 vector whose nth term is f(an), as
−−→
f(a). Similarly,

−−→
g(b) denotes

the vector (g(b1),··· ,g(bn))T for variables bn,n∈ [1 :N] and a function g(·). For such N×1

vectors
−−→
f(a) and

−−→
g(b), let

−−→
f(a)◦−−→g(b) denote their Hadamard product, i.e., the N×1 vector

whose nth term is f(an)×g(bn). The notation X ∼Y is used to indicate that X and Y are

identically distributed. Mutual informations between sets of random variables are similarly

defined. For tuples such as A= (a1,a2,··· ,an) we allow set theoretic notions of inclusion. For

example, b∈A denotes the relationship b∈{a1,a2,··· ,an}. Similarly, b∈A\{a1} denotes b∈

{a2,a3,··· ,an}. For a subset of integers N ⊂N, N (i),i∈ [|N |] denotes its ith element, sorted

in ascending order. The notation diag(D1,D2,··· ,Dn) denotes the block diagonal matrix,

i.e., the main-diagonal blocks are square matrices (D1,D2,··· ,Dn) and all off-diagonal blocks

are zero matrices. For a positive integer K, IK denotes the K×K identity matrix. For two

positive integers k,K such that k≤K, eK(k) denotes the kth column of the K×K identity

matrix. The notation ⊗ is used to denote the Kronecker product of two matrices, i.e., for two

matrices A and B, where (A)r,s = ars and (B)v,w = bvw, (A⊗B)p(r−1)+v,q(s−1)+w = arsbvw. IN

denotes the N×N identity matrix. T(X1,X2,··· ,XN) denotes the N×N lower triangular

4

Toeplitz matrix, i.e.,

T(X1,X2,··· ,XN) =




X1

X2 X1

X3 X2
. . .

...

... . . . X2 X1

XN ··· ··· X3 X2 X1




. (1.1)

The notation Õ(alog2b) suppresses1 polylog terms. It may be replaced with O(alog2b) if

the field supports the Fast Fourier Transform (FFT), and with O(alog2bloglog(b)) if it does

not2.

1There is another standard definition of the notation Õ which fully suppresses polylog terms, i.e,
O(apolylog(b)) is represented by Õ(a), regardless of the exact form of polylog(b). The definition used
in this chapter emphasizes the dominant factor in the polylog term.

2If the FFT is not supported by the field, Schönhage–Strassen algorithm[92] can be used for fast algorithms
that require convolutions, with an extra factor of loglogb in the complexity.

5

Chapter 2

X-Secure T -Private Information

Retrieval

X-secure and T -private information retrieval (XSTPIR) is a form of private information

retrieval where data security is guaranteed against collusion among up to X servers and

the user’s privacy is guaranteed against collusion among up to T servers. The capacity

of XSTPIR is characterized for arbitrary number of servers N , and arbitrary security and

privacy thresholds X and T , in the limit as the number of messages K→∞. Capacity is also

characterized for any number of messages if either N = 3,X =T = 1 or if N ≤X+T . Insights

are drawn from these results, about aligning versus decoding noise, dependence of PIR rate

on field size, and robustness to symmetric security constraints. In particular, the idea of

cross subspace alignment, i.e., introducing a subspace dependence between Reed-Solomon

code parameters, emerges as the optimal way to align undesired terms while keeping desired

terms resolvable.

6

2.1 Introduction

Motivated by the importance of security and privacy in the era of big data and distributed

storage, in this chapter we explore the information theoretic capacity of private information

retrieval (PIR) in a secure distributed storage system. Specifically, our focus in this chapter

is on the X-secure and T -private information retrieval problem (XSTPIR). A PIR scheme

is said to be T -private if it allows a user to retrieve a desired message from a database

of K messages stored at N distributed servers, without revealing any information about

the identity of the desired message to any group of up to T colluding servers. Similarly, a

distributed storage scheme is said to be X-secure1 if it guarantees that any group of up to

X colluding servers learn nothing about the stored data. The T and X parameters may be

chosen arbitrarily depending on the relative importance of security and privacy for any given

application.

The rate of a PIR scheme is the ratio of the number of bits retrieved by the user to the total

number of bits downloaded from all servers. The supremum of achievable rates is called the

capacity of PIR. The capacity of the basic PIR setting was found in [102] to be

CPIR(N,K) = (1+1/N+1/N2 + ···+1/NK−1)−1. (2.1)

The result was generalized subsequently in [106] to the T -PIR setting, as

CTPIR(N,K,T) =





(
1+T/N+T 2/N2 + ···+TK−1/NK−1

)−1
, T <N

1/K, T ≥N.
(2.2)

Further generalizations of T -privacy, e.g., when privacy is required only against certain

specified collusion patterns [110, 56] have also been explored. In particular, capacity is
1In other words, everything that is stored at any X servers must be independent of the K messages.

Besides X-security, no other constraints are imposed on the storage. The storage and the PIR scheme are
jointly optimized to maximize the capacity of XSTPIR.

7

known for disjoint colluding sets [56].

The rapidly growing body of literature in this area has produced capacity results for PIR

under a rich variety of constraints [102, 106, 103, 120, 117, 12, 109, 119, 111, 116, 36, 105,

54, 143, 130, 57, 7, 128, 4, 127, 112, 71, 126, 22, 104, 134, 9, 97, 123, 115, 107, 81, 21, 53, 75,

52, 50]. However, the capacity for the natural setting of secure storage remains unknown,

and relatively unexplored. While a number of efforts are motivated by security concerns,

such efforts have focused largely on other models, e.g., wiretap models where data security

is desired against eavesdroppers listening to the communication between the user and the

servers [14, 120], Byzantine models where the servers may respond incorrectly by introducing

erasures or errors in their response to the user’s queries [8, 142, 109, 119, 135], and so called

symmetric security models [103, 116, 118] that allow the user to learn nothing about the

data besides his desired message. An exception in this regard is the recent work in [130]

where PIR with distributed storage is explored and the asymptotic (large K) capacity for

the X =T = 1 setting is bounded as

(
1− 1√

N

)2

≤ lim
K→∞

CXSTPIR(N,K,X = 1,T = 1)≤
(

1− 1

N

)
. (2.3)

As the main result of this chapter, we close this gap and characterize the asymptotic capacity

of XSTPIR for all N,X,T as follows.

lim
K→∞

CXSTPIR(N,K,X,T) =





1−
(
X+T
N

)
, N >X+T

0, N ≤X+T.
(2.4)

The asymptotic capacity characterization leads us to supplementary results which include

a general upper bound on the capacity of XSTPIR, the exact capacity characterization for

any number of messages K if N ≤X+T , and the exact capacity characterization for any

K if X =T = 1,N = 3. The results also lead us to interesting observations about aligning

8

versus decoding noise, dependence of PIR rate on field size, robustness to symmetric security

constraints, and a particularly useful idea called cross subspace alignment. When privately

retrieving multiple symbols from a desired message in a secure distributed storage system, the

structure (say, 1,β,β2,···, for one symbol and 1,γ,γ2,··· for another, as in Reed-Solomon (RS)

codes) of storage and queries for each symbol determines the number of dimensions occupied

by interference and the resolvability of desired symbols. Choosing identical RS codes (β= γ)

for each symbol of the same message would cause desired signals to align among themselves,

while making the RS codes insufficiently dependent would cause interference to occupy too

many dimensions. Cross subspace alignment is achieved by drawing the code parameters

as linear combinations from the same subspace (say, β= 1−α,γ= 2−α), which turns out

to be the optimal way to align interference while keeping desired symbols resolvable. For a

summary of results and a better explanation of the main observations we refer the reader

directly to Section 2.3.

2.2 Problem Statement: XSTPIR

Consider data that is stored at N distributed servers. The data consists of K independent

messages, W1,W2,··· ,WK , and each message is represented2 by L random symbols from the

finite field Fq.

H(W1) =H(W2) = ···=H(WK) =L, (2.5)

H(W1,W2,...,WK) =KL, (2.6)
2As usual for an information theoretic formulation, the actual size of each message is allowed to approach

infinity. The parameters L and q partition the data into blocks and may be chosen freely by the coding
scheme to match the code dimensions. Since the coding scheme for a block can be repeated for each successive
block of data with no impact on rate, it suffices to consider one block of data subject to optimization over
L and q.

9

in q-ary units. There are N servers. The information stored at the nth server is denoted

by Sn,n∈ [N]. An X-secure scheme, 0≤X <N , guarantees that any X (or fewer) colluding

servers learn nothing about the data.

[X-Security] I(SX ;W1,...,WK) = 0, ∀X ⊂ [N],|X |=X. (2.7)

BesidesX-security, we place no other constraint3 on the amount of storage or the storage code

used at each server, all of which is jointly optimized to maximize the capacity of XSTPIR.

To ensure information retrieval is possible, note that the set of messages W1,··· ,WK must

be a function of S[N].

H(W1,··· ,WK |S[N]) = 0. (2.8)

The user generates a desired message index θ privately and uniformly from [K]. In order to

retrieve Wθ privately, the user generates N queries, Q[θ]
1 ,Q

[θ]
2 ,...,Q

[θ]
N . The query Q[θ]

n is sent

to the nth server. The user has no prior knowledge of the information stored at the servers,

i.e.,

I(S[N];Q
[θ]
[N],θ) = 0. (2.9)

T -privacy, 1≤T ≤N , guarantees that any T (or fewer) colluding servers learn nothing about

θ.

[T -Privacy] I(Q
[θ]
T ,ST ;θ) = 0, ∀T ⊂ [N],|T |=T. (2.10)

3The amount of storage at each server is not constrained a priori, however, it is remarkable that none
of the XSTPIR schemes in this chapter end up storing more than KL symbols at each server. Thus the
amount of storage used is not worse than a data replication scheme in the absence of security constraints.

10

Upon receiving the query Q[θ]
n , the nth server generates an answering string A[θ]

n , as a function

of the query Q[θ]
n and its stored information Sn.

H(A[θ]
n |Q[θ]

n ,Sn) = 0. (2.11)

From all the answers the user must be able to recover the desired message Wθ,

[Correctness] H(Wθ|A[θ]
[N],Q

[θ]
[N],θ) = 0. (2.12)

The rate of an XSTPIR scheme characterizes how many bits of desired message are retrieved

per downloaded bit, (equivalently, how many q-ary symbols of desired message are retrieved

per downloaded q-ary symbol),

R=
L

D
, (2.13)

where D is the expected value (with respect to the random queries) of the number of q-

ary symbols downloaded by the user from all servers. The capacity of XSTPIR, denoted

CXSTPIR(N,K,X,T), is the supremum of achievable rates.

Finally, note that setting X = 0 and T = 1 reduces the XSTPIR problem to the basic PIR

setting where data storage is not secure and the user’s privacy is only guaranteed if no

collusion takes place among servers. Setting X = 0 for arbitrary T , reduces XSTPIR to the

T -PIR problem. Setting T = 0 for arbitrary X reduces XSTPIR to an X-secure storage

scheme with no privacy constraint.

2.3 Capacity of XSTPIR: Results and Observations

The results of this chapter are presented in this section, followed by some observations.

11

2.3.1 Results

Our first result, presented in the following theorem, is an upper bound on the capacity of

XSTPIR.

Theorem 2.1.

CXSTPIR(N,K,X,T)≤
(
N−X
N

)
CTPIR(N−X,K,T). (2.14)

The proof of Theorem 2.1 appears in Section 2.4. The intuition behind Theorem 2.1 may be

understood through a thought experiment as follows. Without loss of generality, suppose the

expected number of bits downloaded from each server is the same. Now, relax the constraints

so that S[X], i.e., the stored information at the first X servers is made available globally (to

all servers and to the user) for free, the messages W1,W2,··· ,WK are made available to

all servers, and the data-security constraint is eliminated. None of this can hurt capacity

because any XSTPIR scheme from before can still be used with the relaxed constraints. So

any upper bound on capacity of this relaxed setting is still an upper bound on the capacity

of the original XSTPIR setting. The relaxed setting is analogous to the T -PIR problem with

K messages and N−X servers, for which we already know the optimal download per server

from the existing capacity results for T -PIR. Thus, the statement of Theorem 2.1 follows.

However, formalizing this intuition into a proof is not trivial because of the correlated side-

information generated at the user and servers in the process of relaxing the constraints.

Indeed, the formal proof presented in Section 2.4 takes a less direct approach.

It turns out the bound in Theorem 2.1 is quite powerful. In fact, we suspect that this bound

might be tight in general. An immediate observation is that if we set X = 0, i.e., remove

the data storage security constraint, then the bound is tight because it gives us the capacity

of T -PIR. Similarly, if we set T = 0, i.e., the privacy constraint is removed, then the bound

12

is also tight, and the capacity in the absence of privacy constraints is easily seen to be

CXSTPIR(N,K,X,T = 0) = 1− X
N
, which is achievable by a simple secret-sharing scheme. We

further prove the tightness of this bound for the cases identified in our next set of results.

The first setting identifies a somewhat degenerate extreme where it is optimal to download

everything.

Theorem 2.2. If N ≤X+T , then4 for arbitrary K,

CXSTPIR(N,K,X,T) =

(
N−X
N

)
CTPIR(N−X,K,T) (2.15)

=
N−X
NK

. (2.16)

The proof of Theorem 2.2 is presented in Section 2.5. Since the upper bound is already pro-

vided by Theorem 2.1, only a proof of achievability is needed. Furthermore, since retrieving

the desired message in this setting amounts to downloading everything stored at all servers

regardless of which message is desired, the only thing required for the achievable scheme is

a secure storage scheme, which is readily achieved by including X uniformly random noise

symbols for every N−X symbols of each message.

Next, the main result of this chapter is the asymptotic capacity characterization presented

in the following theorem.

Theorem 2.3. As the number of messages K→∞, for arbitrary N,X,T ,

lim
K→∞

CXSTPIR(N,K,X,T) = lim
K→∞

(
N−X
N

)
CTPIR(N−X,K,T) (2.17)

=





1−
(
X+T
N

)
, N >X+T

0, N ≤X+T.
(2.18)

The proof of Theorem 2.3 appears in Section 2.6. Theorem 2.3 is significant for two reasons.
4Note that N >X by definition.

13

First, asymptotic capacity results are particularly relevant for PIR problems because the

capacity approaches its asymptotic value extremely quickly — the gap is negligible even for

moderate values of K, and K is typically a large value. Second, the asymptotic capacity

result showcases a new idea, cross subspace alignment, that is interesting by itself.

Insights from the asymptotically optimal scheme allow us to settle the exact capacity of

XSTPIR with X =T = 1, N = 3 and arbitrary K.

Theorem 2.4. If the number of servers, N = 3, and X =T = 1, then for arbitrary number

of messages, K,

CXSTPIR(N = 3,K,X = 1,T = 1) =

(
N−X
N

)
CTPIR(N−X,K,T) (2.19)

=
2

3

(
1+

1

2
+

1

22
+ ···+ 1

2K−1

)−1

. (2.20)

Theorem 2.4 is proved in Section 2.7. The capacity achieving scheme introduces a new

insight. For almost all PIR settings studied so far, asymptotic capacity achieving schemes

have been found that send a uniformly random query vector to each server and download a

product of the query vector and information stored at the server. Suppose the query vector

is uniform over FMq . Then with probability 1/qM the query vector is all zero, and the scheme

requests nothing from the server. Typically M depends on the number of messages K. As

K approaches infinity the probability of requesting nothing approaches zero, so this does

not help in the asymptotic sense. However, if the same scheme is used for finite K, then

M is also finite, 1/qM > 0, and the average download is reduced by the factor (1−1/qM),

which improves the achieved rate of the scheme. It is remarkable that the rate achieved in

this way depends on the field size. This idea is essential to the capacity achieving scheme

for Theorem 2.4.

Next we present some observations that place our results in perspective.

14

2.3.2 Observations

Alignment of Noise and Interference

3 20 40 60 80 100
0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1

Number of Servers, N !̀

R
a
te
,
R
!̀

Asymptotic (K !1) capacity of XSTPIR
Upperbound for RMDS-PIR;2
Upperbound for RMDS-PIR;1

Figure 2.1: Suboptimality of the rate achieved by the X = 1 secure MDS-PIR alternative
that allows the user to decode noise relative to the rate achieved with the asymptotically
optimal XSTPIR scheme where the noise is aligned with other interference.

Consider the simplest non-trivial setting for XSTPIR, where X = 1,T = 1, and the number of

servers, N ≥ 3. A natural idea for providing X = 1 secure storage is to include 1 independent

uniformly random noise symbol along with the L symbols of each message, creating a new

message with M =L+1 symbols. This new message is stored across N servers according to

an (N,M) MDS code, essentially storing a linear combination of the M message symbols

at each server, where the coefficients for the noise symbol at each server must be non-zero.

Capacity is known for PIR with coded storage (MDS-PIR [11]), and one might wonder if

such an MDS-PIR scheme might suffice to achieve capacity with secure storage. It is not

difficult to see that the best rate achievable with such an MDS-PIR scheme is

RMDS-PIR =
M−1

M

(
1+

(
M

N

)
+ ···+

(
M

N

)K−1
)−1

. (2.21)

15

The M−1
M

penalty appears because one of the M symbols of the decoded message is the noise

symbol. As K→∞, the rate approaches RMDS-PIR,∞= M−1
M

(
1−
(
M
N

))
. This expression takes

its maximum value when M =
√
N , so it can be bounded as,

RMDS-PIR,∞ ≤
√
N−1√
N

(
1−
(√

N

N

))
=

(
1− 1√

N

)2

. (2.22)

Note that this expression matches the achievable rate bound of [130]. However, it is strictly

smaller than, 1−2/N , the asymptotic capacity of XSTPIR for this setting. Evidently, the

natural MDS-PIR solution, and the secret sharing based scheme of [130], are asymptotically

suboptimal. In fact, the MDS-PIR solution falls short of the asymptotic (K→∞) capacity

of XSTPIR, even if the MDS-PIR scheme is only required to deal with K = 2 messages.

Denoting the corresponding rate of the MDS-PIR scheme as RMDS-PIR,2, we have,

RMDS-PIR,2≤
√
N+1√

N+1+1

(
1+

(√
N+1+1

N

))−1

≤ 1− 2

N
. (2.23)

Figure 2.1 shows that the gap between the X = 1 secure MDS-PIR alternative and the

XSTPIR scheme is significant. Intuitively, the reason for this gap is the following. The

secure MDS-PIR alternative allows the user to decode the artificial noise symbol which is

added to the message to guarantee security. However, in the XSTPIR scheme, the user is

able to decode only the desired message, and not the noise protecting it. In fact this noise

is aligned with other interfering symbols, e.g., the noise terms protecting other message

symbols, thus creating a more efficient solution. Incidentally, the alignment of noise provides

another unexpected benefit, in some cases it automatically makes the scheme symmetrically

secure, as explained next.

16

Symmetric Security: Capacity of Sym-XSPIR

Let us fix T = 1, thereby relaxing the T -privacy constraint to its minimum value for PIR.

Now, suppose in addition to X-secure storage, we also include the so called ‘symmetric’

security constraint, that the user should learn nothing about the data besides his desired

message, i.e.,

[Sym-Security] I(W[K];A
[θ]
[N] |Q

[θ]
[N],Wθ,θ) = 0. (2.24)

Capacity of the basic (X = 0,T = 1,K > 1) Sym-PIR setting was shown in [103] to be

CSym-PIR(K,N) = 1− 1

N
. (2.25)

Note that there is a loss of capacity due to the additional symmetric security constraint.

Furthermore, the capacity without the symmetric security constraint depends on the number

of messages K while the capacity with the symmetric security constraint does not.

XSTPIR with the symmetric security constraint and with T = 1, in short the Sym-XSPIR

setting (note that we drop the T because T = 1 is the degenerate case for T -privacy), reveals

a surprising aspect of our XSTPIR schemes, that imposing the symmetric security con-

straint does not affect5 our capacity results for T = 1. This is made explicit in the following

corollaries for Sym-XSPIR, that match the corresponding theorems for XSTPIR.

Corollary 2.1.

CSym-XSPIR(N,K,X)≤
(
N−X
N

)
CPIR(N−X,K). (2.26)

5For T > 1 our XSTPIR schemes are not symmetrically secure.

17

Corollary 2.2. If N =X+1, then6 for arbitrary K,

CSym-XSPIR(N,K,X) =

(
N−X
N

)
CPIR(N−X,K) (2.27)

=
1

NK
. (2.28)

Corollary 2.3. As the number of messages K→∞, for arbitrary N,X,

lim
K→∞

CSym-XSPIR(N,K,X) = lim
K→∞

(
N−X
N

)
CPIR(N−X,K) (2.29)

=





1−
(
X+1
N

)
, N >X+1

0, N ≤X+1.
(2.30)

Corollary 2.4. If the number of servers, N = 3, and X = 1, then for arbitrary number of

messages, K,

CSym-XSPIR(N = 3,K,X = 1) =

(
N−X
N

)
CPIR(N−X,K) (2.31)

=
2

3

(
1+

1

2
+

1

22
+ ···+ 1

2K−1

)−1

. (2.32)

The proofs of all 4 corollaries appear in Appendix A.2. Surprisingly, note that there is no

loss of capacity in each case due to the additional symmetric security constraint. Also note

that according to Corollary 2.4, unlike Sym-PIR, the capacity of Sym-XSPIR depends on

the number of messages K for all K> 1.
6Note that since X <N by definition, and T = 1 for XSPIR, the condition N ≤X+T is equivalent to

N =X+1.

18

Cross Subspace Alignment

Conceptually, the most intriguing aspect of the asymptotically optimal XSTPIR scheme is

the extent to which it is able to align interference. Interference alignment is central to PIR

[101, 102], and nearly all existing PIR constructions use some form of interference alignment.

The strength of XSTPIR lies in the novel idea of cross subspace alignment, that we explain

intuitively in this section through an example. Consider the setting of X = 2 secure and

T = 1 PIR with N = 5 servers. Let w1 be a symbol from a desired messageW . For simplicity

(and because identical alignments are applied to all messages), it suffices to focus on only

this message for the purpose of this explanation. In order to guarantee X = 2 security, w1

is mixed with 2 random noise symbols z11,z12, according to the following RS Code, so that

the nth row is stored at the nth server, n∈ [5].




1

1

1

1

1




w1 +




β1

β2

β3

β4

β5




z11 +




β2
1

β2
2

β2
3

β2
4

β2
5




z12

,
−→
1 w1 +

−→
β z11 +

−→
β2z12.

To ensure privacy, the query symbol qθ (qθ = 1, i.e., this message is desired) is similarly mixed

with a noise symbol z′1.

−→
1 qθ+

−→
β z′1 =

−→
1 +
−→
β z′1

and the nth row of this query vector is sent to the nth server. Each server returns the

product of the noisy query symbol and the noisy stored symbol, so that the user receives the

19

5 answers.

(−→
1 w1 +

−→
β z11 +

−→
β2z12

)
◦
(−→

1 +
−→
β z′1

)

=
−→
1 w1 +

−→
β (w1z

′
1 +z11)+

−→
β2(z11z

′
1 +z12)+

−→
β3z12z

′
1.

The desired symbol w1 appears along the vector
−→
1 while the remaining 5 undesired symbols

align along 3 dimensions. Specifically, the undesired symbols w1z
′
1 and z11 align along the

vector
−→
β ; undesired symbols z11z

′
1 and z12 align along the vector

−→
β2 and undesired symbol

z12z
′
1 appears along the vector

−→
β3. This type of alignment, enabled by using the same

−→
β in

the storage and query, is indeed very useful and has been used previously by Freij-Hollanti

et al. for MDS-TPIR [36]. However, note that we have a 5 dimensional space (all vectors are

5×1) and we are so far only using 4 dimensions (one desired, three interference), so there is

room for improvement.

In order to improve the efficiency of the retrieval scheme, suppose we try to retrieve another

symbol, w2, from the same desired message W = (w1,w2). The challenge is that because of

the X = 2 security requirement w2 is mixed with new (independent) noise symbols z21,z22

according to an RS code parameterized by γ,

−→
1 w2 +−→γ z21 +

−→
γ2z22, (2.33)

so any attempt to retrieve w2 will add new interference terms. Since we already have

3 dimensions of interference, the new interference added due to the noise protecting w2

must align completely within the existing interference. This will be accomplished by cross-

alignment, i.e., introducing additional structure across the storage and query codes for the

different symbols to be retrieved. In particular, we will use the query vector −→γ ◦
(−→

1 +
−→
β z′1

)

to multiply with the stored variables containing w1 (i.e.,
−→
1 w1 +

−→
β z11 +

−→
β2z12) and the

query vector
−→
β ◦
(−→

1 +−→γ z′2
)

to multiply with the stored variables containing w2 (i.e.,

20

−→
1 w2 +−→γ z21 +

−→
γ2z22). The sum of the two multiplications is returned as the answer. Note

that Hadamard products are commutative and associative. The answers from the 5 servers

are now expressed as follows.

−→γ ◦
(−→

1 w1 +
−→
β z11 +

−→
β2z12

)
◦
(−→

1 +
−→
β z′1

)
+
−→
β ◦(
−→
1 w2 +−→γ z21 +

−→
γ2z22)◦

(−→
1 +−→γ z′2

)

(2.34)

=−→γ w1 +
−→
β w2 +

−→
β ◦−→γ (w1z

′
1 +z11 +w2z

′
2 +z21)

+
−→
β2 ◦−→γ (z11z

′
1 +z12)+

−→
β ◦
−→
γ2(z21z

′
2 +z22)+

−→
β3 ◦−→γ z12z

′
1 +
−→
β ◦
−→
γ3z22z

′
2. (2.35)

Note that we cannot choose
−→
β =−→γ , because the two desired symbols (w1,w2) must not

align in the same dimension. Also note that by cross-multiplying the first set of answers

with −→γ and the second with
−→
β we have achieved cross alignment of 4 terms along

−→
β ◦

−→γ . However, we now have 5 dimensions occupied by interference, along the 5 vectors,
−→
β ◦−→γ ,

−→
β2 ◦−→γ ,−→β ◦

−→
γ2,
−→
β3 ◦−→γ ,−→β ◦

−→
γ3. Since the overall space is only 5 dimensional and we

need two dimensions for desired symbols, we need to restrict interference to no more than

3 dimensions. Surprisingly, it is possible to do this by cross subspace alignment as we show

next. Let us introduce a structural relationship between β and γ. In particular, let us set,

−→
β =
−−−→
f1−α (2.36)

−→γ =
−−−→
f2−α, (2.37)

where f1,f2,α1,··· ,αN are distinct, so that the answers from the 5 servers are now expressed

as,

(−−−→
f2−α

)
w1 +

(−−−→
f1−α

)
w2 +

(−−−→
f1−α

)
◦
(−−−→
f2−α

)
I (2.38)

21

where the interference I is

I =
−→
1 (w1z

′
1 +z11 +w2z

′
2 +z21)+

(−−−→
f1−α

)
(z11z

′
1 +z12)+

(−−−→
f2−α

)
(z21z

′
1 +z22)

+
(−−−−−−−−−−−→
f 2

1 +−2f1α−α2
)
z12z

′
1 +
(−−−−−−−−−−→
f 2

2 −2f2α−α2
)
z22z

′
2. (2.39)

Note that there are still 5 interference vectors, no two of which align directly with each other.

However, the 5 interference vectors align into a 3 dimensional subspace of the 5 dimensional

vector space. This is what we mean by cross subspace alignment and it is essential to this

chapter. To see explicitly how the interference aligns into a 3 dimensional subspace, we can

rewrite I as,

I =
−→
1 (w1z

′
1 +z11 +w2z

′
2 +z21 +f1z11z

′
1 +f1z12 +f2z21z

′
1 +f2z22 +f 2

1 z12z
′
1 +f 2

2 f
2
2 z22z

′
2)

+−→α (−z11z
′
1−z12−z21z

′
1−z22−2f1z12z

′
1−4f2z22z

′
2)

+
−→
α2(z12z

′
1 +z22z

′
2). (2.40)

Thus, due to cross subspace alignment, all of I aligns within a 3 dimensional space, leaving

the remaining 2 dimensions interference-free for the desired symbols. Exactly the same

alignments apply to all messages as explained in the formal descriptions of the schemes

provided in this chapter.

2.4 Proof of Theorem 2.1

Let us start with two useful lemmas. The first one shows that the desired message index is

independent of the messages, stored variables, queries and answers.

Lemma 2.1. For all k,k′ ∈ [K],∀T ⊂ [N],|T |=T , we have

(Q
[k]
T ,A

[k]
T ,S[N],W1,··· ,WK)∼ (Q

[k′]
T ,A

[k′]
T ,S[N],W1,··· ,WK) (2.41)

22

Proof: Since W1,··· ,WK is a function of S[N] and A
[θ]
T is a function of (Q

[θ]
T ,ST) (refer to

(2.11)), it suffices to prove I(θ;Q
[θ]
T ,S[N]) = 0. From (2.9), we have

I(Q
[θ]
[N],θ;S[N]) = 0 (2.42)

⇒ I(Q
[θ]
T ,θ;S[N]) = 0 (2.43)

⇒ I(Q
[θ]
T ;S[N]) = I(Q

[θ]
T ;S[N]|θ) = 0 (2.44)

Next, we have,

I(θ;Q
[θ]
T ,S[N])

(2.9)
= I(θ;Q

[θ]
T |S[N]) (2.45)

=H(Q
[θ]
T |S[N])−H(Q

[θ]
T |S[N],θ) (2.46)

(2.44)
= H(Q

[θ]
T)−H(Q

[θ]
T |θ) (2.47)

(2.10)
= 0 (2.48)

�

The second lemma is a statement of conditional independence of answers from one set of

servers from the queries to the rest of the servers.

Lemma 2.2. For all T ,X ⊂ [N],∀k ∈ [K],∀K∈ [K], we have

H(A
[k]
T |SX ,Q

[k]
[N],WK) =H(A

[k]
T |SX ,Q

[k]
T ,WK) (2.49)

Proof: It suffices to prove that I(A
[k]
T ;Q

[k]
[N]|SX ,Q

[k]
T ,WK) = 0. This proof is presented as

follows.

I(A
[k]
T ;Q

[k]
[N]|SX ,Q

[k]
T ,WK)≤ I(A

[k]
T ,SX ,WK;Q

[k]
[N]|Q

[k]
T) (2.50)

≤ I(A
[k]
T ,S[N],WK;Q

[k]
[N]|Q

[k]
T) (2.51)

23

(2.8)(2.11)
= I(S[N];Q

[k]
[N]|Q

[k]
T) (2.52)

(2.9)
= 0 (2.53)

�

The next lemma formalizes the intuition that because of the security constraint, the answers

from any X servers are, in some sense, not very useful. Specifically, after conditioning on

the information contained in any X servers, the answers from the remaining N−X servers

must still contain at least L more bits than the interference that is included in those answers.

For a set X , its complement set is denoted as X , i.e., X = {n|n∈ [N],n /∈X}. We use Dn to

denote the expected number of symbols downloaded from Server n.

Lemma 2.3. For all X ⊂ [N],|X |=X, we have

L≤
∑

n∈X

Dn−H(A
[1]

X |SX ,Q
[1]
[N],W1) (2.54)

Proof:

L=H(W1)
(2.12)
= I(W1;A

[1]
[N]|Q

[1]
[N]) (2.55)

≤ I(W1;A
[1]
[N],SX |Q

[1]
[N]) (2.56)

= I(W1;SX |Q[1]
[N])+I(W1;A

[1]
X ,A

[1]

X |SX ,Q
[1]
[N]) (2.57)

(2.11)
= I(W1;SX |Q[1]

[N])+I(W1;A
[1]

X |SX ,Q
[1]
[N]) (2.58)

(2.9)
= I(W1,Q

[1]
[N];SX)+I(W1;A

[1]

X |SX ,Q
[1]
[N]) (2.59)

(2.7)
= I(Q

[1]
[N];SX |W1)+I(W1;A

[1]

X |SX ,Q
[1]
[N]) (2.60)

≤ I(Q
[1]
[N];SX ,W1)+I(W1;A

[1]

X |SX ,Q
[1]
[N]) (2.61)

(2.9)
= I(W1;A

[1]

X |SX ,Q
[1]
[N]) (2.62)

24

≤
∑

n∈X

Dn−H(A
[1]

X |SX ,Q
[1]
[N],W1) (2.63)

�

We may interpret the second term of the RHS of (2.54) as the interference term. To bound

it, we need the following recursive relation, stated in a lemma.

Lemma 2.4. For all X ⊂ [N],|X |=X and for all k ∈ [K], we have

H(A
[k]

X |SX ,Q
[k]
[N],W[k])≥

T

N−X
(
L+H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1])

)
, if N >X+T.

(2.64)

H(A
[k]

X |SX ,Q
[k]
[N],W[k])≥L+H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1]), if N ≤X+T. (2.65)

Proof: First consider N >X+T . Consider any set T ⊂X ,|T |=T .

H(A
[k]

X |SX ,Q
[k]
[N],W[k])≥H(A

[k]
T |SX ,Q

[k]
[N],W[k]) (2.66)

(2.49)
= H(A

[k]
T |SX ,Q

[k]
T ,W[k]) (2.67)

(2.41)
= H(A

[k+1]
T |SX ,Q[k+1]

T ,W[k]) (2.68)

(2.49)
= H(A

[k+1]
T |SX ,Q[k+1]

[N] ,W[k]) (2.69)

Averaging (2.69) over all choices of T and applying Han’s inequality, we have

H(A
[k]

X |SX ,Q
[k]
[N],W[k])

≥ T

N−XH(A
[k+1]

X |SX ,Q[k+1]
[N] ,W[k]) (2.70)

(2.11)(2.12)
=

T

N−XH(A
[k+1]

X ,Wk+1|SX ,Q[k+1]
[N] ,W[k]) (2.71)

=
T

N−X
(
H(Wk+1|SX ,Q[k+1]

[N] ,W[k])+H(A
[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1])

)
(2.72)

=
T

N−X
(
L+H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1])

)
(2.73)

25

where the last step uses L=H(Wk+1) and I(Wk+1;SX ,Q
[k+1]
[N] ,W[k]) = 0, proved as follows.

I(Wk+1;SX ,Q
[k+1]
[N] ,W[k])

(2.5)(2.6)
= I(Wk+1;SX ,Q

[k+1]
[N] |W[k]) (2.74)

≤ I(W[k+1];SX ,Q
[k+1]
[N]) (2.75)

(2.7)
= I(W[k+1];Q

[k+1]
[N] |SX) (2.76)

≤ I(W[k+1],SX ;Q
[k+1]
[N]) (2.77)

≤ I(S[N];Q
[k+1]
[N]) (2.78)

(2.9)
= 0 (2.79)

Next, consider N ≤X+T . The proof is similar to that presented above. Note that |X |=

N−X ≤T .

H(A
[k]

X |SX ,Q
[k]
[N],W[k])

(2.49)
= H(A

[k]

X |SX ,Q
[k]

X ,W[k]) (2.80)

(2.41)
= H(A

[k+1]

X |SX ,Q[k+1]

X ,W[k]) (2.81)

(2.49)
= H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k]) (2.82)

(2.11)(2.12)
= H(A

[k+1]

X ,Wk+1|SX ,Q[k+1]
[N] ,W[k]) (2.83)

=H(Wk+1|SX ,Q[k+1]
[N] ,W[k])+H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1]) (2.84)

(2.79)
= L+H(A

[k+1]

X |SX ,Q[k+1]
[N] ,W[k+1]) (2.85)

This completes the proof of Lemma 2.4. �

Now let us apply Lemma 2.4 repeatedly for k= 1,2,···. When N >X+T , we have

H(A
[1]

X |SX ,Q
[1]
[N],W1)≥ T

N−X
(
L+H(A

[2]

X |SX ,Q
[2]
[N],W[2]

)
(2.86)

≥ T

N−X

(
L+

T

N−X
(
L+H(A

[3]

X |SX ,Q
[3]
[N],W[3]

))
(2.87)

≥ ··· (2.88)

26

≥L
(

T

N−X +

(
T

N−X

)2

+ ···+
(

T

N−X

)K−1
)

(2.89)

Similarly, when N ≤X+T , we have

H(A
[1]

X |SX ,Q
[1]
[N],W1)≥L+H(A

[2]

X |SX ,Q
[2]
[N],W[2]) (2.90)

≥ ··· (2.91)

≥L(K−1) (2.92)

Substituting (2.89), (2.92) into (2.54), we have

L≤
∑

n∈X

Dn−L
(

T

N−X +

(
T

N−X

)2

+ ···+
(

T

N−X

)K−1
)
, if N >X+T. (2.93)

L≤
∑

n∈X

Dn−L(K−1), if N ≤X+T. (2.94)

Averaging over all X , we have

L≤
(
N−X
N

)
D−L

(
T

N−X +

(
T

N−X

)2

+ ···+
(

T

N−X

)K−1
)
, if N >X+T.

(2.95)

L≤
(
N−X
N

)
D−L(K−1), if N ≤X+T. (2.96)

Finally since the rate is defined as R=L/D, we arrive at the final bound.

R≤ N−X
N

(
1+

T

N−X +

(
T

N−X

)2

+ ···+
(

T

N−X

)K−1
)−1

, if N >X+T. (2.97)

R≤ N−X
N

× 1

K
, if N ≤X+T. (2.98)

27

Thus

CXSTPIR(N,K,X,T)≤
(
N−X
N

)
CTPIR(N−X,K,T), (2.99)

and the proof of Theorem 2.1 is complete. �

2.5 Proof of Theorem 2.2

Let each message consist of L=N−X symbols in Fq, q≥N , and append X instances of 0

symbols, to create artificial messages of length N ,

W̄k = (Wk1,Wk2 ,··· ,Wk(N−X),0,0,··· ,0︸ ︷︷ ︸
X

), ∀k ∈ [K]. (2.100)

Corresponding to each message Wk, let Zk = (Zk1,Zk2,··· ,ZkX)∈FXq be X independent uni-

form noise symbols, to be used for X-security. Let Zk be encoded with an (N,X) MDS code

to produce Z̄k ∈FNq . For each k ∈ [K] and n∈ [N], the nth server stores the nth symbol of

W̄k+ Z̄k. Thus, each server stores a total of K symbols. The MDS property of Z̄k ensures

that the data storage is X-secure. Retrieval is trivial — in order to retrieve the desired

message Wθ, the user simply downloads everything from all servers. Since the queries do not

depend on the desired message, the scheme is N -private, so it is also T -private. The rate

achieved is N−X
NK

which matches the capacity for this setting. �

2.6 Proof of Theorem 2.3

Let us present an XSTPIR scheme for arbitrary X, T , N , K, that is asymptotically optimal

(as K→∞). The asymptotic capacity is zero for N ≤X+T , so we only need to consider

28

N >X+T . Throughout this scheme we will set

L=N−X−T (2.101)

and we will use the compact notation,

∆ =
L∏

i=1

(fi−α). (2.102)

∆n will represent the value of ∆ when α is replaced with αn.

Each messageWk,k∈ [K], consists of L=N−X−T symbols, Wk = (Wk1,Wk2,··· ,WkL) from

a finite field Fq. The field Fq is assumed to have size7 q≥L+N . For the design of this scheme,

we will need a total of L+N constants αn,n∈ [N],fl,l∈ [L] that are distinct elements of Fq.

Let us split the messages into L vectors, so that Wl = (W1l,W2l,··· ,WKl), l∈ [L], contains the

lth symbol of every message. Let Zlx,l∈ [L],x∈ [X], be independent uniformly random noise

vectors from F1×K
q , that are used to guarantee security. Similarly, let Z′lt,l∈ [L],t∈ [T], be

independent uniformly random noise vectors from FK×1
q , that are used to guarantee privacy.

The independence between noise vectors, messages, and the user’s desired message index θ

is specified as follows.

H
(

(Wl)l∈[L] ,(Zlx)l∈[L],x∈[X] ,(Z
′
lt)l∈[L],t∈[T] ,θ

)
(2.103)

=H((Wl)l∈[L])+H(θ)+KL(X+T) (2.104)

7In other words, we set q= pn for a prime number p and an integer n≥ 1 such that pn≥L+N . While
this makes the scheme more general, let us note that for simplicity it may be desirable to choose n= 1 and
q= p≥L+N . On the other hand, the general scheme is useful for extensions of results in this chapter, say
to private computation (see Footnote 8), where the choice of field may be fixed by the functions that need
to be computed.

29

in q-ary units. Let Qθ represent8 the θth column of the K×K identity matrix, so it contains

a 1 in the θth position and zeros everywhere else. Note that

(W1Qθ,W2Qθ,··· ,WLQθ) = (Wθ1,Wθ2,··· ,WθL) =Wθ (2.105)

is the message desired by the user. A succinct summary of the storage at each server, the

queries, and a partitioning of signal and interference dimensions contained in the answers

from each server, is provided below.

Server ‘n’ (Replace α,∆ with αn,∆n)
Storage W1 +(f1−α)Z11 + ···+(f1−α)XZ1X ,

(Sn) W2 +(f2−α)Z21 + ···+(f2−α)XZ2X ,
...

WL+(fL−α)ZL1 + ···+(fL−α)XZLX

Query ∆
f1−α

(
Qθ+(f1−α)Z′11 + ···+(f1−α)TZ′1T

)
,

(Q
[θ]
n) ∆

f2−α

(
Qθ+(f2−α)Z′21 + ···+(f2−α)TZ′2T

)
,

...
∆

fL−α

(
Qθ+(fL−α)Z′L1 + ···+(fL−α)TZ′LT

)

Desired symbols appear along vectors
−→
∆ ◦

(−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1,··· ,

−−−−−−−→
(fL−α)−1

)

Interference appears along vectors
−→
∆ ◦

(−→
1 ,
−−−−−→
(f1−α),··· ,

−−−−−−−−−→
(f1−α)X+T−1,

−−−−−→
(f2−α),··· ,

−−−−−−−−−→
(f2−α)X+T−1,··· ,

··· ,−−−−−→(fL−α),··· ,
−−−−−−−−−−→
(fL−α)X+T−1

)

Table 2.1: A summary of the XSTPIR scheme showing storage at each server, the queries,
and a partitioning of signal and interference dimensions contained in the answers from each
server.

Initially, the user knows only his desired message index θ and the noise terms Z′lt,l∈ [L],t∈
8Note that the XSTPIR scheme described in this section works even if Qθ is an arbitrary vector, i.e., if

instead of retrieving one of the K messages, the user wishes to compute an arbitrary linear function of the K
messages over Fq. Thus, the scheme automatically settles the asymptotic capacity of the natural X-secure
and T -private generalization of the linear private computation problem introduced in [107] (also known as
linear private function retrieval [81]).

30

[T], all of which are privately generated by the user. Each server n∈ [N] knows only its

stored information Sn. The storage Sn at Server n may be viewed as a 1×LK row vector

formed by concatenating the L row vectors, Wl+
∑X

x=1(fl−αn)xZlx, l∈ [L]. Similarly, the

query Q[θ]
n may be viewed as an LK×1 column vector formed by concatenating the L column

vectors, ∆n

fl−αn

(
Qθ+

∑T
t=1(fl−αn)tZ′lt

)
, l∈ [L].

Upon receiving the query Q[θ]
n from the user, Server n responds with the answer A[θ]

n that is

exactly one symbol in Fq, found by multiplying Sn with Q[θ]
n .

A[θ]
n =SnQ

[θ]
n . (2.106)

This produces a single equation in a total of L(X+1)(T +1) terms. Out of these, L terms

are desired message symbols WlQθ, l∈ [L], and the remaining L(X+1)(T +1)−L terms

are undesired, or interference terms. The interference terms include LT terms of the type

WlZ
′
lt, LX terms of the type ZlxQθ, and LXT terms of the type ZlxZ

′
lt. The user obtains

one such equation from each server, for a total of N equations, from which he must be able

to retrieve his L desired symbols. The key to this is the alignment of L(X+1)(T +1)−L

interference terms into N−L dimensions, leaving L dimensions free from interference from

which the L desired symbols can be decoded.

First let us identify the desired signal dimensions, i.e., the vectors along which desired

symbols are seen by the user. Each answer A[θ]
n contains the desired symbols ∆n

fl−αn
WlQθ =

∆n

fl−αn
Wθl, l∈ [L]. These L desired symbols appear along the following L vectors.




∆1

f1−α1

∆2

f1−α2

...

∆N

f1−αN



,




∆1

f2−α1

∆2

f2−α2

...

∆N

f2−αN



,··· ,




∆1

fL−α1

∆2

fL−α2

...

∆N

fL−αN



,
−→
∆ ◦

(−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1,··· ,

−−−−−−−→
(fL−α)−1

)
. (2.107)

31

Recall that ◦ represents the Hadamard product. Similarly, the vectors along which interfer-

ence symbols appear are identified as follows.

−→
∆ ◦

(−→
1 ,
−−−−−→
(f1−α),··· ,

−−−−−−−−−→
(f1−α)X+T−1,

−−−−−→
(f2−α),··· ,

−−−−−−−−−→
(f2−α)X+T−1,··· ,

··· ,−−−−−→(fL−α),··· ,
−−−−−−−−−−→
(fL−α)X+T−1

)
. (2.108)

Thus, the vector of answers from all N servers can be expressed as

−→
A[θ] =

L∑

l=1

Wθl

−→
∆ ◦
−−−−−−→
(fl−α)−1 +

L∑

l=1

X+T−1∑

i=0

−→
∆ ◦
−−−−−→
(fl−α)iIli (2.109)

for some interference terms Ili that are sums of various WlZ
′
lt, ZlxQθ, and ZlxZ

′
lt terms. The

exact form of Ili terms is not important for our analysis. Using binomial expansion to write

each
−−−−−→
(fl−α)i vector as

∑i
j=0

(
i
j

)
f jl
−−→
αi−j, and grouping terms by the vectors

−→
αi , we can write,

−→
A[θ] =

L∑

l=1

Wθl
−→
∆ ◦
−−−−−−→
(fl−α)−1 +

X+T−1∑

i=0

−→
∆ ◦
−→
αiI ′i. (2.110)

Thus, all interference is aligned within the subspace spanned by vectors
−→
∆ ,
−→
∆ ◦−→α , ...,

−→
∆ ◦
−−−−−→
αX+T−1. As explained in Section 2.3.2, this is because of cross subspace alignment.

In matrix notation, we have,

−→
A[θ] =




A
[θ]
1

A
[θ]
2

...

A
[θ]
N




= MN




Wθ1

...

WθL

I ′0
...

I ′(X+T−1)




(2.111)

32

where the N×N square matrix (note that L+X+T =N)

MN =




∆1

f1−α1
··· ∆1

fL−α1
∆1 ∆1α1 ··· ∆1α

X+T−1
1

∆2

f1−α2
··· ∆2

fL−α2
∆2 ∆2α2 ··· ∆2α

X+T−1
2

...

∆N

f1−αN
··· ∆N

fL−αN
∆N ∆NαN ··· ∆Nα

X+T−1
N




(2.112)

=

[
−→
∆ ◦
−−−−−−→
(f1−α)−1 ··· −→∆ ◦

−−−−−−−→
(fL−α)−1 −→∆ −→∆ ◦−→α ··· −→∆ ◦

−−−−−→
αX+T−1

]
(2.113)

is called the decoding matrix. Evidently, if the decoding matrix is invertible, then the user

can recover his L desired message symbols. We show that if αn,n∈ [N],fl,l∈ [L] are distinct

elements of Fq, then MN is invertible. Indeed, the invertibility of the matrix MN follows

immediately from the determinant of Cauchy-Vandermonde matrices (see, e.g., [37]). For

the sake of completeness, the result, as well as a compact proof, is stated in the following

lemma. Note that in our design, we have chosen αn,fl as distinct elements, so Lemma 2.5

guarantees that the scheme satisfies the correctness constraint. Fixing distinct values of

α1,··· ,αN ,f1,··· ,fl completes the design of the scheme.

Lemma 2.5. The decoding matrix MN is invertible if all αn,n∈ [N],fl,l∈ [L] are distinct.

Proof. To set up the proof by contradiction, suppose on the contrary that MN is singular.

Then there must exist cn ∈Fq,n∈ [N], at least one of which is non-zero, such that

c1
−→
∆ ◦
−−−−−−→
(f1−α)−1 + ···+cL

−→
∆ ◦
−−−−−−−→
(fL−α)−1 +cL+1

−→
∆ +cL+2

−→
∆ ◦−→α + ···+cN

−→
∆ ◦
−−−−−→
αX+T−1 =

−→
0

(2.114)

where
−→
0 is the vector whose elements are all 0. Now consider n-th row of (2.114).

c1
∆n

f1−αn
+ ···+cL

∆n

fL−αn
+cL+1∆n+cL+2∆nαn+ ···+cN∆nα

X+T−1
n = 0. (2.115)

33

From (2.102), we know that ∆n 6= 0. Then αn must be the root of the following polynomial

g(α) =
L∑

i=1

ci

(
∆

fi−α

)
+

N∑

i=L+1

ci∆α
i−(L+1) (2.116)

Note that ∆ (as a function of α) has order L and fi−α is a factor of ∆ (refer to (2.102)),

so g(α) has order at most N−1. If g(α) is a non-zero polynomial, then it can have at most

N−1 roots over Fq. Now αn,n∈ [N] are N distinct roots of g(α), thus g(α) must be the

zero polynomial, i.e., the coefficients of all monomials in g(α) must be zero. The coefficient

of αN−1 is cN so we must have cN = 0. Then, the remaining coefficient of αN−2 is cN−1, so

we must have cN−1 = 0. Similarly, we find cL+1 = cL+2 = ···= cN = 0, leaving us with

g(α) =
L∑

i=1

ci

(
∆

fi−α

)
. (2.117)

Now, if this g(α) is the zero polynomial, then it must be zero for every α∈Fq. Choosing α

such9 that (fi−α) = 0, gives us ci = 0 for every i∈ [L]. Thus, we have c1 = c2 = ···= cN = 0.

This is a contradiction since we assumed that at least one of cn,n∈ [N] is non-zero. Thus,

the proof is complete.

Now consider the security guarantee. For any X colluding servers, i1,i2,··· ,iX , the X ob-

servations, Ukl1,··· ,UklX , of each message symbol Wkl,k∈ [K],l∈ [L], are protected by noise
9Note that ∆

fi−α is simply a compact notation for
∏
l∈[L],l 6=i(l−α), i.e., it only means that the (fi−α)

factor is eliminated from ∆, so there is no ‘division by 0’ when we set i−α= 0 in ∆
fi−α .

34

terms as follows.




Ukl1
...

UklX




=




Wkl

...

Wkl




+




fl−αi1 (fl−αi1)2 ··· (fl−αi1)X

fl−αi2 (fl−αi2)2 ··· (fl−αi2)X

...
...

...

fl−αiX (fl−αiX)2 ··· (fl−αiX)X




︸ ︷︷ ︸
P




Zl1(k)

...

ZlX(k)




︸ ︷︷ ︸
Z

(2.118)

=Wkl1+




l−αi1 0 ··· 0

0 l−αi2 ··· 0

0 0
. . . 0

0 0 ··· l−αiX







1 fl−αi1 ··· (fl−αi1)X−1

1 fl−αi2 ··· (fl−αi2)X−1

...
...

...

1 fl−αiX ··· (fl−αiX)X−1







Zl1(k)

...

ZlX(k)



.

(2.119)

where Zlx(k) is the kth element of the vector Zlx. Note that P is a product of a diagonal

matrix which is invertible because (fl−αij) are non-zero, and a Vandermonde matrix which

is invertible because (fl−αij) are distinct. Therefore, P is invertible, and the observations

are independent of the message symbols as shown below.

I(Wkl;(Uklx)x∈[X]) = I(Wkl;Wkl1+PZ) = I(Wkl;WklP
−11+Z) = I(Wkl;Z) = 0. (2.120)

Furthermore, since the noise terms protecting each message symbol Wkl,k∈ [K],l∈ [L], i.e.,

Zlx(k),x∈ [X] are independent across (k,l,x), security is preserved for all data.

The noise terms protecting each query also have the same structure and independence prop-

erties by design. Therefore, it follows from the same reasoning that user’s privacy is protected

from any T colluding servers.

Finally, note that the user is able to retrieve L=N−X−T desired q-ary symbols by down-

loading N q-ary symbols, one from each server. The rate achieved is L/N = 1−(X+T)/N ,

35

which is the asymptotic capacity for this general setting. This completes the proof of Theo-

rem 2.3. �

2.6.1 Example: (X = 1) Secure, (T = 1) Private Scheme with N = 5

Servers

Each message consists of L= 3 symbols from a finite field Fq, q≥N+L= 8, and characteristic

greater than 2. For this setting, ∆ = (f1−α)(f2−α)(f3−α). The answers from all N = 5

Server ‘n’ (Replace α,∆ with αn,∆n)
Storage W1 +(f1−α)Z1,

(Sn) W2 +(f2−α)Z2,
W3 +(f3−α)Z3

Query ∆
f1−α

(
Qθ+(f1−α)Z′1

)
,

(Q
[θ]
n) ∆

f2−α

(
Qθ+(f2−α)Z′2

)
,

∆
f3−α

(
Qθ+(f3−α)Z′3

)

Desired symbols appear along vectors
−→
∆ ◦

(−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1,

−−−−−−→
(f3−α)−1

)

Interference symbols appear along vectors
−→
∆ ◦

(−→
1 ,
−−−→
f1−α,

−−−→
f2−α,

−−−→
f3−α

)

Table 2.2: A summary of the XSTPIR scheme for X = 1,T = 1,N = 5, showing storage at
each server, the queries, and a partitioning of signal and interference dimensions contained
in the answers from each server.

servers may be written explicitly as,

−→
A[θ] =

−→
∆ ◦
−−−−−−→
(f1−α)−1W1Qθ+

−→
∆ ◦
−−−−−−→
(f2−α)−1W2Qθ+

−→
∆ ◦
−−−−−−→
(f3−α)−1W3Qθ

+
−→
∆ (W1Z

′
1 +W2Z

′
2 +W3Z

′
3 +Z1Qθ+Z2Qθ+Z3Qθ)︸ ︷︷ ︸

I10+I20+I30

+
−→
∆ ◦−−−−−→(f1−α)(Z1Z

′
1)︸ ︷︷ ︸

I11

+
−→
∆ ◦−−−−−→(f2−α)(Z2Z

′
2)︸ ︷︷ ︸

I21

+
−→
∆ ◦−−−−−→(f3−α)(Z3Z

′
3)︸ ︷︷ ︸

I31

(2.121)

36

=
−→
∆ ◦
−−−−−−→
(f1−α)−1Wθ1 +

−→
∆ ◦
−−−−−−→
(f2−α)−1Wθ2 +

−→
∆ ◦
−−−−−−→
(f3−α)−1Wθ3

+
−→
∆(I10 +I20 +I30 +f1I11 +f2I21 +f3I31)+

−→
∆ ◦−→α (−I11−I21−I31). (2.122)

Privacy and security are guaranteed since f1−αn 6= 0,∀n∈ [5], the messages and queries are

hidden behind the noise.

Interference terms align into the space spanned by the two vectors,
−→
∆ ,
−→
∆ ◦−→α , while the

3 symbols of the desired message appear along
−→
∆ ◦
−−−−−−→
(f1−α)−1,

−→
∆ ◦
−−−−−−→
(f2−α)−1,

−→
∆ ◦
−−−−−−→
(f3−α)−1.

Independence of the 3 desired signal dimensions from the two interference dimensions is

trivially verified, because the highest exponent of α along desired signal dimensions is 2,

but each interference dimension has an α3 term (contributed by ∆). Independence of the 3

desired signal dimensions among themselves is also easily verified, because for

c1(f2−α)(f3−α)+c2(f1−α)(f3−α)+c3(f1−α)(f2−α) (2.123)

to be the zero polynomial it must be zero everywhere, but in that case, setting α−fi = 0 for

i= 1,2,3, leads us to c1 = c2 = c3 = 0, thus proving their independence. The rate achieved is

3/5, which matches the asymptotic capacity for this setting.

2.6.2 Example: (X = 2) Secure, (T = 1) Private Scheme with N = 4

Servers

Each message consists of L= 1 symbol from a finite field Fq, q≥N+L= 5. ∆ = (1−α). The

answers from all N = 4 servers may be written explicitly as,

−→
A[θ] =

−→
1 W1Qθ+

−−−−−→
(f1−α)(W1Z

′
1 +Z11Qθ)+

−−−−−→
(f1−α)2(Z11Z

′
1 +Z12Qθ)+

−−−−−→
(f1−α)3Z12Z

′
1

(2.124)

37

Server ‘n’ (Replace α,∆ with αn,∆n)
Storage (Sn) W1 +(f1−α)Z11 +(f1−α)2Z12

Query (Q
[θ]
n) Qθ+(f1−α)Z′1

Desired symbols appear along vector−→
1

Interference symbols appear along vectors
−→
∆ ◦

(−→
1 ,
−−−→
f1−α,

−−−−−→
(f1−α)2

)

Table 2.3: A summary of the XSTPIR scheme for X = 2,T = 1,N = 4, showing storage at
each server, the queries, and a partitioning of signal and interference dimensions contained
in the answers from each server.

=
−→
1 Wθ1 +

−→
∆ ◦


−→1 (W1Z

′
1 +Z11Qθ)︸ ︷︷ ︸
I10

+
−−−−−→
(f1−α)(Z11Z

′
1 +Z12Qθ)︸ ︷︷ ︸
I11

+
−−−−−→
(f1−α)2Z12Z

′
1︸ ︷︷ ︸

I12




(2.125)

=
−→
1 Wθ1 +

−→
∆ (I10 +f1I11 +f2I12)︸ ︷︷ ︸

I′0

+
−→
∆ ◦−→α (−I11−2f1I12)︸ ︷︷ ︸

I′1

+
−→
∆ ◦
−→
α2(I12)︸︷︷︸

I′2

. (2.126)

Interference aligns in the space spanned by the three vectors,
−→
∆ ,
−→
∆ ◦−→α ,−→∆ ◦

−→
α2, while the

desired symbol appears along the vector of all ones. The independence of these directions

is easily established. Privacy is guaranteed because f1−αn 6= 0, ∀n∈ [4], so the queries are

hidden behind random noise. Security is guaranteed because for any X = 2 colluding servers,

i and j, the independent noise protecting each message Wk, k ∈ [K],



f1−αi (f1−αi)2

f1−αj (f1−αj)2




︸ ︷︷ ︸
Pij




Z11(k)

Z12(k)


=



f1−αi 0

0 f1−αj







1 (f1−αi)

1 (f1−αj)







Z11(k)

Z12(k)


 (2.127)

spans X = 2 dimensions, because Pij is invertible for distinct and non-zero values of (1−

αi),(1−αj). The rate achieved is 1/4 which matches the asymptotic capacity for this setting.

38

2.6.3 Example: (X = 1) Secure, (T = 2) Private Scheme with N = 5

Servers

Each message consists of L=N−X−T = 2 symbols from Fq, q≥ 7.

∆ = (f1−α)(f2−α). (2.128)

The answers from all N = 5 servers may be written explicitly as,

Server ‘n’ (Replace α,∆ with αn,∆n)
Storage W1 +(f1−α)Z1,

(Sn) W2 +(f2−α)Z2

Query ∆
f1−α

(
Qθ+(f1−α)Z′11 +(f1−α)2Z′12

)
,

(Q
[θ]
n) ∆

f2−α

(
Qθ+(f2−α)Z′21 +(f2−α)2Z′22

)

Desired symbols appear along vectors
−→
∆ ◦

(−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1

)

Interference symbols appear along vectors
−→
∆ ◦

(−→
1 ,
−−−→
f1−α,

−−−−−→
(f1−α)2,

−−−→
f2−α,

−−−−−→
(f2−α)2

)

Table 2.4: A summary of the XSTPIR scheme for X = 1,T = 2,N = 5, showing storage at
each server, the queries, and a partitioning of signal and interference dimensions contained
in the answers from each server.

−→
A[θ] =

−→
∆ ◦
−−−−−−→
(f1−α)−1W1Qθ+

−→
∆ ◦
−−−−−−→
(f2−α)−1W2Qθ (2.129)

+
−→
∆ (W1Z

′
11 +W2Z

′
21 +Z1Qθ+Z2Qθ)︸ ︷︷ ︸

I10+I20

+
−→
∆ ◦
−−−−−→
(f2−α)2Z2Z

′
22︸ ︷︷ ︸

I22

+
−→
∆ ◦−−−−−→(f1−α)(Z1Z

′
11 +W1Z

′
12)︸ ︷︷ ︸

I11

+
−→
∆ ◦−−−−−→(f2−α)(Z2Z

′
21 +W2Z

′
22)︸ ︷︷ ︸

I21

+
−→
∆ ◦
−−−−−→
(f1−α)2Z1Z

′
12︸ ︷︷ ︸

I12

=
−→
∆ ◦
−−−−−−→
(f1−α)−1Wθ1 +

−→
∆ ◦
−−−−−−→
(f2−α)−1Wθ2

39

+
−→
∆(I10 +I20 +f1I11 +f2I21 +f 2

1 I12 +f 2
2 I22)

+
−→
∆ ◦−→α (−I11−I21−2f1I12−2f2I22)+

−→
∆ ◦
−→
α2(I12 +I22). (2.130)

Thus, interference aligns into the space spanned by the 3 vectors:
−→
∆ ,
−→
∆ ◦−→α ,−→∆ ◦

−→
α2, while

the 2 desired symbols appear along
−→
∆ ◦
−−−−−−→
(f1−α)−1,

−→
∆ ◦
−−−−−−→
(f2−α)−1. Note that the highest

exponent of α along a desired signal dimension is 1, but every interference dimension contains

α2 (contributed by ∆), so the desired signals are independent of the interference. The

independence of desired signals among themselves is also easily verified because if c1
∆

f1−α +

c2
∆

f2−α = c1(f2−α)+c2(f1−α) is the zero polynomial, then by substituting fi−α= 0 for

i= 1,2 we find that we must have c1 = c2 = 0. Privacy and security are guaranteed by the

MDS coded independent noise terms mixed with the message and query symbols. The rate

achieved is 2/5, which matches the asymptotic capacity for this setting.

2.6.4 Example: (X = 2) Secure, (T = 2) Private Scheme with N = 7

Servers

Each message consists of L= 3 symbols from a finite field Fq, of size q≥ 10 and characteristic

greater than 2.

∆ = (f1−α)(f2−α)(f3−α).

Interference aligns into the space spanned by the 4 vectors:
−→
∆ ,
−→
∆ ◦−→α ,−→∆ ◦

−→
α2,
−→
∆ ◦
−→
α3. In-

dependence of desired signals from interference is trivially verified – highest exponent of α

along any desired signal dimension is 2, but each interference dimension has an α3 term (con-

tributed by ∆). The desired signal dimensions are easily verified to be linearly independent

among themselves because in order for

c1(f2−α)(f3−α)+c2(f1−α)(f3−α)+c3(f1−α)(f2−α) (2.131)

40

Server ‘n’ (Replace α,∆ with αn,∆n)
Storage W1 +(f1−α)Z11 +(f1−α)2Z12,

(Sn) W2 +(f2−α)Z21 +(f2−α)2Z22,
W3 +(f3−α)Z31 +(f3−α)2Z32

Query ∆
f1−α

(
Qθ+(f1−α)Z′11 +(f1−α)2Z′12

)
,

(Q
[θ]
n) ∆

f2−α

(
Qθ+(f2−α)Z′21 +(f2−α)2Z′22

)
,

∆
f3−α

(
Qθ+(f3−α)Z′31 +(f3−α)2Z′32

)

Desired symbols appear along vectors
−→
∆ ◦

(−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1,

−−−−−−→
(f3−α)−1

)

Interference symbols appear along vectors
−→
∆ ◦

(−→
1 ,
−−−→
f1−α,

−−−−−→
(f1−α)2,

−−−−−→
(f1−α)3,

−−−→
f2−α,

−−−−−→
(f2−α)2,

−−−−−→
(f2−α)3,

−−−→
f3−α,

−−−−−→
(f3−α)2,

−−−−−→
(f3−α)3

)

Table 2.5: A summary of the XSTPIR scheme for X = 2,T = 2,N = 7, showing storage at
each server, the queries, and a partitioning of signal and interference dimensions contained
in the answers from each server.

to be the zero polynomial it must be zero everywhere, but in that case, setting α−fi = 0 for

i= 1,2,3 leads us to c1 = c2 = c3 = 0. Privacy and security are guaranteed by the MDS coded

independent noise terms mixed with the message and query symbols. The rate achieved is

3/7, which matches the asymptotic capacity for this setting.

2.7 Proof of Theorem 2.4

In Section 2.6 we presented an XSTPIR scheme for arbitraryX,T,N,K that achieves capacity

as K→∞. Since the scheme also works for any K, a natural starting point for finite K

settings is to apply the same scheme. A key insight here is that the rate achieved by the

scheme improves as K decreases. Let us elaborate. Note that the query Q[θ]
n that is sent

to each server is uniformly distributed in FLKq . Therefore, with probability 1
qLK

, the query

vector is the all zero vector. Whenever this happens, no download is needed from the server.

41

Thus, the average download is reduced by the factor (1−1/qLK) and the rate achieved is

expressed as follows.

Lemma 2.6. The asymptotically capacity achieving XSTPIR scheme of Section 2.6 achieves

the rate

R=

(
1− 1

qKL

)−1(
1−
(
X+T

N

))
(2.132)

for arbitrary X,L,K,N values, where N >X+T .

Note that N ≤X+T is excluded as the degenerate setting where we already know the

capacity for all parameters, according to Theorem 2.2. Remarkably, the rate in Lemma 2.6

depends on the message size L and the field size q used by the scheme. As presented, the

scheme uses q≥L+N and L=N−X−T . So the achieved rate for finite K becomes

R=

(
1− 1

(2N−X−T)K(N−X−T)

)−1(
1−
(
X+T

N

))
. (2.133)

Consider the simplest non-trivial setting of interest, i.e., the setting for Theorem 2.4, where

T =X = 1, N = 3 and K is arbitrary. The scheme of Section 2.6 uses L= 1,q≥ 4, so the rate

achieved for arbitrary K is

R=
1

3

(
1− 1

4K

)−1

. (2.134)

However, note that if the field size could be reduced to q= 2, then the rate achieved by the

scheme would become

1

3

(
1− 1

2K

)−1

=
2

3

(
1− 1

2

1− 1
2K

)
=

2

3

(
1+

1

2
+

1

22
+ ···+ 1

2K−1

)−1

which matches the capacity upper bound from Theorem 2.1. Surprisingly, this can be done

42

with some modification to the structure of the scheme, as explained below.

Suppose each message Wk,k∈ [K] consists of L= 1 symbol (bit) from F2. Let W =

(W1,W2,··· ,WK) be a random row vector in F1×K
2 , containing all messages. Let Z and

Z′ be uniformly random noise vectors from F1×K
2 and FK×1

2 , that are used to guarantee data

security and user privacy, respectively. The noise vectors are independent of each other and

of the message vector and θ, i.e., H(W,Z,Z′,θ) =H(W)+H(Z)+H(Z′)+H(θ). Let Qθ

represent the θth column of IK (the K×K identity matrix). Note that WQθ =Wθ is the

message desired by the user. The storage at the servers, the queries and the answers are

listed below.

Server 1 Server 2 Server 3

Storage Sn W+Z W+ZB Z

Query Q[θ]
n Z′ Qθ+Z′ (IK +B)Z′+BQθ

Answer A[θ]
n WZ′+ZZ′ WQθ+WZ′+ZBZ′+ZBQθ ZZ′+ZBZ′+ZBQθ

where B is a K×K deterministic binary matrix such that B and IK +B are both full rank.

Any such choice of B will work for our scheme. The existence of such B is established in the

following lemma whose proof appears in Appendix A.1.

Lemma 2.7. For all K ≥ 2, there exists a matrix B∈FK×K2 such that B and IK +B are

both invertible.

Now, let us check the correctness, security and privacy of this scheme. The scheme is

obviously correct because by adding the three answers shown in the table above, the user

recovers Wθ. It is obviously secure because B is invertible, so ZB∼Z, is still uniform

noise independent of W. And similarly, it is also obviously private, because IK +B is also

invertible, so (IK +B)Z′∼Z′ is still uniform noise independent of BQθ. Thus, surprisingly,

we have achieved the capacity of XSTPIR for arbitrary K, when X =T = 1 and N = 3,

completing the proof of Theorem 2.4. �

43

2.8 Discussion

The XSTPIR problem is timely due to the growing importance of privacy and security

concerns in modern information storage and retrieval systems. It is a conceptually rich topic

that reveals new insights into alignment of noise terms, dependence of coding and query

structures, cost of symmetric security, significance of field size for the rate of information

retrieval, etc.

44

Chapter 3

X-Secure T -Private Information

Retrieval with Graph Based Replicated

Storage

The problem of private information retrieval with graph-based replicated storage was re-

cently introduced by Raviv, Tamo and Yaakobi. Its capacity remains open in almost all

cases. In this chapter the asymptotic (large number of messages) capacity of this problem

is studied along with its generalizations to include arbitrary T -privacy and X-security con-

straints, where the privacy of the user must be protected against any set of up to T colluding

servers and the security of the stored data must be protected against any set of up to X

colluding servers. A general achievable scheme for arbitrary storage patterns is presented

that achieves the rate (ρmin−X−T)/N , where N is the total number of servers, and each

message is replicated at least ρmin times. Notably, the scheme makes use of a special structure

inspired by dual Generalized Reed Solomon (GRS) codes. A general converse is also pre-

sented. The two bounds are shown to match for many settings, including symmetric storage

patterns. Finally, the asymptotic capacity is fully characterized for the case without security

45

constraints (X = 0) for arbitrary storage patterns provided that each message is replicated

no more than T +2 times. As an example of this result, consider PIR with arbitrary graph

based storage (T = 1,X = 0) where every message is replicated at exactly 3 servers. For this

3-replicated storage setting, the asymptotic capacity is equal to 2/ν2(G) where ν2(G) is the

maximum size of a 2-matching in a storage graph G[V,E]. In this undirected graph, the

vertices V correspond to the set of servers, and there is an edge uv ∈E between vertices u,v

only if a subset of messages is replicated at both servers u and v.

3.1 Introduction

Most relevant to this chapter is the characterization in Chapter 2 of the asymptotic (K→∞)

capacity of XSTPIR as CXSTPIR = 1−(X+T)/N . Note that the XSTPIR setting includes as

special case the TPIR setting, obtained by setting X = 0, as well as the original PIR setting,

obtained by setting X = 0 and T = 1. It is limited, however, by its assumption of fully

replicated storage, i.e., all messages are stored by all servers, which can be burdensome for

large data sets. Motivated by the preference for simple storage, Raviv, Tamo and Yaakobi in

[89] introduced a graph based replicated storage model. Instead of full replication where every

message is replicated at every server, graph based replication assumes that each message

is replicated only among a subset of servers. This allows a graph representation where

the vertices are the N servers and each message is represented by a hyperedge comprised

of vertices (servers) where this message is replicated. Reference [89] primarily focuses on

GTPIR, i.e., PIR with graph based replicated storage and T -privacy. An achievable scheme

is proposed that achieves the rate 1/N as long as T is smaller than the replication factor

of each message (the number of servers where the message is replicated), and is shown

to be within a factor of 2 from optimality for some special cases. Reference [13] presents

capacity achieving schemes for several cases of GPIR, i.e., GTPIR with 1-privacy where each

46

server stores 2 messages. However, optimal GTPIR schemes remain unknown in almost all

settings. Understanding the key ideas that constitute optimal PIR schemes under graph

based replicated storage is our goal in this chapter.

The main contributions of this chapter are as follows. We study the asymptotic capacity of

T -private and X-secure PIR with graph-based replicated storage, in short GXSTPIR. Recall

that asymptotic capacity is quite meaningful for PIR because the number of messages is

typically large, and the convergence of capacity to its asymptotic value tends to take place

quite rapidly, see Chapter 2. GXSTPIR includes as special cases the settings of GTPIR [89],

XSTPIR [57], TPIR [106] and basic PIR [102], and as such it presents a unified view of these

settings. Our first result is an achievable scheme for GXSTPIR that achieves the rate (ρmin−

X−T)/N for arbitrary storage patterns provided every message is replicated at least ρmin

times. In addition to ideas like cross-subspace alignment, Reed-Solomon (RS) coded storage

and RS coded queries that were previously used for XSTPIR in Chapter 2, a key novelty of

our achievable scheme for GXSTPIR is how it creates and takes advantage of a structure

inspired by dual Generalized Reed Solomon (GRS) codes. This is explained intuitively in

Section 3.3.2. Our second contribution is a general converse bound for asymptotic capacity

of GXSTPIR with arbitrary storage patterns. While the asymptotic capacity of GXSTPIR

remains open in general, it is remarkable that our converse bound is tight in all settings where

we are able to settle the capacity. In particular, the general achievable scheme matches the

converse bound when the storage is symmetric, settling the asymptotic capacity for those

settings 1. For several examples with asymmetric storage, it turns out that the achievable

scheme can be improved to match the converse bound by applying it only after eliminating2

certain redundant servers. Thus, the asymptotic capacity for such cases is settled as well. In

general however, with arbitrary graph based storage, more sophisticated achievable schemes

may be obtained by combining our achievable scheme with ideas from private computation
1We refer the reader to Section 3.3 for the definition of symmetric storage.
2By “eliminating a server” for an achievable scheme, we mean using an achievable scheme that does not

send any query to that server.

47

[107]. To illustrate this, we consider the GTPIR problem (X = 0) where every message is

replicated no more than T +2 times. As our final result, for this problem we fully settle

the asymptotic capacity for arbitrary storage patterns. The asymptotic capacity depends

strongly on the storage graph structure, and requires a private computation scheme on top

of our general achievable scheme. As an example of this result, consider GPIR, i.e., PIR with

arbitrary graph based storage (T = 1,X = 0) where every message is replicated at exactly 3

servers. For this 3-replicated storage setting, the asymptotic capacity is exactly equal to

2/ν2(G) where ν2(G) is the maximum size of a 2-matching in a storage graph G[V,E]. In

this storage graph, the vertices V correspond to the set of servers, and there is an edge

uv ∈E between vertices u,v only if a subset of messages is replicated at both servers u and

v. This is consistent with the intuition that storage graph properties must be essential to

the asymptotic capacity of graph-based storage.

3.2 Problem Statement

We begin with a description of messages and storage structure. Based on the storage struc-

ture we will partition the set of messages into M subsets so that the messages in the same

subset have the same storage structure. Define W = (W1,W2,··· ,WM) where Wm,m∈ [M],

are disjoint message sets, each comprised of Km messages,

Wm = (Wm,1,Wm,2,··· ,Wm,Km). (3.1)

Messages are independent, and each message is composed of L i.i.d. uniform symbols from

Fq, i.e.,

H(Wm,k) =H(Wm,k(1),Wm,k(2),··· ,Wm,k(L)) =L, ∀m∈ [M],k∈ [Km] (3.2)

48

H(W1,1,··· ,WM,KM) =
M∑

m=1

KmL, (3.3)

in q-ary units. There are a total of N servers. Corresponding to W = (W1,··· ,WM), let us

define

R= (R1,··· ,RM), (3.4)

Rm = (Rm(1),··· ,Rm(ρm)),∀m∈ [M], (3.5)

Rm(r)∈ [N],∀r∈ [ρm], (3.6)

where Rm,m∈ [M] contains the servers, Rm(r)∈ [N] that store the mth set of messagesWm.

Without loss of generality we will assume that the servers are listed in increasing order

in each tuple Rm. The cardinality of Rm is |Rm|= ρm, which will be referred to as the

replication factor for the messages in Wm. The minimum replication factor is defined as

ρmin, min
m∈[M]

ρm. (3.7)

It is important to note that the messages may not be directly replicated at the servers.

Because of security constraints, each message Wm,k ∈Wm, is represented by a total of ρm

shares (the nomenclature comes from secret-sharing), denotedWm,k =
(
W

(n)
m,k,n∈Rm

)
, such

that the shareW (n)
m,k is stored at Server n, for all n∈Rm. Messages are independently secured

and must be recoverable from their shares, as specified by the following constraints.

H
(
W 1,1,··· ,WM,Km

)
=

∑

m∈[M],k∈[KM]

H
(
Wm,k

)
, (3.8)

H
(
Wm,k |Wm,k

)
= 0. (3.9)

49

Let us define the index set of Wm that are stored at Server n, as

Mn = {m∈ [M]
∣∣∣Rm 3n}. (3.10)

The information stored at Server n is defined as

Sn =
{
W

(n)
m,k,m∈Mn,k∈ [Km]

}
. (3.11)

For example, suppose we have M = 4 message sets (each comprised of Km = 2 messages),

stored at N = 4 servers as shown.

W1,W2,W3

Server 1

W1,W2

Server 2

W2,W4

Server 3

W1,W3,W4

Server 4

Then for this example,3 we have,

M1 = {1,2,3}, S1 = {W (1)
1,1 ,W

(1)
1,2 ,W

(1)
2,1 ,W

(1)
2,2 ,W

(1)
3,1 ,W

(1)
3,2 }, R1 = (1,2,4), ρ1 = 3,

(3.12)

M2 = {1,2}, S2 = {W (2)
1,1 ,W

(2)
1,2 ,W

(2)
2,1 ,W

(2)
2,2 }, R2 = (1,2,3), ρ2 = 3,

(3.13)

M3 = {2,4}, S3 = {W (3)
2,1 ,W

(3)
2,2 ,W

(3)
4,1 ,W

(3)
4,2 }, R3 = (1,4), ρ3 = 2,

(3.14)

M4 = {1,3,4}, S4 = {W (4)
1,1 ,W

(4)
1,2 ,W

(4)
3,1 ,W

(4)
3,2 ,W

(4)
4,1 ,W

(4)
4,2 }, R4 = (3,4), ρ4 = 2,

(3.15)

and ρmin = 2.
3Incidentally, our results will show that asKm→∞, for this example C∞= 1/3, and Server 2 is redundant.

50

The X-secure constraint, 0≤X ≤N , requires that any X (or fewer) colluding servers learn

nothing about the messages.

[X-Security] I(SX ;W) = 0, ∀X ⊂ [N],|X |≤X. (3.16)

X = 0 represents the setting without security constraints. If X = 0, then no secret sharing is

needed, so each share of a message is the message itself,

X = 0 =⇒ W
(n)
m,k =Wm,k, ∀n∈Rm. (3.17)

This completes the description of the messages and the storage at the N servers. Next, let

us describe the private information retrieval aspect.

The user desires the message Wµ,κ, where the indices µ and κ are chosen privately and

uniformly by the user from µ∈ [M],κ∈ [Kµ], respectively. In order to retrieve his desired

message, the user generates N queries, Q[µ,κ]
1 ,Q

[µ,κ]
2 ,...,Q

[µ,κ]
N , and sends the nth query, Q[µ,κ]

n

to the n-th server. The user has no prior knowledge of the message realizations,

I
(
S[N] ; µ,κ,Q

[1,1]
[N] ,··· ,Q

[M,KM]
[N]

)
= 0. (3.18)

A T -private scheme, 1≤T ≤N , requires that any T (or fewer) colluding servers learn nothing

about (µ,κ).

[T -Privacy] I
(
Q

[µ,κ]
T ; µ,κ

)
= 0, ∀T ⊂ [N],|T |≤T. (3.19)

Upon receiving the query Q[µ,κ]
n , the n-th server generates an answer string A[µ,κ]

n , which is a

function of the query Q[µ,κ]
n and its stored information Sn.

H
(
A[m,k]
n |Q[m,k]

n ,Sn
)

= 0, ∀m∈ [M],k∈ [Km]. (3.20)

51

The correctness constraint guarantees that from all the answers, the user is able to decode

the desired message Wµ,κ,

[Correctness] H
(
Wµ,κ |A[µ,κ]

[N] ,Q
[µ,κ]
[N] ,µ,κ

)
= 0. (3.21)

The rate of a GXSTPIR scheme is defined by the number of q-ary symbols of desired message

that are retrieved per downloaded q-ary symbol,

R=
H(Wµ,κ)

∑
n∈[N]H

(
A

[µ,κ]
n

) =
L

D
, (3.22)

where D=
∑

n∈[N]H
(
A

[µ,κ]
n

)
is the expected4 total number of q-ary symbols downloaded by

the user from all servers. The capacity of GXSTPIR, denoted as C(N,X,T,W ,S), is the

supremum of R across all feasible schemes. In this chapter we are interested in the setting

where each subset of messages is comprised of a large number of messages. Specifically, we

wish to characterize the asymptotic capacity, as Km→∞ for all m∈ [M]. In order to have

Km approach infinity together for all m∈ [M], let us define,

Km = dχmKe, (3.23)

so that χm,m∈ [M] are fixed constants, while K approaches infinity. Then the asymptotic

capacity is defined as

C∞= lim
K→∞

C(N,X,T,W ,S). (3.24)

Note that the number of message sets, M , and the storage pattern R remain unchanged,

while Km, i.e., the number of messages in each Wm approaches infinity.
4While the achievable schemes used in this chapter only download a deterministic number of bits from

each server, note that our capacity formulation allows schemes for which the number of bits downloaded from
each server may be random. This means that our capacity results cannot be improved upon by schemes that
download a random number of bits from each server.

52

3.3 Results

Our first result is a general achievability argument that provides us a lower bound on the

asymptotic capacity of GXSTPIR.

Theorem 3.1. The asymptotic capacity of GXSTPIR is bounded below as follows,

C∞≥
ρmin−X−T

N
. (3.25)

The proof of Theorem 3.1 appears in Section 3.4. From a practical standpoint, it is worth

noting that while the achievable rate in (3.25) does not depend on the storage structure

beyond just the minimum replication factor ρmin, the achievable scheme does require that

the user be aware of the storage structure for the construction of queries that are sent to the

servers. From a technical standpoint, the most interesting aspect of the proof is the use of a

structure inspired by dual GRS codes, that is intuitively explained in Section 3.3.2. Another

interesting aspect of Theorem 3.1 is that applying it to a subset of servers (by eliminating

the rest) may produce a higher achievable rate than if all servers were used. Therefore, in

order to find the best achievable rate guaranteed by Theorem 3.1 we must choose the best

subset of servers. Example 4 in Section 3.3.1 illustrates this idea. As a final remark, let us

reiterate that the focus of this chapter is on settings with large number of messages. Indeed

for smaller values of K and M the schemes presented in [89, 13] can achieve better rates

than the scheme presented in Section 3.4.

Our next result is a converse argument that holds for arbitrary storage patterns. Recall that

Dn =H(A
[µ,κ]
n)/L is the normalized download from Server n.

53

Theorem 3.2. The asymptotic capacity of GXSTPIR is bounded above as follows,

C∞≤





0, ρmin≤X+T

max(D1,···,DN)∈D (D1 +D2 + ···+DN)−1 , ρmin >X+T
(3.26)

and D is defined as

D,



(D1,··· ,DN)∈RN

+

∣∣∣
∑

n∈R′m

Dn≥ 1,∀m∈ [M],∀R′m⊂Rm,|R′m|= |Rm|−X−T



.

(3.27)

The proof of Theorem 3.2 appears in Section 3.5. Since the asymptotic capacity is zero

for ρmin≤X+T , in the remainder of this section we will assume that ρmin >X+T . Note

that since our focus is on settings with asymptotically large number of messages, our coding

schemes achieve rate zero for cases where the asymptotic capacity is zero.

Remark 3.1. Note that (3.27) implies that the total normalized download from any ρm−

X−T servers in Rm must be at least 1. A simple averaging argument implies that the total

normalized download from all ρm servers in any Rm must be at least ρm/(ρm−X−T).

The general lower bound in Theorem 3.1 is in closed form and the general upper bound

in Theorem 3.2 is essentially a linear program, so for arbitrary settings it is possible to

evaluate both to check if they match (provided the parameter values are not too large to be

computationally feasible). Conceptually, the condition for them to match may be understood

as follows. Consider a hypergraph G(V ,E) with the set of vertices V = [N] representing the

N servers, and the set of hyperedges E such that e∈E if and only if ∃m∈ [M] such that

e⊂Rm and |e|= |Rm|−X−T . For this graph, hyperedges e∈E , with corresponding weights

xe ∈R+, are said to form a fractional matching if for every vertex v ∈V the total weight of

the edges that include v is less than or equal to 1. The largest possible total weight of a

54

fractional matching is called the fractional matching number of G [93]. The relationship

between the optimal converse bound from Theorem 3.2 on the total normalized download,

i.e., minD(D1 + ···+DN) and the fractional matching number of G[V ,E] is characterized in

the following lemma.

Lemma 3.1. The optimal value of total normalized download, minD(D1 +D2 + ···+DN), in

Theorem 3.2 is equal to the fractional matching number of G[V ,E].

The proof of Lemma 3.1 is presented in Appendix B.1. From Lemma 3.1, the following

corollary immediately follows.

Corollary 3.1. The lower bound of Theorem 3.1 matches the upper bound of Theorem

3.2 if and only if the fractional matching number of G(V ,E) is equal to N
ρmin−X−T . For all

such cases, the asymptotic capacity C∞= (ρmin−X−T)/N .

Next let us identify some interesting special cases of Corollary 3.1.

Let RM′ be a collection of the sets Rm,m∈M′⊂ [M]. We define RM′ to be an exact b-cover

of [N] if ρm = ρmin for all m∈M′, and every element of [N] is contained in exactly b sets in

RM′ . It follows that the asymptotic capacity C∞= (ρmin−X−T)/N if there exists an exact

b-cover for some b∈Z+. This is easily seen because for each Rm in RM′ we have the bound
∑

n∈RmDn≥ ρmin/(ρmin−X−T) according to (3.27). Adding all these bounds we obtain

the desired converse bound b
∑

n∈[N]Dn≥ (bN/ρmin)(ρmin/(ρmin−X−T)), i.e.,
∑

n∈[N]Dn≥

N/(ρmin−X−T), which is achievable according to Theorem 3.1.

(Symmetric Storage) As a special case that is of particular interest, define a symmetric

storage setting as one where (after some permutation of message and server indices) for all

m∈ [M], Rm = (ρm+1,ρm+2,··· ,ρm+ρmin). Here, ρ≤ ρmin and server indices are inter-

preted modulo N , e.g., Server N+1 is the same as Server 1. Furthermore, b=Mρmin/N is

an integer value. Then any symmetric storage setting thus defined has asymptotic capacity

55

C∞= (ρmin−X−T)/N because the storage sets form an exact b-cover.

Based on these observations, here are some examples of storage patterns where the asymp-

totic capacity is C∞= (ρmin−X−T)/N .

1. R= ((1,2),(2,3),(3,1)) which is a symmetric storage setting (forms an exact 2 cover).

2. R= ((1,2,3),(3,4,5),(5,1,2),(2,3,4),(4,5,1)) which is a symmetric storage setting

(forms an exact 3-cover).

3. R= ((1,2),(2,3),(3,1),(4,5),(5,6),(6,4)) because it forms an exact 2 cover.

4. R= ((1,2,3),(4,5,6),(i,j,k),(a,b,c,d)) for arbitrary {i,j,k},{a,b,c,d}⊂ [N] = [6] be-

cause it contains an exact 1-cover, RM′ = {(1,2,3),(4,5,6)}.

5. R= ((1,2,3),(3,4,1),(2,5,6),(4,5,6),(1,3,6),(1,2,5,6)) because it contains an exact 2-

cover of [N] = [6] in RM′ = {(1,2,3),(3,4,1),(2,5,6),(4,5,6)}.

While the existence of an exact b-cover for some positive integer b is sufficient to guarantee

that the asymptotic capacity is C∞= (ρmin−X−T)/N , it is not a necessary condition.

Examples 1 and 2 in Section 3.3.1 show such settings.

On the other hand, it is also easy to see that the lower bound of Theorem 3.1 and the upper

bound of Theorem 3.2 do not always match. Remarkably, in all such cases that we have been

able to settle so far, it is the upper bound that is tight, and the achievability that needs to be

improved. In many cases, such as Example 4 in Section 3.3.1, an improved achievability result

is found easily by eliminating a redundant server before applying Theorem 3.1. However,

more sophisticated achievable schemes may be required in general.

Our final result emphasizes this point by settling the asymptotic capacity of GTPIR, i.e., T -

private information retrieval with arbitrary graph based storage and no security constraints

56

(X = 0), provided each message is replicated no more than (T +2) times. Because this result

deals with arbitrary storage patterns, for its precise statement we will need the following

definitions that follow the convention of Schrijver [93].

Definition 3.1. Define G= (V,E) as a simple undirected graph with vertices V = [N]

corresponding to the N servers, and with edges uv ∈E if and only if {u,v}⊂Rm for some

m∈ [M].

Definition 3.2. For a set U ⊂V , we define G[U] as the induced subgraph of G whose

vertex set is U and whose edge set, denoted E[U] consists of all edges uv ∈E such that

u,v ∈U .

Definition 3.3. A set U ⊂V is called a stable set (also called independent set) if there

are no edges between any two members of U .

Definition 3.4. For U ⊂ [N], define N (U) as the set of vertices in V \U that are neighbors

of vertices in U .

Definition 3.5. Define δ(n) as the set of edges incident with vertex n.

Definition 3.6. A function x :E→Z+ is denoted as a vector x∈ZE+. A function y :V →

Z+ is similarly denoted as a vector y ∈ZV+. The size of a vector is defined as the sum of its

entries.

Definition 3.7. For any x∈ZE+, and F ⊂E, define x(F) =
∑

f∈F x(f).

Definition 3.8. For a positive integer b, a b-matching in G is defined as a vector x∈ZE+
satisfying x(δ(v))≤ b for each vertex v ∈V . The maximum size of a b-matching in G is

defined as νb(G).

Definition 3.9. Define Nr as the set of servers that do not store any messages that are

replicated fewer than r times.

Nr, {n∈ [N]
∣∣∣m∈Mn =⇒ ρm≥ r}. (3.28)

57

It is worthwhile to recall that from basic results in graph theory (see Chapter 30, Section

30.1 of Schrijver [93]), it is known that

ν2(G) = min{|V \U |+ |N (U)|
∣∣∣ U ⊂V, and U is a stable set}. (3.29)

With this we are ready to state our final result.

Theorem 3.3. The asymptotic capacity of GTPIR with ρm≤T +2 for all m∈ [M], i.e.,

when each message set is replicated no more than (T +2) times, is

C∞=





0, ρmin≤T
2

ν2(G[NT+2])+2|NT+1|
, ρmin>T

. (3.30)

The proof of Theorem 3.3 appears in Section 3.6. While the converse bound for Theorem

3.3 follows directly from the general converse bound in Theorem 3.2, the achievability goes

beyond the scheme of Theorem 3.1, to involve a limited generalization to private computation

that is presented in Section 3.4.3. As an interesting special case of Theorem 3.3, note that

if all messages are T +2 replicated, i.e., NT+1 is an empty set, then the asymptotic capacity

is exactly 2/ν2(G).

Remark 3.2. In general, for arbitrary positive integer b, any bounds on b-matching will

result in a corresponding lower bound of
∑

n∈[N]Dn. However, since the converse bounds for

2-matchings are found to be tight, there is no need to pursue b 6= 2, because no more bounds

are needed. For larger ρm, perhaps similar results are possible in the hypergraph version, but

we have not been able to find meaningful generalizations along these lines.

58

3.3.1 Examples

Let us consider a few more examples to illustrate our results. For these examples we set

X = 0,T = 1 for simplicity, but similar examples are easily constructed for X > 0,T > 1 as

well.

1. Consider M = 3 message sets, stored at N = 4 servers according to the replication pat-

tern R1 = (1,2,4), R2 = (1,2,3), R3 = (1,3,4). Since every message is 3-replicated, ac-

cording to Theorem 3.1 we have C∞≥ 2/4 = 1/2. For the converse we note thatR1 =⇒

D1 +D2≥ 1, R2 =⇒ D2 +D3≥ 1, R3 =⇒ D3 +D4≥ 1,D4 +D1≥ 1, and adding these

bounds gives us D1 +D2 +D3 +D4≥ 2. Thus we have C∞= 1/2 for this example. Note

that this example does not contain an exact b-cover for any positive integer b, but the

asymptotic capacity for this example is still C∞= (ρmin−X−T)/N .

2. Consider M = 3 message sets stored at N = 5 servers according to the replication pat-

tern R1 = (1,3,4),R2 = (3,4,5),R3 = (2,3,5), so that every message is 3-replicated, but

the storage is not symmetric, nor does it contain an exact b-cover. For the con-

verse we note that R1 =⇒ D4 +D1≥ 1,D1 +D3≥ 1; R3 =⇒ D3 +D2≥ 1,D2 +D5≥ 1;

R2 =⇒ D5 +D4≥ 1; and combining these bounds gives us the converse bound as

C∞≤maxD1/(
∑

n∈[5]Dn)≤ 2/5. Since ρmin = 3, Theorem 3.1 shows that the rate

(ρmin−X−T)/N = 2/5 is achievable, so that C∞= 2/5 for this example.

3. Consider M = 3 message sets stored at N = 5 servers according to the replication pat-

tern R1 = (1,3,4),R2 = (1,3,4,5),R3 = (2,3,5), so that messages in W2 are 4-replicated

while those in W1,W3 are only 3-replicated. For the converse we note that R1 =⇒

D1 +D3≥ 1,D3 +D4≥ 1,D4 +D1≥ 1; while R3 =⇒ 2D2 +2D5≥ 2. Adding them up

we have the bound D1 +D2 +D3 +D4 +D5≥ 5/2, which gives us the converse bound

C∞≤ 2/5. Since ρmin = 3, the lower bound from Theorem 3.1 is also 2/5, so that

C∞= 2/5 for this example. Note that we could eliminate any one element from R2 so

59

that messages in W2 are also only 3-replicated, but that would not change the asymp-

totic capacity. Or we could add one more element to R2 so that messages in W2 are

replicated at every server, and that would also not change the capacity. Thus, this

example illustrates redundant storage.

4. Consider M = 2 message sets stored at N = 5 servers according to the replication pat-

tern R1 = (1,2,3,4), R2 = (2,3,4,5), so that each message is 4-replicated. The con-

verse from Theorem 3.2 says C∞≤ 2/3, which corresponds to D1 =D5 = 0,D2 =D3 =

D4 = 1/2, but since ρmin = 4, Theorem 3.1 applied directly only proves the achiev-

ability of rate (ρmin−X−T)/N = 3/5 which does not match the converse bound.

However, note that if we eliminate Server 1 and Server 5, then we are left with the

same5 M = 2 message sets stored at N ′= 3 servers according to the replication pat-

tern R′1 = (2,3,4),R′2 = (2,3,4), for which ρ′min = 3, and Theorem 3.1 shows that the

rate (ρ′min−X−T)/N ′= 2/3 is achievable, which indeed matches the converse bound.

Thus, the asymptotic capacity for this example is C∞= 2/3. The example shows that

achievable rates may be improved by eliminating redundant servers.

5. Consider M = 4 message sets stored at N = 5 servers according to the storage pat-

ternR1 = (1,2,3),R2 = (2,3,4),R3 = (1,3,5),R4 = (2,4), so that messages inW1,W2,W3

are 3-replicated, while messages in R4 are 2-replicated, and ρmin = 2. The achievable

scheme from Theorem 3.1 achieves a rate 1/5, however Theorem 3.3 builds upon that

scheme to achieve the rate 2/7 which also matches the converse. Thus, for this setting,

the capacity is settled by Theorem 3.3 as C∞= 2/7.

6. Consider M = 5 message sets stored at N = 8 servers according to the storage pattern

R1 = (1,2,3),R2 = (1,3,4),R3 = (4,5,7),R4 = (4,6,7),R5 = (7,8). The capacity for this

case is settled by Theorem 3.3 as 2/9. To explicitly see the converse bound, note that

in (3.27) R1 =⇒ D1 +D2 +D3≥ 3/2; R5 =⇒ D7≥ 1,D8≥ 1; and R3 =⇒ D4 +D5≥ 1.
5Note that while some servers may be eliminated (i.e., not used) by an achievable scheme, the message

sets cannot be reduced because the achievable scheme must still work for all messages.

60

Adding these bounds we have D1 +D2 +D3 +D4 +D5 +D7 +D8≥ 9/2, which implies

that asymptotically the total normalized download D≥ 9/2 and the converse bound

follows. The graph representation for this setting, G(V,E) is shown in Figure 3.1.

Vertices in N3 = {1,2,3,4,5,6} are shown with a red border, while vertices inN2 = {7,8}

are shown with a black border. The maximum size of a 2-matching on G[N3] is 5,

corresponding to the 5 edges shown in red. Alternatively, it corresponds to the choice

of U = {5,6}⊂N3 in (3.29). Note that while U has 2 neighbors in G, i.e., N (U) =

{4,7}, it has only 1 neighbor in N3, i.e., N (U)∩N3 = {4}. Therefore, ν2(G[N3])+

2|N2|= |N3 \U |+ |N (U)∩N3|+2|N2|= 4+1+2(2) = 9. Achievability follows by the

scheme presented in the proof of Theorem 3.3, downloading a symbol from each of

[N]\U = {1,2,3,4,7,8}, and downloading another symbol from each of N (U)∪N2 =

{4,7,8} according to a private computation scheme described in Section 3.4.3, for a

total download of 9 symbols from which 2 desired symbols are retrieved.

1

2

3

4

5

6

7 8

Figure 3.1: The graph G[V,E] for Example 6.

3.3.2 Solution Structure inspired by Dual GRS Codes

The most interesting aspect of the achievable scheme in Theorem 3.1 is a generalized query

and storage structure that is inspired by dual GRS codes. Since the storage and query struc-

ture for XSTPIR in [57] was based on RS codes, the generalization to GRS code structure

for GXSTPIR is somewhat serendipitous (note that the G in GRS codes is not automatically

associated with the G in GXSTPIR which stands for Graph based replicated storage). It is

also surprisingly effective, as explained intuitively in this section.

61

Before discussing how GRS codes are a part of the solution, let us illustrate the nature of the

problem with a simple example. Let us consider a very basic setting, where we have M = 4

subsets of messages, N = 4 servers, and ∀m∈ [M], we have Rm = [N]\{m}, i.e., messages

in Wm are stored at all servers except Server m. Let Vm,m∈ [M] be four vectors in F, each

of size N×1, such that the vector Vm has a zero in its mth coordinate (reflecting the fact

that messages in Wm are not stored at Server m) and all other coordinates are non-zero.

Then, as we will explain shortly, the rank of the matrix [V1,V2,V3,V4] reflects the number

of dimensions occupied by interference, i.e., downloaded symbols that are undesired. For

example, suppose we are operating in F5 and we choose,

V = [V1,V2,V3,V4] =




0 1 1 1

1 0 3 2

1 2 0 4

1 3 1 0




(3.31)

which has rank 2. Then this choice corresponds to a scheme where interference occupies

rank(V) = 2 out of the N = 4 dimensions, leaving the remaining 2 dimensions available for

retrieving desired message symbols. To see this explicitly, suppose each message is comprised

of L= 2 symbols, Wm,k = (Wm,k(1),Wm,k(2)) in F5, and the user desires the message Wµ,κ ∈

Wµ. The download from the nth server is the nth row of the following N×1 vector.

V =


 ∑

k∈[K1],`∈[L]

W1,k(`)Z1,k,(`)


V1 +


 ∑

k∈[K2],`∈[L]

W2,k(`)Z2,k,(`)


V2

+


 ∑

k∈[K3],`∈[L]

W3,k(`)Z3,k,(`)


V3 +


 ∑

k∈[K4],`∈[L]

W4,k(`)Z4,k,(`)


V4 (3.32)

+Wµ,κ(1)F
[µ,κ]
(1) +Wµ,κ(2)F

[µ,κ]
(2) (3.33)

The vectors F
[µ,κ]
(1) ,F

[µ,κ]
(2) are two 4×1 vectors, called demand vectors that help retrieve the

62

desired message symbols. Due to storage constraints, the demand vectors F
[µ,κ]
(1) ,F

[µ,κ]
(2) must

also have zeros in the coordinates where Vµ has zeros. The Zk,m,(`) random variables are

i.i.d. uniform noise terms added to hide the demand vectors contained in the query sent

to each server, thus ensuring privacy of user’s demand. The demand vectors, which carry

the 2 desired message symbols must be linearly independent of V1,V2,V3,V4 which carry

only interference. To retrieve his desired message, the user projects V into the 2 dimensional

null space of V1,V2,V3,V4, where all interference disappears and only the two desired signal

dimensions remain, from which the 2 desired symbols are retrieved. The rate achieved by this

scheme is 2/4 = 1/2 which is also the asymptotic capacity for this setting (converse follows

from Theorem 3.2).

From this example, it is clear that the problem is related to min-rank of the V matrix

subject to constraints on which terms take zero or non-zero values. These constraints are

affected not only by the given storage structure, but also from the possibility of redundant

servers6 as well as privacy and correctness constraints, e.g., because demand vectors must

share the same structure to ensure privacy. Evidently, PIR with graph based storage is

connected to other problems such as index coding, where also min-rank is important [15].

For arbitrary storage patterns such min-rank problems can be difficult to solve in general.

However, now let us consider what happens if every message is replicated the same number of

times, |Rm|= ρm = ρmin for all m∈ [M]. As will be shown in the proof of Theorem 3.3, even

if replication factors vary across messages, schemes for such settings may use the constant-

replication-factor schemes as their essential building blocks. Thus, the constant-replication-

factor setting is of fundamental significance. It is also the setting where we exploit the

structure of dual GRS codes.

For simplicity we will only consider a setting with X = 0 and T = 1. Consider such a setting

with an arbitrary number of message sets M , with N = 5 servers, constant-replication-factor
6As illustrated by examples in Section 3.3.1 the solution may be further optimized on storage structure

by ignoring redundant storage.

63

ρmin = 3, and an example of an arbitrary storage pattern that satisfies these constraints (5

servers, every message replicated at 3 servers) reflected in the structure of the following V

matrix.

V =




m=1 m=2 m=3 ··· m=M

Server 1 v1,1 0 v3,1 ··· vM,1

Server 2 0 v2,2 v3,2 ··· 0

Server 3 v1,3 v2,3 0 ··· vM,3

Server 4 v1,4 0 v3,4 ··· 0

Server 5 0 v2,5 0 ··· vM,5




(3.34)

Note that the mth column has exactly ρm = 3 non-zero entries corresponding to the 3 servers

that store the messages inWm. The structure of each column is arbitrary, fixed by the given

storage pattern, but each column must have exactly 3 non-zero entries. For this setting, it

turns out that regardless of the value of M , it is possible to choose non-zero values for vm,n

such that the rank of this matrix is not more than 3, i.e., all interference can be limited to

3 dimensions. This is done as follows. Let βn be distinct non-zero constants for all n∈ [N].

Furthermore, let us define,

vm,n =


 ∏

n′∈Rm\{n}

(βn−βn′)



−1

(3.35)

Based on dual GRS codes (see Lemma B.2), it turns out that this choice of vm,n ensures that

∑

n∈Rm

vm,nβ
j
n = 0 (3.36)

for all j ∈{0,1,··· ,ρmin−2}. For this example, since ρmin = 3, it means that ∀m∈ [M],

64

∑
n∈Rmvm,n = 0, and

∑
n∈Rmvm,nβn = 0. Writing this out explicitly, we have




1 1 1 1 1

β1 β2 β3 β4 β5







1
(β1−β3)(β1−β4)

0 1
(β1−β2)(β1−β4)

··· 1
(β1−β3)(β1−β5)

0 1
(β2−β3)(β2−β5)

1
(β2−β1)(β2−β4)

··· 0

1
(β3−β1)(β3−β4)

1
(β3−β2)(β3−β5)

0 ··· 1
(β3−β1)(β3−β5)

1
(β4−β1)(β4−β3)

0 1
(β4−β1)(β4−β2)

··· 0

0 1
(β5−β2)(β5−β3)

0 ··· 1
(β5−β1)(β5−β3)




=




0

0




(3.37)

which is easily verified because for any n1,n2,n3 ∈ [N],

vm,n1 +vm,n2 +vm,n3 =
(βn2−βn3)+(βn3−βn1)+(βn1−βn2)

(βn1−βn2)(βn1−βn3)(βn2−βn3)
= 0, (3.38)

vm,n1βn1 +vm,n2βn2 +vm,n3βn3 =
(βn2−βn3)βn1 +(βn3−βn1)βn2 +(βn1−βn2)βn3

(βn1−βn2)(βn1−βn3)(βn2−βn3)
= 0.

(3.39)

Thus, there are ρmin−1 = 2 vectors along which V has null projection, corresponding to

j= 0 and j= 1 in (3.36). These two interference free dimensions allow us to retrieve 2

desired symbols, achieving a rate of 2/5 for this example.

As another example, consider a setting with an arbitrary number of messagesM and an arbi-

trary number of servers N , where each message is replicated 4 times, i.e., ρm = ρmin = 4 for all

m∈ [M]. Given an arbitrary 4-replicated storage structure, choosing vm,n according to (3.35)

allows us to find ρmin−1 = 3 dimensions along which interference is nulled, corresponding to

65

j= 0,j= 1, and j= 2 in (3.36). This is illustrated below.




1 1 ··· 1

β1 β2 ··· βN
β2

1 β
2
2 ··· β2

N







Column m

... 0
...

row n1 ··· vm,n1 ···
... 0

...

row n2 ··· vm,n2 ···
... 0

...

row n3 ··· vm,n3 ···
... 0

...

row n4 ··· vm,n4 ···
... 0

...




=




0

0

0



. (3.40)

Column m corresponds to an arbitrary message set Wm that is replicated at the 4 servers

n1,n2,n3,n4, and it is easily verified that if vm,n are chosen according to (3.35) then

vm,n1 +vm,n2 +vm,n3 +vm,n4 = 0, (3.41)

βn1vm,n1 +βn2vm,n2 +βn3vm,n3 +βn4vm,n4 = 0, (3.42)

β2
n1
vm,n1 +β2

n2
vm,n2 +β2

n3
vm,n3 +β2

n4
vm,n4 = 0. (3.43)

Thus, there are 3 interference-free dimensions which allow us to retrieve 3 desired symbols

for a rate of 3/N .

In general, if the V matrix has ρmin non-zero entries in each column, then by assigning vm,n

according to (3.35) there are ρmin−1 dimensions that are interference free, corresponding

to j ∈{0,1,··· ,ρmin−2} in (3.36), along which ρmin−1 desired symbols can be retrieved

to achieve the rate (ρmin−1)/N , which matches (ρmin−X−T)/N for X = 0,T = 1. When

T > 1 and/or X > 0, then additional interference terms enter into the picture due to the

66

additional noise terms needed to protect the messages (X-security) and the queries (T -

privacy). Following the construction previously introduced for XSTPIR, these additional

interference dimensions are restricted by using cross-subspace alignment [57]. Fortunately,

since the storage and query structure used for XSTPIR in [57] is also based on Reed Solomon

Codes, it turns out to be compatible with the additional structure imposed by the choice

of vm,n in (3.35) according to dual Generalized Reed Solomon Codes. Combining both

ideas, it turns out that the number of interference free dimensions that remain available

for desired message symbols is equal to ρmin−X−T , which allows us to achieve a rate of

(ρmin−X−T)/N . The details are left to the proof of Theorem 3.1.

3.4 Proof of Theorem 3.1

3.4.1 A Simple Example

To make the proof more accessible, let us start with a simple example, which is essentially

derived from (3.34). Consider the setting where N = 5, T = 1 and X = 0. There are M = 4

message sets, Wm = (Wm,1,Wm,2,··· ,Wm,Km),m∈ [4], that are stored in the 5 servers accord-

ing to the replication pattern R= ((1,3,4),(2,3,5),(1,2,4),(1,3,5)), where Km,m∈ [M] are

positive integers representing the number of messages in the message set Wm. Note that

this replication pattern R corresponds to the four columns shown in the V matrix in (3.34).

The scheme operates over a block where each message is comprised of L= 2 symbols from

Fq where q≥N+L= 7. Let β1,β2,··· ,β5,f1,f2 be 7 distinct non-zero elements in Fq. Now

let us specify the storage at each server. Server n stores all the L= 2 symbols of messages

from the message sets Wm, for all m∈Mn, i.e.,

Sn = {Wm,(1),Wm,(2),∀m∈Mn} (3.44)

67

Wm,(`) = [Wm,1(`),Wm,2(`),··· ,Wm,Km(`)], ∀`∈ [2]. (3.45)

For example, consider the first server, we haveM1 = {1,3,4}, therefore,

S1 = {W1,(1),W1,(2),W3,(1),W3,(2),W4,(1),W4,(2)}. (3.46)

Notably, for all m∈ [4], the 1×Km row vector Wm,(`) contains the `th symbol from every

message in Wm. Suppose the user wishes to retrieve the message Wµ,κ = (Wµ,κ(1),Wµ,κ(2)).

The query sent to Server n is

Q[µ,κ]
n = {Q[µ,κ]

m,n,(1),Q
[µ,κ]
m,n,(2),∀m∈Mn} (3.47)

where,

Q
[µ,κ]
m,n,(`) =

vm,n
f`−βn

(
F[µ,κ]
m +(f`−βn)Z′m,1,(`)

)
(3.48)

=
vm,n
f`−βn

F[µ,κ]
m +vm,nZ

′
m,1,(`), (3.49)

the constant values vm,n are defined as

vm,n,


 ∏

n′∈Rm\{n}

(βn−βn′)



−1

, (3.50)

F
[µ,κ]
m are demand vectors defined as

F[µ,κ]
m =





eκ, if m=µ,

0, otherwise.
(3.51)

where eκ is the κth column of the Km×Km identity matrix. The values of F
[µ,κ]
m are kept

private from any server, by the Km×1 column vectors Z′m,1,(`) comprised of i.i.d uniform

68

noise symbols, for all m∈ [4],`∈ [2]. Thus, the scheme is T = 1-private. To further clarify

the construction of queries, consider the first server, we have

Q
[µ,κ]
1 = {Q[µ,κ]

1,1,(1),Q
[µ,κ]
1,1,(2),Q

[µ,κ]
3,1,(1),Q

[µ,κ]
3,1,(2),Q

[µ,κ]
4,1,(1),Q

[µ,κ]
4,1,(2)}. (3.52)

The answer returned by Server n is

A[µ,κ]
n =

∑

`∈[2]

∑

m∈Mn

Wm,(`)Q
[µ,κ]
m,n,(`) (3.53)

=
∑

`∈[2]

∑

m∈Mn

vm,n
f`−βn

Wm,(`)F
[µ,κ]
m

︸ ︷︷ ︸
A
′[µ,κ]
n

+
∑

`∈[2]

∑

m∈Mn

vm,nWm,(`)Z
′
m,1,(`) (3.54)

Upon receiving all N = 5 answers, the user evaluates the L= 2 values Y1,Y2, as follows.



Y1

Y2


=




1 1 ··· 1

β1 β2 ··· β5







A
[µ,κ]
1

A
[µ,κ]
2

...

A
[µ,κ]
5



. (3.55)

Note that by the construction of A[µ,κ]
1 ,A

[µ,κ]
2 ,··· ,A[µ,κ]

5 , the column vector on the RHS of

(3.55) can be written in the following matrix form.




A
[µ,κ]
1

A
[µ,κ]
2

...

A
[µ,κ]
5




=




A
′[µ,κ]
1

A
′[µ,κ]
2

...

A
′[µ,κ]
5




+




v1,1 0 v3,1 v4,1

0 v2,2 v3,2 0

v1,3 v2,3 0 v4,3

v1,4 0 v3,4 0

0 v2,5 0 v4,5







W1,(1)Z
′
1,1,(1) +W1,(2)Z

′
1,1,(2)

W2,(1)Z
′
2,1,(1) +W2,(2)Z

′
2,1,(2)

W3,(1)Z
′
3,1,(1) +W3,(2)Z

′
3,1,(2)

W4,(1)Z
′
4,1,(1) +W4,(2)Z

′
4,1,(2)



. (3.56)

69

As previously shown in (3.37), guaranteed by Lemma B.2, the choice of constant values vm,n

satisfy the property that




1 1 ··· 1

β1 β2 ··· β5







v1,1 0 v3,1 v4,1

0 v2,2 v3,2 0

v1,3 v2,3 0 v4,3

v1,4 0 v3,4 0

0 v2,5 0 v4,5




=




0

0


. (3.57)

Besides, we note that by the definition of demand vectors F
[µ,κ]
m , we have

Wm,(`)F
[µ,κ]
m =




Wµ,κ(`), if m=µ,

0, otherwise.
(3.58)

Therefore, we have



Y1

Y2


=




1 1 1

βRµ(1) βRµ(2) βRµ(3)







vµ,Rµ(1)

f1−βRµ(1)

vµ,Rµ(1)

f2−βRµ(1)

vµ,Rµ(2)

f1−βRµ(2)

vµ,Rµ(2)

f2−βRµ(2)

vµ,Rµ(3)

f1−βRµ(3)

vµ,Rµ(3)

f2−βRµ(3)






Wµ,κ(1)

Wµ,κ(2)


. (3.59)

Guaranteed by Lemma B.3, the product of the first two matrices on the RHS is an invertible

2×2 matrix. Thus the user is able to obtain the desired message Wµ,κ = (Wµ,κ(1),Wµ,κ(2))

by inverting the matrix. Note that the 2 symbols of the desired message are obtained from

a total of 5 downloaded symbols, the rate achieved by the scheme is R= 2/5, which achieves

the desired rate.

70

3.4.2 A General Scheme

Now let us we present the achievable scheme for GXSTPIR for arbitrary N,T,X,M,Km,ρm

values that allows private retrieval of any desired message at a rate R= ρmin−X−T
N

. Without

loss of generality we will assume that ρm = ρmin for all m∈ [M]. For any message that is

replicated more than ρmin times, the scheme can be applied by arbitrarily choosing any ρmin

replications of that message and ignoring the rest. In order to achieve the rate R= ρmin−X−T
N

,

the scheme will retrieve ρmin−X−T desired symbols by downloading one symbol from each

server.

The scheme operates over a block where each message is comprised of L symbols and we

have

L= ρmin−X−T. (3.60)

All symbols are in Fq and without loss of generality we will assume that q≥N+L. Let

β[N],f[N] be distinct non-zero values in Fq. Server n stores,

Sn = {W(n)
m,(1),W

(n)
m,(2),··· ,W

(n)
m,(L),∀m∈Mn} (3.61)

W
(n)
m,(`) = Wm,(`) +

∑

x∈[X]

(f`−βn)xZm,x,(`) (3.62)

Wm,(`) = [Wm,1(`),Wm,2(`),··· ,Wm,Km(`)], ∀`∈ [L]. (3.63)

Thus, for all m∈ [M], the 1×Km row vector Wm,(`) contains the `th symbol from every

message inWm. For allm∈ [M],x∈ [X],`∈ [L], the 1×Km row vectors Zm,x,(`) are comprised

of i.i.d. uniform noise symbols. Any message symbol Wm,k(`) that is secret-shared among

servers Rm, is protected by the X noise symbols Zm,1,(`)(k),Zm,2,(`)(k),··· ,Zm,X,(`)(k) that are

i.i.d. uniform and coded according to an MDS(X,ρmin) code, so that the shares accessible

to any set of up to X colluding servers are independent of Wm,k(`). Thus the scheme is

71

X-secure.

The query sent to Server n is

Q[µ,κ]
n = {Q[µ,κ]

m,n,(`),∀m∈Mn,`∈ [L]} (3.64)

where,

Q
[µ,κ]
m,n,(`) =

vm,n
f`−βn


F[µ,κ]

m +
∑

t∈[T]

(f`−βn)tZ′m,t,(`)


 (3.65)

F
[µ,κ]
m are demand vectors defined as

F[µ,κ]
m =





eκ, if m=µ,

0, otherwise.
(3.66)

where eκ is the κth column of the Km×Km identity matrix. The values of F
[µ,κ]
m are kept

private from any set of up to T colluding servers, by the Km×1 column vectors Z′m,t,(`)

comprised of i.i.d uniform noise symbols, for all m∈ [M],t∈ [T],`∈ [L]. Note that the noise

vectors that protect F
[µ,κ]
m are coded according to an MDS(T,ρmin) code spread across the

queries sent to servers in Rm, i.e., all queries that contain F
[µ,κ]
m , so that the queries accessible

to any set of up to T servers reveal no information about the demand vectors. Thus, the

scheme is T -private.

The constant values vm,n in (3.65) are defined as

vm,n,


 ∏

n′∈Rm\{n}

(βn−βn′)



−1

(3.67)

As shown in Lemma B.2 in Appendix B.1 using the properties of dual GRS codes, this choice

72

of vm,n satisfies the crucial property that

∑

n∈Rm

vm,nβ
j
n = 0 (3.68)

for all m∈ [M] and for all j ∈{0,1,··· ,ρmin−2}.

The answer returned by Server n is

A[µ,κ]
n =

∑

`∈[L]

∑

m∈Mn

W
(n)
m,(`)Q

[µ,κ]
m,n,(`) (3.69)

Upon receiving all N answers, the user evaluates the L values Y1,Y2,··· ,YL, as follows.




Y1

Y2

...

YL




=




1 1 ··· 1

β1 β2 ··· βN
...

... ··· ...

βL−1
1 βL−1

2 ··· βL−1
N







A
[µ,κ]
1

A
[µ,κ]
2

...

A
[µ,κ]
N




(3.70)

so that for all i∈ [L],

Yi =
∑

n∈[N]

βi−1
n A[µ,κ]

n (3.71)

=
∑

n∈[N]

βi−1
n

∑

l∈[L]

∑

m∈Mn

W
(n)
m,(`)Q

[µ,κ]
m,n,(`) (3.72)

=
∑

`∈[L]

∑

m∈[M]

∑

n∈Rm

βi−1
n W

(n)
m,(`)Q

[µ,κ]
m,n,(`) (3.73)

=
∑

`∈[L]

∑

m∈[M]

∑

n∈Rm

vm,nβ
i−1
n

f`−βn


Wm,(`) +

∑

x∈[X]

(f`−βn)xZm,x,(`)





F[µ,κ]

m +
∑

t∈[T]

(f`−βn)tZ′m,t,(`)


 (3.74)

73

=
∑

`∈[L]

∑

m∈[M]

∑

n∈Rm


vm,nβ

i−1
n

f`−βn
Wm,(`)F

[µ,κ]
m +

∑

t∈[T]

vm,nβ
i−1
n (f`−βn)t−1Wm,(`)Z

′
m,t,(`)

+
∑

x∈[X]

vm,nβ
i−1
n (f`−βn)x−1Zm,x,(`)F

[µ,κ]
m

+
∑

x∈[X]

∑

t∈[T]

vm,nβ
i−1
n (f`−βn)x+t−1Zm,x,(`)Z

′
m,t,(`)


 (3.75)

=
∑

`∈[L]

∑

m∈[M]

∑

n∈Rm

(
vm,nβ

i−1
n

f`−βn
Wm,(`)F

[µ,κ]
m

)

+
∑

`∈[L]

∑

m∈[M]


∑

t∈[T]

Wm,(`)Z
′
m,t,(`)

(∑

n∈Rm

vm,nβ
i−1
n (f`−βn)t−1

)


+
∑

`∈[L]

∑

m∈[M]


∑

x∈[X]

Zm,x,(`)F
[µ,κ]
m

(∑

n∈Rm

vm,nβ
i−1
n (f`−βn)x−1

)


+
∑

`∈[L]

∑

m∈[M]


∑

x∈[X]

∑

t∈[T]

Zm,x,(`)Z
′
m,t,(`)

(∑

n∈Rm

vm,nβ
i−1
n (f`−βn)x+t−1

)


(3.76)

The terms
(∑

n∈Rmvm,nβ
i−1
n (f`−βn)t−1

)
,

(∑
n∈Rmvm,nβ

i−1
n (f`−βn)x−1

)
and

(∑
n∈Rmvm,nβ

i−1
n (f`−βn)x+t−1

)
are equal to zero because of (3.68). This is because

all of these can be expanded into weighted sums of terms of the form
∑

n∈Rmvm,nβ
j
n for j

taking values in {0,1,··· ,ρmin−2}. Let us show this explicitly for
∑

n∈Rmvm,nβ
i−1
n (f`−βn)t−1

as follows,

∑

n∈Rm

vm,nβ
i−1
n (f`−βn)t−1 =

∑

n∈Rm

vm,nβ
i−1
n


 ∑

τ∈{0,1,···,t−1}

(
t−1

τ

)
βτn`

t−1−τ


 (3.77)

=
∑

τ∈{0,1,···,t−1}

(
t−1

τ

)
f t−1−τ
`

(∑

n∈Rm

vm,nβ
i+τ−1
n

)
(3.78)

= 0 (3.79)

because 0≤ i+τ−1≤L+(T −1)−1 = ρmin−X−2≤ ρmin−2. It can be similarly shown

74

that
(∑

n∈Rmvm,nβ
i−1
n (f`−βn)x−1

)
= 0 and

(∑
n∈Rmvm,nβ

i−1
n (f`−βn)x+t−1

)
= 0. Thus, we

have,

Yi =
∑

`∈[L]

∑

m∈[M]

∑

n∈Rm

(
vm,nβ

i−1
n

f`−βn
Wm,(`)F

[µ,κ]
m

)
(3.80)

=
∑

`∈[L]

∑

m∈[M]

Wm,(`)F
[µ,κ]
m

(∑

n∈Rm

vm,nβ
i−1
n

f`−βn

)
(3.81)

=
∑

`∈[L]

Wµ,(`)eκ


∑

n∈Rµ

vµ,nβ
i−1
n

f`−βn


 (3.82)

=
∑

`∈[L]

∑

n∈Rµ

Wµ,κ(`)
vµ,nβ

i−1
n

f`−βn
(3.83)

Note that we used (3.66) to obtain (3.82). In matrix notation, we have,




Y1

Y2

...

YL




=




1 ··· 1

βRµ(1) ··· βRµ(ρm)

...
...

...

βL−1
Rµ(1) ··· βL−1

Rµ(ρm)




︸ ︷︷ ︸
A




vµ,Rµ(1)

f1−βRµ(1)
...

vµ,Rµ(1)

fL−βRµ(1)

...
...

...
vµ,Rµ(ρm)

f1−βRµ(ρm)
...

vµ,Rµ(ρm)

fL−βRµ(ρm)




︸ ︷︷ ︸
B




Wµ,κ(1)

Wµ,κ(2)

...

Wµ,κ(L)



. (3.84)

Guaranteed by Lemma B.3 and the the definitions of vm,n and βn, ∀m∈ [M],n∈ [N], the

L×L matrix AB is invertible, and the desired message is retrievable by inverting the matrix.

Thus the scheme is correct. This completes the proof of Theorem 3.1. �

3.4.3 A Private Computation Scheme for X = 0, ρmin =T +1.

From the description of the scheme, it is evident that the demand vectors are protected by

the uniform noise, regardless of how they are chosen. Modifying the choice of demand vectors

would allow the user to privately retrieve various forms of desired information, generalizing

the scheme to broader applications. Here we present a simple example that will also be

75

useful for the proof of Theorem 3.3.

Suppose there are no security constraints (X = 0) and every message is replicated T +1 times

(ρmin =T +1), so that our scheme operates over blocks comprised of L= ρmin−X−T = 1

symbol per message. Recall that our scheme allows the user to retrieve an arbitrary message

Wµ,κ at the rate R= (ρmin−X−T)/N = 1/N in this setting. Now, suppose instead of an

arbitrary message, the user wants to retrieve an arbitrary linear combination of all messages,

λ(W),
∑

m∈[M]

∑

k∈Km

λm,kWm,k(1) =
∑

m∈[M]

Wm,(1)λm, ∀`∈ [L] (3.85)

where

λm = [λm,1,λm,2,··· ,λm,Km]T ∈FKm×1
q , ∀m∈ [M], (3.86)

are the combining coefficients to be kept private from any set of up to T colluding servers.

This is a form of the private linear computation problem studied in [107] applied here to

graph based replicated storage. To apply our scheme to this setting, replace the demand

vectors F
[µ,κ]
m with F

[λ]
m defined as follows.

F[λ]
m =

(∑

n∈Rm

vm,n
f1−βn

)−1

λm (3.87)

so that continuing from (3.81) we have

Yi =
∑

`∈[L]

∑

m∈[M]

Wm,(`)F
[λ]
m

(∑

n∈Rm

vm,nβ
i−1
n

f`−βn

)
, i∈ [L] = {1} (3.88)

(3.89)

⇒Y1 =
∑

m∈[M]

Wm,(1)λm

(∑

n∈Rm

vm,n
f1−βn

)−1(∑

n∈Rm

vm,n
f1−βn

)
(3.90)

76

=
∑

m∈[M]

Wm,(1)λm =λ(W) (3.91)

Thus, a private computation scheme is readily obtained for the case where all messages are

replicated at least T +1 times. The rate of this scheme is (ρmin−T)/N = 1/N . Just as in

[107], there is no rate loss relative to the case where the user wants to retrieve only one

message Wµ,κ.

3.5 Proof of Theorem 3.2

Let T be a subset of Rm, such that |T |= max(|Rm|,T). Let X be a subset of Rm \T , such

that |X |= max(|Rm|−|T |,X). Note that it follows from the definition that T ∩X = ∅. From

the decodability of message Wm,k we have,

L= I
(
Wm,k ; A

[m,k]
[N] |Q

[m,k]
[N]

)
(3.92)

≤ I
(
Wm,k ; A

[m,k]
Rm\X ,S[N]\Rm ,SX |Q[m,k]

[N]

)
(3.93)

= I
(
Wm,k ; S[N]\Rm ,SX |Q[m,k]

[N]

)
+I
(
Wm,k ; A

[m,k]
Rm\X |S[N]\Rm ,SX ,Q

[m,k]
[N]

)
(3.94)

= I
(
Wm,k ; A

[m,k]
Rm\X |SX ,S[N]\Rm ,Q

[m,k]
[N]

)
(3.95)

= I
(
Wm,k ; A

[m,k]
T ,A

[m,k]
(Rm\X)\T |SX ,S[N]\Rm ,Q

[m,k]
[N]

)
(3.96)

= I
(
Wm,k;A

[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
[N]

)

+I
(
Wm,k;A

[m,k]
(Rm\X)\T |A

[m,k]
T ,SX ,S[N]\Rm ,Q

[m,k]
[N]

)
(3.97)

≤ I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
[N])+

∑

n∈(Rm\X)\T

H(A[m,k]
n) (3.98)

≤ I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)+

∑

n∈(Rm\X)\T

H(A[m,k]
n) (3.99)

≤ I(Wm,k;A
[m,k′]
T |SX ,S[N]\Rm ,Q

[m,k′]
T)+

∑

n∈(Rm\X)\T

H(A[m,k′]
n) (3.100)

77

In (3.93) we used the fact that A
[m,k]
[N]\(Rm\X) is a function of

(
S[N]\Rm ,SX ,Q

[m,k]
[N]

)
, and

I(A;f(B,C) |C)≤ I(A;f(B,C),B |C) = I(A;B |C)+I(A;f(B,C) |B,C) = I(A;B |C)

where f(B,C) is some function of B,C. The chain rule of mutual information is used for

(3.94). For (3.95) we used the fact that (S[N]\Rm ,SX) is independent of
(
Wm,k,Q

[m,k]
[N]

)

according to Lemma B.4. The next step, (3.96) simply re-writes the same expression

in different notation, while (3.97) follows from chain rule of mutual information. For

(3.98) we used the fact that I(A;B |C) =H(B |C)−H(B |A,C)≤H(B) because entropy

is non-negative and conditioning reduces entropy. (3.99) follows from Lemma B.5. (3.100)

follows because I(Q
[m,κ]
T ,A

[m,κ]
T ,S[N];κ) = 0 according to Lemma B.6. Equivalently,

(
Q

[m,k]
T ,A

[m,k]
T ,S[N]

)
∼
(
Q

[m,k′]
T ,A

[m,k′]
T ,S[N]

)
(3.101)

for all m∈ [M] and k,k′ ∈ [Km], which in turn implies (3.100).

Summing (3.100) over all k ∈ [Km] we have

KmL≤


 ∑

k∈[Km]

I(Wm,k;A
[m,k′]
T |SX ,S[N]\Rm ,Q

[m,k′]
T)


+Km

∑

n∈(Rm\X)\T

H(A[m,k′]
n)

(3.102)

≤ I(Wm,1,··· ,Wm,Km ;A
[m,k′]
T |SX ,S[N]\Rm ,Q

[m,k′]
T)+Km

∑

n∈(Rm\X)\T

H(A[m,k′]
n)

(3.103)

≤H(A
[m,k′]
T)+Km

∑

n∈(Rm\X)\T

H(A[m,k′]
n) (3.104)

(3.103) follows from the chain rule of mutual information and repeated use of the property

that I(A;C |D)+I(B;C |D)≤ I(A;C |D)+I(B;C |A,D) = I(A,B;C |D) when A,B are in-

dependent conditioned on D, i.e., I(A;B |D) = 0. This conditional independence property

for (3.103) is proved in Lemma B.7. (3.104) follows from the facts that entropy is non-

negative and conditioning reduces entropy, i.e., I(A;B |C) =H(A |C)−H(A |B,C)≤H(A |

78

C)≤H(A).

From (3.104) we note that if |Rm| ≤X+T then Rm \X\T = ∅, which means that as Km→

∞, we must haveH(A
[m,k′]
T)→∞, and since the download approaches infinity, the asymptotic

capacity is zero. This is the degenerate case in Theorem 3.2.

Having dealt with the degenerate setting, henceforth, let us assume that |Rm|>X+T for

all m∈ [M]. Since the capacity for this case is not zero (follows from achievability), there

is no loss of generality in assuming that the asymptotic value of download cost is bounded,

i.e., H(A
[m,k′]
n)/Km = o(1) as a function of Km for all n∈ [N]. Recall that f(x) = o(1) is

equivalent to the condition that limx→∞f(x) = 0. In this case we have

∑

n∈(Rm\X)\T

H(A
[m,k′]
n)

L
+o(1)≥ 1 (3.105)

⇒
∑

n∈(Rm\X)\T

Dn+o(1)≥ 1. (3.106)

where Dn = H(A
[m,k′]
n)
L

is defined as the value of download from server n, normalized by L.

As K→∞ all o(1) terms approach 0 and we obtain the set of conditions that define D in

(3.27). The capacity bound in Theorem 3.2 for the non-degenerate setting follows from the

definition of capacity as the supremum of L/D= (D1 + ···+DN)−1. �

3.6 Proof of Theorem 3.3

3.6.1 Proof of Converse for Theorem 3.3

It already follows from Theorem 3.2 that if ρmin≤T then the capacity is zero. So let us

assume that ρmin >T . Theorem 3.3 also limits ρm≤T +2 for all m∈ [M], therefore we must

have ρm ∈{T +1,T +2} for all m∈ [M], i.e., every message is either (T +1)-replicated or

79

(T +2)-replicated. Recall that NT+2 is the set of servers that do not store any messages that

are (T +1)-replicated. The remaining servers are in NT+1.

According to the general converse bound in Theorem 3.2, the asymptotic capacity C∞ is

bounded above by the maximum value of (D1 + ···+DN)−1 subject to the constraints,

Du+Dv≥ 1, ∀uv ∈E[NT+2] (3.107)

Dt≥ 1, ∀t∈ [NT+1] (3.108)

We use the notation G[NT+2] to represent the induced subgraph of G[V,E] whose vertex

set is NT+2 and whose edge set, denoted E[NT+2] consists of all edges uv ∈E such that

u,v ∈NT+2. Recall that a 2-matching in G[NT+2] is a vector x that assigns to each edge

uv ∈E[NT+2], a value from {0,1,2} such that the sum of values assigned to all edges in

E[NT+2] that are incident with any vertex n∈NT+2 is not more than 2. Let x be the vector

that produces the maximum size 2-matching in G[NT+2], i.e., the size of x is

∑

uv∈E[NT+2]

x(uv) = ν2(G[NT+2]). (3.109)

Multiplying both sides of (3.107) by x(uv), summing up over all uv ∈E[NT+2], and adding

2×(3.108), we have

∑

uv∈E[NT+2]

(Du+Dv)x(uv)+2
∑

t∈[NT+1]

(Dt)≥
∑

uv∈E[NT+2]

x(uv)+2|NT+1| (3.110)

⇒
∑

u∈NT+2

x(δ(u)∩E[NT+2])(Du)+2
∑

t∈[NT+1]

(Dt)≥ ν2(G[NT+2])+2|NT+1| (3.111)

⇒ 2
∑

u∈NT+2

(Du)+2
∑

t∈[NT+1]

(Dt)≥ ν2(G[NT+2])+2|NT+1| (3.112)

⇒ 2
∑

u∈[N]

(Du)≥ ν2(G[NT+2])+2|NT+1| (3.113)

⇒ (D1 +D2 + ···+Dn)≥ ν2(G[NT+2])+2|NT+1|
2

(3.114)

80

In (3.112) we used the fact that the sum of values assigned by x to all edges in E[NT+2]

that are incident with the vertex u is not more than 2. Combining (3.114) with the result

of Theorem 3.2, we obtain the desired converse bound

C∞≤
2

ν2(G[NT+2])+2|NT+1|
. (3.115)

Thus, the proof of converse for Theorem 3.3 is complete. �

3.6.2 Proof of Achievability for Theorem 3.3

Let us define W̃T+1 as the set of messages that are replicated T +1 times. Let U ⊂NT+2 be

a stable set. We will show that it is possible to retrieve L= 2 desired symbols with a total

normalized download,

D1 + ···+DN =
|[1 :N]\U |+ |N (U)∪NT+1|

2
(3.116)

The achievable scheme does not use the servers in U . Let W̃U denote the set of messages

that are stored at any of the servers in U . Note that none of these messages is in W̃T+1

because U ⊂NT+2. Also note that no message is replicated more than once in U because U

is a stable set. After the servers in U are eliminated, the messages W̃∗= W̃U ∪W̃T+1 are now

replicated exactly (T +1) times in the remaining servers. All other messages are replicated

(T +2) times. As a thought experiment, suppose we add a genie server that stores W̃∗.

Now we have a storage system where all messages are replicated (T +2) times, so that the

scheme presented in the proof of Theorem 3.1 can be used to retrieve L= 2 desired symbols

while downloading |[N]\U |+1 symbols, which includes one genie symbol, say λ(W̃∗). In

order to obtain λ(W̃∗) without a genie, we will use the servers in the set N (U)∪NT+1. Note

that N (U) and NT+1 may have some servers in common. More importantly, note that W̃∗

is replicated (T +1) times within this set. Therefore, we can privately retrieve λ(W̃∗) by

81

downloading one symbol from each of these servers, with the scheme described in Section

3.4.3. Thus, we have a private and correct scheme that retrieves L= 2 desired symbols with

a total download of |[N]\U |+ |N (U)∪NT+1|. Next, we note the following identity,

|[N]\U |︸ ︷︷ ︸
t1

+|N (U)∪NT+1|︸ ︷︷ ︸
t2

= |NT+2\U |︸ ︷︷ ︸
t3

+|N (U)∩NT+2|︸ ︷︷ ︸
t4

+2|NT+1|︸ ︷︷ ︸
t5

(3.117)

U

N (U)

NT+2 NT+1

Figure 3.2: General setting of U ⊂NT+2 which may have neighbors N (U) both in NT+1 and
NT+2. Note that N (U) does not include U .

Let us verify that the identity holds as follows. First consider the servers in NT+1. On the

LHS all these servers are included in t1 as well as t2, i.e., they are counted twice. On the

RHS these servers are included only in t5 which is scaled by a factor of 2, so both sides

match. Now consider servers that are in NT+2 and are neighbors of servers in U . On the

LHS these servers are included in t1 as well as t2, i.e., they are counted twice. On the RHS,

these servers are included in t3 as well as t4, so again they are counted twice and the two

sides match. Finally, consider the servers that are in NT+2 but are neither in U nor among

the neighbors of the servers in U . On the LHS all these servers are included in t1, while on

the RHS they are included in t3. Thus on both sides these servers are included once, and the

two sides match. Finally, note that the servers in U are not included in any term on either

the LHS or the RHS. Thus, we have verified that (3.117) holds.

82

Now, let us recall that according to (3.29),

ν2(G[NT+2]) = min{|NT+2\U |+ |N (U)∩NT+2|
∣∣∣such that U ⊂NT+2,U is a stable set}.

(3.118)

Therefore, minimizing over U ∈NT+2, the scheme achieves the normalized download,

D1 + ···+DN =
ν2(G[NT+2])

2
+ |NT+1|, (3.119)

and therefore we have a lower bound on capacity,

C∞≥
2

ν2(G[NT+2])+2|NT+1|
. (3.120)

Because the achievable scheme works for any number of messages, it is notable that this

lower bound holds not only for asymptotic capacity, but also for capacity with arbitrary

number of messages Km. This completes the proof of achievability for Theorem 3.3. �

3.7 Discussion

The asymptotic capacity of GXSTPIR studied in this chapter reveals important insights into

the structure of optimal schemes for graph-based replicated storage. In particular the special

structure inspired by dual GRS codes emerges as a powerful idea for GXSTPIR.

83

Chapter 4

X-secure T -private Information Retrieval

from MDS Coded Storage with

Byzantine and Unresponsive Servers

The problem of X-secure T -private information retrieval from MDS coded storage is studied

in this chapter, where the user wishes to privately retrieve one out of K independent mes-

sages that are distributed over N servers according to an MDS code. It is guaranteed that

any group of up to X colluding servers learn nothing about the messages and that any group

of up to T colluding servers learn nothing about the identity of desired message. A lower

bound of achievable rates is proved by presenting a novel scheme based on cross-subspace

alignment and a successive decoding with interference cancellation strategy. For large num-

ber of messages (K→∞) the achieved rate, which we conjecture to be optimal, improves

upon the best known rates previously reported in the literature by Raviv and Karpuk, and

generalizes an achievable rate for MDS-TPIR previously found by Freij-Hollanti et al. that

is also conjectured to be asymptotically optimal. The setting is then expanded to allow

unresponsive and Byzantine servers. Finally, the scheme is applied to find a new lower con-

84

vex hull of (download, upload) pairs of secure and private distributed matrix multiplication

that generalizes, and in certain asymptotic settings strictly improves upon the best known

previous results.

4.1 Introduction

The study of PIR is important from an information theoretic perspective not only because

privacy is important, but also because optimal PIR schemes often reveal novel coding struc-

tures, thereby advancing our understanding of structured codes, a cornerstone of network

information theory. The fundamental significance of these coding structures is emphasized

by the connections between PIR and a number of other important problems such as locally

decodable codes [62, 136], locally repairable codes [43], batch codes [46], oblivious transfer

[87, 40], instance hiding [2, 23], secret sharing [95], blind interference alignment [47, 101], and

secure computation [133], including recent works on secure distributed matrix multiplication

[18, 32, 60, 3, 51, 17]. As the literature on information theoretic PIR continues to grow, it is

also valuable to find unified perspectives that combine our understanding of various aspects

of PIR and allow generalizations beyond PIR. Against this background, the contribution of

this chapter is summarized in Figure 4.1.

An important concern in systems that rely on distributed servers is that some of these servers

may turn out to be unresponsive or Byzantine (return erroneous responses)[68, 114, 19, 98].

In this chapter we study the problem of U-B-MDS-XSTPIR, i.e., PIR with X-secure

data, T -private queries, (N,Kc) MDS coded storage, where U servers are unresponsive

and up to B servers are Byzantine. In particular we show that a rate of R∞U-B-MDS-XSTPIR =

1−
(
Kc+X+T+2B−1

N−U

)
is achievable for any number of messages K. This rate strictly im-

proves upon the previous best known rate R=
(
1−
(
Kc+X+T+2B−1

N−U

))(
Kc

Kc+X

)
for U-B-MDS-

85

PIR[102]
Replicated storage

TPIR[106]
T -private

Replicated storage

U-TPIR[106]
U-unresponsive
T -Private

Replicated storage

B-TPIR [12]
B-Byzantine
T -Private

Replicated storage

U-B-MDS-TPIR [109]
U-unresponsive

B-Byzantine

T -Private

MDS-coded storage

MDS-PIR[11]
MDS-coded storage

XSTPIR
Ch. 2, [57]

X-secure, T -private

Replicated Storage

MDS-TPIR
[36, 105]
T -private

MDS-coded storage

U-B-MDS-XSTPIR
X-secure, T -private

U-unresponsive

B-Byzantine Servers

MDS-coded storage

(this chapter)

Private Secure

Distributed

Matrix Multiplication

[63, 17]

(application)

Figure 4.1: The U-B-MDS-XSTPIR setting studied in this chapter generalizes previously
studied settings of PIR [102], TPIR [106], MDS-PIR [11], MDS-TPIR [36, 105], XSTPIR
[57], U-TPIR [106], B-TPIR [12], and U-B-MDS-TPIR [109] as shown, and finds application
beyond PIR in the context of Private Secure Distributed Matrix Multiplication (PSDMM).

XSTPIR, found1 in [88]. In fact, for MDS-XSTPIR, i.e., with U =B= 0, we conjecture that

our rate of R∞MDS-XSTPIR = 1−
(
Kc+X+T−1

N

)
is asymptotically optimal as K→∞, thus general-

izing a previous conjecture for MDS-TPIR in [36] that can be obtained by further setting

X = 0. Remarkably, U-B-MDS-XSTPIR is a generalization of PIR, TPIR, MDS-PIR, XST-

PIR, U-TPIR, B-TPIR, and U-B-MDS-TPIR and the asymptotically optimal (or the best

known) structured coding schemes for all of these problems can be obtained as a special

case of the unified scheme for U-B-MDS-XSTPIR that we present in this chapter. The basis

for this unified view, and the central technical contribution of this chapter, is a scheme that

combines the cross-subspace alignment idea in Chapter 2 with a layered structure that allows

successive decoding and interference cancellation to retrieve multiple layers of symbols from

the desired message. The scheme is also shown to be applicable to the problem of secure and

private distributed matrix multiplication (PSDMM) that was recently introduced in [63, 17].

Remarkably, the new scheme is able to generalize, and in certain asymptotic settings strictly

improve upon the previously best known rates for PSDMM.
1Reference [88] considers the problem of private polynomial computation with Lagrange encoding, which

reduces to U-B-MDS-XSTPIR in the special case where the functions to be computed are all distinct coor-
dinate projections.

86

4.2 Problem Statement: U-B-MDS-XSTPIR

Consider K independent messages, W1,W2,...,WK . Each message is represented by ` uni-

formly random symbols from the finite field Fq.

H(W1) =H(W2) = ···=H(WK) = `, (4.1)

H(W[K]) =K`, (4.2)

in q-ary units. Note that as is typical in information theory, the message sizes are unbounded,

and the coding scheme may freely choose the block size `. The information stored at the

nth server is denoted by Sn, n∈ [N]. Messages are stored among N servers according to an

MDS(N,X+Kc) code which codes each message separately. From any X+Kc servers, it

must be possible to recover all messages.

H(W[K]|SM) = 0, ∀M⊂ [N],|M|=X+Kc. (4.3)

The storage requirement at each server is K`/Kc, i.e.,

H(Sn) =
K`

Kc

, ∀n∈ [N]. (4.4)

Thus, compared to replicated storage, the storage requirement is reduced by a factor of

1/Kc. X-secure storage, 0≤X ≤N , guarantees that any X (or fewer) colluding servers

learn nothing about the messages.

I(SX ;W[K]) = 0, ∀X ⊂ [N],|X |=X. (4.5)

The user privately and uniformly generates the index of his desired message θ∈ [K]. To

retrieve the desired message privately, the user generates N queries, Qθ
[N]. The n

th query Qθ
n

87

is sent to the nth server. The user has no prior knowledge of the information stored at the

servers, i.e.,

I(S[N];θ,Q
θ
[N]) = 0. (4.6)

T -privacy, 0≤T ≤N , guarantees that any T (or fewer) colluding servers learn nothing about

the desired message index θ.

I(Qθ
T ,ST ;θ) = 0, ∀T ⊂ [N],|T |=T. (4.7)

Upon receiving the user’s query Qθ
n, the nth server responds with the answer Aθn.

There exists a set of servers B, B⊂ [N],|B|≤B, known as Byzantine servers, and another

(disjoint) set of servers U , U ⊂ [N],|U|=U , known as unresponsive servers. The user knows

U,B but the realizations of the sets U ,B, are not known to the user apriori. The Byzantine

servers respond to the user arbitrarily, possibly introducing errors. The unresponsive servers

do not respond at all. However, the remaining servers, i.e., servers in [N]\(B∪U), respond

to the user truthfully with a function of the query and their stored information.

H(Aθn|Qθ
n,Sn) = 0, ∀n∈ [N]\(B∪U). (4.8)

The user must be able to recover the desired messageWθ from the responses that he receives.

H(Wθ |Aθ[N]\U ,Q
θ
[N],θ) = 0 ∀U ,B⊂ [N],U =U,B=B,U ∩B= ∅. (4.9)

The rate of a U-B-MDS-XSTPIR scheme is defined by the number of bits of desired message

that are retrieved per total bit of download from all servers on average,

RU-B-MDS-XSTPIR =
H(Wθ)∑
n∈[N]\UA

θ
n

=
`

D
. (4.10)

88

D=
∑

n∈[N]\UA
θ
n is the expected number of downloaded bits from all servers. When B=

0,U = 0, i.e., there are no Byzantine servers and no unresponsive servers, then we refer to

the problem simply as MDS-XSTPIR.

4.3 Result: An Achievable Rate for U-B-MDS-XSTPIR

Theorem 4.1. The following rate is achievable for U-B-MDS-XSTPIR,

RU-B-MDS-XSTPIR(N,Kc,X,T,U,B,K) = 1−
(
Kc+X+T +2B−1

N−U

)
. (4.11)

The achievability of this rate, proved in Section 4.4, is the central contribution of this chapter.

It is based on a coding scheme that uses cross-subspace alignment along with a layered

structure that allows successive decoding with interference cancellation. Note that previously

the best known achievable result for U-B-MDS-XSTPIR for large number of messages (K→

∞) was R=
(
1−
(
Kc+X+T+2B−1

N−U

))(
Kc

Kc+X

)
, found in [88]. Evidently our scheme achieves a

strictly higher rate. While we conjecture that the rate in Theorem 4.1 for MDS-XSTPIR

(U = 0,B= 0) is also the asymptotic capacity of MDS-XSTPIR, a converse proof to this

effect remains beyond reach. This is to be expected, because the converse proof has also

been unavailable for MDS-TPIR, which is a special case of MDS-XSTPIR. Our final result

appears in Section 4.5 where the result of Theorem 4.1 is applied to the problem of Private

Secure Distributed Matrix Multiplication.

89

4.4 Proof of Theorem 4.1

First we provide the proof of achievability for U = 0,B= 0, i.e., with no unresponsive or

Byzantine servers. Throughout the scheme, let us define

L=N−(Kc+X+T −1). (4.12)

and let us set

`=LKc. (4.13)

Let us start with an illustrative example.

4.4.1 X = 1,T = 1,Kc = 2,N = 4

Here we have L= 1 and `= 2. So let each message consist of `= 2 symbols from a finite

field Fq, where q≥L+N = 5. Let W11 and W12 be two 1×K row vectors containing the

first and second symbol from every message, respectively. Let Z11 be a uniformly distributed

random noise vector from F1×K
q , that will be used to provide X = 1 security for the stored

data. Let Z
′1
11, Z

′2
11 be independent, uniformly distributed random noise vectors from FK×1

q

that will be used to provide T = 1 privacy for the queries. Let Qθ be the θ-th column of the

K×K identity matrix, where θ is the index of desired message. The independence between

messages, noise vectors, and desired message index θ is formalized as follows.

H(W11,W12,Z11,Z
′1
11,Z

′2
11,θ) =H(W11)+H(W12)+H(Z11)+H(Z

′1
11)+H(Z

′2
11)+H(θ).

(4.14)

90

Note that by the definition of W11, W12 and Qθ, the inner products W11Qθ and W12Qθ

are precisely the two symbols of the desired message, that the user wishes to retrieve. Let

f1,α1,α2,··· ,αN , represent N+1 distinct elements of Fq. The storage at the n-th server is

constructed as follows.

Sn =

(
1

(f1−αn)2
W11 +

1

f1−αn
W12 +Z11

)
, (4.15)

Thus, the data is coded along with the noise according to an MDS(N,Kc+X), i.e., MDS(4,3)

code. The presence of noise guarantees that the data is (X = 1) secure. The query sent by

the user to the n-th server to privately retrieve the θ-th message, consists of Kc = 2 rounds,

which are denoted as Qθ,1
n and Qθ,2

n respectively.

Qθ,1
n =(f1−αn)Qθ+(f1−αn)2Z

′1
11, (4.16)

Qθ,2
n =Qθ+(f1−αn)2Z

′2
11. (4.17)

Upon receiving the query from user, the answer returned by the n-th server is

Aθn = (SnQ
θ,1
n ,SnQ

θ,2
n). (4.18)

Now let us see why correctness is guaranteed. We rewrite SnQθ,1
n as

SnQ
θ,1
n =

(
1

(f1−αn)2
W11 +

1

f1−αn
W12 +Z11

)(
(f1−αn)Qθ+(f1−αn)2Z

′1
11

)
(4.19)

=
1

f1−αn
W11Qθ+

(
W11Z

′1
11 +W12Qθ

)

︸ ︷︷ ︸
I1

+(f1−αn)
(
W12Z

′1
11 +Z11Qθ

)

︸ ︷︷ ︸
I2

+(f1−αn)2Z11Z
′1
11︸ ︷︷ ︸

I3

. (4.20)

Now, note that the terms 1,(f1−αn),(f1−αn)2, can each be expanded into weighted sums

of the terms 1,αn,α
2
n. Re-grouping terms according to this expansion, and collecting SnQθ,1

n

91

terms from the answers received from all N = 4 servers, we obtain




S1Q
θ,1
1

S2Q
θ,1
2

S3Q
θ,1
3

S4Q
θ,1
4




=




1
f1−α1

1 α1 α
2
1

1
f1−α2

1 α2 α
2
2

1
f1−α3

1 α3 α
2
3

1
f1−α4

1 α4 α
2
4




︸ ︷︷ ︸
M1,4




W11Qθ

I1 +f1I2 +f 2
1 I3

−I2−f1I3−f1I3

I3




(4.21)

Since the 4×4 matrix M1,4 is invertible according to Lemma 2.5, the user is able to re-

trieve his first desired symbol, W11Qθ. Now, in order to retrieve his second desired symbol,

W11Qθ, the user will use successive decoding along with cancellation of interference from

the previously retrieved desired symbol. Consider the second part of the answer received

from each server, SnQθ,2
n , which can be written as follows.

SnQ
θ,2
n =

(
1

(f1−αn)2
W11 +

1

f1−αn
W12 +Z11

)(
Qθ+(f1−αn)2Z

′2
11

)
(4.22)

=
1

(f1−αn)2
W11Qθ︸ ︷︷ ︸

I′0

+
1

f1−αn
W12Qθ

+(W11Z
′2
11 +Z11Qθ)︸ ︷︷ ︸
I′1

+(f1−αn)W12Z
′2
11︸ ︷︷ ︸

I′2

+(f1−αn)2Z11Z
′2
11︸ ︷︷ ︸

I′3

(4.23)

Aside from the desired symbol W12Qθ, there are four interference terms I ′0,I ′1,I ′2,I ′3. Now,

since the user has already retrieved W11Qθ, he can subtract I ′0 from SnQ
θ,2
n . Furthermore,

like before, the remaining interference terms can be expanded along αtn, t∈{0,1,2}. Thus

the user is able to obtain




S1Q
θ,2
1 − I′0

(f1−α1)2

S2Q
θ,2
2 − I′0

(f1−α2)2

S3Q
θ,2
3 − I′0

(f1−α3)2

S4Q
θ,2
4 − I′0

(f1−α4)2




=




1
f1−α1

1 α1 α
2
1

1
f1−α2

1 α2 α
2
2

1
f1−α3

1 α3 α
2
3

1
f1−α4

1 α4 α
2
4




︸ ︷︷ ︸
M1,4




W12Qθ

I ′1 +f1I
′
2 +f 2

1 I
′
3

−I ′2−f1I
′
3−f1I

′
3

I ′3




(4.24)

92

Server ‘n’ (Replace α with αn)
Storage(Sn) 1

(f1−α)2 W11 + 1
f1−αW12 +Z11

Query (f1−α)Qθ+(f1−α)2Z
′1
11

(Q
[θ]
n)

Qθ+(f1−α)2Z
′2
11

Desired symbols appear along vectors−−−−−−→
(f1−α)−1

−−−−−−→
(f1−α)−2 ,

−−−−−−→
(f1−α)−1

Interference appears along vectors
−→
1 ,
−−−−−→
(f1−α),

−−−−−→
(f1−α)2≡−→1 ,−→α ,

−→
α2

Table 4.1: A summary of the MDS-XSTPIR scheme forX = 1,T = 1,Kc = 2,N = 4,U = 0,B=
0, showing storage at each server, the queries, and a partitioning of signal and interference
dimensions contained in the answers from each server.

from which, by inverting the matrix M1,4, the user is able to retrieve his second desired

symbol, W12Qθ. This completes the proof of correctness.

For ease of reference, a compact summary of the storage at each server, the queries, and a

partitioning of signal and interference dimensions contained in the answers from each server,

is provided in Table 4.1. Queries and answers of each round are partitioned with dashed

lines. Recovered desired symbols from previous rounds that can be canceled appear along

vectors that are wrapped with rounded-corner boxes.

T = 1-privacy and X = 1-security follows from the fact that queries and storage are protected

by the i.i.d. uniformly distributed noise vectors Z11 and Z
′1
11, Z

′2
11 respectively. Finally,

let us calculate the rate achieved by the scheme. From 8 downloaded q-ary symbols, the

user retrieves 2 desired q-ary symbols, so the rate achieved is R= 2/8 = 1/4 = 1−3/4. This

completes the proof of achievability for the setting U =B= 0,X = 1,T = 1,Kc = 2,N = 4.

93

X = 1,T = 1,Kc = 2,N = 5

Here we have L=N−(X+T +Kc−1) = 2 and `=LKc = 4. So let each message consist of

`= 4 symbols from a finite field Fq, where q≥L+N = 7. Let W11,W21,W12,W22 be four

1×K row vectors containing the four symbols from every message, respectively. Let Z11,Z21

be two independent, uniformly distributed random noise vectors from F1×K
q that will be

used to guarantee X = 1 security. Similarly, let Z
′1
11,Z

′1
21, Z

′2
11,Z

′2
21 be independent, uniformly

distributed random noise vectors from FK×1
q that will be used to guarantee T = 1 privacy.

As before, let Qθ be the θ-th column of the K×K identity matrix, where θ is the index of

desired message. The desired message Wθ can be represented as

Wθ = (WlkQθ)l∈[2],k∈[2] (4.25)

= (W11Qθ,W12Qθ,W21Qθ,W22Qθ). (4.26)

The independence between messages, noise vectors, and desired message index θ is specified

as follows.

H(W11,W21,W12,W22,Z11,Z21,Z
′1
11,Z

′1
21,Z

′2
11,Z

′2
21,θ)

=
∑

l∈[2],k∈[2]

H(Wlk)+H(Z11)+H(Z21)+H(Z
′1
11)+H(Z

′1
21)+H(Z

′2
11)+H(Z

′2
21)+H(θ).

(4.27)

Let f1,f2,α1,α2,··· ,α5 be L+N = 2+5 = 7 distinct elements of Fq, q≥ 7. The storage at the

n-th server is constructed as follows.

Sn = (Sn1,Sn2), (4.28)

94

where

Sn1 =
1

(f1−αn)2
W11 +

1

f1−αn
W12 +Z11, (4.29)

Sn2 =
1

(f2−αn)2
W21 +

1

f2−αn
W22 +Z21 (4.30)

so that each of (4.29) and (4.30) codes noise with message symbols across N servers according

to an MDS(N,Kc+X) code, guaranteeing X = 1 security on top of MDS coded storage. The

query sent to the n-th server to retrieve the θth message consists of Kc = 2 rounds, Qθ,1
n and

Qθ,2
n . Furthermore, we will set

Qθ,1
n = (Qθ,1

n1 ,Q
θ,1
n2) (4.31)

Qθ,2
n = (Qθ,2

n1 ,Q
θ,2
n2) (4.32)

where

Qθ,1
n1 =(f1−αn)Qθ+(f1−αn)2Z

′1
11, (4.33)

Qθ,1
n2 =(f2−αn)Qθ+(f2−αn)2Z

′1
21, (4.34)

Qθ,2
n1 =Qθ+(f1−αn)2Z

′2
11, (4.35)

Qθ,2
n2 =Qθ+(f2−αn)2Z

′2
21. (4.36)

Upon receiving the query from user, the answer returned by the n-th server is comprised of

two symbols,

Aθn = (Aθn1,A
θ
n2) (4.37)

= (Sn1Q
θ,1
n1 +Sn2Q

θ,1
n2 , Sn1Q

θ,2
n1 +Sn2Q

θ,2
n2). (4.38)

95

Now let us see why correctness is guaranteed. Consider the first symbol, Aθn1.

Aθn1 =Sn1Q
θ,1
n1 +Sn2Q

θ,1
n2

=
1

f1−αn
W11Qθ+

1

f2−αn
W21Qθ+(W11Z

′1
11 +W21Z

′1
21 +W12Qθ+W22Qθ)

+(f1−αn)(W12Z
′1
11 +Z11Qθ)+(f2−αn)(W22Z

′1
21 +Z21Qθ)

+(f1−αn)2Z11Z
′1
11 +(f1−αn)2Z21Z

′1
21. (4.39)

The first two terms in (4.39) are desired message symbols. Each of the remaining 5 terms

can be expanded into weighted sums of terms of the form αtn, t∈{0,1,2}, allowing the user

to represent the symbols Aθn1 downloaded from all n∈ [N] servers, as




Aθ11

Aθ21

Aθ31

Aθ41

Aθ51




=




1
f1−α1

1
f2−α1

1 α1 α
2
1

1
f1−α2

1
f2−α2

1 α2 α
2
2

1
f1−α3

1
f2−α3

1 α3 α
2
3

1
f1−α4

1
f2−α4

1 α4 α
2
4

1
f1−α5

1
f2−α5

1 α5 α
2
5




︸ ︷︷ ︸
M2,5




W11Qθ

W21Qθ

∗

∗

∗




(4.40)

where we have used ∗ to represent various combinations of interference symbols that can be

found explicitly by expanding (4.39), since those forms are not important. What matters is

that the 5×5 square matrix in (4.40) is M2,5 which is invertible according to Lemma 2.5, so

the user can retrieve the two desired symbols, W11Qθ, W21Qθ by inverting the matrix. Next,

the user needs to retrieve the remaining two desired symbols W12Qθ, W22Qθ, for which we

will use successive decoding with interference cancellation. Consider the downloaded symbol

Aθn2.

Aθn2 =Sn1Q
θ,2
n1 +Sn2Q

θ,2
n2

=
1

(f1−αn)2
W11Qθ+

1

(f2−αn)2
W21Qθ+

1

f1−αn
W12Qθ+

1

f2−αn
W22Qθ

96

+(W11Z
′2
11 +W21Z

′2
21 +Z11Qθ+Z21Qθ)+(f1−αn)W12Z

′2
11 +(f2−αn)W22Z

′2
21

+(f1−αn)2Z11Z
′2
11 +(f2−αn)2Z21Z

′2
21. (4.41)

The first two symbols in (4.41) are desired symbols that have already been decoded. So these

terms can be subtracted out, leaving the user with the following downloaded information

from all N = 5 servers.




Aθ12− 1
(f1−α1)2 W11Qθ− 1

(f2−α1)2 W21Qθ

Aθ22− 1
(f1−α2)2 W11Qθ− 1

(f2−α2)2 W21Qθ

Aθ32− 1
(f1−α3)2 W11Qθ− 1

(f2−α3)2 W21Qθ

Aθ42− 1
(f1−α4)2 W11Qθ− 1

(f2−α4)2 W21Qθ

Aθ52− 1
(f1−α5)2 W11Qθ− 1

(f2−α5)2 W21Qθ




=




1
f1−α1

1
f2−α1

1 α1 α
2
1

1
f1−α2

1
f2−α2

1 α2 α
2
2

1
f1−α3

1
f2−α3

1 α3 α
2
3

1
f1−α4

1
f2−α4

1 α4 α
2
4

1
f1−α5

1
f2−α5

1 α5 α
2
5




︸ ︷︷ ︸
M2,5




W12Qθ

W22Qθ

∗

∗

∗




(4.42)

Once again, the 5×5 square matrix in (4.42) is M2,5 which is invertible according to Lemma

2.5, so the user can retrieve his remaining two desired symbols, W12Qθ, W22Qθ by inverting

the matrix. This completes the proof of correctness. Let us summarize the storage at each

server, the queries, and the partitioning of signal and interference dimensions contained in the

answers from each server in Table 4.2. T = 1-privacy and X = 1-security follows from the fact

that queries and storage are protected by the i.i.d. uniformly distributed noise vectors. Now

consider the rate achieved by the scheme. Since the user downloads 2 symbols from each of 5

servers, we note that from a total of 10 downloaded q-ary symbols, the user is able to recover

4 desired q-ary symbols, so the rate achieved is R= 4/10 = 2/5 = 1−3/5. This completes

the construction of the scheme for the setting U =B= 0,X = 1,T = 1,Kc = 2,N = 5. We now

specify the scheme for U =B= 0 and arbitrary X,T,Kc,N parameters.

97

U =B= 0, arbitrary X,T,Kc,N

Let each message consist of `=LKc symbols from a finite field Fq where L=N−(X+T +

Kc−1) and q≥L+N . Let Wlk,l∈ [L],k∈ [Kc] be 1×K row vectors. For each value of

∈ [L],k∈ [Kc], the 1×K row vector Wlk contains the (L(k−1)+ l)th symbol from every

message. Let (Zlx)l∈[L],x∈[X] be independent, uniformly distributed random noise vectors

from F1×K
q that will be used to guaranteeX-security. Let (Z

′κ
lt)l∈[L],t∈[T],κ∈[Kc] be independent,

uniformly distributed random noise vectors from FK×1
q that will be used to guarantee that

the queries are T -private. As before, let Qθ be the θ-th column of the K×K identity matrix,

where θ is the index of desired message. The desired message Wθ can be represented as,

Wθ = (WlkQθ)l∈[L],k∈[Kc] (4.43)

Server ‘n’ (Replace α with αn)
Storage 1

(f1−α)2 W11 + 1
f1−αW12 +Z11

(Sn) 1
(f2−α)2 W21 + 1

f2−αW22 +Z21

Query (f1−α)Qθ+(f1−α)2Z
′1
11

(Q
[θ]
n) (f2−α)Qθ+(f2−α)2Z

′1
21

Qθ+(f1−α)2Z
′2
11

Qθ+(f2−α)2Z
′2
21

Desired symbols appear along vectors−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1

−−−−−−→
(f1−α)−2 ,

−−−−−−→
(f2−α)−2 ,

−−−−−−→
(f1−α)−1,

−−−−−−→
(f2−α)−1

Interference appears along vectors
−→
1 ,
−−−−−→
(f1−α),

−−−−−→
(f1−α)2,

−−−−−→
(f2−α),

−−−−−→
(f2−α)2≡−→1 ,−→α ,

−→
α2

Table 4.2: A summary of the MDS-XSTPIR scheme forX = 1,T = 1,Kc = 2,N = 5,U = 0,B=
0, showing storage at each server, the queries, and a partitioning of signal and interference
dimensions contained in the answers from each server.

98

=




W11Qθ, W12Qθ, ··· , W1KcQθ

W21Qθ, W22Qθ, ··· , W2KcQθ

··· ··· ··· ···

WL1Qθ, WL2Qθ, ··· , WLKcQθ



. (4.44)

The independence between messages, noise vectors and θ is formalized as follows.

H((Wlk)l∈[L],k∈[Kc],(Zlx)l∈[L],x∈[X],(Z
′κ
lt)l∈[L],t∈[T],κ∈[Kc],θ)

=
∑

l∈[L],k∈[Kc]

H(Wlk)+
∑

l∈[L],x∈[X]

H(Zlx)+
∑

l∈[L],t∈[T],κ∈[Kc]

H(Z
′κ
lt)+H(θ). (4.45)

Let f1,f2,··· ,fL,α1,α2,··· ,αN be L+N distinct elements of Fq. Since q≥N+L, these con-

stants must exist. The storage at the nth server is comprised of L symbols (Snl)l∈[L], i.e.,

Sn = (Sn1,Sn,2,...,SnL). (4.46)

For all l∈ [L], Snl is constructed as

Snl =
1

(fl−αn)Kc
Wl1 +

1

(fl−αn)Kc−1
Wl2 + ···+ 1

fl−αn
WlKc +

∑

x∈[X]

(fl−αn)x−1Zlx

(4.47)

=
∑

k∈[Kc]

1

(fl−αn)Kc−k+1
Wlk+

∑

x∈[X]

(fl−αn)x−1Zlx. (4.48)

Thus, for each l∈ [L], the values Snl stored across all N servers comprise an MDS(N,Kc+X)

code which includes X noise symbols for X-security. The query sent by the user to the n-th

server, in order to retrieve the θth desired message, is comprised of Kc rounds, (Qθ,κ
n)κ∈[Kc].

For each κ∈ [Kc], the query is constructed as follows.

Qθ,κ
n = (Qθ,κ

n1 ,Q
θ,κ
n2 ,...,Q

θ,κ
nL), (4.49)

99

where ∀l∈ [L], let us set

Qθ,κ
nl = (fl−αn)Kc−κQθ+

∑

t∈[T]

(fl−αn)Kc+t−1Z
′κ
lt . (4.50)

Upon receiving the query from the user, the n-th server responds with the following Kc

symbols.

Aθn = (Aθn1,A
θ
n2,··· ,AθnKc) (4.51)

where for all κ∈ [Kc],

Aθnκ = (Sn1Q
θ,κ
n1 +Sn2Q

θ,κ
n2 + ···+SnLQ

θ,κ
nL). (4.52)

To show that the scheme is correct, for any κ∈ [Kc], let us rewrite the symbol Aθnκ as,

Aθnκ =
∑

l∈[L]

SnlQ
θ,κ
nl (4.53)

=
∑

l∈[L]


 ∑

k∈[Kc]

1

(fl−αn)Kc−k+1
Wlk+

∑

x∈[X]

(fl−αn)x−1Zlx





(fl−αn)Kc−κQθ+

∑

t∈[T]

(fl−αn)Kc+t−1Z
′κ
lt


 (4.54)

=
∑

l∈[L]

∑

k∈[κ]

1

(fl−αn)κ−k+1
WlkQθ+

∑

l∈[L]

Kc∑

k=κ+1

(fl−αn)k−κ−1WlkQθ

+
∑

l∈[L]

∑

x∈[X]

(fl−αn)Kc−κ+x−1ZlxQθ+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T]

(fl−αn)k+t−2WlkZ
′κ
lt

+
∑

l∈[L]

∑

x∈[X]

∑

t∈[T]

(fl−αn)Kc+t+x−2ZlxZ
′κ
lt . (4.55)

100

Now we will see why it is possible to recover all desired symbols (WlkQθ)l∈[L],k∈[Kc]. Consider

κ= 1.

Aθn1 =
∑

l∈[L]

SnlQ
θ,1
nl (4.56)

=
∑

l∈[L]

1

fl−αn
Wl1Qθ+

∑

l∈[L]

Kc∑

k=2

(fl−αn)k−2WlkQθ+
∑

l∈[L]

∑

x∈[X]

(fl−αn)Kc+x−2ZlxQθ

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T]

(fl−αn)t+k−2WlkZ
′1
lt +

∑

l∈[L]

∑

x∈[X]

∑

t∈[T]

(fl−αn)Kc+t+x−2ZlxZ
′1
lt

(4.57)

The first term contains the L desired symbols (W11Qθ,...,WL1Qθ) that are to be retrieved in

the first round, i.e., for κ= 1. Each of the remaining four terms constitute interference which

can be expanded into weighted sums of terms of the form αtn, t∈{0,1,...,Kc+X+T −2}.

Therefore, collecting the Aθn1 symbols from all N servers, the user obtains




Aθ11

Aθ21

...

AθN1




=




1
f1−α1

··· 1
fL−α1

1 α1 ··· αKc+X+T−2
1

1
f1−α2

··· 1
fL−α2

1 α2 ··· αKc+X+T−2
2

...
...

...
...

...
...

...

1
f1−αN

··· 1
fL−αN

1 αN ··· αKc+X+T−2
N




︸ ︷︷ ︸
ML,N




W11Qθ

W21Qθ

...

WL1Qθ

∗
...

∗




(4.58)

where ∗ represents various combinations of interference terms, whose precise forms are in-

consequential. What matters is that the N×N matrix in (4.58) ML,N is invertible according

to Lemma 2.5, so that the user is able to retrieve the desired symbols (W11Qθ,...,WL1Qθ)

by inverting the matrix.

The scheme proceeds similarly to retrieve desired symbols (W1κQθ,...,WLκQθ) with the κth

101

round of queries. To prove this by induction, let us consider any κ, such that 2≤κ≤Kc,

and assume that the desired symbols (WlkQθ)l∈[L],k∈[κ−1] have already been retrieved. Now

we wish to show that the desired symbols (WlκQθ)l∈[L] can be retrieved.

Aθnκ =
∑

l∈[L]

SnlQ
θ,κ
nl (4.59)

=
∑

l∈[L]

∑

k∈[κ−1]

1

(fl−αn)κ−k+1
WlkQθ+

∑

l∈[L]

1

fl−αn
WlκQθ

+
∑

l∈[L]

Kc∑

k=κ+1

(fl−αn)k−κ−1WlkQθ+
∑

l∈[L]

∑

x∈[X]

(fl−αn)Kc−κ+x−1ZlxQθ (4.60)

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T]

(fl−αn)t+k−2WlkZ
′κ
lt +

∑

l∈[L]

∑

x∈[X]

∑

t∈[T]

(fl−αn)Kc+t+x−2ZlxZ
′κ
lt .

(4.61)

The first term contains symbols that have already been retrieved, so the user can subtract

this term from Aθnκ.

Aθ
′

nκ =Aθnκ−
∑

l∈[L]

∑

k∈[κ−1]

1

(fl−αn)κ−k+1
WlkQθ. (4.62)

The next term is comprised of the L symbols (WlκQθ)l∈[L] that the user wishes to retrieve.

The remaining 4 terms constitute interference which can be expanded as before into weighted

sums of terms of the form αtn,t∈{0,1,...,Kc+X+T −2}. Therefore, collecting the Aθ′nκ

102

symbols from all N servers, the user obtains,




Aθ
′

11

Aθ
′

21

...

Aθ
′
N1




=




1
f1−α1

··· 1
fL−α1

1 α1 ··· αKc+X+T−2
1

1
f1−α2

··· 1
fL−α2

1 α2 ··· αKc+X+T−2
2

...
...

...
...

...
...

...

1
f1−αN

··· 1
fL−αN

1 αN ··· αKc+X+T−2
N




︸ ︷︷ ︸
ML,N




W1κQθ

W2κQθ

...

WLκQθ

∗
...

∗




(4.63)

The desired symbols (WlκQθ)l∈[L] can be retrieved by inverting the N×N square matrix in

(4.63), which is guaranteed to be invertible according to Lemma 2.5. Thus, the induction

argument shows that all `=LKc desired symbols are retrieved successfully. A summary of the

storage at each server, the queries, and a partitioning of signal and interference dimensions

contained in the answers from each server is provided in Table 4.3.

T -privacy is guaranteed because Qθ is protected by the noise vectors (Z
′κ
lt)l∈[L],t∈[T],κ∈[Kc]

that are i.i.d. uniform and coded according to an MDS(N,T) code. Similarly, X-security

is guaranteed because for each l∈ [L], the messages (Wlk)k∈[Kc] are protected by the noise

vectors (Zlx)x∈[X] that are i.i.d. uniform and coded according to an MDS(N,X) code. Now

let us consider the rate achieved by the scheme. From a total of NKc downloaded q-ary

symbols, the user is able to retrieve his `=LKc desired symbols, so the rate achieved is

R=
LKc

NKc

=
L

N
= 1−

(
Kc+X+T −1

N

)
, (4.64)

which matches the result in Theorem 4.1.

103

Server ‘n’ (Replace α with αn)
Storage 1

(f1−α)Kc
W11 + ···+ 1

f1−αW1Kc +Z11 + ···+(f1−α)X−1Z1X

(Sn) 1
(f2−α)Kc

W21 + ···+ 1
f2−αW2Kc +Z21 + ···+(f2−α)X−1Z2X

...
1

(fL−α)Kc
WL1 + ···+ 1

fL−α
WL′Kc +ZL1 + ···+(fL−α)X−1ZLX

Query (f1−α)Kc−1Qθ+(f1−α)KcZ
′1
11 + ···+(f1−α)Kc+T−1Z

′1
1T

(Q
[θ]
n) (f2−α)Kc−1Qθ+(f2−α)KcZ

′1
21 + ···+(f2−α)Kc+T−1Z

′1
2T

...
(fL−α)Kc−1Qθ+(fL−α)KcZ

′1
L1 + ···+(fL−α)Kc+T−1Z

′1
LT

(f1−α)Kc−2Qθ+(f1−α)KcZ
′2
11 + ···+(f1−α)Kc+T−1Z

′2
1T

(f2−α)Kc−2Qθ+(f2−α)KcZ
′2
21 + ···+(f2−α)Kc+T−1Z

′2
2T

...
(fL−α)Kc−2Qθ+(fL−α)KcZ

′2
L′1 + ···+(fL−α)Kc+T−1Z

′2
LT

...

Qθ+(f1−α)KcZ
′Kc
11 + ···+(f1−α)Kc+T−1Z

′Kc
1T

Qθ+(f2−α)KcZ
′Kc
21 + ···+(f2−α)Kc+T−1Z

′Kc
2T

...
Qθ+(fL−α)KcZ

′Kc
fL′1

+ ···+(fL−α)Kc+T−1Z
′Kc
LT

Desired symbols appear along vectors−−−−−−→
(f1−α)−1,··· ,

−−−−−−−→
(fL−α)−1

−−−−−−→
(f1−α)−2 ,··· , −−−−−−−→(fL−α)−2 ,

−−−−−−→
(f1−α)−1,··· ,

−−−−−−−→
(fL−α)−1

...

−−−−−−−→
(f1−α)−Kc ,··· ,

−−−−−−−−→
(fL−α)−Kc ,··· ,

−−−−−−→
(f1−α)−2 ,··· , −−−−−−−→(fL−α)−2 ,

−−−−−−→
(f1−α)−1,··· ,

−−−−−−−→
(fL−α)−1

Interference appears along vectors
−→
1 ,
−−−−−→
(f1−α),··· ,

−−−−−−−−−−−−→
(f1−α)X+T+Kc−2,··· ,−−−−−→(fL−α),··· ,

−−−−−−−−−−−−→
(fL−α)X+T+Kc−2

≡−→1 ,−→α ,··· ,
−−−−−−−→
αX+T+Kc−2

Table 4.3: A summary of the general MDS-XSTPIR scheme showing storage at each server,
the queries, and a partitioning of signal and interference dimensions contained in the answers
from each server.

104

4.4.2 Arbitrary U , B

Now let us generalize the scheme to non-trivial U and B, i.e., for U unresponsive servers and

up to B byzantine servers. For this generalization, let us set

L= (N−U)−(Kc+X+T +2B−1) (4.65)

`=LKc. (4.66)

Even though now the values of U,B are non-trivial, the construction of storage, queries and

answers remains identical to the description provided previously for U =B= 0. So let us

consider any (N−U) responsive servers, say servers n1,n2,··· ,nN−U . Instead of the N×N

square matrix ML,N in (4.63), we now have the (N−U)×(N−U−2B) decoding matrix,

M(N−U)×(N−U−2B) =




1
f1−αn1

··· 1
fL−αn1

1 αn1 ··· αKc+X+T−2
n1

1
f1−αn2

··· 1
fL−αn2

1 αn2 ··· αKc+X+T−2
n2

...
...

...
...

...
...

...

1
f1−αnN−U

··· 1
fL−αnN−U

1 αnN−U ··· αKc+X+T−2
nN−U



. (4.67)

Note that if we consider any N−U−2B rows of M(N−U)×(N−U−2B) then we obtain an in-

vertible square matrix because of Lemma 2.5. Therefore, M(N−U)×(N−U−2B) is the generator

matrix of an MDS(N−U,N−U−2B) code, and it is can correct up to ((N−U)−(N−U−

2B))/2 =B errors. Thus by this construction, we establish a scheme that works with U

unresponsive servers and up to B Byzantine servers, while achieving the rate of

R= 1−
(
Kc+X+T +2B−1

N−U

)
. (4.68)

This completes the proof of Theorem 4.1.

105

4.5 Private and Secure Distributed Matrix Multiplica-

tion

Recently in [63, 17], the problem of private and secure matrix multiplication (PSDMM) is

proposed, where a user wishes to compute the product of a confidential matrix A with a

matrix Bθ,θ∈ [M] with the aid of N distributed servers. In [17], it is assumed that the set

of matrices B[M] are public and available to the N servers, however, the confidential matrix

A is shared secretly among all N servers, such that no information about A is leaked to

any server. Besides, the user wants to keep the index θ private from each server. The goal

of the problem is to minimize (i) the upload cost from the source of the confidential matrix

A to the N servers and (ii) the download cost from the N servers to the user. In [17], the

authors exploit the MDS-PIR scheme proposed in [11] to construct the PSDMM scheme,

and characterize the lower convex hull of (upload, download) pairs.

Using the MDS-XSTPIR scheme present in Section 4.4, we now present a novel PSDMM

scheme for a generalized model. In our model, the index θ is T -private, while the confidential

matrix A is XA-secure. Furthermore, we also allow matrices B[M] to be XB-secure. Note

that the model in [17] is obtained as a special case of our generalized model by setting

XA =T = 1,XB = 0.

4.5.1 PSDMM: Problem Statement

Let A = (A1,A2,...,A`) represent ` random matrices, each of dimension λ×χ, that are

independently and uniformly distributed over Fλ×χq . Let B[M] be M random matrices in-

dependently and uniformly distributed over Fχ×µq . The independence between matrices A[`]

106

and B[M] is formalized as follows.

H(A,B[M]) =
∑

l∈[`]

H(Al)+
∑

m∈[M]

H(Bm). (4.69)

The matrices A and B[M] are made available at N distributed servers through secret sharing

schemes with security levels XA and XB, respectively. That is, any group of up to XA

colluding servers can learn nothing about A, and any group of up to XB servers can learn

nothing about B[M]. To this end, matrices A and B[M] are separately coded according

to secret sharing schemes that generate shares Ãn, B̃n,n∈ [N], and these shares are made

available to the n-th server. Furthermore, we assume that the upload cost of Ã[N] is to

be optimized, while that of B̃[N] and Qθ
[N] is ignored, presumably because A matrices are

frequently updated while B[M] are static, and the size of queries does not scale with `.

AB1,B2, · · · ,BM

Server 1 · · · Server n · · · Server N

Ã1 Ãn ÃNB̃1 B̃n
B̃N

User

Y θ1
Qθ1 Y θn Qθn Y θN

QθN

ABθ

Figure 4.2: Model for private secure distributed matrix multiplication (PSDMM). A matrices
are XA secure, while B matrices are XB secure. The uploads to be optimized are the Ã terms
and the downloads to be optimized are the Y θ terms.

107

The independence between the securely coded matrices is specified as follows.

I(A,Ã[N];B[M],B̃[N]) = 0. (4.70)

Matrices must be recoverable from their secret shares.

H(A | Ã[N]) = 0, (4.71)

H(B[M] | B̃[N]) = 0. (4.72)

The matrices must be perfectly secure from any set of secret shares that can be accessed by

a set of up to XA,XB colluding servers, respectively.

I(A;ÃX) = 0 X ⊂ [N],|X |=XA, (4.73)

I(B[M];B̃X) = 0 X ⊂ [N],|X |=XB. (4.74)

The user generates an index θ∈ [M] privately and uniformly, and wishes to compute the

product

ABθ = (A1Bθ,A2Bθ,...,A`Bθ). (4.75)

To this end, the user generates N queries Qθ
[N]. The n-th query Qθ

n is sent to the n-th server.

The user has no prior knowledge of matrices A and B[M] and their secret shares, i.e.,

I(θ,Qθ
[N];Ã[N],B̃[N]) = 0. (4.76)

T -privacy, 0≤T ≤N , guarantees that any group of up to T colluding servers learn nothing

about θ.

I(Qθ
T ,ÃT ,B̃T ;θ) = 0. (4.77)

108

Upon receiving the user’s query Qθ
n, the n-th server responds with an answer Y θ

n , which is a

function of all information available to it.

H(Y θ
n |Qθ

n,Ãn,B̃n) = 0. (4.78)

The user must be able to recover the product ABθ from all N answers, i.e.,

H(ABθ|Y θ
[N],Q

θ
[N]) = 0. (4.79)

The upload cost and download cost are defined as follows.

U =

∑
n∈[N]H(Ãn)

H(A)
, (4.80)

D=

∑
n∈[N]H(Y θ

n)

H(ABθ)
. (4.81)

4.5.2 A New Scheme for PSDMM

In this section, we will present a PSDMM scheme to show that the lower convex hull of

(upload, download) pairs

(U,D) =

(
N

Kc

,
N

N−(2Kc+XA+XB +T −2)

)
(4.82)

for

Kc = 1,2,...,b(N+1−XA−XB−T)/2c (4.83)

is achievable when q→∞ and χ≥min(λ,µ). Furthermore, when XB = 0, i.e., there are

no security constraints on matrices B[M], and χ≥min(λ,µ), then the lower convex hull of

109

(upload, download) pairs

(U,D) =

(
N

Kc

,
N

N−(Kc+XA+T −1)

)
(4.84)

for

Kc = 1,2,...,(N+1−XA−T) (4.85)

is achievable as q→∞.

First, let us consider the case XB 6= 0. For this setting, let us set

L=N−(XA+XB +T +2Kc−2), (4.86)

`=KcL. (4.87)

For all l∈ [L],k∈ [Kc], let us define

Alk = AL(k−1)+l. (4.88)

We will also set

B =

[
B1 B2 ... BM

]
(4.89)

to be an χ×Mµ matrix that contains all B[M]. Let us also define Qθ be a Mµ×µ matrix

as follows.

Qθ = [0µ ... 0µ︸ ︷︷ ︸
A total of (θ−1)0µ’s

Iµ 0µ ... 0µ︸ ︷︷ ︸
A total of (M−θ)0µ’s

]T (4.90)

where 0µ is the µ×µ square zero matrix, and Iµ is the µ×µ identity matrix. We note that

110

by construction, ABQθ = (A1BQθ,...,A`BQθ) = (AlkBQθ)l∈[L],k∈[Kc] is the desired product.

Let (Zlx)l∈[L],x∈[XA] and (Z′lx′)l∈[L],x′∈[XB] be independent, uniformly distributed random noise

matrices from Fλ×χq and Fχ×Mµ
q that will be used to guarantee XA and XB security levels

for A,B[M], respectively. Let (Z
′′κ
lt)l∈[L],t∈[T],κ∈[Kc] be independent, uniformly distributed ran-

dom noise matrices from FMµ×µ
q , that will be used to guarantee T -privacy of queries. The

independence between A,B[M], noise matrices and θ is formalized as follows.

H(A,B[M],(Zlx)l∈[L],x∈[XA],(Z
′
lx′)l∈[L],x′∈[XB],(Z

′′κ
lt)l∈[L],t∈[T],κ∈[Kc],θ)

=
∑

l∈[L],k∈[Kc]

H(Alk)+
∑

m∈[M]

H(Bm)+
∑

l∈[L],x∈[XA]

H(Zlx)

+
∑

l∈[L],x′∈[XB]

H(Z′lx′)+
∑

l∈[L],t∈[T],κ∈[Kc]

H(Z
′′κ
lt)+H(θ). (4.91)

Let f1,f2,··· ,fL,α1,α2,··· ,αN be distinct elements of Fq. We require q≥L+N so these

elements must exist. Now we are ready to construct the scheme. The secret share of B[M]

at the n-th server, B̃n is constructed as follows.

B̃n = (B̃n1,B̃n2,...,B̃nL), (4.92)

where ∀l∈ [L],

B̃nl = B+
∑

x′∈[XB]

(fl−αn)Kc+x
′−1Z′lx′ . (4.93)

The secret share of A at the nth server is constructed as follows.

Ãn = (Ãn1,Ãn2,...,ÃnL), (4.94)

111

where ∀l∈ [L],

Ãnl =
∑

k∈[Kc]

1

(fl−αn)Kc−k+1
Alk+

∑

x∈[XA]

(fl−αn)x−1Zlx. (4.95)

The query sent by the user to the nth server, is comprised of Kc rounds, Qθ
n = (Qθ,κ

n)κ∈[Kc].

For all κ∈ [Kc], we construct the queries as follows.

Qθ,κ
n = (Qθ,κ

n1 ,Q
θ,κ
n2 ,...,Q

θ,κ
nL), (4.96)

where ∀l∈ [L], we set

Qθ,κ
nl = (fl−αn)Kc−κQθ+

∑

t∈[T]

(fl−αn)Kc+t−1Z
′′κ
lt . (4.97)

Upon receiving the query from the user, the nth server responds with the following Kc

symbols.

Y θ
n = (Ãn1B̃n1Q

θ,κ
n1 + Ãn2B̃n2Q

θ,κ
n2 + ···+ ÃnLB̃nLQ

θ,κ
nL)κ∈[Kc]. (4.98)

To show the correctness of the scheme, let us consider ÃnlB̃nl,∀l∈ [L].

ÃnlB̃nl =


 ∑

k∈[Kc]

1

(fl−αn)Kc−k+1
Alk+

∑

x∈[XA]

(fl−αn)x−1Zlx





B+

∑

x′∈[XB]

(fl−αn)Kc+x
′−1Z′lx′


 (4.99)

=
∑

k∈[Kc]

1

(fl−αn)Kc−k+1
AlkB+

∑

x∈[XA]

(fl−αn)x−1ZlxB

+
∑

k∈[Kc]

∑

x′∈[XB]

(fl−αn)x
′+k−2AlkZ

′
`x′+

∑

x∈[XA]

∑

x′∈[XB]

(fl−αn)Kc+x+x′−2ZlxZ
′
lx′

(4.100)

112

=
∑

k∈[Kc]

1

(fl−αn)Kc−k+1
AlkB+

∑

ξ∈[Kc+XA+XB−1]

(fl−αn)ξ−1Z̄lξ (4.101)

In (4.101) we rearranged the last three terms of (4.100) grouping them into weighted sums

of terms of the form (fl−αn)i, i∈{0,1,...,Kc+XA+XB−2}. The grouped terms Z̄lξ can

be calculated explicitly but as it turns out the precise form of these terms is inconsequential.

Now note that if we regard (AlkB)l∈[L],k∈[Kc] terms as messages, and other terms as noise, then

(4.101) has the same form as (4.48), the storage construction in the MDS-XSTPIR scheme

presented in Section 4.4.2 Also note that the construction of queries is also the same as the

MDS-XSTPIR scheme, thus the correctness follows directly from the proof presented in Sec-

tion 4.4, which means the user is able to recover the product ABQθ = (AlkBQθ)l∈[L],k∈[Kc].

Privacy and security follows from the fact that Qθ, A, B[M] are protected by the i.i.d. uni-

formly distributed noise matrices coded according to MDS(N,T), MDS(XA,T), MDS(XB,T)

codes, respectively. This completes the construction of the scheme for XB 6= 0. Note that

when q→∞ and χ≥min(λ,µ), then H(ABθ) = `λµ in q-ary units according to Lemma 5.2

(also see [51], Lemma 2), and the download cost is

D=
NKcλµ

`λµ
=
N

L
=

N

N−(2Kc+XA+XB +T −2)
. (4.102)

Now let us consider the case XB = 0. For this setting, let us set

L=N−(XA+XB +T +Kc−1), (4.103)

`=KcL. (4.104)

We will continue using other definitions as before, but since there is no security constraint
2Note that X in (4.48) corresponds to Kc+XA+XB−1 in (4.101), so that L=N−(X+T +Kc−1) in

Section 4.4 corresponds to L=N−(2Kc+XA+XB+T −2) in this section. The condition on Kc becomes
Kc = N−(XA+XB+T+L−2)

2 . However, since we must have L≥ 1 and Kc≥ 1 can only take integer values, it
follows that the feasible values of Kc are 1≤Kc≤bN−(XA+XB+T−1)

2 c.

113

on B matrices, let us replace B̃n as

B̃n = B. (4.105)

Now we have

ÃnlB̃nl =
∑

k∈[Kc]

1

(fl−αn)Kc−k+1
AlkB+

∑

x∈[XA]

(fl−αn)x−1ZlxB, (4.106)

which is coded according to an MDS(N,Kc+XA) code. Thus the correctness, privacy and

security follows from that proof in Section 4.4. The download cost is

D=
NKcλµ

Lλµ
=
N

L
=

N

N−(Kc+XA+XB +T −1)
. (4.107)

Now let us consider the upload cost of the scheme. Note that by the construction of Ãn, it

is coded according to an MDS(N,Kc) code. Therefore, the upload cost is N
Kc

.

It is shown in [17] that when XA =T = 1,XB = 0, the lower convex hull of (upload, download)

pairs

(U,D) =

(
N

Kc

,
Kc+1

Kc

(
1+

(
Kc+1

N

)
+ ···+

(
Kc+1

N

)M−1
))

(4.108)

is achievable for Kc = 1,2,...,N−1. For the asymptotic setting, i.e., M→∞, we have from

[17] that D= Kc+1
Kc

N
N−(Kc+1)

, which is strictly worse than the (upload,download) pairs char-

acterized in this work. This is because the scheme in [17] allows the user to decode noise

matrices protecting A, whereas in our scheme, because of cross-subspace alignment, the user

is only able to decode desired matrices, thus the penalty term Kc+1
Kc

disappears.

114

4.6 Discussion

The problem of U-B-MDS-XSTPIR, i.e., X-secure T -private information retrieval from MDS

coded storage, with N servers out of which U are unresponsive and up to B may be Byzan-

tine, is studied in this chapter. A lower bound on achievable rates of U-B-MDS-XSTPIR

is characterized by presenting a cross-subspace alignment and successive decoding based

scheme. We also adapt the scheme to the problem of private and secure distributed matrix

multiplication that is recently proposed in [63, 17]. The presented MDS-XSTPIR scheme

is shown to be applicable to PSDMM problem, even if we allow security concerns for all

constituent matrices.

115

Chapter 5

Secure Distributed Matrix Multiplication

The problem of secure distributed matrix multiplication (SDMM) studies the communication

efficiency of retrieving a sequence of desired matrix products AB = (A1B1,A2B2,··· ,ASBS)

from N distributed servers where the constituent matrices A = (A1,A2,··· ,AS) and B =

(B1,B2,··· ,BS) are stored in X-secure coded form, i.e., any group of up to X colluding

servers learn nothing about A,B. It is assumed that As ∈FL×Kq ,Bs ∈FK×Mq ,s∈{1,2,··· ,S}

are uniformly and independently distributed and Fq is a large finite field. The rate of an

SDMM scheme is defined as the ratio of the number of bits of desired information that is

retrieved, to the total number of bits downloaded on average. The supremum of achievable

rates is called the capacity of SDMM. In this chapter we explore the capacity of SDMM,

as well as several of its variants, e.g., where the user may already have either A or B

available as side-information, and/or where the security constraint for either A or B may

be relaxed. As our main contribution, we obtain new converse bounds, as well as new

achievable schemes for various cases of SDMM, depending on the L,K,M,N,X parameters,

and identify parameter regimes where these bounds match. A remarkable aspect of our upper

bounds is a connection between SDMM and a form of private information retrieval (PIR)

problem, known as multi-message X-secure T -private information retrieval (MM-XSTPIR).

116

Notable features of our achievable schemes include the use of cross-subspace alignment and a

transformation argument that converts a scalar multiplication problem into a scalar addition

problem, allowing a surprisingly efficient solution.

5.1 Introduction

Distributed matrix multiplication is a key building block for a variety of applications that

include collaborative filtering, object recognition, sensing and data fusion, cloud computing,

augmented reality and machine learning. Coding techniques, such as MDS codes [69], Poly-

nomial codes [140], Entangled Polynomial codes [141], MatDot and PolyDot codes [31] and

Generalized PolyDot Codes [28] have been shown to be capable of improving the efficiency of

distributed matrix multiplication. However, with the expanding scope of distributed comput-

ing applications, there are mounting security concerns [138, 129, 18, 61, 32, 3] about sharing

information with external servers. The problem of secure distributed matrix multiplication

(SDMM) is motivated by these security concerns.

As defined in this chapter, SDMM studies the communication efficiency of retrieving de-

sired matrix products from distributed servers where the constituent matrices are securely

stored. Specifically, suppose A = (A1,A2,··· ,AS) and B = (B1,B2,··· ,BS) are collections

of random matrices that are stored across N servers subject to an X-security guarantee,

i.e., any colluding group of up to X servers can learn nothing about the A and B matri-

ces. Specifically, As ∈FL×Kq , Bs ∈FK×Mq for all s∈{1,2,··· ,S}, are independent and uni-

formly distributed, and Fq is assumed to be a large finite field. A user wishes to retrieve

AB = (A1B1,A2B2,··· ,ASBS), where each AsBs,s∈{1,2,··· ,S} is an L×M matrix in Fq,

while downloading as little information from the N servers as possible. The rate of an SDMM

scheme is defined as the ratio H(AB)/D, where H(AB) is the number of bits of desired

information that is retrieved, and D is the total number of bits downloaded on average. The

117

M1 Mi··· ···

Server 1 ··· Server n ··· Server N

M̃1
i M̃n

i
M̃N
i

U1 ··· Uj ···

∆1 ∆n ∆N

MkMl

A B

Server 1 ··· Server n ··· Server N

ÃNÃ1 Ãn B̃1 B̃n B̃N

User

∆1 ∆n ∆N

AB

Figure 5.1: (Left) General context for SDMM showing various sources that produce large
amounts of data represented as matrices M1,M2,···, and store it at N distributed servers in
X-secure form, coded independently as M̃n

i . Various authorized users access these servers
and retrieve products of their desired matrices based on the downloads that they request
from all N servers. Unlike PIR (private information retrieval) [23] problems there are no
privacy constraints in SDMM, so users can publicly announce which matrix products they
wish to retrieve. (Right) The SDMM problem considered in this chapter, where the goal is
to minimize the average size of the total download for a generic user whose desired matrices
are labeled A,B.

supremum of achievable rates is called the capacity of SDMM. In this chapter we study the

capacity of SDMM, as well as several of its variants, e.g., where the user may already have

either A or B available as side-information,1 and/or where the security constraint for either

A or B may be relaxed. As our main contribution, we obtain new converse bounds, as

well as new achievable schemes for various cases of SDMM, depending on the L,K,M,N,X

parameters, and identify parameter regimes where these bounds match. A notable aspect

of our upper bounds is a connection between SDMM and a form of private information

retrieval (PIR) problem, known as multi-message X-secure T -private information retrieval

(MM-XSTPIR).2 Interesting features of our achievable schemes include the idea of cross-

subspace alignment that was introduced in Chapter 2 and was recently applied to SDMM

in [61], and a novel transformation argument that converts a scalar multiplication problem
1The definition of rate takes into account the side-information available at the user. For example, say,

the user has B available as side-information, then the rate is defined as H(AB |B)/D.
2Notably while the capacity of multi-message PIR has been explored in [10, 70] and that of X-secure

T -private PIR has been explored in Chapter 2, to our knowledge there has been no prior work on MM-
XSTPIR.

118

into a scalar addition problem. The transformation allows a surprisingly3 efficient (and ca-

pacity optimal) solution for scalar multiplication, outer products of vectors, and Hadamard

products of matrices.

Information-theoretic study of SDMM was introduced recently in [18] under a closely related

model with a few subtle differences. Motivated by a master-worker model of distributed com-

putation, it is assumed in [18] that the A,B matrices originate at the user (master), who

securely encodes and sends these matrices to N servers (workers), and then from just the

downloads that he receives from the servers in return, the user is able to compute AB. The

goal in [18], as in this chapter, is to maximize the rate of SDMM, defined as H(AB)/D. The

same model is pursued in [61, 32, 3], where new coding schemes are proposed for SDMM.

However, certain aspects of the model appear inconsonant. For example, a key assumption

in these models is that the user must not use his prior knowledge of A,B and must decode

AB only from the downloads. Since the goal is to minimize the communication cost, and the

user already knows A,B, why not do the computation locally and avoid all communication

entirely? Indeed, the question is not merely philosophical, because as shown in this chapter,

in some cases, the best scheme even with the model of [18, 61, 32, 3] turns out to be one that

allows the user to retrieve both A,B from the downloads, and then compute AB locally —

something that could be done without the need for any communication if indeed A,B orig-

inated at the user. On the other hand, the SDMM model assumed in this chapter assumes

that A,B do not both originate at the user,4 rather they are stored securely and remotely

at the N servers,5 thus eliminating this concern. Another difference between our model
3The achieved rate exceeds an upper bound previously obtained in literature [61]. See the discussion

following Theorem 5.2.
4One of A,B may be available to the user as side-information in some variants of SDMM studied in this

chapter.
5We envision that the matrices A and B comprise sensitive data that originates at other sources, and is

securely stored at the N servers. The communication cost of uploading the data to the servers is not a focus
of this chapter, because the upload requires communication between a different set of entities (sources and
servers) with their own separate communication channels and cost dynamics. Furthermore, if the data is of
interest to many (authorized) users who perform their desired computations, then the repeated cost of such
downloads could very well outweigh the one-time cost of uploading the secured data to the servers.

119

of SDMM and previous works is that the precise assumptions regarding matrix dimensions

L,K,M are left unclear in [18, 61], indeed these dimensions do not appear in the capacity

results in [18, 61]. However, our model allows L,K,M to take arbitrary values, including

large values. As it turns out, our results reveal that the relative size of L,K,M does mat-

ter. For example, capacity-achieving schemes for SDMM from [18, 61] fall short if K/L< 1,

and a converse bound for two-sided security that is derived in [61] is violated under certain

conditions as well (see discussion following Theorem 5.2 and Theorem 5.3 in this chapter).

Indeed, we find that in general the capacity depends on all matrix dimensions as well as the

parameters N,X. Another minor distinction between this chapter and [18, 61] is that we

allow joint retrieval of a block of S matrix products AB = (A1B1,A2B2,··· ,ASBS) where S

can be chosen arbitrarily by the coding scheme. On the other hand, [18, 61] assume one-shot

matrix multiplication, corresponding to S= 1. This leads to different approaches to achiev-

able schemes. For example, while both this chapter and [61] use cross-subspace alignment,

we use it to code across S blocks while [61] relies on a matrix partitioning approach.

5.2 Problem Statement: SDMM

Let A = (A1,A2,··· ,AS) represent S random matrices, chosen independently and uniformly

from all matrices over FL×Kq . Similarly, let B = (B1,B2,··· ,BS) represent S random matri-

ces, chosen independently and uniformly from all matrices over FK×Mq . The user wishes to

compute the products AB = (A1B1,A2B2,··· ,ASBS).

The independence between matrices A[S], B[S] is formalized as follows.

H(A,B) =H(A)+H(B) =
∑

s∈[S]

H(As)+
∑

s∈[S]

H(Bs). (5.1)

Since we are operating over Fq, let us express all entropies in base q units.

120

The A,B matrices are available at N servers with security levels XA,XB, respectively. This

means that any group of up to XA colluding servers can learn nothing about A matrices, and

any group of up to XB colluding servers can learn nothing about the B matrices.6 Security

is achieved by coding according to secret sharing schemes that separately generate shares

Ãns ,B̃
n
s corresponding to each As,Bs, and make these shares7 available to the nth server, for

all n∈ [N]. The independence between these securely coded matrices is formalized as,

I(A,Ã
[N]
[S] ;B,B̃

[N]
[S]) = 0, (5.2)

H
(
Ã

[N]
[S] ,B̃

[N]
[S]

)
=
∑

s∈[S]

H(Ã[N]
s)+

∑

s∈[S]

H(B̃[N]
s). (5.3)

Each matrix must be recoverable from all its secret shares,

H(As | Ã[N]
s) = 0, H(Bs | B̃[N]

s) = 0, ∀s∈ [S]. (5.4)

The A,B matrices must be perfectly secure from any set of secret shares that can be accessed

by a set of up to XA,XB colluding servers, respectively.

I
(
A;ÃX[S]

)
= 0, X ⊂ [N], |X |=XA (5.5)

I
(
B;B̃X[S]

)
= 0, X ⊂ [N], |X |=XB (5.6)

I(A,B;ÃX[S],B̃
X
[S]) = 0, X ⊂ [N], |X |= min(XA,XB) (5.7)

In order to retrieve the products AB, from each server n∈ [N], the user downloads ∆n which

is function of Ãn[S],B̃
n
[S].

H
(

∆n | Ãn[S],B̃
n
[S]

)
= 0. (5.8)

6For the most part, we will focus on cases with XA,XB ∈{0,X}, i.e., the security level can either be
X > 0 or zero, where a security level zero implies that there is no security constraint for that set of matrices.

7If XA = 0 then we could choose Ãns = As. Similarly, if XB = 0, then it is possible to have B̃ns = Bs.

121

The side-information available to the user apriori is denoted Ψ, which can be either the

A matrices, or the B matrices, or null (φ) if the user has no side-information. Given the

downloads from all N servers and the side-information, the user must be able to recover the

matrix products AB.

H
(
AB |∆[N],Ψ

)
= 0. (5.9)

Let us define the rate of an SDMM scheme as follows.

R=
H(AB |Ψ)

D
(5.10)

where D is the average value (over all realizations of A,B matrices) of the total number of

q-ary symbols downloaded by the user from all N servers. In order to steer away from the

field-size concerns that are best left to coding-theoretic studies, we will only allow the field

size to be asymptotically large, i.e., q→∞. The capacity of SDMM is the supremum of

achievable rate values over all SDMM schemes and over all S.

Remark 5.1. The goal of the SDMM problem is to design schemes to minimize D. The

normalization factor H(AB |Ψ) is not particularly important since it does not depend on the

scheme, it is simply a baseline that is chosen to represent the average download needed from

a centralized server that directly sends AB to the user in the absence of security constraints.

Other baselines, e.g., H(AB) may be chosen instead as in [18], or one could equivalently

formulate the problem directly as a minimization of download cost D. We prefer the formu-

lation as a rate maximization because it allows a more direct connection to the capacity of

PIR, one of the main themes of this chapter.

Finally, depending upon which matrices are secured and/or available as side-information, we

122

have the following versions of the SDMM problem.

SDMM version secure side-information Ψ capacity

SDMM(AB,φ) A,B φ C(AB,φ)

SDMM(AB,B) A,B B C(AB,B)

SDMM(B,φ) B φ C(B,φ)

SDMM(B,A) B A C(B,A)

SDMM(B,B) B B C(B,B)

(5.11)

Thus, the version of SDMM is indicated by the subscript which has two elements, the first

representing the matrices that are secured and the second representing the matrices available

to the user as side-information. Note that other cases, such as SDMM(AB,A), SDMM(A,φ),

SDMM(A,A), SDMM(A,B), are equivalent to, SDMM(AB,B), SDMM(B,φ), SDMM(B,B),

SDMM(B,A), respectively, by the inherent symmetry of the problem, leaving us with just

the 5 cases tabulated above.

5.3 Results

5.3.1 A Connection between SDMM and MM-XSTPIR

Let us begin by identifying a connection between SDMM and multi-message X-secure T -

private information retrieval (MM-XSTPIR). We refer the reader to Appendix C.1 for a

formal definition of MM-XSTPIR.

Lemma 5.1. The following bounds apply.

K ≥M =⇒ max
(
C(AB,B),C(B,B),C(AB,φ),C(B,φ)

)
≤CMM-XSTPIR(N,XA,XB,K,M),

(5.12)

123

K ≥L =⇒ C(AB,φ)≤CMM-XSTPIR(N,XB,XA,K,L),

(5.13)

where CMM-XSTPIR(N,X,T,K,M) is the capacity of MM-XSTPIR with N servers, X-secure

storage and T -private queries, retrieving M out of K messages.

Proof. Let us first prove the bound in (5.12), by showing that whenK ≥M , then any SDMM

scheme where the side-information available to the user is not8 A, and where XB 6= 0, au-

tomatically yields an MM-XSTPIR(N,XA,XB,K,M) scheme with the same rate, essentially

by thinking of A as the data and B as the query. Consider MM-XSTPIR with K indepen-

dent messages, each of which consists of L i.i.d. uniform symbols in Fq, say arranged in a

column. For all k ∈ [K], arrange these columns to form the matrix A1 so that the kth column

of A1 represents the kth message. Let the M desired message indices be represented by the

corresponding columns of the K×K identity matrix, and let these M columns be arranged

to form the K×M matrix B1. Note that retrieving the matrix product A1B1 is identical to

retrieving theM desired messages. Now any (XA,XB) secure SDMM scheme with S= 1 that

does not have A as side-information, conditioned on the realizations A1 =A1,B1 =B1, yields

an MM-XSTPIR scheme by treating Ãn1 as the XA-secure data stored at the nth server and

B̃n
1 as the XB-private query sent by the user to the nth server, for all n∈ [N]. For arbitrary

S > 1 we can simply extend the data by a factor of S, i.e., each message is comprised of SL

symbols, so that the kth message is represented by the kth columns of A1,A2,··· ,AS, treated as

realizations of A1,A2,··· ,AS. Thus, conditioning on the realization B1 = B2 = ···= BS =B1

gives us the S-fold extension of the same scheme. Furthermore, since B matrices are secure,

i.e., XB > 0 for all SDMM settings that appear in (5.12), it follows that B is independent
8A cannot be the side-information because as noted, the transformation from SDMM to MM-XSTPIR

interprets A as the data, which cannot be already available to the user in MM-XSTPIR. On the other hand,
B may be included in the side-information because it is interpreted as the queries, which are automatically
known to the user in MM-XSTPIR. Note that if B is also not included in the side-information, that just
means that the user can retrieve AB from the downloads without using the knowledge of B in the resulting
MM-XSTPIR scheme.

124

of B̃n
[S] for any n∈ [N]. This in turn implies that B is independent of the download ∆n

received from Server n. Therefore, conditioning on B taking values in the set that corre-

sponds to MM-XSTPIR (i.e., B1 restricted to any choice ofM columns of the K×K identity

matrix) does not affect the distribution of ∆n, or the entropy H(∆n). In other words, the

average download of the SDMM scheme remains unchanged as it is specialized to yield an

MM-XSTPIR scheme as described above. Now, since the number of desired q-ary symbols

retrieved by this feasible MM-XSTPIR scheme is SLM , the average download, D for the

SDMM scheme cannot be less than SLM/CMM-XSTPIR(N,XA,XB,K,M). Therefore, we have

a bound on the rate of the SDMM scheme as

R=
H(AB |B)

D
(5.14)

≤ H(AB)

D
(5.15)

≤ SLM
D

(5.16)

≤ SLM

SLM/CMM-XSTPIR(N,XA,XB,K,M)
(5.17)

=CMM-XSTPIR(N,XA,XB,K,M) (5.18)

In (5.15) we used the fact that conditioning reduces entropy so that H(AB |B)≤H(AB).

In (5.16) we used the fact that the matrix AB has SLM elements from Fq, and since the

uniform distribution maximizes entropy, H(AB)≤SLM . The bound in (5.13) is similarly

shown, by treating B̃n
1 as the XA-secure data stored at the nth server and Ãn1 as the XB-

private query sent by the user to the nth server. This completes the proof of Lemma 5.1.

5.3.2 An Upperbound on the Capacity of MM-XSTPIR

Motivated by Lemma 5.1, an upper bound on the capacity of MM-XSTPIR is presented in

the following theorem.

125

Theorem 5.1. The capacity of MM-XSTPIR is bounded as follows.

CMM-XSTPIR(N,X,T,K,M)

≤





0, N ≤X,
M(N−X)

KN
, X <N ≤X+T,

N−X
N

(
1+

(
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)−1

, N >X+T.

(5.19)

The proof of Theorem 5.1 is presented in Appendix C.1.2. Note that Theorem 5.1 also works

for trivial security or privacy, i.e., when X = 0 or T = 0.

Remark 5.2. In fact a closer connection exists between SDMM and MM-XSTPC, i.e.,

multi-message X-secure T -private (linear) computation problem that is an extension of the

private computation problem studied in [107]. However, we use only the connection to MM-

XSTPIR because this setting is simpler and the connection between SDMM and MM-XSTPIR

suffices for our purpose .

5.3.3 Entropies of Products of Random Matrices

The following lemma is needed to evaluate the numerator in the rate expressions for SDMM

schemes.

Lemma 5.2. Let A, B be random matrices independently and uniformly distributed over

FL×Kq , FK×Mq , respectively. As q→∞, we have

H(AB) =




LM, K ≥min(L,M)

LK+KM−K2, K <min(L,M)

, (5.20)

H(AB |A) = min(LM,KM), (5.21)

126

H(AB |B) = min(LM,LK), (5.22)

in q-ary units.

The proof of Lemma 5.2 appears in Appendix C.2.

We now proceed to capacity characterizations for the various SDMM models.

5.3.4 Capacity of SDMM(AB,φ)

Let us start with the basic SDMM setting, where both matrices A,B are X-secured, and

there is no prior side-information available to the user. This is essentially the two-sided

secure SDMM setting considered previously in [18, 61].

Theorem 5.2. The capacity of SDMM(AB,φ), with XA =XB =X, is characterized under

various settings as follows.

N ≤X =⇒C(AB,φ) = 0 (5.23)

N >X,K = 1 =⇒C(AB,φ) = 1−X
N

(5.24)

2X ≥N >X,
K

min(L,M)
→∞ =⇒C(AB,φ) = 0 (5.25)

N > 2X,
K

min(L,M)
→∞ =⇒C(AB,φ) = 1− 2X

N
(5.26)

N >X,K ≤min(L,M),
max(L,M)

K
→∞ =⇒C(AB,φ) = 1−X

N
(5.27)

N >X,
K

min(L,M)
< 1 =⇒C(AB,φ)≤ 1−X

N
(5.28)

2X ≥N >X,
K

min(L,M)
≥ 1 =⇒C(AB,φ)≤

(
1−X

N

)
min(L,M)

K
(5.29)

N > 2X,
K

min(L,M)
≥ 1 =⇒

127

C(AB,φ)≤
(

1−X
N

)(
1+

(
X

N−X

)
+ ···+

(
X

N−X

)b K
min(L,M)

c−1
)−1

(5.30)

Case (5.23) is trivial because A,B are X-secure, and nothing is available to the user as side-

information, which means that even if the user and the servers fully combine their knowledge,

A,B remain a perfect secret. The converse proof for cases (5.24) and (5.27) of Theorem 5.2

is presented in Section 5.4.2. Converse proofs for all other cases follow from Lemma 5.1

and Theorem 5.1. For example, consider case (5.25). According to (5.12),(5.13), we have

C(AB,φ)≤CMM-XSTPIR(N,X,X,K,min(L,M)) which in turn is bounded by min(L,M)(N−

X)/(KN) according to Theorem 5.1. Therefore, if K/min(L,M)→∞, then we have the

bound C(AB,φ) = 0. Converse bounds for other cases are found similarly. The proof of

achievability for case (5.24) is presented in Section 5.5.4. All other achievability results

are presented in Section 5.5.3.

Remark 5.3. The capacity of 2-sided SDMM problem is characterized in [61] as
(
1− 2X

N

)+.

Our capacity characterizations for cases (5.24) and (5.27) present a contradiction that calls

into question9 the converse bound in [61]. To further highlight the contradiction, note that

in the SDMMAB,φ problem, for arbitrary L,K,M , just by retrieving each of A,B sepa-

rately using the scheme described in Section 5.5.1, it is possible to achieve a rate equal

to H(AB)
(LK+KM)

(
1− X

N

)
≥ min(LM,LK+KM−K2)

(LK+KM)

(
1− X

N

)
which can be larger than

(
1− 2X

N

)+. Since

[61] assumes S= 1, consider for example, L=K =M , and N =X+1. Then with S= 1 this

simple scheme achieves a rate 1
2

(
1− X

N

)
= 1

2N
which exceeds

(
1− 2X

N

)+
= 0 for all X > 1. On

the other hand, the achievable scheme presented in [61] does not10 achieve the rate
(
1− 2X

N

)+

when K<min(L,M), so it remains unknown if
(
1− 2X

N

)+ is even a lower bound on capacity
9The information provided by the genie to the user in the converse proof of [61] is subsequently considered

useless on the basis that it is independent of AB. However, it turns out this independent side-information
can still be useful in decoding AB, just as a noise term Z that is independent of AB can still be useful in
decoding AB from the value AB+Z.

10This is because H(AB) 6=LM when K<min(L,M). Instead, according to Lemma 5.2, H(AB) =
LK+KM−M2. So while the download for the scheme in [61] is LMN/(N−2X), the rate achieved
when K<min(L,M) is H(AB)/D= LK+KM−K2

LM

(
1− 2X

N

)+, which is strictly smaller than
(
1− 2X

N

)+ for
K<min(L,M).

128

in general.

Corollary 5.1. Consider a modification of the SDMM(AB,φ) problem, where instead of

AB, the user wants to retrieve the Hadamard product A◦B. The capacity of this problem,

i.e., the supremum of H(A◦B)/D, as q→∞, is 1−X/N .

The converse for Corollary 5.1 follows directly from the converse proof of Theorem 5.2,

case (5.24) in Section 5.4.2 where we replace AB with A◦B. On the other hand, since

the Hadamard product is the entrywise product of matrices, thus the scalar multiplication

scheme presented in Section 5.5.4 achieves the capacity.

5.3.5 Capacity of SDMM(B,A)

The next SDMM model we consider corresponds to the one-sided SDMM problem considered

in [18]. Recall that the one-sided security model in [18] assumes that one of the matrices is

a constant matrix known to everyone. This corresponds to the A matrix in our model of

SDMM(B,A) because A is not secured and is available to the user as side-information. Here

our capacity result is consistent with [18].

Theorem 5.3. The capacity of SDMM(B,A) with XA = 0,XB =X is

C(B,A) =





0, N ≤X,

1−X
N
, N >X.

(5.31)

Theorem 5.3 fully characterizes the capacity of SDMM(B,A). The converse for Theorem 5.3

follows along the same lines as the converse presented in [18], but for the sake of completeness

we present the converse in Section 5.4.1. The proof of achievability provided in [18] is tight

129

only11 if K ≥L and L is a multiple of N−X. Therefore, a complete proof of achievability

is needed for Theorem 5.3. Such a proof is presented in Section 5.5.3.

5.3.6 Capacity of SDMM(B,B)

Theorem 5.4. The capacity of SDMM(B,B), with XA = 0,XB =X, is characterized under

various settings as follows.

K ≤M =⇒C(B,B) = 1 (5.32)

K>M,N ≤X =⇒C(B,B) =
M

K
(5.33)

N >X,
K

M
→∞ =⇒C(B,B) = 1−X

N
(5.34)

K>M,N >X =⇒C(B,B)≤
(

1+

(
X

N

)
+ ···+

(
X

N

)bK
M
c−1
)−1

(5.35)

The converse for K ≤M is trivial because the capacity by definition cannot exceed 1. The

converse for the remaining cases follows directly from Lemma 5.1 and Theorem 5.1. For ex-

ample, consider the case (5.33). According to Lemma 5.1, CB,B≤CMM-XSTPIR(N,0,X,K,M)

which is bounded by M/K according to Theorem 5.1. Other cases follow similarly. The

proof of achievability for Theorem 5.4 is provided in Section 5.5.3.
11The achievable scheme for the one-sided secure setting in [18] always downloads NLM/(N−X) q-ary

symbols, whereas the capacity achieving scheme needs to download only NKM/(N−X) q-ary symbols when
K<L.

130

5.3.7 Capacity of SDMM(B,φ)

Theorem 5.5. The capacity of SDMM(B,φ), with XA = 0,XB =X, is characterized under

various settings as follows.

N ≤X =⇒C(B,φ) = 0 (5.36)

K ≥L,N >X =⇒C(B,φ) =

(
1−X

N

)
H(AB)

H(AB |A)
=

(
1−X

N

)
(5.37)

K<L,N >X,
K

M
→∞ =⇒C(B,φ) = 1−X

N
(5.38)

K ≤M,N >X,
L

M
→∞ =⇒C(B,φ) = 1 (5.39)

K<L,N >X,
M

L
→∞ =⇒C(B,φ) =

(
1−X

N

)
H(AB)

H(AB |A)
=

(
1−X

N

)
(5.40)

L>K ≥M,N >X =⇒C(B,φ)≤
(

1+

(
X

N

)
+ ···+

(
X

N

)bK
M
c−1
)−1

(5.41)

The case N ≤X is trivial because B must be X-secure and there is no side-information at

the user, which means that neither the user, nor all servers together have any knowledge of

B. The converse for (5.37) and (5.40) follows from the fact that any SDMMB,φ scheme is

also a valid SDMMB,A scheme, so the download, say DB,φ for the best SDMMB,φ scheme

cannot be less than the download, say DB,A for the best SDMMB,A scheme. For (5.38) the

converse follows directly from Lemma 5.1 and Theorem 5.1. The converse for (5.39) is trivial

because the capacity can never be more than 1 by definition. Finally, the converse for (5.41)

also follows from Lemma 5.1 and Theorem 5.1. The achievability results for Theorem 5.5

are proved in Section 5.5.3.

131

5.3.8 Capacity of SDMMAB,B

Theorem 5.6. The capacity of SDMM(AB,B), with XA =XB =X, is characterized under

various settings as follows.

N ≤X =⇒C(AB,B) = 0 (5.42)

N >X,K ≤M =⇒C(AB,B) = 1−X
N

(5.43)

2X ≥N >X,K >M =⇒C(AB,B) =
M(N−X)

KN
(5.44)

N > 2X,K >M,
K

M
→∞ =⇒C(AB,B) = 1− 2X

N
(5.45)

N > 2X,K >M =⇒

C(AB,B)≤
N−X
N

(
1+

(
X

N−X

)
+ ···+

(
X

N−X

)bK
M
c−1
)−1

(5.46)

The case (5.42) with N ≤X is trivial because the A is X-secure and not available to the

user as side-information, which means that it is unknown to both the user and all servers.

The converse for (5.43) follows from the observation that relaxing the security constraint for

B cannot hurt, so C(AB,B) is bounded above by C(A,B), which is equal to C(B,A) = 1− X
N

by

the symmetry of the problem and the result of Theorem 5.3. The converse for (5.44), (5.45),

(5.46) follows from Lemma 5.1 and Theorem 5.1. The proof of achievability for Theorem 5.6

appears in Section 5.5.3.

132

5.4 Converse

5.4.1 Proof of Converse for Theorem 5.3

The case N ≤X is trivial because B must be X-secure and not available to the user as side-

information, which means that neither the user, nor all servers together have any knowledge

of B. Now let us consider the case N >X. Let X denote any subset of [N] such that |X |=X.

We start with the following lemma.

Lemma 5.3. I (∆X ;AB |A) = 0.

Proof.

I (∆X ;AB |A)

=H(∆X |A)−H (∆X |AB,A) (5.47)

≤H(∆X |A)−H (∆X |A,B) (5.48)

= I (∆X ;B |A) (5.49)

≤ I
(
B̃X[S],A;B |A

)
(5.50)

≤ I
(
B̃X[S],A;B

)
(5.51)

= I
(
B̃X[S];B

)
+I
(
A;B | B̃X[S]

)
(5.52)

≤ I
(
B̃X[S];B

)
+I
(
A;B,B̃T[S]

)
(5.53)

= 0. (5.54)

The steps in the proof are justified as follows. Step (5.47) applies the definition of mutual

information. Step (5.48) follows from the fact that (AB,A) is function of (A,B) and condi-

tioning reduces entropy. Step (5.49) applies the definition of mutual information, and (5.50)

holds because ∆X is function of
(
B̃T[S],A

)
. In (5.51), (5.52) and (5.53), we repeatedly used

133

the chain rule and non-negativity of mutual information. The last step follows from the

security constraint defined in (5.6) and separate encoding of matrices (5.2). The proof is

completed by the non-negativity of mutual information.

The proof of converse of Theorem 5.3 is now presented as follows.

H (AB |A)

=H (AB |A)−H
(
AB|∆[N],A

)
+H

(
AB |∆[N],A

)
(5.55)

=H (AB |A)−H
(
AB |∆[N],A

)
(5.56)

= I
(
AB;∆[N] |A

)
(5.57)

=H(∆[N] |A)−H
(
∆[N] |AB,A

)
(5.58)

≤H(∆[N] |A)−H (∆X |AB,A) (5.59)

=H(∆[N] |A)−H (∆X |A). (5.60)

Steps are justified as follows. (5.55) subtracts and adds the same term so nothing changes.

(5.56) follows from the correctness constraint,(5.9). Steps (5.57) and (5.58) follow from the

definition of mutual information. In (5.59), we used the fact that dropping terms reduces

entropy. The last step holds from Lemma 5.3.

Averaging (5.60) over all choices of X and applying Han’s inequality (Theorem 17.6.1 in

[26]), we have

H (AB |A)

≤H(∆[N] |A)−X
N
H
(
∆[N] |A

)
(5.61)

=

(
1−X

N

)
H(∆[N]|A) (5.62)

≤
(

1−X
N

)
H(∆[N]) (5.63)

134

≤
(

1−X
N

)∑

n∈[N]

H(∆n). (5.64)

Thus we obtain

CB,A = sup
H (AB |A)

D
(5.65)

≤ sup
H (AB |A)∑
n∈[N]H(∆n)

(5.66)

≤ 1−X
N
. (5.67)

5.4.2 Converse of Theorem 5.2: (5.24),(5.27)

Let X denote any subset of [N] such that |X |=X. The proof of converse is as follows.

H(AB)

=H(AB)−H
(
AB |∆[N]

)
+H

(
AB |∆[N]

)
(5.68)

=H(AB)−H
(
AB |∆[N]

)
(5.69)

= I
(
AB;∆[N]

)
(5.70)

=H
(
∆[N]

)
−H

(
∆[N] |AB

)
(5.71)

≤H(∆[N])−H
(
∆[N] |A,B

)
(5.72)

≤H(∆[N])−H (∆X |A,B) (5.73)

=H(∆[N])−H (∆X). (5.74)

Steps are justified as follows. (5.68) subtracts and adds the same term so nothing changes.

(5.69) follows from (5.9), while (5.70) and (5.71) follow from the definition of mutual infor-

mation. (5.72) holds because adding conditioning reduces entropy and AB is function of

(A,B). (5.73) holds because dropping terms reduces entropy. The last step simply follows

135

from the following fact,

0 = I(A,B;ÃX[S],B̃
X
[S]) (5.75)

= I(A,B;∆X) (5.76)

=H(∆X)−H(∆X |A,B) (5.77)

where (5.75) is the security constraint defined in (5.7). (5.76) follows from non-negativity of

mutual information and the fact that ∆X is function of (ÃX[S],B̃
X
[S]). (5.77) is the definition

of mutual information.

Averaging (5.74) over all choices of X and applying Han’s inequality, we have

H (AB)≤H
(
∆[N]

)
−X
N
H
(
∆[N]

)
(5.78)

=

(
1−X

N

)
H
(
∆[N]

)
(5.79)

≤
(

1−X
N

)∑

n∈[N]

H(∆n). (5.80)

Thus we obtain

C(AB,φ) = sup
H(AB)

D
(5.81)

≤ sup
H(AB)∑
n∈[N]H(∆n)

(5.82)

≤ 1−X
N
. (5.83)

5.5 Achievability

Let us present two basic schemes that are essential ingredients of the proofs of achievability.

136

5.5.1 A General Scheme

This scheme allows the user to retrieve all A,B, after which he can locally compute AB.

Let S=N−X, and let Zsx,Z
′
sx′ , s∈ [S],x∈ [XA],x′ ∈ [XB] be uniformly distributed random

matrices over FL×Kq and FK×Mq respectively. Note that XA,XB ∈{0,X}. The independence

of these random matrices and matrices A[S],B[S] is specified as follows.

H
(
(Zsx,Z

′
sx′)s∈[S],x∈[XA],x′∈[XB],A[S],B[S]

)

=
∑

s∈[S],x∈[XA],x′∈[XB]

H(Zsx)+H(Z′sx′)+
∑

s∈[S]

H(As)+H(Bs). (5.84)

Let αn,n∈ [N] beN distinct elements from Fq. The construction of securely encoded matrices

Ãns and B̃n
s for any s∈ [S] and n∈ [N] is provided below.

Ãns =αsnAs+
∑

x∈[XA]

αS+x
n Zxt (5.85)

=αsnAs+αS+1
n Zs1 + ···+αS+XA

n ZsXA (5.86)

B̃n
s =αsnBs+

∑

x′∈[TB]

αS+x′

n Z′sx′ (5.87)

=αsnBs+αS+1
n Z′s1 + ···+αS+XB

n Z′sXB . (5.88)

The answer from the n-th server is specified as follows

∆n =



Ãn1 + ···+ ÃnS

B̃n
1 + ···+B̃n

S


 (5.89)

=



αnA1 + ···+αSnAS +αS+1

n

∑
s∈[S]Zs1 + ···+αS+XA

n

∑
s∈[S]ZsXA

αnB1 + ···+αSnBS +αS+1
n

∑
s∈[S]Z

′
s1 + ···+αS+XB

n

∑
s∈[S]Z

′
sXB


. (5.90)

Note that the desired matrices and the random matrices are coded with an RS code. There-

fore, from the answers provided by all N servers, the user is able to decode all matrices

137

A[S],B[S], and then determine AB = (As×Bs)s∈[S]. Note that XA-security is guaranteed

for matrices As because they are protected by the XA noise matrices Zsx,x∈ [XA], that are

i.i.d. uniform and coded according to MDS(XA,N). Similarly, XB-security is guaranteed for

matrices Bs.

5.5.2 Cross Subspace Alignment Based Scheme

For this scheme, let us set

S=N−XA−XB. (5.91)

And let Zsx,Z
′
sx′ , s∈ [1 :S],x∈ [TA],x′ ∈ [TB] be uniformly distributed random matrices over

FL×Kq and FK×Mq respectively. The independence of random matrices and matrices A[S],B[S]

is specified as follows.

H
(
(Zsx,Z

′
sx′)s∈[S],x∈[TA],x′∈[TB],A[S],B[S]

)

=
∑

s∈[S],x∈[XA]

H(Zsx)+
∑

s∈[S],x′∈[XB]

H(Z′sx′)+
∑

s∈[S]

H(As)+
∑

s∈[S]

H(Bs). (5.92)

For the construction of this scheme, we will need N+S distinct constants αn,n∈ [N],fs ∈

Fq,s∈ [S], that are elements of F. The securely encoded matrix Ãns for any s∈ [S] and n∈ [N]

is provided below.

Ãns = As+
∑

x∈[XA]

(fs−αn)xZsx (5.93)

= As+(fs−αn)Zs1 + ···+(fs−αn)XAZsXA . (5.94)

138

Similarly, the securely encoded matrix B̃n
s for any s∈ [S] and n∈ [N] is as follows,

B̃n
s =

1

fs−αn


Bs+

∑

x′∈[XB]

(fs−αn)x
′
Z′sx′


 (5.95)

=
1

fs−αn
(
Bs+(fs−αn)Z′s1 + ···+(fs−αn)XBZ′sXB

)
. (5.96)

The download from any server n, n∈ [N] is constructed as follows.

∆n =
∑

s∈[S]

Ãns B̃
n
s (5.97)

=
∑

s∈[S]

(
1

fs−αn
AsBs

)
+
∑

s∈[S]

∑

x∈[XA]

(fs−αn)x−1ZsxBs

+
∑

s∈[S]

∑

x′∈[XB]

(fs−αn)x
′−1AsZ

′
sx′+

∑

s∈[S]

∑

x∈[XA],x′∈[XB]

(fs−αn)x+x′−1ZsxZ
′
sx′ . (5.98)

Each of the last three terms can be expanded into weighted sums of terms of the form

αtn, t∈{0,1,...,XA+XB−1}. Thus, upon receiving all N answers from servers, the user is

able to decode all S desired product matrices (As×Bs)s∈[S], as long as the following N×N

matrix is invertible,

MN =




1
f1−α1

··· 1
fS−α1

1 α1 ··· αXA+XB−1
1

1
f1−α2

··· 1
fS−α2

1 α2 ··· αXA+XB−1
2

...
...

...
...

...
...

...

1
f1−αn ···

1
fS−αn

1 αN ··· αXA+XB−1
N



, (5.99)

which is shown to be true by Lemma 2.5. XA-security is guaranteed for matrices As because

they are protected by the XA noise matrices Zsx,x∈ [XA], that are i.i.d. uniform and coded

according to MDS(XA,N) codes. XB-security is similarly guaranteed for the matrices Bs,s∈

[S].

139

5.5.3 Proofs of Achievability

Throughout these proofs, we will allow q→∞. Furthermore, we will use Lemma 5.2 to

calculate the entropy of random matrices.

Achievability Proof of Theorem 5.3

First, let us consider the setting whenK ≥L. For this setting, let us apply the cross subspace

alignment based scheme presented in Section 5.5.2. Note that XA = 0,XB =X, and the total

number of downloaded q-ary symbols is NLM , so the rate achieved is

R=
H (AB |A)

NLM
(5.100)

=
SLM

NLM
(5.101)

= 1−X
N
, (5.102)

which matches the capacity for this setting. On the other hand, when K<L, let us apply

the general scheme presented in Section 5.5.1. Since XA = 0,XB =X, we have

∆n =




αnA1 + ···+αSnAS

αnB1 + ···+αSnBS +αS+1
n

∑
s∈[S]Z

′
s1 + ···+αS+X

n

∑
s∈[S]Z

′
sX


. (5.103)

But note that left matrices A[S] are already available to the user as side information, so

it is not necessary to download (αnA1 + ···−αSnAS) terms. Therefore, the total number of

downloaded q-ary symbols is NKM , and the rate achieved is

R=
H (AB |A)

NKM
(5.104)

=
SKM

NKM
(5.105)

=1−X
N
, (5.106)

140

which matches the capacity for this setting. This completes the achievability proof of The-

orem 5.3.

Achievability Proof for Theorem 5.4

First consider the trivial scheme with S= 1 that downloads the matrices A[S] directly from

any one out of N servers, since there is no security constraint on these matrices (XA = 0).

Since B[S] is already available as side information, downloading A[S] allows the user to

compute AB locally. The rate achieved with this scheme is

R=
H (AB |B)

LK
(5.107)

=
min(LM,LK)

LK
(5.108)

=





1, K ≤M,

M

K
, K >M.

(5.109)

Thus, this simple scheme is optimal for K ≤M and for (K>M,N ≤X).

Next let us consider N >X asK/M→∞. For this, let us apply the cross subspace alignment

based scheme presented in Section 5.5.2 with S=N−X. Note that XA = 0,XB =X, and

the total number of downloaded q-ary symbols is NLM , so the rate achieved is

R=
H (AB |B)

NLM
(5.110)

=
SLM

NLM
(5.111)

=1−X
N
, (5.112)

which matches the capacity for this setting. This completes the achievability proof of The-

orem 5.4.

141

Achievability Proof for Theorem 5.5

For the cases (5.37), (5.38), let us apply the cross subspace alignment based scheme presented

in Section 5.5.2 with S=N−X. Since XA = 0,XB =X, and the total number of downloaded

q-ary symbol is NLM , the rate achieved is

R=
H (AB)

NLM
(5.113)

=
SLM

NLM
(5.114)

= 1−X
N
. (5.115)

This completes the achievability proof of Theorem 5.5 for the cases (5.37), (5.38).

Now consider the cases (5.39) and (5.40). For these cases, let us apply the general scheme

presented in Section 5.5.1. Since XA = 0,XB =X, we have

∆n =




αnA1 + ···+αSnAS

αnB1 + ···+αSnBS +αS+1
n

∑
s∈[S]Z

′
s1 + ···+αS+X

n

∑
s∈[S]Z

′
sX


. (5.116)

Note that from the downloads ∆n of any S servers, we are able to recover the matrices

A[S], so we can eliminate the first part from the remaining N−S redundant downloads

while preserving decodability. Therefore, the total number of downloaded q-ary symbols is

SLK+NKM . Thus, as q→∞, the rate achieved is

R=
H (AB)

SLK+NKM
(5.117)

=
S(LK+KM−K2)

SLK+NKM
(5.118)

As L/M→∞ and when M ≥K, we have R= 1. This completes the proof of achievability

142

of (5.39). On the other hand, when M/L→∞ and K<L, we have

R =
S(LK+KM−K2)

SLK+NKM
(5.119)

M/L→∞
=

S

N
(5.120)

= 1−X
N

(5.121)

This proves achievability for (5.40), thus completing the proof of achievability for Theorem

5.5.

Achievability Proof of Theorem 5.6

Let us start with the cases (5.43) and (5.44), for which we apply the general scheme presented

in Section 5.5.1. Since XA =XB =X, we have

∆n =



αnA1 + ···+αSnAS +αS+1

n

∑
s∈[S]Zs1 + ···+αS+X

n

∑
s∈[S]ZsX

αnB1 + ···+αSnBS +αS+1
n

∑
s∈[S]Z

′
s1 + ···+αS+X

n

∑
s∈[S]Z

′
sX


. (5.122)

Now we note that since the matrices B[S] are available to user as side information, it is not

necessary to download the second part of ∆n. Therefore, the total number of downloaded

q-ary symbols is NLK, and the rate achieved is

R=
H (AB |B)

NLK
(5.123)

=
Smin(LK,LM)

NLK
(5.124)

=





1−X
N
, K ≤M

M(N−X)

KN
, K >M

. (5.125)

143

This completes the achievability proof for cases (5.43) and (5.44).

Next, let us consider case (5.45), and for this setting let us apply the cross subspace alignment

based scheme presented in Section 5.5.2. Note that XA =XB =X, and the total number of

downloaded q-ary symbols is NLM , so the rate achieved is

R=
H (AB |B)

NLM
(5.126)

=
SLM

NLM
(5.127)

= 1− 2X

N
(5.128)

which matches the capacity for this setting.

Achievability Proof of Theorem 5.2

Let us start with case (5.26), for which we apply the cross subspace alignment based scheme

that was presented in Section 5.5.2. Note that XA =XB =X, and the total number of

downloaded q-ary symbols is NLM , so the rate achieved is

R=
H (AB)

NLM
(5.129)

=
SLM

NLM
(5.130)

= 1− 2X

N
, (5.131)

which matches the capacity for this setting.

Next, consider case (5.27). For this setting, let us apply the general scheme presented in

144

Section 5.5.1. Since XA =XB =X, we have

∆n =



αnA1 + ···+αSnAS +αS+1

n

∑
s∈[S]Zs1 + ···+αS+X

n

∑
s∈[S]ZsX

αnB1 + ···+αSnBS +αS+1
n

∑
s∈[S]Z

′
s1 + ···+αS+X

n

∑
s∈[S]Z

′
sX


. (5.132)

Thus the total number of downloaded q-ary symbols is N(LK+KM). Therefore, when

K ≤min(L,M), we have

R =
H (AB)

N(LK+KM)
(5.133)

=
S(LK+KM−K2)

N(LK+KM)
(5.134)

max(L,M)/K→∞
= 1−X

N
. (5.135)

This completes the achievability proof of case (5.27).

5.5.4 Achievability Proof of Theorem 5.2: Case (5.24)

K =L=M = 1

Let us first consider the setting where K =L=M = 1, and let us set S=N−X. Note

that in this setting, As, Bs are independent scalars drawn uniformly from the finite field

Fq. Let us first present a solution based on the assumption that As, Bs take only non-

zero values for all s∈ [S]. It is well-known that the multiplicative group F×q =Fq \{0} is a

cyclic group. Moreover, every finite cyclic group of order q−1 is isomorphic to the additive

group of Z/(q−1)Z (i.e., addition modulo (q−1)). Therefore it is possible to translate

scalar multiplication over F×q into addition modulo (q−1). However, the additive group of

Z/(q−1)Z is not a field, and our scheme will further require the properties of a field. This

145

problem is circumvented by using a prime field Fp for a prime p such that p> 2(q−1) and

noting that for any two integers a,b∈{0,1,...,q−2}, we have

(a+b) mod(q−1) = ((a+b) modp) mod(q−1). (5.136)

In other words, suppose the isomorphism between the multiplicative group F×q and the

additive group Z/(q−1)Z maps all a∈F×q to f(a)∈Z/(q−1)Z. Then for all a,b,c∈F×q such

that c= a×b, we have f(c) = f(a)+f(b) in Z/(q−1)Z, and furthermore, under the natural

interpretation of all f(a) as elements of Fp, we have c′= f(a)+f(b) in Fp such that f(c) = c′

mod (q−1). Thus, we are able to transform the problem of scalar multiplication in F×q to

scalar addition over Fp, i.e., instead of c= a×b∈F×q , the user will retrieve c′= f(a)+f(b)∈

Fp from which he can compute f(c) by a mod q−1 operation, and then from f(c) the user

can compute c by inverting the isomorphic mapping.

To account for potential zero values of As,Bs ∈Fq, let us define f(0) = 0. In light of this

discussion, let us assume f(As),f(Bs) are scalars in Fp and the user wishes to retrieve

f(As)+f(Bs)∈Fp for all those s∈ [S] where As,Bs are both non-zero, and he wishes to

retrieve the answer 0 for all those s∈ [S] where either one of As,Bs is zero. Now let us

present a scheme to achieve this task. For this scheme let us choose p to be the minimum

prime number such that p> 2(q−1). Let Zsx,Z
′
sx, s∈ [S],x∈ [X] be uniformly distributed

random (noise) scalars over Fp. The independence of these random scalars and the scalars

f(As),f(Bs) is specified as follows.

H
(
(Zsx,Z

′
sx)s∈[S],x∈[X],(f(As),f(Bs))s∈[S]

)

=
∑

s∈[S],x∈[X]

H(Zsx)+
∑

s∈[S],x∈[X]

H(Z′sx)+
∑

s∈[S]

H(f(As))+
∑

s∈[S]

H(f(Bs)). (5.137)

Let αn,n∈ [N] be N distinct elements from Fp. The construction of Ãns and B̃n
s for any

146

s∈ [S] and n∈ [N] is provided as follows.

Ãns =αsnf(As)+
∑

x∈[X]

αS+x
n Zsx (5.138)

=αsnf(As)+αS+1
n Zs1 + ···+αS+X

n ZsX (5.139)

B̃n
s =αsnf(Bs)+

∑

x∈[X]

αS+x
n Z′sx (5.140)

=αsnf(Bs)+αS+1
n Z′s1 + ···+αS+X

n Z′sX . (5.141)

The answer from the n-th server is obtained as follows

∆n = Ãn1 + ···+ ÃnS +B̃n
1 + ···+B̃n

S (5.142)

=αn(f(A1)+f(B1))+ ···+αSn(f(AS)+f(BS))

+αS+1
n

∑

s∈[S]

(Zs1 +Z′s1)+ ···+αS+X
n

∑

s∈[S]

(ZsX +Z′sX). (5.143)

X-security is guaranteed because matrices As,Bs are protected by noise terms that are

i.i.d. uniform and coded according to MDS(X,N) codes. Note that desired scalars and

random scalars are coded with an RS code, and S+X =N . Therefore, from the answers

provided by all N servers, the user is able to decode (As+Bs)s∈[S]. By the transformation

argument, correctness is guaranteed for all those s∈ [S], where As 6= 0 and Bs 6= 0. However,

correctness is not yet guaranteed for those s∈ [S] where either As = 0 or Bs = 0. For this

we will implement a separate mechanism to let the user know which As and Bs are equal

to zero, so he can infer correctly that AsBs = 0 for those instances. Specifically, for each

scalar As and Bs, let us define binary symbols ηAs ,ηBs that indicate whether or not As,Bs

are equal to zero. These ηAs ,ηBs are also secret-shared among the N servers in an X-secure

fashion, and retrieved by the user at negligible increase in download cost as q→∞. Now, by

the Bertrand–Chebyshev theorem, for every integer ν > 1 there is always at least one prime

p′ such that ν <p′< 2ν, thus we must have p such that 2(q−1)<p< 4(q−1). Therefore, as

147

q→∞, the rate achieved is

R=
H (A×B)

D
(5.144)

≥ H (AB |B)

N logq(p)+2SN logq(2)
(5.145)

≥
S(q−1

q
)

N logq(4(q−1))+2SN logq(2)
(5.146)

=
(N−X)(q−1

q
)

N logq(4(q−1))+2(N−X)N logq(2)
(5.147)

which approaches 1−X/N as q→∞.

K = 1, Arbitrary L,M

Now let us consider the setting with arbitrary L,M , and with K = 1, i.e., the user wishes to

compute the outer product of vectors As,Bs for all s∈ [S]. As before, let us set S=N−X,

and choose p to be the smallest prime such that p> 2(q−1). We will allow the user to

download a normalized version of each As and Bs vector, along with the product of the

normalizing factors, from which the user can construct AsBs. To this end, let us define is,js

as the index of the first non-zero element in As,Bs, respectively, and normalize each vector

As by it’s iths element As(is), each vector Bs by it’s jths element Bs(js) ∀s∈ [S]. Now ∀s∈ [S]

such that As is not the zero vector, we have

As =As(is)[0,··· ,0,1,A′s(is+1),...,A′s(L)]′︸ ︷︷ ︸
A′s

, (5.148)

where the vector A′s is the normalized vector. Similarly, ∀s∈ [S] such that Bs is not the zero

vector, we have

Bs =Bs(js)[0,··· ,0,1,B′s(js+1),...,B′s(M)]︸ ︷︷ ︸
B′s

. (5.149)

148

Note that if As or Bs is the zero vector, then we simply set is = 0,js = 0 and A′s = 0,B′s = 0,

and As(is) = 1,Bs(js) = 1, respectively. The scheme is constructed as follows. Separate X-

secure secret sharing schemes are used to distribute the secrets is,js,As(is),Bs(js),Ā
′
s,B̄

′
s,

among the N servers, where Ā′s,B̄
′
s are length L−1,M−1 vectors respectively, obtained by

eliminating the leading 1 term from each of A′s,B
′
s (or one of the zeros if A′s,B

′
s are zero

vectors). The vectors Ā′s,B̄
′
s are retrieved by the user according to the scheme presented

in Section 5.5.1, with total download cost equal to N(L−1)+N(M−1) =N(L+M−2) q-

ary symbols. The indices is,js are retrieved according to same scheme presented in Section

5.5.1, with total download cost not exceeding N logq(L+1)+N logq(M+1) in units of q-ary

symbols because the alphabet size for the indices is,js is L+1,M+1, respectively. The

scheme presented in Section 5.5.4 is utilized by the user to retrieve the scalar products

As(is)Bs(js) with total download from N servers not exceeding N logq(4(q−1)). Note that

since As(is)Bs(js) is always non-zero there is no need for downloading additional indicators

needed to identify zero values. The correctness follows from the fact that

As×Bs = (As(is)Bs(js))A
′
s×B′s, (5.150)

and by the construction of the scheme, (As(is)Bs(js)) and A′s×B′s are recoverable for all

s∈ [S]. Therefore, the rate achieved is

R=
H
(
(As×Bs)s∈[S]

)

D
(5.151)

≥ H
(
(As×Bs)s∈[S]

)

N(L+M−2)+N logq(L+1)+N logq(M+1)+N logq(4(q−1))
(5.152)

=
S(L+M−1)

N(L+M−2)+N logq(L+1)+N logq(M+1)+N logq(4(q−1))
(5.153)

=
(N−X)(L+M−1)

N(L+M−2)+N logq(L+1)+N logq(M+1)+N logq(4(q−1))
(5.154)

which approaches 1− X
N

as q→∞. This proves achievability of case (5.24), and completes

the achievability proof of Theorem 5.2.

149

5.6 Discussion

A class of Secure Distributed Matrix Multiplication (SDMM) problems was defined in this

chapter, and its capacity characterized in various parameter regimes depending on the secu-

rity level X, number of servers N , matrix dimensions L,M,K and the set of matrices that

are secured or available to the users as side-information. Notable aspects include connections

between SDMM and a form of PIR known as MM-XSTPIR that led us to various converse

bounds, and cross-subspace alignment schemes along with monomorphic transformations

from scalar multiplication to scalar addition that formed the basis of some of the achievable

schemes. Note that most of the achievable schemes in this chapter can also be adapted to the

one-shot matrix multiplication framework of [61, 18], say where L,K,M all approach infinity

and the ratios L/K, K/M are fixed constants. The converse parts follow directly, for the

achievability parts, we can adapt our schemes to one-shot matrix multiplication based on

matrix partitioning and zero-padding. For example, consider the cross subspace alignment

based scheme in Section 5.5.2. Let us define L1 = bL/S ′cS ′, where S ′=N−XA−XB. Now

let us partition matrix A as follows.

A = [A1,1 ... A1,S′ A2,1 ... A2,(L modS′)]
T , (5.155)

where (A1,s′)s∈[S′] are L1/S
′×K matrices, (A2,s′)s∈[L modS′] are 1×K vectors. Now with the

schemes presented in this chapter, for all s′ ∈ [S ′], by setting As′ = A1,s′ and Bs′ = B, one

can recover (A1,s′B)s∈[S′]. On the other hand, we can then set As′ = A2,s′ ,s
′ ∈ [L modS ′],

As′ = 0,s∈{(L modS ′)+1,...,S ′} and also Bs′ = B,s∈ [S ′] to recover (A2,s′B)s∈[K modS′].

Note that the extra cost of zero-padding is upper bounded by KS ′/LK =S ′/L, which goes

to zero as L→∞. Thus the desired rates are still achievable.

150

Chapter 6

Cross Subspace Alignment Codes for

Coded Distributed Batch Computation

The goal of coded distributed computation is to efficiently distribute a computation task,

such as matrix multiplication, N -linear computation, or multivariate polynomial evaluation,

across S servers through a coding scheme, such that the response from any R servers (R

is called the recovery threshold) is sufficient for the user to recover the desired computed

value. Current state-of-art approaches are based on either exclusively matrix-partitioning

(Entangled Polynomial (EP) Codes for matrix multiplication), or exclusively batch process-

ing (Lagrange Coded Computing (LCC) for N -linear computations or multivariate polyno-

mial evaluations). We present three related classes of codes, based on the idea of Cross-

Subspace Alignment (CSA) which was introduced originally in the context of secure and

private information retrieval. CSA codes are characterized by a Cauchy-Vandermonde ma-

trix structure that facilitates interference alignment along Vandermonde terms, while the

desired computations remain resolvable along the Cauchy terms. These codes are shown to

unify, generalize and improve upon the state-of-art codes for distributed computing. First

we introduce CSA codes for matrix multiplication, which yield LCC codes as a special case,

151

and are shown to outperform LCC codes in general in download-limited settings. While

matrix-partitioning approaches (EP codes) for distributed matrix multiplication have the

advantage of flexible server computation latency, batch processing approaches (CSA, LCC)

have significant advantages in communication costs as well as encoding and decoding com-

plexity per matrix multiplication. In order to combine the benefits of these approaches, we

introduce Generalized CSA (GCSA) codes for matrix multiplication that bridge the extremes

of matrix-partitioning and batch processing approaches and demonstrate synergistic gains

due to cross subspace alignment. Finally, we introduce N -CSA codes for N -linear distributed

batch computations and multivariate batch polynomial evaluations. N -CSA codes include

LCC codes as a special case, and are in general capable of outperforming LCC codes in

download-constrained settings by upto a factor of N . Generalizations of N -CSA codes to

include X-secure data and B-byzantine servers are also provided.

6.1 Introduction

In the era of big data and cloud computing along with massive parallelization, there is partic-

ular interest in algorithms for coded distributed computation that are resilient to stragglers

[140, 31, 28, 141, 138, 91, 69, 68, 29, 30, 139, 48, 6, 100, 122, 77, 121, 94, 44, 96, 49, 65, 86, 72].

The goal in coded distributed computation is to distribute the computation task according

to a coding scheme across S servers (also known as workers or processors), such that the

response from any R servers is sufficient for the user to recover (decode) the result of the

computation. The parameter R is called the recovery threshold. Coded distributed comput-

ing offers the advantage of reduced latency from massive parallelization, because the tasks

assigned to each server are smaller, and the redundancy added by coding helps avoid bot-

tlenecks due to stragglers. The main metrics of interest for coded distributed computation

152

include: the encoding and decoding complexity, latency1 and complexity of server compu-

tation, the recovery threshold, and the upload and download costs (communication costs).

With high end communication speeds approaching Gbps and computing speeds (processor

clock speeds) commonly of the order of GHz, communication and computation costs may

be comparable for many applications, allowing meaningful tradeoffs between the two. On

the other hand, since communication bottlenecks are quite common, communication costs

remain a key concern in distributed computing. Note that even with higher communication

costs distributed computing may be necessary if, e.g., the computation task is too large

to be efficiently carried out locally, or if the sources that generate the inputs for computa-

tion are not the same as the destination where the output of computation is desired, i.e.,

communication is unavoidable. Figure 6.1 shows such a setting for coded distributed batch

matrix multiplication (CDBMM). Another notable aspect of such settings is that the cost

dynamics for uploads and downloads may be different, e.g., if the input data is relatively

static and multiple users request computations on different parts of the same dataset, then

the download cost may be much more of a concern than upload cost. This will be significant

when we compare different coding schemes in this chapter.

Distributed coded computing can be applied to a myriad of computational tasks. Of partic-

ular interest to this chapter are matrix multiplications, N -linear computations (e.g., com-

puting the determinants of N×N matrices, or the product of N matrices), and evaluations

of multivariate polynomials. These are some of the most fundamental building blocks of

computation. Moreover, these problems are closely related. Indeed matrix multiplications

are bilinear operations, so they are special cases of multilinear computations, and multilinear

computations may be seen as special cases of multivariate polynomial evaluations. Several

elegant coding schemes, or codes, have been proposed for solving these problems. Codes for

distributed matrix multiplication evolved through MDS codes [68], Polynomial codes [140],
1Latency is the time it takes a server to complete a specific computation job. Unlike server computation

complexity, it is not normalized by the size of the job, so it depends on the size of the job assigned to the
server. Latency constraints are explored in the discussion following Theorem 6.2 in Section 6.5.

153

A = (A1,...,AL) B = (B1,...,BL)

Server 1 ··· Server i ··· Server j ··· Server S

ÃSÃ1 ÃjÃi B̃1 B̃i B̃j B̃S

User

Y1 Yj YS

AB= (A1B1,...,ALBL)

A total of R answers downloaded

Figure 6.1: The CDBMM problem. Source (master) nodes generate matrices A =
(A1,A2,··· ,AL) and B = (B1,B2,··· ,BL), and upload them to S distributed servers in coded
form Ã[s], B̃[s], respectively. For all l∈ [L], Al and Bl are λ×κ and κ×µ matrices, re-
spectively, over a field F. The sth server computes the answer Ys, which is a function of all
information available to it, i.e., Ãs and B̃s. For effective straggler (e.g., Server i in the figure)
mitigation, upon downloading answers from any R servers, where R<S, the user must be
able to recover the product AB = (A1B1,A2B2,...,ALBL).

MatDot and PolyDot codes [31] to the current state of art reflected in Generalized PolyDot

codes [28] and Entangled Polynomial (EP) codes [141]. For multilinear computations and

evaluations of multivariate polynomials, the state of art is represented by Lagrange Coded

Computing (LCC), introduced in [138].

It is interesting to note that the solutions to these problems fall into two distinct categories

— those based on partitioning of a single computation task [140, 31, 28, 141], and those based

on batch processing of multiple computation tasks [138]. For example, consider the CDBMM

problem shown in Figure 6.1 where the goal is to efficiently multiply L instances of λ×κ ma-

trices, A = (A1,A2,··· ,AL), with L instances of κ×µ matrices B = (B1,B2,··· ,BL), to com-

pute the batch of L matrix products, AB = (A1B1,A2B2,··· ,ALBL). Matrix-partitioning

approaches compute each of the L products AlBl one at a time by partitioning individual

matrices Al and Bl and coding across these partitions. Batch processing approaches do not

154

partition individual matrices, instead they code across the batch of A matrices and across

the batch of B matrices. The state-of-art for matrix-partitioning approaches is represented

by Entangled Polynomial Codes (EP codes) [141], while Lagrange Coded Computing (LCC)

[138] represents the state of art for batch processing. Since the problems are related, it is

natural to ask, how do the matrix-partitioning solutions compare with the batch-processing

solutions? Furthermore, can these solutions be improved, unified, generalized? These are

the questions that we address in this chapter.

The essential ingredient in this chapter that allows us to compare, improve, unify and gener-

alize the solutions to matrix multiplication, multilinear computation and multivariate poly-

nomial evaluation, turns out to be the idea of cross-subspace alignment. Cross-subspace

alignment (CSA) was originally introduced in the context of X-Secure T -Private Informa-

tion Retrieval (XSTPIR) in Chapter 2. Coding schemes that exploit CSA have been used to

improve upon and generalize the best known schemes for PIR with X-secure data, T -private

queries and various forms of storage, e.g., fully replicated (Chapter 2, [56]), graph based

replicated storage with limited replication factor (Chapter 3, [53]), or MDS coded storage

(Chapter 4, [54]). CSA schemes have also recently been shown to be useful to minimize

download communication cost for secure and/or private matrix multiplication (Chapter 5,

[61, 60, 51, 54]). Building upon these efforts, in this chapter we introduce a new and gener-

alized class of coded distributed computation codes, called CSA codes, that are inspired by

the idea of cross-subspace alignment. The contributions of this chapter are summarized as

follows.

1. CSA Codes. In Theorem 6.1 of this chapter that appears in Section 6.4, we intro-

duce CSA codes for coded distributed batch matrix multiplication. These codes are

used to multiply a batch of matrices A1,A2,··· ,AL with B1,B2,··· ,BL to recover the

L desired matrix products A1B1,A2B2,··· ,ALBL. There is no partitioning of individ-

ual matrices. Instead, coding is done across the matrices within a batch. CSA codes

155

partition a batch of L matrices into ` sub-batches of Kc matrices each (L= `Kc). Due

to cross-subspace alignment, the interference is limited to Kc−1 dimensions regardless

of the number of sub-batches `, so that the recovery threshold R=L+Kc−1. The

download per server does not depend on `, although the upload and server compu-

tation complexity do scale with `. Surprisingly, setting `= 1 recovers the Lagrange

Coded Computing (LCC) solution to coded distributed batch matrix multiplication as

a special case of CSA codes. Besides the additional flexibility, the main advantage of

choosing `> 1 in CSA codes is to reduce the download cost relative to LCC codes (see

Fig. 6.4 in Section 6.5.1). This advantage is especially significant in settings where the

download cost is the primary bottleneck.

2. EP vs CSA Codes. We compare matrix partitioning approaches (say EP codes that

generalize MatDot and Polynomial codes) with batch processing approaches (CSA

codes that generalize Lagrange Coded Computing) for distributed matrix multipli-

cation2 (see Fig. 6.2 in Section 6.4.2). Remarkably, we find that batch processing

presents a significant advantage in communication cost per matrix multiplication (i.e.,

normalized by the batch size L). As a function of the recovery threshold R, and for

any fixed recovery ratio R/S, CSA codes have the same server computation complexity

per matrix multiplication as EP codes, but CSA codes simultaneously achieve normal-

ized (upload cost, download cost)=(O(1),O(1)), overcoming a key barrier of existing

matrix-partitioning codes where upload cost of O(1) can only be achieved with down-

load cost of O(R) and download cost of O(1) can only be achieved with upload cost of

O(
√
R). A corresponding improvement in the tradeoff between encoding and decoding

2Similar to Observation 2 in Section 6.4.2, let us reiterate that in this chapter we do not explore improve-
ments that are possible by using more efficient matrix multiplication algorithms. This is in part because, as
noted previously for λ=µ=κ, optimally efficient matrix multiplication algorithms [67] represent a research
avenue that is largely open, and the strongest advances in this direction are considered far from practical
[45] due to large hidden constants in the O notation. For the sake of fairness, in this chapter we consider
only coded distributed matrix multiplication schemes that are also built upon straightforward algorithms
of matrix multiplication, e.g., the elementary version of EP codes. More elaborate matrix multiplication
algorithms, e.g., Strassen’s algorithm [99], can indeed be used for further improvements. See the discussion
in Section 6.5.2.

156

complexity is also observed.

3. GCSA Codes. Since there is no partitioning of individual matrices in the afore-

mentioned CSA codes, this means that each server must carry out a computational

load equivalent to at least one full matrix multiplication before it can respond with an

answer. This presents a latency barrier for batch processing schemes that cannot be

overcome regardless of the number of servers and the batch size. For applications with

stricter latency requirements such a solution may be infeasible, making it necessary to

reduce the computational load per server by further parallelization, i.e., partitioning

of individual matrices. To this end, in Theorem 6.2 that appears in Section 6.5.1 of

this chapter, we present Generalized CSA codes (GCSA codes in short) that combine

the matrix partitioning approach of, say EP codes, with the batch processing of CSA

codes. GCSA codes bridge the two extremes by efficiently combining both matrix-

partitioning and batch processing, and offer flexibility in how much of each approach is

used. Both EP codes and LCC codes can be recovered as special cases of GCSA codes,

but GCSA codes are capable of outperforming both EP and LCC codes in general (see

Fig. 6.3 and Fig. 6.4 in Section 6.5.1). When no matrix partitioning is used, GCSA

codes reduce to CSA codes, and if no batch processing is used then GCSA codes reduce

to EP codes. With GCSA codes, the degree of matrix partitioning controls the server

latency by limiting the computational load per server, while the batch partitioning on

top yields the advantage of batch processing in communication costs. The combination

is far from trivial. For example, consider a matrix partitioning approach that splits

the task among 10 servers such that any R1 = 7 need to respond, and a similar batch

processing approach that also splits the task among 10 servers such that any R2 = 7

need to respond. Then if we simply take the 10 matrix-partitioned tasks and use batch

processing on top to distribute each task among 10 servers, for a total of 100 servers,

then the recovery threshold of the naive combination is 6×10+4×6+1 = 85. However,

GCSA codes achieve a significantly lower recovery threshold (R≤R1R2 = 49).

157

4. N-CSA Codes. As noted, CSA codes are a generalization of LCC codes for dis-

tributed batch matrix multiplication. However, the applications of LCC codes extend

beyond matrix multiplication, to N -linear batch computation and multivariate poly-

nomial batch evaluations, raising the question whether corresponding generalizations

of LCC codes to CSA type codes exist for these applications as well. We answer this

question in the affirmative, by introducing N -CSA codes for the problem of coded dis-

tributed N -linear batch computation as well as multivariate polynomial evaluations,

that are strictly generalizations of LCC codes for both of these applications. This

generalization for batch size L= `Kc is done as follows. For all n∈ [N], the batch of L

realizations of the nth variable is split into ` sub-batches, each containing Kc realiza-

tions. The Kc realizations within each sub-batch are coded into an MDS (S,Kc) code

according to a Cauchy structure, and distributed to the S servers. Each server evalu-

ates the N -linear map function with the coded variables of each sub-batch, and returns

a weighted sum of evaluations of these ` sub-batches. By cross-subspace alignment,

undesired evaluations only occupy (N−1)(Kc−1) dimensions, so that the recovery

threshold is R=L+(N−1)(Kc−1). Finally, because N -linear maps are fundamental

construction blocks of multivariate polynomials of total degree N , it is straightforward

to apply N -CSA codes for multivariate polynomial batch evaluation. Specifically, we

can regard any multivariate polynomial of total degree N as a linear combination of

various restricted evaluations of N -linear maps. Each server prepares answers for var-

ious N -linear maps that constitute the given multivariate polynomial, then returns

the user with the linear combination of these answers according to the given polyno-

mial. Once again, the N -CSA code based scheme for multivariate polynomial batch

evaluation thus obtained, generalizes LCC codes, which can be recovered by setting

`= 1. The main advantage of choosing `> 1 with CSA codes remains the download

cost. N -CSA codes achieve normalized download cost D= R
L

= 1+
(
N−1
`

)(
Kc−1
Kc

)
. The

special case of `= 1 which gives us LCC codes corresponds to download cost of O(N),

158

but by using the full scope of values of ` the download cost can be reduced by up

to a factor of N , albeit with increasing recovery threshold. Reducing download cost

generally also reduces decoding complexity, which can be important when downlink

and/or computational resource at the user side is limited.

Next we provide an overview of the state of art approaches for coded distributed computing,

summarize the key ideas behind cross-subspace alignment, and tabulate the comparisons

between the codes proposed in this chapter and the prior state of art.

6.2 EP Codes, LCC Codes, CSA Codes

6.2.1 Matrix Partitioning: EP Codes

EP codes [141] for coded distributed matrix multiplication problem are based on matrix

partitioning. The constituent matrices A and B are partitioned into m×p blocks and p×n

blocks, respectively, as shown below, so that the desired matrix product involves a total of

mn linear combinations of products of block matrices.

A =




A1,1 A1,2 ··· A1,p

A2,1 A2,2 ··· A2,p

...
...

...
...

Am,1 Am,2 ··· Am,p




B =




B1,1 B1,2 ··· B1,n

B2,1 B2,2 ··· B2,n

...
...

...
...

Bp,1 Bp,2 ··· Bp,n




(6.1)

AB =




∑p
j=1A1,jBj,1

∑p
j=1A1,jBj,2 ··· ∑p

j=1A1,jBj,n

∑p
j=1A2,jBj,1

∑p
j=1A2,jBj,2 ··· ∑p

j=1A2,jBj,n

...
...

...
...

∑p
j=1Am,jBj,1

∑p
j=1Am,jBj,2 ··· ∑p

j=1Am,jBj,n




(6.2)

159

Coded matrices are constructed as follows,

Ã(α) =
∑

m′∈[m]

∑

p′∈[p]

Am′,p′αp
′−1+p(m′−1), (6.3)

B̃(α) =
∑

p′∈[p]

∑

n′∈[n]

Bp′,n′αp−p
′+pm(n′−1), (6.4)

and the sth server is sent the values Ã(αs) and B̃(αs). Here α1,α2,··· ,αS are distinct elements

from the operating field F. Each server produces the answer Ã(αs)B̃(αs), which can be

expressed as

Ã(α)B̃(α) =
R∑

i=1

C(i)αi−1, (6.5)

where R= pmn+p−1 is the recovery threshold, and C(1),C(2),··· ,C(R) are various linear

combinations of products of matrix blocks. Note that for all i∈ [R], C(i) are distributed over

1,α,··· ,αR−1, thus from the answers of any R servers, C(1),C(2),··· ,C(R) are recoverable by

inverting a Vandermonde matrix. Furthermore, it is proved in [141] that by the construction

of Ã(α) and B̃(α), the C(1),C(2),··· ,C(R) terms include the mn desired terms, while the

remaining undesired terms (interference) align into the remaining R−mn dimensions.

For example, suppose p=m=n= 2, so that the coded matrices are constructed as follows.

Ã(α) = A1,1 +αA1,2 +α2A2,1 +α3A2,2, (6.6)

B̃(α) =αB1,1 +α5B1,2 +B2,1 +α4B2,2. (6.7)

And the answer can be expressed as follows.

Ã(α)B̃(α) = A1,1B2,1

︸ ︷︷ ︸
C(1)

+α(A1,1B1,1 +A1,2B2,1)︸ ︷︷ ︸
C(2)

+α2(A2,1B2,1 +A1,2B1,1)︸ ︷︷ ︸
C(3)

160

+α3(A2,1B1,1 +A2,2B2,1)︸ ︷︷ ︸
C(4)

+α4(A1,1B2,2 +A2,2B1,1)︸ ︷︷ ︸
C(5)

+α5(A1,1B1,2 +A1,2B2,2)︸ ︷︷ ︸
C(6)

+α6(A1,2B1,2 +A2,1B2,2)︸ ︷︷ ︸
C(7)

+α7(A2,1B1,2 +A2,2B2,2)︸ ︷︷ ︸
C(8)

+α8(A2,2B1,2)︸ ︷︷ ︸
C(9)

. (6.8)

Note that the desired product AB corresponds to the mn= 4 terms C(2),C(4),C(6),C(8),

which appear along α,α3,α5,α7. The remaining R−mn= (pmn+p−1)−mn= 5 terms, i.e.,

C(1),C(3),C(5),C(7),C(9) are undesired terms (interference).

In particular, note that the term C(9), which is interference, has a higher order (α8) than

all desired terms. In general, EP codes produce p−1 such terms, namely C(pmn+1),··· ,C(R),

that have a higher order than all desired terms. It turns out this is useful in the construction

of GCSA codes to achieve better Interference Alignment (because these higher order terms

produced by EP codes naturally align with the interference terms that result from batch

processing).

EP codes may be seen as bridging the extremes of Polynomial codes and MatDot codes.

Polynomial codes [140] can be recovered from EP codes by setting p= 1, and MatDot codes

[31] can be obtained from EP codes by setting m=n= 1. EP codes also represent an

improvement of PolyDot codes [31] within a factor of 2 in terms of recovery threshold, due

to better interference alignment. Finally, EP codes have similar performance as Generalized

PolyDot codes [28]. Thus, EP codes represent the state of art of prior work in terms of

matrix partitioning approaches to coded distributed matrix multiplication.

161

6.2.2 Batch Processing: LCC Codes

Lagrange Coded Computing (LCC) codes [138] represent the state of art of prior work in

terms of batch processing approaches for coded distributed batch multivariate polynomial

evaluation, which includes as special cases distributed batch matrix multiplication as well

as distributed batch N -linear computation. LCC codes are so named because they exploit

the Lagrange interpolation polynomial to encode input data. For example, consider the

multivariate polynomial Φ(·) of total degree N , and suppose we are interested in batch

evaluations of the polynomial, Φ(x1),Φ(x2),··· ,Φ(xL) over the given batch of data points

x1,x2,··· ,xL. Note that for matrix multiplication, xl = (Al,Bl) and Φ(xl) = AlBl, which

is a bilinear operation (N = 2). LCC codes encode the dataset according to the Lagrange

interpolation polynomial,

X̃(α) =
∑

l∈[L]

xl
∏

l′∈[L]\{l}

α−βl′
βl−βl′

, (6.9)

and the sth server is sent the evaluation X̃(αs). Here α1,α2,··· ,αS,β1,β2,··· ,βL are (S+L)

distinct elements from the operation field F. The sth server returns the user with the answer

Φ(X̃(αs)). Note that the degree of the polynomial Φ(X̃(α)) is less than or equal to N(L−

1) =NL−N . Therefore, from the answers of any R=NL−N+1 servers, the user is able

to reconstruct the polynomial Φ(X̃(α)) by polynomial interpolation. Upon obtaining the

polynomial Φ(X̃(α)), the user evaluates it at βl for every l∈ [L] to obtain Φ(X̃(βl)) = Φ(xl).

6.2.3 Cross Subspace Alignment: CSA Codes

The distinguishing feature of CSA codes is a Cauchy-Vandermonde structure that facilitates

a form of interference alignment (labeled cross-subspace-alignment in Chapter 2), such that

the desired symbols occupy dimensions corresponding to the Cauchy part, and everything

162

else (interference) aligns within the higher order terms that constitute the Vandermonde part.

As a simple example of the CSA codes introduced in this chapter, consider the problem of

coded distributed batch matrix multiplication, and suppose we wish to compute the batch

of L= 4 matrix products A1B1, A2B2, A3B3, A4B4. For this, the A and B matrices are

encoded into the form

Ã(α) = ∆(α)

(
1

1−αA1 +
1

2−αA2 +
1

3−αA3 +
1

4−αA4

)
, (6.10)

B̃(α) =
1

1−αB1 +
1

2−αB2 +
1

3−αB3 +
1

4−αB4, (6.11)

and the sth server is sent the evaluations Ã(αs),B̃(αs). Here the values α1,α2,··· ,αS,1,2,··· ,4

represent any S+4 distinct elements of the operational field F, and ∆(α) = (1−α)(2−α)(3−

α)(4−α). Each server multiplies its Ã(αs) with B̃(αs) producing an answer which (after

some algebraic manipulation) can be expressed as

Ã(α)B̃(α) = c1

(
1

1−α

)
A1B1 +c2

(
1

2−α

)
A2B2 +c3

(
1

3−α

)
A3B3

+c4

(
1

4−α

)
A4B4 +I1 +αI2 +α2I3, (6.12)

where c1,c2,c3,c4 are non-zero constants. The desired matrix products AiBi appear along
(

1
i−α

)
(the Cauchy terms), and everything else (interference) can be distributed over the

higher order terms 1,α,α2 (the Vandermonde terms) and consolidated into I1,I2,I3. The

full-rank property of the Cauchy-Vandermonde matrix ensures that the desired symbols are

separable from interference provided we have at least R= 7 responding servers to resolve

the 7 total dimensions (4 desired and 3 interference dimensions). Surprisingly, upon close

inspection this special case of CSA codes turns out to be equivalent to the Lagrange Coded

computing scheme for distributed matrix multiplication. However, CSA codes further gen-

eralize and improve upon the Lagrange Coded Computing approach as explained next.

Suppose we double the batch size from L= 4 to L= 8, i.e., we wish to compute the matrix

163

products A1B1, A2B2, ···, A8B8. A straightforward extension is to simply use the previous

scheme twice, which would double all costs. This could be accomplished equivalently with

CSA codes or with Lagrange Coded Computing. However, because CSA codes generalize

Lagrange Coded Computing, they offer much more flexibility. For example, we can partition

the batch of L= 8 A,B matrices into `= 2 sub-batches of Kc = 4 matrices each, and then

proceed as before, so that we have,

Ã1(α) = ∆1(α)

(
1

1−αA1 +
1

2−αA2 +
1

3−αA3 +
1

4−αA4

)
, (6.13)

Ã2(α) = ∆2(α)

(
1

5−αA5 +
1

6−αA6 +
1

7−αA7 +
1

8−αA8

)
, (6.14)

B̃1(α) =
1

1−αB1 +
1

2−αB2 +
1

3−αB3 +
1

4−αB4, (6.15)

B̃2(α) =
1

5−αB5 +
1

6−αB6 +
1

7−αB7 +
1

8−αB8, (6.16)

where ∆1(α) = (1−α)(2−α)(3−α)(4−α) and ∆2(α) = (5−α)(6−α)(7−α)(8−α). Evi-

dently the upload cost is doubled. However, we will see that the download cost remains

unchanged. This is because each server computes and (if responsive) returns (for its corre-

sponding realization of α)

Ã1(α)B̃1(α)+ Ã2(α)B̃2(α) (6.17)

= c1

(
1

1−α

)
A1B1 +c2

(
1

2−α

)
A2B2 + ···+c8

(
1

8−α

)
A8B8 +I′1 +αI′2 +α2I′3.

(6.18)

Since we have 8 desired dimensions and 3 interference dimensions, responses from any R= 11

servers suffice to separate desired matrix products from interference. Remarkably, while

the number of desired matrix products has doubled, the number of interference dimensions

have not increased at all. This is why 4 additional responding servers allow us to recover 4

additional desired matrix products. This is an advantage unique to cross-subspace alignment,

that cannot be achieved with other coding approaches, such as Lagrange Coded computing.

164

CSA codes for distributed matrix multiplication based on batch processing are introduced in

this chapter in Theorem 6.1, a generalization to include matrix partitioning is presented in

Theorem 6.2, and another generalization for N -linear batch computations and multivariate

batch polynomial evaluations is presented in Theorem 6.3.

For ease of reference, Table 6.1 and Table 6.2 compare EP codes, LCC codes, CSA codes,

GCSA codes and N -CSA codes with respect to their recovery thresholds, communication

costs for uploads and downloads, encoding and decoding complexity, and server computation

complexity.

This chapter is organized as follows. Section 6.3 presents the problem statements and defi-

nitions for coded distributed batch matrix multiplication (CDBMM), coded distributed N -

linear batch computation and coded distributed multivariate batch polynomial evaluations.

CSA codes for CDBMM are introduced in Section 6.4. Section 6.5 presents GCSA codes.

N -CSA codes are presented in Section 6.6. Appendix D.1 presents further generalizations

to allow X-secure data and B-byzantine servers. Section 6.7 concludes the chapter.

6.3 Problem Statement

6.3.1 Coded Distributed Batch Matrix Multiplication (CDBMM)

As shown in Figure 6.1, consider two source (master) nodes, each of which generates a

sequence of L matrices, denoted as A = (A1,A2,...,AL) and B = (B1,B2,...,BL), such that

for all l∈ [L], we have Al ∈Fλ×κ and Bl ∈Fκ×µ, i.e., Al and Bl are λ×κ and κ×µ matrices,

respectively, over a finite3 field F. The sink node (user) is interested in the sequence of
3With the exception of the generalizations to X-security presented in Appendix D.1, our coding schemes

are applicable over infinite fields (R,C) as well. However, our problem statement assumes that F is a finite
field, because of the difficulty of defining communication costs or computation complexity over infinite fields.

165

Recovery Threshold Upload Cost Download Cost
(R) (UA,UB) (D)

EP pmn+p−1 S/(pm),S/(pn) (pmn+p−1)/(mn)

codes R O(m), O(m) O(R/m2)

LCC 2K′c−1 S/K′c,S/K
′
c (2K′c−1)/K′c

codes R O(1), O(1) O(1)

CSA (`+1)Kc−1 S/Kc,S/Kc ((`+1)Kc−1)/(`Kc)

codes R O(1), O(1) O(1)

GCSA pmn((`+1)K′′c −1)+p−1 S/(K′′c pm),S/(K′′c pn)
pmn((`+1)K′′

c −1)+p−1

mn`K′′
c

codes R O(m), O(m) O(p)

Server Computation Encoding Decoding
Complexity (Cs) Complexity (CeA,CeB) Complexity (Cd)

EP O(λµκ/(pmn)) Õ
(
λκS log2S

pm

)
, Õ
(
κµS log2S

pn

)
Õ(λµplog2R)

codes O
(
λ3/R

)
Õ
(
λ2mlog2S

)
, Õ
(
λ2mlog2S

)
Õ
(
λ2Rlog2R

m2

)
LCC O(λµκ/K′c) Õ

(
λκS log2S

K′c

)
, Õ
(
κµS log2S

K′c

)
Õ(λµlog2R)

codes O
(
λ3/R

)
Õ
(
λ2 log2S

)
, Õ
(
λ2 log2S

)
Õ(λ2 log2R)

CSA O(λµκ/Kc) Õ
(
λκS log2S

Kc

)
, Õ
(
κµS log2S

Kc

)
Õ(λµlog2R)

codes O
(
λ3/R

)
Õ
(
λ2 log2S

)
, Õ
(
λ2 log2S

)
Õ(λ2 log2R)

GCSA O(λµκ/(K′′c pmn)) Õ
(
λκS log2S

K′′c pm

)
, Õ
(
κµS log2S

K′′c pn

)
Õ(λµplog2R)

codes O
(
λ3/R

)
Õ
(
λ2mlog2S

)
, Õ
(
λ2mlog2S

)
Õ(λ2plog2R)

Table 6.1: Performance summary of EP [141], LCC [138], CSA and GCSA codes for
CDBMM. Note that choosing `=Kc = 1 reduces GCSA codes to EP codes, while setting
m=n= p= 1 reduces GCSA codes to CSA codes (further restricting `= 1 recovers LCC
codes). Shaded rows represent balanced settings with m=n,λ=µ=κ, fixed positive inte-
gers `,`′′, and fixed ratio R/S. The batch size is L= `Kc for CSA codes, L′=K ′c for LCC
codes, and L′′= `K ′′c for GCSA codes. Note that for arbitrary R, we can choose the batch
size to guarantee the feasibility of LCC/CSA/GCSA solutions.

Recovery Threshold Upload Cost Download Cost
(R) (UX(n) ,n∈ [N]) (D)

LCC NK′c−N+1 S/K′c,S/K
′
c (NK′c−N+1)/K′c

codes R O(N) O(N)

N-CSA (N+`−1)Kc−N+1 S/Kc,S/Kc ((N+`−1)Kc−N+1)/(`Kc)

codes R O(N+`−1) O(1+ N−1
`

)

Computational Encoding Decoding
Complexity (Cs) Complexity (CeX(n) ,n∈ [N]) Complexity (Cd)

LCC O(ω/K′c) Õ
(

dim(Vn)S log2S

K′c

)
Õ(dim(W)N log2R)

codes O(Nω/R) Õ
(
Ndim(Vn)log2S

)
Õ(dim(W)N log2R)

N-CSA O(ω/Kc) Õ
(

dim(Vn)S log2S

Kc

)
Õ
((

1+ N−1
`

)
dim(W)log2R

)
codes O((N+`−1)ω/R) Õ

(
(N+`−1)dim(Vn)log2S

)
Õ
((

1+ N−1
`

)
dim(W)log2R

)
Table 6.2: Performance summary of LCC codes [138] and N -CSA codes for N -linear dis-
tributed batch computation. Setting `= 1 reduces N -CSA codes to LCC codes as a special
case. Shaded rows represent settings with fixed ratio R/S. ω is the number of arithmetic
operations required to compute the N -linear map Ω(·). dim(Vn) is the dimension of the nth
variable of Ω(·), dimW is the dimension of the output of Ω(·). The batch size is L= `Kc for
N -CSA codes, and L′=K ′c for LCC codes.

166

product matrices, AB = (A1B1,A2B2,...,ALBL). To help with this computation, there

are S servers (worker nodes). Each of the sources encodes its matrices according to the

functions f= (f1,f2,...,fS) and g= (g1,g2,...,gS), where fs and gs correspond to the sth server.

Specifically, let us denote the encoded matrices for the sth server as Ãs and B̃s, so we have

Ãs = fs(A), (6.19)

B̃s = gs(B). (6.20)

The encoded matrices, Ãs,B̃s, are uploaded to the sth server. Let us denote the number of

elements from F in Ãs and B̃s as |Ãs| and |B̃s|, respectively.

Upon receiving the encoded matrices, each Server s, s∈ [S], prepares (computes) a response

Ys, that is a function of Ãs and B̃s, i.e.,

Ys =hs(Ã
s,B̃s), (6.21)

where hs,s∈ [S] are the functions used to produce the answer, and we denote them col-

lectively as h= (h1,h2,...,hS). Some servers may fail to respond, such servers are called

stragglers. The user downloads the responses from the remaining servers, from which, using

a class of decoding functions (denoted d), he attempts to recover the desired product AB.

Define

d= {dR :R⊂ [S]}, (6.22)

where dR is the decoding function used when the set of responsive servers is R. We say

that (f,g,h,d) form a CDBMM code. A CDBMM code is said to be r-recoverable if the user

is able to recover the desired products from the answers obtained from any r servers. In

particular, a CDBMM code (f,g,h,d) is r-recoverable if for any R⊂ [S], |R|= r, and for any

167

realization of A, B, we have

AB = dR(YR). (6.23)

Define the recovery threshold R of a CDBMM code (f,g,h,d) to be the minimum integer r

such that the CDBMM code is r-recoverable.

The communication cost of CDBMM is comprised of upload and download costs. The

(normalized)4 upload costs UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, (6.24)

UB =

∑
s∈[S] |B̃s|
Lκµ

. (6.25)

Similarly, the (normalized) download cost is defined as follows.

D= max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

, (6.26)

where |Ys| is the number of elements from F in Ys.

Next let us consider the complexity of encoding, decoding and server computation. Define

the (normalized) computational complexity at each server, Cs, to be the order of the number

of arithmetic operations required to compute the function hs at each server, normalized

by L. Similarly, define the (normalized) encoding computational complexity CeA for Ã[S]

and CeB for B̃[S] as the order of the number of arithmetic operations required to compute

the functions f and g, respectively, each normalized by L. Finally, define the (normalized)

decoding computational complexity Cd to be the order of the number of arithmetic operations

required to compute dR(YR), maximized overR,R⊂ [S],|R|=R, and normalized by L. Note
4We normalize the upload cost and download cost with the number of elements contained in the con-

stituent matrices A,B, and the desired product AB, respectively.

168

that normalizations5 by L are needed to have fair comparisons between batch processing

approaches and individual matrix-partitioning solutions per matrix multiplication.

6.3.2 Distributed N-linear Batch Computation

Consider an N -linear map, which is a function of N variables that is linear separately in

each variable. Formally, a map Ω :V1×V2×···×VN→W is called N -linear if for all n∈ [N],

Ω(x(1),··· ,x(n−1),c1x
(n) +c2x

′(n),x(n+1),··· ,x(N))

= c1Ω(x(1),··· ,x(n−1),x(n),x(n+1),··· ,x(N))+c2Ω(x(1),··· ,x(n−1),x′(n),x(n+1),··· ,x(N)),

(6.27)

where V[N] and W are vector spaces over the base field F, for all i∈ [N],x(i) ∈Vi, x′(n) ∈Vn
and c1,c2 ∈F. Consider N sources (master nodes), n∈ [N], such that the nth source generates

a sequence of L variables x(n) = (x
(n)
1 ,x

(n)
2 ,··· ,x(n)

L), x(n)
l ∈Vn,∀l∈ [L]. Let us define

xl = (x
(1)
l ,x

(2)
l ,··· ,x(N)

l), (6.28)

for all l∈ [L]. The sink node (user) is interested in the evaluations of the N -linear map Ω

over x[L], i.e., Ω(x
(1)
l ,x

(2)
l ,··· ,x(N)

l) = Ω(xl), l∈ [L]. To help with this computation, there are

S servers (worker nodes). For all n∈ [N], the nth source encodes its variables according to the

functions f (n) = (f
(n)
1 ,f

(n)
2 ,··· ,f (n)

S), where f (n)
s corresponds to the sth server. Let us denote

(f (1),f (2),··· ,f (N)) collectively as f. Like the problem of CDBMM, for all n∈ [N],s∈ [S],

the coded share of the nth source for the sth server is denoted as X̃(n)
s

, and we have

X̃(n)
s

= f (n)
s (x(n)). (6.29)

5Absolute latency constraints without such normalizations are also quite important in practice. See the
discussion following Theorem 6.2 in Section 6.5 leading to Fig. 6.3.

169

(
X̃(n)

s)
n∈[N]

are uploaded to the sth server. Let us denote the number of elements in X̃(n)
s

as
∣∣∣X̃(n)

s∣∣∣, s∈ [S],n∈ [N].

Upon receiving the coded shares, each server s, s∈ [S] prepares (computes) a response Ys,

that is a function of X̃(n)
s

,n∈ [N].

Ys =hs(X̃(1)
s

,X̃(2)
s

,··· ,X̃(N)
s

), (6.30)

where hs,s∈ [S] are the functions used to produce the answer, and we denote them collec-

tively as h = (h1,h2,··· ,hS). The user downloads the responses from the servers in the set

R, and exploits a class of decoding functions (denoted d) to recover the desired evaluations

Ω(xl), l∈ [L]. Define

d= {dR :R⊂ [S]}, (6.31)

where dR is the decoding function used when the set of responsive servers is R. We say

that (f,h,d) form a distributed N -linear batch computation code. A distributed N -linear

batch computation code is said to be r-recoverable if the user is able to recover the desired

evaluations from the answers obtained from any r servers. In particular, a distributed N -

linear batch computation code (f,h,d) is r-recoverable if for every R⊂ [S], |R|= r, and for

every realization of x[L], we have

(Ω(xl))l∈[L] = dR(YR). (6.32)

Define the recovery threshold R of a distributed N -linear batch computation code (f,h,d)

to be the minimum integer r such that the distributed N -linear batch computation code is

r-recoverable.

The communication cost of distributed N -linear batch computation is comprised of upload

170

and download costs. For all n∈ [N], the (normalized) upload cost for X̃(n)
[S]

, denoted as

UX(n) , is defined as follows

UX(n) =

∑
s∈[S]

∣∣∣X̃(n)
s∣∣∣

Ldim(Vn)
. (6.33)

Similarly, the (normalized) download cost is defined as follows.

D= max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

Ldim(W)
, (6.34)

where |Ys| is the number of elements from F in Ys.

Define the (normalized) computational complexity at each server, Cs, to be the order of

the number of arithmetic operations required to compute the function hs at each server,

normalized by L. For all n∈ [N], we also define the (normalized) encoding computational

complexity CeX(n) for X̃(n)
[S]

as the order of the number of arithmetic operations required to

compute the functions f (n), normalized by L. Similarly, define the (normalized) decoding

computational complexity Cd to be the order of the number of arithmetic operations required

to compute dR(YR), maximized over R,R⊂ [S],|R|=R, and normalized by L.

6.3.3 Distributed Multivariate Polynomial Batch Evaluation

Consider a multivariate polynomial Φ :V1×V2×···×VM→W with M variables of total de-

gree N , where V[M] and W are vector spaces over the base field F. Consider M sources

(master nodes). For all m∈ [M], the mth source generates a sequence of L variables

x(m) = (x
(m)
1 ,x

(m)
2 ,··· ,x(m)

L), such that for all l∈ [L], x(m)
l ∈Vm. Similarly, we define

xl = (x
(1)
l ,x

(2)
l ,··· ,x(M)

l), (6.35)

171

for all l∈ [L]. The sink node (user) wishes to compute the evaluations of the multivariate

polynomial Φ over x[L], i.e., Φ(x
(1)
l ,x

(2)
l ,··· ,x(M)

l) = Φ(xl), l∈ [L], with the help of S servers

(worker nodes). To this end, for all m∈ [M], the mth source encodes its variables according

to the functions f (m) = (f
(m)
1 ,f

(m)
2 ,··· ,f (m)

S), where f (m)
s corresponds to the sth server. And

(f (1),f (2),··· ,f (M)) are collectively denoted as f. For all n∈ [N],s∈ [S], the coded share of

the mth source for the sth server is denoted as X̃(m)
s

, and we have

X̃(m)
s

= f (m)
s (x(m)). (6.36)

(
X̃(m)

s)
m∈[M]

are uploaded to the sth server. Let us denote the number of elements in X̃(m)
s

as
∣∣∣X̃(m)

s∣∣∣, s∈ [S],m∈ [M].

Upon receiving coded variables, each server s, s∈ [S] prepares (computes) a response Ys,

that is a function of X̃(m)
s

,m∈ [N].

Ys =hs(X̃(1)
s

,X̃(2)
s

,··· ,X̃(M)
s

), (6.37)

where hs,s∈ [S] are the functions used to produce the answer, and we denote them collec-

tively as h = (h1,h2,··· ,hS). The user downloads the responses from the servers in the set R,

and uses a class of decoding functions (denoted d) to recover the desired evaluations Φ(xl),

l∈ [L]. Define

d= {dR :R⊂ [S]}, (6.38)

where dR is the decoding function used when the set of responsive servers is R. We say that

(f,h,d) form a distributed multivariate polynomial batch evaluation code. A distributed

multivariate polynomial batch evaluation code is said to be r-recoverable if the user is able

to recover the desired evaluations from the answers obtained from any r servers, i.e., for any

172

R⊂ [S], |R|= r, and for any realization of x[L], we have

(Φ(xl))l∈[L] = dR(YR). (6.39)

Define the recovery threshold R of a distributed multivariate polynomial batch evaluation

code (f,h,d) to be the minimum integer r such that the distributed multivariate polynomial

batch evaluation code is r-recoverable.

For all m∈ [M], the (normalized) upload cost for X̃(m)
[S]

, denoted as UX(m) , is defined as

follows

UX(m) =

∑
s∈[S]

∣∣∣X̃(m)
s∣∣∣

Ldim(Vm)
. (6.40)

Similarly, the (normalized) download cost is defined as follows.

D= max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

Ldim(W)
, (6.41)

where |Ys| is the number of elements from F in Ys.

Define the (normalized) computational complexity at each server, Cs, to be the order of

the number of arithmetic operations required to compute the function hs at each server,

normalized by L. For all m∈ [M], we also define the (normalized) encoding computational

complexity CeX(m) for X̃(m)
[S]

as the order of the number of arithmetic operations required

to compute the functions f(m), normalized by L. Similarly, define the (normalized) decoding

computational complexity Cd to be the order of the number of arithmetic operations required

to compute dR(YR), maximized over R,R⊂ [S],|R|=R, and normalized by L.

173

6.4 CSA Codes for CDBMM

6.4.1 CSA Codes: Main Result

The main result of this section introduces CSA Codes, and is stated in the following theorem.

Theorem 6.1. For CDBMM over a field F with S servers, and positive integers `, Kc such

that L= `Kc≤ |F|−S, the CSA codes introduced in this chapter achieve

Recovery Threshold: R= (`+1)Kc−1, (6.42)

Upload Cost for Ã[S],B̃[S]: (UA,UB) =

(
S

Kc

,
S

Kc

)
, (6.43)

Download Cost: D=
(`+1)Kc−1

`Kc

, (6.44)

Server Computation Complexity: Cs =O(λκµ/Kc), (6.45)

Encoding Complexity for Ã[S],B̃[S]: (CeA,CeB) =

(
Õ
(
λκS log2S

Kc

)
,Õ
(
κµS log2S

Kc

))
,

(6.46)

Decoding Complexity: Cd = Õ
(
λµlog2R

)
. (6.47)

The proof of Theorem 6.1 appears in Section 6.4.3. A high level summary of the main ideas

is provided here. CSA codes split the L= `Kc instances of Al matrices into ` groups, each

containing Kc matrices. The Kc matrices within each group are coded into an MDS (S,Kc)

code by a Cauchy encoding matrix to create S linear combinations of these Kc matrices.

Multiplication with a Cauchy encoding matrix corresponds to the well studied Trummer’s

problem [42] for which fast algorithms have been found in [39, 38, 84] that limit the en-

coding complexity to CeA = Õ(λκS log2S
Kc

). The sth coded linear combination from each of the

` groups is sent to the sth server. The Bl matrices are similarly encoded and uploaded to

the S servers. Note that because Kc matrices are linearly combined into one linear com-

174

bination for each server, and there are S servers, the upload cost of CSA codes is S/Kc.

Each server multiplies the corresponding instances of coded A,B matrices and returns the

sum of these ` products. With straightforward matrix multiplication algorithms, each of

the ` matrix products has a computation complexity of O(λκµ) for a total of O(`λκµ),

which upon normalization by L= `Kc, yields a complexity of Cs =O(λκµ/Kc) per server.

The responses from any R= (`+1)Kc−1 servers provide R observations to the user, each

comprised of linear combinations of various product matrices, including both desired prod-

ucts and undesired products (interference). Interpreting the R observations as occupying

an R-dimensional vector space, the L desired matrix products (AlBl)l∈[L] occupy L= `Kc

of these R dimensions, leaving only R−L=Kc−1 dimensions for interference. Remarkably,

while there are a total of `Kc(Kc−1) undesired matrix products, AlBl′ ,l 6= l′ that appear in

the responses from the servers, they collectively occupy only a total of Kc−1 dimensions.

This is because of cross-subspace alignment, facilitated by the specialized Cauchy structure

of the encoding. Since L= `Kc desired matrix products are recovered from a total of R

that are downloaded, the normalized download cost is R
L

= (`+1)Kc−1
`Kc

. Note that the decoding

operation involves inverting a Cauchy-Vandermonde matrix, where the Cauchy part spans

the dimensions carrying desired signals while the Vandermonde part spans the dimensions

carrying interference. Fast algorithms for inverting such matrices are also known [35], which

limits the decoding complexity to Õ(λµlog2R).

6.4.2 Observations

In this section we present some observations to place CSA Codes into perspective. In par-

ticular we would like to compare CSA codes which generalize and improve upon the state of

art of batch processing approaches (LCC codes), against EP codes which represent the state

of art for matrix-partitioning approaches.

175

1. From the conditions of Theorem 6.1, the field size |F| must be at least equal to S+L.

However, it is possible to reduce the field size requirement to |F| ≥S by constructing

a systematic version of the code (see Section 6.4.4).

2. To estimate the complexity of computation at each server we use only straightforward

matrix multiplication algorithms that require Õ(λµκ) arithmetic operations over F in

order to compute the product of a λ×µ matrix with a µ×κ matrix. It is well known

that this complexity can be improved upon by using more sophisticated6 algorithms

[99, 25, 67]. Such improvements do not constitute a relative advantage because they

can be applied similarly to other codes, such as Entangled Polynomial codes as well.

3. We are primarily interested in balanced settings, e.g., λ=µ=κ, that are typically

studied for complexity analysis. While the achievability claims of Theorem 6.1 are also

applicable to unbalanced settings, it is not difficult to improve upon Theorem 6.1 in

certain aspects in highly unbalanced settings. For example, as shown recently in [51],

when κ�min(λ,µ), it may be significantly beneficial for the user in terms of download

cost to retrieve the A,B matrices separately from the distributed servers and do the

computation locally.

4. First let us compare CSA codes with LCC codes, both of which are based on batch pro-

cessing. Remarkably, setting `= 1 in CSA codes recovers the LCC code for CDBMM,

i.e., LCC codes are a special case of CSA codes. The parameter ` in CSA codes is

mainly7 useful to reduce download cost (by choosing large `). On the one hand, note

that the download cost in (6.44) is always bounded between 1 and 2, so even the worst

case choice of ` will at most double the download cost. So if the download cost is only

important in the O sense (as a function of R), then it is desirable to set `= 1 and
6Notably, for λ=µ=κ the best known algorithms [67] thus far have computation complexity that is still

super-quadratic (more than O(λ2.3)), and are not considered practical [45] due to large hidden constants in
the O notation.

7` may be also useful for parallel processing within each server because the computation at each server is
naturally split into ` independent computations.

176

Kc =L which reduces the number of parameters for the coding scheme. On the other

hand, for settings where the download cost is the dominating concern, the generaliza-

tion to `> 1 is important. For example, suppose for some application due to latency

concerns there is a hard threshold that the download from each server cannot exceed

the equivalent of one matrix multiplication, i.e., no more than λ2 elements of F. Then

for large batch sizes L, the lower download cost of CSA codes translates into a smaller

recovery threshold by up to a factor of 2 relative to LCC codes (albeit at the cost of

increased upload and server computation).

5. Next, let us compare the performance of CSA codes with Entangled Polynomial8

codes[141]. For this comparison we will only focus on `= 1, so this also applies equiv-

alently to LCC codes which are obtained as special cases of CSA codes when `= 1. In

order to compute a batch of matrix products (AlBl)l∈[L], we will show that joint/batch

processing of all L products with CSA codes achieves significantly better communica-

tion (upload-download) costs than separate application of Entangled Polynomial codes

for each l∈ [L], under the same recovery-threshold-computational-complexity-trade-off.

It is proved in [141] that for any positive integers (p,m,n), Entangled Polynomial codes

achieve

Recovery threshold: R= pmn+p−1, (6.48)

Upload cost: (UA,UB) = (S/pm,S/pn), (6.49)

Download cost: D=
pmn+p−1

mn
. (6.50)

To simplify the order analysis, let us assume that λ=κ=µ, and to balance the upload

costs (UA,UB) let us choosem=n. Let us regard the recovery threshold R as a variable,

and consider the upload cost UA,UB and the download cost D as functions of R. So
8Entangled Polynomial codes generalize MatDot codes and Polynomial codes, improve upon PolyDot

codes, and have similar performance as Generalized PolyDot codes, so it suffices to compare CSA codes with
Entangled Polynomial codes.

177

for the Entangled Polynomial codes [141], we have

UA =UB =U =
mS

pm2
≥m

(
S

R

)
, D=

R

m2
. (6.51)

A tradeoff is evident. For example, if we want download cost of O(1), then we need

m= Θ(
√
R) which yields upload cost of O(S/

√
R). On the other hand, if we want

upload cost of O(S/R), then we should set m= Θ(1) which yields download cost of

O(R). If S/R is held constant, then to best balance the upload and download cost,

we need m= Θ(R1/3), which yields both upload cost and download cost of O(R1/3).

Evidently, it is not possible to achieve both upload and download cost of O(1) with

Entagled Polynomial codes. However, with CSA codes, setting `= 1, we have upload

cost of O(1) and download cost of O(S/R). In particular, if S/R is a constant, then

both upload and download costs are O(1). Note that CSA codes have the same server

computational complexity of O(λ3/R) normalized by batch size as EP codes.

6. Continuing with the comparison between CSA codes and EP codes, Figure 6.2a, 6.2b

and 6.2c show lower convex hulls of achievable (balanced upload cost, download cost)

pairs of Entangled Polynomial codes and CSA codes given the number of servers and

the recovery threshold (S= 30,R≤ 25), (S= 300,R≤ 250) and (S= 3000,R≤ 2500) re-

spectively. Each value of (S,R) produces an achievable region in the (U,D) plane (in-

cluding all possible choices of m,n,p parameters for Entagled Polynomial codes, and

all choices of `,Kc parameters for CSA codes). What is shown in the figure is the union

of these regions for each case, e.g., in the first figure the union is over all (S,R) with

(S= 30,R≤ 25). Evidently, the advantage of CSA codes over Entangled Polynomial

codes in terms of communication cost is significant and grows stronger for larger (S,R)

values.

7. CSA codes show a similar advantage over Entangled Polynomial codes in terms of

the tradeoff between encoding complexity and decoding complexity normalized by

178

2 2.5 3 3.5 4 4.5 5
0

5

10

15

20
D
ow

n
lo
ad

co
st
,
D
−→

(a) S= 30,R≤ 25

2 4 6 8 10
0

20

40

60

80

100

Upload cost, U −→

(b) S= 300,R≤ 250

5 10 15 20
0

50

100

150

200
EP codes
CSA codes

(c) S= 3000,R≤ 2500

Figure 6.2: Lower convex hulls of achievable (balanced upload cost, download cost) pairs
(U,D) of Entangled Polynomial codes (EP codes) and cross subspace alignment codes (CSA
codes) given (a) (S= 30,R≤ 25), (b) (S= 300,R≤ 250) and (c) (S= 3000,R≤ 2500).

batch size. For example, consider the balanced setting of m=n, λ=µ=κ, and con-

stant S/R. The encoding complexity of Entangled Polynomial codes is Õ(λ2U log2S),

and the decoding complexity is Õ(λ2D log2R), where U =UA =UB is the balanced

upload cost, and D is the download cost. For CSA codes, the encoding complex-

ity is Õ(λ2 log2S), and the decoding complexity is Õ(λ2 log2R), which corresponds to

U =D=O(1). Thus, the communication cost advantage of CSA codes over Entangled

Polynomial codes is further manifested in the improved tradeoff between encoding and

decoding complexity.

8. Finally, let us place CSA codes in perspective with previous applications of cross-

subspace alignment. The idea of cross-subspace alignment was introduced in the con-

text of X-secure T -private information retrieval (XSTPIR) in Chapter 2. The goal of

XSTPIR is to allow a user to retrieve, as efficiently as possible, a desired message Wθ

out of K messages, W1,W2,··· ,WK that are ‘secret-shared’ across S servers in an X-

secure fashion, without revealing any information about the index θ to any group of up

to T colluding servers. According to the scheme proposed in Chapter 2 the `th symbol

of each message is stored in the 1×K vector W`. The query vector Qθ is the θth col-

umn of a K×K identity matrix, so that retrieving the product W`Qθ retrieves the `th

179

symbol of the desired message Wθ. In order to guarantee security of data and privacy

of queries, the W` and Qθ vectors are mixed with independent noise terms. Intuitively,

by replacing W` and Qθ with matrices A and B, and eliminating the corresponding

noise terms if the privacy and/or security constraints are relaxed, cross-subspace align-

ment schemes can be used to retrieve arbitrary matrix products AB. This intuition

helps with some of the achievable schemes9 in [51, 61]. However, in Chapter 2, the

W` vectors are not jointly encoded. Each W` vector is separately mixed with noise.

Similarly, in [51, 61] the matrices are separately mixed with noise for security, and not

jointly encoded. Joint encoding of messages arises in PIR when instead of replicated

storage [102, 106], coded storage is assumed [11, 108, 36, 105, 142, 116]. PIR with

MDS-coded storage, X-secure data and T -private queries is studied in [54] and indeed

a generalized cross-subspace alignment scheme is the key contribution of [54]. However,

since there is only one query vector Qθ, applications of this cross-subspace alignment

scheme are useful primarily for matrix multiplications of the form A1B,A2B,··· ,ALB,

where we have only one B matrix to be multiplied with each A matrix. This is indeed

how the scheme is applied in the context of private secure distributed matrix multi-

plication (PSDMM) in [54]. Batch multiplications of the form A1B1,A2B2,··· ,ALBL,

that are studied in this chapter, present a significantly greater challenge in that joint

coding is now to be applied both among A1,A2,··· ,AL and among B1,B2,··· ,BL matri-

ces, which introduces new interference terms AlBl′ ,l 6= l′. A central technical challenge

behind this chapter is to determine if and how these terms can be aligned. The CSA

codes introduced in this chapter present a solution to this challenge.
9Notably, batch processing is used in [51] while matrix partitioning is used in [61]. The achievable schemes

in [51, 61] can be regarded as special cases of X-secure CSA codes presented in this chapter with Kc = 1.
See Appendix D.1 for details.

180

6.4.3 Proof of Theorem 6.1

In this section, we present the construction of CSA codes. Let L= `Kc. Before presenting

the general code construction let us start with some illustrative examples.

`= 2,Kc = 2,L= 4

Let f1,1,f1,2,f2,1,f2,2,α1,...,αS represent (S+`Kc) = (S+4) distinct elements from F. For all

s∈ [S], let us define

∆1,2
s = (f1,1−αs)(f1,2−αs), (6.52)

∆2,2
s = (f2,1−αs)(f2,2−αs). (6.53)

Let us set Al,k = AKc(l−1)+k and Bl,k = BKc(l−1)+k for all l∈ [2],k∈ [2]. Coded shares of

matrices A are constructed as follows.

Ãs = (Ãs1,Ã
s
2), (6.54)

where

Ãs1 = ∆1,2
s

(
1

f1,1−αs
A1,1 +

1

f1,2−αs
A1,2

)
(6.55)

= (f1,2−αs)A1,1 +(f1,1−αs)A1,2, (6.56)

Ãs2 = ∆2,2
s

(
1

f2,1−αs
A2,1 +

1

f2,2−αs
A2,2

)
(6.57)

= (f2,2−αs)A2,1 +(f2,1−αs)A2,2. (6.58)

181

Coded shares of matrices B are constructed as follows.

B̃s = (B̃s
1,B̃

s
2), (6.59)

where

B̃s
1 =

1

f1,1−αs
B1,1 +

1

f1,2−αs
B1,2, (6.60)

B̃s
2 =

1

f2,1−αs
B2,1 +

1

f2,2−αs
B2,2. (6.61)

The answer provided by the sth server to the user is constructed as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2. (6.62)

To see why the R= (`+1)Kc−1 = 5 recovery threshold holds, we rewrite Ys as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 (6.63)

=
f1,2−αs
f1,1−αs

A1,1B1,1 +
f1,1−αs
f1,2−αs

A1,2B1,2 +
f2,2−αs
f2,1−αs

A2,1B2,1 +
f2,1−αs
f2,2−αs

A2,2B2,2

+(A1,1B1,2 +A1,2B1,1 +A2,1B2,2 +A2,2B2,1) (6.64)

=
f1,1−αs+(f1,2−f1,1)

f1,1−αs
A1,1B1,1 +

f1,2−αs+(f1,1−f1,2)

f1,2−αs
A1,2B1,2

+
f2,1−αs+(f2,2−f2,1)

f2,1−αs
A2,1B2,1 +

f2,2−αs+(f2,1−f2,2)

f2,2−αs
A2,2B2,2

+(A1,1B1,2 +A1,2B1,1 +A2,1B2,2 +A2,2B2,1) (6.65)

=
f1,2−f1,1

f1,1−αs
A1,1B1,1 +

f1,1−f1,2

f1,2−αs
A1,2B1,2

+
f2,2−f2,1

f2,1−αs
A2,1B2,1 +

f2,1−f2,2

f2,2−αs
A2,2B2,2

+(A1,1B1,1 +A1,2B1,2 +A2,1B2,1 +A2,2B2,2

+A1,1B1,2 +A1,2B1,1 +A2,1B2,2 +A2,2B2,1).
︸ ︷︷ ︸

I1

(6.66)

182

Therefore, for any R= 5 servers, whose indices are denoted as s1,s2,...,s5, we can represent

their answers in the following matrix form.




Ys1

Ys2

Ys3

Ys4

Ys5




=




1
f1,1−αs1

1
f1,2−αs1

1
f2,1−αs1

1
f2,2−αs1

1

1
f1,1−αs2

1
f1,2−αs2

1
f2,1−αs2

1
f2,2−αs2

1

1
f1,1−αs3

1
f1,2−αs3

1
f2,1−αs3

1
f2,2−αs3

1

1
f1,1−αs4

1
f1,2−αs4

1
f2,1−αs4

1
f2,2−αs4

1

1
f1,1−αs5

1
f1,2−αs5

1
f2,1−αs5

1
f2,2−αs5

1




︸ ︷︷ ︸
V2,2,5




c1,1

c1,2

c2,1

c2,2

1




︸ ︷︷ ︸
V′2,2,5

⊗Iλ




A1,1B1,1

A1,2B1,2

A2,1B2,1

A2,2B2,2

I1




, (6.67)

where c1,1 = f1,2−f1,1, c2,1 = f2,2−f2,1, c1,2 =−c1,1, c2,2 =−c2,1. Since f1,1,f1,2,f2,1,f2,2 are

distinct elements from F, the constants c1,1,c1,2,c2,1,c2,2 take non-zero values. Guaranteed by

Lemma 2.5 and the fact that Kronecker product of non-singular matrices is non-singular, the

5λ×5λ matrix (V2,2,5V
′
2,2,5)⊗Iλ is invertible, and the user is able to recover desired products

(A1B1,...,A4B4) = (Al,kBl,k)l∈[2],k∈[2] from the answers received from any R= 5 servers. This

completes the proof of the R= 5 recovery threshold. Finally, note that the upload cost is

UA =UB =S/2 =S/Kc and the download cost is D= 4/5 because a total of R= 5 matrix

products, each of dimension λ×µ, are downloaded (one from each server) from which the 4

desired matrix products, also each of dimension λ×µ, are recovered.

`= 1,Kc = 3,L= 3

Let f1,1,f1,2,f1,3,α1,α2,...,αS represent (S+`Kc) = (S+3) distinct elements from F. For all

s∈ [S], let us define

∆1,3
s = (f1,1−αs)(f1,2−αs)(f1,3−αs). (6.68)

183

Shares of A and B at the sth server are constructed as follows.

Ãs = ∆1,3
s

(
1

f1,1−αs
A1,1 +

1

f1,2−αs
A1,2 +

1

f1,3−αs
A1,3

)
, (6.69)

B̃s =
1

f1,1−αs
B1,1 +

1

f1,2−αs
B1,2 +

1

f1,3−αs
B1,3, (6.70)

where we set A1,k = Ak and B1,k = Bk for k ∈ [3]. The answer returned by the sth server to

the user is

Ys = ÃsB̃s. (6.71)

Now let us prove that the user is able to recover desired products (AlBl)l∈[3] = (A1,kB1,k)k∈[3]

with recovery threshold R= (`+1)Kc−1 = 2×3−1 = 5. Let us rewrite Ys as follows.

Ys = ÃsB̃s (6.72)

=
(f1,2−αs)(f1,3−αs)

f1,1−αs
A1,1B1,1 +

(f1,1−αs)(f1,3−αs)
f1,2−αs

A1,2B1,2

+
(f1,1−αs)(f1,2−αs)

f1,3−αs
A1,3B1,3 +(f1,1−αs)(A1,2B1,3 +A1,3B1,2)

+(f1,2−αs)(A1,1B1,3 +A1,3B1,1)+(f1,3−αs)(A1,1B1,2 +A1,2B1,1). (6.73)

Next let us manipulate the first term on the RHS. By long division of polynomials (regard

numerator and denominator as polynomials of αs), we have

(f1,2−αs)(f1,3−αs)
f1,1−αs

A1,1B1,1 (6.74)

=

(
−αs+(f1,2 +f1,3−f1,1)+

(f1,2−f1,1)(f1,3−f1,1)

f1,1−αs

)
A1,1B1,1. (6.75)

Now it is obvious that the scaling factor of A1,1B1,1 can be expanded into weighted sums

of the terms (f1,1−αs)−1,1 and αs. For the second and third terms in (6.73), by the long

division of polynomials, we can similarly show that the second term can be expanded into

184

weighted sums of the terms (f1,2−αs)−1,1 and αs and that the third term can be expanded

into weighted sums of the terms (f1,3−αs)−1,1 and αs. Note that the last three terms in

(6.73) can be expanded into weighted sums of the terms 1,αs. Now, consider any R= 5

servers, whose indices are denoted as si,i∈ [5], and we can represent their answers in the

following matrix notation.




Ys1

Ys2

Ys3

Ys4

Ys5




=




1
f1,1−αs1

1
f1,2−αs1

1
f1,3−αs1

1 α1

1
f1,1−αs2

1
f1,2−αs2

1
f1,3−αs2

1 α2

1
f1,1−αs3

1
f1,2−αs3

1
f1,3−αs3

1 α3

1
f1,1−αs4

1
f1,2−αs4

1
f1,3−αs4

1 α4

1
f1,1−αs5

1
f1,2−αs5

1
f1,3−αs5

1 α5




︸ ︷︷ ︸
V1,3,5




c1,1

c1,2

c1,3

1

1




︸ ︷︷ ︸
V′1,3,5

⊗Iλ




A1,1B1,1

A1,2B1,2

A1,3B1,3

∗

∗




, (6.76)

where we have used ∗ to represent various combinations of interference symbols that can be

found explicitly by expanding (6.73), since those forms are not important. We have c1,1 =

(f1,2−f1,1)(f1,3−f1,1), c1,2 = (f1,1−f1,2)(f1,3−f1,2) and c1,3 = (f1,1−f1,3)(f1,2−f1,3). Since

f1,1,f1,2 and f1,3 are distinct by definition, it follows that c1,1, c1,2 and c1,3 are non-zero

values. Therefore, the matrix (V1,3,5V
′
1,3,5)⊗Iλ is invertible according to Lemma 2.5 and

the properties of Kronecker products. Thus, the user is able to recover the desired matrix

products by inverting the matrix (V1,3,5V
′
1,3,5)⊗Iλ. This completes the proof of R= 5 re-

covery threshold. Similarly, we can compute the upload cost and download cost of the code

as follows, UA =UB =S/Kc =S/3, and D= 5/3, which achieves desired costs.

185

Arbitrary `,Kc and L= `Kc

Now let us present the general code construction. Let f1,1,f1,2,··· ,f`,Kc ,α1,α2,··· ,αS represent

(S+L) distinct elements from F. For all l∈ [`],s∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k−αs). (6.77)

Let us also define

Al,k = AKc(l−1)+k, (6.78)

Bl,k = BKc(l−1)+k, (6.79)

for all l∈ [`],k∈ [Kc]. Note that by this definition, desired products can be represented as

follows.




A1,1B1,1 ··· A1,KcB1,Kc

A2,1B2,1 ··· A2,KcB2,Kc

...
...

...

A`,1B`,1 ··· A`,KcB`,Kc




=




A1B1 ··· AKcBKc

AKc+1BKc+1 ··· A2KcB2Kc

...
...

...

A(`−1)Kc+1B(`−1)Kc+1 ··· A`KcB`Kc



. (6.80)

Now we are ready to construct the CSA code with arbitrary parameters (`,Kc). For all

s∈ [S], let us construct shares of matrices A and B at the sth server as follows.

Ãs = (Ãs1,Ã
s
2,...,Ã

s
`), (6.81)

B̃s = (B̃s
1,B̃

s
2,...,B̃

s
`), (6.82)

where for l∈ [`], let us set

Ãsl = ∆l,Kc
s

∑

k∈[Kc]

1

fl,k−αs
Al,k, (6.83)

186

B̃s
l =

∑

k∈[Kc]

1

fl,k−αs
Bl,k. (6.84)

The answer returned by the sth server to the user is constructed as follows.

Ys =
∑

l∈[`]

Ãsl B̃
s
l (6.85)

= Ãs1B̃
s
1 + Ãs2B̃

s
2 + ···+ Ãs`B̃

s
` . (6.86)

Now let us see why the R= (`+1)Kc−1 recovery threshold holds. First, let us rewrite Ys

as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + ···+ Ãs`B̃

s
` (6.87)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

1

fl,k−αs
Al,k




 ∑

k∈[Kc]

1

fl,k−αs
Bl,k


 (6.88)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

∑

k′∈[Kc]

Al,kBl,k′

(fl,k−αs)(fl,k′−αs)


 (6.89)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′−αs)

(fl,k−αs)
Al,kBl,k

+
∑

l∈[`]

∑

k,k′∈[Kc]
k 6=k′


 ∏

k′′∈[Kc]\{k,k′}

(fl,k′′−αs)


Al,kBl,k′ , (6.90)

where in the last step, we split the summation into two parts depending on whether or not

k= k′.

Let us consider the first term in (6.90). If we regard both numerator and denominator as

polynomials of αs, then by long division of polynomials, for each l∈ [`],k∈ [Kc], the following

term

∏
k′∈[Kc]\{k}(fl,k′−αs)

(fl,k−αs)
Al,kBl,k, (6.91)

187

can be expanded into weighted sums of the terms (fl,k−αs)−1,1,αs,··· ,αKc−2
s , i.e., it can be

rewritten as

(
c−1(fl,k−αs)−1 +c0 +c1αs+ ···+cKc−2α

Kc−2
s

)
Al,kBl,k. (6.92)

Now note that the numerator polynomial
∏

k′∈[Kc]\{k}(fl,k′−αs) has no root fl,k, while fl,k is

the only root of the denominator polynomial. Since (fl,k)l∈[`],k∈[Kc] are distinct elements from

F by definition, by the polynomial remainder theorem, c−1 =
∏

k′∈[Kc]\{k}(fl,k′−fl,k) 6= 0.

Next we note that the second term in (6.90) can be expanded10 into weighted sums of the

terms 1,αs,··· ,αKc−2
s , so in the matrix form, answers from any R= (`+1)Kc−1 servers,

whose indices are denoted as s1,s2,··· ,sR, can be written as follows.




Ys1

Ys2
...

YsR




=




1
f1,1−αs1

1
f1,2−αs1

··· 1
f`,Kc−αs1

1 αs1 ··· αR−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

··· 1
f`,Kc−αs2

1 αs2 ··· αR−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

··· 1
f`,Kc−αsR

1 αsR ··· αR−L−1
sR




︸ ︷︷ ︸
V`,Kc,R



c1,1

c1,2

. . .

c`,Kc

1

. . .

1




︸ ︷︷ ︸
V′`,Kc,R

⊗Iλ




A1,1B1,1

A1,2B1,2

...

A`,KcB`,Kc

∗
...

∗




, (6.93)

10When Kc = 1, the second term in (6.90) equal zero, thus the Vandermonde terms do not appear and
the matrix form representation only involves Cauchy matrices, i.e., Cauchy-Vandermonde matrices without
Vandermonde part.

188

where we have used ∗ to represent various combinations of interference symbols that can

be found explicitly by expanding (6.90), whose exact forms are irrelevant. We note that

R−L−1 = (`+1)Kc−1−`Kc−1 =Kc−2. And we also note that for all l∈ [`] and k ∈ [Kc],

cl,k =
∏

k′∈[Kc]\{k}(fl,k′−fl,k) 6= 0. Therefore, guaranteed by Lemma 2.5 and the fact that the

Kronecker product of non-singular matrices is non-singular, the matrix (V`,Kc,RV′`,Kc,R)⊗Iλ

is invertible. Therefore, the user is able to recover desired products (Al,kBl,k)l∈[`],k∈[Kc] by

inverting the matrix. This completes the proof of R= (`+1)Kc−1 recovery threshold. For

the upload costs, it is easy to see that we have UA =UB = (`S)/L=S/Kc. The download

cost is D=R/L= ((`+1)Kc−1)/(`Kc). The computational complexity at each server is

O(λκµ/Kc) if we assume straightforward matrix multiplication algorithms.

Finally, let us consider the encoding and decoding complexity. Recall the encoding functions

(6.81), (6.82), (6.83), (6.84). Note that each of the Ãs` can be regarded as products of

an S×Kc Cauchy matrix with a total of λκ column vectors of length Kc. Similarly, each

of the B̃s
` can be considered as products of an S×Kc Cauchy matrix by a total of κµ

column vectors of length Kc. Remarkably, the problem of efficiently multiplying an S×S

Cauchy matrix with a column vector is known as Trummer’s problem[42]. Fast algorithms

exist [39, 38, 84] that solve Trummer’s problem with computational complexity as low as

Õ(S log2S), in contrast to straightforward algorithms that have computational complexity of

O(S2). Similarly, with fast algorithms the computational complexity of multiplying a S×Kc

Cauchy matrix with a column vector is at most Õ(S log2S), so the encoding complexity of

Ã[S] and B̃[S] is at most Õ
((
λκS log2S

)
/Kc

)
and Õ

((
κµS log2S

)
/Kc

)
, respectively. On the

other hand, consider the decoding procedure of CSA codes, which can be regarded as solving

a total of λµ linear systems defined by an R×R coefficient matrix. Indeed, this coefficient

matrix is a Cauchy-Vandermonde matrix. There is a large body of literature studying fast

algorithms for solving linear systems defined by R×R Cauchy-Vandermonde matrices, and

189

the best known computational complexity is Õ(Rlog2R), see, e.g., [35]11. Therefore, the

decoding complexity of Õ
(
(λµRlog2R)/L

)
= Õ(λµlog2R) is achievable. This completes the

proof of Theorem 6.1.

6.4.4 Systematic Construction of CSA Codes

In this section, we present a systematic construction of CSA codes. Instead of uploading

coded version of matrices A and B to all of the S servers, the systematic construction of

CSA codes uploads uncoded constituent matrix pair (As,Bs) directly to the sth server for

the first L servers, i.e., for all s∈ [L]. For the remaining S−L servers, coded shares are

uploaded following the same construction that was presented in Section 6.4.3. We will see

that the systematic construction of CSA codes works on a smaller field F, compared to the

construction presented in Section 6.4.3. The systematic construction of CSA codes requires

less encoding complexity. Its decoding complexity decreases as more of the first L servers

respond. In fact, if all of the first L servers respond, then no computation is required at all

for decoding. The systematic construction also preserves backward compatibility to current

systems that apply straightforward parallelization strategies. Formally, we have

Ãs = As, (6.94)

B̃s = Bs (6.95)

for all s∈ [L] and

Ãs = (Ãs1,Ã
s
2,...,Ã

s
`), (6.96)

11The fast algorithm of solving Cauchy-Vandermonde type linear systems here takes inputs of only pa-
rameters of a Cauchy-Vandermonde matrix V, i.e, (αs1 ,αs2 ,··· ,αsR ,f1,1,f1,2,··· ,f`,Kc

) and a column vec-
tor y, and outputs the column vector x such that Vx = y with the computational complexity of at most
O(Rlog2R). Therefore, it is not necessary for the user (decoder) to store extra information beyond α[S] and
(fl,k)l∈[`],k∈[Kc].

190

B̃s = (B̃s
1,B̃

s
2,...,B̃

s
`) (6.97)

for all s∈{L+1,··· ,S}, where Ãs[`] and B̃s
[`] are defined in (6.83) and (6.84) respectively.

Similarly, the answer returned by the sth server is constructed as follows.

Ys = ÃsB̃s (6.98)

for all s∈ [L] and

Ys =
∑

l∈[`]

Ãsl B̃
s
l (6.99)

for all s∈{L+1,··· ,S}. Note that since coded shares are used only for S−L servers, we no

longer need distinct values α1,α2,··· ,αL, so the field size required is only |F| ≥S.

Now, let us prove that the recovery threshold R is not affected by the systematic construction,

i.e., the desired products are still recoverable from the answers of any R=L+Kc−1 servers.

Denote the set of responsive servers as R, |R|=R. Note that if [L]⊂R, then the desired

products AB can be directly recovered from answers of the first L servers. On the other hand,

if [L]∩R= ∅, then we can recover the desired products AB following the same argument

that was presented in Section 6.4.3. When [L]∩R 6= ∅, denote the elements in the set R\ [L]

as (s1,s2,··· ,sR′). The answers from these R′ servers can be written in the following matrix

191

form.




Ys1

Ys2
...

YsR′




=




c1,1
f1,1−αs1

c1,2
f1,2−αs1

··· c`,Kc
f`,Kc−αs1

1 αs1 ··· αR−L−1
s1

c1,1
f1,1−αs2

c1,2
f1,2−αs2

··· c`,Kc
f`,Kc−αs2

1 αs2 ··· αR−L−1
s2

...
...

...
...

...
...

...
...

c1,1
f1,1−αsR′

c1,2
f1,2−αsR′

··· c`,Kc
f`,Kc−αsR′

1 αsR ··· αR−L−1
sR′



⊗Iλ




A1,1B1,1

A1,2B1,2

...

A`,KcB`,Kc

∗
...

∗




,

(6.100)

Note that the dimension of the first matrix on the RHS, or the decoding matrix, is (R′×R),

thus it appears to be not invertible. However, from answers of the servers in the set R∩ [L],

we can directly recover |R∩ [L]| desired products. Note that the desired products appear

along the dimension spanned by the Cauchy part. By subtracting these known products

from the answers, we obtain the decoding matrix of dimension (R′×R′), which is invertible

by Lemma 2.5. This completes the proof of recovery threshold R=L+Kc−1. It is easy to

see that the upload and download costs are also not affected by the systematic construction.

For the encoding complexity, the systematic construction requires less arithmetic operations

because no computation is needed to obtain Ã[L] and B̃[L]. For the decoding complexity,

when [L]⊂R, no computation is needed, and when [L]∩R= ∅, it follows the same argument

presented in Section 6.4.3. When [L]∩R 6= ∅, the user (decoder) eliminates all products

obtained from answers of the servers in the set R∩ [L], and then decodes the remaining

products according to the fast decoding algorithm. Thus the decoding complexity is not

increased.

192

6.5 Generalized Cross-Subspace Alignment (GCSA)

Codes: Combining Batch Processing and Matrix-

Partitioning

In this section, we present Generalized CSA codes (GCSA codes), which combine the

batch processing of CSA codes with the matrix-partitioning approach of EP codes. Al-

though we have shown that batch processing with CSA codes significantly improves the

tradeoff between upload-download costs, evidently CSA codes require at least one ma-

trix multiplication of dimensions λ×κ and κ×µ at each server. For a computation-

latency limited setting, partitioning may be necessary to reduce the computation load per

server. A naive approach to combine the batch processing of CSA codes and the parti-

tioning of EP codes is to first (separately for each l∈ [L]) apply EP codes for each pair

of matrices, Al,Bl. Next, since only matrix multiplication is involved in obtaining the

answers for EP codes, we can then apply CSA codes for these matrix multiplications.

Specifically, for positive integers `′,K ′c,S ′,p,m,n such that L= `′K ′c, m |λ, n |µ, p |κ and

S ′≥ pmn+p−1, apply EP codes of parameter p,m,n with S ′ servers for each matrix mul-

tiplication. This yields a total of S ′`′K ′c matrix multiplications. For these matrix mul-

tiplications, we can further apply CSA codes. Now we can see that by this construc-

tion, if we choose CSA codes parameters `= `′,Kc =K ′cS
′, we can achieve the upload cost

(UA,UB) = (S/(K ′cpm),S/(K ′cpn)). It is also easy to see that for this simple combination of

EP and CSA codes, the recovery threshold achieved is R= `′K ′cS
′+K ′cS

′−1, and the down-

load cost is D= (`′K ′cS
′+K ′cS

′−1)/(`′K ′cmn). However, we will see that under the same up-

load cost, GCSA codes can improve the recovery threshold to R= pmn(`′K ′c+K ′c−1)+p−1

and the download cost to D= (pmn(`′K ′c+K ′c−1)+p−1)/(`′K ′cmn). This result is better

than the naive construction because S ′≥ pmn+p−1≥ 1. On the other hand, note that the

Lagrange Coded Computation (LCC) codes in [138] can be regarded as a special case of CSA

193

codes with parameter `= 1, so the naive approach of combining LCC codes with EP codes

achieves the recovery threshold of R= 2LS ′−1. With GCSA codes of parameter `= 1, the

recovery threshold is improved to R= 2Lpmn+p−1.

6.5.1 GCSA Codes: Main Result

Our main result for GCSA codes appears in the following theorem.

Theorem 6.2. For CDBMM over a field F with S servers, and positive integers

(`,Kc,p,m,n) such that m |λ, n |µ, p |κ and L= `Kc≤ |F|−S, the GCSA codes presented in

this chapter achieve

Recovery Threshold: R= pmn((`+1)Kc−1)+p−1, (6.101)

Upload Cost for Ã[S],B̃[S]: (UA,UB) =

(
S

Kcpm
,
S

Kcpn

)
, (6.102)

Download Cost: D=
pmn((`+1)Kc−1)+p−1

mn`Kc

, (6.103)

Server Computation Complexity: Cs =O
(

λκµ

Kcpmn

)
, (6.104)

Encoding Complexity for Ã[S],B̃[S]: (CeA,CeB) =

(
Õ
(
λκS log2S

Kcpm

)
,Õ
(
κµS log2S

Kcpn

))

(6.105)

Decoding Complexity: Cd = Õ
(
λµplog2R

)
. (6.106)

6.5.2 Observations

1. GCSA codes generalize almost all state of art approaches for coded distributed batch

matrix multiplication. Setting m=n= p reduces GCSA codes to CSA codes. Further

setting `= 1 recovers LCC codes. Setting `=Kc = 1 reduces GCSA codes to EP codes.

Further setting p= 1 recovers Polynomial codes, while setting m=n= 1 recovers Mat-

194

Dot codes.

2. Let us explain why GCSA codes, which include CSA codes, LCC codes and EP codes

as special cases, are capable of achieving more than what each of these codes can

achieve in general. Consider a finite horizon setting, where12 the job size J , i.e., the

number of matrices to be multiplied, is fixed. So we need to compute J matrix multi-

plications, A1B1,··· ,AJBJ , where each Aj,Bj,j ∈ [J] is a λ×λ matrix. Suppose each

scalar multiplication takes Tm seconds, and it takes Tc seconds to communicate one

scalar over any communication channel. For simplicity let us assume that multiplying

two λ×λ matrices requires λ3Tm seconds of computation time. There is a required

latency constraint for this job, such that the total computation time at each server

cannot exceed λ3Tm/K, where K> 1 is a given parameter that determines the server

latency constraint. Note that this latency constraint immediately rules out LCC codes,

and even CSA codes because they need at least λ3Tm seconds of computation time at

each server which violates the given constraint. Now consider EP codes which can

partition the matrices to reduce the size of computation task at each server, but need

to repeat the process J times because each AjBj is computed separately. EP codes

need computation time Jλ3Tm/(pmn) at each server, so they can satisfy the latency

constraint by choosing pmn≥ JK. On the other hand, GCSA codes with, say `= 1

and Kc = J , need computation time λ3Tm/(p
′′m′′n′′) at each server. So GCSA codes

can satisfy the latency constraint by choosing p′′m′′n′′≥K, i.e., with less partitioning

than needed for EP codes. Note that GCSA codes need less partitioning than EP

codes to satisfy the same latency constraint, because they make up some of the com-

putation time by batch processing of the J multiplications that must be carried out

separately by EP codes. It turns out that this allows GCSA codes to have lower com-

munication cost. EP codes require a total download time of JREPλ
2Tc

mn
= J(pmn+p−1)λ2Tc

mn
,

12We make a distinction between batch size and job size, in that the job size is fixed as part of the problem
specification while the batch size may be chosen arbitrarily by a coding scheme, e.g., to partition the job
into smaller jobs.

195

and an upload time of JSλ2Tc
pm

+ JSλ2Tc
pn

seconds, where S is the number of servers uti-

lized by the scheme. For straggler tolerance, suppose REP/S= η < 1, so that the

upload time is expressed as J(pmn+p−1)λ2Tc
ηp

(1
m

+ 1
n
). For balanced upload and down-

load times we need m=n and ηpm/2≈m2, so that the balanced upload/download

time for EP codes is ≈ J(2m3/η+2m/η−1)λ2Tc
m2 . Given the latency constraint which forces

2m3/η≥ JK, we find that the optimal balanced upload/download time for EP codes

is achieved with m≈
(
ηJK

2

)1/3
. On the other hand, now consider GCSA codes, which

need total download time of RGCSAλ
2Tc

m′′n′′
= (p′′m′′n′′(2J−1)+p′′−1)λ2Tc

m′′n′′
, and total upload time

of S′′λ2Tc
p′′m′′

+ S′′λ2Tc
p′′n′′

. For similar straggler robustness, let RGCSA/S
′′= η be the same as

for EP codes. For balanced costs, similarly set m′′=n′′ and ηp′′m′′/2≈m′′2. Thus

GCSA codes achieve balanced upload/download time of ≈ ((2m′′3/η)(2J−1)+2m′′/η−1)λ2Tc
m′′2

,

respectively. Combined with the latency constraint which forces 2m′′3/η≥K, we find

that the optimal balanced upload/download time for this particular construction of

GCSA codes is achieved with m′′≈
(
ηK
2

)1/3
. For a quick comparison of approximately

optimal balanced upload/download time, note that for EP codes it is lower bounded

by 2Jmλ2Tc
η

, and for GCSA codes it is upper bounded by 8Jm′′λ2Tc
η

, so EP codes need

more balanced communication time by a factor of at least m
4m′′
≈ J1/3

4
which can be

significantly larger than 1 for large job sizes J . To complement the approximate analy-

sis, Figure 6.3 explicitly compares the balanced upload/download time (the maximum

of upload and download times) versus the job latency constraint parameter K. The

values shown for EP codes are precisely lowerbounds, i.e., EP codes cannot do any

better, while those for GCSA codes are strictly achievable. Thus, GCSA codes can

achieve more than what can be achieved by CSA, LCC or EP codes.

3. The finite horizon, i.e., fixed job size and fixed latency constraint for each job is im-

portant in the previous discussion. If instead of the absolute value of server latency

for a fixed job size, we only insisted on normalized server latency per job, where each

job is still comprised of J matrix multiplications, then we could jointly process K jobs

196

0 5 10 15 20 25

0.5

1

1.5

2

2.5

3
·103

Latency Constraint Parameter, K −→

B
a
la
n
ce
d
U
p
lo
ad

/D
ow

n
lo
a
d
T
im

e
−→ EP Codes

GCSA Codes

CSA/LCC Codes

(a) Job size, J = 100

0 5 10 15 20 25

1

2

3

4

5

6
·104

Latency Constraint Parameter, K −→

B
a
la
n
ce
d
U
p
lo
ad

/D
ow

n
lo
ad

T
im

e
−→ EP Codes

GCSA Codes

CSA/LCC Codes

(b) Job size, J = 1000

Figure 6.3: Balanced upload/download time vs the value of the latency constraint parameter
K for EP codes, CSA/LCC codes and GCSA codes (normalized by λ3Tc). CSA/LCC codes
are not feasible for K> 1. The values for EP codes are lower bounds while those for GCSA
codes are upper bounds, showing that GCSA codes strictly outperform both batch processing
(CSA/LCC) and matrix-partitioning (EP) codes.

codes with an absolute latency of λ3Tc which allows LCC and CSA codes, while still

achieving the latency per job of λ3/K. Since batch processing approaches like LCC

codes and CSA codes have already been shown to achieve better communication costs

than any matrix partitioning approach, neither EP codes nor GCSA codes would be

needed in that case. On the other hand, it is also worth noting that if we go to the

other extreme and require a fixed server latency of less than λ3Tc/K for each matrix

multiplication, i.e., set J = 1, then it can be seen that batch processing cannot help,

i.e., matrix partitioning alone is enough. In other words, if latency constraints are

imposed on each matrix multiplication (J = 1) , then EP codes suffice, and neither

LCC codes, nor CSA or GCSA codes are needed.

4. Figure 6.3 shows the advantage of GCSA codes in terms of communication cost over

exclusively batch processing (LCC) and matrix-partitioning (EP) codes under absolute

server latency constraints, even when GCSA codes are restricted to the choice `= 1.

However, the advantage of GCSA codes over LCC and EP codes can be seen even

without absolute latency constraints. This is illustrated in Figure 6.4 which only

197

constrains the recovery threshold R and the number of servers S. The figure shows

lower convex hulls of achievable (balanced upload cost, download cost) pairs of GCSA

codes for various bounds on the matrix partitioning parameters pmn, given that the

number of servers S= 300 and the overall recovery threshold R≤ 250. Each value of

(S,R,pmn) produces an achievable region in the (U,D) plane (including all possible

choices of parameters m,n,p,`,Kc). What is shown in the figure is the union of these

regions. The larger the value of pmn, the more the GCSA code construction shifts

toward EP codes, generally with the benefit of reduced latency of computation at each

server that comes with matrix partitioning. On the other hand, the smaller the value

of pmn, the more the GCSA code construction shifts toward CSA codes, with the

benefit of improved communication costs that come with batch processing. As noted

previously, when no matrix partitioning is allowed, LCC codes can be recovered as a

special case of GCSA codes by setting `= 1. The figure also shows how GCSA codes

are capable of improving upon LCC codes in terms of download cost by choosing `> 1.

2 4 6 8 10 12 14

5

10

15

Upload cost, U −→

D
ow

n
lo
ad

co
st
,
D
−→

EP Codes (Matrix-Partitioning)

GCSA Codes (pmn ≥ 15)

GCSA Codes (pmn ≥ 5)

GCSA Codes (pmn ≥ 1)

LCC Codes (Batch Processing)

Figure 6.4: Lower convex hulls of achievable (balanced upload cost, download cost) pairs
(U,D) of GCSA codes for various bounds on pmn, given that S= 300 and the overall recovery
threshold R≤ 250. Note that EP codes and LCC codes are also special cases of GCSA codes,
obtained by setting `=Kc = 1, and `=m=n= p= 1, respectively. CSA codes are obtained
by setting m=n= p= 1.

5. While in this chapter we do not explore improvements that are possible by using

more efficient matrix multiplication algorithms, it is worthwhile to note that stronger

198

constructions can indeed be built upon more efficient matrix multiplication algorithms,

e.g., Strassen’s algorithm. For example, it is recently shown in [137] that the recovery

threshold of 2LR(p,m,n)−1 is achievable where R(p,m,n) is the bilinear complexity

for multiplying two matrices of sizes m×p and p×n. Note that R(p,m,n)<pmn. On

the other hand, since GCSA codes are built upon straightforward matrix multiplication

algorithms, there is a leading factor of pmn in the expression of the recovery threshold

of GCSA codes. As a result, the recovery threshold achieved in [137] is order-wise better

than GCSA codes for large batch size L. It is notable that for smaller batch sizes, GCSA

codes based on straightforward matrix multiplication can still outperform those in [137]

that are based on more sophisticated matrix multiplication algorithms. For example, it

is known that R(2,2,2) = 7. Thus if we set `= 1, we have 2LR(2,2,2)−1≥ 8(2L−1)+1

when L= 1,2,3.

6.5.3 Proof of Theorem 6.2

Let us recall the standard result for Confluent Cauchy-Vandermonde matrices [37], repro-

duced here for the sake of completeness.

Lemma 6.1. If f1,1,f1,2,··· ,f`,Kc ,α1,α2,··· ,αR are R+L distinct elements of F, with |F| ≥

R+L and L= `Kc, then the following R×R Confluent Cauchy-Vandermonde matrix is in-

vertible over F.

V̂`,Kc,R′,R,




1
(f1,1−α1)R′

··· 1
f1,1−α1

··· 1
(f`,Kc−α1)R′

··· 1
f`,Kc−α1

1 ··· αR−R′L−1
1

1
(f1,1−α2)R′

··· 1
f1,1−α2

··· 1
(f`,Kc−α2)R′

··· 1
f`,Kc−α2

1 ··· αR−R′L−1
2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)R′

··· 1
f1,1−αR

··· 1
(f`,Kc−αR)R′

··· 1
f`,Kc−αR

1 ··· αR−R′L−1
R




(6.107)

Before presenting the generalized CSA codes construction let us start with an illustrative

199

example.

`= 1,Kc = 2,L= 2,p= 2,m=n= 1

Let f1,1,f1,2,α1,α2,...,αS represent (S+2) distinct elements from F. For all s∈ [S], define,

∆1,2
s = (f1,1−αs)2(f1,2−αs)2. (6.108)

We set A1,1 = A1, A1,2 = A2, B1,1 = B1 and B1,2 = B2. Besides, we partition each of the

matrices A1,1 and A1,2 into 1×2 blocks, denoted as A1,1
1,1, A1,2

1,1 and A1,1
1,2, A1,2

1,2 respectively.

Similarly, we partition each of the matrices B1,1 and B1,2 into 2×1 blocks, denoted as B1,1
1,1,

B2,1
1,1 and B1,1

1,2, B2,1
1,2 respectively. Note that the desired products A1,1B1,1,A1,2B1,2 can be

written as follows.

A1,1B1,1 = A1,1
1,1B

1,1
1,1 +A1,2

1,1B
2,1
1,1, (6.109)

A1,2B1,2 = A1,1
1,2B

1,1
1,2 +A1,2

1,2B
2,1
1,2. (6.110)

Shares of matrices A are constructed as follows.

Ãs = ∆1,2
s

(
1

(f1,1−αs)2

(
A1,1

1,1 +(f1,1−αs)A1,2
1,1

)
+

1

(f1,2−αs)2

(
A1,1

1,2 +(f1,2−αs)A1,2
1,2

))

(6.111)

= (f1,2−αs)2
(
A1,1

1,1 +(f1,1−αs)A1,2
1,1

)
︸ ︷︷ ︸

P 1,1
s

+(f1,1−αs)2
(
A1,1

1,2 +(f1,2−αs)A1,2
1,2

)
︸ ︷︷ ︸

P 1,2
s

. (6.112)

Note that now the term P 1,1
s follows the construction of Entangled Polynomial codes of

parameter m=n= 1,p= 2, and it is a polynomial of (f1,1−αs). Similarly, the term P 1,2
s

follows the construction of Entangled Polynomial codes, and it is a polynomial of (f1,2−αs).

200

Shares of matrices B are constructed as follows.

B̃s =
1

(f1,1−αs)2

(
(f1,1−αs)B1,1

1,1 +B2,1
1,1

)
︸ ︷︷ ︸

Q1,1
s

+
1

(f1,2−αs)2

(
(f1,2−αs)B1,1

1,2 +B2,1
1,2

)
︸ ︷︷ ︸

Q1,2
s

. (6.113)

The terms Q1,1
s and Q1,2

s also follow the construction of EP codes for the given parameter

values p,m,n, and they are polynomials of (f1,1−αs) and (f1,2−αs) respectively.

The answer from the sth server, Ys is constructed as Ys = ÃsB̃s. To see why it is possible

to recover the desired products from the answers of any R= 7 servers, let us rewrite Ys as

follows.

Ys = ÃsB̃s (6.114)

=
(f1,2−αs)2

(f1,1−αs)2
P 1,1
s Q1,1

s +
(f1,1−αs)2

(f1,2−αs)2
P 1,2
s Q1,2

s +(P 1,1
s Q1,2

s +P 1,2
s Q1,1

s) (6.115)

=
((f1,1−αs)+(f1,2−f1,1))2

(f1,1−αs)2
P 1,1
s Q1,1

s +
((f1,2−αs)+(f1,1−f1,2))2

(f1,2−αs)2
P 1,2
s Q1,2

s

+(P 1,1
s Q1,2

s +P 1,2
s Q1,1

s) (6.116)

=

(
c1,1,0

(f1,1−αs)2
+

c1,1,1

f1,1−αs

)
P 1,1
s Q1,1

s +

(
c1,2,0

(f1,2−αs)2
+

c1,2,1

f1,2−αs

)
P 1,2
s Q1,2

s

+(P 1,1
s Q1,1

s +P 1,2
s Q1,2

s +P 1,1
s Q1,2

s +P 1,2
s Q1,1

s), (6.117)

where in the last step, we perform binomial expansion for numerator polynomials. According

to the Binomial Theorem, (c1,k,i)k∈[2],i∈{0,1} are non-zero. Note that

P 1,1
s Q1,1

s = A1,1
1,1B

2,1
1,1 +(f1,1−αs)(A1,1

1,1B
1,1
1,1 +A1,2

1,1B
2,1
1,1)+(f1,1−αs)2A1,2

1,1B
1,1
1,1, (6.118)

P 1,2
s Q1,2

s = A1,1
1,2B

2,1
1,2 +(f1,2−αs)(A1,1

1,2B
1,1
1,2 +A1,2

1,2B
2,1
1,2)+(f1,2−αs)2A1,2

1,2B
1,1
1,2. (6.119)

Therefore, we can further rewrite the first term in (6.117) as follows.

c1,1,0A
1,1
1,1B

2,1
1,1

(f1,1−αs)2
+
c1,1,1A

1,1
1,1B

2,1
1,1 +c1,1,0(A1,1

1,1B
1,1
1,1 +A1,2

1,1B
2,1
1,1)

f1,1−αs

201

+(c1,1,0A
1,2
1,1B

1,1
1,1 +c1,1,1(A1,1

1,1B
1,1
1,1 +A1,2

1,1B
2,1
1,1))

+(f1,1−αs)(c1,1,1A
1,2
1,1B

1,1
1,1). (6.120)

The second term in (6.117) can be similarly rewritten. Note that the third term in (6.117)

and the last two terms in (6.120) can be expanded into weighted sums of the terms 1,αs,α
2
s,

so in the matrix form, answers from any 7 servers, whose indices are denoted as s1,s2,··· ,s7,

can be written as follows.




Ys1

Ys2
...

Ys7




=




1
(f1,1−αs1)2

1
f1,1−αs1

1
(f1,2−αs1)2

1
f1,2−αs1

1 αs1 α
2
s1

1
(f1,1−αs2)2

1
f1,1−αs2

1
(f1,2−αs2)2

1
f1,2−αs2

1 αs2 α
2
s2

...
...

...
...

...
...

...

1
(f1,1−αs7)2

1
f1,1−αs7

1
(f1,2−αs7)2

1
f1,2−αs7

1 αs7 α
2
s7




︸ ︷︷ ︸
V̂1,2,2,7




T(c1,1,0,c1,1,1)

T(c1,2,0,c1,2,1)

I3




︸ ︷︷ ︸
V̂′1,2,2,7

⊗Iλ/m




A1,1
1,1B

2,1
1,1

A1,1
1,1B

1,1
1,1 +A1,2

1,1B
2,1
1,1

A1,1
1,2B

2,1
1,2

A1,1
1,2B

1,1
1,2 +A1,2

1,2B
2,1
1,2

∗

∗

∗




, (6.121)

where we have used ∗ to represent various combinations of interference symbols that can

be found explicity by exapnding (6.117), whose exact forms are irrelevant. Note that the

matrix V̂′1,2,2,7 is a block diagonal matrix composed with two lower triangular toeplitz ma-

trices and an identity matrix, thus is invertible, and the matrix V̂1,2,2,7V̂
′
1,2,2,7⊗Iλ/m is then

invertible from Lemma 6.1 and the fact that the Kronecker product of invertible matrices is

invertible. Therefore, the user is able to recover desired products, i.e., (A1,1
1,1B

1,1
1,1 +A1,2

1,1B
2,1
1,1)

and (A1,1
1,2B

1,1
1,2 +A1,2

1,2B
2,1
1,2), from the answers of any 7 servers by inverting the matrix. This

202

completes the proof of recovery threshold R= 7. Finally, it is straightforward to verify that

the upload cost is UA =S/4 =S/(Kcpm), UB =S/4 =S/(Kcpn), and the download cost is

D= 7/2, which matches Theorem 6.2.

Arbitrary (`,Kc,p,m,n) and L= `Kc

Define R′= pmn. Let f1,1, f1,2, ···, f`,Kc , α1, α2, ···, αS be (S+L) distinct elements from the

field F. For all l∈ [`],k∈ [Kc], we define cl,k,i,i∈{0,1,··· ,R′(Kc−1)} to be the coefficients

satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α+(fl,k′−fl,k))R
′
=

R′(Kc−1)∑

i=0

cl,k,iα
i, (6.122)

i.e., they are the coefficients of the polynomial Ψl,k(α) =
∏

k′∈[Kc]\{k}(α+(fl,k′−fl,k))R
′
, which

is defined here by its roots. Now for all l∈ [`],s∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k−αs)R
′
. (6.123)

Let us also split the L= `Kc instances of A and B matrices into ` groups, i.e.,

Al,k = AKc(l−1)+k, (6.124)

Bl,k = BKc(l−1)+k (6.125)

for all l∈ [`],k∈ [Kc]. Further, for each matrix Al,k, we partition it intom×p blocks, denoted

as A1,1
l,k ,A

1,2
l,k ,··· ,Am,p

l,k . Similarly, for each matrix Bl,k, we partition it into p×n blocks,

denoted as B1,1
l,k ,B

1,2
l,k ,··· ,Bp,n

l,k . Now, for all l∈ [`],k∈ [Kc], let us define

P l,k
s =

∑

m′∈[m]

∑

p′∈[p]

Am′,p′

l,k (fl,k−αs)p
′−1+p(m′−1), (6.126)

203

Ql,k
s =

∑

p′∈[p]

∑

n′∈[n]

Bp′,n′

l,k (fl,k−αs)p−p
′+pm(n′−1), (6.127)

i.e., we apply EP codes for each Al,k and Bl,k. Note that the original EP codes can be

regarded as polynomials of αs, and here for each (l,k), we construct the EP codes as poly-

nomials of (fl,k−αs). Now recall that by the construction of EP codes, the product P l,k
s Ql,k

s

can be written as weighted sums of the terms 1,(fl,k−αs),··· ,(fl,k−αs)R′+p−2, i.e.,

P l,k
s Ql,k

s =

R′+p−2∑

i=0

C
(i+1)
l,k (fl,k−αs)i, (6.128)

where C
(1)
l,k ,C

(2)
l,k ,··· ,C

(R′+p−1)
l,k are various linear combinations of products of blocks of Al,k and

blocks of Bl,k. In particular, the desired product Al,kBl,k can be obtained from C
(1)
l,k ,··· ,C

(R′)
l,k .

Now we are ready to formally present the construction of generalized CSA codes. For all

s∈ [S], let us construct shares of matrices A and B at the sth server as follows.

Ãs = (Ãs1,Ã
s
2,...,Ã

s
`), (6.129)

B̃s = (B̃s
1,B̃

s
2,...,B̃

s
`), (6.130)

where for l∈ [`], let us set

Ãsl = ∆l,Kc
s

∑

k∈[Kc]

1

(fl,k−αs)R′
P l,k
s , (6.131)

B̃s
l =

∑

k∈[Kc]

1

(fl,k−αs)R′
Ql,k
s . (6.132)

The answer returned by the sth server to the user is constructed as follows.

Ys =
∑

l∈[`]

Ãsl B̃
s
l . (6.133)

204

Now let us prove that the generalized CSA codes are R= pmn((`+1)Kc−1)+p−1 recover-

able. Let us rewrite Ys as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + ···+ Ãs`B̃

s
` (6.134)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

1

(fl,k−αs)R′
P l,k
s




 ∑

k∈[Kc]

1

(fl,k−αs)R′
Ql,k
s


 (6.135)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′−αs)R

′

(fl,k−αs)R′
P l,k
s Ql,k

s

+
∑

l∈[`]

∑

k,k′∈[Kc]
k 6=k′


 ∏

k′′∈[Kc]\{k,k′}

(fl,k′′−αs)R
′


P l,k

s Ql,k′

s . (6.136)

Note that in the last step, we split the summation into two parts depending on whether or

not k= k′.

Let us consider the first term in (6.136). For each l∈ [`],k∈ [Kc], we have

∏
k′∈[Kc]\{k}(fl,k′−αs)R

′

(fl,k−αs)R′
P l,k
s Ql,k

s (6.137)

=

∏
k′∈[Kc]\{k}((fl,k−αs)+(fl,k′−fl,k))R

′

(fl,k−αs)R′
P l,k
s Ql,k

s (6.138)

=
Ψl,k(fl,k−αs)
(fl,k−αs)R′

P l,k
s Ql,k

s (6.139)

=

(
cl,k,0

(fl,k−αs)R′
+

cl,k,1
(fl,k−αs)R′−1

+ ···+ cl,k,R′−1

fl,k−αs

)
P l,k
s Ql,k

s

+



R′(Kc−1)∑

i=R′

cl,k,i(fl,k−αs)i−R
′


P l,k

s Ql,k
s , (6.140)

where in (6.139), we used the definition of Ψl,k(·), and in the next step, we rewrite the

polynomial Ψl,k(fl,k−αs) in terms of its coefficients. Let us consider the first term in (6.140).

(
cl,k,0

(fl,k−αs)R′
+

cl,k,1
(fl,k−αs)R′−1

+ ···+ cl,k,R′−1

fl,k−αs

)
P l,k
s Ql,k

s (6.141)

205

=

(
cl,k,0

(fl,k−αs)R′
+

cl,k,1
(fl,k−αs)R′−1

+ ···+ cl,k,R′−1

fl,k−αs

)R′+p−2∑

i=0

C
(i+1)
l,k (fl,k−αs)i (6.142)

=
R′−1∑

i=0

∑i
i′=0cl,k,i−i′C

(i′+1)
l,k

(fl,k−αs)R′−i
+

p−2∑

i=0

(fl,k−αs)i
(

R′+i∑

i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k

)

+

R′+p−3∑

i=p−1

(fl,k−αs)i
(
R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k

)
. (6.143)

We further note that when Kc = 1, for all i 6= 0,cl,k,i = 0, thus the second term in (6.136), the

second term in (6.140) and the third term in (6.143) equal zero. The second term in (6.143)

can be expanded13 into weighted sums of the terms 1,αs,··· ,αp−2
s . Since Kc = 1, we can

equivalently write these terms as 1,αs,··· ,αR
′(Kc−1)+p−2

s . On the other hand, when Kc> 1,

the second term in (6.136), the second term in (6.140), the second and the third terms in

(6.143) can also be expanded into weighted sums of the terms 1,αs,··· ,αR
′(Kc−1)+p−2

s . Because

R′(Kc−1)+p−2 =R−R′L−1, in the matrix form, answers from any R= pmn((`+1)Kc−

1)+p−1 servers, whose indices are denoted as s1,s2,··· ,sR, can be written as follows.




Ys1

Ys2
...

YsR




=




1
(f1,1−αs1)R′

··· 1
f1,1−αs1

··· 1
(f`,Kc−αs1)R′

··· 1
f`,Kc−αs1

1 ··· αR−R′L−1
s1

1
(f1,1−αs2)R′

··· 1
f1,1−αs2

··· 1
(f`,Kc−αs2)R′

··· 1
f`,Kc−αs2

1 ··· αR−R′L−1
s2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αsR)R′

··· 1
f1,1−αsR

··· 1
(f`,Kc−αsR)R′

··· 1
f`,Kc−αsR

1 ··· αR−R′L−1
sR




︸ ︷︷ ︸
V̂`,Kc,R′,R

13When Kc = p= 1, the second term in (6.143) is zero, thus the Vandermonde terms do not appear. The
matrix form representation now involves only confluent Cauchy matrices, i.e., confluent Cauchy-Vandermonde
matrices without Vandermonde part.

206




T(c1,1,0,··· ,c1,1,R′−1)

. . .

T(c`,Kc,0,··· ,c`,Kc,R′−1)

IR−R′L




︸ ︷︷ ︸
V̂′
`,Kc,R′,R

⊗Iλ/m




C
(1)
1,1

...

C
(R′)
1,1

...

C
(1)
`,Kc

...

C
(R′)
`,Kc

∗
...

∗




,

(6.144)

We have used ∗ to represent various combinations of interference symbols that can be found

explicitly by expanding (6.136), whose exact forms are irrelevant. Now since f1,1,f1,2,··· ,f`,Kc
are distinct, for all l∈ [`],k∈ [Kc], we must have

cl,k,0 =
∏

k′∈[Kc]\{k}

(fl,k′−fl,k)R
′

(6.145)

are non-zero. Hence, the lower triangular toeplitz matrices T(c1,1,0,c1,1,1,··· ,c1,1,R′−1),··· ,

T(c`,Kc,0,c`,Kc,1,··· ,c`,Kc,R′−1) are non-singular, and the block diagonal matrix V̂′`,Kc,R′,R is

invertible. Guaranteed by Lemma 6.1 and the fact that the Kronecker product of non-

singular matrices is non-singular, the matrix (V̂`,Kc,R′,RV̂′`,Kc,R′,R)⊗Iλ/m is invertible. There-

fore, the user is able to recover (C
(i)
l,k)l∈[`],k∈[Kc],i∈[R′] by inverting the matrix. And the de-

sired products (AlBl)l∈[L] are recoverable from (C
(i)
l,k)l∈[`],k∈[Kc],i∈[R′], guaranteed by the con-

struction of Entangled Polynomial codes. This completes the proof of recovery threshold

R= pmn((`+1)Kc−1)+p−1. It is also easy to see that the upload cost UA =S/(Kcpm)

and UB =S/(Kcpn). Note that we are able to recover Lmn desired symbols from R down-

207

loaded answers, so the download cost is D= R
Lmn

= pmn((`+1)Kc−1)+p−1
mn`Kc

. Thus the desired

costs are achievable. Note that the encoding procedure can be considered as products of

Confluent Cauchy matrices by vectors. By fast algorithms [83], the encoding complexity

of (CeA,CeB) =
(
Õ
(
λκS log2S
Kcpm

)
,Õ
(
κµS log2S
Kcpn

))
is achievable. Now let us consider the decoding

complexity. Note that the decoding procedure involves matrix-vector multiplications of in-

verse of Toeplitz matrix and inverse of confluent Cauchy-Vandermonde matrix. From the in-

verse formula of confluent Cauchy-Vandermonde matrix presented in [132], the matrix-vector

multiplication of the inverse of confluent Cauchy-Vandermonde matrix V̂`,Kc,R′,R can be de-

composed into a series of structured matrix-vector multiplications including confluent Cauchy

matrix, transpose of Vandermonde matrix, Hankel matrix and Toeplitz matrix. By fast al-

gorithms [83, 41], the complexity of decoding is at most Õ(λµplog2R). With straightforward

matrix multiplication algorithms, the server computation complexity is Cs = (λκµ)/(Kcpmn).

This completes the proof of Theorem 6.2.

6.6 N-CSA Codes for N-linear Coded Distributed Batch

Computation (N-CDBC)

6.6.1 N-CSA Codes: Main Result

In this section, let us generalize CSA codes for N -CDBC. The generalization, called N -CSA

codes, is presented in the following theorem.

Theorem 6.3. For N-CDBC over a field F with S servers, and positive integers `,Kc such

that L= `Kc≤ |F|−S, the N-CSA codes introduced in this section achieve

Recovery Threshold: R=Kc(N+`−1)−N+1, (6.146)

Upload Cost for X̃(n)
[S]

,n∈ [N]: UX(n) =
S

Kc

, (6.147)

208

Download Cost: D=
Kc(N+`−1)−N+1

`Kc

, (6.148)

Server Computation Complexity: Cs =O(ω/Kc), (6.149)

Encoding complexity for X̃(n)
[S]

, n∈ [N]: CeX(n) = Õ
(

dim(Vn)S log2S

Kc

)
, (6.150)

Decoding complexity: Cd = Õ
(
`+N−1

`
dim(W)Rlog2R

)
,

(6.151)

where ω is the number of arithmetic operations required to compute the N-linear map Ω(·).

6.6.2 Proof of Theorem 6.3

Now let us present the construction of N -CSA codes for N -CDBC. Let f1,1,f1,2,··· ,f`,Kc ,

α1,α2,··· ,αS represent (S+L) distinct elements from F. For all l∈ [`],s∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k−αs). (6.152)

For all n∈ [N],l∈ [`],k∈ [Kc], we define

x
(n)
l,k =x

(n)
Kc(l−1)+k. (6.153)

For all s∈ [S],n∈ [N], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1,X̃
(n)

s

2,··· ,X̃(n)
s

`), (6.154)

where for l∈ [`], let us set

X̃(n)
s

l = ∆,Kc
s

∑

k∈[Kc]

1

fl,k−αs
x

(n)
l,k . (6.155)

209

The answer returned by the sth server is constructed as follows.

Ys =
∑

l∈[`]

1

∆,Kc
s

Ω(X̃(1)
s

l ,X̃
(2)

s

l ,··· ,X̃(N)
s

l). (6.156)

To prove that the code is R-recoverable, let us rewrite Ys as follows.

Ys =
∑

l∈[`]

1

∆,Kc
s

Ω(X̃(1)
s

l ,X̃
(2)

s

l ,··· ,X̃(N)
s

l) (6.157)

=
∑

l∈[`]

1

∆,Kc
s

Ω


∆,Kc

s

∑

k∈[Kc]

1

fl,k−αs
x

(1)
l,k ,··· ,∆,Kc

s

∑

k∈[Kc]

1

fl,k−αs
x

(N)
l,k


 (6.158)

=
∑

l∈[`]

(∆,Kc
s)N−1


 ∑

k1∈[Kc]

1

fl,k1−αs
···

∑

kN∈[Kc]

1

fl,kN −αs

(
Ω(x

(1)
l,k1
,··· ,x(N)

l,kN
)
)

 (6.159)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′−αs)N−1

(fl,k−αs)
Ω(x

(1)
l,k ,··· ,x

(N)
l,k)

+
∑

l∈[`]

∑

k1,···,kN∈[Kc],
¬(k1=···=kN)

(
(∆,Kc

s)N−1

(fl,k1−αs)···(fl,kN −αs)
Ω(x

(1)
l,k1
,··· ,x(N)

l,kN
)

)
, (6.160)

where in (6.160), we split the summation depending on whether or not k1 = k2 = ···= kN .

Following the same argument presented in Section 6.4.3, by performing long division of

polynomials for the first term in (6.160), and noting that the second term in (6.160) can

be expanded to weighted sums of the terms 1,αs,α
2
s,··· ,αKc(N−1)−N

s , the presented code is

210

(R=Kc(N+`−1)−N+1)-recoverable as long as the following matrix is non-singular.




1
f1,1−αs1

1
f1,2−αs1

··· 1
f`,Kc−αs1

1 αs1 ··· αR−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

··· 1
f`,Kc−αs2

1 αs2 ··· αR−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

··· 1
f`,Kc−αsR

1 αsR ··· αR−L−1
sR




︸ ︷︷ ︸
V`,Kc,R




c1,1

c1,2

. . .

c`,Kc

1

. . .

1




︸ ︷︷ ︸
V′`,Kc,R

, (6.161)

where for all l∈ [`],k∈ [Kc], cl,k =
∏

k′∈[Kc]\{k}(fl,k′−fl,k)N−1. The indices of any R respon-

sive servers are denoted as s1,s2,··· ,sR. Since f1,1,f1,2,··· ,fl,k are distinct elements from F,

(cl,k)l∈[`],k∈[Kc] are non-zero, and R−L−1 =Kc(N−1)−N , the matrix V`,Kc,RV′`,Kc,R is in-

vertible guaranteed by Lemma 2.5. This completes the proof of recovery threshold. The

upload cost for X̃(n)
[S]

,n∈ [N] is readily verified to be S/Kc, and the download cost is

D=R/L= Kc(N+`−1)−N+1
`Kc

. By fast algorithms discussed in Section 6.4.3, we can achieve the

encoding/decoding complexity as presented in Theorem 6.3. The computational complex-

ity at each server is O(`ω/L) =O(ω/Kc), where ω is the number of arithmetic operations

required to compute Ω(·). This completes the proof of Theorem 6.3.

Remark 6.1. Let us regard a multivariate polynomial of total degree N as a linear combi-

nation of various restricted evaluations of N-linear maps.14 Note that the construction for

X̃(n)
s

is symmetric across all n∈ [N]. N-CSA codes can also be transformed to evaluate a

multivariate polynomial at L points as follows. For each server s∈ [S], the answer is com-

puted for each N-linear map according to N-CSA codes, and each server returns the user
14Note that this does not alter the computation complexity of the multivariate polynomial. For any

monomial of the polynomial of degree M <N , when it is viewed (homogenized) as a restricted N -linear
map, it is viewed as a product of M variables, along with (N−M) ones. The latter is constant, which
requires no extra computation.

211

with the linear combination of the answers. It is easy to see that the user is able to recover

the evaluation of the multivariate polynomial of total degree N at the given L points from the

answers of any R=Kc(N+`−1)−N+1 servers. The LCC codes in [138], which achieve

the recovery threshold R=KcN−N+1, are a special case of this construction, where `= 1.

Remark 6.2. The systematic construction presented in Section 6.4.4 can be also applied

directly to N-CSA codes for N-CDBC, i.e., for all s∈ [L], uncoded variables (x
(n)
s)n∈[N] are

uploaded to the sth server, and coded shares are uploaded to the remaining S−L servers,

according to the same coding scheme. Similarly, the recovery threshold is not affected by the

systematic construction.

Remark 6.3. The Lagrange codes presented in [138] for N-CDBC and can be considered as

a special case of N-CSA codes obtained by setting the parameter `= 1. Note that the download

cost can be written as D= 1+
(
N−1
`

)(
Kc−1
Kc

)
. The parameter ` plays an important role in

improving the download cost, which may be of interest when N is large and the down-link is

costly. For example, let us assume that R/S is held constant, then the order of the download

cost achieved is O(1+(N−1)/`) and the order of the upload cost for X̃(n)
[S]

,n∈ [N] achieved

is O(`+(N−1)), which offers flexible trade-off between the upload cost and download cost.

6.7 Discussion

The main contribution of this chapter is a class of codes, based on the idea of Cross Subspace

Alignment (CSA) that originated in private information retrieval (PIR) literature. These

codes are shown to unify, generalize and improve upon existing algorithms for coded dis-

tributed batch matrix multiplication, N -linear batch computation, and multivariate batch

polynomial evaluation, such as Polynomial, MatDot and PolyDot codes, Generalized Poly-

Dot and Entangled Polynomial (EP) codes, and Lagrange Coded Computing (LCC). CSA

codes for coded distributed batch matrix multiplication, which include LCC codes as a special

212

case, improve significantly upon state of art matrix-partitioning approaches (EP codes) in

terms of communication cost, and upon LCC codes in download-constrained settings. Gen-

eralized CSA (GCSA) codes bridge the extremes of matrix partitioning based approaches

(EP codes) and batch processing approaches (CSA codes, LCC codes), and allow a tradeoff

between server computation complexity, which is improved by emphasizing the matrix par-

titioning aspect, and communication costs, which are improved by emphasizing the batch

processing aspect. N -CSA codes for N -linear batch computations and multivariate polyno-

mial evaluations similarly generalize LCC codes, offering advantages especially in download

constrained settings. As a final observation, note that LCC codes in [138] also allow settings

with X-secure data and B-byzantine servers. Given that cross-subspace alignment schemes

originated in PIR with X-security constraints in Chapter 2 and have also been applied to

B-byzantine settings in Chapter 4, extensions of CSA codes, GCSA codes and N -CSA codes

to X-secure and B-byzantine settings are relatively straightforward, as shown in Appendix

D.1.

213

Chapter 7

X-Secure T -Private Federated Submodel

Learning with Elastic Dropout Resilience

Motivated by recent interest in federated submodel learning, this chapter explores the fun-

damental problem of privately reading from and writing to a database comprised of K files

(submodels) that are stored across N distributed servers according to an X-secure threshold

secret sharing scheme. One after another, various users wish to retrieve their desired file,

locally process the information and then update the file in the distributed database while

keeping the identity of their desired file private from any set of up to T colluding servers.

The availability of servers changes over time, so elastic dropout resilience is required. The

main contribution of this chapter is an adaptive scheme, called ACSA-RW, that takes ad-

vantage of all currently available servers to reduce its communication costs, fully updates the

database after each write operation even though the database is only partially accessible due

to server dropouts, and ensures a memoryless operation of the network in the sense that the

storage structure is preserved and future users may remain oblivious of the past history of

server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA)

codes that were originally introduced for X-secure T -private information retrieval and have

214

been shown to be natural solutions for secure distributed matrix multiplication problems.

ACSA-RW achieves the desired private read and write functionality with elastic dropout re-

silience, matches the best results for private-read from PIR literature, improves significantly

upon available baselines for private-write, reveals a striking symmetry between upload and

download costs, and exploits redundant storage dimensions to accommodate arbitrary read

and write dropout servers up to certain threshold values. It also answers in the affirmative

an open question by Kairouz et al. by exploiting synergistic gains from the joint design of

private read and write operations.

7.1 Introduction

The rise of machine learning is marked by fundamental tradeoffs between competing con-

cerns. Central to this chapter are 1) the need for abundant training data, 2) the need for

privacy, and 3) the need for low communication cost. Federated learning [78, 80, 73, 131] is

a distributed machine learning paradigm that addresses the first two concerns by allowing

distributed users/clients (e.g., mobile phones) to collaboratively train a shared model that

is stored in a cluster of databases/servers (cloud) while keeping their training data private.

The users retrieve the current model, train the model locally with their own training data,

and then aggregate the modifications as focused updates. Thus, federated learning allows

utilization of abundant training data while preserving its privacy. However, this incurs higher

communication cost as each update involves communication of all model parameters.

Communicating the full model may be unnecessary for large scale machine learning tasks

where each user’s local data is primarily relevant to a small part of the overall model.

Federated Submodel Learning (FSL) [82] builds on this observation by partitioning the model

into multiple submodels and allowing users to selectively train and update the submodels

that are most relevant to their local view. This is the case, for example, in the binary

215

relevance method for multi-label classification[90, 76], which independently trains a series of

binary classifiers (viewed as submodels), one for each label. Given a sample to be predicted,

the compound model predicts all labels for which the respective classifiers yield a positive

result.

What makes federated submodel learning challenging is the privacy constraint. The identity

of the submodel that is being retrieved and updated by a user must remain private. Prior

works [82, 79, 1, 34, 5] that assume centralized storage of all submodels are generally able

to provide relatively weaker privacy guarantees such as plausible deniability through differ-

ential privacy mechanisms that perturb the data and rely on secure inter-user peer-to-peer

communication for secure aggregation. On the other hand, it is noted recently by Kim and

Lee in [64] that if the servers that store the submodels are distributed, then stronger informa-

tion theoretic guarantees such1 as “perfect privacy” may be attainable, without the need for

user-to-user communication. Indeed, in this chapter we focus on this setting of distributed

servers and perfect privacy. The challenge of federated submodel learning in this setting

centers around three key questions.

Q1 Private Read: How can a user efficiently retrieve the desired submodel from the

distributed servers without revealing which submodel is being retrieved?

Q2 Private Write: How can a user efficiently update the desired submodel to the dis-

tributed servers without revealing which submodel is being updated?

Q3 Synergy of Private Read-Write: Are there synergistic gains in the joint design of

retrieval and update operations, and if so, then how to exploit these synergies?

The significance of these fundamental questions goes well beyond federated submodel learn-

ing. As recognized by [82] the private read question (Q1) by itself is equivalent to the problem
1By perfect privacy we mean that absolutely no information is leaked about the identity of a user’s desired

submodel to any set of colluding servers up to a target threshold.

216

of Private Information Retrieval (PIR) [23, 24], which has recently been studied extensively

from an information theoretic perspective [102, 106, 103, 120, 117, 12, 109, 119, 111, 116, 36,

105, 54, 143, 130, 57, 7, 128, 4, 127, 112, 71, 126, 22, 104, 134, 9, 97, 123, 115, 107, 81, 21,

53, 75]. Much less is known about Q2 and Q3, i.e., the fundamental limits of private-write,

and joint read-write solutions from the information theoretic perspective. Notably, Q3 has

also been highlighted previously as an open problem by Kairouz et al in [80].

The problem of privately reading and writing data from a distributed memory falls under the

larger umbrella of Distributed Oblivious RAM (DORAM)[74] primitives in theoretical com-

puter science and cryptography. With a few limited exceptions (e.g., a specialized 4-server

construction in [66] that allows information theoretic privacy), prior studies of DORAM

generally take a cryptographic perspective, e.g., privacy is guaranteed subject to computa-

tional hardness assumptions, and the number of memory blocks is assumed to be much larger

than the size of each block. In contrast, the focus of this chapter is on Q2 and Q3 under

the stronger notion of information theoretic privacy. Furthermore, because our motivation

comes from federated submodel learning, the size of a submodel is assumed to be significantly

larger than the number of submodels (see motivating examples in [82] and Section 7.3.1).

Indeed, this is a pervasive assumption in the growing body of literature on information the-

oretic PIR[102, 106, 103, 120, 117, 12, 109, 119, 111, 116, 36, 105, 54, 143, 130, 57, 7, 128,

4, 127, 112, 71, 126, 22, 104, 134, 9, 97, 123, 115, 107, 81, 21, 53, 75]. In a broad sense, our

problem formulation in this chapter is motivated by applications of (information theoretic)

PIR that also require private writes. There is no shortage of such applications, e.g., a dis-

tributed database of medical records that not only allows a physician to privately download

the desired record (private read) but also to update the record with new information (private

write), or a banking service that would similarly allow private reads and writes of financial

records from authorized entities. Essentially, while FSL serves as our nominal application of

interest based on prior works that motivated this effort, our problem formulation is broad

enough to capture various distributed file systems that enable the users to read and write

217

files without revealing the identity of the target file. The files are viewed as submodels, and

the assumption that the size of the file is significantly larger than the number of the files

captures the nature of file systems that are most relevant to this chapter.

Overview: We consider the federated submodel learning setting where the global model is

partitioned into K submodels, and stored among N distributed servers according to an X-

secure threshold secret sharing scheme, i.e., any set of up to X colluding servers can learn

nothing about the stored models, while the full model can be recovered from the data stored

by any X+Kc servers. One at a time, users update the submodel most relevant to their local

training data. The updates must be T -private, i.e., any set of up to T colluding servers must

not learn anything about which submodel is being updated. The contents of the updates

must be X∆-secure, i.e., any set of up to X∆ colluding servers must learn nothing about the

contents of the submodel updates. The size of a submodel is significantly larger than the

number of submodels, which is significantly larger than 1, i.e., L�K� 1 where L is the size

of a submodel and K is the number of submodels. Due to uncertainties of the servers’ I/O

states, link states, etc., an important concern in distributed systems is to allow resilience

against servers that may temporarily drop out [59, 68, 114, 19, 98]. To this end, we assume

that at each time t,t∈N, a subset of servers may be unavailable. These unavailable servers

are referred to as read-dropout servers or write-dropout servers depending on whether the

user intends to perform the private read or the private write operation. Since the set of

dropout servers changes over time, and is assumed to be known to the user, the private

read and write schemes must adapt to the set of currently available servers. Note that this

is different from the problem of stragglers in massive distributed computing applications

where the set of responsive servers is not known in advance, because servers may become

unavailable during the lengthy time interval required for their local computations. Since

our focus is not on massive computing applications, the server side processing needed for

private read and write is not as time-consuming. So the availabilities, which are determined

in advance by the user before initiating the read or write operation, e.g., by pinging the

218

servers, are not expected to change during the read or write operation. We do allow the server

availabilities to change between the read and write operations due to the delay introduced

by the intermediate processing that is needed at the user to generate his updated submodel.

A somewhat surprising aspect of private write with unavailable servers is that even though

the data at the unavailable servers cannot be updated, the collective storage at all servers

(including the unavailable ones) must represent the updated models. The redundancy in

coded storage and the X-security constraints which require that the stored information at

any X servers is independent of the data, are essential in this regard.

Since the private-read problem (Q1) is essentially a form of PIR, our starting point is the

X-secure T -private information retrieval scheme (XSTPIR) of Chapter 2. In particular, we

build on the idea of cross-subspace alignment (CSA), and introduce a new private read-

write scheme, called Adaptive CSA-RW (ACSA-RW) as an answer to Q1 and Q2. To our

knowledge ACSA-RW is the first communication-efficient private federated submodel learn-

ing scheme that achieves information-theoretically perfect privacy. ACSA-RW also answers

Q3 in the affirmative as it exploits query structure from the private-read operation to reduce

the communication cost for the private-write operation. The evidence of synergistic gain in

ACSA-RW from a joint design of submodel retrieval and submodel aggregation addresses

the corresponding open problem highlighted in Section 4.4.4 of [80]. The observation that

the ACSA-RW scheme takes advantage of storage redundancy for private read and private

write is indicative of fundamental tradeoffs between download cost, upload cost, data secu-

rity level, and storage redundancy for security and recoverability. In particular, the storage

redundancy for X-security is exploited by private write, while the storage redundancy for

robust recoverability is used for private read (see Theorem 7.1 and Section 7.3.1 for details).

It is also remarkable that the ACSA-RW scheme requires absolutely no user-user commu-

nication, even though the server states change over time and the read-write operations are

adaptive. In other words, a user is not required to be aware of the history of previous updates

and the previous availability states of the servers (see Section 7.3.1 for details). The down-

219

load cost and the upload cost achieved by each user is an increasing function of the number

of unavailable servers at the time. When more servers are available, the download cost and

the upload costs are reduced, which provides elastic dropout resilience (see Theorem 7.1).

To this end, the ACSA-RW scheme uses adaptive MDS-coded answer strings. This idea orig-

inates from CSA code constructions for the problem of coded distributed batch computation

in Chapter 6 (also see [55]). In terms of comparisons against available baselines, we note (see

Section 7.3.1) that ACSA-RW improves significantly in both the communication efficiency

and the level of privacy compared to [64]. In fact, ACSA-RW achieves asymptotically opti-

mal download cost when X ≥X∆ +T , and is order-wise optimal in terms of the upload cost.

Compared with the 4 server construction of information theoretic DORAM in [66], (where

X = 1,T = 1,X∆ = 0,N = 4) ACSA-RW has better communication efficiency (the assumption

of L�K is important in this regard). For example, as the ratio L/K approaches infinity,

ACSA-RW achieves total communication cost (i.e., the summation of the download cost and

the upload cost, normalized by the submodel size) of 6, versus the communication cost of 8

achieved by the construction in [66].

7.2 Problem Statement: Robust XSTPFSL

Consider K initial submodels
(
W

(0)
1 ,W

(0)
2 ,··· ,W(0)

K

)
, each of which consists of L uniformly

i.i.d.2 random symbols from a finite field3 Fq. In particular, we have

H
(
W

(0)
1 ,W

(0)
2 ,··· ,W(0)

K

)
=KL, (7.1)

2Note that the proposed ACSA-RW scheme does not require the assumption of uniformly i.i.d. model data
to be correct, secure and private. The assumption is mainly used for converse arguments and communication
cost metrics. However, we note that the uniformly i.i.d. model data assumption is in fact not very strong
because submodel learning is performed locally, and it may be possible to achieve (nearly) uniformly i.i.d.
model data by exploiting entropy encoding.

3Note that the size of the finite field required is not too large. By our ACSA-RW scheme (see Theorem 7.1),
it is sufficient to choose a finite field with q≥ 2N . Besides, finite field symbols are used as a representation of
the submodels. Since the submodels are trained by the user locally, without loss of generality we can assume
finite field representations.

220

Server 1

S
(t−1)
1

Server 2

S
(t−1)
2

··· Server i
S

(t−1)
i

··· Server N
S

(t−1)
N

User t

Q (t,θt)1

Q (t,θ
t)2

Q
(t,θt

)

N

A (t,θt)1
A (t,θ

t)
n A

(t,θt
)

N

W
(t−1)
θt

=
[
W

(t−1)
θt

(1),W
(t−1)
θt

(2),··· ,W (t−1)
θt

(L)
]T

(
θt,Z(t)

U

)

(a) The private-read phase of robust XSTPFSL. The ith server is unavailable, i∈S(t)
r .

Server 1

S
(t−1)
1

Server 2

S
(t−1)
2

··· Server j
S

(t−1)
j

··· Server N
S

(t−1)
N

User t

P (t,θt)1

P (t,θ
t)

2

P
(t,θt

)

N

(
θt,∆t,

(
A

(t,θt)
n

)
n∈[N]

,Z(t)
U

)

(b) The private-write phase of robust XSTPFSL. The jth server is unavailable, j ∈S(t)
w . Note that

Server i and Server j may be different servers.

Figure 7.1: The two phases of robust X-Secure T -Private Federated Submodel Learning
(XSTPFSL) with arbitrary realizations of unavailable servers.

221

in q-ary units. Time slots are associated with users and their corresponding submodel up-

dates, i.e., at time slot t,t∈N, User t wishes to perform the tth submodel update. At time

t,t∈Z∗, the K submodels are denoted as
(
W

(t)
1 ,W

(t)
2 ,··· ,W(t)

K

)
. The submodels are repre-

sented as vectors, i.e., for all t∈Z∗, k ∈ [K],

W
(t)
k =

[
W

(t)
k (1),W

(t)
k (2),··· ,W (t)

k (L)
]T
. (7.2)

The K submodels are distributively stored among the N servers. The storage at server

n,n∈ [N] at time t,t∈Z∗ is denoted as S
(t)
n . Note that S

(0)
n represents the initial storage.

A full cycle of robust XSTPFSL is comprised of two phases — the read phase and the

write phase. At the beginning of the cycle, User t privately generates the desired index

θt, uniformly from [K], and the user-side randomness Z(t)
U , which is intended to protect

the user’s privacy and security. In the read phase, User t wishes to retrieve the submodel

W
(t−1)
θt

. At all times, nothing must be revealed about any (current or past) desired indices

(θ1,θ2,··· ,θt) to any set of up to T colluding servers. To this end, User t generates the

read-queries
(
Q

(t,θt)
1 ,Q

(t,θt)
2 ,··· ,Q(t,θt)

N

)
, where Q(t,θt)

n is intended for the nth server, such that,

H

(
Q(t,θt)
n

∣∣∣∣ θt,Z
(t)
U

)
= 0, ∀n∈ [N]. (7.3)

Each of the currently available servers n,n∈ [N]\S(t)
r is sent the query Q(t,θt)

n by the user,

and responds to the user with an answer A(t,θt)
n , such that,

H

(
A(t,θt)
n

∣∣∣∣ S(t−1)
n ,Q(t,θt)

n

)
= 0, ∀n∈ [N]\S(t)

r . (7.4)

From the answers returned by the servers n,n∈ [N]\S(t)
r , the user must be able to reconstruct

222

the desired submodel W
(t−1)
θt

.

[Correctness] H

(
W

(t−1)
θt

∣∣∣∣
(
A(t,θt)
n

)
n∈[N]\S(t)

r
,
(
Q(t,θt)
n

)
n∈[N]

,θt

)
= 0.

This is the end of the read phase.

Upon finishing the local submodel training, User t privately generates an increment4 for the

θtht submodel. The increment is represented as a vector, ∆t = [∆
(t)
1 ,∆

(t)
2 ,··· ,∆(t)

L]T, which

consists of L i.i.d. uniformly distributed symbols from the finite field Fq, i.e., H(∆t) =L in

q-ary units. The increment ∆t is intended to update the θtht submodel W
(t−1)
θt

, such that

the next user who wishes to make an update, User t+1, is able to retrieve the submodel

W
(t)
θt

= W
(t−1)
θt

+∆t if θt+1 = θt, and the submodel W
(t)

θ′t
= W

(t−1)

θ′t
if θt+1 = θ′t 6= θt. In other

words, for all t∈N, k ∈ [K], the submodel W
(t)
k is defined recursively as follows.

W
(t)
k =





W
(t−1)
k +∆t k= θt,

W
(t−1)
k k 6= θt.

(7.5)

User t initializes the write phase by generating the write-queries
(
P

(t,θt)
1 ,P

(t,θt)
2 ,··· ,P (t,θt)

N

)
.

For ease of notation, let the write-queries be nulls for the write-dropout servers, i.e., P (t,θt)
n =

for n∈S(t)
w . For all n∈ [N],

H

(
P (t,θt)
n

∣∣∣∣ θt,Z
(t)
U ,
(
A(t,θt)
n

)
n∈[N]

,∆t

)
= 0. (7.6)

The user sends the write-query P
(t,θt)
n to the nth server, n∈ [N]\S(t)

w , if the server was

available in the read-phase and therefore already received the read-query. Otherwise, if the
4In general, the increment is the difference between the new submodel and the old submodel. We note

that no generality is lost by assuming additive increments because the submodel training is performed locally.

223

server was not available during the read phase, then the user sends5 both read and write

queries (Q
(t,θt)
n ,P

(t,θt)
n). Still, any set of up to T colluding servers must learn nothing about

the desired indices (θ1,θ2,··· ,θt).

Upon receiving the write-queries, each of the servers n,n∈ [N]\S(t)
w updates its storage based

on the existing storage S
(t−1)
n and the queries for the two phases

(
P

(t,θt)
n ,Q

(t,θt)
n

)
, i.e.,

H

(
S(t)
n

∣∣∣∣ S(t−1)
n ,P (t,θt)

n ,Q(t,θt)
n

)
= 0. (7.7)

On the other hand, the write-dropout servers are unable to perform any storage update.

S(t)
n = S(t−1)

n , ∀n∈S(t)
w . (7.8)

Next, let us formalize the security and privacy constraints. T -privacy guarantees that at any

time, any set of up to T colluding servers learn nothing about the indices (θ1,θ2,··· ,θt) from

all the read and write queries and storage states.

[T -Privacy]I
(

(θτ)τ∈[t];
(
P (t,θt)
n ,Q(t,θt)

n

)
n∈T

∣∣∣∣
(
S(τ−1)
n ,P (τ−1,θτ−1)

n ,Q(τ−1,θτ−1)
n

)
τ∈[t],n∈T

)
= 0,

∀T ∈ [N],|T |=T,t∈N, (7.9)

where for all n∈ [N], we define P (0,θ0)
n =Q

(0,θ0)
n = .

Similarly, any set of up to X∆ colluding servers must learn nothing about the increments

(∆1,∆2,··· ,∆t).

[X∆-Security] I

(
(∆τ)τ∈[t] ;

(
P (t,θt)
n

)
n∈X

∣∣∣∣
(
S(τ−1)
n ,P (τ−1,θτ−1)

n ,Q(τ,θτ)
n

)
τ∈[t],n∈X

)
= 0,

5For ease of exposition we will assume in the description of the scheme that during the read phase, the
read queries are sent to all servers that are available during the read phase, or will become available later
during the write phase, so that only the write-queries need to be sent during the write phase.

224

∀X ⊂ [N],|X |=X∆,t∈N. (7.10)

The storage at the N servers is formalized according to a threshold secret sharing scheme.

Specifically, the storage at any set of up to X colluding servers must reveal nothing about

the submodels. Formally,

H

(
S(0)
n

∣∣∣∣
(
W

(0)
k

)
k∈[K]

,ZS
)

= 0,∀n∈ [N], (7.11)

[X-Security] I

((
W

(t)
k

)
k∈[K]

;
(
S(t)
n

)
n∈X

)
= 0,∀X ⊂ [N],|X |=X,t∈Z∗, (7.12)

where for all n∈ [N], we define S−1
n = . Note that ZS is the private randomness used by the

secret sharing scheme that implements X-secure storage across the N servers.

There is a subtle difference in the security constraint that we impose on the storage, and the

previously specified security and privacy constraints on updates and queries. To appreciate

this difference let us make a distinction between the notions of an internal adversary and an

external adversary. We say that a set of colluding servers forms an internal adversary if those

colluding servers have access to not only their current storage, but also their entire history

of previous stored values and queries. Essentially the internal adversary setting represents

a greater security threat because the servers themselves are dishonest and surreptitiously

keep records of all their history in an attempt to learn from it. In contrast, we say that a

set of colluding servers forms an external adversary if those colluding servers have access to

only their current storage, but not to other historical information. Essentially, this repre-

sents an external adversary who is able to steal the current information from honest servers

who do not keep records of their historical information. Clearly, an external adversary is

weaker than an internal adversary. Now let us note that while the T -private queries and

the X∆-secure updates are protected against internal adversaries, the X-secure storage is

only protected against external adversaries. This is mainly because we will generally assume

225

X >max(X∆,T), i.e., a higher security threshold for storage, than for updates and queries.

Note that once the number of compromised servers exceeds max(X∆,T), the security of up-

dates and the privacy of queries is no longer guaranteed. In such settings the security of

storage is still guaranteed, albeit in a weaker sense (against external adversaries). On the

other hand if the number of compromised servers is small enough, then indeed secure storage

may be guaranteed in a stronger sense, even against internal adversaries. We refer the reader

to Remark 7.5 for further insight into this aspect.

The independence among various quantities of interest is specified for all t∈N as follows.

H

((
W

(0)
k

)
k∈[K]

,(∆τ)τ∈[t] ,(θτ)τ∈[t] ,
(
Z(τ)
U

)
τ∈[t]

,ZS
)

=H

((
W

(0)
k

)
k∈[K]

)
+H

(
(∆τ)τ∈[t]

)
+H

(
(θτ)τ∈[t]

)
+H

((
Z(τ)
U

)
τ∈[t]

)
+H(ZS).

(7.13)

To evaluate the performance of a robust XSTPFSL scheme, we consider the following metrics.

The first two metrics focus on communication cost. For t∈N, the download cost Dt is the

expected (over all realizations of queries) number of q-ary symbols downloaded by User t,

normalized by L. The upload cost Ut is the expected number of q-ary symbols uploaded

by User t, also normalized by L. The next metric focuses on storage efficiency. For t∈Z∗,

the storage efficiency is defined as the ratio of the total data content to the total storage

resources consumed by a scheme, i.e., η(t) = KL∑
n∈[N]H

(
S

(t)
n

) . If η(t) takes the same value for all

t∈Z∗, we use the compact notation η instead.

226

7.3 Main Result: The ACSA-RW Scheme for Private

Read/Write

The main contribution of this chapter is the ACSA-RW scheme, which allows private read

and private write from N distributed servers according to the problem statement provided

in Section 7.2. The scheme achieves storage efficiency Kc/N , i.e., it uses a total storage of

(KLN/Kc)log2q bits across N servers in order to store the KLlog2q bits of actual data,

where Kc ∈N, and allows arbitrary read-dropouts and write-dropouts as long as the number

of dropout servers is less than the corresponding threshold values. The thresholds are defined

below and their relationship to redundant storage dimensions is explained in Section 7.3.1.

Read-dropout threshold: Sthresh
r ,N−(Kc+X+T −1). (7.14)

Write-dropout threshold: Sthresh
w ,X−(X∆ +T −1). (7.15)

It is worth emphasizing that the ACSA-RW scheme does not just tolerate dropout servers,

it adapts (hence the elastic resilience) to the number of available servers so as to reduce

its communication cost. The elasticity would be straightforward if the only concern was

the private-read operation because known PIR schemes can be adapted to the number of

available servers. What makes the elasticity requirement non-trivial is that the scheme must

accommodate both private read and private write. The private-write requirements are par-

ticularly intriguing, almost paradoxical in that the coded storage across all N servers needs

to be updated to be consistent with the new submodels, even though some of those servers

(the write-dropout servers) are unavailable, so their stored information cannot be changed.

Furthermore, as server states continue to change over time, future updates need no knowl-

edge of prior dropout histories. Also of interest are the tradeoffs between storage redundancy

and the resources needed for private-read and private-write functionalities. Because many of

these aspects become more intuitively transparent when L�K� 1, the asymptotic setting

227

is used to present the main result in Theorem 7.1. In particular, by suppressing minor terms

(which can be found in the full description of the scheme), the asymptotic setting reveals an

elegant symmetry between the upload and download costs. The remainder of this section

is devoted to stating and then understanding the implications of Theorem 7.1. The scheme

itself is presented in the form of the proof of Theorem 7.1 in Section 7.4.

Theorem 7.1. In the limit L/K→∞, for all t∈N the ACSA-RW scheme achieves the

following download, upload cost pair (Dt,Ut) and storage efficiency η:

(Dt,Ut) =

(
N−|S(t)

r |
Sthresh
r −|S(t)

r |
,

N−|S(t)
w |

Sthresh
w −|S(t)

w |

)
, η=

Kc

N
, (7.16)

for any Kc ∈N such that |S(t)
r |<Sthresh

r , |S(t)
w |<Sthresh

w , and the field size q≥N+

max
{
Sthresh
r ,Sthresh

w ,Kc

}
.

7.3.1 Observations

Storage Redundancy and Private Read/Write Thresholds

The relationship between redundant storage dimensions and the private read/write thresh-

olds is conceptually illustrated in Figure 7.2.

Kc T −1 |S(t)
r | Sthresh

r −|S(t)
r |X∆ T −1 |S(t)

w | Sthresh
w −|S(t)

w |

N

X

Figure 7.2: Conceptual partitioning of total server storage space (N dimensions) into data
content (Kc dimensions), storage redundancy that is exploited by private-write (X dimen-
sions), and storage redundancy that is exploited by private-read (N−Kc−X dimensions).

The total storage utilized by the ACSA-RW scheme across N servers is represented as the

228

overall N dimensional space in Figure 7.2. Out of this, the actual data occupies only Kc

dimensions, which is why the storage efficiency of ACSA-RW is Kc/N . Because the storage

must be X-secure, i.e., any set of up to X colluding servers cannot learn anything about the

data, it follows that out of the N dimensions of storage space, X dimensions are occupied by

information that is independent of the actual data. The storage redundancy represented by

these X dimensions will be essential to enable the private-write functionality. But first let

us consider the private-read operation for which we have a number of prior results on PIR as

baselines for validating our intuition. From Figure 7.2 we note that outside the X dimensions

of redundancy that was introduced due to data-security, the T -privacy constraint adds a

storage redundancy of another T −1 dimensions that is shown in red. To understand this,

compare the asymptotic (large K) capacity of MDS-PIR [11]: CMDS-PIR = 1−Kc/N with the

(conjectured) asymptotic capacity of MDS-TPIR [36, 105]: CMDS-TPIR = 1−(Kc+T −1)/N .

To achieve a non-zero value of the asymptotic capacity, the former requires N >Kc, but

the latter requires N >Kc+T −1. Equivalently, the former allows a read-dropout threshold

of N−Kc while the latter allows a read-dropout threshold of N−(Kc+T −1). In fact,

going further to the (conjectured) asymptotic capacity of MDS-XSTPIR [54], which also

includes the X-security constraint, we note that a non-zero value of capacity requires N >

Kc+X+T −1. Intuitively, we may interpret this as: the X-security constraint increases the

demands on storage redundancy by X dimensions and the T -privacy constraint increases the

demands on storage redundancy by another T −1 dimensions. This is what is represented in

Figure 7.2. Aside from theKc dimensions occupied by data, the X dimensions of redundancy

added by the security constraint, and the T −1 dimensions of redundancy added by the T -

privacy constraint, the remaining dimensions at the right end of the figure are used to

accommodate read-dropouts. Indeed, this is what determines the read-dropout threshold,

as we note from Figure 7.2 that N−(X+Kc+(T −1)) =Sthresh
r . Now consider the private-

write operation which is novel and thus lacks comparative baselines. What is remarkable is

the synergistic aspect of private-write, that it does not add further redundancy beyond the

229

X dimensions of storage redundancy already added by the X-security constraint. Instead,

it operates within these X dimensions to create further sub-partitions. Within these X

dimensions, a total of X∆ +T −1 dimensions are used to achieve X∆-secure updates that also

preserve T -privacy, and the remaining dimensions are used to accommodate write-dropout

servers, giving us the write-dropout threshold as X−(X∆ +T −1) =Sthresh
w . Remarkably in

Figure 7.2, the (Kc,X∆,T −1,Sthresh
w) partition structure for private-write replicates at a finer

level the original (Kc,X,T −1,Sthresh
r) partition structure of private-read. Also remarkable is

a new constraint introduced by the private-write operation that is not encountered in prior

works on PIR — the feasibility of ACSA-RW requires X ≥T . Whether or not this constraint

is fundamental in the asymptotic setting of large K is an open problem for future work.

Optimality

Asymptotic (large K) optimality of ACSA-RW remains an open question in general. Any

attempt to resolve this question runs into other prominent open problems in the information-

theoretic PIR literature, such as the asymptotic capacity of MDS-TPIR [36, 105] and MDS-

XSTPIR in Chapter 4 that also remain open. Nevertheless, it is worth noting that Theorem

7.1 matches or improves upon the best known results in all cases where such results are

available. In particular, the private-read phase of ACSA-RW scheme recovers a universally

robustX-secure T -private information retrieval scheme (see [16] and Chapter 2). WhenKc =

1,X ≥X∆ +T , it achieves the asymptotic capacity; and whenKc> 1,X ≥X∆ +T , it achieves

the conjectured asymptotic capacity in Chapter 4. While much less is known about optimal

private-write schemes, it is clear that ACSA-RW significantly improves upon previous work

as explained in Section 7.3.1. Notably, both upload and download costs are O(1) in K, i.e.,

they do not scale with K. Thus, at the very least the costs are orderwise optimal. Another

interesting point of reference is the best case scenario, where we have no dropout servers,

|S(t)
r |= 0,|S(t)

w |= 0. The total communication cost of ACSA-RW in this case, i.e., the sum of

230

upload and download costs, is Dt+Ut =N
(

1
Sthresh
r

+ 1
Sthresh
w

)
, which is minimized whenKc = 1,

Sthresh
r =Sthresh

w , and X = (N+X∆−1)/2. For large N , we have Dt+Ut≈ 2+2 = 4, thus in

the best case scenario, ACSA-RW is optimal within a factor of 2. Finally, on a speculative

note, perhaps the most striking aspect of Theorem 7.1 is the symmetry between upload and

download costs, which (if not coincidental) bodes well for their fundamental significance and

information theoretic optimality.

The Choice of Parameter Kc

The choice of the parameterKc in ACSA-RW determines the storage efficiency of the scheme,

η=Kc/N . At one extreme, we have the smallest possible value of Kc, i.e., Kc = 1, which

is the least efficient storage setting, indeed the storage efficiency is analogous to replicated

storage, each server uses as much storage space as the size of all data (KLlog2q bits). This

setting yields the best (smallest) download costs. The other extreme corresponds to the

maximum possible value of Kc, which is obtained as Kc =N−(X+T) because the dropout

thresholds cannot be smaller than 1. At this extreme, storage is the most efficient, but

there is no storage redundancy left to accommodate any read dropouts, and the download

cost of ACSA-RW takes its maximal value, equal to N . Remarkably, the upload cost of

the private-write operation does not depend on Kc. However, Kc is significant for another

reason; it determines the access complexity (see Remark 7.6) of both private read and write

operations, i.e., the number of bits that are read from or written to by each available server.

In particular, the access complexity of each available server in the private read or write

phases is at most (KL/Kc)log2q, so for example, increasing Kc from 1 to 2 can reduce the

access complexity in half, while simultaneously doubling the storage efficiency.

231

Tradeoff between Upload and Download Costs

The trade-off between the upload cost and the download cost of the ACSA-RW scheme is

illustrated via two examples in Figure 7.3, where we have N = 10,X∆ =T = 1 for the blue

solid curve, and N = 10,X∆ = 1,T = 2 for the red solid curve. For both examples, we set

Kc = 1 and assume that there are no dropout servers. The trade-off is achieved with various

choices of X. For the example shown in the blue solid curve, we set X = (2,3,4,5,6,7,8).

For the example in the red solid curve, we set X = (3,4,5,6,7). Note that the most balanced

trade-off point is achieved when X =N/2.

0 2 4 6 8 10
0

2

4

6

8

10

(X = 2)

(X
=

8)

←−X
(X = 3)

(X
=

7)

Upload cost, Ut−→

D
ow

nl
oa

d
co
st
,D

t
−→

Figure 7.3: Upload, download costs pairs (Ut,Dt) of the ACSA-RW scheme in the asymptotic
setting L�K� 1, for N = 10,X∆ =T = 1 (the blue curve) and N = 10,X∆ = 1,T = 2 (the
red curve), with various choices of X. Both examples assume that Kc = 1 and there are no
dropout servers.

Synergistic Gains from Joint Design of Private Read and Write

A notable aspect of the ACSA-RW scheme, which answers in the affirmative an open question

raised in Section 4.4.4 of [80], is the synergistic gain from the joint design of the read phase

and the write phase. While the details of the scheme are non-trivial and can be found in

232

Section 7.4, let us provide an intuitive explanation here by ignoring some of the details. As a

simplification, let us ignore security constraints and consider the database represented by a

vector W = [W1,W2,··· ,WK]T that consists of symbols from the K submodels. Suppose the

user is interested in Wθt for some index θt ∈ [K] that must be kept private. Note that Wθt =

WTeK(θt), where eK(θt) is the standard basis vector, i.e., the desired symbol is obtained as

an inner product of the database vector and the basis vector eK(θt). To do this privately,

the basis vector is treated by the user as a secret and a linear threshold secret-sharing

scheme is used to generate shares that are sent to the servers. The servers return the inner

products of the stored data and the secret-shared basis vector, which effectively form the

secret shares of the desired inner product. Once the user collects sufficiently many secret

shares, (s)he is able to retrieve the desired inner product, and therefore the desired symbol

Wθt . This is the key to the private read-operation. Now during the write phase, the user

wishes to update the database to the new state: W′= [W1,··· ,Wθt−1,Wθt +∆t,Wθt+1 ··· ,WK],

which can be expressed as W′= W+∆teK(θt). This can be accomplished by sending the

secret-shares of ∆teK(θt) to the N servers. The key observation here is the following: since

the servers (those that were available during the read phase) have already received secret

shares of eK(θt), the cost of sending the secret-shares of ∆teK(θt) is significantly reduced.

Essentially, it suffices to send secret shares of ∆t which can be multiplied with the secret

shares of eK(θt) to generate secret shares of ∆teK(θt) at the servers. This is much more

efficient because ∆teK(θt) is a K×1 vector, while the dimension of ∆t is 1 (scalar), and

K� 1. This is the intuition behind the synergistic gains from the joint design of private

read and write operations that are exploited by ACSA-RW. Note that the servers operate

directly on secret shares, as in homomorphic encryption [27], and that these operations

(inner products) are special cases of secure distributed matrix multiplications. Since CSA

codes have been shown to be natural solutions for secure distributed matrix multiplications

(see Chapter 6 and [55]), it is intuitively to be expected that CSA schemes should lead

to communication-efficient solutions for the private read-write implementation as described

233

above.

How to Fully Update a Distributed Database that is only Partially Accessible

A seemingly paradoxical aspect of the write phase of ACSA-RW is that it is able to force

the distributed database across all N servers to be fully consistent with the updated data,

even though the database is only partially accessible due to write-dropout servers. Let us

explain the intuition behind this with a toy example6 where we have N = 2 servers and X = 1

security level is required. For simplicity we have only one file/submodel, i.e., K = 1, so there

are no privacy concerns. The storage at the two servers is S1 =W +Z, S2 =Z, where W is

the data (submodel) symbol, and Z is the random noise symbol used to guarantee the X = 1

security level, i.e., the storage at each server individually reveals nothing about the data W .

The storage can be expressed in the following form.



S1

S2


=




1 1

0 1




︸ ︷︷ ︸
G



W

Z


. (7.17)

so that G is the coding function, and the data can be recovered as S1−S2 =W .

Now suppose the data W needs to be updated to the new value W ′=W +∆. The updated

storage S ′1,S ′2 should be such that the coding function is unchanged (still the same G matrix)

and the updated data can similarly be recovered as S ′1−S ′2 =W ′. Remarkably this can be

done even if one of the two servers drops out and is therefore inaccessible. For example,

if Server 1 drops out, then we can update the storage only at Server 2 to end up with

S ′1 =S1 =W +Z, and S ′2 =Z−∆, such that indeed S ′1−S ′2 =W ′ and the coding function is
6The toy example is not strictly a special case of the ACSA-RW scheme, because the number of servers

N = 2 is too small to guarantee any privacy. However, the example serves to demonstrate the key idea.

234

unchanged.



S ′1

S ′2


=



S1

S ′2


=




1 1

0 1






W +∆

Z−∆


=




1 1

0 1






W ′

Z ′


. (7.18)

Similarly, if Server 2 drops out, then we can update the storage only at Server 1 to end up

with S ′1 =W +∆+Z, and S ′2 =S2 =Z, such that we still have S ′1−S ′2 =W ′ and the coding

function is unchanged.



S ′1

S ′2


=



S ′1

S2


=




1 1

0 1






W +∆

Z


=




1 1

0 1






W ′

Z


. (7.19)

This, intuitively, is how the paradox is resolved, and a distributed database is fully updated

even when it is only partially accessible. Note that the realization of the “noise” symbol is

different for various realizations of the dropout servers, Z ′ 6=Z.

While the toy example conveys a key idea, the generalization of this idea to the ACSA-RW

scheme is rather non-trivial. Let us shed some light on this generalization, which is made

possible by the construction of an “ACSA null-shaper ”, see Definition 7.8. Specifically, by

carefully placing nulls of the CSA code polynomial in the update equation, the storage of the

write-dropout servers in S(t)
w is left unmodified. It is important to point out that the storage

structure (i.e., ACSA storage, see Definition 7.3) is preserved, just as the coding function

is left unchanged in the toy example above. Let us demonstrate the idea with a minimal

example where X = 2,T = 1,X∆ = 0,N = 4. Let us define the following functions.

S(α) = W+αZ1 +α2Z2, (7.20)

Q(α) = eK(θt)+αZ′, (7.21)

where W = [W1,W2,··· ,WK] is a K×1 vector of the K data (submodel) symbols, Z1,Z2,Z
′

235

are uniformly and independently distributed noise vectors that are used to protect data

security and the user’s privacy, respectively. Let α1,α2,α3,α4 be 4 distinct non-zero elements

from a finite field Fq. The storage at the 4 servers is S(α1), S(α2), S(α3), S(α4), respectively.

Similarly, the read-queries for the 4 servers are Q(α1), Q(α2), Q(α3), Q(α4), respectively.

We note that the storage vectors and the query vectors can be viewed as secret sharings of

W and eK(θt) vectors with threshold of X = 2 and T = 1, respectively. Now let us assume

that S(t)
w = {1} for some t∈N, i.e., Server 1 drops out. Let us define the function Ω(α) =

(α1−α)/α1, which is referred to as ACSA null-shaper, and consider the following update

equation.

S′(α) = S(α)+Ω(α)∆tQ(α). (7.22)

Inspecting the second term on the RHS, we note that

Ω(α)∆tQ(α) =
1

α1

(α1−α)∆t(eK(θt)+αZ′) (7.23)

=
1

α1

∆t

(
α1eK(θt)+α(α1Z

′−eK(θt))−α2Z′
)

(7.24)

= ∆t

(
eK(θt)+α(Z′−α−1

1 eK(θt))−α2α−1
1 Z′

)
, (7.25)

= ∆t

(
eK(θt)+αİ1−α2İ2

)
, (7.26)

where İ1 = Z′−α−1
1 eK(θt) and İ2 =α−1

1 Z′. Evidently, by the update equation, the user is

able to update the symbol of the θtht message with the increment ∆t, while maintaining the

storage as a secret sharing of threshold 2, i.e.,

S′(α) = (W+∆tek(θt))+α(Z1 +∆tİ1)+α2(Z2 +∆tİ2). (7.27)

However, by the definition of ACSA null-shaper, we have Ω(α1) = 0. Thus S′(α1) = S(α1),

and we do not have to update the storage at the Server 1. In other words, İ1 and İ2 are

236

artificially correlated interference symbols such that the codeword Ω(α1)Q(α1) is zero, and

accordingly, the storage of Server 1 is left unmodified. Note that ACSA null-shaper does

not affect the storage structure because X = 2>T = 1. The idea illustrated in this minimal

example indeed generalizes to the full ACSA-RW scheme, see Section 7.4 for details.

Comparison with [64]

Let us compare our ACSA-RW solution with that in [64]. The setting in [64] corresponds to

X = 0,T = 1,X∆ = 0, and |S(t)
w |= |S(t)

r |= 0 for all t∈N. Note that our ACSA-RW scheme for

X = 1,T = 1,X∆ = 0 and Kc = 1 applies to the setting of [64] (X = 1 security automatically

satisfies X = 0 security). To make the comparison more transparent, let us briefly review the

construction in [64], where at any time t,t∈Z∗, each of the N servers stores the K submodels

in the following coded form.

W
(t−1)
k +z

(t)
k ∆t,∀k ∈ [K]. (7.28)

For all t∈N,
(
z

(t)
k

)
k∈[K]

are distinct random scalars generated by User t and we set z(t)
θt

=

1. For completeness we define ∆0 = 0,z
(0)
k = 0,W

(−1)
k = W

(0)
k ,∀k ∈ [K]. In addition, the N

servers store the random scalars
(
z

(t)
k

)
k∈[K]

, as well as the increment ∆t according to a secret

sharing scheme of threshold 1. In the retrieval phase, User t retrieves the coded desired

submodel W
(t−2)
θt

+z
(t−1)
θt

∆t−1 privately according to a capacity-achieving replicated storage

based PIR scheme, e.g., [24]. Besides, User t also downloads the secret shared random scalars
(
z

(t−1)
k

)
k∈[K]

and the increment ∆t−1 to correctly recover the desired submodel W
(t−1)
θt

. In

the update phase, User t uploads to each of the N servers the following update vectors P
(t)
k

for all k ∈ [K].

P
(t)
k =




z

(t)
k ∆t−z(t−1)

k ∆t−1, k 6= θt−1,

z
(t)
k ∆t, k= θt−1.

(7.29)

237

Also, User t uploads the secret shared random scalars
(
z

(t)
k

)
k∈[K]

and the increment ∆t to

the N servers. To perform an update, each of the N servers updates all of the submodels

k ∈ [K] according to the following equation.

(
W

(t−2)
k +z

(t−1)
k ∆t−1

)
+P

(t)
k = W

(t−1)
k +z

(t)
k ∆t. (7.30)

Perhaps the most significant difference between our ACSA-RW scheme and the construction

in [64] is that the latter does not guarantee the privacy of successive updates, i.e., by moni-

toring the storage at multiple time slots, the servers are eventually able to learn about the

submodel indices from past updates7. On the other hand, our construction guarantees infor-

mation theoretic privacy for an unlimited number of updates, without extra storage overhead.

Furthermore, we note that the normalized download cost achieved by the construction in

[64] cannot be less than 2, whereas ACSA-RW achieves download cost of less than 2 with

large enough N . For the asymptotic setting L/K→∞, the upload cost8 achieved by [64] is

at least 2N+1, while ACSA-RW achieves the upload cost of at most N . The lower bound

of upload cost of XSTPFSL is characterized in [64] as NK. However, our construction of

ACSA-RW shows that it is possible to do better.9 In particular, for the asymptotic setting

K→∞,L/K→∞, the upload cost of less than N is achievable by the ACSA-RW scheme.
7This is because the update vectors (7.29) for the K submodels at any time t can be viewed as Pt =

span{∆t,∆t−1}. For any two consecutive time slots t and t+1, it is possible to determine span{∆t}=
span{∆t,∆t−1}∩span{∆t+1,∆t}=Pt∩Pt+1. Due to the fact that for User t, the update vector for the
θtht−1 submodel only lies in span{∆t}, any curious server is able to obtain information about θt−1 from Pt if
∆t is linearly independent of ∆t−1.

8In [64] the achieved upload cost is NLK+L+K. However, in terms of average upload compression,
e.g., by entropy encoding, allows lower upload cost. For example, in the asymptotic setting L/K→∞, the
upload cost of (2N+1+1/(N−1)) may be achievable.

9It is assumed in [64] that for the desired submodel, the user uploads L symbols for the update, while for
other submodels, the user should also upload (K−1)L symbols to guarantee the privacy. However, it turns
out that the uploaded symbols for the update of the desired submodel and the symbols for the purpose of
guaranteeing the privacy do not have to be independent.

238

Comparison with [66]

Let us also briefly review the 4-server information-theoretic DORAM construction in [66] to

see how our ACSA-RW scheme improves upon it. Note that the setting considered in [66] is

a special case of our problem where X = 1,T = 1,X∆ = 0,Kc = 1 and |S(t)
w |= |S(t)

r |= 0 for all

t∈N. First, we note that in the asymptotic setting L/K→∞, the upload cost achieved by

the ACSA-RW is the same as that in [66]. Therefore, for this comparison we focus on the read

phase and the download cost. Specifically, the information-theoretic DORAM construction

in [66] partitions the four servers into two groups, each of which consists of 2 servers. For the

retrieval phase, the first group emulates a 2-server PIR, storing the K submodels secured

with additive random noise, i.e., W+Z. The second group emulates another 2-server PIR

storing the random noise Z. To retrieve the desired submodel privately, the user exploits a

PIR scheme to retrieve the desired secured submodel, as well as the corresponding random

noise. Therefore, with capacity-achieving PIR schemes, the download cost is 4 (for large

K). On the other hand, our ACSA-RW scheme avoids the partitioning of the servers and

improves the download cost by jointly exploiting all 4 servers. Remarkably, with the idea

of cross-subspace alignment, out of the 4 downloaded symbols, the interference symbols

align within 2 dimensions, leaving 2 dimensions interference-free for the desired symbols,

and consequently, the asymptotically optimal download cost of 2 is achievable. Lastly, the

ACSA-RW scheme also generalizes efficiently to arbitrary numbers of servers.

On the Assumption L�K� 1 for FSL

Finally, let us briefly explore the practical relevance of the asymptotic limits K→∞,L/K→

∞, with an example. Suppose we have N = 6 distributed servers, we require security and

privacy levels of X∆ =T = 1,X = 3. Let us set Kc = 1, and we operate over F8. Consider an

e-commerce recommendation application similar to what is studied in [82], where a global

239

model with a total of 3,500,000 symbols (from F8) is partitioned into K = 50 submodels.

Each of the submodels is comprised of L= 70,000 symbols. Note that L�K� 1. Let us

assume that there are no dropout servers for some t∈N. Now according to Lemma 7.2, the

normalized upload cost achieved by the ACSA-RW scheme is Ut = 6×35000+6×2×50
70,000

≈ 3.00857.

On the other hand, the normalized download cost achieved is Dt = 6/2 = 3. Evidently, the

asymptotic limits K→∞,L/K→∞ are fairly accurate for this non-asymptotic setting. For

this particular example, the upload cost is increased by only 0.29% compared to the asymp-

totic limit. On the other hand, the download cost is increased by only 1.4×10−22% compared

to the lower bound (evaluated for K = 50) from Theorem 2.1.

7.4 Proof of Theorem 7.1

For all t∈N, we require that the number of read and write dropout servers is less than

the corresponding threshold values, 0≤ |S(t)
r |<Sthresh

r and 0≤ |S(t)
w |<Sthresh

w . Since the read

and write dropout thresholds cannot be less than 1, we require that X ≥X∆ +T , and N ≥

Kc+X+T for a positive integer Kc. Let us define J = ξ · lcm
(
[Sthresh
r]∪ [Sthresh

w]
)
and we set

L= JKc, where ξ is a positive10 integer. In other words, i | J for all i∈ [Sthresh
r]∪ [Sthresh

w].

For ease of reference, let us define R(t)
r ,Sthresh

r −|S(t)
r |, #

(t)
r , J/R

(t)
r , R(t)

w ,Sthresh
w −|S(t)

w |

and #
(t)
w , J/R

(t)
w for all t∈N. Note that it is guaranteed by the choice of J that #

(t)
r ,#

(t)
w

are positive integers for all t∈N. Indeed in the ACSA-RW scheme, private read and write

operations can be viewed as operations that consist of Kc#
(t)
r and Kc#

(t)
w sub-operations,

and in each sub-operation, R(t)
r and R

(t)
w symbols of the desired submodel are retrieved

and updated, respectively. The choice of J guarantees that the number of sub-operations

is always an integer, regardless of |S(t)
r | and |S(t)

w |. The parameter ξ guarantees that L

is still a free parameter so that L/K→∞ is well-defined. In other words, L can be any
10The purpose of ξ is primarily to allow the scheme to scale to larger values of L, one could assume ξ= 1

for simplicity.

240

multiple ofKc · lcm
(
[Sthresh
r]∪ [Sthresh

w]
)
. Let us define µ,max(Sthresh

r ,Sthresh
w). We will need a

total of N+max(µ,Kc) distinct elements from the finite field Fq,q≥N+max(µ,Kc), denoted

as (α1,α2,··· ,αN), (f̃1,f̃2,··· ,f̃max(µ,Kc)). Let us define the set S(t)

w = [N]\S(t)
w , and the set

S(t)

r = [N]\S(t)
r . For all t∈Z∗,j ∈ [J],k∈ [K],i∈ [Kc], let us define

W
(t)
k (j,i) =W

(t)
k (i+Kc(j−1)), (7.31)

i.e., the L= JKc symbols of each of the K messages are reshaped into a J×Kc matrix.

Similarly, for all t∈N,j ∈ [J],i∈ [Kc], we define

∆
(t)
j,i = ∆t(i+Kc(j−1)). (7.32)

For all t∈Z∗,j ∈ [J],i∈ [Kc], let us define the following vectors.

Ẇ
(t)
j,i =

[
W

(t)
1 (j,i),W

(t)
2 (j,i),··· ,W (t)

K (j,i)
]T
. (7.33)

Further, let us set Zs =
{

Ż
(0)
j,x

}
j∈[J],x∈[X]

, where Ż
(0)
j,x are i.i.d. uniform column vectors from

FKq , ∀j ∈ [J],x∈ [X]. For all t∈N,j ∈ [J],x∈ [X], let Ż
(t)
j,x be K×1 column vectors from the

finite field Fq. For all t∈N,u∈ [µ],i∈ [Kc],s∈ [T], let Z̃
(t)
u,i,s be i.i.d. uniform column vectors

from FKq , and let us set Z(t)
U =

{
Z̃

(t)
u,i,s

}
u∈[µ],i∈[Kc],s∈[T]

∪
{...
Z

(t)
`,i,x

}
`∈[#

(t)
w],i∈[Kc],x∈[X∆]

, where for

all t∈N,`∈ [#
(t)
w],i∈ [Kc],x∈ [X∆],

...
Z

(t)
`,i,x are i.i.d. uniform scalars from the finite field Fq.

The ACSA-RW scheme (Definition 7.9) is built upon the elements introduced in Definitions

7.1–7.8.

Definition 7.1. (Pole Assignment) If µ≥Kc, let us define the µ×Kc matrix F to be

241

the first Kc columns of the following µ×µ matrix.




f̃1 f̃µ ... f̃3 f̃2

f̃2 f̃1 f̃µ f̃3

... f̃2 f̃1
.

f̃µ−1
. f̃µ

f̃µ f̃µ−1 ... f̃2 f̃1




. (7.34)

On the other hand, if µ<Kc, let us define the µ×Kc matrix F to be the first µ rows of the

following Kc×Kc matrix.




f̃1 f̃2 ... f̃Kc−1 f̃Kc

f̃Kc f̃1 f̃2 f̃Kc−1

... f̃Kc f̃1
.

f̃3
. f̃2

f̃2 f̃3 ... f̃Kc f̃1




. (7.35)

Let (fj,i)j∈[J],i∈[Kc]
be a total of JKc elements from the finite field Fq, which are defined as

follows.




f1,1 f1,2 ··· f1,Kc

f2,1 f2,2 ··· f2,Kc

...
...

...
...

fJ,1 fJ,2 ··· fJ,Kc




=




F

F

...

F



. (7.36)

According to the definition, we have the following two propositions immediately.

Proposition 7.1. For all i∈ [Kc],m,n∈ [J] such that m≤n, |[m :n]| ≤µ, the constants

(fj,i)j∈[m:n] are distinct.

Proposition 7.2. For all j ∈ [J], the constants (fj,i)i∈[Kc]
are distinct.

242

Definition 7.2. (Noise Assignment) For all t∈N,i∈ [Kc],s∈ [T], let us define

(
Z̈

(t)
1,i,s,Z̈

(t)
2,i,s,··· ,Z̈(t)

J,i,s

)

=
(
Z̃

(t)
1,i,s,Z̃

(t)
2,i,s,··· ,Z̃(t)

µ,i,s,Z̃
(t)
1,i,s,Z̃

(t)
2,i,s,··· ,Z̃(t)

µ,i,s,··· ,Z̃(t)
1,i,s,Z̃

(t)
2,i,s,··· ,Z̃(t)

µ,i,s

)
, (7.37)

i.e.,
(
Z̃

(t)
1,i,s,Z̃

(t)
2,i,s,··· ,Z̃(t)

µ,i,s

)
are assigned in cyclic order to

(
Z̈

(t)
1,i,s,Z̈

(t)
2,i,s,··· ,Z̈(t)

J,i,s

)
.

Definition 7.3. (ACSA Storage) For any t∈Z∗, the storage at the N servers is said

to form an ACSA storage if for all n∈ [N], S
(t)
n has the following form.

S(t)
n =




∑
i∈[Kc]

1
αn−f1,i

Ẇ
(t)
1,i+

∑
x∈[X]α

x−1
n Ż

(t)
1,x

∑
i∈[Kc]

1
αn−f2,i

Ẇ
(t)
2,i+

∑
x∈[X]α

x−1
n Ż

(t)
2,x

...
∑

i∈[Kc]
1

αn−fJ,i
Ẇ

(t)
J,i+

∑
x∈[X]α

x−1
n Ż

(t)
J,x



. (7.38)

Note that X i.i.d. uniform random noise terms are MDS coded to guarantee the X-security.

Definition 7.4. (ACSA Query) For any t∈N, the read-queries
(
Q

(t,θt)
n

)
n∈[N]

by User

t for the N servers are said to form an ACSA query if for all n∈ [N], we have

Q(t,θt)
n =

(
Q

(t,θt)
n,1 ,Q

(t,θt)
n,2 ,··· ,Q(t,θt)

n,Kc

)
, (7.39)

where for all i∈ [Kc]

Q
(t,θt)
n,i =




eK(θt)+(αn−f1,i)
∑

s∈[T]α
s−1
n Z̈

(t)
1,i,s

eK(θt)+(αn−f2,i)
∑

s∈[T]α
s−1
n Z̈

(t)
2,i,s

...

eK(θt)+(αn−fJ,i)
∑

s∈[T]α
s−1
n Z̈

(t)
J,i,s



. (7.40)

Note that for all t∈N,n∈ [N], H
(
Q

(t,θt)
n

)
=µKcK in q-ary units, because according to Def-

inition 7.1 and Definition 7.2, for all i∈ [Kc], Q
(t,θt)
n,i is uniquely determined by its first µK

243

entries (the rest are replicas). Also note that T i.i.d. uniform random noise terms are MDS

coded to guarantee the T -privacy.

Remark 7.1. Indeed, the fact that Q
(t,θt)
n,i is uniquely determined by its first µK entries

is jointly guaranteed by the cyclic structures of pole assignment and noise assignment, i.e.,

Definition 7.1 and Definition 7.2. These cyclic structures are important in terms of mini-

mizing the entropy of ACSA queries, so that it does not scale with the number of symbols

L.

Definition 7.5. (ACSA Increment) For any t∈N, the write-queries
(
P

(t,θt)
n

)
n∈[N]

by

User t for the N servers are said to form an ACSA increment if for all n∈ [N], we have

P (t,θt)
n =

(
P

(t,θt)
n,1 ,P

(t,θt)
n,2 ,··· ,P(t,θt)

n,Kc

)
, (7.41)

where for all i∈ [Kc],

P
(t,θt)
n,i = diag

(
∆̃

(t)
1,iIKR(t)

w
,∆̃

(t)
2,iIKR(t)

w
,··· ,∆̃(t)

#
(t)
w ,i

I
KR

(t)
w

)
, (7.42)

and for all `∈ [#
(t)
w],

∆̃
(t)
`,i =

∑

j∈[(`−1)R
(t)
w +1:`R

(t)
w]

1

αn−fj,i
∆

(t)
j,i +

∑

x∈[X∆]

αx−1
n

...
Z

(t)
`,i,x. (7.43)

Note that for all t∈N,n∈ [N], H
(
P

(t,θt)
n

)
= #

(t)
w Kc in q-ary units. This is because for all

i∈ [Kc], P
(t,θt)
n,i is uniquely determined by

(
∆̃

(t)
`,i

)
`∈[#

(t)
w]

. Also note that X∆ MDS coded i.i.d.

uniform noise terms are used to guarantee the X∆-security.

Definition 7.6. (ACSA Packer) For all t∈N,n∈ [N], the ACSA Packer is defined as

follows.

Ξ(t)
n =

(
Ξ

(t)
n,`,i

)
`∈[#

(t)
r],i∈[Kc]

, (7.44)

244

where for all `∈ [#
(t)
r], i∈ [Kc],

Ξ
(t)
n,`,i = diag

(∏
i′∈[Kc]\{i}(αn−f1,i′)∏
i′∈[Kc]\{i}(f1,i−f1,i′)

IK ,··· ,
∏

i′∈[Kc]\{i}(αn−fJ,i′)∏
i′∈[Kc]\{i}(fJ,i−fJ,i′)

IK

)

×diag(0IK ,··· ,0IK︸ ︷︷ ︸
R

(t)
r (`−1) 0IK ’s

,1IK ,··· ,1IK︸ ︷︷ ︸
R

(t)
r 1IK ’s

, 0IK ,··· ,0IK︸ ︷︷ ︸
(J−`R(t)

r) 0IK ’s

). (7.45)

Note that the ACSA packer is a constant since |S(t)
r | is globally known.

Definition 7.7. (ACSA Unpacker) For all t∈N,n∈ [N], the ACSA Unpacker is defined

as follows.

Υ(t)
n =

(
Υ

(t)
n,1,Υ

(t)
n,2,··· ,Υ(t)

n,Kc

)
, (7.46)

where for all i∈ [Kc],

Υ
(t)
n,i = diag

((∏
j∈F(t)

1
(αn−fj,i)

∏
j∈F(t)

1
(f1,i−fj,i)

)
IK ,··· ,

(∏
j∈F(t)

J
(αn−fj,i)

∏
j∈F(t)

J
(fJ,i−fj,i)

)
IK

)
, (7.47)

where for all j ∈ [J], we define Fj =
[(⌈

j/R
(t)
w

⌉
−1
)
R

(t)
w +1 :

⌈
j/R

(t)
w

⌉
R

(t)
w

]
\{j}. Note that

the ACSA unpacker is a constant since |S(t)
w | is globally known.

Remark 7.2. As noted at the beginning of the proof, private read and write operations con-

sists of Kc#
(t)
r and Kc#

(t)
w sub-operations, and for each sub-operation, R(t)

r and R(t)
w symbols

of the desired submodel are retrieved and updated respectively. This is respectively made pos-

sible by the constructions of ACSA Packer and Unpacker. For private read, by ACSA Packer,

in each sub-operation R
(t)
r symbols of the desired submodel are “packed” into a Cauchy-

Vandermonde structured answer string for best download efficiency, where Cauchy terms

carry desired symbols and interference symbols are aligned along Vandermonde terms. Re-

coverability of the desired symbols is guaranteed by the invertibility of Cauchy-Vandermonde

matrices (see, e.g., [37]). On the other hand, ACSA Increment (Definition 7.5) can be viewed

245

as a bunch of Cauchy-Vandermonde structured codewords, and in each codeword, a total of

R
(t)
w symbols are “packed” together for best upload efficiency. To correctly perform private

write, each of the codewords is “unpacked” by the ACSA Unpacker to produce R(t)
w codewords

that individually carry different increment symbols to preserve the ACSA Storage structure

(Definition 7.3).

Definition 7.8. (ACSA Null-shaper) For all t∈N,n∈ [N], the ACSA null-shaper is

defined as follows.

Ω(t) =
(
Ω

(t)
n,1,Ω

(t)
n,2,··· ,Ω(t)

n,Kc

)
, (7.48)

where for all i∈ [Kc],

Ω
(t)
n,i = diag

((∏
m∈S(t)

w
(αn−αm)

∏
m∈S(t)

w
(f1,i−αm)

)
IK ,··· ,

(∏
m∈S(t)

w
(αn−αm)

∏
m∈S(t)

w
(fJ,i−αm)

)
IK

)
. (7.49)

Note that for all n∈S(t)
w , we have Ωn = 0. Besides, the ACSA null-shaper is a constant

since S(t)
w is globally known.

Definition 7.9. (ACSA-RW Scheme) The initial storage at the N servers is the ACSA

storage at time 0, i.e.,
(
S

(0)
n

)
n∈[N]

. At time t,t∈N, in the read phase, the user uploads the

ACSA query for the N servers and retrieves the desired submodel W
(t−1)
θt

from the answers

returned by the servers n,n∈S(t)

r , which are constructed as follows.

A(t,θt)
n =

((
S(t−1)
n

)T
Ξ

(t)
n,`,iQ

(t,θt)
n,i

)
`∈[#

(t)
r],i∈[Kc]

,n∈S(t)

r . (7.50)

In the update phase, the user uploads the ACSA increment for the servers n,n∈S(t)

w , and

each of the servers updates its storage according to the following equation.

S(t)
n = S(t−1)

n +
∑

i∈[Kc]

Ω
(t)
n,iΥ

(t)
n,iP

(t,θt)
n,i Q

(t,θt)
n,i ,n∈S(t)

w . (7.51)

246

Now let us prove the correctness, privacy and security of the ACSA-RW scheme. To proceed,

we need the following lemmas.

Lemma 7.1. At any time t,t∈N, User t retrieves the desired submodel W
(t−1)
θt

from the

answers returned by the servers n,n∈S(t)

r according to the ACSA-RW scheme while guaran-

teeing T -privacy.

Proof. Let us consider the answers returned by the servers n,n∈S(t)

r in (7.50). Note that

for all `∈ [#
(t)
r], i∈ [Kc], we have

(
S(t−1)
n

)T
Ξ

(t)
n,`,iQ

(t,θt)
n,i

=
∑

j∈[(`−1)R
(t)
r +1:`R

(t)
r]


 ∑

i′∈[Kc]

1

αn−fj,i′
Ẇ

(t−1)
j,i′ +

∑

x∈[X]

αx−1
n Ż

(t−1)
j,x




T

(∏
i′∈[Kc]\{i}(αn−fj,i′)∏
i′∈[Kc]\{i}(fj,i−fj,i′)

)
eK(θt)+(αn−fj,i)

∑

s∈[T]

αs−1
n Z̈

(t)
j,i,s




(7.52)

=
∑

j∈[(`−1)R
(t)
r +1:`R

(t)
r]


 ∑

i′∈[Kc]

1

αn−fj,i′
Ẇ

(t−1)
j,i′ +

∑

x∈[X]

αx−1
n Ż

(t−1)
j,x




T

(7.53)



(∏

i′∈[Kc]\{i}(αn−fj,i′)∏
i′∈[Kc]\{i}(fj,i−fj,i′)

)
eK(θt)+

∏
i′∈[Kc]

(αn−fj,i)∏
i′∈[Kc]\{i}(fj,i−fj,i′)

∑

s∈[T]

αs−1
n Z̈

(t)
j,i,s




(7.54)

=
∑

j∈[(`−1)R
(t)
r +1:`R

(t)
r]


 1

αn−fj,i
Ẇ

(t−1)
j,i eK(θt)+

∑

m∈[X+T+Kc−1]

αm−1
n İ

(t)
j,i,m


 (7.55)

=
∑

j∈[(`−1)R
(t)
r +1:`R

(t)
r]

1

αn−fj,i
W

(t−1)
θt

(j,i)+
∑

m∈[X+T+Kc−1]

αm−1
n Ï

(t)
r,i,m. (7.56)

For all j ∈ [J],m∈ [X+T +Kc−1], İ(t)
j,i,m are various linear combinations of inner prod-

ucts of
(
Ẇ

(t−1)
j,i

)
i∈[Kc]

,eK(θt),
(
Ż

(t−1)
j,x

)
x∈[X]

and
(
Z̈

(t)
j,i,s

)
i∈[Kc],s∈[T]

, whose exact forms are

irrelevant. Besides, Ï(t)
`,i,m =

∑
j∈[(`−1)R

(t)
r +1:`R

(t)
r]
İ

(t)
j,i,m,∀`∈ [#

(t)
r],i∈ [Kc]. Note that for all

247

j ∈ [J], i∈ [Kc],
∏

i′∈[Kc]\{i}(fj,i−fj,i′) is the remainder of the polynomial division (with

respect to αn)
(∏

i′∈[Kc]\{i}(αn−fj,i′)
)
/(αn−fj,i), which is for normalization. The exis-

tence of multiplicative inverse of
∏

i′∈[Kc]\{i}(fj,i−fj,i′) is guaranteed by Proposition 7.2, i.e.,
∏

i′∈[Kc]\{i}(fj,i−fj,i′) 6= 0. Therefore, due to the fact that the desired symbols are carried by

the Cauchy terms (i.e., the first term in (7.56)) and the interference symbols (i.e., the unde-

sired symbols, second term in (7.56)) are aligned along the Vandermonde terms, the desired

symbols
(
W

(t−1)
θt

(j,i)
)
j∈[(`−1)R

(t)
r +1:`R

(t)
r]

of the submodel W
(t−1)
θt

are resolvable by inverting

the following Cauchy-Vandermonde matrix.

C =




1
f
(`−1)R

(t)
r +1,i

−α
S(t)
r (1)

··· 1
f
`R

(t)
r ,i
−α
S(t)
r (1)

1 ··· αX+T−1

S(t)
r (1)

1
f
(`−1)R

(t)
r +1,i

−α
S(t)
r (2)

··· 1
f
`R

(t)
r ,i
−α
S(t)
r (2)

1 ··· αX+T−1

S(t)
r (2)

...
...

...
...

...
...

1
f
(`−1)R

(t)
r +1,i

−α
S(t)
r (|S(t)

r |)
··· 1

f
`R

(t)
r ,i
−α
S(t)
r (|S(t)

r |)
1 ··· αX+T−1

S(t)
r (|S(t)

r |)




. (7.57)

It is remarkable that the non-singularity of the matrix C follows from Lemma 2.5, as

well as the determinant of Cauchy-Vandermonde matrix (see, e.g., [37]) and the fact

that according to Proposition 7.1, the constants
(

(fj,i)j∈[(`−1)R
(t)
r +1:`R

(t)
r]
,(αn)

n∈S(t)
r

)
are dis-

tinct for all `∈ [#
(t)
r], regardless of the realizations of S(t)

r and S(t)

w . Recall that S(t)

r (1),

S(t)

r (2), etc., refer to distinct elements of S(t)

r (arranged in ascending order). There-

fore, the user is able to reconstruct the desired submodel due to the fact that W
(t−1)
θt

=((
W

(t−1)
θt

(j,i)
)
j∈[(`−1)R

(t)
r +1:`R

(t)
r]

)

`∈[#
(t)
r],i∈[Kc]

. To see why the T -privacy holds, we note that

by the construction of the query
(
Q

(t,θt)
n

)
n∈[N]

, the vector eK(θt), which carries the infor-

mation of desired index θt, is protected by the MDS(N,T) coded uniform i.i.d. random

noise vectors. Thus the queries for the N servers form a secret sharing of threshold T ,

and are independent of the queries and the increments of all prior users τ,τ ∈ [t−1]. Thus

T -privacy is guaranteed. To calculate the download cost, we note that a total of L= JKc

symbols of the desired submodel are retrieved out of the Kc#
(t)
r |S(t)

r | downloaded symbols.

248

Therefore we have Dt =
(
Kc#

(t)
r |S(t)

r |
)
/(JKc) =

(
#

(t)
r

(
N−|S(t)

r |
))
/J =

(
N−|S(t)

r |
)
/R

(t)
r =

(
N−|S(t)

r |
)
/
(
Sthresh
r −|S(t)

r |
)
. This completes the proof of Lemma 7.1.

Lemma 7.2. At any time t,t∈N, User t correctly updates the desired submodel W
(t−1)
θt

and achieves ACSA storage by uploading the ACSA increments to the servers n,n∈S(t)

w and

exploiting the update equation (7.51) according to the ACSA-RW scheme while guaranteeing

T -privacy and X∆-security.

Proof. Let us first inspect the second term on the RHS of (7.51). Note that for any t∈N,

for all n∈ [N],i∈ [Kc], we can write

Ω
(t)
n,iΥ

(t)
n,iP

(t,θt)
n,i Q

(t,θt)
n,i

=

[(
Γ

(t)
n,1,i

)T
,
(
Γ

(t)
n,2,i

)T
,··· ,

(
Γ

(t)

n,#
(t)
w ,i

)T]T
, (7.58)

where for all `∈ [#
(t)
w], we define φ` = (`−1)R

(t)
w , and

Γ
(t)
n,`,i

=




(∏
j∈F(t)

φ`+1

(αn−fj,i)∏
j∈F(t)

φ`+1

(fφ`+1,i−fj,i)

)(∑
j∈[φ`+1:φ`+R

(t)
w]

1
αn−fj,i∆

(t)
j,i +

∑
x∈[X∆]α

x−1
n

...
Z

(t)
`,i,x

)

(∏
m∈S(t)

w
(αn−αm)∏

m∈S(t)
w

(fφ`+1,i−αm)

)(
eK(θt)+(αn−fφ`+1,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+1,i,s

)

(∏
j∈F(t)

φ`+2

(αn−fj,i)∏
j∈F(t)

φ`+2

(fφ`+2,i−fj,i)

)(∑
j∈[φ`+1:φ`+R

(t)
w]

1
αn−fj,i∆

(t)
j,i +

∑
x∈[X∆]α

x−1
n

...
Z

(t)
`,i,x

)

(∏
m∈S(t)

w
(αn−αm)∏

m∈S(t)
w

(fφ`+2,i−αm)

)(
eK(θt)+(αn−fφ`+2,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+2,i,s

)

...


∏
j∈F(t)

φ`+R
(t)
w

(αn−fj,i)

∏
j∈F(t)

φ`+R
(t)
w

(f
φ`+R

(t)
w ,i
−fj,i)



(∑

j∈[φ`+1:φ`+R
(t)
w]

1
αn−fj,i∆

(t)
j,i +

∑
x∈[X∆]α

x−1
n

...
Z

(t)
`,i,x

)

(∏
m∈S(t)

w
(αn−αm)∏

m∈S(t)
w

(f
φ`+R

(t)
w ,i
−αm)

)(
eK(θt)+(αn−fφ`+R(t)

w ,i
)
∑

s∈[T]α
s−1
n Z̈

(t)

φ`+R
(t)
w ,i,s

)




(7.59)

249

=




(∏
m∈S(t)

w
(αn−αm)∏

m∈S(t)
w

(fφ`+1,i−αm)

)(
1

αn−fφ`+1,i
∆

(t)
φ`+1,i+

∑
m∈[X∆+R

(t)
w −1]

αm−1
n

...
I

(t)
φ`+1,i,m

)

(
eK(θt)+(αn−fφ`+1,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+1,i,s

)
(∏

m∈S(t)
w

(αn−αm)∏
m∈S(t)

w
(fφ`+2,i−αm)

)(
1

αn−fφ`+2,i
∆

(t)
φ`+2,i+

∑
m∈[X∆+R

(t)
w −1]

αm−1
n

...
I

(t)
φ`+2,i,m

)

(
eK(θt)+(αn−fφ`+2,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+2,i,s

)

...(∏
m∈S(t)

w
(αn−αm)∏

m∈S(t)
w

(f
φ`+R

(t)
w ,i
−αm)

)(
1

αn−f
φ`+R

(t)
w ,i

∆
(t)

φ`+R
(t)
w ,i

+
∑

m∈[X∆+R
(t)
w −1]

αm−1
n

...
I

(t)

φ`+R
(t)
w ,i,m

)

(
eK(θt)+(αn−fφ`+R(t)

w ,m
)
∑

s∈[T]α
s−1
n Z̈

(t)

φ`+R
(t)
w ,i,s

)




(7.60)

=




(
1

αn−fφ`+1,i
∆

(t)
φ`+1,i+

∑
m∈[X∆+R

(t)
w +|S(t)

w |−1]
αm−1
n

....
I

(t)
φ`+1,i,m

)

(
eK(θt)+(αn−fφ`+1,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+1,i,s

)

(
1

αn−fφ`+2,i
∆

(t)
φ`+2,i+

∑
m∈[X∆+R

(t)
w +|S(t)

w |−1]
αm−1
n

....
I

(t)
φ`+2,i,m

)

(
eK(θt)+(αn−fφ`+2,i)

∑
s∈[T]α

s−1
n Z̈

(t)
φ`+2,i,s

)

...(
1

αn−f
φ`+R

(t)
w ,i

∆
(t)

φ`+R
(t)
w ,i

+
∑

m∈[X∆+R
(t)
w +|S(t)

w |−1]
αm−1
n

....
I

(t)

φ`+R
(t)
w ,i,m

)

(
eK(θt)+(αn−fφ`+R(t)

w ,i
)
∑

s∈[T]α
s−1
n Z̈

(t)

φ`+R
(t)
w ,i,s

)




(7.61)

=




(
1

αn−fφ`+1,i
∆

(t)
φ`+1,ieK(θt)+

∑
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)
φ`+1,i,m

)

(
1

αn−fφ`+2,i
∆

(t)
φ`+2,ieK(θt)+

∑
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)
φ`+2,i,m

)

...(
1

αn−f
φ`+R

(t)
w ,i

∆
(t)

φ`+R
(t)
w ,i

eK(θt)+
∑

m∈[X∆+R
(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)

φ`+R
(t)
w ,i,m

)




, (7.62)

where for all v ∈ [R
(t)
w], (

...
I φ`+v,m)

m∈[X∆+R
(t)
w −1]

, (
....
I φ`+v,m)

m∈[X∆+R
(t)
w +|S(t)

w |−1]
and

(
İφ`+v,m

)
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
are various interference symbols, whose exact forms are

not important. Note that in (7.60), we multiply the first two terms in each row of

(7.59). It can be justified from the fact that the constants (fj,i)j∈[φ`+1:φ`+R
(t)
w]

are distinct

according to Proposition 7.1. Besides, for all v ∈ [R
(t)
w], according to the definition of F (t)

φ`+v
,

250

we can equivalently write F (t)
φ`+v

= [φ`+1 :φ`+R
(t)
w]\{φ`+v}, thus

∣∣∣F (t)
φ`+v

∣∣∣=R
(t)
w −1 and

(φ`+v) 6∈ Fφ`+v. Note that the denominator in the first term in each row of (7.59) is for

normalization, which is the remainder of the polynomial division (with respect to αn)(∏
j∈F(t)

φ`+v
(αn−fj,i)

)
/(αn−fφ`+v,i). In (7.61), we multiply the first two terms in each

row of (7.60), and it can be justified by noting that the denominator in the first term

in each row of (7.60) is the remainder of the polynomial division (with respect to αn)(∏
m∈S(t)

w
(αn−αm)

)
/(αn−fφ`+v,i). And finally in (7.62), we multiply the two terms in

each row of (7.61). Therefore, for all n∈ [N],i∈ [Kc], the term Ω
(t)
n,iΥ

(t)
n,iP

(t,θt)
n,i Q

(t,θt)
n,i can be

written as follows.

Ω
(t)
n,iΥ

(t)
n,iP

(t,θt)
n,i Q

(t,θt)
n,i

=




1
αn−f1,i

∆
(t)
1,ieK(θt)+

∑
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)
1,i,m

1
αn−f2,i

∆
(t)
2,ieK(θt)+

∑
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)
2,i,m

...

1
αn−fJ,i

∆
(t)
J,ieK(θt)+

∑
m∈[X∆+R

(t)
w +|S(t)

w |+T−1]
αm−1
n İ

(t)
J,i,m



. (7.63)

Note that X =X∆ +R
(t)
w + |S(t)

w |+T −1, the update equation (7.51) is thus correct because

S(t−1)
n +

∑

i∈[Kc]

Ω
(t)
n,iΥ

(t)
n,iP

(t,θt)
n,i Q

(t,θt)
n,i

=




∑
i∈[Kc]

1
αn−f1,i

Ẇ
(t−1)
1,i +

∑
x∈[X]α

x−1
n Ż

(t−1)
1,x

∑
i∈[Kc]

1
αn−f2,i

Ẇ
(t−1)
2,i +

∑
x∈[X]α

x−1
n Ż

(t−1)
2,x

...
∑

i∈[Kc]
1

αn−fJ,i
Ẇ

(t−1)
J,i +

∑
x∈[X]α

x−1
n Ż

(t−1)
J,x




+




∑
i∈[Kc]

1
αn−f1,i

∆
(t)
1,ieK(θt)+

∑
x∈[X]α

x−1
n Ï

(t)
1,x

∑
i∈[Kc]

1
αn−f2,i

∆
(t)
2,ieK(θt)+

∑
x∈[X]α

x−1
n Ï

(t)
2,x

...
∑

i∈[Kc]
1

αn−fJ,i
∆

(t)
J,ieK(θt)+

∑
x∈[X]α

x−1
n Ï

(t)
J,x




(7.64)

251

= S(t)
n , (7.65)

where for all t∈N,j ∈ [J],x∈ [X], Ż
(t)
j,x = Ż

(t−1)
j,x + Ï

(t)
j,x, and Ï

(t)
j,x =

∑
i∈[Kc]

İ
(t)
j,i,x. Note that for all

n∈S(t)
w , i∈ [Kc], we have Ω

(t)
n,i = 0. Therefore, for all n∈S(t)

w , it holds that S
(t)
n = S

(t−1)
n . In

other words, the update equation (7.51) correctly updates the desired submodel and achieves

the ACSA storage at time t+1 by updating the storage of server n,n∈S(t)

w . The proof of T -

privacy follows from that in Lemma 7.1, so we do not repeat it here. The proof ofX∆-security

follows from the fact that by the definition of ACSA increment
(
P

(t,θt)
n

)
n∈[N]

, the symbols

of the increment ∆t are protected by the MDS(N,X∆) coded uniform i.i.d. random noise

symbols. Thus the ACSA increment for the N servers form a secret sharing of threshold X∆,

and it is independent of the write-queries by the users τ,τ ∈ [t−1] and the read-queries by

the users τ,τ ∈ [t]. Finally let us calculate the upload cost. The upload cost consists of two

parts, i.e., the upload cost of the ACSA query and the upload cost of the ACSA increment.

Note that to upload the ACSA query, a total of
∣∣∣[N]\S(t)

r \S(t)
w

∣∣∣µKKc q-ary symbols must

be uploaded. On the other hand, to upload the ACSA increment, we need to upload a total

of
(
N−|S(t)

w |
)

#
(t)
w Kc q-ary symbols. Therefore, in the limit as L/K→∞, the normalized

upload cost is

Ut =
Kc

(
N−|S(t)

w |
)

#
(t)
w +

∣∣∣[N]\S(t)
r \S(t)

w

∣∣∣µKKc

L
(7.66)

L/K→∞
=

N−|S(t)
w |

R
(t)
w

(7.67)

=
N−|S(t)

w |
Sthresh
w −|S(t)

w |
. (7.68)

This completes the proof of Lemma 7.2.

The ACSA-RW scheme satisfies the correctness, T -privacy, and X∆-security constraints for

each update t,t∈N because of Lemma 7.1 and Lemma 7.2, which hold for all t,t∈N. Now

let us see why the X-security constraint is satisfied. By the definition of the ACSA storage

252

(i.e., Definition 7.3) at any time t,t∈N, the symbols of the K submodels are protected by

the MDS(N,X) coded i.i.d. uniform random noise symbols. In other words, it forms a secret

sharing of threshold X, thus X-security is guaranteed.

Remark 7.3. (Byzantine Tolerance) It is remarkable that the answers returned by the

servers in the private read phase can be viewed as codewords of an MDS code (generated by

the Cauchy-Vandermonde matrix, see, e.g., Chapter 4 and [54]). Therefore, with additional

2B redundant answers from the servers, we can correct up to B erroneous answers.

Remark 7.4. (Symmetric Security) If common randomness is allowed among the

servers, so-called symmetric security can be achieved[20], i.e., the user will learn noth-

ing about the global model beyond the desired submodel. Note that this does not affect the

communication cost of the ACSA-RW scheme.

Remark 7.5. (External Adversaries versus Internal Adversaries) Recall that the

X-security constraint only requires protection against an external adversary who can access

the current storage but not the past history at any X-servers. However, a closer look at

the ACSA-RW scheme reveals that if the number of compromised servers is no more than

min(X∆,T), then even an internal adversary, i.e., an adversary who has access to the entire

history of all previous stored values and queries seen by the compromised servers, can still

learn nothing about the stored submodels.

Remark 7.6. (Access Complexity) We define the access complexity as the number of

elements over the finite field Fq that must be accessed/updated during the private read and

private write phases. We note that at any time t,t∈N, the access complexity of each of

the responsive servers in the private read and write phases is at most KL/Kc. Hence with

greater Kc, it is possible to reduce the access complexity.

Remark 7.7. (Encoding and Decoding Complexity) Let us consider the complexity

of the encoding and decoding algorithms of our construction. It is worth noting that the

computations for producing the ACSA storage, ACSA query and ACSA increment can be

253

regarded as multiplications of (scaled) Cauchy-Vandermonde matrices with various vectors.

The computation for recovering the desired submodel by the user from the answers of the

N servers can be viewed as solving linear systems defined by Cauchy-Vandermonde matri-

ces. Cauchy-Vandermonde matrices are an important class of structured matrices, for which

“superfast” algorithms have been studied extensively [85, 35]. Therefore, by these superfast

algorithms, the complexity of producing the ACSA storage, ACSA query and ACSA incre-

ment is at most Õ((LKN log2N)/Kc),Õ(µKNKc log2N) and Õ(UtLlog2N), respectively.

On the other hand, the complexity of decoding the desired submodel from the answers of the

servers is at most Õ(DtLlog2N). It is obvious that the encoding/decoding algorithms have

a complexity that is almost linear in their output/input sizes.

7.4.1 Example

Let us consider an illustrative example to make the construction of the ACSA-RW scheme

and the proof of Theorem 7.1 more accessible. In particular, for this example, let us set

N = 8,X = 4,T = 1,X∆ = 1 andKc = 1 (note that L= J in this case). We follow the notations

used in the proof of Theorem 7.1, and since Kc = 1, we are able to omit an index in some of

the subscripts, which corresponds to i∈ [Kc]. For example, for all l∈ [L], fl,1 is abbreviated

as fl, etc. We have Sthresh
r = 3,Sthresh

w = 3. Let ξ be a positive integer, and we set L=

ξ · lcm
(
[Sthresh
r]∪ [Sthresh

w]
)

= 6ξ, i.e., each of the K submodels consists of L= 6ξ symbols from

a finite field Fq,q≥N+µ= 11. Let α1,α2,··· ,α8,f̃1,f̃2,f̃3 be a total of 11 distinct elements

from the finite field Fq. For (fl)l∈[L], let us define

(f1,f2,··· ,fL) = (f̃1,f̃2,f̃3,f̃1,f̃2,f̃3,··· ,f̃1,f̃2,f̃3). (7.69)

254

Let
(
Ż

(0)
l,x

)
l∈[L],x∈[4]

be uniformly i.i.d. column vectors from FKq . The initial ACSA storage

at the N = 8 servers is defined as follows.

S(0)
n =




1
αn−f1

Ẇ
(0)
1 +

∑
x∈[4]α

x−1
n Ż

(0)
1,x

1
αn−f2

Ẇ
(0)
2 +

∑
x∈[4]α

x−1
n Ż

(0)
2,x

...

1
αn−fL

Ẇ
(0)
L +

∑
x∈[4]α

x−1
n Ż

(0)
L,x



,∀n∈ [8]. (7.70)

Now let us assume that User 1 experiences |S(1)
r |= 1,|S(1)

w |= 2, i.e., there is 1 dropout server

in the read phase and 2 dropout servers in the write phase. Note that the two sets can be

arbitrarily realized. We have R(1)
r = 2,R

(1)
w = 1,#

(1)
r = 3ξ,#

(1)
w = 6ξ. The ACSA query sent by

User 1 to the nth server, n∈ [N] is defined as follows.

Q(1,θ1)
n =




eK(θ1)+(αn−f1)Z̈
(1)
1,1

eK(θ1)+(αn−f2)Z̈
(1)
2,1

...

eK(θ1)+(αn−fL)Z̈
(1)
L,1



. (7.71)

where

(
Z̈

(1)
1,1,Z̈

(1)
2,1,··· ,Z̈(1)

L,1

)
=
(
Z̃

(1)
1,1,Z̃

(1)
2,1,Z̃

(1)
3,1,Z̃

(1)
1,1,Z̃

(1)
2,1,Z̃

(1)
3,1,··· ,Z̃(1)

1,1,Z̃
(1)
2,1,Z̃

(1)
3,1

)
, (7.72)

and
(
Z̃

(1)
l,1

)
l∈[3]

are i.i.d. uniform column vectors from FKq . Evidently, for all n∈ [8], Q
(1,θ1)
n

is uniquely determined by its first 3K rows. Upon receiving the queries, servers n,n∈S(1)

r

respond to User 1 with answers A(1,θ1)
n constructed as follows.

A(1,θ1)
n =

(
A

(1,θ1)
n,`

)
`∈[3ξ]

,n∈S(1)

r , (7.73)

255

where for all n∈S(1)

r ,`∈ [3ξ],

A
(1,θ1)
n,` =

(
S(0)
n

)T
Ξ

(1)
n,`Q

(1,θ1)
n (7.74)

=
∑

l∈[2`−1:2`]


 1

αn−fl
Ẇ

(0)
l +

∑

x∈[4]

αx−1
n Ż

(0)
l,x




T(
eK(θ1)+(αn−fl)Z̈(1)

l,1

)
(7.75)

=
W

(0)
θ1

(2`−1)

αn−f2`−1

+
W

(0)
θ1

(2`)

αn−f2`

+
∑

i∈[5]

αi−1
n Ï

(1)
`,i , (7.76)

where
(
Ï`,i

)
`∈[3ξ],i∈[5]

are various interference symbols. Thus for all `∈ [3ξ], User 1 recovers

the desired symbols W (0)
θ1

(2`−1) and W (0)
θ1

(2`) by inverting the following matrix.

C =




1
f2`−1−αS(1)

r (1)

1
f2`−αS(1)

r (1)

1 ··· α4

S(1)
r (1)

1
f2`−1−αS(1)

r (2)

1
f2`−αS(1)

r (2)

1 ··· α4

S(1)
r (2)

...
...

...
...

...

1
f2`−1−αS(1)

r (7)

1
f2`−αS(1)

r (7)

1 ··· α4

S(1)
r (7)




. (7.77)

Again, its invertibility is guaranteed by Lemma 2.5, as well as the determinant of Cauchy-

Vandermonde matrices [37] and the fact that the constants (f2`−1,f2`,α1,α2,··· ,α8) are dis-

tinct for all `∈ [3ξ]. Recall that S(1)

r (1), S(1)

r (2), etc., refer to distinct elements of S(1)

r , i.e.,

available servers during the first read phase, arranged in ascending order. Therefore, the

user is able to reconstruct the desired submodel W
(0)
θ1
.

To update the desired submodel with the increment ∆1, User 1 constructs the ACSA incre-

ment P
(1,θ1)
n as follows.

P(1,θ1)
n = diag

(
∆̃

(1)
1 IK ,∆̃

(1)
2 IK ,··· ,∆̃(1)

L IK

)
, (7.78)

256

where for all `∈ [L],

∆̃
(1)
` =

1

αn−f`
∆

(1)
` +

...
Z

(1)
`,1 . (7.79)

Note that the ACSA unpacker at time t= 1 is Υ
(1)
n = IKL for all n∈ [N], therefore,

Ω(1)
n Υ(1)

n P(1,θ1)
n Q(1,θ1)

n

=




(∏
i∈S(1)

w
(αn−αi)∏

i∈S(1)
w

(f1−αi)

)(
1

αn−f1
∆

(1)
1 +

...
Z

(1)
1,1

)(
eK(θt)+(αn−f1)Z̈

(1)
1,s

)

(∏
i∈S(1)

w
(αn−αi)∏

i∈S(1)
w

(f2−αi)

)(
1

αn−f2
∆

(1)
2 +

...
Z

(1)
2,1

)(
eK(θt)+(αn−f2)Z̈

(1)
2,s

)

...(∏
i∈S(1)

w
(αn−αi)∏

i∈S(1)
w

(fL−αi)

)(
1

αn−fL
∆

(1)
L +

...
Z

(1)
L,1

)(
eK(θt)+(αn−fL)Z̈

(1)
L,s

)




(7.80)

=




1
αn−f1

∆
(1)
1 eK(θt)+

∑
i∈[4]α

i−1
n İ

(1)
1,i

1
αn−f2

∆
(1)
2 eK(θt)+

∑
i∈[4]α

i−1
n İ

(1)
2,i

...

1
αn−fL

∆
(1)
L eK(θt)+

∑
i∈[4]α

i−1
n İ

(1)
L,i



. (7.81)

Thus by the update equation (7.51), the ACSA scheme updates the storage at time 0, i.e.,

it holds that S
(0)
n +Ω

(1)
n Υ

(1)
n P

(1,θ1)
n Q

(1,θ1)
1 = S

(1)
n . Besides, it is guaranteed that S

(1)
n = S

(0)
n for

all n∈S(1)
w . This is the end of the full cycle of ACSA-RW at time 1. We note that in the

limit as L/K→∞, we have Dt = 7/2 = 3.5 and Ut = 6.

Now let us assume that at time t= 2, i.e., for the second cycle with a second user, we

have |S(1)
r |= 2,|S(1)

w |= 1. Therefore, R(2)
r = 1,R

(2)
w = 2,#

(2)
r = 6ξ,#

(2)
w = 3ξ. Upon receiving

the queries, the servers n,n∈S(2)

r respond to the user with the answers as follows.

A(2,θ2)
n =

(
A

(2,θ2)
n,`

)
`∈[L]

,n∈S(2)

r , (7.82)

257

where for all `∈ [L], we have

A
(2,θ2)
n,` =

W
(1)
θ2

(`)

αn−f`
+
∑

i∈[5]

αi−1
n Ï

(2)
`,i . (7.83)

Thus, User 2 recovers the desired submodel by inverting the matrix C as defined in (7.57).

To update the submodel with the increment ∆2, User 2 constructs the ACSA increment

P
(2,θ2)
n as follows.

P(2,θ2)
n = diag

(
∆̃

(2)
1 I2K ,∆̃

(2)
2 I2K ,··· ,∆̃(2)

3ξ I2K

)
, (7.84)

where for all `∈ [3ξ],

∆̃
(2)
` =

1

αn−f2`−1

∆
(2)
2`−1 +

1

αn−f2`

∆
(2)
2` +

...
Z

(2)
`,1 . (7.85)

Recall that the ACSA unpacker at time t= 2 is defined as follows.

Υ(2)
n = diag

((∏
i∈F(2)

1
(αn−fi)

∏
i∈F(2)

1
(f1−fi)

)
IK ,··· ,

(∏
i∈F(2)

L
(αn−fi)

∏
i∈F(2)

L
(fL−fi)

)
IK

)
(7.86)

= diag

((
αn−f2

f1−f2

)
IK ,

(
αn−f1

f2−f1

)
IK ,

(
αn−f4

f3−f4

)
IK ,

(
αn−f3

f4−f3

)
IK ,···

··· ,
(
αn−fL
fL−1−fL

)
IK ,

(
αn−fL−1

fL−fL−1

)
IK

)
. (7.87)

Therefore, for all n∈ [N], we can write

Υ(2)
n P(2,θ2)

n

= diag




 1

αn−f1

∆
(2)
1 +

∑

i∈[2]

αi−1
n

...
I

(2)
1,i


IK ,··· ,


 1

αn−fL
∆

(2)
1 +

∑

i∈[2]

αi−1
n

...
I

(2)
L,i


IK


.

(7.88)

Accordingly, the second term in the RHS of the update equation (7.51) can be written as

258

follows.

Ω(2)
n Υ(2)

n P(2,θ2)
n Q(2,θ2)

n

=




1
αn−f1

∆
(2)
1 eK(θt)+

∑
i∈[4]α

i−1
n İ

(2)
1,i

1
αn−f2

∆
(2)
2 eK(θt)+

∑
i∈[4]α

i−1
n İ

(2)
2,i

...

1
αn−fL

∆
(2)
L eK(θt)+

∑
i∈[4]α

i−1
n İ

(2)
L,i



, (7.89)

which guarantees the correctness of the update. It is remarkable that by the construction

of ACSA null-shaper, for all n∈S(2)
w , it is guaranteed that Ω

(2)
n = 0, thus we have S

(2)
n = S

(1)
n

for all n∈S(2)
w . Therefore, the write dropout constraint is satisfied. It is easy to verify

that the privacy and security constraints are satisfied, and in the limit as L/K→∞, the

normalized upload cost is U2 = 7/2 = 3.5, the normalized download cost is D2 = 6. We can

see that when the number of dropout servers is decreased, the communication efficiency is

accordingly improved (e.g., U2<U1,D2>D1).

7.5 Discussion

Inspired by the recent interest in X-secure T -private federated submodel learning, we ex-

plored the fundamental problem of privately reading from and writing to a distributed and

secure database. By interpreting the private read and write operations as secure matrix

multiplications (between query vectors and stored data), and recognizing that CSA codes

are natural solutions to such problems, we constructed a novel Adaptive CSA-RW scheme.

ACSA-RW achieves synergistic gains from the joint design of private read and write oper-

ations because the same one hot vector representation of the desired message index needs

to be secret shared for both the private read and write operations. In addition to allowing

private read and write, ACSA-RW also provides elastic resilience against server dropouts, up

259

to thresholds that are determined by the number of redundant storage dimensions. Surpris-

ingly, ACSA-RW is able to fully update the distributed database even though the database

is only partially accessible due to write-dropout servers. This is accomplished by exploiting

the redundancy that is already required for secure storage. The scheme allows a memoryless

operation of the database in the sense that the storage structure is preserved and users may

remain oblivious of the prior history of server dropouts.

260

Chapter 8

Conclusion

In this dissertation, we introduced the idea of cross-subspace alignment and its applications

to the problem of X-secure T -private information retrieval, X-secure T -private information

retrieval with graph-based replicated storage, X-secure T -private information retrieval with

MDS coded storage, secure distributed matrix multiplication, coded distributed batch com-

putation and X-secure T -private federated submodel learning. The idea of CSA is shown

to be the essential ingredient of the construction of optimal/asymptotic optimal/state-of-art

approaches that minimize the download and/or communication cost of these problems. To

conclude the dissertation, we present several promising directions for future work.

In terms of Chapter 2, we note that as indicated by various open problems identified in

Chapter 2, XSTPIR is a fertile research avenue for future work. In particular, the capacity

characterization for arbitrary K could reveal fundamentally new schemes for PIR. Especially

intriguing would be the role that field size might play in such a result. Capacity of Sym-

XSTPIR is another promising open problem. XSTPIR with constraints on the amount of

storage per server, multi-message retrieval are other open problems that merit investigation.

For GXSTPIR studied in Chapter 3, generalizations of the private computation scheme

261

presented in Section 3.4.3 represent an interesting problem for future work, especially because

such private computation schemes are needed for GXSTPIR, as evident from the achievability

proof of Theorem 3.3. Asymptotic capacity for GPIR with arbitrary graph based storage

when each message is replicated 4 times is the next step for the direction initiated by Theorem

3.3. The relationship between GXSTPIR and index coding, through the connecting thread of

min-rank problems that arise in both contexts is another promising research avenue. Finally,

the tightness of the converse bound in Theorem 3.2 remains an interesting question. Given

that the bound is tight in all cases for which the asymptotic capacity is settled so far, it is

tempting to conjecture that the converse bound is tight in general. Settling this conjecture is

perhaps the most important immediate objective for future work on the asymptotic capacity

of GXSTPIR.

As for Chapter 4, the immediate challenge for future work is to settle the asymptotic capacity

conjectures for MDS-TPIR, and also of MDS-XSTPIR, either in the affirmative by finding

tight converse bounds or in the negative by finding better asymptotic achievable schemes.

Beyond this, settling down the conjecture of asymptotic capacity of U-B-MDS-XSTPIR with

unresponsive and Byzantine servers also merits investigation.

In Chapter 5, we studied the capacity of SDMM. In terms of future work, open problems

that merit immediate attention include the many cases of SDMM where the capacity remains

open. For example, the capacity of the basic SDMM(AB,φ) setting, previously believed to be

solved in [61] is shown to be still open in general, including the important case of square

matrices L=K =M > 1 with sufficiently many servers N >X. From the case L=K =M = 1

that is already solved in this chapter, it seems that the generalization could require expanding

the scope of constructions based on non-trivial monomorphic transformations, which presents

an interesting research avenue. In terms of the connection to PIR, this chapter highlights

the importance of finding the capacity characterizations for MM-XSTPIR, as well as MM-

XSTPC. Evidently solutions to these PIR problems would not only add to the growing

262

literature on PIR that already includes many successful capacity characterizations [102, 106,

103, 11, 57, 107, 81], but also have a ripple effect on important problems that are intimately

connected to PIR. Similar to PIR, the models of SDMM could also be further enriched to

include privacy of retrieved information, coded storage [11, 36, 105], storage size and repair

constraints [113, 4, 127] and generalized forms of side-information [58, 112, 22]. Thus, just

like PIR, SDMM offers a fertile research landscape for discovering new coding structures and

converse arguments.

In respect of the problem of CDBC studied in Chapter 6, an interesting direction for future

work is the possibility of task partitioning (similar to matrix partitioning) for N -CSA codes

to reduce the computation cost per server in settings where latency constraints prevent any

server from fully computing the N -linear map, or the multivariate polynomial evaluation by

itself.

Finally, for the problem of XSTPFSL considered in Chapter 7, as indicated in Section 7.3.1,

the converse argument of the asymptotic capacity of XSTPFSL is still open in general.

Another promising direction for future work is to explore applications of the idea of write

dropout resilience to multi-version coding [124].

263

Bibliography

[1] M. Abadi, A. Chu, I. Goodfellow, H. McMahan, I. Mironov, K. Talwar, and L. Zhang.
Deep learning with differential privacy. Proceedings of CCS, 2016.

[2] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
195–203. ACM, 1987.

[3] M. Aliasgari, O. Simeone, and J. Kliewer. Distributed and private coded matrix com-
putation with flexible communication load. arXiv preprint arXiv:1901.07705, 2019.

[4] M. A. Attia, D. Kumar, and R. Tandon. The capacity of private information retrieval
from uncoded storage constrained databases. IEEE Transactions on Information The-
ory, 66(11):6617–6634, 2020.

[5] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor
federated learning. In International Conference on Artificial Intelligence and Statistics,
pages 2938–2948. PMLR, 2020.

[6] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran. Straggler-proofing massive-scale
distributed matrix multiplication with d-dimensional product codes. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 1993–1997. IEEE, 2018.

[7] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus. The capacity of private informa-
tion retrieval from heterogeneous uncoded caching databases. IEEE Transactions on
Information Theory, 66(6):3407–3416, 2020.

[8] K. Banawan and S. Ulukus. The capacity of private information retrieval from byzan-
tine and colluding databases. IEEE Transactions on Information Theory, 65(2):1206–
1219, 2018.

[9] K. Banawan and S. Ulukus. Multi-message private information retrieval: Capac-
ity results and near-optimal schemes. IEEE Transactions on Information Theory,
64(10):6842–6862, 2018.

[10] K. Banawan and S. Ulukus. Multi-message private information retrieval: Capacity
results and near-optimal schemes. IEEE Transactions on Information Theory, 2018.

264

[11] K. Banawan and S. Ulukus. The Capacity of Private Information Retrieval from Coded
Databases. IEEE Transactions on Information Theory, 64(3):1945–1956, 2018.

[12] K. Banawan and S. Ulukus. The capacity of private information retrieval from byzan-
tine and colluding databases. IEEE Transactions on Information Theory, 65(2):1206–
1219, Feb 2019.

[13] K. Banawan and S. Ulukus. Private information retrieval from non-replicated
databases. arXiv preprint arXiv:1901.00004, 2019.

[14] K. Banawan and S. Ulukus. Private information retrieval through wiretap channel ii:
Privacy meets security. IEEE Transactions on Information Theory, 66(7):4129–4149,
2020.

[15] Y. Birk and T. Kol. Informed-source coding-on-demand (ISCOD) over broadcast chan-
nels. In Proceedings of the Seventeenth Annual Joint Conference of the IEEE Computer
and Communications Societies, IEEE INFOCOM’98, volume 3, pages 1257–1264, 1998.

[16] R. Bitar and S. E. Rouayheb. Staircase-pir: Universally robust private information
retrieval. arXiv preprint arXiv:1806.08825, 2018.

[17] W. Chang and R. Tandon. On the upload versus download cost for secure and private
matrix multiplication. arXiv preprint arXiv:1906.10684, 2019.

[18] W.-T. Chang and R. Tandon. On the capacity of secure distributed matrix multipli-
cation. arXiv preprint arXiv:1806.00469, 2018.

[19] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos. Draco: Byzantine-resilient
distributed training via redundant gradients. In International Conference on Machine
Learning, pages 903–912. PMLR, 2018.

[20] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar. Gcsa codes with noise alignment for secure
coded multi-party batch matrix multiplication. IEEE Journal on Selected Areas in
Information Theory, 2(1):306–316, 2021.

[21] Z. Chen, Z. Wang, and S. A. Jafar. The asymptotic capacity of private search. IEEE
Transactions on Information Theory, 66(8):4709–4721, 2020.

[22] Z. Chen, Z. Wang, and S. A. Jafar. The capacity of t-private information retrieval with
private side information. IEEE Transactions on Information Theory, 66(8):4761–4773,
2020.

[23] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pages 41–50, 1995.

[24] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval.
Journal of the ACM (JACM), 45(6):965–981, 1998.

265

[25] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251, 1990.

[26] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2006.

[27] D. H. Duong, P. K. Mishra, and M. Yasuda. Efficient secure matrix multiplication
over lwe-based homomorphic encryption. Tatra Mountains Mathematical Publications,
67(1):69–83, 2016.

[28] S. Dutta, Z. Bai, H. Jeong, T. Low, and P. Grover. A Unified Coded Deep Neural
Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multipli-
cation. ArXiv:1811.1075, Nov. 2018.

[29] S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear transforms
distributedly using coded short dot products. In Advances In Neural Information
Processing Systems, pages 2100–2108, 2016.

[30] S. Dutta, V. Cadambe, and P. Grover. Coded convolution for parallel and distributed
computing within a deadline. arXiv preprint arXiv:1705.03875, 2017.

[31] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover. On
the optimal recovery threshold of coded matrix multiplication. IEEE Transactions on
Information Theory, 66(1):278–301, 2019.

[32] R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk. Gasp codes for secure distributed
matrix multiplication. IEEE Transactions on Information Theory, 66(7):4038–4050,
2020.

[33] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, vol-
ume 1. Elsevier, 1977.

[34] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by itera-
tion. Proceedings of FOCS, 2018.

[35] T. Finck, G. Heinig, and K. Rost. An inversion formula and fast algorithms for cauchy-
vandermonde matrices. Linear algebra and its applications, 183:179–191, 1993.

[36] R. Freij-Hollanti, O. Gnilke, C. Hollanti, and D. Karpuk. Private Information Retrieval
from Coded Databases with Colluding Servers. SIAM Journal on Applied Algebra and
Geometry, 1(1):647–664, 2017.

[37] M. Gasca, J. Martinez, and G. Mühlbach. Computation of Rational Interpolants with
Prescribed Poles. Journal of Computational and Applied Mathematics, 26(3):297–309,
1989.

[38] A. Gerasoulis. A fast algorithm for the multiplication of generalized hilbert matrices
with vectors. Mathematics of Computation, 50(181):179–188, 1988.

[39] A. Gerasoulis, M. D. Grigoriadis, and L. Sun. A fast algorithm for trummer’s problem.
SIAM journal on Scientific and Statistical Computing, 8(1):s135–s138, 1987.

266

[40] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 151–160. ACM, 1998.

[41] I. Gohberg and V. Olshevsky. Fast Algorithms with Preprocessing for matrix-Vector
multiplication Problems. Journal of Complexity, 10(4):411–427, 1994.

[42] G. Golub. Trummer’s problem. SIGACT news, 17(2):12, 1985.

[43] P. Gopalan, C.Huang, H. Simitci, and S. Yekhanin. On the Locality of Codeword
Symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, Nov. 2012.

[44] F. Haddadpour and V. R. Cadambe. Codes for distributed finite alphabet matrix-
vector multiplication. In 2018 IEEE International Symposium on Information Theory
(ISIT), pages 1625–1629. IEEE, 2018.

[45] C. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical
structure of finite abelian groups and the Hermite and Smith normal forms of an integer
matrix. SIAM Journal on Computing, 18(4):658–669, 1989.

[46] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their ap-
plications. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 262–271. ACM, 2004.

[47] S. A. Jafar. Blind Interference Alignment. IEEE Journal of Selected Topics in Signal
Processing, 6(3):216–227, June 2012.

[48] T. Jahani-Nezhad and M. A. Maddah-Ali. Codedsketch: A coding scheme for dis-
tributed computation of approximated matrix multiplication. IEEE Transactions on
Information Theory, pages 1–1, 2021.

[49] H. Jeong, F. Ye, and P. Grover. Locally recoverable coded matrix multiplication. In
2018 56th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 715–722. IEEE, 2018.

[50] Z. Jia. On the capacity of weakly-private information retrieval. Master’s thesis, UC
Irvine, 2019.

[51] Z. Jia and S. Jafar. On the Capacity of Secure Distributed Matrix Multiplication.
ArXiv:1908.06957, 2019.

[52] Z. Jia and S. A. Jafar. x-secure t-private federated submodel learning with elastic
dropout resilience. arXiv preprint arXiv:2010.01059v2, 2020.

[53] Z. Jia and S. A. Jafar. On the asymptotic capacity of x-secure t-private informa-
tion retrieval with graph-based replicated storage. IEEE Transactions on Information
Theory, 66(10):6280–6296, 2020.

267

[54] Z. Jia and S. A. Jafar. X-secure t-private information retrieval from mds coded storage
with byzantine and unresponsive servers. IEEE Transactions on Information Theory,
66(12):7427–7438, 2020.

[55] Z. Jia and S. A. Jafar. Cross subspace alignment codes for coded distributed batch
computation. IEEE Transactions on Information Theory, pages 1–1, 2021.

[56] Z. Jia, H. Sun, and S. Jafar. The capacity of private information retrieval with disjoint
colluding sets. In IEEE GLOBECOM, 2017.

[57] Z. Jia, H. Sun, and S. A. Jafar. Cross subspace alignment and the asymptotic capacity
of x-secure t-private information retrieval. IEEE Transactions on Information Theory,
65(9):5783–5798, 2019.

[58] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson. Private in-
formation retrieval with side information. IEEE Transactions on Information Theory,
66(4):2032–2043, 2019.

[59] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran. Fastsecagg: Scal-
able secure aggregation for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

[60] J. Kakar, S. Ebadifar, and A. Sezgin. Rate-efficiency and straggler-robustness
through partition in distributed two-sided secure matrix computation. arXiv preprint
arXiv:1810.13006, 2018.

[61] J. Kakar, S. Ebadifar, and A. Sezgin. On the Capacity and Straggler-Robustness of
Distributed Secure Matrix Multiplication. IEEE Access, 7:45783–45799, 2019.

[62] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 80–86. ACM, 2000.

[63] M. Kim and J. Lee. Private secure coded computation. IEEE Communications Letters,
pages 1–1, 2019, doi: 10.1109/LCOMM.2019.2934436.

[64] M. Kim and J. Lee. Information-theoretic privacy in federated submodel learning.
arXiv preprint arXiv:2008.07656, 2020.

[65] M. Kim, J.-y. Sohn, and J. Moon. Coded matrix multiplication on a group-based
model. arXiv preprint arXiv:1901.05162, 2019.

[66] E. Kushilevitz and T. Mour. Sub-logarithmic distributed oblivious ram with small
block size. In IACR International Workshop on Public Key Cryptography, pages 3–33.
Springer, 2019.

[67] F. Le Gall. Powers of tensors and fast matrix multiplication. Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, 2014.

268

[68] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up
distributed machine learning using codes. IEEE Transactions on Information Theory,
64(3):1514–1529, 2017.

[69] K. Lee, C. Suh, and K. Ramchandran. High-dimensional coded matrix multiplication.
In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2418–
2422. IEEE, 2017.

[70] S. Li and M. Gastpar. Single-server multi-message private information retrieval with
side information. arXiv preprint arXiv:1808.05797, 2018.

[71] S. Li and M. Gastpar. Single-server multi-user private information retrieval with side
information. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 1954–1958. IEEE, 2018.

[72] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. Coding for distributed fog computing.
IEEE Communications Magazine, 55(4):34–40, 2017.

[73] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[74] S. Lu and R. Ostrovsky. Distributed oblivious ram for secure two-party computation.
In Theory of Cryptography Conference, pages 377–396. Springer, 2013.

[75] Y. Lu, Z. Jia, and S. A. Jafar. Double blind t-private information retrieval. IEEE
Journal on Selected Areas in Information Theory, 2(1):428–440, 2021.

[76] O. Luaces, J. Díez, J. Barranquero, J. J. del Coz, and A. Bahamonde. Binary relevance
efficacy for multilabel classification. Progress in Artificial Intelligence, 1(4):303–313,
2012.

[77] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi. Rateless codes for
near-perfect load balancing in distributed matrix-vector multiplication. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 3(3):1–40, 2019.

[78] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282. PMLR, 2017.

[79] H. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private
recurrent language models. Proceedings of ICLR, 2018.

[80] H. B. McMahan et al. Advances and open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1), 2021.

[81] M. Mirmohseni and M. A. Maddah-Ali. Private function retrieval. arXiv preprint
arXiv:1711.04677, 2017.

269

[82] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen. Billion-scale
federated learning on mobile clients: A submodel design with tunable privacy. In
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking, pages 1–14, 2020.

[83] V. Olshevsky and A. Shokrollahi. A Superfast Algorithm for Confluent Rational Tan-
gential Interpolation Problem via Matrix-Vector Multiplication for Confluent Cauchy-
like Matrices. Contemporary Mathematics, 280:31–46, 2001.

[84] V. Pan, M. A. Tabanjeh, Z. Chen, E. Landowne, and A. Sadikou. New transforma-
tions of cauchy matrices and trummer’s problem. Computers & Mathematics with
Applications, 35(12):1–5, 1998.

[85] V. Y. Pan. Structured matrices and polynomials: unified superfast algorithms. Springer
Science & Business Media, 2012.

[86] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon. Hierarchical coding for distributed
computing. arXiv preprint arXiv:1801.04686, 2018.

[87] M. O. Rabin. How to exchange secrets with oblivious transfer. In Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[88] N. Raviv and D. A. Karpuk. Private polynomial computation from lagrange encoding.
IEEE Transactions on Information Forensics and Security, 15:553–563, 2019.

[89] N. Raviv, I. Tamo, and E. Yaakobi. Private information retrieval in graph-based repli-
cation systems. IEEE Transactions on Information Theory, 66(6):3590–3602, 2019.

[90] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label
classification. Machine learning, 85(3):333, 2011.

[91] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr. Coded computation
over heterogeneous clusters. IEEE Transactions on Information Theory, 2019.

[92] A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,
7(3-4):281–292, 1971.

[93] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer, 2003. ISBN: 978-3-540-44389-6, ISSN: 0937-5511.

[94] A. Severinson, A. G. i Amat, and E. Rosnes. Block-diagonal and lt codes for dis-
tributed computing with straggling servers. IEEE Transactions on Communications,
67(3):1739–1753, 2018.

[95] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[96] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and
P. Grover. An application of storage-optimal matdot codes for coded matrix multipli-
cation: Fast k-nearest neighbors estimation. In 2018 IEEE International Conference
on Big Data (Big Data), pages 1113–1120. IEEE, 2018.

270

[97] M. J. Siavoshani, S. P. Shariatpanahi, and M. A. Maddah-Ali. Private information
retrieval for a multi-message scenario with private side information. IEEE Transactions
on Communications, pages 1–1, 2021.

[98] J.-y. Sohn, D.-J. Han, B. Choi, and J. Moon. Election coding for distributed learn-
ing: Protecting signsgd against byzantine attacks. Advances in Neural Information
Processing Systems, 33, 2020.

[99] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, 1969.

[100] G. Suh, K. Lee, and C. Suh. Matrix sparsification for coded matrix multiplication. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1271–1278. IEEE, 2017.

[101] H. Sun and S. A. Jafar. Blind interference alignment for private information retrieval.
2016 IEEE International Symposium on Information Theory (ISIT), pages 560–564,
2016.

[102] H. Sun and S. A. Jafar. The Capacity of Private Information Retrieval. IEEE Trans-
actions on Information Theory, 63(7):4075–4088, July 2017.

[103] H. Sun and S. A. Jafar. The capacity of symmetric private information retrieval. IEEE
Transactions on Information Theory, 65(1):322–329, 2018.

[104] H. Sun and S. A. Jafar. Multiround Private Information Retrieval: Capacity and Stor-
age Overhead. IEEE Transactions on Information Theory, 64(8):5743–5754, August
2018.

[105] H. Sun and S. A. Jafar. Private Information Retrieval from MDS Coded Data with
Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. IEEE Transactions
on Information Theory, 64(2):1000–1022, February 2018.

[106] H. Sun and S. A. Jafar. The Capacity of Robust Private Information Retrieval with
Colluding Databases. IEEE Transactions on Information Theory, 64(4):2361–2370,
April 2018.

[107] H. Sun and S. A. Jafar. The capacity of private computation. IEEE Transactions on
Information Theory, 65(6):3880–3897, June 2019.

[108] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb. Private Information Retrieval from
MDS Coded Data in Distributed Storage Systems. IEEE Transactions on Information
Theory, 2018.

[109] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti. Private
information retrieval from coded storage systems with colluding, byzantine, and unre-
sponsive servers. IEEE Transactions on Information Theory, 65(6):3898–3906, June
2019.

271

[110] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, and S. El Rouay-
heb. Private information retrieval schemes for coded data with arbitrary collusion
patterns. IEEE International Symposium on Information Theory (ISIT), pages 1908–
1912, 2017.

[111] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, and S. E.
Rouayheb. Private Information Retrieval Schemes for Coded Data with Arbitrary
Collusion Patterns. arXiv preprint arXiv:1701.07636, 2017.

[112] R. Tandon. The capacity of cache aided private information retrieval. arXiv preprint
arXiv:1706.07035, 2017.

[113] R. Tandon, S. Amuru, T. C. Clancy, and R. M. Buehrer. Toward optimal secure
distributed storage systems with exact repair. IEEE Transactions on Information
Theory, 62(6):3477–3492, 2016.

[114] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis. Gradient coding: Avoiding
stragglers in distributed learning. In International Conference on Machine Learning,
pages 3368–3376, 2017.

[115] C. Tian, H. Sun, and J. Chen. Capacity-achieving private information retrieval codes
with optimal message size and upload cost. IEEE Transactions on Information Theory,
65(11):7613–7627, 2019.

[116] Q. Wang and M. Skoglund. Linear symmetric private information retrieval for MDS
coded distributed storage with colluding servers. arXiv preprint arXiv:1708.05673,
2017.

[117] Q. Wang and M. Skoglund. Secure private information retrieval from colluding
databases with eavesdroppers. arXiv preprint arXiv:1710.01190, 2017.

[118] Q. Wang and M. Skoglund. On pir and symmetric pir from colluding databases with
adversaries and eavesdroppers. IEEE Transactions on Information Theory, 65(5):3183–
3197, 2019.

[119] Q. Wang, H. Sun, and M. Skoglund. The ε-error capacity of symmetric pir with
byzantine adversaries. arXiv preprint arXiv:1809.03988, 2018.

[120] Q. Wang, H. Sun, and M. Skoglund. The capacity of private information retrieval with
eavesdroppers. IEEE Transactions on Information Theory, 65(5):3198–3214, 2019.

[121] S. Wang, J. Liu, and N. Shroff. Coded sparse matrix multiplication. In International
Conference on Machine Learning, pages 5152–5160. PMLR, 2018.

[122] S. Wang, J. Liu, N. Shroff, and P. Yang. Fundamental limits of coded linear transform.
arXiv preprint arXiv:1804.09791, 2018.

[123] Z. Wang, K. Banawan, and S. Ulukus. Private set intersection: A multi-message
symmetric private information retrieval perspective. arXiv preprint arXiv:1912.13501,
2019.

272

[124] Z. Wang and V. R. Cadambe. Multi-version coding—an information-theoretic per-
spective of consistent distributed storage. IEEE Transactions on Information Theory,
64(6):4540–4561, 2017.

[125] W. Waterhouse. How often do determinants over finite fields vanish? Discrete Math-
ematics, (65):103–104, 1987.

[126] Y. Wei, K. Banawan, and S. Ulukus. The capacity of private information retrieval with
partially known private side information. IEEE Transactions on Information Theory,
65(12):8222–8231, 2019.

[127] Y. Wei, K. Banawan, and S. Ulukus. Fundamental limits of cache-aided private in-
formation retrieval with unknown and uncoded prefetching. IEEE Transactions on
Information Theory, 65(5):3215–3232, May 2019.

[128] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus. The capacity of private information
retrieval from decentralized uncoded caching databases. Information, 10(12):372, 2019.

[129] H. Yang and J. Lee. Secure Distributed Computing with Straggling Servers Using Poly-
nomial Codes. IEEE Transactions on Information Forensics and Security, 14(1):141–
150, Jan. 2019.

[130] H. Yang, W. Shin, and J. Lee. Private information retrieval for secure distributed stor-
age systems. IEEE Transactions on Information Forensics and Security, 13(12):2953–
2964, December 2018.

[131] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2),
2019.

[132] Z.-H. Yang and Y.-J. Hu. Displacement Structure Approach to Cauchy and Cauchy–
Vandermonde Matrices: Inversion Formulas and Fast Algorithms. Journal of Compu-
tational and Applied Mathematics, 138(2):259–272, 2002.

[133] A. C. Yao. Protocols for secure computations. In Foundations of Computer Science,
1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[134] X. Yao, N. Liu, and W. Kang. The capacity of multi-round private information retrieval
from byzantine databases. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2124–2128. IEEE, 2019.

[135] X. Yao, N. Liu, and W. Kang. The capacity of multi-round private information retrieval
from byzantine databases. arXiv preprint arXiv:1901.06907, 2019.

[136] S. Yekhanin. Locally Decodable Codes and Private Information Retrieval Schemes.
PhD thesis, Massachusetts Institute of Technology, 2007.

[137] Q. Yu and A. S. Avestimehr. Coded computing for resilient, secure, and privacy-
preserving distributed matrix multiplication. IEEE Transactions on Communications,
69(1):59–72, 2021.

273

[138] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr.
Lagrange coded computing: Optimal design for resiliency, security, and privacy. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 1215–
1225. PMLR, 2019.

[139] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Coded fourier transform. arXiv
preprint arXiv:1710.06471, 2017.

[140] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Polynomial Codes: an Op-
timal Design for High-Dimensional Coded Matrix Multiplication. arXiv preprint
arXiv:1705.10464, 2017.

[141] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Straggler mitigation in distributed
matrix multiplication: Fundamental limits and optimal coding. IEEE Transactions on
Information Theory, 66(3):1920–1933, 2020.

[142] Y. Zhang and G. Ge. Private information retrieval from MDS coded databases with
colluding servers under several variant models. arXiv preprint arXiv:1705.03186, 2017.

[143] R. Zhou, C. Tian, H. Sun, and T. Liu. Capacity-achieving private information retrieval
codes from mds-coded databases with minimum message size. IEEE Transactions on
Information Theory, 66(8):4904–4916, 2020.

274

Appendix A

Appendix of Chapter 2

A.1 Proof of Lemma 2.7

Let Jk denote the k×k anti-diagonal identity matrix, and let 0k1×k2 denote the k1×k2 matrix

where all elements are equal to 0 (when k1 = k2, this notation is further simplified to 0k1).

Define

I′k =




Ik 0k×1

01×k 0


. (A.1)

Choose B as follows.

275

B =








IK
2

JK
2

JK
2

0K
2


, if K is even,




JK+1
2

+I′K−1
2

+IK+1
2

JK−1
2

01×K−1
2

JK−1
2

0K−1
2
×1

0K−1
2



, if K is odd.

(A.2)

For example,

when K = 4: B =




1 0 0 1

0 1 1 0

0 1 0 0

1 0 0 0



, and when K = 5: B =




0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 0 0 0

1 0 0 0 0




. (A.3)

Let us show that B and IK +B are both invertible.

First, consider B. Regardless of whether K is even or odd, B is an upper anti-triangular

matrix where all anti-diagonal elements are 1 so that det(B) = 1 and B has full rank.

Next, consider IK +B.

When K is even: IK +B =




IK
2

0K
2

0K
2

IK
2


+




IK
2

JK
2

JK
2

0K
2


=




0K
2

JK
2

JK
2

IK
2


 (A.4)

⇒ det(IK +B) = 1. (A.5)

276

When K is odd: IK +B =




IK+1
2

0K+1
2
×K−1

2

0K−1
2
×K+1

2
IK−1

2


+




JK+1
2

+I′K−1
2

+IK+1
2

JK−1
2

01×K−1
2

JK−1
2

0K−1
2
×1

0K−1
2




(A.6)

=




JK+1
2

+I′K−1
2

JK−1
2

01×K−1
2

JK−1
2

0K−1
2
×1

IK−1
2




(A.7)

⇒ det(IK +B) = det


JK+1

2
+I′K−1

2

+




JK−1
2

01×K−1
2


I−1

K−1
2

[
JK−1

2
0K−1

2
×1

]



(A.8)

= det
(
JK+1

2
+I′K−1

2

+I′K−1
2

)
= det

(
JK+1

2

)
= 1 (A.9)

where (A.8) follows from the following formula on the determinant of a block matrix that is

made up of matrices A,B,C,D with proper dimensions and D is invertible.

det




A B

C D


= det(D)det

(
A−BD−1C

)
. (A.10)

The proof is thus complete. �

A.2 Proof of Corollaries 2.1, 2.2, 2.3, 2.4

The proof of Corollary 2.1 is trivial because imposing the symmetric security constraint

cannot increase capacity.

277

A.2.1 Proof of Corollary 2.2

To prove Corollary 2.2 we provide a scheme as follows. Each message Wk,k∈ [1 :K], consists

of L= 1 symbol from some finite field Fq. Let Zx,k,m,x∈ [1 :X],k∈ [1 :K],m∈ [1 :K] be

independent uniform noise symbols from Fq. The subscript, m, in Zx,k,m is interpreted

modulo K, i.e., Zx,k,m =Zx,k,m+K . The storage at each server is specified as,

Sn = {Zn,k,m,k∈ [1 :K],m∈ [1 :K]}, n∈ [1 :X], (A.11)

Sn =

{
Wk+

X∑

x=1

Zx,k,m,k∈ [1 :K],m∈ [1 :K]

}
, n=N. (A.12)

The queries from each server are specified as,

Q[θ]
n :Ask for {Zn,k,mo ,k∈ [1 :K]}, n∈ [1 :X], (A.13)

Q[θ]
n :Ask for {Wk+

X∑

x=1

Zx,k,mo−θ+k,k∈ [1 :K]}, n=N, (A.14)

wheremo is chosen privately and uniformly randomly by the user from [1 :K]. Thus, in order

to retrieve 1 desired message symbol, the user downloads a total of KN symbols from all

servers. The scheme is X-secure because each message symbol is protected by independent

uniform noise terms. It is correct because for k= θ the download from Server N , contains the

symbol Wθ+
∑X

x=1Zx,θ,mo and the downloads from the first X servers include all the noise

terms Zx,θ,mo . The scheme is private because mo is chosen uniformly and privately by the

user. It satisfies symmetric security because all the undesired message symbols Wk,k 6= θ,

contained in the answers are protected by noise terms Zx,k,mo−θ+k and these noise terms are

independent of the noise terms downloaded from servers n∈ [1 :X] because mo−θ+k 6=mo

when k 6= θ. The rate achieved is 1
KN

, which is the capacity for this setting. �

Note that in the Sym-XSPIR scheme described above, each server stores K2 symbols, when

the total data is only KL=K symbols. Thus, this Sym-XSPIR scheme takes advantage of

278

unconstrained storage when K is large, more so than the XSTPIR schemes which store no

more than KL symbols at each server.

A.2.2 Proof of Corollary 2.3

To prove Corollary 2.3, we show that the scheme presented in Section 2.6 automatically

guarantees symmetric security when T = 1. Define

Wc
i = {Wl,l∈ [1 :L],l 6= i} (A.15)

Zc
ij = {Zlx,l∈ [1 :L],x∈ [1 :X],(l,x) 6= (i,j)}. (A.16)

We need to prove that beyond the information that the user must have, i.e., Wθ,Q
[θ]
[1:N],θ, he

cannot learn anything about the messages W[1:L] from the answers A[θ]
[1:N].

I
(
W[1:L];A

[θ]
[1:N] |Wθ,Q

[θ]
[1:N],θ

)
=
∑

l∈[1:L]

I
(
Wl;A

[θ]
[1:N] |W[1:l−1],Wθ,Q

[θ]
[1:N],θ

)
(A.17)

≤
∑

l∈[1:L]

I
(
Wl;A

[θ]
[1:N] |Wc

l ,Wθ,Q
[θ]
[1:N],θ

)
(A.18)

≤
∑

l∈[1:L]

I
(
Wl;A

[θ]
[1:N] |Zc

l1,W
c
l ,Wθ,Q

[θ]
[1:N],θ

)
(A.19)

where we repeatedly used the fact that I(A;B |C)≤ I(A;B |C,D) if I(A;D |C) = 0 and the

facts that

I(Wl;W[l+1:L] |W[1:l−1],Wθ,Q
[θ]
[1:N],θ) = 0 (A.20)

I
(
Wl;Z

c
l1 |Wc

l ,Wθ,Q
[θ]
[1:N],θ

)
= 0 (A.21)

that follow from the indepenence of messages, queries, and the noise terms, by construction

of the scheme in Section 2.6. To prove Corollary 2.3 it suffices to show that each of the terms

279

in the summation is zero. Without loss of generality, let us consider l= 1. Because of the

conditioning on Zc
11,W

c
1,Wθ,Q

[θ]
[1:N],θ, we can subtract the contributions from these terms,

whose values are fixed, from A
[θ]
n , leaving us with only

A′
[θ]
n = (W1 +(f1−αn)Z11)

(
∆n

f1−αn

)
(Qθ+(f1−αn)Z′1) (A.22)

=

(
∆n

f1−αn

)
W1Qθ+∆n(W1Z

′
1 +Z11Qθ)+∆n(f1−αn)Z11Z

′
1 (A.23)

=

(
∆n

f1−αn

)
Wθ1 +∆n(W1Z

′
1 +Z11(θ))+∆n(f1−αn)Z11Z

′
1 (A.24)

where Z11(i) is the ith element of the vector Z11. Note that Wθ1 is also a constant because

of the conditioning on Wθ. Given Zc
11,W

c
1,Wθ,Q

[θ]
[1:N],θ, the random variable A[θ]

[1:N] is an

invertible function of A′[θ][1:N].

I
(
W1;A

[θ]
[1:N] |Zc

11,W
c
1,Wθ,Q

[θ]
[1:N],θ

)
(A.25)

= I
(
W1;A′

[θ]
[1:N] |Zc

11,W
c
1,Wθ,Q

[θ]
[1:N],θ

)
(A.26)

= I
(
W1;A′

[θ]
[1:N] |Wθ1,Q

[θ]
[1:N],θ

)
(A.27)

≤ I(W1;W1Z
′
1 +Z11(θ),Z11Z

′
1 |Wθ1,Qθ,θ) (A.28)

≤ I(W1;W1Z
′
1 +Z11(θ),Z11Z

′
1 |Wθ1,Qθ,Z

′
1,θ) (A.29)

= 0. (A.30)

In (A.28) we used the fact that given Wθ1, the random variable A′[θ][1:N] is a function of

W1Z
′
1 +Z11(θ),Z11Z

′
1 because of (A.24), and the fact that for any random variables A,B,C,

we must have I(A;f(B) |C)≤ I(A;B |C). In (A.29) we used the fact that conditioning on an

independent random variable cannot reduce mutual information, i.e., I(A;B |C)≤ I(A;B |

C,D) if I(A;D |C) = 0, and the fact that Z′1 is independent of W1 after conditioning on

Wθ1,Qθ,θ by construction of the scheme as described in Section 2.6. The last step is justified

as follows. Because of the conditioning on Z′1, its value is a constant for which there are only

280

three possibilities: Z′1 is either the zero vector, or it is equal to µQθ for some non-zero µ∈Fq,

or it is neither zero nor equal to µQθ. If Z′1 is the zero vector, then the mutual information is

automatically zero because W1 is eliminated entirely. If Z′1 =µQθ for some non-zero µ, then

W1Z
′
1 =µWθ1 and the mutual information is again zero because of the conditioning on Wθ1.

Finally, if Z′1 is neither zero nor a scaled version of Qθ, then Z11Z
′
1 is a sum of uniformly

random noise terms in Fq, at least one of which is independent of Z11(θ) and Z′1. So in this

case also the mutual information is zero. This completes the proof of Corollary 2.3. �

A.2.3 Proof of Corollary 2.4

The proof of Corollary 2.4 is presented next. Recall that in the scheme of the proof of

Theorem 2.4, the user obtains the following three symbols from the answers,

WQθ =Wθ (A.31)

WZ′+ZZ′ (A.32)

WZ′+ZBZ′+ZBQθ. (A.33)

We show that symmetric security holds, i.e., conditioned on Z′, from these three symbols

the user learns nothing about the undesired messages W1,··· ,Wθ−1,Wθ+1,··· ,WK . When

Z′ is the zero vector, the symbol WZ′ is zero as well, leaking nothing about the undesired

messages. Now consider (A.32). If Z′ is not the zero vector, then the symbol WZ′ is protected

by an independent noise term. Similarly, consider (A.33) and consider three possibilities:

B(Z′+Qθ) is either zero, or equal to Z′, or not zero and not equal to Z′. If B(Z′+Qθ) is the

zero vector, then because B is invertible, we must have Z′= Qθ, so the symbol WZ′= WQθ

is the desired message, again leaking nothing about undesired messages. If B(Z′+Qθ) = Z′

then (A.33) is redundant, i.e., same as (A.32), so it leaks no new information. Finally, if

281

B(Z′+Qθ) is not zero and not equal to Z′, then ZB(Z′+Qθ) is independent of ZZ′, so that

(A.33) is protected by an independent noise term. Therefore, in all cases, the user learns

nothing about undesired messages, and this completes the proof of symmetric security. �

282

Appendix B

Appendix of Chapter 3

B.1 Lemmas

Lemma B.1. The optimal value of total normalized download, minD(D1 +D2 + ···+DN),

in Theorem 3.2 is equal to the fractional matching number of G[V ,E].

Proof. Let us consider the non-degenerate scenario, ρmin>X+T , because otherwise the

asymptotic capacity is zero. According to Theorem 3.2, the optimal value of total normalized

download minD(D1 +D2 + ···+DN) is expressed as the result of the following linear program.

D∗=min
∑

n∈[N]

Dn (B.1)

such that, (B.2)
∑

n: n∈e

Dn≥ 1, ∀e∈E (B.3)

Dn≥ 0, ∀n∈ [N] (B.4)

Since the linear program is bounded and feasible, by the strong duality of linear program-

283

ming, we have as its dual the following linear program.

D∗= max
∑

e∈E

xe (B.5)

such that, (B.6)
∑

e: e3n

xe≤ 1, ∀n∈ [N] (B.7)

xe≥ 0, ∀e∈E (B.8)

Thus, the optimal converse bound D∗ is precisely the maximum weight of a fractional 1-

matching in G. Therefore, the converse bound in Theorem 3.2 coincides with the achievability

bound in Theorem 3.1 if and only if D∗= N
ρmin−X−T . This completes the proof of Lemma

3.1. �

Lemma B.2. For distinct non-zero values β1,··· ,βn and for v1,··· ,vn defined as

vi,


 ∏

j∈[n]\{i}

(βi−βj)



−1

, i∈ [n] (B.9)

the following identity is satisfied,

∑

i∈[n]

viβ
j
i = 0, ∀j ∈{0,1,··· ,n−2}. (B.10)

Proof. The proof of Lemma B.2 follows directly from the properties of dual GRS codes for

which we refer the reader to [33]. For our purpose let us recall that given two n-dimensional

vectors

u = [u1,u2,··· ,un] (B.11)

β = [β1,β2,··· ,βn] (B.12)

284

where u1,u2,··· ,un are non-zero, while β1,β2,··· ,βn are non-zero and distinct, the canonical

generator matrix for the Generalized Reed-Solomon code GRSk,n(u,β) is given by




u1 u2 ··· un

u1β1 u2β2 ··· unβn
...

... ··· ...

u1β
k−1
1 u2β

k−1
2 ··· unβk−1

n




(B.13)

The dual code of a GRS code is also a GRS code. Specifically, the dual for GRSk,n(u,β) is

GRSn−k,n(v,β) where v = [v1,v2,··· ,vn] and vi =
(
ui
∏

j∈[n]\{i}(βi−βj)
)−1

. For the purpose

of Lemma B.2 let us set u1 =u2 = ···=un = 1. Since the dual of a code C is a code C⊥ that

spans the null space of C, we have




v1 v2 ··· vn

v1β1 v2β2 ··· vnβn
...

... ··· ...

v1β
k−1
1 v2β

k−1
2 ··· vnβk−1

n







1 β1 ··· βn−k−1
1

1 β2 ··· βn−k−1
2

...
... ··· ...

1 βn ··· βn−k−1
n




= 0 (B.14)

which implies that

∑

i∈[n]

viβ
j
i = 0 (B.15)

for j ∈{0,1,··· ,n−2}. This completes the proof of Lemma B.2. �

Lemma B.3. For two positive integers n,L such that n>L, and for distinct non-zero values

β1,··· ,βn such that βi+` 6= 0,∀i∈ [n],`∈ [L] and for v1,··· ,vn defined as

vi,


 ∏

j∈[n]\{i}

(βi−βj)



−1

, i∈ [n] (B.16)

285

the following L×L matrix




1 ··· 1

β1 ··· βn
...

...
...

βL−1
1 ··· βL−1

n




︸ ︷︷ ︸
A




v1

f1−β1
... v1

fL−β1

...
...

...

vn
f1−βn ...

vn
fL−βn




︸ ︷︷ ︸
B

(B.17)

is invertible.

Proof. Let us define the matrix C as follows.

C =




v1 v1β1 ... v1β
n−L−1
1

...
...

...
...

vn vnβn ... vnβ
n−L−1
n




(B.18)

Guaranteed by Lemma 2.5, which is also a standard result for Cauchy-Vandermonde ma-

trices [37], the n×n matrix [B|C] is invertible. Besides, guaranteed by Lemma B.2 and

the definitions of β1,··· ,βn and v1,··· ,vn, the rows of the L×n matrix A generate the null

space of the matrix C. Therefore, we have rank(A) = rank(A× [B|C]) = rank([AB|AC]) =

rank([AB|0]) = rank(AB), where 0 is the L×(n−L) zero matrix. Note that the rank of the

transposed Vandermonde matrix A is L, thus we have rank(AB) =L, which indicates that

the matrix AB is invertible. This completes the proof of Lemma B.3.

Lemma B.4. For all m∈ [M],k∈ [Km], X ⊂Rm, |X |≤X,

I
(
S[N]\Rm ,SX ;Wm,k,Q

[m,k]
[N]

)
= 0. (B.19)

286

Proof.

I(S[N]\Rm ,SX ;Wm,k,Q
[m,k]
[N]) (B.20)

= I(Wm,k;S[N]\Rm ,SX)+I(Q
[m,k]
[N] ;S[N]\Rm ,SX |Wm,k) (B.21)

≤ I(Wm,k;S[N]\Rm ,SX)+I(Q
[m,k]
[N] ;S[N]\Rm ,SX ,Wm,k) (B.22)

= I(Wm,k;S[N]\Rm ,SX) (B.23)

≤ I(Wm,k;W ′,W (X)

m,k) (B.24)

= I(Wm,k;W
(X)

m,k)+I(Wm,k;W ′|W (X)

m,k) (B.25)

= I(Wm,k;W ′|W (X)

m,k) (B.26)

≤ I(Wm,k,W
(X)

m,k;W
′
) (B.27)

≤ I(Wm,k;W ′) (B.28)

= 0. (B.29)

where W ′= (Wm′,k′ ,∀m′ ∈ [M],k′ ∈ [Km],(m′,k′) 6= (m,k)), and W (X)

m,k = (W
(n)

m,k,n∈X). Steps

of the proof are justified as follows. (B.21) and (B.22) follow from the chain rule and the

non-negativity of mutual information. (B.23) follows from (3.18), while (B.24), follows from

the definition of replicated storage in (3.11). (B.25) is the chain rule of mutual information,

while (B.26) follows from the security constraint in (3.16). (B.27) follows from chain rule

and the non-negativity of mutual information. In (B.28) we used the fact that (Wm,k,W
(X)

m,k)

is function of Wm,k, and the last step follows from (3.8). This completes the proof of Lemma

B.4. �

Lemma B.5. For all m∈ [M],k∈ [Km], X ,T ⊂Rm,

I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
[N])≤ I(Wm,k;A

[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T). (B.30)

287

Proof.

I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
[N])

=H(A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
[N])−H(A

[m,k]
T |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
[N]) (B.31)

≤H(A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)−H(A

[m,k]
T |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
[N]) (B.32)

=H(A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)−H(A

[m,k]
T |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
T)

+H(A
[m,k]
T |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
T)−H(A

[m,k]
T |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
[N])

(B.33)

= I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)+I(A

[m,k]
T ;Q

[m,k]
[N] |Wm,k,SX ,S[N]\Rm ,Q

[m,k]
T) (B.34)

≤ I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)+I(A

[m,k]
T ,Wm,k,SX ,S[N]\Rm ;Q

[m,k]
[N] |Q

[m,k]
T) (B.35)

≤ I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)+I(A

[m,k]
T ,S[N];Q

[m,k]
[N] |Q

[m,k]
T) (B.36)

= I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T)

+I(S[N];Q
[m,k]
[N] |Q

[m,k]
T)+I(A

[m,k]
T ;Q

[m,k]
[N] |S[N],Q

[m,k]
T) (B.37)

= I(Wm,k;A
[m,k]
T |SX ,S[N]\Rm ,Q

[m,k]
T) (B.38)

(B.31) follows from the definition of mutual information, (B.32) follows because dropping

conditioning cannot reduce entropy, (B.33) adds and subtracts the same term so nothing

changes, (B.34) uses the definition of mutual information, (B.35) uses the chain rule of

mutual information and the fact that mutual information is always non-negative, (B.36)

uses the fact that
(
Wm,k,SX ,S[N]\Rm

)
is a function of S[N] according to (3.9) and (3.11),

and (B.37) uses chain rule of mutual information. For (B.38) we use the fact that S[N]

is independent of Q[m,k]
[N] according to (3.18), and A

[m,k]
T is fully determined by S[N],Q

[m,k]
T

according to (3.20). This completes the proof of Lemma B.5. �

Lemma B.6. For any m∈ [M], T ⊂Rm, |T |≤T ,

I(Q
[m,κ]
T ,A

[m,κ]
T ,S[N];κ) = 0 (B.39)

288

Proof.

I(Q
[m,κ]
T ,A

[m,κ]
T ,S[N];κ) = I(Q

[m,κ]
T ;κ)+I(S[N];κ |Q[m,κ]

T)+I(A
[m,κ]
T ;κ |S[N],Q

[m,κ]
T)

(B.40)

= I(Q
[m,κ]
T ;κ)+I(S[N];κ |Q[m,κ]

T) (B.41)

≤ I(Q
[m,κ]
T ;κ)+I(S[N];κ,Q

[m,κ]
T) (B.42)

= 0 (B.43)

(B.40) is the chain rule of mutual information, (B.41) follows because A[µ,κ]
T is fully deter-

mined by S[N],Q
[µ,κ]
T according to (3.20). The next step, (B.42) follows because of the chain

rule of mutual information and the non-negativity of mutual information, and (B.43) follows

from (3.18),(3.19). This completes the proof of Lemma B.6. �

Lemma B.7. For any m∈ [M],k∈ [Km] and subsets X ,T ⊂Rm such that |X |≤X,

I
(
Wm,K ; Wm,K′ |SX ,S[N]\Rm ,Q

[m,k]
T

)
= 0 (B.44)

where K⊂ [Km], K′= [Km]\K, Wm,K= (Wm,k,k∈K) and Wm,K′ = (Wm,k,k∈K′).

Proof. Let us define WM′ = (Wm′,k,∀m′ ∈ [M],k∈ [Km′],m
′ 6=m). Wm,K= (Wm,k,k∈K).

Wm,K′ = (Wm,k,k∈K′). W(X)

m,K= (W(n)

m,k,n∈X ,k∈K). W(X)

m,K′ = (W(n)

m,k,n∈X ,k∈K′).

I(Wm,K;Wm,K′ |SX ,S[N]\Rm ,Q
[m,k′]
T) (B.45)

≤ I(Wm,K;Wm,K′ ,SX ,S[N]\Rm ,Q
[m,k′]
T) (B.46)

= I(Wm,K;Wm,K′ ,SX ,S[N]\Rm)+I(Wm,K;Q
[m,k′]
T |Wm,K′ ,SX ,S[N]\Rm) (B.47)

≤ I(Wm,K;Wm,K′ ,SX ,S[N]\Rm)+I(Q
[m,k′]
T ;Wm,K,Wm,K′ ,SX ,S[N]\Rm) (B.48)

= I(Wm,K;Wm,K′ ,SX ,S[N]\Rm) (B.49)

≤ I(Wm,K;Wm,K′ ,WM′ ,W(X)

m,K,W
(X)

m,K′) (B.50)

289

≤ I(Wm,K;Wm,K′ ,WM′ ,W(X)

m,K) (B.51)

= I(Wm,K;W(X)

m,K)+I(Wm,K;Wm,K′ ,WM′ |W(X)

m,K) (B.52)

= I(Wm,K;Wm,K′ ,WM′ |W(X)

m,K) (B.53)

≤ I(Wm,K,W(X)

m,K;Wm,K′ ,WM′) (B.54)

≤ I(Wm,K;Wm,K′ ,WM′) (B.55)

= 0. (B.56)

(B.46), (B.47), (B.48) follow from the chain rule and the non-negativity of mutual informa-

tion. (B.49) holds because of (3.18), while in (B.50), we used the definition of the storage

as in (3.11). (B.51) follows because
(
Wm,K′ ,W(X)

m,K′

)
is function of Wm,K′ . (B.52) is again

the chain rule of mutual information, and (B.53) follows from the X-security constraint as

in (3.16). (B.54) follows from the chain rule and the non-negativity of mutual information,

while in (B.55), we used the fact that
(
Wm,K,W(X)

m,K

)
is function of Wm,K. The last step

holds because of (3.8). This completes the proof of Lemma B.7. �

290

Appendix C

Appendix of Chapter 5

C.1 Multi-Message X-Secure T -Private Information Re-

trieval

C.1.1 Problem Statement

Consider K messages stored at N distributed servers, W1,W2,...,WK . Each message is

represented by L random symbols from the finite field Fq.

H(W1) =H(W2) = ···=H(WK) =L, (C.1)

H(W[K]) =KL, (C.2)

in q-ary units. The information stored at the n-th server is denoted by Sn, n∈ [N]. X-secure

storage, 0≤X ≤N , guarantees that any X (or fewer) colluding servers learns nothing about

291

messages.

I(SX ;W[K]) = 0, ∀X ⊂ [N],|X |=X. (C.3)

To make information retrieval possible, messages must be function of S[N].

H(W[K]|S[N]) = 0. (C.4)

The multi-message T -private information retrieval allows the user to retrieve M messages

simultaneously. The user privately and uniformly generate a set of indices of desired messages

K, K⊂ [K],|K|=M . To retrieve desired messages privately, the user generates N queries

QK[N]. The n-th query QKn is sent to the n-th server. The user has no prior knowledge of

information stored at servers, i.e.,

I(S[N];K,QK[N]) = 0. (C.5)

T -privacy, 0≤T ≤N , guarantees that any T (or fewer) colluding servers learns nothing about

K.

I(QKT ,ST ;K) = 0, ∀T ⊂ [N],|T |=T. (C.6)

Upon receiving user’s query QKn , the n-th server responds user with an answer AKn , which is

function of the query and its storage, i.e.,

H(AKn |QKn ,Sn) = 0. (C.7)

The user must be able to recover desired messages WK from all answers AK[N].

H(WK|AK[N],Q
K
[N],K) = 0. (C.8)

292

The rate of a multi-message XSTPIR scheme is defined by the number of q-ary symbols of

desired messages that are retrieved per downloaded q-ary symbol,

R=
H(WK)∑
n∈[N]A

K
n

=
ML

D
. (C.9)

D=
∑

n∈[N]A
K
n is expected number of downloaded q-ary symbols from all servers. The ca-

pacity of multi-message XSTPIR is the supremum of rate over all feasible schemes, denoted

as CMM-XSTPIR(N,X,T,K,M).

Note that setting X = 0 reduces the problem to basic multi-message T -private information

retrieval where storage is not secure. The setting T = 0 reduces the problem to X-secure

storage with no privacy constraint.

C.1.2 Upper Bound of the Capacity of Multi-Message XSTPIR

To prove Theorem 5.1, we need following lemmas.

Lemma C.1. For all K,K′⊂ [K], |K|= |K′|=M , ∀T ⊂ [N],|T |=T , we have

(
QKT ,A

K
T ,S[N],W[K]

)
∼
(
QK

′

T ,A
K′
T ,S[N],W[K]

)
(C.10)

Proof. It suffices to prove I
(
QKT ,A

K
T ,S[N],W[K];K

)
= 0. The proof is presented as follows.

I
(
QKT ,A

K
T ,S[N],W[K];K

)
(C.11)

=I(QKT ;K)+I(S[N],W[K];K|QKT)+I(AKT ;K|QKT ,S[N],W[K]) (C.12)

=I(QKT ;K)+I(S[N],W[K];K|QKT) (C.13)

=I(QKT ;K)+I(S[N];K|QKT) (C.14)

≤I(QKT ;K)+I(S[N];K,QKT) (C.15)

293

=0. (C.16)

Steps are justified as follows. (C.12) is the chain rule of mutual information. (C.13) holds

from the fact that AKT is function of (QKT ,S[N]) according to (C.7). (C.14) follows becauseW[K]

is function of S[N], according to (C.4). (C.15) follows from the chain rule and non-negativity

of mutual information. In last step, we simply used (C.5) and (C.6). This completes the

proof of Lemma C.1.

Lemma C.2. For all T ,X ⊂ [N], |T |=T,|X |=X, ∀K,K′⊂ [K], |K|= |K′|=M , ∀κ⊂ [K],

we have

H(AKT |SX ,QK[N],Wκ) =H(AKT |SX ,QKT ,Wκ). (C.17)

Proof.

H(AKT |SX ,QKT ,Wκ)−H(AKT |SX ,QK[N],Wκ) (C.18)

= I(AKT ;QK[N]|SX ,QKT ,Wκ) (C.19)

≤ I(AKT ,SX ,Wκ;Q
K
[N]|QKT) (C.20)

≤ I(AKT ,S[N],Wκ;Q
K
[N]|QKT) (C.21)

= I(AKT ,S[N];Q
K
[N]|QKT) (C.22)

= I(S[N];Q
K
[N]|QKT)+I(AKT ;QK[N]|QKT ,S[N]) (C.23)

= I(S[N];Q
K
[N]|QKT) (C.24)

≤ I(S[N];Q
K
[N]) (C.25)

= 0. (C.26)

Steps are justified as follows. (C.19) is the definition of mutual information. (C.20) follows

from the chain rule and non-negativity of mutual information. In (C.21), we added terms in

mutual information. (C.22) holds from the fact that W[K] is function of S[N], according to

294

(C.4). (C.23) is the chain rule of mutual information. (C.24) follows from the fact that AKT

is fully determined by (QKT ,S[N]) according to (C.7). (C.25) follows from the chain rule and

non-negativity of mutual information, while the last step holds from (C.5). This completes

the proof of Lemma C.2.

Lemma C.3. Denote Dn the expected number of q-ary symbols downloaded from the n-th

server. For all X ⊂ [N], |X |=X, X = [N]\X , ∀K1⊂ [K], |K1|=M , we have

ML≤
∑

n∈X

Dn−H(AK1

X |SX ,Q
K1

[N],WK1). (C.27)

Proof.

ML=H(WK1) = I(WK1 ;AK1

[N]|QK1

[N]) (C.28)

≤ I(WK1 ;AK1

[N],SX |QK1

[N]) (C.29)

= I(WK1 ;SX |QK1

[N])+I(WK1 ;AK1

[N]|SX ,QK1

[N]) (C.30)

≤ I(WK1 ,Q
K1

[N];SX)+I(WK1 ;AK1

[N]|SX ,QK1

[N]) (C.31)

= I(WK1 ;SX)+I(QK1

[N];SX |WK1)+I(WK1 ;AK1

[N]|SX ,QK1

[N]) (C.32)

≤ I(QK1

[N];WK1 ,SX)+I(WK1 ;AK1

[N]|SX ,QK1

[N]) (C.33)

= I(WK1 ;AK1
X ,A

K1

X |SX ,Q
K1

[N]) (C.34)

= I(WK1 ;AK1

X |SX ,Q
K1

[N]) (C.35)

=H(AK1

X |SX ,Q
K1

[N])−H(AK1

X |WK1 ,SX ,Q
K1

[N]) (C.36)

≤
∑

n∈X

Dn−H(AK1

X |SX ,Q
K1

[N],WK1). (C.37)

Steps are justified as follows. (C.28) follows from (C.8), while in (C.29), we add terms in

mutual information. In (C.30), (C.31), (C.32) and (C.33), we repeatedly used the chain

rule and non-negativity of mutual information, while (C.33) and (C.34) holds from the

independence of query and storage, according to (C.5). (C.35) holds from the fact that

295

AK1
X is fully determined by (QK1

[N],SX) according to (C.7). (C.36) is the definition of mutual

information, while (C.37) follows from the fact that dropping conditions can not reduce

entropy. This completes the proof of Lemma C.3.

Lemma C.4. For all X ⊂ [N], |X |=X, ∀K⊂ [K], |K|=M , ∀κ⊂ [K], we have

I(WK;SX ,Q
K
[N],Wκ) = |K∩κ|L. (C.38)

Proof.

I(WK;SX ,Q
K
[N],Wκ)

= I(WK;Wκ)+I(WK;SX ,Q
K
[N]|Wκ) (C.39)

= |K∩κ|L+I(WK;SX ,Q
K
[N]|Wκ). (C.40)

(C.39) is the chain rule of mutual information, and (C.40) follows from (C.1) and (C.2). Let

us consider the RHS term, we have

I(WK;SX ,Q
K
[N]|Wκ)

≤ I(SX ,Q
K
[N];WK,Wκ) (C.41)

= I(SX ;WK,Wκ)+I(QK[N];WK,Wκ|SX) (C.42)

= I(QK[N];WK,Wκ|SX) (C.43)

≤ I(QK[N];WK,Wκ,SX) (C.44)

≤ I(QK[N];S[N]) (C.45)

= 0. (C.46)

Steps are justified as follows. (C.41) and (C.42) follows from the chain rule and non-

negativity of mutual information, while (C.43) follows from the X-secure constraint in (C.3).

(C.44) holds from the chain rule and non-negativity of mutual information, and (C.45) fol-

296

lows from the fact that (WK,Wκ,SX) is function of S[N]. The last step follows from (C.5).

This completes the proof of Lemma C.4.

Now we are ready to formally present the proof of Theorem 5.1.

Proof. First, let us consider X <N ≤X+T . For this setting, let us assume that Ki = [i :

i+M−1],i∈ [K−M+1]. Note that by the selection of Ki’s, ∀i∈ [K−M], we have

|Ki+1∩(K1∪···∪Ki)|= (M−1). (C.47)

Now let us consider the RHS term in (C.37). For all i∈ [K−M], we have

H(AKiX |SX ,Q
Ki
[N],WK1∪···∪Ki)

=H(AKiX |SX ,Q
Ki
X ,WK1∪···∪Ki) (C.48)

=H(A
Ki+1

X |SX ,QKi+1

X ,WK1∪···∪Ki) (C.49)

=H(A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki) (C.50)

=H(WKi+1
,A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki) (C.51)

=H(WKi+1
|SX ,QKi+1

[N] ,WK1∪···∪Ki)+H(A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki+1
) (C.52)

=L+H(A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki+1
). (C.53)

Steps are justified as follows. (C.48) follows from Lemma C.2, while (C.49) follows from

Lemma C.1. (C.50) again follows from Lemma C.2. (C.51) follows from (C.7) and (C.8).

(C.52) is the chain rule of entropy, while the last step follows from Lemma C.4 and (C.47).

Applying (C.53) repeatedly for i= 1,2,...,K−M , we have

ML≤
∑

n∈X

Dn−H(AK1

X |SX ,Q
K1

[N],WK1) (C.54)

=
∑

n∈X

Dn−L−H(AK2

X |SX ,Q
K2

[N],WK1∪K2) (C.55)

297

= ··· (C.56)

=
∑

n∈X

Dn−(K−M)L. (C.57)

Averaging over all X , we have

D=
∑

n∈[N]

Dn≥
N

N−XKL. (C.58)

Therefore we have

R=
ML

D
≤M(N−X)

KN
. (C.59)

Thus

CMM-XSTPIR(N,X,T,K,M)≤M(N−X)

KN
, X <N ≤X+T. (C.60)

Next, let us consider N >X+T . For this setting, let us assume that Ki = {M(i−1)+

1,M(i−1)+2,...,Mi}, ∀i∈ [bK
M
c]. Note that Ki’s are disjoint sets. Similarly, let us consider

the RHS term in (C.37). Consider any set T ⊂X , |T |=T , For all i,i+1∈ [bK
M
c], we have

H(AKiX |SX ,Q
Ki
[N],WK1∪···∪Ki)

≥H(AKiT |SX ,QKi[N],WK1∪···∪Ki) (C.61)

=H(AKiT |SX ,QKiT ,WK1∪···∪Ki) (C.62)

=H(A
Ki+1

T |SX ,QKi+1

T ,WK1∪···∪Ki) (C.63)

=H(A
Ki+1

T |SX ,QKi+1

[N] ,WK1∪···∪Ki). (C.64)

Steps are justified as follows. (C.61) follows from the fact that dropping terms can not

increase entropy. (C.62) follows from Lemma C.2. (C.63) follows from Lemma C.1, while

(C.64) again follows from Lemma C.2. Now let us average (C.64) over all T and apply Han’s

298

inequality.

H(AKiX |SX ,Q
Ki
[N],WK1∪···∪Ki)

≥ T

N−XH(A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki) (C.65)

=
T

N−XH(WKi+1
,A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki) (C.66)

=
T

N−X
(
H(WKi+1

|SX ,QKi+1

[N] ,WK1∪···∪Ki)+H(A
Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki+1
)
)

(C.67)

=
T

N−X
(
ML+H(A

Ki+1

X |SX ,QKi+1

[N] ,WK1∪···∪Ki+1
)
)
. (C.68)

(C.65) follows from the Han’s inequality, and (C.66) follows from (C.7) and (C.8). (C.66) is

the chain rule of entropy, while the last step holds from Lemma C.4 and the fact that Ki’s

are disjoint sets. Now let us apply (C.68) repeatedly for i= 1,2,...,bK
M
c−1, we have

ML≤
∑

n∈X

Dn−H(AK1

X |SX ,Q
K1

[N],WK1) (C.69)

≤
∑

n∈X

Dn−
T

N−X
(
ML+H(AK2

X |SX ,Q
K2

[N],WK1∪K2)
)

(C.70)

≤ ... (C.71)

≤
∑

n∈X

Dn−ML

((
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)
. (C.72)

Thus we have

∑

n∈X

Dn≥ML

(
1+

(
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)
. (C.73)

Averaging over all X , we have

D=
∑

n∈[N]

Dn≥ML
N

N−X

(
1+

(
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)
. (C.74)

299

Therefore,

R=
ML

D
≤ N−X

N

(
1+

(
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)−1

. (C.75)

So we have,

CMM-XSTPIR(N,X,T,K,M)

≤ N−X
N

(
1+

(
T

N−X

)
+ ···+

(
T

N−X

)bK
M
c−1
)−1

, N >X+T. (C.76)

This completes the proof of Theorem 5.1.

Remark C.1. Note that when X = 0, i.e., the basic multi-message T -private information

retrieval problem where storage is not secure, the proof of Theorem 5.1 follows directly, and

the resulting upper bound is obtained by setting X = 0.

Remark C.2. Note that when T = 0, i.e., the problem with X-secure storage and no privacy

requirement, we have

CMM-XSTPIR(N,X,T = 0,K,M)

≤





0, N ≤X,
N−X
N

, N >X.
(C.77)

C.2 Proof of Lemma 5.2

To prove Lemma 5.2, we need the following lemmas.

Lemma C.5. For independent random matrices Ā∈Fl×kq ,B̄∈Fk×kq , if the elements of B̄

300

are i.i.d. uniform then

lim
q→∞

H(ĀB̄ | B̄) =H(Ā) (C.78)

in q-ary units.

Proof. Define σ as 0 if B̄ is singular, and 1 otherwise. Then we have

H(ĀB̄ | B̄) =H(ĀB̄ | B̄,σ) (C.79)

=H(ĀB̄ | B̄,σ= 1)P (σ= 1)+H(ĀB̄ | B̄,σ= 0)P (σ= 0) (C.80)

=H(Ā | B̄,σ= 1)P (σ= 1)+H(ĀB̄ | B̄,σ= 0)P (σ= 0) (C.81)

=H(Ā)P (σ= 1)+H(ĀB̄ | B̄,σ= 0)P (σ= 0) (C.82)

=H(Ā)
k∏

i=1

(1−q−i)+H(ĀB̄ | B̄,σ= 0)

(
1−

k∏

i=1

(1−q−i)
)

(C.83)

In (C.81) we used the fact that given a square non-singular (invertible) matrix B̄, the matrix

ĀB̄ is an invertible function of the matrix Ā. In (C.83) we used the result from [125]

that the probability of a matrix B̄ drawn uniformly from Fk×kq being singular is exactly

1−∏k
i=1(1−q−1). Now, since H(ĀB̄ | B̄,σ= 0) is a finite value bounded between 0 and lk,

as q→∞ we have H(ĀB̄ | B̄) =H(Ā).

The random matrices A,B in the next two lemmas are as defined in Lemma 5.2. Note that

we assume that q→∞ throughout the remainder of this section.

Lemma C.6. When K ≥M , let us express A as

A = [(A1)L×M︸ ︷︷ ︸
First M columns

| (A2)L×(K−M)︸ ︷︷ ︸
Last K−M columns

]. (C.84)

301

Similarly, let us express B as

B =




(B1)M×M

(B2)(K−M)×M



}First M rows

}Last K−M rows.

(C.85)

Then we have

H(AB |B1,B2,A2) =H(A1). (C.86)

Proof. As q→∞, the square matrix B1 is invertible with probability 1. Therefore, using

Lemma C.5, H(AB |B1,B2,A2) =H(A1B1 +A2B2 |B1,B2,A2) =H(A1B1 |B1,B2,A2) =

H(A1 |B1,B2,A2) =H(A1).

Lemma C.7. When K<M , let us express B as

B = [(B1)K×K︸ ︷︷ ︸
First K columns

| (B2)K×(M−K)︸ ︷︷ ︸
Last M−K columns

]. (C.87)

Then we have

H(AB |B1,B2) =H(A). (C.88)

In particular, when K<L, we have

H(AB |B1) =H(A)+H(B2). (C.89)

Proof. As q→∞, the square matrix B1 is invertible with probability 1. Therefore, H(AB |

B1,B2) =H(AB1,AB2 |B1,B2) =H(A,AB2 |B1,B2) =H(A |B1,B2) =H(A).

When K<L, the matrix A has full column rank with probability 1, so

that given A, the matrix B2 is an invertible function of AB2. There-

302

fore, H(AB |B1) =H(AB1,AB2 |B1) =H(A,AB2 |B1) =H(A |B1)+H(AB2 |B1,A) =

H(A |B1)+H(B2 |B1,A) =H(A)+H(B2).

Now we are ready to prove the first part of Lemma 5.2.

C.2.1 Proof of Lemma 5.2: (5.20)

Proof. Case 1. K ≤min(L,M).

First, let us consider the upper bound. Note that we can rewrite matrix A as

A =




(A1)K×K

(A2)(L−K)×K



}First K rows

}Last L−K rows.
(C.90)

Similarly, let us rewrite matrix B as

B = [(B1)K×K︸ ︷︷ ︸
First K columns

| (B2)K×(M−K)︸ ︷︷ ︸
Last M−K columns

]. (C.91)

Note that as q→∞, square matrices A1 and B1 are invertible with probability 1. Thus we

have

A =




IK

A2A
−1
1


A1, (C.92)

B = B1

[
IK |B−1

1 B2

]
. (C.93)

303

Therefore,

AB =




IK

A2A
−1
1


(A1B1)

[
IK |B−1

1 B2

]
. (C.94)

Then we have

H(AB)≤H(A2A
−1
1 ,A1B1,B

−1
1 B2) (C.95)

≤K(L−K)+K2 +K(M−K) (C.96)

=LK+KM−K2, (C.97)

in q-ary units. On the other hand, from (C.89) of Lemma C.7, we have

H(AB)≥H(AB |B1) (C.98)

=H(A)+H(B2) (C.99)

=LK+KM−K2, (C.100)

in q-ary units. This completes the proof of (5.20) for Case 1.

Case 2. M ≤min(L,K).

Let us consider the upper bound first. Since AB has dimension L×M , it is trivial that

H(AB)≤LM in q-ary units. On the other hand, from Lemma C.6, we have H(AB)≥

H(AB |B1,B2,A2) =H(A1) =LM in q-ary units. This completes the proof of (5.20) for

Case 2.

Case 3. L≤min(K,M). By symmetry this case is identical to Case 2. This completes the

proof of (5.20) for Lemma 5.2.

304

C.2.2 Proof of Lemma 5.2: (5.21),(5.22)

Proof. First let us prove that H(AB |B) = min(LM,LK). If K ≤M , then from (C.88) of

Lemma C.7, we have H(A×B |B) =H(A) =LK in q-ary units. Now consider K>M . We

have H(AB |B)≤H(AB) =LM , in q-ary units. On the other hand, from Lemma C.6,

we have H(A×B |B) =H(A×B |B1,B2)≥H(A×B |B1,B2,A2) =H(A1) =LM in q-ary

units. By symmetry, H(A×B|A) = min(LM,KM) can be similarly proved. This completes

the proof of Lemma 5.2.

305

Appendix D

Appendix of Chapter 6

D.1 N-CSA Codes for X-secure B-byzantine N-linear

Coded Distributed Batch Computation

Let us consider the problem of X-secure B-byzantine N -linear coded distributed batch com-

putation (XSBNCDBC) over a finite field Fq, where the shares X̃(n)
[S]

,n∈ [N] are coded in an

X-secure fashion, i.e., any X colluding servers learn nothing about the data, x(n)
[L] . Formally,

we have

I

(
X̃(n)

X
;x

(n)
[L]

)
= 0, ∀X ⊂ [S],|X |=X,n∈ [N]. (D.1)

Furthermore, we assume that there exists a set of servers B, B⊂ [S], |B|≤B, known as

Byzantine servers. The user knows the number of Byzantine servers B but the realization

of the set B is not known to the user apriori. The Byzantine servers respond to the user

arbitrarily, possibly introducing errors. However, the remaining servers, i.e., all servers

s∈ [S]\B, if they respond at all, respond truthfully with the function hs. We will follow the

306

problem statement and definitions of N -CDBC in all other aspects. The goal in this section

is to present a generalized N -CSA codes construction for XSBNCDBC, which achieves the

recovery threshold R=Kc(N+`−1)+N(X−1)+2B+1. To construct N -CSA codes for

XSBNCDBC, let f1,1,f1,2,··· ,f`,Kc and α1,α2,··· ,αS be (S+L) distinct elements from Fq,

where q≥S+L. For all n∈ [N], let (z
(n)
l,k,x)l∈[`],k∈[Kc],x∈[X] be independent uniformly random

noise vectors from Vn, that are used to guarantee the security. The independence between

data and random noise symbols is specified as follows.

H(x[L],(z
(n)
l,k,x)n∈[N],l∈[`],k∈[Kc],x∈[X]) =H(x[L])+

∑

n∈[N],l∈[`],
k∈[Kc],x∈[X]

H(z
(n)
l,k,x). (D.2)

For all l∈ [`],s∈ [S], let us define

∆,Kc
s =

∏

k∈[Kc]

(fl,k−αs). (D.3)

For all n∈ [N],l∈ [`],k∈ [Kc], we define

x
(n)
l,k =x

(n)
Kc(l−1)+k. (D.4)

For all s∈ [S],n∈ [N], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1,X̃
(n)

s

2,··· ,X̃(n)
s

`), (D.5)

where for l∈ [`], let us set

X̃(n)
s

l = ∆,Kc
s


 ∑

k∈[Kc]

1

fl,k−αs
x

(n)
l,k +

∑

x∈[X]

αx−1
s z

(n)
l,k,x


. (D.6)

Now it is readily seen that the X-security of data is guaranteed by the i.i.d. and uni-

formly distributed noise terms, i.e., (z
(n)
l,k,x)n∈[N],l∈[`],k∈[Kc],x∈[X] that are coded according to

307

an MDS(X,S) code (a Reed-Solomon code). The answer returned by the sth server is con-

structed as follows.

Ys =
∑

l∈[`]

1

∆,Kc
s

Ω(X̃(1)
s

l ,X̃
(2)

s

l ,··· ,X̃(N)
s

l). (D.7)

Now let us see why it is possible to recover the desired evaluations from the answers of any

R=Kc(N+`−1)+N(X−1)+1 servers. Note that Ys can be rewritten as follows.

Ys =
∑

l∈[`]

1

∆,Kc
s

Ω(X̃(1)
s

l ,X̃
(2)

s

l ,··· ,X̃(N)
s

l) (D.8)

=
∑

l∈[`]

(∆,Kc
s)N−1Ω


 ∑

k∈[Kc]

1

fl,k−αs
x

(1)
l,k +

∑

x∈[X]

αx−1
s z

(1)
l,k,x,··· ,

,··· ,
∑

k∈[Kc]

1

fl,k−αs
x

(N)
l,k +

∑

x∈[X]

αx−1
s z

(N)
l,k,x


 (D.9)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′−αs)N−1

(fl,k−αs)
Ω(x

(1)
l,k ,··· ,x

(N)
l,k)+

∑

i∈[(Kc−1)(N−1)+NX]

αi−1
s Ii.

(D.10)

In (D.10), we rewrite (D.9) following the same argument that we used in Section 6.4.3. Note

that Ii,i∈ [(Kc−1)(N−1)+NX] represent various linear combinations of Ω(·), which can

be found explicitly by expanding (D.9). Their exact forms are irrelevant, hence omitted for

ease of exposition. Now we can see that the answers from any R=Kc(N+`−1)+N(X−

1)+2B+1 servers, whose indices are denoted as s1,s2,··· ,sR, are coded according to the

following R×(R−2B) generator matrix of an MDS(R−2B,R) code.




1
f1,1−αs1

1
f1,2−αs1

··· 1
f`,Kc−αs1

1 αs1 ··· αR−2B−L−1
s1

1
f1,1−αs2

1
f1,2−αs2

··· 1
f`,Kc−αs2

1 αs2 ··· αR−2B−L−1
s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

··· 1
f`,Kc−αsR

1 αsR ··· αR−2B−L−1
sR



. (D.11)

308

Thus the user (decoder) can correct up to (R−(R−2B))/2 =B errors in the answers. Upon

error correction, the user is able to recover desired evaluations, which appear along the

dimensions spanned by the Cauchy part. This completes the proof of recovery threshold

R=Kc(N+`−1)+N(X−1)+2B+1.

Remark D.1. Because of the X-secure constraint, the systematic construction presented

in Section 6.4.4 cannot be applied to N-CSA codes for XSBNCDBC.

Remark D.2. GCSA codes for coded distributed batch matrix multiplication presented in

Section 6.5 can similarly be generalized to allow X-secure and B-Byzantine settings. Such a

generalization is straightforward, thus omitted here.

309

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Overview of the Dissertation
	Notation

	X-Secure T-Private Information Retrieval
	Introduction
	Problem Statement: XSTPIR
	Capacity of XSTPIR: Results and Observations
	Results
	Observations

	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Example: (X=1) Secure, (T=1) Private Scheme with N=5 Servers
	Example: (X=2) Secure, (T=1) Private Scheme with N=4 Servers
	Example: (X=1) Secure, (T=2) Private Scheme with N=5 Servers
	Example: (X=2) Secure, (T=2) Private Scheme with N=7 Servers

	Proof of Theorem 2.4
	Discussion

	X-Secure T-Private Information Retrieval with Graph Based Replicated Storage
	Introduction
	Problem Statement
	Results
	Examples
	Solution Structure inspired by Dual GRS Codes

	Proof of Theorem 3.1
	A Simple Example
	A General Scheme
	A Private Computation Scheme for X=0, min=T+1.

	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Converse for Theorem 3.3
	Proof of Achievability for Theorem 3.3

	Discussion

	X-secure T-private Information Retrieval from MDS Coded Storage with Byzantine and Unresponsive Servers
	Introduction
	Problem Statement: U-B-MDS-XSTPIR
	Result: An Achievable Rate for U-B-MDS-XSTPIR
	Proof of Theorem 4.1
	X=1, T=1, Kc=2, N=4
	Arbitrary U, B

	Private and Secure Distributed Matrix Multiplication
	PSDMM: Problem Statement
	A New Scheme for PSDMM

	Discussion

	Secure Distributed Matrix Multiplication
	Introduction
	Problem Statement: SDMM
	Results
	A Connection between SDMM and MM-XSTPIR
	An Upperbound on the Capacity of MM-XSTPIR
	Entropies of Products of Random Matrices
	Capacity of SDMM(AB,)
	Capacity of SDMM(B,A)
	Capacity of SDMM(B,B)
	Capacity of SDMM(B,)
	Capacity of SDMMAB,B

	Converse
	Proof of Converse for Theorem 5.3
	Converse of Theorem 5.2: (5.24),(5.27)

	Achievability
	A General Scheme
	Cross Subspace Alignment Based Scheme
	Proofs of Achievability
	Achievability Proof of Theorem 5.2: Case (5.24)

	Discussion

	Cross Subspace Alignment Codes for Coded Distributed Batch Computation
	Introduction
	EP Codes, LCC Codes, CSA Codes
	Matrix Partitioning: EP Codes
	Batch Processing: LCC Codes
	Cross Subspace Alignment: CSA Codes

	Problem Statement
	Coded Distributed Batch Matrix Multiplication (CDBMM)
	Distributed N-linear Batch Computation
	Distributed Multivariate Polynomial Batch Evaluation

	CSA Codes for CDBMM
	CSA Codes: Main Result
	Observations
	Proof of Theorem 6.1
	Systematic Construction of CSA Codes

	Generalized Cross-Subspace Alignment (GCSA) Codes: Combining Batch Processing and Matrix-Partitioning
	GCSA Codes: Main Result
	Observations
	Proof of Theorem 6.2

	N-CSA Codes for N-linear Coded Distributed Batch Computation (N-CDBC)
	N-CSA Codes: Main Result
	Proof of Theorem 6.3

	Discussion

	X-Secure T-Private Federated Submodel Learning with Elastic Dropout Resilience
	Introduction
	Problem Statement: Robust XSTPFSL
	Main Result: The ACSA-RW Scheme for Private Read/Write
	Observations

	Proof of Theorem 7.1
	Example

	Discussion

	Conclusion
	Bibliography
	Appendix Appendix of Chapter 2
	Proof of Lemma 2.7
	Proof of Corollaries 2.1, 2.2, 2.3, 2.4
	Proof of Corollary 2.2
	Proof of Corollary 2.3
	Proof of Corollary 2.4

	Appendix Appendix of Chapter 3
	Lemmas

	Appendix Appendix of Chapter 5
	Multi-Message X-Secure T-Private Information Retrieval
	Problem Statement
	Upper Bound of the Capacity of Multi-Message XSTPIR

	Proof of Lemma 5.2
	Proof of Lemma 5.2: (5.20)
	Proof of Lemma 5.2: (5.21),(5.22)

	Appendix Appendix of Chapter 6
	N-CSA Codes for X-secure B-byzantine N-linear Coded Distributed Batch Computation

